µ SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004 D D D D D D D D D D Rail-To-Rail Output Wide Bandwidth . . . 3 MHz High Slew Rate . . . 2 .4 V/µs Supply Voltage Range . . . 2.7 V to 16 V Supply Current . . . 550 µA/Channel Input Noise Voltage . . . 39 nV/√Hz Input Bias Current . . . 1 pA Specified Temperature Range 0°C to 70°C . . . Commercial Grade −40°C to 125°C . . . Industrial Grade Ultrasmall Packaging − 5 Pin SOT-23 (TLV271) − 8 Pin MSOP (TLV272) Ideal Upgrade for TLC27x Family Operational Amplifier + − description The TLV27x takes the minimum operating supply voltage down to 2.7 V over the extended industrial temperature range while adding the rail-to-rail output swing feature. This makes it an ideal alternative to the TLC27x family for applications where rail-to-rail output swings are essential. The TLV27x also provides 3-MHz bandwidth from only 550 µA. Like the TLC27x, the TLV27x is fully specified for 5-V and ±5-V supplies. The maximum recommended supply voltage is 16 V, which allows the devices to be operated from a variety of rechargeable cells (±8 V supplies down to ±1.35 V). The CMOS inputs enable use in high-impedance sensor interfaces, with the lower voltage operation making an attractive alternative for the TLC27x in battery-powered applications. All members are available in PDIP and SOIC with the singles in the small SOT-23 package, duals in the MSOP, and quads in the TSSOP package. The 2.7-V operation makes it compatible with Li-Ion powered systems and the operating supply voltage range of many micropower microcontrollers available today including TI’s MSP430. SELECTION OF SIGNAL AMPLIFIER PRODUCTS† VDD (V) VIO (µV) Iq/Ch (µA) IIB (pA) GBW (MHz) SR (V/µs) SHUTDOWN RAILTORAIL SINGLES/DUALS/QUADS 2.7−16 500 550 1 3 2.4 — O S/D/Q TLC27x 3−16 1100 675 1 1.7 3.6 — — S/D/Q TLV237x 2.7−16 500 550 1 3 2.4 Yes I/O S/D/Q TLC227x 4−16 300 1100 1 2.2 3.6 — O D/Q TLV246x 2.7−6 150 550 1300 6.4 1.6 Yes I/O S/D/Q TLV247x 2.7−6 250 600 2 2.8 1.5 Yes I/O S/D/Q TLV244x 2.7−10 300 † Typical values measured at 5 V, 25°C 725 1 1.8 1.4 — O D/Q DEVICE TLV27x Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2001−2004, Texas Instruments Incorporated !"#$%&'#! ( )*$$+!' &( #" ,*-.)&'#! /&'+0 $#/*)'( )#!"#$% '# (,+)")&'#!( ,+$ '+ '+$%( #" +1&( !('$*%+!'( ('&!/&$/ 2&$$&!'30 $#/*)'#! ,$#)+((!4 /#+( !#' !+)+((&$.3 !).*/+ '+('!4 #" &.. ,&$&%+'+$(0 WWW.TI.COM 1 µ SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004 FAMILY PACKAGE TABLE PACKAGE TYPES NUMBER OF CHANNELS PDIP SOIC TLV271 1 8 TLV272 2 8 TLV274 4 14 DEVICE SHUTDOWN SOT-23 TSSOP MSOP 8 5 — — — 8 — — 8 — 14 — 14 — — UNIVERSAL EVM BOARD Refer to the EVM Selection Guide (Lit# SLOU060) TLV271 AVAILABLE OPTIONS PACKAGED DEVICES VIOMAX AT 25°C TA 0°C to 70°C SOT-23 SMALL OUTLINE (D)† TLV271CD (DBV)‡ TLV271CDBV SYMBOL PLASTIC DIP (P) VBHC — 5 mV −40°C to 125°C TLV271ID TLV271IDBV VBHI TLV271IP † This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV271IDR). ‡ This package is only available taped and reeled. For standard quantities (3,000 pieces per reel), add an R suffix (e.g., TLV270IDBVR). For smaller quantities (250 pieces per mini-reel), add a T suffix to the part number (e.g., TLV270IDBVT). TLV272 AVAILABLE OPTIONS PACKAGED DEVICES VIOMAX AT 25°C TA 0°C to 70°C MSOP SMALL OUTLINE (D)§ (DGK)§ SYMBOL PLASTIC DIP (P) TLV272CD TLV272CDGK AVF — 5 mV −40°C to 125°C TLV272ID TLV272IDGK AVG TLV272IP § This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV272IDR). TLV274 AVAILABLE OPTIONS PACKAGED DEVICES TA VIOMAX AT 25°C SMALL OUTLINE (D)¶ PLASTIC DIP (N) TSSOP (PW)¶ TLV274CD — TLV274CPW 0°C to 70°C 5 mV −40°C to 125°C TLV274ID TLV274IN TLV274IPW ¶ This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV274IDR). 2 WWW.TI.COM µ SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004 TLV27x PACKAGE PINOUTS(1) TLV271 D OR P PACKAGE (TOP VIEW) TLV271 DBV PACKAGE (TOP VIEW) OUT GND IN+ 1 5 VDD NC IN − IN + GND 2 3 4 IN − 1 8 2 7 3 6 4 5 VDD 2OUT 2IN − 2IN+ 8 2 7 3 6 4 5 NC VDD OUT NC TLV274 D, N, OR PW PACKAGE TLV272 D, DGK, OR P PACKAGE (TOP VIEW) 1OUT 1IN − 1IN + GND 1 (TOP VIEW) 1OUT 1IN − 1IN+ VDD 2IN+ 2IN − 2OUT 1 14 2 13 3 12 4 11 5 10 6 9 7 8 4OUT 4IN − 4IN+ GND 3IN+ 3IN − 3OUT NC − No internal connection (1) SOT−23 may or may not be indicated TYPICAL PIN 1 INDICATORS Pin 1 Printed or Molded Dot Pin 1 Stripe Pin 1 Bevel Edges WWW.TI.COM Pin 1 Molded ”U” Shape 3 µ SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.5 V Differential input voltage, VID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± VDD Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.2 V to VDD + 0.2 V Input current range, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 10 mA Output current range, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 100 mA Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C Maximum junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltage values, except differential voltages, are with respect to GND. DISSIPATION RATING TABLE PACKAGE θJC (°C/W) θJA (°C/W) TA ≤ 25°C POWER RATING TA = 25°C POWER RATING D (8) 38.3 176 710 mW 396 mW D (14) 26.9 122.3 1022 mW 531 mW D (16) 25.7 114.7 1090 mW 567 mW DBV (5) 55 324.1 385 mW 201 mW DBV (6) 55 294.3 425 mW 221 mW DGK (8) 54.23 259.96 481 mW 250 mW DGS (10) 54.1 257.71 485 mW 252 mW N (14, 16) 32 78 1600 mW 833 mW P (8) 41 104 1200 mW 625 mW PW (14) 29.3 173.6 720 mW 374 mW PW (16) 28.7 161.4 774 mW 403 mW recommended operating conditions Single supply Supply voltage, VDD Split supply Common-mode input voltage range, VICR C-suffix Operating free-air temperature, TA 4 I-suffix WWW.TI.COM MIN MAX 2.7 16 ±1.35 ±8 0 0 VDD−1.35 70 −40 125 UNIT V V °C µ SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004 electrical characteristics at specified free-air temperature, VDD = 2.7 V, 5 V, and ±5 V (unless otherwise noted) dc performance PARAMETER VIO Input offset voltage αVIO Offset voltage drift TEST CONDITIONS VIC = VDD/2, RL = 10 kkΩ, kΩ, VO = VDD/2, RS = 50 Ω VIC = 0 to VDD−1.35V, RS = 50 Ω CMRR AVD Common-mode rejection ratio Large-signal differential voltage amplification VDD = 2.7 V TA† 25°C MIN MAX 0.5 5 Full range 7 25°C 58 Full range 55 25°C 65 VDD = 5 V Full range 62 VIC = −5 to VDD−1.35V, RS = 50 Ω, VDD = ±5 V 25°C 69 Full range 66 25°C 97 VDD = 2.7 V Full range 76 25°C 100 VDD = 5 V Full range 86 VDD = ±5 V 25°C 100 Full range 90 UNIT mV V/°C µV/°C 2 25°C VIC = 0 to VDD−1.35V, RS = 50 Ω, VO(PP) = VDD/2, RL = 10 kkΩ TYP 70 80 dB 85 106 110 dB 115 † Full range is 0°C to 70°C for C suffix and full range is − 40°C to 125°C for I suffix. If not specified, full range is − 40°C to 125°C. input characteristics PARAMETER IIO TEST CONDITIONS Input offset current VDD = 5 V, VIC = VDD/2, VO = VDD/2, RS = 50 Ω IIB Input bias current ri(d) Differential input resistance CIC Common-mode input capacitance f = 21 kHz WWW.TI.COM TA 25°C MIN TYP 1 MAX 70°C 100 125°C 1000 25°C 1 UNIT 60 pA 60 70°C 100 125°C 1000 pA 25°C 1000 GΩ 25°C 8 pF 5 µ SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004 electrical characteristics at specified free-air temperature, VDD = 2.7 V, 5 V, and ±5 V (unless otherwise noted) output characteristics PARAMETER TEST CONDITIONS VDD = 2.7 V VIC = VDD/2, IOH = −1 mA VOH MIN TYP 2.55 2.58 Full range 2.48 25°C 4.9 VDD = 5 V Full range 4.85 VDD = ±5 V 25°C 4.92 Full range 4.9 25°C 1.9 Full range 1.5 25°C 4.6 Full range 4.5 High-level output voltage VDD = 2.7 V VIC = VDD/2, IOH = −5 mA TA† 25°C VDD = 5 V VDD = ±5 V 25°C 4.7 Full range 4.65 VDD = 2.7 V Full range 25°C 25°C VIC = VDD/2, IOL = 1 mA VDD = 5 V VDD = ±5 V VOL Low-level output voltage VDD = 2.7 V Full range VDD = 5 V Full range 25°C VIC = VDD/2, IOL = 5 mA VO = 0.5 V from rail, VDD = 2.7 V IO Output current VO = 0.5 V from rail, VDD = 5 V VO = 0.5 V from rail, VDD = 10 V 4.96 25°C V 2.1 4.68 4.84 0.1 0.15 0.22 0.05 0.1 −4.95 −4.92 0.15 Full range 25°C −4.9 0.5 0.7 WWW.TI.COM V 1.1 0.28 0.4 −4.84 −4.7 0.5 VDD = ±5 V Full range Positive rail 25°C 4 Negative rail 25°C 5 Positive rail 25°C 7 Negative rail 25°C 8 Positive rail 25°C 13 −4.65 Negative rail 25°C 12 † Full range is 0°C to 70°C for C suffix and full range is − 40°C to 125°C for I suffix. If not specified, full range is − 40°C to 125°C. ‡ Depending on package dissipation rating 6 UNIT 4.93 Full range 25°C MAX mA µ SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004 electrical characteristics at specified free-air temperature, VDD = 2.7 V, 5 V, and ±5 V (unless otherwise noted) (continued) power supply PARAMETER IDD TEST CONDITIONS Supply current (per channel) VDD = 2.7 V VDD = 5 V VO = VDD/2 VDD = 10 V PSRR Supply voltage rejection ratio (∆VDD /∆VIO) VDD = 2.7 V to 16 V, No load VIC = VDD /2, TA† 25°C MIN TYP MAX 470 560 25°C 550 660 25°C 625 800 Full range UNIT µA 1000 25°C 70 Full range 65 80 dB † Full range is 0°C to 70°C for C suffix and full range is − 40°C to 125°C for I suffix. If not specified, full range is − 40°C to 125°C. dynamic performance PARAMETER UGBW Unity gain bandwidth TA† TEST CONDITIONS RL = 2 kΩ, kΩ CL = 10 pF 2.4 VDD = 5 V to 10 V 25°C 3 25°C φm ts Slew rate at unity gain VO(PP) = VDD/2, CL = 50 pF, RL = 10 kkΩ,, TYP 25°C VDD = 2.7 V SR MIN VDD = 2.7 V Full range 1.35 MAX MHz 2.1 V/ s V/µs 1 25°C 1.45 VDD = 5 V Full range 1.2 VDD = ±5 V 25°C 1.8 Full range 1.3 UNIT 2.4 V/ s V/µs 2.6 V/ s V/µs Phase margin RL = 2 kΩ CL = 10 pF 25°C 65 ° Gain margin RL = 2 kΩ CL = 10 pF 25°C 18 dB Settling time VDD = 2.7 V, V(STEP)PP = 1 V, CL = 10 pF, VDD = 5 V, ±5 V, V(STEP)PP = 1 V, CL = 47 pF, AV = −1, RL = 2 kΩ 0.1% 2.9 µss 25°C AV = −1, 0.1% 2 RL = 2 kΩ † Full range is 0°C to 70°C for C suffix and full range is − 40°C to 125°C for I suffix. If not specified, full range is − 40°C to 125°C. noise/distortion performance PARAMETER TEST CONDITIONS VDD = 2.7 V, VO(PP) = VDD/2 V, RL = 2 kΩ, k , f = 10 kHz THD + N Total harmonic distortion plus noise VDD = 5 V, ±5 V, VO(PP) = VDD/2 V, RL = 2 kΩ, k , f = 10K AV = 1 AV = 10 TA Equivalent input noise voltage In Equivalent input noise current MAX UNIT 0.05% 0.18% 0.02% 25°C 25 C 0.09% 0.50% f = 1 kHz Vn TYP 0.02% 25°C 25 C AV = 100 AV = 1 AV = 10 AV = 100 MIN 39 25°C f = 10 kHz f = 1 kHz 25°C WWW.TI.COM 35 0.6 nV/√Hz fA /√Hz 7 µ SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004 TYPICAL CHARACTERISTICS Table of Graphs FIGURE CMRR Common-mode rejection ratio vs Frequency Input bias and offset current vs Free-air temperature 1 VOL VOH Low-level output voltage vs Low-level output current 3, 5, 7 High-level output voltage vs High-level output current 4, 6, 8 VO(PP) IDD Peak-to-peak output voltage vs Frequency 9 Supply current vs Supply voltage 10 PSRR Power supply rejection ratio vs Frequency 11 AVD Differential voltage gain & phase vs Frequency 12 Gain-bandwidth product vs Free-air temperature 13 vs Supply voltage 14 2 SR Slew rate vs Free-air temperature 15 φm Vn Phase margin vs Capacitive load 16 Equivalent input noise voltage vs Frequency 17 Voltage-follower large-signal pulse response 18, 19 Voltage-follower small-signal pulse response 20 Inverting large-signal response 21, 22 Inverting small-signal response 23 Crosstalk 8 vs Frequency WWW.TI.COM 24 µ SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004 TYPICAL CHARACTERISTICS 100 VDD = 5 V, 10 V 80 60 VDD = 2.7 V 40 20 0 10 100 1k 100 k 10 k 1M 250 VDD = 2.7 V, 5 V and 10 V VIC = VDD/2 200 150 100 50 0 −40 −25 −10 5 TA =−40°C TA = 125°C TA = 70°C TA = 25°C 0.80 TA = 0°C 0.40 TA = 125 °C 4.00 TA = 70 °C 3.50 3.00 2.50 TA = 25 °C 2.00 1.50 TA = 0 °C 1.00 TA = −40 °C 0.50 1 2 3 4 5 6 7 8 9 10 11 12 IOH − High-Level Output Current − mA 8 TA =70°C TA =25°C TA =0°C TA =−40°C 2 80 100 IOL − Low-Level Output Current − mA Figure 7 3.00 2.50 TA = 25°C 2.00 1.50 TA = 70°C 1.00 TA = 125°C 0.50 5 10 10 VDD = 10 V 8 TA = −40°C 6 TA = 0°C 4 TA = 25°C 2 120 TA = 70°C TA = 125°C 0 20 40 60 80 100 IOH − High-Level Output Current − mA Figure 8 WWW.TI.COM 15 20 25 30 35 40 45 IOH − High-Level Output Current − mA Figure 6 0 0 60 TA = 0°C 3.50 0 PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY V O(PP) − Peak-to-Peak Output Voltage − V TA =125°C 40 TA = −40°C 4.00 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 IOL − Low-Level Output Current − mA HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT V OH − High-Level Output Voltage − V VOL − Low-Level Output Voltage − V VDD = 10 V 20 VCC = 5 V 4.50 Figure 5 10 0 2 4 6 8 10 12 14 16 18 20 22 24 IOL − Low-Level Output Current − mA 0.00 Figure 4 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT TA = 0 °C TA = 40 °C 5.00 VDD = 5 V 4.50 0.00 4 0.40 HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT V OH − High-Level Output Voltage − V VOL − Low-Level Output Voltage − V V OH − High-Level Output Voltage − V 2.40 6 TA = 70 °C TA = 25 °C 0.80 Figure 3 5.00 VDD = 2.7 V 0 1.20 0 20 35 50 65 80 95 110 125 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 2.80 1.20 1.60 Figure 2 HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 1.60 2.00 TA − Free-Air Temperature − °C Figure 1 2.00 VDD = 2.7 V 2.40 T = 125 °C A 0.00 −50 f − Frequency − Hz 0.00 2.80 300 VOL − Low-Level Output Voltage − V 120 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT INPUT BIAS AND OFFSET CURRENT vs FREE-AIR TEMPERATURE I IB I IO − Input Bias and Offset Current − pA CMRR − Common-Mode Rejection Ratio − dB COMMON-MODE REJECTION RATIO vs FREQUENCY 120 11 VDD = 10 V 10 9 8 7 6 AV = −10 RL = 2 kΩ CL = 10 pF TA = 25°C THD = 5% 5 VDD = 5 V 4 3 2 VDD = 2.7 V 1 0 10 100 1k 10 k 100 k 1M 10 M f − Frequency − Hz Figure 9 9 µ SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004 TYPICAL CHARACTERISTICS POWER SUPPLY REJECTION RATIO vs FREQUENCY SUPPLY CURRENT vs SUPPLY VOLTAGE AV = 1 VIC = VDD / 2 I DD − Supply Current − mA/ch 0.9 PSRR − Power Supply Rejection Ratio − dB 1.0 TA = 125°C 0.8 TA = 70°C 0.7 0.6 0.5 0.4 TA = 25°C 0.3 TA = 0°C 0.2 TA = −40°C 0.1 0.0 120 TA = 25°C 100 VDD = 5 V, 10 V 80 VDD = 2.7 V 60 40 20 0 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 VDD − Supply Voltage − V 100 1k DIFFERENTIAL VOLTAGE GAIN AND PHASE vs FREQUENCY 90 45 60 0 Gain −45 20 −90 VDD=5 V RL=2 kΩ CL=10 pF TA=25°C −20 −40 10 100 −135 1k 10 k 100 k 1 M −180 10 M GBWP −Gain Bandwidth Product − MHz Phase Phase − ° AVD − Differential Voltage Gain − dB 4.0 135 100 0 3.5 VDD = 10 V 3.0 2.5 2.0 VDD = 5 V VDD = 2.7 V 1.5 1.0 0.5 0.0 −40 −25 −10 5 Figure 13 Figure 12 SLEW RATE vs FREE-AIR TEMPERATURE 3.5 3.0 SR+ 1.0 AV = 1 RL = 10 kΩ CL = 50 pF TA = 25°C 0.5 2.5 4.5 6.5 8.5 10.5 12.5 VCC − Supply Voltage −V Figure 14 10 14.5 80 SR− 2.5 2.0 SR+ 1.5 VDD = 5 V AV = 1 RL = 10 kΩ CL = 50 pF VI = 3 V 1.0 0.5 0.0 VDD = 5 V RL= 2 kΩ TA = 25°C AV = Open Loop 90 0.0 −40 −25 −10 5 20 35 50 65 80 95 110 125 TA − Free-Air Temperature − °C Figure 15 WWW.TI.COM Phase Margin − ° 2.0 PHASE MARGIN vs CAPACITIVE LOAD 100 3.0 2.5 SR − Slew Rate − V/ µ s SR − Slew Rate − V/ µ s SR− 1.5 20 35 50 65 80 95 110 125 TA − Free-Air Temperature − °C f − Frequency − Hz SLEW RATE vs SUPPLY VOLTAGE 1M GAIN BANDWIDTH PRODUCT vs FREE-AIR TEMPERATURE 180 120 40 100 k Figure 11 Figure 10 80 10 k f − Frequency − Hz 70 Rnull = 100 60 50 40 Rnull = 0 30 Rnull = 50 20 10 0 10 100 CL − Capacitive Load − pF Figure 16 1000 µ SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004 TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE VDD = 2.7, 5, 10 V TA = 25°C 90 4 80 70 60 50 3 2 1 VDD = 5 V AV = 1 RL = 2 kΩ CL = 10 pF VI = 3 VPP TA = 25°C VI 0 40 3 30 2 20 1 VO 10 0 0 100 1k 10 k f − Frequency − Hz 0 100 k 2 6 4 2 VO 0 0 2 4 6 8 0.12 0.08 VDD = 5 V AV = 1 RL = 2 kΩ CL = 10 pF VI = 100 mVPP TA = 25°C 0.04 VI 0.00 0.04 VO 0.00 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 10 12 14 16 18 t − Time − µs Figure 20 Figure 19 INVERTING LARGE-SIGNAL RESPONSE INVERTING LARGE-SIGNAL RESPONSE V I − Input Voltage − V 4 VDD = 5 V AV = 1 RL = 2 kΩ CL = 10 pF VI = 3 VPP TA = 25°C 1 0 3 2 1 0 VO 0 2 4 6 8 10 12 14 V − Output Voltage − V O VI 2 0.12 0.08 t − Time − µs 3 10 12 14 16 18 V − Output Voltage − mV O 0 V − Output Voltage − V O VDD = 10 V AV = 1 RL = 2 kΩ CL = 10 pF VI = 6 VPP TA = 25°C V − Input Voltage − mV I V − Input Voltage − V I 6 VI 8 VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 8 2 6 Figure 18 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 4 4 t − Time − µs 8 6 VDD = 10 V AV = VI = −1 RL = 2 kΩ CL = 10 pF TA = 25°C 4 2 0 VI 6 VO 4 2 0 16 0 t − Time − µs 2 4 6 8 10 t − Time − µs 12 14 V O − Output Voltage − V 10 Figure 17 V − Input Voltage − V I V − Output Voltage − V O 100 V − Input Voltage − V I V n − Equivalent Input Noise Voltage − nV/ Hz EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 16 Figure 22 Figure 21 WWW.TI.COM 11 µ SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004 TYPICAL CHARACTERISTICS CROSSTALK vs FREQUENCY 0 0.00 VDD = 5 V AV = VI = −1 RL = 2 kΩ CL = 10 pF VI = 100 mVpp TA = 25°C −40 VI 0.10 VO 0.05 0.00 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Crosstalk − dB 0.05 VDD = 2.7, 5, & 15 V VI = 1 VDD/2 AV = 1 RL = 2 kΩ TA = 25°C −20 0.10 V O − Output Voltage − V V I − Input Voltage − V INVERTING SMALL-SIGNAL RESPONSE −60 −80 −100 Crosstalk −120 −140 10 100 1k 10 k f − Frequency − Hz t − Time − µs 100 k Figure 24 Figure 23 APPLICATION INFORMATION driving a capacitive load When the amplifier is configured in this manner, capacitive loading directly on the output decreases the device’s phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater than 10 pF, it is recommended that a resistor be placed in series (RNULL) with the output of the amplifier, as shown in Figure 25. A minimum value of 20 Ω should work well for most applications. RF RG − Input RNULL Output + CLOAD VDD/2 Figure 25. Driving a Capacitive Load 12 WWW.TI.COM µ SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004 APPLICATION INFORMATION offset voltage The output offset voltage, (VOO) is the sum of the input offset voltage (VIO) and both input bias currents (IIB) times the corresponding gains. The following schematic and formula can be used to calculate the output offset voltage: RF RG IIB− + − VI RS V VO + OO +V IO ǒ ǒ ǓǓ R 1) R F "I G IB) R S ǒ ǒ ǓǓ 1) R R F G "I IB– R F IIB+ Figure 26. Output Offset Voltage Model general configurations When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier (see Figure 27). RG RF O + V I VDD/2 VI V ǒ 1) R R F G Ǔǒ Ǔ 1 1 ) sR1C1 − VO + R1 f –3dB + 1 2pR1C1 C1 Figure 27. Single-Pole Low-Pass Filter If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth. Failure to do this can result in phase shift of the amplifier. C1 + _ VI R1 R1 = R2 = R C1 = C2 = C Q = Peaking Factor (Butterworth Q = 0.707) R2 f C2 RG RF –3dB RG = + ( 1 2pRC RF 1 2− Q ) VDD/2 Figure 28. 2-Pole Low-Pass Sallen-Key Filter WWW.TI.COM 13 µ SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004 APPLICATION INFORMATION circuit layout considerations To achieve the levels of high performance of the TLV27x, follow proper printed-circuit board design techniques. A general set of guidelines is given in the following. D Ground planes—It is highly recommended that a ground plane be used on the board to provide all components with a low inductive ground connection. However, in the areas of the amplifier inputs and output, the ground plane can be removed to minimize the stray capacitance. D Proper power supply decoupling—Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less effective. The designer should strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors. D Sockets—Sockets can be used but are not recommended. The additional lead inductance in the socket pins will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board is the best implementation. D Short trace runs/compact part placements—Optimum high performance is achieved when stray series inductance has been minimized. To realize this, the circuit layout should be made as compact as possible, thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of the amplifier. Its length should be kept as short as possible. This helps to minimize stray capacitance at the input of the amplifier. D Surface-mount passive components—Using surface-mount passive components is recommended for high performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be kept as short as possible. 14 WWW.TI.COM µ SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004 APPLICATION INFORMATION general power dissipation considerations For a given θJA, the maximum power dissipation is shown in Figure 29 and is calculated by the following formula: P D + Where: ǒ T Ǔ –T MAX A q JA PD = Maximum power dissipation of TLV27x IC (watts) TMAX = Absolute maximum junction temperature (150°C) TA = Free-ambient air temperature (°C) θJA = θJC + θCA θJC = Thermal coefficient from junction to case θCA = Thermal coefficient from case to ambient air (°C/W) MAXIMUM POWER DISSIPATION vs FREE-AIR TEMPERATURE 2 Maximum Power Dissipation − W 1.75 1.5 1.25 TJ = 150°C PDIP Package Low-K Test PCB θJA = 104°C/W SOIC Package Low-K Test PCB θJA = 176°C/W MSOP Package Low-K Test PCB θJA = 260°C/W 1 0.75 0.5 0.25 SOT-23 Package Low-K Test PCB θJA = 324°C/W 0 −55 −40 −25 −10 5 20 35 50 65 80 95 110 125 TA − Free-Air Temperature − °C NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB. Figure 29. Maximum Power Dissipation vs Free-Air Temperature WWW.TI.COM 15 µ SLOS351D − MARCH 2001 − REVISED FEBRUARY 2004 APPLICATION INFORMATION macromodel information Macromodel information provided was derived using Microsim Parts Release 9.1, the model generation software used with Microsim PSpice . The Boyle macromodel (see Note 4) and subcircuit in Figure 30 are generated using TLV27x typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): D Maximum positive output voltage swing D Unity-gain frequency D Maximum negative output voltage swing D Common-mode rejection ratio D Slew rate D Phase margin D Quiescent power dissipation D DC output resistance D Input bias current D AC output resistance D Open-loop voltage amplification D Short-circuit output current limit NOTE 2: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 3 99 VDD + egnd rd1 rd2 rss ro2 css fb rp − c1 7 11 12 + c2 vlim 1 r2 + 9 6 IN+ − vc D D 8 + − vb ga 2 G G − IN− ro1 gcm ioff 53 S S OUT dp 91 10 iss GND 4 + dc − dlp ve + 54 vlp − + hlim − 5 92 − vln + de *DEVICE=amp_tlv27x_highVdd,OP AMP,NJF,INT * amp_tlv_27x_highVdd operational amplifier ”macromodel” * subcircuit updated using Model Editor release 9.1 on 05/15/00 * at 14:40 Model Editor is an OrCAD product. * * connections: non-inverting input * | inverting input * | | positive power supply * | | | negative power supply * | | | | output * | | | | | .subckt amp_tlv27x_highVdd 1 2 3 4 5 * c1 11 12 457.48E−15 c2 6 7 5.0000E−12 css 10 99 1.1431E−12 dc 5 53 dy de 54 5 dy dlp 90 91 dx dln 92 90 dx dp 4 3 dx egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 fb 7 99 poly(5) vb vc ve vlp vln 0 176.02E6 −1E3 1E3 180E6 −180E6 ga gcm iss hlim j1 J2 r2 rd1 rd2 ro1 ro2 rp rss vb vc ve vlim vlp vln .model .model .model .model .ends 6 0 10 90 11 12 6 3 3 8 7 3 10 9 3 54 7 91 0 dx dy jx1 jx2 0 11 12 16.272E−6 6 10 99 6.8698E−9 4 dc 1.3371E−6 0 vlim 1K 2 10 jx1 1 10 jx2 9 100.00E3 11 61.456E3 12 61.456E3 5 10 99 10 4 150.51E3 99 149.58E6 0 dc 0 53 dc .78905 4 dc .78905 8 dc 0 0 dc 14.200 92 dc 14.200 D(Is=800.00E−18) D(Is=800.00E−18 Rs=1m Cjo=10p) NJF(Is=500.00E−15 Beta=198.03E−6 Vto=−1) NJF(Is=500.00E−15 Beta=198.03E−6 Vto=−1) Figure 30. Boyle Macromodel and Subcircuit PSpice and Parts are trademarks of MicroSim Corporation. 16 90 dln WWW.TI.COM PACKAGE OPTION ADDENDUM www.ti.com 18-Oct-2013 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) TLV271CD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T271C TLV271CDBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 VBHC TLV271CDBVRG4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 VBHC TLV271CDBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 VBHC TLV271CDBVTG4 ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 VBHC TLV271CDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T271C TLV271CDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T271C TLV271CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T271C TLV271ID ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 T271I TLV271IDBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 VBHI TLV271IDBVRG4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 VBHI TLV271IDBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 VBHI TLV271IDBVTG4 ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 VBHI TLV271IDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 T271I TLV271IP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 125 T271I TLV271IPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 125 T271I TLV272CD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T272C Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 18-Oct-2013 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) TLV272CDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T272C TLV272CDGK ACTIVE VSSOP DGK 8 80 Green (RoHS & no Sb/Br) CU NIPDAU | CU NIPDAUAG Level-1-260C-UNLIM 0 to 70 AVF TLV272CDGKG4 ACTIVE VSSOP DGK 8 80 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 AVF TLV272CDGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU NIPDAUAG Level-1-260C-UNLIM 0 to 70 AVF TLV272CDGKRG4 ACTIVE VSSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 AVF TLV272CDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T272C TLV272CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T272C TLV272ID ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 T272I TLV272IDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 T272I TLV272IDGK ACTIVE VSSOP DGK 8 80 Green (RoHS & no Sb/Br) CU NIPDAU | CU NIPDAUAG Level-1-260C-UNLIM -40 to 125 AVG TLV272IDGKG4 ACTIVE VSSOP DGK 8 80 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 AVG TLV272IDGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU NIPDAUAG Level-1-260C-UNLIM -40 to 125 AVG TLV272IDGKRG4 ACTIVE VSSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 AVG TLV272IDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 T272I TLV272IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 T272I TLV272IP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 125 T272I TLV272IPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 125 T272I TLV274CD ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 Addendum-Page 2 TLV274C Samples PACKAGE OPTION ADDENDUM www.ti.com 18-Oct-2013 Orderable Device Status (1) (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) TLV274CDG4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TLV274C TLV274CDR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TLV274C TLV274CDRG4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TLV274C TLV274CPW ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TLV274C TLV274CPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TLV274C TLV274CPWR ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TLV274C TLV274CPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TLV274C TLV274ID ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 TLV274I TLV274IDG4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 TLV274I TLV274IDR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 TLV274I TLV274IDRG4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 TLV274I TLV274IN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 125 TLV274I TLV274INE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 125 TLV274I TLV274IPW ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 TLV274I TLV274IPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 TLV274I TLV274IPWR ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 TLV274I TLV274IPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 TLV274I The marketing status values are defined as follows: Addendum-Page 3 Samples PACKAGE OPTION ADDENDUM www.ti.com 18-Oct-2013 ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF TLV271, TLV272, TLV274 : • Automotive: TLV271-Q1, TLV272-Q1, TLV274-Q1 NOTE: Qualified Version Definitions: Addendum-Page 4 PACKAGE OPTION ADDENDUM www.ti.com 18-Oct-2013 • Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects Addendum-Page 5 PACKAGE MATERIALS INFORMATION www.ti.com 31-Dec-2013 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) TLV271CDBVR SOT-23 DBV 5 3000 178.0 TLV271CDBVT SOT-23 DBV 5 250 TLV271CDR SOIC D 8 2500 TLV271IDBVR SOT-23 DBV 5 TLV271IDBVT SOT-23 DBV TLV272CDGKR VSSOP TLV272CDGKR VSSOP TLV272CDR B0 (mm) K0 (mm) P1 (mm) 9.0 3.23 3.17 1.37 4.0 178.0 9.0 3.3 3.2 1.4 330.0 12.4 6.4 5.2 2.1 3000 178.0 9.0 3.3 3.2 5 250 178.0 9.0 3.3 DGK 8 2500 330.0 12.4 DGK 8 2500 330.0 12.4 SOIC D 8 2500 330.0 TLV272IDGKR VSSOP DGK 8 2500 TLV272IDGKR VSSOP DGK 8 2500 TLV272IDR SOIC D 8 W Pin1 (mm) Quadrant 8.0 Q3 4.0 8.0 Q3 8.0 12.0 Q1 1.4 4.0 8.0 Q3 3.2 1.4 4.0 8.0 Q3 5.3 3.4 1.4 8.0 12.0 Q1 5.3 3.4 1.4 8.0 12.0 Q1 12.4 6.4 5.2 2.1 8.0 12.0 Q1 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLV274CDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 TLV274CPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 TLV274IDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 TLV274IPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 31-Dec-2013 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) TLV271CDBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 TLV271CDBVT SOT-23 DBV 5 250 180.0 180.0 18.0 TLV271CDR SOIC D 8 2500 340.5 338.1 20.6 TLV271IDBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 TLV271IDBVT SOT-23 DBV 5 250 180.0 180.0 18.0 TLV272CDGKR VSSOP DGK 8 2500 358.0 335.0 35.0 TLV272CDGKR VSSOP DGK 8 2500 364.0 364.0 27.0 TLV272CDR SOIC D 8 2500 340.5 338.1 20.6 TLV272IDGKR VSSOP DGK 8 2500 364.0 364.0 27.0 TLV272IDGKR VSSOP DGK 8 2500 358.0 335.0 35.0 TLV272IDR SOIC D 8 2500 340.5 338.1 20.6 TLV274CDR SOIC D 14 2500 333.2 345.9 28.6 TLV274CPWR TSSOP PW 14 2000 367.0 367.0 35.0 TLV274IDR SOIC D 14 2500 333.2 345.9 28.6 TLV274IPWR TSSOP PW 14 2000 367.0 367.0 35.0 Pack Materials-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated