Family of 550-uA/Ch 3-MHz Rail-to-Rail Output

 µ
SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004
D
D
D
D
D
D
D
D
D
D
Rail-To-Rail Output
Wide Bandwidth . . . 3 MHz
High Slew Rate . . . 2 .4 V/µs
Supply Voltage Range . . . 2.7 V to 16 V
Supply Current . . . 550 µA/Channel
Input Noise Voltage . . . 39 nV/√Hz
Input Bias Current . . . 1 pA
Specified Temperature Range
0°C to 70°C . . . Commercial Grade
−40°C to 125°C . . . Industrial Grade
Ultrasmall Packaging
− 5 Pin SOT-23 (TLV271)
− 8 Pin MSOP (TLV272)
Ideal Upgrade for TLC27x Family
Operational Amplifier
+
−
description
The TLV27x takes the minimum operating supply voltage down to 2.7 V over the extended industrial
temperature range while adding the rail-to-rail output swing feature. This makes it an ideal alternative to the
TLC27x family for applications where rail-to-rail output swings are essential. The TLV27x also provides 3-MHz
bandwidth from only 550 µA.
Like the TLC27x, the TLV27x is fully specified for 5-V and ±5-V supplies. The maximum recommended supply
voltage is 16 V, which allows the devices to be operated from a variety of rechargeable cells (±8 V supplies down
to ±1.35 V).
The CMOS inputs enable use in high-impedance sensor interfaces, with the lower voltage operation making
an attractive alternative for the TLC27x in battery-powered applications.
All members are available in PDIP and SOIC with the singles in the small SOT-23 package, duals in the MSOP,
and quads in the TSSOP package.
The 2.7-V operation makes it compatible with Li-Ion powered systems and the operating supply voltage range
of many micropower microcontrollers available today including TI’s MSP430.
SELECTION OF SIGNAL AMPLIFIER PRODUCTS†
VDD (V)
VIO
(µV)
Iq/Ch
(µA)
IIB (pA)
GBW
(MHz)
SR
(V/µs)
SHUTDOWN
RAILTORAIL
SINGLES/DUALS/QUADS
2.7−16
500
550
1
3
2.4
—
O
S/D/Q
TLC27x
3−16
1100
675
1
1.7
3.6
—
—
S/D/Q
TLV237x
2.7−16
500
550
1
3
2.4
Yes
I/O
S/D/Q
TLC227x
4−16
300
1100
1
2.2
3.6
—
O
D/Q
TLV246x
2.7−6
150
550
1300
6.4
1.6
Yes
I/O
S/D/Q
TLV247x
2.7−6
250
600
2
2.8
1.5
Yes
I/O
S/D/Q
TLV244x
2.7−10
300
† Typical values measured at 5 V, 25°C
725
1
1.8
1.4
—
O
D/Q
DEVICE
TLV27x
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2001−2004, Texas Instruments Incorporated
!"#$%&'#! ( )*$$+!' &( #" ,*-.)&'#! /&'+0
$#/*)'( )#!"#$% '# (,+)")&'#!( ,+$ '+ '+$%( #" +1&( !('$*%+!'(
('&!/&$/ 2&$$&!'30 $#/*)'#! ,$#)+((!4 /#+( !#' !+)+((&$.3 !).*/+
'+('!4 #" &.. ,&$&%+'+$(0
WWW.TI.COM
1
µ
SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004
FAMILY PACKAGE TABLE
PACKAGE TYPES
NUMBER OF
CHANNELS
PDIP
SOIC
TLV271
1
8
TLV272
2
8
TLV274
4
14
DEVICE
SHUTDOWN
SOT-23
TSSOP
MSOP
8
5
—
—
—
8
—
—
8
—
14
—
14
—
—
UNIVERSAL
EVM BOARD
Refer to the EVM
Selection Guide
(Lit# SLOU060)
TLV271 AVAILABLE OPTIONS
PACKAGED DEVICES
VIOMAX AT
25°C
TA
0°C to 70°C
SOT-23
SMALL OUTLINE
(D)†
TLV271CD
(DBV)‡
TLV271CDBV
SYMBOL
PLASTIC DIP
(P)
VBHC
—
5 mV
−40°C to 125°C
TLV271ID
TLV271IDBV
VBHI
TLV271IP
† This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV271IDR).
‡ This package is only available taped and reeled. For standard quantities (3,000 pieces per reel), add an R suffix (e.g., TLV270IDBVR). For smaller
quantities (250 pieces per mini-reel), add a T suffix to the part number (e.g., TLV270IDBVT).
TLV272 AVAILABLE OPTIONS
PACKAGED DEVICES
VIOMAX AT
25°C
TA
0°C to 70°C
MSOP
SMALL OUTLINE
(D)§
(DGK)§
SYMBOL
PLASTIC DIP
(P)
TLV272CD
TLV272CDGK
AVF
—
5 mV
−40°C to 125°C
TLV272ID
TLV272IDGK
AVG
TLV272IP
§ This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV272IDR).
TLV274 AVAILABLE OPTIONS
PACKAGED DEVICES
TA
VIOMAX AT 25°C
SMALL OUTLINE
(D)¶
PLASTIC DIP
(N)
TSSOP
(PW)¶
TLV274CD
—
TLV274CPW
0°C to 70°C
5 mV
−40°C to 125°C
TLV274ID
TLV274IN
TLV274IPW
¶ This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV274IDR).
2
WWW.TI.COM
µ
SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004
TLV27x PACKAGE PINOUTS(1)
TLV271
D OR P PACKAGE
(TOP VIEW)
TLV271
DBV PACKAGE
(TOP VIEW)
OUT
GND
IN+
1
5
VDD
NC
IN −
IN +
GND
2
3
4
IN −
1
8
2
7
3
6
4
5
VDD
2OUT
2IN −
2IN+
8
2
7
3
6
4
5
NC
VDD
OUT
NC
TLV274
D, N, OR PW PACKAGE
TLV272
D, DGK, OR P PACKAGE
(TOP VIEW)
1OUT
1IN −
1IN +
GND
1
(TOP VIEW)
1OUT
1IN −
1IN+
VDD
2IN+
2IN −
2OUT
1
14
2
13
3
12
4
11
5
10
6
9
7
8
4OUT
4IN −
4IN+
GND
3IN+
3IN −
3OUT
NC − No internal connection
(1) SOT−23 may or may not be indicated
TYPICAL PIN 1 INDICATORS
Pin 1
Printed or
Molded Dot
Pin 1
Stripe
Pin 1
Bevel Edges
WWW.TI.COM
Pin 1
Molded ”U” Shape
3
µ
SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.5 V
Differential input voltage, VID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± VDD
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.2 V to VDD + 0.2 V
Input current range, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 10 mA
Output current range, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 100 mA
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C
Maximum junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values, except differential voltages, are with respect to GND.
DISSIPATION RATING TABLE
PACKAGE
θJC
(°C/W)
θJA
(°C/W)
TA ≤ 25°C
POWER RATING
TA = 25°C
POWER RATING
D (8)
38.3
176
710 mW
396 mW
D (14)
26.9
122.3
1022 mW
531 mW
D (16)
25.7
114.7
1090 mW
567 mW
DBV (5)
55
324.1
385 mW
201 mW
DBV (6)
55
294.3
425 mW
221 mW
DGK (8)
54.23
259.96
481 mW
250 mW
DGS (10)
54.1
257.71
485 mW
252 mW
N (14, 16)
32
78
1600 mW
833 mW
P (8)
41
104
1200 mW
625 mW
PW (14)
29.3
173.6
720 mW
374 mW
PW (16)
28.7
161.4
774 mW
403 mW
recommended operating conditions
Single supply
Supply voltage, VDD
Split supply
Common-mode input voltage range, VICR
C-suffix
Operating free-air temperature, TA
4
I-suffix
WWW.TI.COM
MIN
MAX
2.7
16
±1.35
±8
0
0
VDD−1.35
70
−40
125
UNIT
V
V
°C
µ
SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004
electrical characteristics at specified free-air temperature, VDD = 2.7 V, 5 V, and ±5 V (unless
otherwise noted)
dc performance
PARAMETER
VIO
Input offset voltage
αVIO
Offset voltage drift
TEST CONDITIONS
VIC = VDD/2,
RL = 10 kkΩ,
kΩ,
VO = VDD/2,
RS = 50 Ω
VIC = 0 to VDD−1.35V,
RS = 50 Ω
CMRR
AVD
Common-mode rejection ratio
Large-signal differential voltage
amplification
VDD = 2.7 V
TA†
25°C
MIN
MAX
0.5
5
Full range
7
25°C
58
Full range
55
25°C
65
VDD = 5 V
Full range
62
VIC = −5 to VDD−1.35V,
RS = 50 Ω,
VDD = ±5 V
25°C
69
Full range
66
25°C
97
VDD = 2.7 V
Full range
76
25°C
100
VDD = 5 V
Full range
86
VDD = ±5 V
25°C
100
Full range
90
UNIT
mV
V/°C
µV/°C
2
25°C
VIC = 0 to VDD−1.35V,
RS = 50 Ω,
VO(PP) = VDD/2,
RL = 10 kkΩ
TYP
70
80
dB
85
106
110
dB
115
† Full range is 0°C to 70°C for C suffix and full range is − 40°C to 125°C for I suffix. If not specified, full range is − 40°C to 125°C.
