STDVE003A Adaptive 3.4 Gbps 3:1 TMDS/HDMI signal equalizer Features ■ Compatible with the high-definition multimedia interface (HDMI) v1.3 digital interface ■ Conforms to the transition minimized differential signaling (TMDS) voltage standard on input and output channels ■ 340 MHz maximum clock speed operation supports all video formats with deep color at maximum refresh rates ■ 3.4 Gbps data rate per channel ■ Fully automatic adaptive equalizer ■ Single supply VCC: 3.135 to 3.465 V ■ ESD: ±8 KV contact for all I/Os ■ Integrated open-drain I2C buffer for display data channel (DDC) ■ 5.3 V tolerant DDC and HPD I/Os ■ Lock-up free operation of I2C bus ■ 0 to 400 kHz clock frequency for I2C bus ■ Low capacitance of all the channels ■ Equalizer regenerates the incoming attenuated TMDS signal ■ Buffer drives the TMDS outputs over long PCB track lengths ■ Low output skew and jitter ■ Tight input thresholds reduce bit error rates ■ On-chip selectable 50 Ω input termination ■ Low ground bounce ■ Data and control inputs provide undershoot clamp diode ■ Available in TQFP80 package ■ -40°C to 85°C operating temperature range TQFP80 Description The STDVE003A integrates a 4-channel 3.4 Gbps TMDS equalizer and a 3:1 switch to select one of the three HDMI ports. The 3-input HDMI ports can be either external ports or internal sources. Highspeed data paths and flow-through pinout minimize the internal device jitter and simplify the board layout. The equalizer overcomes the intersymbol interference (ISI) jitter effects from lossy cables. The buffer/driver on the output can drive the TMDS output signals over long distances. In addition to this, STDVE003A integrates the 50 Ω termination resistor on all the input channels to improve performance and reduce board space. The device can be placed in a low-power mode by disabling the output current drivers. The STDVE003A is ideal for advanced TV and STB applications supporting HDMI/DVI standard. The differential signal from the HDMI/DVI ports can be routed through the STDVE003A to guarantee good signal quality at the HDMI receiver. Designed for very low skew, jitter and low I/O capacitance, the switch preserves the signal integrity to pass the stringent HDMI compliance requirements. ■ Evaluation kit is available Table 1. Device summary Order code Operating temperature Package Packaging STDEV003ABTR -40°C to 85°C TQFP80 Tape and reel July 2008 Rev 3 1/41 www.st.com 41 Contents STDVE003A Contents 1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1 Application diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1 Adaptive equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2.1 4 5 SEL operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 HPD pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 DDC channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5 I2C DDC line repeater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.6 Power-down condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.8 Timing between HPD and DDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3 DC electrical characteristics (I2C repeater) . . . . . . . . . . . . . . . . . . . . . . . 22 4.4 Dynamic switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.5 Dynamic switching characteristics (I2C repeater) . . . . . . . . . . . . . . . . . . . 26 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.1 Power supply sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.2 Power supply requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.3 Differential traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.3.1 I2C lines application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2/41 STDVE003A List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Gain frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 OE_N operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 SEL operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Bias parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Power supply characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 DC specifications for TMDS differential inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 DC specifications for TMDS differential ouputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 DC specifications for OE_N, EQ_BOOST, SEL (S1, S2, S3) inputs . . . . . . . . . . . . . . . . . 19 Input termination resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 External reference resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 DDC I/O pins (switch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Status pins (Y_HPD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Status pins (A_HPD, B_HPD, C_HPD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Input/output SDA, SCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Clock and data rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Equalizer gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Differential output timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Skew times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Turn-on and turn-off times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 DDC I/O pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Status pins (Y_HPD, A_HPD, B_HPD, C_HPD, SEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 I2C repeater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 ESD performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 TQFP-80 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3/41 List of figures STDVE003A List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. 