STDVE001A Adaptive single 3.4 Gbps TMDS/HDMI signal equalizer Preliminary Data Features ■ Compatible with the high-definition multimedia interface (HDMI) v1.3 digital interface ■ Conforms to the transition minimized differential signaling (TMDS) voltage standard on input and output channels ■ 340 MHz maximum clock speed operation supports all video formats with deep color at maximum refresh rates ■ 3.4 Gbps data rate per channel ■ Fully automatic adaptive equalizer for cables lengths up to 25 m ■ Single supply VCC: 3.135 to 3.465 V ■ ESD: ±8 KV contact for all I/Os ■ Integrated open-drain I2C buffer for display data channel (DDC) ■ 5.3 V tolerant DDC and HPD I/Os ■ Lock-up free operation of I2C bus ■ 0 to 400 kHz clock frequency for I2C bus ■ Low capacitance of all the channels ■ Equalizer regenerates the incoming attenuated TMDS signal ■ Buffer drives the TMDS outputs over long PCB track lengths ■ Low output skew and jitter ■ Tight input thresholds reduce bit error rates ■ On-chip selectable 50 Ω input termination ■ Low ground bounce ■ Data and control inputs provide undershoot clamp diode TQFP48 QFN48 Description The STDVE001A integrates a 4-channel 3.4 Gbps TMDS equalizer. High-speed data paths and flowthrough pinout minimize the internal device jitter and simplify the board layout. The equalizer overcomes the intersymbol interference (ISI) jitter effects from lossy cables. The buffer/driver on the output can drive the TMDS output signals over long distances. In addition to this, STDVE001A integrates the 50 Ω termination resistor on all the input channels to improve performance and reduce board space. The device can be placed in a low-power mode by disabling the output current drivers. The STDVE001A is ideal for advanced TV and STB applications supporting HDMI/DVI standard. The differential signal from the HDMI/DVI ports can be routed through the STDVE001A to guarantee good signal quality at the HDMI receiver. Designed for very low skew, jitter and low I/O capacitance, the switch preserves the signal integrity to pass the stringent HDMI compliance requirements. ■ Evaluation kit is available Table 1. Device summary Order code Operating temperature Package Packaging STDVE001ABTR -40°C to 85°C TQFP48 Tape and reel STDVE001AQTR -40°C to 85°C QFN48 Tape and reel July 2008 Rev 2 This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice. 1/49 www.st.com 49 Contents STDVE001A Contents 1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1 Application diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 5 3.1 Adaptive equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 HPD pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4 DDC channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.5 I2C DDC line repeater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.6 Power-down condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.7 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.8 Timing between HPD and DDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.9 CEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.1 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3 DC electrical characteristics (I2C repeater) . . . . . . . . . . . . . . . . . . . . . . . 26 4.4 DC electrical characteristics (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.5 Dynamic switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.6 Dynamic switching characteristics (I2C repeater) . . . . . . . . . . . . . . . . . . 30 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.1 Power supply sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.2 Power supply requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.3 Differential traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.3.1 I2C lines application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2/49 STDVE001A List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Adaptive equalizer gain with frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 OE_N operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Bias parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Power supply characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 DC specifications for TMDS differential inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 DC specifications for TMDS differential ouputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 DC specifications for OE_N, EQ_BOOST, EQ_BOOST2, PRE, DDC_EN inputs . . . . . . . 23 Input termination resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 External reference resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 DDC I/O pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Status pins (HPD_INT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Status pins (HPD_EXT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Input/output SDA, SCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 DC electrical characteristics (CEC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Clock and data rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Differential output timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Skew times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Turn-on and turn-off times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 DDC I/O pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Status pins (HPD_INT, HPD_EXT, OE_N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 I2C repeater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ESD performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 TQFP48 (7 x 7 mm) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 QFN48 (7 x 7 mm) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3/49 List of figures STDVE001A List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. 