input characteristics
PARAMETER
IIO
TEST CONDITIONS
Input offset current
VDD = 5 V,
VIC = VDD/2,
VO = VDD/2, RS = 50 Ω
IIB
Input bias current
ri(d)
Differential input resistance
CIC
Common-mode input capacitance
f = 21 kHz
WWW.TI.COM
TA
25°C
MIN
TYP
1
MAX
70°C
100
125°C
1000
25°C
1
UNIT
60
pA
60
70°C
100
125°C
1000
pA
25°C
1000
GΩ
25°C
8
pF
5
µ
SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004
electrical characteristics at specified free-air temperature, VDD = 2.7 V, 5 V, and ±5 V (unless
otherwise noted)
output characteristics
PARAMETER
TEST CONDITIONS
VDD = 2.7 V
VIC = VDD/2, IOH = −1 mA
VOH
MIN
TYP
2.55
2.58
Full range
2.48
25°C
4.9
VDD = 5 V
Full range
4.85
VDD = ±5 V
25°C
4.92
Full range
4.9
25°C
1.9
Full range
1.5
25°C
4.6
Full range
4.5
High-level output voltage
VDD = 2.7 V
VIC = VDD/2, IOH = −5 mA
TA†
25°C
VDD = 5 V
VDD = ±5 V
25°C
4.7
Full range
4.65
VDD = 2.7 V
Full range
25°C
25°C
VIC = VDD/2, IOL = 1 mA
VDD = 5 V
VDD = ±5 V
VOL
Low-level output voltage
VDD = 2.7 V
Full range
VDD = 5 V
Full range
25°C
VIC = VDD/2, IOL = 5 mA
VO = 0.5 V from rail, VDD = 2.7 V
IO
Output current
VO = 0.5 V from rail, VDD = 5 V
VO = 0.5 V from rail, VDD = 10 V
4.96
25°C
V
2.1
4.68
4.84
0.1
0.15
0.22
0.05
0.1
−4.95
−4.92
0.15
Full range
25°C
−4.9
0.5
0.7
WWW.TI.COM
V
1.1
0.28
0.4
−4.84
−4.7
0.5
VDD = ±5 V
Full range
Positive rail
25°C
4
Negative rail
25°C
5
Positive rail
25°C
7
Negative rail
25°C
8
Positive rail
25°C
13
−4.65
Negative rail
25°C
12
† Full range is 0°C to 70°C for C suffix and full range is − 40°C to 125°C for I suffix. If not specified, full range is − 40°C to 125°C.
‡ Depending on package dissipation rating
6
UNIT
4.93
Full range
25°C
MAX
mA
µ
SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004
electrical characteristics at specified free-air temperature, VDD = 2.7 V, 5 V, and ±5 V (unless
otherwise noted) (continued)
power supply
PARAMETER
IDD
TEST CONDITIONS
Supply current (per channel)
VDD = 2.7 V
VDD = 5 V
VO = VDD/2
VDD = 10 V
PSRR
Supply voltage rejection ratio
(∆VDD /∆VIO)
VDD = 2.7 V to 16 V,
No load
VIC = VDD /2,
TA†
25°C
MIN
TYP
MAX
470
560
25°C
550
660
25°C
625
800
Full range
UNIT
µA
1000
25°C
70
Full range
65
80
dB
† Full range is 0°C to 70°C for C suffix and full range is − 40°C to 125°C for I suffix. If not specified, full range is − 40°C to 125°C.
dynamic performance
PARAMETER
UGBW
Unity gain bandwidth
TA†
TEST CONDITIONS
RL = 2 kΩ,
kΩ
CL = 10 pF
2.4
VDD = 5 V to 10 V
25°C
3
25°C
φm
ts
Slew rate at unity gain
VO(PP) = VDD/2,
CL = 50 pF, RL = 10 kkΩ,,
TYP
25°C
VDD = 2.7 V
SR
MIN
VDD = 2.7 V
Full range
1.35
MAX
MHz
2.1
V/ s
V/µs
1
25°C
1.45
VDD = 5 V
Full range
1.2
VDD = ±5 V
25°C
1.8
Full range
1.3
UNIT
2.4
V/ s
V/µs
2.6
V/ s
V/µs
Phase margin
RL = 2 kΩ
CL = 10 pF
25°C
65
°
Gain margin
RL = 2 kΩ
CL = 10 pF
25°C
18
dB
Settling time
VDD = 2.7 V,
V(STEP)PP = 1 V,
CL = 10 pF,
VDD = 5 V, ±5 V,
V(STEP)PP = 1 V,
CL = 47 pF,
AV = −1,
RL = 2 kΩ
0.1%
2.9
µss
25°C
AV = −1,
0.1%
2
RL = 2 kΩ
† Full range is 0°C to 70°C for C suffix and full range is − 40°C to 125°C for I suffix. If not specified, full range is − 40°C to 125°C.
noise/distortion performance
PARAMETER
TEST CONDITIONS
VDD = 2.7 V,
VO(PP) = VDD/2 V,
RL = 2 kΩ,
k , f = 10 kHz
THD + N
Total harmonic distortion plus noise
VDD = 5 V, ±5 V,
VO(PP) = VDD/2 V,
RL = 2 kΩ,
k , f = 10K
AV = 1
AV = 10
TA
Equivalent input noise voltage
In
Equivalent input noise current
MAX
UNIT
0.05%
0.18%
0.02%
25°C
25
C
0.09%
0.50%
f = 1 kHz
Vn
TYP
0.02%
25°C
25
C
AV = 100
AV = 1
AV = 10
AV = 100
MIN
39
25°C
f = 10 kHz
f = 1 kHz
25°C
WWW.TI.COM
35
0.6
nV/√Hz
fA /√Hz
7
µ
SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
CMRR
Common-mode rejection ratio
vs Frequency
Input bias and offset current
vs Free-air temperature
1
VOL
VOH
Low-level output voltage
vs Low-level output current
3, 5, 7
High-level output voltage
vs High-level output current
4, 6, 8
VO(PP)
IDD
Peak-to-peak output voltage
vs Frequency
9
Supply current
vs Supply voltage
10
PSRR
Power supply rejection ratio
vs Frequency
11
AVD
Differential voltage gain & phase
vs Frequency
12
Gain-bandwidth product
vs Free-air temperature
13
vs Supply voltage
14
2
SR
Slew rate
vs Free-air temperature
15
φm
Vn
Phase margin
vs Capacitive load
16
Equivalent input noise voltage
vs Frequency
17
Voltage-follower large-signal pulse response
18, 19
Voltage-follower small-signal pulse response
20
Inverting large-signal response
21, 22
Inverting small-signal response
23
Crosstalk
8
vs Frequency
WWW.TI.COM
24
µ
SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS
100
VDD = 5 V, 10 V
80
60
VDD = 2.7 V
40
20
0
10
100
1k
100 k
10 k
1M
250
VDD = 2.7 V, 5 V and 10 V
VIC = VDD/2
200
150
100
50
0
−40 −25 −10 5
TA =−40°C
TA = 125°C
TA = 70°C
TA = 25°C
0.80
TA = 0°C
0.40
TA = 125 °C
4.00
TA = 70 °C
3.50
3.00
2.50
TA = 25 °C
2.00
1.50
TA = 0 °C
1.00
TA = −40 °C
0.50
1 2 3 4 5 6 7 8 9 10 11 12
IOH − High-Level Output Current − mA
8
TA =70°C
TA =25°C
TA =0°C
TA =−40°C
2
80
100
IOL − Low-Level Output Current − mA
Figure 7
3.00
2.50
TA = 25°C
2.00
1.50
TA = 70°C
1.00
TA = 125°C
0.50
5
10
10
VDD = 10 V
8
TA = −40°C
6
TA = 0°C
4
TA = 25°C
2
120
TA = 70°C
TA = 125°C
0
20
40
60
80
100
IOH − High-Level Output Current − mA
Figure 8
WWW.TI.COM
15
20
25
30
35
40
45
IOH − High-Level Output Current − mA
Figure 6
0
0
60
TA = 0°C
3.50
0
PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
V O(PP) − Peak-to-Peak Output Voltage − V
TA =125°C
40
TA = −40°C
4.00
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
IOL − Low-Level Output Current − mA
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
V OH − High-Level Output Voltage − V
VOL − Low-Level Output Voltage − V
VDD = 10 V
20
VCC = 5 V
4.50
Figure 5
10
0
2 4 6 8 10 12 14 16 18 20 22 24
IOL − Low-Level Output Current − mA
0.00
Figure 4
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
TA = 0 °C
TA = 40 °C
5.00
VDD = 5 V
4.50
0.00
4
0.40
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
V OH − High-Level Output Voltage − V
VOL − Low-Level Output Voltage − V
V OH − High-Level Output Voltage − V
2.40
6
TA = 70 °C
TA = 25 °C
0.80
Figure 3
5.00
VDD = 2.7 V
0
1.20
0
20 35 50 65 80 95 110 125
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
2.80
1.20
1.60
Figure 2
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
1.60
2.00
TA − Free-Air Temperature − °C
Figure 1
2.00
VDD = 2.7 V
2.40 T = 125 °C
A
0.00
−50
f − Frequency − Hz
0.00
2.80
300
VOL − Low-Level Output Voltage − V
120
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
INPUT BIAS AND OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
I IB I IO − Input Bias and Offset Current − pA
CMRR − Common-Mode Rejection Ratio − dB
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
120
11
VDD = 10 V
10
9
8
7
6
AV = −10
RL = 2 kΩ
CL = 10 pF
TA = 25°C
THD = 5%
5
VDD = 5 V
4
3
2
VDD = 2.7 V
1
0
10
100
1k
10 k
100 k
1M
10 M
f − Frequency − Hz
Figure 9
9
µ
SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS
POWER SUPPLY REJECTION RATIO
vs
FREQUENCY
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
AV = 1
VIC = VDD / 2
I DD − Supply Current − mA/ch
0.9
PSRR − Power Supply Rejection Ratio − dB
1.0
TA = 125°C
0.8
TA = 70°C
0.7
0.6
0.5
0.4
TA = 25°C
0.3
TA = 0°C
0.2
TA = −40°C
0.1
0.0
120
TA = 25°C
100
VDD = 5 V, 10 V
80
VDD = 2.7 V
60
40
20
0
10
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
VDD − Supply Voltage − V
100
1k
DIFFERENTIAL VOLTAGE GAIN AND PHASE
vs
FREQUENCY
90
45
60
0
Gain
−45
20
−90
VDD=5 V
RL=2 kΩ
CL=10 pF
TA=25°C
−20
−40
10
100
−135
1k
10 k
100 k 1 M
−180
10 M
GBWP −Gain Bandwidth Product − MHz
Phase
Phase − °
AVD − Differential Voltage Gain − dB
4.0
135
100
0
3.5
VDD = 10 V
3.0
2.5
2.0
VDD = 5 V
VDD = 2.7 V
1.5
1.0
0.5
0.0
−40 −25 −10 5
Figure 13
Figure 12
SLEW RATE
vs
FREE-AIR TEMPERATURE
3.5
3.0
SR+
1.0
AV = 1
RL = 10 kΩ
CL = 50 pF
TA = 25°C
0.5
2.5
4.5
6.5
8.5
10.5
12.5
VCC − Supply Voltage −V
Figure 14
10
14.5
80
SR−
2.5
2.0
SR+
1.5
VDD = 5 V
AV = 1
RL = 10 kΩ
CL = 50 pF
VI = 3 V
1.0
0.5
0.0
VDD = 5 V
RL= 2 kΩ
TA = 25°C
AV = Open Loop
90
0.0
−40 −25 −10 5
20 35 50 65 80 95 110 125
TA − Free-Air Temperature − °C
Figure 15
WWW.TI.COM
Phase Margin − °
2.0
PHASE MARGIN
vs
CAPACITIVE LOAD
100
3.0
2.5
SR − Slew Rate − V/ µ s
SR − Slew Rate − V/ µ s
SR−
1.5
20 35 50 65 80 95 110 125
TA − Free-Air Temperature − °C
f − Frequency − Hz
SLEW RATE
vs
SUPPLY VOLTAGE
1M
GAIN BANDWIDTH PRODUCT
vs
FREE-AIR TEMPERATURE
180
120
40
100 k
Figure 11
Figure 10
80
10 k
f − Frequency − Hz
70
Rnull = 100
60
50
40
Rnull = 0
30
Rnull = 50
20
10
0
10
100
CL − Capacitive Load − pF
Figure 16
1000
µ
SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
VDD = 2.7, 5, 10 V
TA = 25°C
90
4
80
70
60
50
3
2
1
VDD = 5 V
AV = 1
RL = 2 kΩ
CL = 10 pF
VI = 3 VPP
TA = 25°C
VI
0
40
3
30
2
20
1
VO
10
0
0
100
1k
10 k
f − Frequency − Hz
0
100 k
2
6
4
2
VO
0
0
2
4
6
8
0.12
0.08
VDD = 5 V
AV = 1
RL = 2 kΩ
CL = 10 pF
VI = 100 mVPP
TA = 25°C
0.04
VI
0.00
0.04
VO
0.00
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
10 12 14 16 18
t − Time − µs
Figure 20
Figure 19
INVERTING LARGE-SIGNAL RESPONSE
INVERTING LARGE-SIGNAL RESPONSE
V I − Input Voltage − V
4
VDD = 5 V
AV = 1
RL = 2 kΩ
CL = 10 pF
VI = 3 VPP
TA = 25°C
1
0
3
2
1
0
VO
0
2
4
6
8
10
12
14
V − Output Voltage − V
O
VI
2
0.12
0.08
t − Time − µs
3
10 12 14 16 18
V − Output Voltage − mV
O
0
V − Output Voltage − V
O
VDD = 10 V
AV = 1
RL = 2 kΩ
CL = 10 pF
VI = 6 VPP
TA = 25°C
V − Input Voltage − mV
I
V − Input Voltage − V
I
6
VI
8
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE
8
2
6
Figure 18
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
4
4
t − Time − µs
8
6
VDD = 10 V
AV = VI = −1
RL = 2 kΩ
CL = 10 pF
TA = 25°C
4
2
0
VI
6
VO
4
2
0
16
0
t − Time − µs
2
4
6
8
10
t − Time − µs
12
14
V O − Output Voltage − V
10
Figure 17
V − Input Voltage − V
I
V − Output Voltage − V
O
100
V − Input Voltage − V
I
V n − Equivalent Input Noise Voltage − nV/
Hz
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
16
Figure 22
Figure 21
WWW.TI.COM
11
µ
SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS
CROSSTALK
vs
FREQUENCY
0
0.00
VDD = 5 V
AV = VI = −1
RL = 2 kΩ
CL = 10 pF
VI = 100 mVpp
TA = 25°C
−40
VI
0.10
VO
0.05
0.00
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Crosstalk − dB
0.05
VDD = 2.7, 5, & 15 V
VI = 1 VDD/2
AV = 1
RL = 2 kΩ
TA = 25°C
−20
0.10
V O − Output Voltage − V
V I − Input Voltage − V
INVERTING SMALL-SIGNAL RESPONSE
−60
−80
−100
Crosstalk
−120
−140
10
100
1k
10 k
f − Frequency − Hz
t − Time − µs
100 k
Figure 24
Figure 23
APPLICATION INFORMATION
driving a capacitive load
When the amplifier is configured in this manner, capacitive loading directly on the output decreases the device’s
phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater than
10 pF, it is recommended that a resistor be placed in series (RNULL) with the output of the amplifier, as shown
in Figure 25. A minimum value of 20 Ω should work well for most applications.