4/41 STDVE003A block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Equalizer functional diagram (one signal pair) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 DDC I2C bus repeater. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 STDVE003A in a digital TV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin configuration (TQFP80 package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 STDVE003A gain vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Test circuit for electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 TMDS output driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Test circuit for HDMI receiver and driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Test circuit for turn off and turn off times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Test circuit for short circuit output current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Propagation delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Turn-on and turn-off times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 TSK(O) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 TSK(P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 TSK(D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 AC waveform 1 (I2C lines) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Test circuit for AC measurements (I2C lines) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 I2C bus timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Typical application of I2C bus system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 TQFP80 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 TQFP80 tape and reel information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 STDVE003A 1 Block diagram Block diagram Figure 1. STDVE003A block diagram HDMI input port A HDMI input port B 3:1 HDMI input select switch Input stage Output driver/ transmitter Equalizer HDMI output port Y HDMI input port C 2 2 DDC port A DDC switch 2 DDC port B 2 IC repeater DDC port Y 2 DDC port C S1,S2,S3 HPD port A HPD port Y HPD analog switch HPD port B HPD port C CS00061 Figure 2. Equalizer functional diagram (one signal pair) S1, S2, S3 Data+ Data+ Data- 50 Ω termination selectable Switch (3:1) Pre-amp Equalizer Quantizer Output I driver Data- OE_N Current control REXT AM00715V1 5/41 Block diagram STDVE003A Figure 3. DDC I2C bus repeater 2 I C bus repeater Y_DDC_SDA A_DDC_SDA B_DDC_SDA C_DDC_SDA Switch A_DDC_SCL B_DDC_SCL Y_DDC_SCL C_DDC_SCL S1, S2, S3 CS00062 1.1 Application diagrams Figure 4. STDVE003A in a digital TV Game console DVD-R STB Digital TV STDVE003A HDMI receiver CS00063 6/41 STDVE003A Pin configuration DDC_1_PWR HPD2 VCC 62 61 63 GND SCL2 SDA2 65 64 67 66 A21 B21 GND 68 VCC B22 70 69 GND A22 71 72 A23 74 B23 75 73 A24 B24 VCC 77 76 VCC GND 78 80 HPD1 Pin configuration (TQFP80 package) 79 1 60 59 DDC_2_PWR GND SDA1 2 58 A34 SCL1 3 57 B34 GND 4 56 VCC B11 5 55 A33 A11 6 54 B33 VCC 7 53 GND A32 B12 8 52 A12 9 51 GND 10 50 B13 11 49 STDVE003A B32 VCC A31 37 38 39 40 SCL_SINK SDA_SINK HPD_SINK Y4 GND 24 25 GND 36 23 S3 35 22 Z1 21 20 S1 DDC_Y_PWR GND 41 34 19 EQ_BOOST Y1 42 32 43 33 17 18 VCC VCC REXT 31 SDA3 HPD3 Z2 44 Y2 16 GND GND 30 SCL3 45 29 46 15 Z3 14 A14 Y3 B14 28 B31 GND 26 48 47 27 12 13 Z4 A13 VCC VCC Figure 5. S2 2 Pin configuration VCC OE_N DDC_3_PWR CS00064 Table 2. Pin description Pin number Pin name Type Function 1 DDC_1_PWR Power External power to connect the pull-up resistor on DDC A ports. Connect to GND if unused. 2, 3 SDA1, SCL1 I/O Port1 DDC bus data and clock lines 4 GND Power Ground 5, 6 B11, A11 Input,TMDS Port 1 differential inputs for channel 1 7 VCC Power Supply voltage (3.3 V ± 5%) 8, 9 B12, A12 Input,TMDS Port 1 differential inputs for channel 2 10 GND Power Ground 11, 12 B13, A13 Input,TMDS Port 1 differential inputs for channel 3 13 VCC Power Supply voltage (3.3 V ± 5%) 14, 15 B14, A14 Input, TMDS Port 1 differential inputs for channel 4 7/41 Pin configuration STDVE003A Table 2. 8/41 Pin description (continued) Pin number Pin name Type Function 16 GND Power Ground 17 VCC Power Supply voltage (3.3 V ± 5%) 18 REXT Analog Connect to GND through a 4.7 KΩ ± 1% precision reference resistor. Sets the output current to generate the output voltage compliant with TMDS 19 EQ_BOOST Input Provides equalizer boost function. Set to L for short cables and H for long cables. 20 DDC_Y_PWR Power External power to connect the pull-up resistor on DDC Y ports. Connect to GND if unused. 21, 23 S1,S2,S3 Input Source select inputs 24 GND Power Ground 25, 26 Y4, Z4 Output, TMDS Channel 4 differential outputs 27 VCC Power Supply voltage (3.3 V ± 5%) 28, 29 Y3, Z3 Output, TMDS Channel 3 differential outputs 30 GND Power Ground 31, 32 Y2, Z2 Output, TMDS Channel 2 differential outputs 33 VCC Power Supply voltage (3.3 V ± 5%) 34, 35 Y1, Z1 Output, TMDS Channel 1 differential outputs 36 GND Power Ground 37 GND Power Ground 38 SCL_SINK I/O Sink side DDC bus clock line 39 SDA_SINK I/O Sink side DDC bus data line 40 HPD_SINK Input Sink side hot plug detector input High: 5 V power signal asserted from source to sink and EDID is ready. Low: No 5 V power signal is asserted from source to sink or EDID is not ready. 41 DDC_3_PWR Power External power to connect the pull-up resistor on DDC C ports. Connect to GND if unused. 42 OE_N Input Output enable, active low 43 VCC Power Supply voltage (3.3 V ± 5%) 44 HPD3 Output Port 3 hot plug detector output. Open drain output. Connect an external resistor according to the HDMI specification. 45 SDA3 I/O Port 3 DDC bus data line 46 SCL3 I/O Port 3 DDC bus clock line STDVE003A Pin configuration Table 2. Pin description (continued) Pin number Pin name Type Function 47 GND Power 48, 49 B31, A31 Input, TMDS 50 VCC Power 51, 52 B32, A32 Input, TMDS 53 GND Power 54, 55 B33, A33 Input, TMDS 56 VCC Power 57, 58 B34, A34 Input, TMDS 59 GND Power Ground 60 DDC_2_PWR Power External power to connect the pull-up resistor on DDC B ports. Connect to GND if unused. 61 VCC Power Supply voltage (3.3 V ± 5%) 62 HPD2 Output Port 2 hot plug detector output. Open drain output. Connect an external resistor according to the HDMI specification. 63 SDA2 I/O Port 2 DDC bus data line 64 SCL2 I/O Port 2 DDC bus clock line 65 GND Power Ground 66 GND Power Ground 67, 68 B21, A21 Input, TMDS 69 VCC Power 70, 71 B22, A22 Input, TMDS 72 GND Power 73, 74 B23, A23 Input, TMDS 75 VCC Power 76, 77 B24, A24 Input, TMDS 78 GND Power Ground 79 VCC Power Supply voltage (3.3 V ± 5%) 80 HPD1 Ground Port 3 differential inputs for channel 1 Supply voltage (3.3 V ± 5%) Port 3 differential inputs for channel 2 Ground Port 3 differential inputs for channel 3 Supply voltage (3.3 V ± 5%) Port 3 differential inputs for channel 4 Port 2 differential inputs for channel 1 Supply voltage (3.3 V ± 5%) Port 2 differential inputs for channel 2 Ground Port 2 differential inputs for channel 3 Supply voltage (3.3 V ± 5%) Port 2 differential inputs for channel 4 Port 1 hot plug detector output. Open drain output. Connect an external resistor according to the HDMI specification. 9/41 Functional description 3 STDVE003A Functional description The STDVE003A routes physical layer signals for high bandwidth digital video and is compatible with low voltage differential signaling standard like TMDS. The device passes the differential inputs from a video source to a common display when it is in the active mode of operation. The device conforms to the TMDS standard on both inputs and outputs. The low on-resistance and low I/O capacitance of the switch in STDVE003A result in a very small propagation delay. The device integrates SPDT-type switches for 3 differential data TMDS channels and 1 differential clock channel. Additionally, it integrates the switches for DDC and HPD line switching with I2C repeater on the DDC lines. The I2C interface of the selected input port is linked to the I2C interface of the output port, and the hot plug detector (HPD) of the selected input port is output to HPD_SINK. For the unused ports, the I2C interfaces are isolated and the HPD pins are driven to L state. 3.1 Adaptive equalizer The equalizer dramatically reduces the intersymbol interference (ISI) jitter and attenuation from long or lossy transmission media. The inputs present high impedance when the device is not active or when VCC is absent or 0 V. In all other cases, the 50 Ω termination resistors on input channels are present. This circuit helps to improve the signal eye pattern significantly. Shaping is performed by the gain stage of the equalizer to compensate the signal degradation and then the signals are driven on to the output ports. The equalizer is fully adaptive and automatic in function providing smaller gain at low frequencies and higher gain at high frequencies. The default setting of EQ_BOOST = L is recommended for optimized operation. Table 3. 10/41 Gain frequency response Frequency Gain in dB Gain in dB (MHz) (EQ_BOOST = 0) (EQ_BOOST = 1) 225 3 6.5 325 5 8.5 410 6.5 11 825 11 16 1650 16 21.5 STDVE003A Figure 6. Functional description STDVE003A gain vs. frequency The STDVE003A equalizer is fully adaptive and automatic in function. The default setting of EQ_BOOST = L is recommended for optimal operation. The equalizer’s performance is optimized for all frequencies over the cable lengths from 1 m to 25 m at EQ_BOOST = L. If cable lengths greater than 25 m are desired in application, then EQ_BOOST = H setting is recommended. Input termination The STDVE003A integrates precise 50 Ω ± 5% termination resistors, pulled up to VCC, on all its differential input channels. External terminations are not required. This gives better performance and also minimizes the PCB board space. These on-chip termination resistors should match the differential characteristic impedance of the transmission line. Since the output driver consists of current steering devices, an output voltage is not generated without a termination resistor. Output voltage levels are dependent on the value of the total termination resistance. The STDVE003A produces TMDS output levels for point-to-point links that are doubly terminated (100 Ω at each end). With the typical 10 mA output current, the STDVE003A produces an output voltage of 3.3 – 0.5 V = 2.8 V when driving a termination line terminated at each end. The input terminations are selectable thus saving power for the unselected ports. Output buffers Each differential output of the STDVE003A drives external 50 Ω load (pull-up resistor) and conforms to the TMDS voltage standard. The output drivers consist of 10 mA differential current-steering devices. The driver outputs are short-circuit current limited and are high-impedance to ground when OE_N = H or the device is not powered. The current steering architecture requires a resistive load to terminate the signal to complete the transmission loop from VCC to GND through the termination resistor. Because the device switches the direction of the current flow and not voltage levels, the output voltage swing is determined by VCC minus the voltage drop across the termination resistor. The output current drivers are controlled by the OE_N pin and are turned off when OE_N is a high. A stable 10 mA current is derived by accurate internal current mirrors of a stable reference current which is generated by band-gap voltage 11/41 Functional description STDVE003A across the REXT. The differential output driver provides a typical 10 mA current sink capability, which provides a typical 500 mV voltage drop across a 50 Ω termination resistor. TMDS voltage levels The TMDS interface standard is a signaling method intended for point-to-point communication over a tightly controlled impedance medium. The TMDS standard uses a lower voltage swing than other common communication standards, achieving higher data rates with reduced power consumption while reducing EMI emissions and system susceptibility to noise. The device is capable of detecting differential signals as low as 100 mV within the entire common mode voltage range. 3.2 Operating modes Table 4. OE_N operating modes Input Output Function OE_N IN+ (ports A1, A2 or A3) IN(ports B1, B2 or B3) OUT+ OUT- L H L H L Active mode L L H L H Active mode H X X Hi-Z Hi-Z Low power mode The OE_N input activates a hardware power down mode. When the power down mode is active (OE_N = H), all input and output buffers and internal bias circuitry are powered-off and disabled. Outputs are tri-stated in power-down mode. When exiting power-down mode, there is a delay associated with turning on band-references and input/output buffer circuits. 12/41 STDVE003A 3.2.1 Functional description SEL operating modes The active source is selected by configuring source select inputs, S1, S2 and S3. The selected TMDS inputs from each port are switched through a 3-to-1 multiplexer. The I2C interface of the selected input port is linked to the I2C interface of the output port, and the hot plug detector (HPD) of the selected input port is output to HPD_SINK. For the unused ports, the I2C interfaces are isolated, and the HPD pins are kept low. Table 5. SEL operating modes Control pins I/O selected S1 S2 S3 Y/Z H X X A1/B1 L H X L L L L SCL_SINK Hot-plug detect status HPD1 HPD2 HPD3 SCL1 SDA1 HPD_SINK L L A2/B2 SCL2 SDA2 L HPD_SINK L H A3/B3 SCL3 SDA3 L L HPD_SINK L None (Z) None (Z) L L L SDA_SINK H: logic high; L: logic low; X: don't care; Z: high impedance 3.3 HPD pins The input pin HPD_SINK is 5 V tolerant, allowing direct connection to 5 V signals. The switch is able to pass both 0 V and 5 V signal levels. The HPD_SINK is an input pin while the A_HPD, B_HPD and C_HPD are open-drain outputs. 3.4 DDC channels The DDC channels are designed with a bidirectional NMOS gate, providing 5 V signal tolerance. The 5 V tolerance allows direct connection to a standard I2C bus, thus eliminating the need for a level shifter. There should be external pull-up resistors on either side of the device on both the SCL and SDA lines. 13/41 Functional description 3.5 STDVE003A I2C DDC line repeater The device contains two identical bidirectional open-drain, non-inverting buffer circuits that enable I2C DDC bus lines to be extended without degradation in system performance. The STDVE003A buffers both the serial data (DDC SDA) and serial clock (DDC SCL) on the I2C bus, while retaining all the operating modes and features of the I2C system. This enables two buses of 400 pF bus capacitance to be connected in an I2C application. These buffers are operational from a supply V of 3.0 V to 3.6 V. The I2C bus capacitance limit of 400 pF restricts the number of devices and bus length. The STDVE003A enables the system designer to isolate the two halves of a bus, accommodating more I2C devices or longer trace lengths. It can also be used to run two buses, one at 5 V and the other at 3.3 V or a 400 kHz and 100 kHz bus, where the 100 kHz bus is isolated when 400 kHz operation of the other bus is required. The STDVE003A can be used to run the I2C bus at both 5 V and 3.3 V interface levels. The S1, S2 and S3 (SEL) lines act as control signals for the corresponding A, B or C ports. Note that the SEL line has an internal pull-down resistor. The SEL line should not change state during an I2C operation, because disabling during bus operation hangs the bus and enabling part way through a bus cycle could confuse the I2C parts being enabled. The SEL input should change state only when the global bus and the repeater port are in idle state, to prevent system failures. The output low levels for each internal buffer are approximately 0.5 V, but the input voltage of each internal buffer must be 70 mV or more below the output low level, when the output internally is driven low. This prevents a lock-up condition from occurring when the input low condition is released. As with the standard I2C system, pull up resistors are required to provide the logic high levels on the buffered bus. The STDVE003A has standard open collector configuration of the I2C bus. The size of the pull up resistors depends on the system, but each side of the repeater must have a pull up resistor. This part is designed to work with standard mode and fast mode I2C devices. Standard mode I2C devices only specify 3 mA output drive, this limits the termination current to 3 mA in a generic I2C system where standard mode devices and multiple masters are possible. Under certain conditions, higher termination currents can be used. 3.6 Power-down condition The SEL line has an internal pull-down resistor which prevents it from going into an unknown state in the absence of supply to STDVE003A. Also there is no ESD protection diode to supply on any of the IOs. This prevents a reverse current flow condition when the main box is switched off while the TV is switched on. The OE_N is used to disable most of the internal circuitry of STDVE003A that puts the device in a low power mode of operation. 3.7 Bias The bandgap reference voltage over the external REXT reference resistor sets the internal bias reference current. This current and its factors (achieved by employing highly accurate and well matched current mirror circuit topologies) are generated on-chip and used by 14/41 STDVE003A Functional description several internal modules. The 10 mA current used by the transmitter block is also generated using this reference current. It is important to ensure that the REXT value is within the ±1% tolerance range of its typical value. Table 6. Bias parameter Parameter Min Bandgap voltage Typ Max 1.2 Unit V The output voltage swing depends on 3 components: supply voltage (Vsupply), termination resistor (RT) and current drive (Idrive). The supply voltage can vary from 3.3 V ±5%, termination resistor can vary from 50 Ω ±10%. The voltage on the output is given by: Vsupply −Idrive x RT. The variation on Idrive must be controlled to ensure that the voltage on HDMI output is within the HDMI specification under all conditions. This is achieved when: 400 mV ≤Idrive x RT ≤600 mV with typical value centered at 500 mV. 3.8 Timing between HPD and DDC It is important to ensure that the I2C DDC interface is ready by the time the HPD detection is complete. As soon as the discovery is finished by the HPD detection, the configuration data is exchanged between a source and sink through the I2C DDC interface. The STDVE003 Afs DDC interface is ready for communication as soon as the power supply to the chip is present and stable. When the desired port is enabled and the chip is out of shutdown mode, the I2C DDC lines can be used for communication. Thus, as soon as the HPD detection sequence is complete, the DDC interface can be readily used. There is no delay between the HPD detection and I2C DDC interface to be ready. 15/41 Maximum rating 4 STDVE003A Maximum rating Stressing the device above the rating listed in the “absolute maximum ratings” table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Table 7. Absolute maximum ratings Symbol Parameter VCC VI IO TSTG TL VESD Table 8. 16/41 Value Unit Supply voltage to ground -0.5 to +4.0 V DC input voltage (TMDS ports) 1.7 to +4.0 V SEL (S1, S2, S3), OE_N -0.5 to +4.0 V A_DDC_SDA, A_DDC_SCL, B_DDC_SDA, B_DDC_SCL, C_DDC_SDA, C_DDC_SCL,Y_DDC_SDA, Y_DDC_SCL, Y_HPD, A_HPD, B_HPD, C_HPD -0.5 to +6.0 V 120 mA -65 to +150 °C Lead temperature (10 sec) 300 °C Contact discharge Electrostatic discharge voltage on all IOs as per IEC610004-2 standard ±8 kV DC output current Storage temperature Thermal data Symbol Parameter TQFP-80 Unit ΘJA Thermal coefficient (junction-ambient) 48 °C/W STDVE003A Maximum rating 4.1 Recommended operating conditions 4.2 DC electrical characteristics TA = -40 to +85 °C, VCC = 3.3 V ± 5% (a) Table 9. Power supply characteristics Value Symbol VCC ICC Parameter Test condition Supply voltage Supply current Unit Min Typ Max 3.135 3.3 3.465 All inputs/outputs are enabled. Inputs are terminated with 280 50 Ω to VCC. V mA VCC = 3.465 V Data rate = 3.4 Gbps Table 10. DC specifications for TMDS differential inputs Value Symbol Parameter Test condition Unit Min Typ Max 0 150 VTH Differential input high threshold (peak-to-peak) VCC = 3.465 V over the entire VCMR VTL Differential input low threshold VCC = 3.465 V over the entire VCMR -150 VID Differential input voltage (peak-to-peak)(1) VCC = 3.465 V 150 1560 mV VCC - 0.3 VCC - 0.04 V VCMR CIN Common mode voltage range Input capacitance IN+ or IN- to GND F = 1 MHz 0 3.5 mV mV pF 1. Differential output voltage is defined as | (OUT+ - OUT-) |. Differential input voltage is defined as | (IN+ - IN-) |. a. Typical parameters are measured at VCC = 3.3 V, TA = +25 °C. 17/41 Maximum rating Table 11. STDVE003A DC specifications for TMDS differential ouputs Value Symbol Parameter Test condition Unit Min Typ Max VOH Single-ended high level output voltage VCC-10 VCC+10 mV VOL Single-ended low level output voltage VCC-600 VCC-400 mV Single ended output swing voltage VCC = 3.3 V RTERM = 50 Ω 400 500 600 mV VOD Differential output voltage (peak-to-peak)(1) VCC = 3.3 V RTERM = 50 Ω 800 1000 1200 mV IOH Differential output high level current 0 50 µA IOL Differential output low level current 8 12 mA |ISC| Output driver shortcircuit current (continuous) OUT± = GND through a 50 Ω resistor. See Figure 11 12 mA Output capacitance OUT+ or OUTto GND when tristate F = 1 MHz Vswing COUT 10 5.5 1. Differential output voltage is defined as | (OUT+ - OUT-) |. Differential input voltage is defined as | (IN+ - IN-) | 18/41 pF STDVE003A Table 12. Maximum rating DC specifications for OE_N, EQ_BOOST, SEL (S1, S2, S3) inputs Value Symbol Parameter Test condition Unit Min Typ Max VIH HIGH level input voltage High level guaranteed 2.0 VIL LOW level input voltage Low level guaranteed -0.5 VIK Clamp diode voltage VCC = 3.465 V IIN = -18 mA -1.2 IIH Input high current VCC = 3.465 V VIN = VCC -5 +5 µA IIL Input low current VCC = 3.465 V VIN = GND -5 +5 µA CIN Input capacitance Pin to GND F = 1 MHz Table 13. Symbol RTERM Table 14. V 0.8 -0.8 V V 3.5 pF Value Unit Input termination resistor Parameter Differential input termination resistor on IN± channels relative to VCC Test condition IIN = -10 mA 45 50 55 Ω External reference resistor Value Symbol Parameter Test condition Unit Min REXT Table 15. Resistor for TMDS compliant voltage swing range Tolerance for R = ±1% Typ Max 4.7 KΩ DDC I/O pins (switch) Value Symbol Parameter Test condition Unit Min VI(DDC) Input voltage GND Typ Max 5.3 V 19/41 Maximum rating Table 15. STDVE003A DDC I/O pins (switch) Value Symbol Parameter Test condition Unit Min II(leak) CI/O 20/41 Typ Max VCC = 3.465 V A, B, C ports = 5.3 V Y port = 0.0 V Switch is isolated 6 µA VCC = 3.465 V A, B, C ports = 3.3 V Y port = 0.0 V Switch is isolated 2 µA Input leakage current VI=0 V F = 1 MHz Switch disabled 5 pF VI=0 V F = 1 MHz Switch enabled 9 pF Input/output capacitance STDVE003A Table 16. Maximum rating Status pins (Y_HPD) Value Symbol Parameter Test condition Unit Min Typ Max VIH High level input voltage VCC = 3.3 V High level guaranteed 2.0 5.3 V VIL Low level input voltage VCC = 3.3 V Low level guaranteed GND 0.8 V VCC = 3.465 V Y = 5.3 V 4 µA VCC = 3.465 V Y = 3.3 V 2 µA II(leak) Table 17. Input leakage current Status pins (A_HPD, B_HPD, C_HPD)(1) Value Symbol Parameter Test condition Unit Min V CI/O VOL Voltage Typ GND Max 5.3 V VI = 0 V F = 1 MHz Switch disabled 5 pF VI = 0 V F = 1 MHz Switch enabled 9 pF Input/output capacitance Output low voltage (open drain I/Os) VCC = 3.3 V IOL = 8 mA 0.4 V 1. Typical parameters are measured at VCC = 3.3 V, TA = +25 °C. 21/41 Maximum rating STDVE003A DC electrical characteristics (I2C repeater) 4.3 (TA = -40 to +85 °C, VCC = 3.3 V ± 5%, GND = 0 V; unless otherwise specified) Table 18. Supplies Value Symbol VCC Table 19. Parameter Test condition DC supply voltage Unit Min Typ Max 3.135 3.3 3.465 V Input/output SDA, SCL Value Symbol Parameter Test condition Unit Min Typ Max VIH High level input voltage 0.7 VCC 5.3 V VIL Low level input voltage(1) -0.5 0.3 VCC V VILc Low level input voltage contention(1) -0.5 0.4 V VIK Input clamp voltage II = -18 mA − − -1.2 V IIL Input current low (SDA, SCL) Input current low (SDA, SCL) − − 1 μA VI = 3.465 V (SDA, SCL) − − 10 μA IIH Input current high (SDA, SCL) VI = 5.3 V (SDA, SCL) − − 10 μA IOL = 3 mA 0.4 V IOL = 6 mA 0.65 V VOL IOH CI LOW-level output voltage Output high level leakage current Input capacitance VO = 3.6 V; driver disabled − − 10 μA VO = 5.3 V; driver disabled − − 10 μA VI = 3 V or 0 V − 6 7(2) pF 1. VIL specification is for the first low level seen by the SDA/SCL lines. VILc is for the second and subsequent low levels seen by the SDA/SCL lines. 2. The SCL/SDA CI is about 200 pF when VCC = 0 V. The STDVE003A should be used in applications where power is secured to the repeater but an active bus remains on either set of the SDA/SCL pins. 22/41 STDVE003A Maximum rating Dynamic switching characteristics(b) 4.4 TA = -40 to +85 °C, VCC = 3.3 V ± 5%, RTERM = 50 Ω ± 5%, CL = 5 pF). Typical values are at TA = +25 °C and VCC = 3.3 V. Table 20. Clock and data rate Value Symbol Parameter Test condition Unit Min fCK Drate Table 21. Clock frequency (1/10th of the differential data rate) Typ 25 Signaling rate Max 340 MHz 3.4 Gbps Equalizer gain Value Symbol Parameter Test condition Unit Min G_EQ Table 22. Typ Max At all frequencies (EQ_BOOST = L) for short cables 15 dB At all frequencies (EQ_BOOST = H) for long cables 20 dB Equalizer gain Differential output timings Value Symbol tr tf b. Parameter Differential data and clock output rise/fall times tPLH Differential low to high propagation delay tPHL Differential high to low propagation delay Test condition Unit Min Typ Max 20% to 80% of VOD 75 150 240 ps 80% to 20% of VOD 75 150 240 ps Alternating 1 and 0 pattern at slow and fast data rates Measure at 50% VOD between input to output 250 800 ps 250 800 ps The timing values in this section are tested during characterization and are guaranteed by design and simulation. Not tested in production. 23/41 Maximum rating Table 23. STDVE003A Skew times Value Symbol Parameter Test condition Unit Min tSK(O) Inter-pair channel-tochannel output skew tSK(P) Pulse skew tSK(D) Intra-pair differential skew tSK(CC) Table 24. Output channel to channel skew | tPLH - tPHL | Typ 25 Difference in propagation delay (tPLH or tPHL) among all output channels 50 Max 100 ps 80 ps 44 ps 125 ps Turn-on and turn-off times Value Symbol Parameter Test condition Unit Min tON tOFF Table 25. Typ Max TMDS output enable time Time from OE_N to OUT± change from tristate to active 12 20 ns TMDS output disable time Time from OE_N to OUT± change from active to tristate 6 10 ns DDC I/O pins Value Symbol Parameter Test condition Unit Min Typ Max Refer to Section 4.5 Table 26. Status pins (Y_HPD, A_HPD, B_HPD, C_HPD, SEL) Value Symbol Parameter Test condition Unit Min tPD(HPD) Propagation delay (from Y_HPD to the active port of HPD) TON/OFF Switch time (from port select to the CL = 10 pF latest valid status of HPD) 24/41 CL = 10 pF, RPU = 1 KΩ Typ Max 150 ns 50 ns STDVE003A Table 27. Maximum rating Jitter Value Symbol Parameter Test condition Unit Min tJIT Total jitter(1) PRBS pattern at 1.6 Gbps (800 MHz) Typ 35 Max ps (p-p) 1. Total jitter is measured peak-to-peak with a histogram including 3500 window hits. Stimulus and fixture jitter has been subtracted. Input differential voltage = VID = 500 mV, PRBS random pattern at 1.65 Gbps, tr=tf=50 ps (20% to 80%). Jitter parameter is not production-tested but guaranteed through characterization on a sample-to-sample basis. 25/41 Maximum rating 4.5 STDVE003A Dynamic switching characteristics (I2C repeater) TA = -40 to +85 °C, VCC = 3.3 V ± 5%. Typical values are at TA = +25 °C and VCC = 3.3 V. Table 28. . I2C repeater(1) Value Symbol Parameter Test condition Unit Min fSCL tLOW tLOW 26/41 I2C clock frequency Low duration on SCL pin Typ Max Standard mode 100 kHz Fast mode 400 kHz 100 KHz See Figure 19 Voltage on line = 5V Cmax=400 pF, Rmax = 2 K Depends on input signal rise time. Includes the 20 % time intervals on both transitions. 4.7 μs 400 KHz See Figure 19 Voltage on line = 5V Cmax = 400 pF, Rmax = 2 K Depends on input signal rise time. Includes the 20 % time intervals on both transitions. 1.3 μs 100 KHz See Figure 19 Voltage on line = 3.3 V Cmax = 400 pF, Rmax = 2 K Depends on input signal rise time. Includes the 20 % time intervals on both transitions. 4.7 μs 400 KHz See Figure 19 Voltage on line = 3.3 V, Cmax = 400 pF, Rmax = 2 K Depends on input signal rise time. Includes the 20 % time intervals on both transitions. 1.3 μs Low duration on SCL pin STDVE003A Table 28. Maximum rating I2C repeater(1) (continued) Value Symbol Parameter Test condition Unit Min tHIGH tHIGH tPHL tPLH tPHL Typ Max 100 KHz See Figure 19 Voltage on line = 5 V Cmax = 400 pF, Rmax = 2 K Depends on input signal rise time. Includes the 20 % time intervals on both transitions 4.0 μs 400 KHz See Figure 19 Voltage on line = 5 V Cmax = 400 pF, Rmax=2 K Depends on input signal rise time. Includes the 20 % time intervals on both transitions 0.6 μs 100 KHz Refer section 14.12, Voltage on line = 3.3 V Cmax = 400 pF, Rmax = 2 K Depends on input signal rise time. Includes the 20 % time intervals on both transitions 4.0 μs 400 KHz See Figure 19 Voltage on line = 3.3 V, Cmax=400 pF, Rmax = 2 K Depends on input signal rise time. Includes the 20 % time intervals on both transitions 0.6 μs High duration on SCL pin High duration on SCL pin Propagation delay 400 KHz Waveform 1 (Figure 17) Voltage on line = 5 V, Cmax = 400 pF, Rmax = 2 K 250 μs Propagation delay 400 KHz Waveform 1 (Figure 17) Voltage on line = 5 V, Cmax = 400 pF, Rmax = 2 K 300 μs Propagation delay 400 KHz Waveform 1 (Figure 17) Voltage on line = 3.3 V, Cmax = 400 pF, Rmax = 2 K 250 ns 27/41 Maximum rating Table 28. STDVE003A I2C repeater(1) (continued) Value Symbol Parameter Test condition Unit Min tPLH tPHL tPLH tPHL tPLH tf tf 28/41 Typ Max Propagation delay 400 KHz Waveform 1 (Figure 17) Voltage on line = 3.3 V, Cmax = 400 pF, Rmax = 2 K 450 ns Propagation delay 100 KHz Waveform 1 (Figure 17) Voltage on line = 5 V, Cmax = 400 pF, Rmax = 2 K 250 ns Propagation delay 100 KHz Waveform 1 (Figure 17) Voltage on line = 5 V, Cmax = 400 pF, Rmax = 2 K 300 ns Propagation delay 100 KHz Waveform 1 (Figure 17) Voltage on line = 3.3 V, Cmax = 400 pF, Rmax = 2 K 250 ns Propagation delay 100 KHz Waveform 1 (Figure 17) Voltage on line = 3.3 V, Cmax = 400 pF, Rmax = 2 K 450 ns 400 KHz Waveform 1 (Figure 17)(2) Voltage on line = 5 V Cmax = 400 pF, Rmax = 2 K 300 ns 400 KHz Waveform 1(2) Voltage on line = 3.3 V Cmax = 400pF, Rmax = 2 K 300 ns 100 KHz Waveform 1 (Figure 17) (2) Voltage on line = 5 V Cmax = 400 pF, Rmax = 2 K 300 ns 100 KHz Waveform 1 (Figure 17)(2) Voltage on line = 3.3 V Cmax = 400 pF, Rmax = 2 K 300 ns Output fall time Output fall time STDVE003A Table 28. Maximum rating I2C repeater(1) (continued) Value Symbol Parameter Test condition Unit Min tr tr Typ Max 400 KHz Waveform 1 (Figure 17)(2) Voltage on line = 5 V Cmax = 400 pF, Rmax = 2 K 300 ns 400 KHz Waveform 1 (Figure 17)(2) Voltage on line = 3.3 V Cmax = 400 pF, Rmax = 2 K 300 ns 100 KHz Waveform 1,(2) Voltage on line = 5 V Cmax = 400 pF, Rmax = 2 K 1000 ns 100 KHz Waveform 1 (Figure 17)(2) Voltage on line = 3.3 V Cmax = 400 pF, Rmax = 2 K 1000 ns Output rise time Output rise time 1. All the timing values are tested during characterization and are guaranteed by design and simulation. Not tested in production. 2. The tr transition time is specified with maximum load of 2 kΩ pull-up resistance and 400 pF load capacitance. Different load resistance and capacitance will alter the RC time constant, thereby changing the propagation delay and transition times. Refer to Figure 9. Table 29. ESD performance Symbol ESD Parameter All I/Os Test conditions Contact discharge as per IEC61000-4-2 standard Min Typ 8 Max Unit kV 29/41 Maximum rating Figure 7. STDVE003A Test circuit for electrical characteristics VCC CL VOUT+ VIN+ Pulse generator VINRT STDVE003A VOUT- 100 Ω RT CL CS00065 1. CL = load capacitance: include jig and probe capacitance. 2. RT = termination resistance; should be equal to ZOUT of the pulse generator. Figure 8. TMDS output driver VCC RT RT ZO = RT TMDS driver ZO = RT TMDS receiver CS00069 1. ZO = characteristic impedance of the cable. 2. RT = termination resistance: should be equal to ZO of the cable. Both are equal to 50W. 30/41 STDVE003A Maximum rating Figure 9. Test circuit for HDMI receiver and driver VCC RT RT A VA RT Y VID TMDS receiver TMDS driver CL = 0.5pF VCC VY B Z VB VID = VA - VB VSwing = VY - VZ VZ RT CS00071 1. RT = 50 Ω. 31/41 Maximum rating STDVE003A Figure 10. Test circuit for turn off and turn off times 10µF 0.1 µF 0.01µF CL 1.15 V VCC VIN+ 1.0 V 50 Ω 1.2 V 50 Ω STDVE003A 1.15 V VIN1.0 V SHDN_N CL REXT Pulse generator GND 4.7 KΩ±1% 50 Ω CS00072 1. CL = 5 pF Figure 11. Test circuit for short circuit output current 50 Ω ISC TMDS driver 50 Ω 0V or 3.465 V 32/41 STDVE003A Maximum rating Figure 12. Propagation delays VCC VA VCM VID VCM VB VCC – 0.4 0.4V VID VID VID(p-p) 0V -0.4V VOD(O) tpLH tpHL 100% 80% VOD(p-p) 80% 0V Differential 20% 20% Output 0% VOD(U) tr tf Figure 13. Turn-on and turn-off times SHDN_N 3.0 V 1.50 V 1.50 V 0V tOFF tON VOH VOUT+ when VID= +150mV VOUT- when VID= -150mV 50% 50% 1.2 V tON tOFF 1.2 V VOUT+ when VID= -150mV VOUT- when VID= +150mV 50% 50% VOL 33/41 Maximum rating STDVE003A Figure 14. TSK(O) 3.5V 2.5V Data In 1.5V tpLHX tpHLX VOH 2.5V 2.5V Data Out at Port 0 VOL tSK(o) VOH 2.5V Data Out at Port 1 VOL tpLHY tpHLY tSK(o) = | tpLHy – tpLHx | or | tpHLy – tpHLx | Figure 15. TSK(P) Figure 16. TSK(D) 34/41 STDVE003A Maximum rating Figure 17. AC waveform 1 (I2C lines) Figure 18. Test circuit for AC measurements (I2C lines) Figure 19. I2C bus timing 35/41 Application information 5 Application information 5.1 Power supply sequencing STDVE003A Proper power-supply sequencing is advised for all CMOS devices. It is recommended to always apply VCC before applying any signals to the input/output or control pins. 5.2 Power supply requirements Bypass each of the VCC pins with 0.1 μF and 1 nF capacitors in parallel as close to the device as possible, with the smaller-valued capacitor as close to the VCC pin of the device as possible. All VCC pins can be tied to a single 3.3 V power source. A 0.01 μF capacitor is connected from each VCC pin directly to ground to filter supply noise. The maximum power supply variation can only be ±5% as per the HDMI specifications. The maximum tolerable noise ripple on 3.3 V supply must be within a specified limit. 5.3 Differential traces The high-speed TMDS inputs are the most critical parts for the device. There are several considerations to minimize discontinuities on these transmission lines between the connectors and the device. (a) Maintain 100-Ω differential transmission line impedance into and out of the STDVE003A. (b) Keep an uninterrupted ground plane below the high-speed I/Os. (c) Keep the ground-path vias to the device as close as possible to allow the shortest return current path. (d) Layout of the TMDS differential inputs should be with the shortest stubs from the connectors. Output trace characteristics affect the performance of the STDVE003A. Use controlled impedance traces to match trace impedance to both the transmission medium impedance and termination resistor. Run the differential traces close together to minimize the effects of the noise. Reduce skew by matching the electrical length of the traces. Avoid discontinuities in the differential trace layout. Avoid 90 degree turns and minimize the number of vias to further prevent impedance discontinuities. 36/41 STDVE003A 5.3.1 Application information I2C lines application information A typical application is shown in the figure below. In the example, the system master is running on a 3.3 V I2C-bus while the slave is connected to a 5 V bus. Both buses run at 100 kHz unless the slave bus is isolated and then the master bus can run at 400 kHz. Master devices can be placed on either bus. Figure 20. Typical application of I2C bus system The STDVE003A DDC lines are 5 V tolerant; so it does not require any extra circuitry to translate between the different bus voltages. 37/41 Package mechanical data 6 STDVE003A Package mechanical data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. Figure 21. TQFP80 package outline 38/41 STDVE003A Package mechanical data Table 30. TQFP-80 mechanical data Millimeters Symbol Min Typ A Max 1.200 A1 0.050 0.150 A2 0.950 1.000 1.050 b 0.170 0.220 0.270 c 0.090 0.200 D 14.000 D1 12.000 D2 9.500 e 0.500 E 14.000 E1 12.000 E2 9.500 L 0.450 L1 k 0.600 0.750 1.000 0° ccc 7° 0.080 Figure 22. TQFP80 tape and reel information 39/41 Revision history 7 STDVE003A Revision history Table 31. Document revision history Date Revision 23-Apr-2008 1 Initial release. 26-May-2008 2 Minor updates: Table 4,Table 7, Table 23 and Table 29. 3 Added: Fully automatic adaptive equalizer feature Modified: title, features Chapter 3.1 and Figure 2 Removed: Table 21.: Equalizer gain 21-Jul-2008 40/41 Changes STDVE003A Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 41/41