4/49 STDVE001A block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Equalizer functional diagram (one signal pair) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 DDC I2C bus repeater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 STDVE001A in a digital TV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin configuration (TQFP48 package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pin configuration (QFN48 package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 STDVE001A gain vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Test circuit for electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 TMDS output driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Test circuit for HDMI receiver and driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Test circuit for turn off and turn off times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Test circuit for short circuit output current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Propagation delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Turn-on and turn-off times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 TSK(O) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 TSK(P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 TSK(D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 AC waveform 1 (I2C lines) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Test circuit for AC measurements (I2C lines) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 I2C bus timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Typical application of I2C bus system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 TQFP48 (7 x 7 mm) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 TQFP48 (7 x 7 mm) footprint recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 TQFP48 (7 x 7 mm) tape and reel information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 QFN48 (7 x 7 mm) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 STDVE001A 1 Block diagram Block diagram Figure 1. STDVE001A block diagram 4-$3 DIFFERENTIAL INPUTS )NPUT TERMINATION SELECTABLE )NPUTSTAGE RECEIVER %QUALIZER /UTPUT $RIVER 4RANSMITTER 4-$3 DIFFERENTIAL OUTPUTS 3$!?%84 3#,?%84 ) # REPEATER 3$!?).4 3#,?).4 $$#?%. (0$?%84 (0$ DRIVER (0$?).4 #%#?)/ #%#?)/?).4 !-6 5/49 Block diagram STDVE001A Figure 2. Equalizer functional diagram (one signal pair) EQ_BOOST 1, 2 OE_N PRE Data+ 50 Ω Termination Selectable Pre-Amp Equalizer OE_N Quantizer Output I Driver Data- Output current control REXT AM00720V2 Figure 3. DDC I2C bus repeater )#BUSREPEATER $$#?%. 3$!?%84 9?$$#?3$! $$#?%. 3#,?%84 9?$$#?3#, !-6 6/49 STDVE001A Application diagrams Figure 4. STDVE001A in a digital TV $6$2 34" "ACKPANEL 460#"BOARD ($-)?" ($-)?# PORT($-)RECEIVER ,ONG0#"4RACK 1.1 Block diagram 34$6%! ($-)?! &RONTPANELOFAHIGH END46 'AME CONSOLE !-6 7/49 Pin configuration Pin configuration (0$?).4 3$!?).4 3#,?).4 /%?. '.$ $$#?%. 6$$?).4 6## %1?"//34 '.$ %1?"//34 '.$ Pin configuration (TQFP48 package) '.$ '.$ ).?$ /54 ?$ ).?$ /54 ?$ 6## 6## ).?$ /54 ?$ ).?$ /54 ?$ '.$ '.$ ).?$ /54 ?$ ).?$ /54 ?$ 6## 6## ).?$ /54 ?$ ).?$ /54 ?$ (0$?%84 3$!?%84 3#,?%84 '.$ 2%84 '.$ #%#?)/?).4 6$$?%84 #%#?)/ 6## 02% 41&0 Figure 5. '.$ 2 STDVE001A !-6 8/49 STDVE001A Pin configuration OE_N SDA_INT 29 25 HPD_INT 30 VDD_INT GND 31 26 DDC_EN 32 GND VCC 33 27 EQ_BOOST1 34 SCL_INT EQ_BOOST2 35 28 GND Pin configuration (QFN48 package) 36 Figure 6. 24 GND GND 37 23 38 OUT_D1- IN_D1- 22 OUT_D1+ IN_D1+ 39 VCC VCC 40 21 IN_D2- 20 OUT_D2- 41 19 OUT_D2+ IN_D2+ 42 18 GND GND 43 17 OUT_D3- IN_D3- 44 16 OUT_D3+ IN_D3+ 45 15 VCC VCC 46 14 OUT_D4- IN_D4- 47 13 OUT_D4+ IN_D4+ 48 1 2 3 4 5 6 7 8 9 10 11 12 GND VCC CEC_IO CEC_IO_INT GND REXT HPD_EXT SDA_EXT SCL_EXT PRE VDD_EXT GND QFN-48 !-6 9/49 Pin configuration STDVE001A Table 2. Pin description Pin number Pin name Type Function 1 GND Power Ground 2 VCC Power 3.3 V±5% DC supply 3 CEC_IO I/O CEC signal to/from the connector end 4 CEC_IO_INT I/O CEC signal to/from TV end 5 GND Power Ground 6 REXT Analog Connect to GND through a 4.7 KΩ ± 1% precision reference resistor. Sets the output current to generate the output voltage compliant with TMDS 7 HPD_EXT Output 0 to 5.0 V (nominal) output signal. Hot plug detector output. Open drain output. Connect an external resistor according to the HDMI specification. 8 SDA_EXT I/O DDC data I/O. Pulled-up by external termination to VDD. 9 SCL_EXT I/O DDC clock I/O. Pulled-up by external termination to VDD. TMDS output de-emphasis adjustment 10 PRE PRE Output de-emphasis 0V 0 dB Input 3.3 V 10/49 3 dB 11 VDD_EXT Power DC supply for DDC, HPD and CEC (can be 5V or 3.3V or unconnected) 12 GND Power Ground 13 OUT_D4+ Output HDMI 1.3 compliant TMDS output. OUT_D4+ makes a differential output signal with OUT_D4-. 14 OUT_D4- Output HDMI 1.3 compliant TMDS output. OUT_D4- makes a differential output signal with OUT_D4+. 15 VCC Power 3.3V±10% DC supply 16 OUT_D3+ Output HDMI 1.3 compliant TMDS output. OUT_D3+ makes a differential output signal with OUT_D3-. 17 OUT_D3- Output HDMI 1.3 compliant TMDS output. OUT_D3- makes a differential output signal with OUT_D3+. 18 GND Power Ground 19 OUT_D2+ Output HDMI 1.3 compliant TMDS output. OUT_D2+ makes a differential output signal with OUT_D2-. 20 OUT_D2- Output HDMI 1.3 compliant TMDS output. OUT_D2- makes a differential output signal with OUT_D2+. 21 VCC Power 3.3V±10% DC supply STDVE001A Pin configuration Table 2. Pin description (continued) Pin number Pin name Type Function 22 OUT_D1+ Output HDMI 1.3 compliant TMDS output. OUT_D1+ makes a differential output signal with OUT_D1-. 23 OUT_D1- Output HDMI 1.3 compliant TMDS output. OUT_D1- makes a differential output signal with OUT_D1+. 24 GND Power Ground Active low enable signal OE_N 25 OE_N N_D termination IOUT_D outputs Input 1 High-Z 0 50 Ω High-Z Active 26 VDD_INT Power DC supply for DDC, HPD and CEC (can be 5V or 3.3V or unconnected) 27 GND Power Ground 28 SCL_INT I/O DDC Clock I/O. Pulled-up by external termination to VCC. 29 SDA_INT I/O DDC Data I/O. Pulled-up by external termination to VCC. Sink side, Low-frequency, 0V to 5V (nominal) hot plug detector input signal. 30 HPD_INT Input Voltage high indicates “plugged” state; voltage low indicates “unplugged” state. High : 5V power signal asserted from source to sink and EDID is ready Low : No 5V power signal is asserted from source to sink or EDID is not ready 31 GND Power 32 DDC_EN Input Ground I2C repeater enable signal DDC_EN 33 VCC Power I2C repeater 0V Disabled, high-Z 3.3 V Enabled, active 3.3 V±10% DC supply 11/49 Pin configuration Table 2. Pin number STDVE001A Pin description (continued) Pin name Type Function TMDS input equalization selector (control pin). EQ_BOOST EQ_BOOST 2 1 34-35 EQ_BOOST1, EQ_BOOST2 Input 0 0 11 dB 0 1 9 dB 0 4 dB 1 16 dB 1 1 12/49 Setting at 825 MHz 36 GND Power Ground 37 GND Power Ground 38 IN_D1- Input HDMI 1.3 compliant TMDS input. IN_D1- makes a differential pair with IN_D1+. 39 IN_D1+ Input HDMI 1.3 compliant TMDS input. IN_D1+ makes a differential pair with IN_D1-. 40 VCC Power 3.3V±10% DC supply 41 IN_D2- Input HDMI 1.3 compliant TMDS input. IN_D2- makes a differential pair with IN_D2+. 42 IN_D2+ Input HDMI 1.3 compliant TMDS input. IN_D2+ makes a differential pair with IN_D2-. 43 GND Power Ground 44 IN_D3- Input HDMI 1.3 compliant TMDS input. IN_D3- makes a differential pair with IN_D3+. 45 IN_D3+ Input HDMI 1.3 compliant TMDS input. IN_D3+ makes a differential pair with IN_D3-. 46 VCC Power 3.3V±10% DC supply 47 IN_D4- Input HDMI 1.3 compliant TMDS input. IN_D4- makes a differential pair with IN_D4+. 48 IN_D4+ Input HDMI 1.3 compliant TMDS input. IN_D4+ makes a differential pair with IN_D4-. STDVE001A 3 Functional description Functional description The STDVE001A routes physical layer signals for high bandwidth digital video and is compatible with low voltage differential signaling standard like TMDS. The device passes the differential inputs from a video source to a common display when it is in the active mode of operation. The device conforms to the TMDS standard on both inputs and outputs. The low on-resistance and low I/O capacitance of the switch in STDVE001A result in a very small propagation delay. Additionally, it supports the DDC, HPD and CEC signaling. The I2C interface of the enabled input port is linked to the I2C interface of the output port, and the hot plug detector (HPD) of the enabled input port is output to HPD_EXT. 3.1 Adaptive equalizer The equalizer dramatically reduces the intersymbol interference (ISI) jitter and attenuation from long or lossy transmission media. The inputs present high impedance when the device is not active or when VCC is absent or 0 V. In all other cases, the 50 Ω termination resistors on input channels are present. This circuit helps to improve the signal eye pattern significantly. Shaping is performed by the gain stage of the equalizer to compensate the signal degradation and then the signals are driven on to the output ports. The equalizer is fully adaptive and automatic in function providing smaller gain at low frequencies and higher gain at high frequencies. The default setting of EQ = 00 is recommended on EQ pins for optimized operation. Table 3. Adaptive equalizer gain with frequency Freq (MHz) Gain in dB (EQ=00) Gain in dB (EQ=01) Gain in dB (EQ=10) Gain in dB (EQ=11) 225 3 2 0 6.5 325 5 3 1 8.5 410 6.5 4.5 1.5 11 825 11 9 4 16 1650 16 14 8.5 21.5 13/49 Functional description Figure 7. STDVE001A STDVE001A gain vs. frequency Gain v/s Freq (STDVE001A) 25 Gain (dB) 20 Gain (EQ=00) 15 Gain (EQ=01) 10 Gain (EQ=10) Gain (EQ=11) 5 0 225 325 410 825 1650 Freq (MHz) The equalizer of STDVE001A is fully adaptive and automatic in function. The default setting of EQ = 00 is recommended for optimal operation. The equalizer performance is optimized for all frequencies over the cable lengths from 1m to 25 m at EQ = 00. If cable lengths greater than 25 m are desired in application, then EQ = 11 setting is recommended. The other two EQ settings of 01 and 10 are provided simply for fine-tuning purposes and can be used for very short external cables or PCB traces only if deemed necessary. Input termination The STDVE001A integrates precise 50 Ω ± 5% termination resistors, pulled up to VCC, on all its differential input channels. External terminations are not required. This gives better performance and also minimizes the PCB board space. These on-chip termination resistors should match the differential characteristic impedance of the transmission line. Since the output driver consists of current steering devices, an output voltage is not generated without a termination resistor. Output voltage levels are dependent on the value of the total termination resistance. The STDVE001A produces TMDS output levels for point-to-point links that are doubly terminated (100 Ω at each end). With the typical 10 mA output current, the STDVE001A produces an output voltage of 3.3 – 0.5 V = 2.8 V when driving a termination line terminated at each end. The input terminations are selectable thus saving power for the unselected ports. Output buffers Each differential output of the STDVE001A drives external 50 Ω load (pull-up resistor) and conforms to the TMDS voltage standard. The output drivers consist of 10 mA differential current-steering devices. The driver outputs are short-circuit current limited and are high-impedance to ground when OE_N = H or the device is not powered. The current steering architecture requires a resistive load to terminate the signal to complete the transmission loop from VCC to GND through the termination resistor. Because the device switches the direction of the current flow and not voltage levels, the output voltage swing is determined by VCC minus the voltage drop across the termination resistor. The output current drivers are controlled by the OE_N pin and are turned off when OE_N is a high. A stable 10 mA current is derived by accurate internal current mirrors of a stable reference current which is generated by band-gap voltage across the REXT. The differential output driver provides a typical 10 mA current sink capability, which provides a typical 500 mV voltage drop across a 50 Ω termination resistor. 14/49 STDVE001A Functional description TMDS voltage levels The TMDS interface standard is a signaling method intended for point-to-point communication over a tightly controlled impedance medium. The TMDS standard uses a lower voltage swing than other common communication standards, achieving higher data rates with reduced power consumption while reducing EMI emissions and system susceptibility to noise. The device is capable of detecting differential signals as low as 100 mV within the entire common mode voltage range. 3.2 Operating modes Table 4. OE_N operating modes Input Output Function OE_N IN+ IN- OUT+ OUT- L H L H L Active mode L L H L H Active mode H X X Hi-Z Hi-Z Low power mode The OE_N input activates a hardware power down mode. When the power down mode is active (OE_N = H), all input and output buffers and internal bias circuitry are powered-off and disabled. Outputs are tri-stated in power-down mode. When exiting power-down mode, there is a delay associated with turning on band-references and input/output buffer circuits. Note that the OE_N pin is only used to disable the TMDS paths in the chip to same maximum amount of current. It does not affect the HPD, DDC and CEC portions. The DDC is controlled only by the DDC_EN pin whereas the HPD and CEC are always active as long as the supply to the chip is present. 15/49 Functional description 3.3 STDVE001A HPD pins The input pin HPD_INT is 5 V tolerant, allowing direct connection tp 5 V signals. The output HPD pin has open-drain structure so that the disabled HPD output is driven to GND whereas the enabled HPD port has the same polarity as the HPD_INT. Note that the HPD output should have an external pull-up resistor connected to +5 V from the HDMI source. 3.4 DDC channels The DDC channels are designed together with a bi-directional buffer so as to ensure the voltage levels on the I2C lines are met even after long capacitive cables. This feature eliminates the errors during EDID and HDCP reading. 16/49 STDVE001A 3.5 Functional description I2C DDC line repeater The device contains two identical bi-directional open-drain, non-inverting buffer circuits that enable I2C DDC bus lines to be extended without degradation in system performance. The STDVE001A buffers both the serial data (DDC SDA) and serial clock (DDC SCL) on the I2C bus, while retaining all the operating modes and features of the I2C system. This enables two buses of 400 pF bus capacitance to be connected in an I2C application. These buffers are operational from a supply V of 3.0 V to 3.6 V. The I2C bus capacitance limit of 400 pF restricts the number of devices and bus length. The STDVE001A enables the system designer to isolate the two halves of a bus, accommodating more I2C devices or longer trace lengths. It can also be used to run two buses, one at 5 V and the other at 3.3 V or a 400 kHz and 100 kHz bus, where the 100 kHz bus is isolated when 400 kHz operation of the other bus is required. The STDVE001A can be used to run the I2C bus at both 5 V and 3.3 V interface levels. The DDC_EN acts as the enable for the DDC buffer. The DDC_EN line should not change state during an I2C operation, because disabling during bus operation hangs the bus and enabling port may through a bus cycle could confuse the I2C ports being enabled. The DDC_EN input should change state only when the global bus and repeater port are in idle state, to prevent system failures. The output low levels for each internal buffer are approximately 0.5 V, but the input voltage of each internal buffer must be 70 mV or more below the output low level, when the output internally is driven low. This prevents a lock-up condition from occurring when the input low condition is released. As with the standard I2C system, pull up resistors are required to provide the logic high levels on the buffered bus. The STDVE001A has standard open collector configuration of the I2C bus. The size of the pull up resistors depends on the system, but each side of the repeater must have a pull up resistor. This part is designed to work with standard mode and fast mode I2C devices. Standard mode I2C devices only specify 3 mA output drive, this limits the termination current to 3 mA in a generic I2C system where standard mode devices and multiple masters are possible. Under certain conditions, higher termination currents can be used. 3.6 Power-down condition The OE_N pin can be used to disable the device. Also there is no ESD protection dode to supply on any of the IOs. This prevents a reverse current flow condition when the main box is switched off while the TV is switched on. The OE_N is used to disable most of the internal circuitry of STDVE001A that puts the device in a low power mode of operation. 17/49 Functional description 3.7 STDVE001A Bias The bandgap reference voltage over the external REXT reference resistor sets the internal bias reference current. This current and its factors (achieved by employing highly accurate and well matched current mirror circuit topologies) are generated on-chip and used by several internal modules. The 10 mA current used by the transmitter block is also generated using this reference current. It is important to ensure that the REXT value is within the ±1% tolerance range of its typical value. Table 5. Bias parameter Parameter Min Bandgap voltage Typ Max 1.2 Unit V The output voltage swing depends on 3 components: supply voltage (Vsupply), termination resistor (RT) and current drive (Idrive). The supply voltage can vary from 3.3 V ±5%, termination resistor can vary from 50 Ω ±10%. The voltage on the output is given by: Vsupply −Idrive x RT. The variation on Idrive must be controlled to ensure that the voltage on HDMI output is within the HDMI specification under all conditions. This is achieved when: 400 mV ≤Idrive x RT ≤600 mV with typical value centered at 500 mV. 3.8 Timing between HPD and DDC It is important to ensure that the I2C DDC interface is ready by the time the HPD detection is complete. As soon as the discovery is finished by the HPD detection, the configuration data is exchanged between a source and sink through the I2C DDC interface. The STDVE003 Afs DDC interface is ready for communication as soon as the power supply to the chip is present and stable. When the desired port is enabled and the chip is out of shutdown mode, the I2C DDC lines can be used for communication. Thus, as soon as the HPD detection sequence is complete, the DDC interface can be readily used. There is no delay between the HPD detection and I2C DDC interface to be ready. 18/49 STDVE001A 3.9 Functional description CEC The CEC channel is a dedicated single pin bus and electrically translates to a bi-directional buffer used to ensure that the electrical specs of the CEC are met even with high capacitance on the single CEC line. The pull-up resistor of 26K? is integrated on either sides of the buffer. The CEC is used for AV control of the electronic devices connected in a HDMI cluster. The drive of the buffer is set to meet the requirements of the CEC. This is optionally used for higher-level user functions such as automatic set-up tasks or tasks typically associated with infrared remote control usage. The CEC line is continuously monitored during the power-on state and is not monitored during powered-off state. In powered off state, the CEC line should not be pulled low and it should not affect the CEC communication between other devices. The maximum capacitance on the CEC lines can be 7.2nF. 19/49 Maximum rating 4 STDVE001A Maximum rating Stressing the device above the rating listed in the “absolute maximum ratings” table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Table 6. Absolute maximum ratings Symbol Parameter VCC VI IO TSTG TL VESD Table 7. 20/49 Value Unit Supply voltage to ground -0.5 to +4.0 V DC input voltage (TMDS ports) 1.7 to +4.0 V OE_N, DDC_EN, PRE, EX_BOOST1, EX_BOOST2 -0.5 to +4.0 V SDA_INT, SCL_INT, SDA_EXT, SCL_EXT, HPD_INT, HPD_EXT -0.5 to +6.0 V 120 mA -65 to +150 °C Lead temperature (10 sec) 300 °C Contact discharge Electrostatic discharge voltage on all IOs as per IEC610004-2 standard ±8 kV DC output current Storage temperature Thermal data Symbol Parameter ΘJA Thermal coefficient (junction-ambient) TQFP48 QFN48 48 Unit °C/W STDVE001A Maximum rating 4.1 Recommended operating conditions 4.2 DC electrical characteristics TA = -40 to +85 °C, VCC = 3.3 V ± 5% (a) Table 8. Power supply characteristics Value Symbol VCC ICC Parameter Test condition Supply voltage Supply current Unit Min Typ Max 3.135 3.3 3.465 All inputs/outputs are enabled. Inputs are terminated with 130 50 Ω to VCC. V mA VCC = 3.465 V Data rate = 3.4 Gbps Table 9. DC specifications for TMDS differential inputs Value Symbol Parameter Test condition Unit Min Typ Max 0 150 VTH Differential input high threshold (peak-to-peak) VCC = 3.465 V over the entire VCMR VTL Differential input low threshold VCC = 3.465 V over the entire VCMR -150 VID Differential input voltage (peak-to-peak)(1) VCC = 3.465 V 150 1560 mV VCC - 0.3 VCC - 0.04 V VCMR CIN Common mode voltage range Input capacitance IN+ or IN- to GND F = 1 MHz 0 3.5 mV mV pF 1. Differential output voltage is defined as | (OUT+ - OUT-) |. Differential input voltage is defined as | (IN+ - IN-) |. a. Typical parameters are measured at VCC = 3.3 V, TA = +25 °C. 21/49 Maximum rating Table 10. STDVE001A DC specifications for TMDS differential ouputs Value Symbol Parameter Test condition Unit Min Typ Max VOH Single-ended high level output voltage VCC-10 VCC+10 mV VOL Single-ended low level output voltage VCC-600 VCC-400 mV Single ended output swing voltage VCC = 3.3 V RTERM = 50 Ω 400 500 600 mV VOD Differential output voltage (peak-to-peak)(1) VCC = 3.3 V RTERM = 50 Ω 800 1000 1200 mV IOH Differential output high level current 0 50 µA IOL Differential output low level current 8 12 mA |ISC| Output driver shortcircuit current (continuous) OUT± = GND through a 50 Ω resistor. See Figure 12 12 mA Output capacitance OUT+ or OUTto GND when tristate F = 1 MHz Vswing COUT 10 5.5 1. Differential output voltage is defined as | (OUT+ - OUT-) |. Differential input voltage is defined as | (IN+ - IN-) | 22/49 pF STDVE001A Table 11. Maximum rating DC specifications for OE_N, EQ_BOOST, EQ_BOOST2, PRE, DDC_EN inputs Value Symbol Parameter Test condition Unit Min Typ Max VIH HIGH level input voltage High level guaranteed 2.0 VIL LOW level input voltage Low level guaranteed -0.5 VIK Clamp diode voltage VCC = 3.465 V IIN = -18 mA -1.2 IIH Input high current VCC = 3.465 V VIN = VCC -5 +5 µA IIL Input low current VCC = 3.465 V VIN = GND -5 +5 µA CIN Input capacitance Pin to GND F = 1 MHz Table 12. Symbol RTERM Table 13. V 0.8 -0.8 V V 3.5 pF Value Unit Input termination resistor Parameter Differential input termination resistor on IN± channels relative to VCC Test condition IIN = -10 mA 45 50 55 Ω External reference resistor Value Symbol Parameter Test condition Unit Min REXT Table 14. Resistor for TMDS compliant voltage swing range Tolerance for R = ±1% Typ Max 4.7 KΩ DDC I/O pins Value Symbol Parameter Test condition Unit Min VI(DDC) Input voltage GND Typ Max 5.3 V 23/49 Maximum rating Table 14. STDVE001A DDC I/O pins Value Symbol Parameter Test condition Unit Min II(leak) CI/O 24/49 Typ Max VCC = 3.465 V Input port= 5.3 V Output port = 0.0 V Switch is isolated 6 µA VCC = 3.465 V Input port = 3.3 V Output port = 0.0 V Switch is isolated 2 µA Input leakage current VI = 0 V F = 1 MHz Switch disabled 5 pF VI = 0 V F = 1 MHz Switch enabled 9 pF Input/output capacitance STDVE001A Table 15. Maximum rating Status pins (HPD_INT) Value Symbol Parameter Test condition Unit Min Typ Max VIH High level input voltage VCC = 3.3 V High level guaranteed 2.0 5.3 V VIL Low level input voltage VCC = 3.3 V Low level guaranteed GND 0.8 V VCC = 3.465 V Output = 5.3 V 4 µA VCC = 3.465 V Output = 3.3 V 2 µA II(leak) Table 16. Input leakage current Status pins (HPD_EXT)(1) Value Symbol Parameter Test condition Unit Min V CI/O VOL Voltage Typ GND Max 5.3 V VI = 0 V F = 1 MHz Switch disabled 5 pF VI = 0 V F = 1 MHz Switch enabled 9 pF Input/output capacitance Output low voltage (open drain I/Os) VCC = 3.3 V IOL = 8 mA 0.4 V 1. Typical parameters are measured at VCC = 3.3 V, TA = +25 °C. 25/49 Maximum rating STDVE001A DC electrical characteristics (I2C repeater) 4.3 (TA = -40 to +85 °C, VCC = 3.3 V ± 5%, GND = 0 V; unless otherwise specified) Table 17. Supplies Value Symbol VCC Table 18. Parameter Test condition DC supply voltage Unit Min Typ Max 3.135 3.3 3.465 V Input/output SDA, SCL Value Symbol Parameter Test condition Unit Min Typ Max VIH High level input voltage 0.7 VCC 5.3 V VIL Low level input voltage(1) -0.5 0.3 VCC V VILc Low level input voltage contention(1) -0.5 0.4 V VIK Input clamp voltage II = -18 mA − − -1.2 V IIL Input current low (SDA, SCL) Input current low (SDA, SCL) − − 1 μA VI = 3.465 V (SDA, SCL) − − 10 μA IIH Input current high (SDA, SCL) VI = 5.3 V (SDA, SCL) − − 10 μA IOL = 3 mA 0.4 V IOL = 6 mA 0.65 V VOL IOH CI LOW-level output voltage Output high level leakage current Input capacitance VO = 3.6 V; driver disabled − − 10 μA VO = 5.3 V; driver disabled − − 10 μA VI = 3 V or 0 V − 6 7(2) pF 1. VIL specification is for the first low level seen by the SDA/SCL lines. VILc is for the second and subsequent low levels seen by the SDA/SCL lines. 2. The SCL/SDA CI is about 200 pF when VCC = 0 V. The STDVE001A should be used in applications where power is secured to the repeater but an active bus remains on either set of the SDA/SCL pins. 26/49 STDVE001A 4.4 Maximum rating DC electrical characteristics (CEC) (TA = -40 to +85 °C, VCC = 3.3V ± 5%, GND=0V; unless otherwise specified) Table 19. DC electrical characteristics (CEC) Value Symbol Parameter Test condition Min Typ Max Unit 3.135 3.3 3.465 V VCC DC supply voltage VOL Logic 0 output 0.0 0.6 V VOH Logic 1 output 2.5 3.63 V VHL(th) High to low input V treshold for logic ‘0’ Vcec(‘0’) ≥ 0.8 V VLH(th) Low to high input V treshold for logic ‘1’ Vcec(‘1’) ≥ 2.0 V 0.4 V Vhys Typical input hysteresis(1) Tr Maximum rise time (10% to 90%) CL= 7.2 nF 250 μs Tf Maximum fall time (90% to 10%) CL= 7.2 nF 50 μs 28.6 KΩ 1.8 μA RPU Internal pull-up resistor(2) IOFF CEC IO current in upowered state 23.4 VCC = 0.0 V 26 1. Input hysteresis is normally supplied by the microprocessor input circuit. In this case, additional hysteresis circuitry is not needed. 2. The internal device pull-up should be disconnected from the line when the device is powered-off. 27/49 Maximum rating STDVE001A Dynamic switching characteristics(b) 4.5 TA = -40 to +85 °C, VCC = 3.3 V ± 5%, RTERM = 50 Ω ± 5%, CL = 5 pF). Typical values are at TA = +25 °C and VCC = 3.3 V. Table 20. Clock and data rate Value Symbol Parameter Test condition Unit Min fCK Drate Table 21. Clock frequency (1/10th of the differenttial data rate) Typ Max 25 Signaling rate 340 MHz 3.4 Gbps Differential output timings Value Symbol tr tf Parameter Test condition Differential data and clock output rise/fall times tPLH Differential low to high propagation delay tPHL Differential high to low propagation delay Table 22. Unit Min Typ Max 20% to 80% of VOD 75 150 240 ps 80% to 20% of VOD 75 150 240 ps Alternating 1 and 0 pattern at slow and fast data rates Measure at 50% VOD between input to output 250 800 ps 250 800 ps Skew times Value Symbol Parameter Test condition Unit Min tSK(O) Inter-pair channel-tochannel output skew tSK(P) Pulse skew tSK(D) Intra-pair differential skew tSK(CC) b. 28/49 Output channel to channel skew | tPLH - tPHL | Difference in propagation delay (tPLH or tPHL) among all output channels Typ 25 50 Max 100 ps 80 ps 44 ps 125 ps The timing values in this section are tested during characterization and are guaranteed by design and simulation. Not tested in production. STDVE001A Table 23. Maximum rating Turn-on and turn-off times Value Symbol Parameter Test condition Unit Min tON tOFF Table 24. Typ Max TMDS output enable time Time from OE_N to OUT± change from tristate to active 12 20 ns TMDS output disable time Time from OE_N to OUT± change from active to tristate 6 10 ns DDC I/O pins Value Symbol Parameter Test condition Unit Min Typ Max Refer to Section 4.6 Table 25. Status pins (HPD_INT, HPD_EXT, OE_N) Value Symbol Parameter Test condition Unit Min tPD(HPD) Propagation delay (from Y_HPD to the active port of HPD) TON/OFF Switch time (from port select to the CL = 10 pF latest valid status of HPD) Table 26. CL = 10 pF, RPU = 1 KΩ Typ Max 150 ns 50 ns Jitter Value Symbol Parameter Test condition Unit Min tJIT Total jitter(1) PRBS pattern at 1.6 Gbps (800 MHz) Typ 35 Max ps (p-p) 1. Total jitter is measured peak-to-peak with a histogram including 3500 window hits. Stimulus and fixture jitter has been subtracted. Input differential voltage = VID = 500 mV, PRBS random pattern at 1.65 Gbps, tr=tf=50 ps (20% to 80%). Jitter parameter is not production-tested but guaranteed through characterization on a sample-to-sample basis. 29/49 Maximum rating 4.6 STDVE001A Dynamic switching characteristics (I2C repeater) TA = -40 to +85 °C, VCC = 3.3 V ± 5%. Typical values are at TA = +25 °C and VCC = 3.3 V. Table 27. . I2C repeater(1) Value Symbol Parameter Test condition Unit Min fSCL tLOW tLOW 30/49 I2C clock frequency Low duration on SCL pin Typ Max Standard mode 100 kHz Fast mode 400 kHz 100 KHz See Figure 20 Voltage on line = 5V Cmax=400 pF, Rmax = 2 K Depends on input signal rise time. Includes the 20 % time intervals on both transitions. 4.7 μs 400 KHz See Figure 20 Voltage on line = 5V Cmax = 400 pF, Rmax = 2 K Depends on input signal rise time. Includes the 20 % time intervals on both transitions. 1.3 μs 100 KHz See Figure 20 Voltage on line = 3.3 V Cmax = 400 pF, Rmax = 2 K Depends on input signal rise time. Includes the 20 % time intervals on both transitions. 4.7 μs 400 KHz See Figure 20 Voltage on line = 3.3 V, Cmax = 400 pF, Rmax = 2 K Depends on input signal rise time. Includes the 20 % time intervals on both transitions. 1.3 μs Low duration on SCL pin STDVE001A Table 27. Maximum rating I2C repeater(1) (continued) Value Symbol Parameter Test condition Unit Min tHIGH tHIGH tPHL tPLH tPHL Typ Max 100 KHz See Figure 20 Voltage on line = 5 V Cmax = 400 pF, Rmax = 2 K Depends on input signal rise time. Includes the 20 % time intervals on both transitions 4.0 μs 400 KHz See Figure 20 Voltage on line = 5 V Cmax = 400 pF, Rmax=2 K Depends on input signal rise time. Includes the 20 % time intervals on both transitions 0.6 μs 100 KHz Refer section 14.12, Voltage on line = 3.3 V Cmax = 400 pF, Rmax = 2 K Depends on input signal rise time. Includes the 20 % time intervals on both transitions 4.0 μs 400 KHz See Figure 20 Voltage on line = 3.3 V, Cmax=400 pF, Rmax = 2 K Depends on input signal rise time. Includes the 20 % time intervals on both transitions 0.6 μs High duration on SCL pin High duration on SCL pin Propagation delay 400 KHz Waveform 1 (Figure 18) Voltage on line = 5 V, Cmax = 400 pF, Rmax = 2 K 250 μs Propagation delay 400 KHz Waveform 1 (Figure 18) Voltage on line = 5 V, Cmax = 400 pF, Rmax = 2 K 300 μs Propagation delay 400 KHz Waveform 1 (Figure 18) Voltage on line = 3.3 V, Cmax = 400 pF, Rmax = 2 K 250 ns 31/49 Maximum rating Table 27. STDVE001A I2C repeater(1) (continued) Value Symbol Parameter Test condition Unit Min tPLH tPHL tPLH tPHL tPLH tf tf 32/49 Typ Max Propagation delay 400 KHz Waveform 1 (Figure 18) Voltage on line = 3.3 V, Cmax = 400 pF, Rmax = 2 K 450 ns Propagation delay 100 KHz Waveform 1 (Figure 18) Voltage on line = 5 V, Cmax = 400 pF, Rmax = 2 K 250 ns Propagation delay 100 KHz Waveform 1 (Figure 18) Voltage on line = 5 V, Cmax = 400 pF, Rmax = 2 K 300 ns Propagation delay 100 KHz Waveform 1 (Figure 18) Voltage on line = 3.3 V, Cmax = 400 pF, Rmax = 2 K 250 ns Propagation delay 100 KHz Waveform 1 (Figure 18) Voltage on line = 3.3 V, Cmax = 400 pF, Rmax = 2 K 450 ns 400 KHz Waveform 1 (Figure 18)(2) Voltage on line = 5 V Cmax = 400 pF, Rmax = 2 K 300 ns 400 KHz Waveform 1(2) Voltage on li ne = 3.3 V Cmax = 400pF, Rmax = 2 K 300 ns 100 KHz Waveform 1 (Figure 18) (2) Voltage on line = 5 V Cmax = 400 pF, Rmax = 2 K 300 ns 100 KHz Waveform 1 (Figure 18)(2) Voltage on line = 3.3 V Cmax = 400 pF, Rmax = 2 K 300 ns Output fall time Output fall time STDVE001A Table 27. Maximum rating I2C repeater(1) (continued) Value Symbol Parameter Test condition Unit Min tr tr Typ Max 400 KHz Waveform 1 (Figure 18)(2) Voltage on line = 5 V Cmax = 400 pF, Rmax = 2 K 300 ns 400 KHz Waveform 1 (Figure 18)(2) Voltage on line = 3.3 V Cmax = 400 pF, Rmax = 2 K 300 ns 100 KHz Waveform 1,(2) Voltage on line = 5 V Cmax = 400 pF, Rmax = 2 K 1000 ns 100 KHz Waveform 1 (Figure 18)(2) Voltage on line = 3.3 V Cmax = 400 pF, Rmax = 2 K 1000 ns Output rise time Output rise time 1. All the timing values are tested during characterization and are guaranteed by design and simulation. Not tested in production. 2. The tr transition time is specified with maximum load of 2 kΩ pull-up resistance and 400 pF load capacitance. Different load resistance and capacitance will alter the RC time constant, thereby changing the propagation delay and transition times. Refer to Figure 10. Table 28. ESD performance Symbol ESD Parameter All I/Os Test conditions Contact discharge as per IEC61000-4-2 standard Min Typ 8 Max Unit kV 33/49 Maximum rating STDVE001A Figure 8. Test circuit for electrical characteristics VCC CL VOUT+ VIN+ Pulse generator VINRT STDVE001A 100 Ω VOUT- RT CL AM00726V1 1. CL = load capacitance: include jig and probe capacitance. 2. RT = termination resistance; should be equal to ZOUT of the pulse generator. Figure 9. TMDS output driver VCC RT RT ZO = RT TMDS driver ZO = RT TMDS receiver CS00069 1. ZO = characteristic impedance of the cable. 2. RT = termination resistance: should be equal to ZO of the cable. Both are equal to 50W. 34/49 STDVE001A Maximum rating Figure 10. Test circuit for HDMI receiver and driver VCC RT RT A VA RT Y VID TMDS receiver TMDS driver CL = 0.5pF VCC VY B Z VB VID = VA - VB VSwing = VY - VZ VZ RT CS00071 1. RT = 50 Ω. 35/49 Maximum rating STDVE001A Figure 11. Test circuit for turn off and turn off times 10μF 0.1 μF 0.01μF CL 1.15 V VCC VIN+ 1.0 V 50 Ω 1.2 V 50 Ω STDVE001A 1.15 V VIN1.0 V SHDN_N CL REXT Pulse generator GND 4.7 KΩ±1% 50 Ω AM00727V1 1. CL = 5 pF Figure 12. Test circuit for short circuit output current 50 Ω ISC TMDS driver 50 Ω 0V or 3.465 V 36/49 STDVE001A Maximum rating Figure 13. Propagation delays VCC VA VCM VID VCM VB VCC – 0.4 0.4V VID VID VID(p-p) 0V -0.4V VOD(O) tpLH tpHL 100% 80% VOD(p-p) 80% 0V Differential 20% 20% Output 0% VOD(U) tr tf Figure 14. Turn-on and turn-off times SHDN_N 3.0 V 1.50 V 1.50 V 0V tOFF tON VOH VOUT+ when VID= +150mV VOUT- when VID= -150mV 50% 50% 1.2 V tON tOFF 1.2 V VOUT+ when VID= -150mV VOUT- when VID= +150mV 50% 50% VOL 37/49 Maximum rating STDVE001A Figure 15. TSK(O) 3.5V 2.5V Data In 1.5V tpLHX tpHLX VOH 2.5V 2.5V Data Out at Port 0 VOL tSK(o) VOH 2.5V Data Out at Port 1 VOL tpLHY tpHLY tSK(o) = | tpLHy – tpLHx | or | tpHLy – tpHLx | Figure 16. TSK(P) Figure 17. TSK(D) 38/49 STDVE001A Maximum rating Figure 18. AC waveform 1 (I2C lines) Figure 19. Test circuit for AC measurements (I2C lines) Figure 20. I2C bus timing 39/49 Application information 5 Application information 5.1 Power supply sequencing STDVE001A Proper power-supply sequencing is advised for all CMOS devices. It is recommended to always apply VCC before applying any signals to the input/output or control pins. 5.2 Power supply requirements Bypass each of the VCC pins with 0.1 μF and 1 nF capacitors in parallel as close to the device as possible, with the smaller-valued capacitor as close to the VCC pin of the device as possible. All VCC pins can be tied to a single 3.3 V power source. A 0.01 μF capacitor is connected from each VCC pin directly to ground to filter supply noise. The maximum power supply variation can only be ±5% as per the HDMI specifications. The maximum tolerable noise ripple on 3.3 V supply must be within a specified limit. 5.3 Differential traces The high-speed TMDS inputs are the most critical parts for the device. There are several considera-tions to minimize discontinuities on these transmission lines between the connectors and the device. (a) Maintain 100-Ω differential transmission line impedance into and out of the STDVE001A. (b) Keep an uninterrupted ground plane below the high-speed I/Os. (c) Keep the ground-path vias to the device as close as possible to allow the shortest return current path. (d) Layout of the TMDS differential inputs should be with the shortest stubs from the connectors. Output trace characteristics affect the performance of the STDVE001A. Use controlled impedance traces to match trace impedance to both the transmission medium impedance and termination resistor. Run the differential traces close together to minimize the effects of the noise. Reduce skew by matching the electrical length of the traces. Avoid discontinuities in the differential trace layout. Avoid 90 degree turns and minimize the number of vias to further prevent impedance discontinuities. 40/49 STDVE001A 5.3.1 Application information I2C lines application information A typical application is shown in the figure below. In the example, the system master is running on a 3.3 V I2C-bus while the slave is connected to a 5 V bus. Both buses run at 100 kHz unless the slave bus is isolated and then the master bus can run at 400 kHz. Master devices can be placed on either bus. Figure 21. Typical application of I2C bus system 3.3V 5.0V SDA SDA SDA SDA SCL SCL SCL SCL Bus master 400 kHz Slave 100 kHz STDVE 001 A BUS 0 BUS 1 The STDVE001A DDC lines are 5 V tolerant; so it does not require any extra circuitry to translate between the different bus voltages. 41/49 Package mechanical data 6 STDVE001A Package mechanical data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. Figure 22. TQFP48 (7 x 7 mm) package outline 42/49 STDVE001A Package mechanical data Table 29. TQFP48 (7 x 7 mm) mechanical data Millimeters Symbol Min Typ Max A1 0.05 0.10 0.15 A2 0.95 1.00 1.05 D 8.80 9.00 9.20 D1 6.90 7.00 7.10 E 8.80 9.00 9.20 E1 6.90 7.00 7.10 L 0.45 0.60 0.75 A L1 1.00 T 0.70 0.15 0.20 T1 0.10 0.13 1.15 a 0° b 0.17 0.22 0.27 b1 0.17 0.20 0.23 7° e 0.500 ccc / ddd 0.08 43/49 Package mechanical data Figure 23. TQFP48 (7 x 7 mm) footprint recommendation 44/49 STDVE001A STDVE001A Package mechanical data Figure 24. TQFP48 (7 x 7 mm) tape and reel information 45/49 Package mechanical data Figure 25. QFN48 (7 x 7 mm) package outline 46/49 STDVE001A STDVE001A Package mechanical data Table 30. QFN48 (7 x 7 mm) package mechanical data Millimeters Symbol Min Typ Max 0.80 0.90 1.00 A1 0.02 0.05 A2 0.65 1.00 A3 0.25 A b 0.18 0.23 0.30 D 6.85 7.00 7.15 D2 2.25 4.70 5.25 E 6.85 7.00 7.15 E2 2.25 4.70 5.25 e 0.45 0.50 0.55 L 0.30 0.40 0.50 ddd 0.08 47/49 Revision history 7 STDVE001A Revision history Table 31. 48/49 Document revision history Date Revision Changes 02-Jul-2008 1 Initial release. 21-Jul-2008 2 Modified: Figure 2 and Section 3: Functional description on page 13 Replaced ‘equation’ with ‘equalizer in the Features section. STDVE001A Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 49/49