RF
RG
−
Input
RNULL
Output
+
CLOAD
VDD/2
Figure 25. Driving a Capacitive Load
12
WWW.TI.COM
µ
SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004
APPLICATION INFORMATION
offset voltage
The output offset voltage, (VOO) is the sum of the input offset voltage (VIO) and both input bias currents (IIB) times
the corresponding gains. The following schematic and formula can be used to calculate the output offset
voltage:
RF
RG
IIB−
+
−
VI
RS
V
VO
+
OO
+V
IO
ǒ ǒ ǓǓ
R
1)
R
F
"I
G
IB)
R
S
ǒ ǒ ǓǓ
1)
R
R
F
G
"I
IB–
R
F
IIB+
Figure 26. Output Offset Voltage Model
general configurations
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often
required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier
(see Figure 27).
RG
RF
O +
V
I
VDD/2
VI
V
ǒ
1)
R
R
F
G
Ǔǒ
Ǔ
1
1 ) sR1C1
−
VO
+
R1
f
–3dB
+
1
2pR1C1
C1
Figure 27. Single-Pole Low-Pass Filter
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this
task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth.
Failure to do this can result in phase shift of the amplifier.
C1
+
_
VI
R1
R1 = R2 = R
C1 = C2 = C
Q = Peaking Factor
(Butterworth Q = 0.707)
R2
f
C2
RG
RF
–3dB
RG =
+
(
1
2pRC
RF
1
2−
Q
)
VDD/2
Figure 28. 2-Pole Low-Pass Sallen-Key Filter
WWW.TI.COM
13
µ
SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004
APPLICATION INFORMATION
circuit layout considerations
To achieve the levels of high performance of the TLV27x, follow proper printed-circuit board design techniques.
A general set of guidelines is given in the following.
D Ground planes—It is highly recommended that a ground plane be used on the board to provide all
components with a low inductive ground connection. However, in the areas of the amplifier inputs and
output, the ground plane can be removed to minimize the stray capacitance.
D Proper power supply decoupling—Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic
capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers
depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal
of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply
terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less
effective. The designer should strive for distances of less than 0.1 inches between the device power
terminals and the ceramic capacitors.
D Sockets—Sockets can be used but are not recommended. The additional lead inductance in the socket pins
will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board
is the best implementation.
D Short trace runs/compact part placements—Optimum high performance is achieved when stray series
inductance has been minimized. To realize this, the circuit layout should be made as compact as possible,
thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of
the amplifier. Its length should be kept as short as possible. This helps to minimize stray capacitance at the
input of the amplifier.
D Surface-mount passive components—Using surface-mount passive components is recommended for high
performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of
surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small
size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray
inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be
kept as short as possible.
14
WWW.TI.COM
µ
SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004
APPLICATION INFORMATION
general power dissipation considerations
For a given θJA, the maximum power dissipation is shown in Figure 29 and is calculated by the following formula:
P
D
+
Where:
ǒ
T
Ǔ
–T
MAX A
q
JA
PD = Maximum power dissipation of TLV27x IC (watts)
TMAX = Absolute maximum junction temperature (150°C)
TA
= Free-ambient air temperature (°C)
θJA = θJC + θCA
θJC = Thermal coefficient from junction to case
θCA = Thermal coefficient from case to ambient air (°C/W)
MAXIMUM POWER DISSIPATION
vs
FREE-AIR TEMPERATURE
2
Maximum Power Dissipation − W
1.75
1.5
1.25
TJ = 150°C
PDIP Package
Low-K Test PCB
θJA = 104°C/W
SOIC Package
Low-K Test PCB
θJA = 176°C/W
MSOP Package
Low-K Test PCB
θJA = 260°C/W
1
0.75
0.5
0.25
SOT-23 Package
Low-K Test PCB
θJA = 324°C/W
0
−55 −40 −25 −10 5
20 35 50 65 80 95 110 125
TA − Free-Air Temperature − °C
NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.
Figure 29. Maximum Power Dissipation vs Free-Air Temperature
WWW.TI.COM
15
µ
SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim Parts Release 9.1, the model generation
software used with Microsim PSpice . The Boyle macromodel (see Note 4) and subcircuit in Figure 30 are
generated using TLV27x typical electrical and operating characteristics at TA = 25°C. Using this information,
output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):
D Maximum positive output voltage swing
D Unity-gain frequency
D Maximum negative output voltage swing
D Common-mode rejection ratio
D Slew rate
D Phase margin
D Quiescent power dissipation
D DC output resistance
D Input bias current
D AC output resistance
D Open-loop voltage amplification
D Short-circuit output current limit
NOTE 2: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
3
99
VDD
+
egnd
rd1
rd2
rss
ro2
css
fb
rp
−
c1
7
11
12
+
c2
vlim
1
r2
+
9
6
IN+
−
vc
D
D
8
+
−
vb
ga
2
G
G
−
IN−
ro1
gcm
ioff
53
S
S
OUT
dp
91
10
iss
GND
4
+
dc
−
dlp
ve
+ 54
vlp
−
+
hlim
−
5
92
−
vln
+
de
*DEVICE=amp_tlv27x_highVdd,OP AMP,NJF,INT
* amp_tlv_27x_highVdd operational amplifier ”macromodel”
* subcircuit updated using Model Editor release 9.1 on 05/15/00
* at 14:40 Model Editor is an OrCAD product.
*
* connections:
non-inverting input
*
| inverting input
*
| | positive power supply
*
| | | negative power supply
*
| | | | output
*
| | | | |
.subckt amp_tlv27x_highVdd 1 2 3 4 5
*
c1
11
12 457.48E−15
c2
6
7
5.0000E−12
css
10
99 1.1431E−12
dc
5
53 dy
de
54
5
dy
dlp
90
91 dx
dln
92
90 dx
dp
4
3
dx
egnd
99
0
poly(2) (3,0) (4,0) 0 .5 .5
fb
7
99 poly(5) vb vc ve vlp vln 0
176.02E6 −1E3 1E3 180E6
−180E6
ga
gcm
iss
hlim
j1
J2
r2
rd1
rd2
ro1
ro2
rp
rss
vb
vc
ve
vlim
vlp
vln
.model
.model
.model
.model
.ends
6
0
10
90
11
12
6
3
3
8
7
3
10
9
3
54
7
91
0
dx
dy
jx1
jx2
0
11 12 16.272E−6
6
10 99 6.8698E−9
4
dc 1.3371E−6
0
vlim 1K
2
10 jx1
1
10 jx2
9
100.00E3
11
61.456E3
12
61.456E3
5
10
99
10
4
150.51E3
99
149.58E6
0
dc 0
53
dc .78905
4
dc .78905
8
dc 0
0
dc 14.200
92
dc 14.200
D(Is=800.00E−18)
D(Is=800.00E−18 Rs=1m Cjo=10p)
NJF(Is=500.00E−15 Beta=198.03E−6 Vto=−1)
NJF(Is=500.00E−15 Beta=198.03E−6 Vto=−1)
Figure 30. Boyle Macromodel and Subcircuit
PSpice and Parts are trademarks of MicroSim Corporation.
16
90
dln
WWW.TI.COM
PACKAGE OPTION ADDENDUM
www.ti.com
18-Oct-2013
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
TLV271CD
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
T271C
TLV271CDBVR
ACTIVE
SOT-23
DBV
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
VBHC
TLV271CDBVRG4
ACTIVE
SOT-23
DBV
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
VBHC
TLV271CDBVT
ACTIVE
SOT-23
DBV
5
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
VBHC
TLV271CDBVTG4
ACTIVE
SOT-23
DBV
5
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
VBHC
TLV271CDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
T271C
TLV271CDR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
T271C
TLV271CDRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
T271C
TLV271ID
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
T271I
TLV271IDBVR
ACTIVE
SOT-23
DBV
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
VBHI
TLV271IDBVRG4
ACTIVE
SOT-23
DBV
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
VBHI
TLV271IDBVT
ACTIVE
SOT-23
DBV
5
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
VBHI
TLV271IDBVTG4
ACTIVE
SOT-23
DBV
5
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
VBHI
TLV271IDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
T271I
TLV271IP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
-40 to 125
T271I
TLV271IPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
-40 to 125
T271I
TLV272CD
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
T272C
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
18-Oct-2013
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
TLV272CDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
T272C
TLV272CDGK
ACTIVE
VSSOP
DGK
8
80
Green (RoHS
& no Sb/Br)
CU NIPDAU |
CU NIPDAUAG
Level-1-260C-UNLIM
0 to 70
AVF
TLV272CDGKG4
ACTIVE
VSSOP
DGK
8
80
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
AVF
TLV272CDGKR
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU |
CU NIPDAUAG
Level-1-260C-UNLIM
0 to 70
AVF
TLV272CDGKRG4
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
AVF
TLV272CDR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
T272C
TLV272CDRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
T272C
TLV272ID
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
T272I
TLV272IDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
T272I
TLV272IDGK
ACTIVE
VSSOP
DGK
8
80
Green (RoHS
& no Sb/Br)
CU NIPDAU |
CU NIPDAUAG
Level-1-260C-UNLIM
-40 to 125
AVG
TLV272IDGKG4
ACTIVE
VSSOP
DGK
8
80
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
AVG
TLV272IDGKR
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU |
CU NIPDAUAG
Level-1-260C-UNLIM
-40 to 125
AVG
TLV272IDGKRG4
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
AVG
TLV272IDR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
T272I
TLV272IDRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
T272I
TLV272IP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
-40 to 125
T272I
TLV272IPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
-40 to 125
T272I
TLV274CD
ACTIVE
SOIC
D
14
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
Addendum-Page 2
TLV274C
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
18-Oct-2013
Orderable Device
Status
(1)
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
TLV274CDG4
ACTIVE
SOIC
D
14
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
TLV274C
TLV274CDR
ACTIVE
SOIC
D
14
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
TLV274C
TLV274CDRG4
ACTIVE
SOIC
D
14
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
TLV274C
TLV274CPW
ACTIVE
TSSOP
PW
14
90
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
TLV274C
TLV274CPWG4
ACTIVE
TSSOP
PW
14
90
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
TLV274C
TLV274CPWR
ACTIVE
TSSOP
PW
14
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
TLV274C
TLV274CPWRG4
ACTIVE
TSSOP
PW
14
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
TLV274C
TLV274ID
ACTIVE
SOIC
D
14
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
TLV274I
TLV274IDG4
ACTIVE
SOIC
D
14
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
TLV274I
TLV274IDR
ACTIVE
SOIC
D
14
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
TLV274I
TLV274IDRG4
ACTIVE
SOIC
D
14
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
TLV274I
TLV274IN
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
-40 to 125
TLV274I
TLV274INE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
-40 to 125
TLV274I
TLV274IPW
ACTIVE
TSSOP
PW
14
90
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
TLV274I
TLV274IPWG4
ACTIVE
TSSOP
PW
14
90
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
TLV274I
TLV274IPWR
ACTIVE
TSSOP
PW
14
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
TLV274I
TLV274IPWRG4
ACTIVE
TSSOP
PW
14
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
TLV274I
The marketing status values are defined as follows:
Addendum-Page 3
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
18-Oct-2013
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF TLV271, TLV272, TLV274 :
• Automotive: TLV271-Q1, TLV272-Q1, TLV274-Q1
NOTE: Qualified Version Definitions:
Addendum-Page 4
PACKAGE OPTION ADDENDUM
www.ti.com
18-Oct-2013
• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
Addendum-Page 5
PACKAGE MATERIALS INFORMATION
www.ti.com
31-Dec-2013
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
TLV271CDBVR
SOT-23
DBV
5
3000
178.0
TLV271CDBVT
SOT-23
DBV
5
250
TLV271CDR
SOIC
D
8
2500
TLV271IDBVR
SOT-23
DBV
5
TLV271IDBVT
SOT-23
DBV
TLV272CDGKR
VSSOP
TLV272CDGKR
VSSOP
TLV272CDR
B0
(mm)
K0
(mm)
P1
(mm)
9.0
3.23
3.17
1.37
4.0
178.0
9.0
3.3
3.2
1.4
330.0
12.4
6.4
5.2
2.1
3000
178.0
9.0
3.3
3.2
5
250
178.0
9.0
3.3
DGK
8
2500
330.0
12.4
DGK
8
2500
330.0
12.4
SOIC
D
8
2500
330.0
TLV272IDGKR
VSSOP
DGK
8
2500
TLV272IDGKR
VSSOP
DGK
8
2500
TLV272IDR
SOIC
D
8
W
Pin1
(mm) Quadrant
8.0
Q3
4.0
8.0
Q3
8.0
12.0
Q1
1.4
4.0
8.0
Q3
3.2
1.4
4.0
8.0
Q3
5.3
3.4
1.4
8.0
12.0
Q1
5.3
3.4
1.4
8.0
12.0
Q1
12.4
6.4
5.2
2.1
8.0
12.0
Q1
330.0
12.4
5.3
3.4
1.4
8.0
12.0
Q1
330.0
12.4
5.3
3.4
1.4
8.0
12.0
Q1
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
TLV274CDR
SOIC
D
14
2500
330.0
16.4
6.5
9.0
2.1
8.0
16.0
Q1
TLV274CPWR
TSSOP
PW
14
2000
330.0
12.4
6.9
5.6
1.6
8.0
12.0
Q1
TLV274IDR
SOIC
D
14
2500
330.0
16.4
6.5
9.0
2.1
8.0
16.0
Q1
TLV274IPWR
TSSOP
PW
14
2000
330.0
12.4
6.9
5.6
1.6
8.0
12.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
31-Dec-2013
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
TLV271CDBVR
SOT-23
DBV
5
3000
180.0
180.0
18.0
TLV271CDBVT
SOT-23
DBV
5
250
180.0
180.0
18.0
TLV271CDR
SOIC
D
8
2500
340.5
338.1
20.6
TLV271IDBVR
SOT-23
DBV
5
3000
180.0
180.0
18.0
TLV271IDBVT
SOT-23
DBV
5
250
180.0
180.0
18.0
TLV272CDGKR
VSSOP
DGK
8
2500
358.0
335.0
35.0
TLV272CDGKR
VSSOP
DGK
8
2500
364.0
364.0
27.0
TLV272CDR
SOIC
D
8
2500
340.5
338.1
20.6
TLV272IDGKR
VSSOP
DGK
8
2500
364.0
364.0
27.0
TLV272IDGKR
VSSOP
DGK
8
2500
358.0
335.0
35.0
TLV272IDR
SOIC
D
8
2500
340.5
338.1
20.6
TLV274CDR
SOIC
D
14
2500
333.2
345.9
28.6
TLV274CPWR
TSSOP
PW
14
2000
367.0
367.0
35.0
TLV274IDR
SOIC
D
14
2500
333.2
345.9
28.6
TLV274IPWR
TSSOP
PW
14
2000
367.0
367.0
35.0
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated