STM32F302xB STM32F302xC STM32F303xB STM32F303xC ARM Cortex-M4F 32b MCU+FPU, up to 256KB Flash+48KB SRAM 4 ADCs, 2 DAC ch., 7 comp, 4 PGA, timers, 2.0-3.6 V operation Datasheet − production data Features ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Core: ARM® 32-bit Cortex™-M4F CPU (72 MHz max), single-cycle multiplication and HW division, DSP instruction with FPU (floating-point unit) and MPU (memory protection unit). Operating conditions: – VDD, VDDA voltage range: 2.0 V to 3.6 V Memories – 128 to 256 Kbytes of Flash memory – Up to 40 Kbytes of SRAM on data bus with HW parity check – 8 Kbytes of SRAM on instruction bus with HW parity check (CCM) CRC calculation unit Reset and supply management – Power-on/Power down reset (POR/PDR) – Programmable voltage detector (PVD) – Low power modes: Sleep, Stop and Standby – VBAT supply for RTC and backup registers Clock management – 4 to 32 MHz crystal oscillator – 32 kHz oscillator for RTC with calibration – Internal 8 MHz RC with x 16 PLL option – Internal 40 kHz oscillator Up to 87 fast I/Os – All mappable on external interrupt vectors – Several 5 V-tolerant 12-channel DMA controller Up to four ADC 0.20 µS (up to 39 channels) with selectable resolution of 12/10/8/6 bits, 0 to 3.6 V conversion range, separate analog supply from 2 to 3.6 V Up to two 12-bit DAC channels with analog supply from 2.4 to 3.6 V Seven fast rail-to-rail analog comparators with analog supply from 2 to 3.6 V Up to four operational amplifiers that can be used in PGA mode, all terminal accessible with analog supply from 2.4 to 3.6 V Up to 24 capacitive sensing channels supporting touchkey, linear and rotary touch sensors January 2013 This is information on a product in full production. LQFP48 (7 × 7 mm) LQFP64 (10 × 10 mm) LQFP100 (14 × 14 mm) ■ ■ ■ ■ ■ Up to 13 timers – One 32-bit timer and two 16-bit timers with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input – Up to two 16-bit 6-channel advanced-control timers, with up to 6 PWM channels, deadtime generation and emergency stop – One 16-bit timer with 2 IC/OCs, 1 OCN/PWM, deadtime generation and emergency stop – Two 16-bit timers with IC/OC/OCN/PWM, deadtime generation and emergency stop – Two watchdog timers (independent, window) – SysTick timer: 24-bit downcounter – Up to two 16-bit basic timers to drive the DAC Calendar RTC with Alarm, periodic wakeup from Stop/Standby Communication interfaces – CAN interface (2.0B Active) – Two I2C Fast mode plus (1 Mbit/s) with 20 mA current sink, SMBus/PMBus, wakeup from STOP – Up to five USART/UARTs (ISO 7816 interface, LIN, IrDA, modem control) – Up to three SPIs, two with multiplexed I2S interface, 4 to 16 programmable bit frame – USB 2.0 full speed interface – Infrared Transmitter Serial wire debug, JTAG, Cortex-M4F ETM 96-bit unique ID Table 1. Reference Device summary Part number STM32F302xx STM32F302CB, STM32F302CC, STM32F302RB, STM32F302RC, STM32F302VB, STM32F302VC STM32F303xx STM32F303CB, STM32F303CC, STM32F303RB, STM32F303RC, STM32F303VB, STM32F303VC Doc ID 023353 Rev 5 1/133 www.st.com 1 Contents STM32F302xx/STM32F303xx Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 ARM® Cortex™-M4F core with embedded Flash and SRAM . . . . . . . . . 13 3.2 Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.6 Cyclic redundancy check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.7.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.7.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.7.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.7.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.8 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.9 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.10 Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.11 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.11.1 3.12 2/133 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 19 Fast analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.12.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.12.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.12.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.12.4 OPAMP reference voltage (VOPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.13 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.14 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.15 Fast comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.16 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.16.1 Advanced timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.16.2 General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17) . . 24 3.16.3 Basic timers (TIM6, TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Contents 3.16.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.16.5 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.16.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.17 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 25 3.18 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.19 Universal synchronous/asynchronous receiver transmitter (USART) . . . 27 3.20 Universal asynchronous receiver transmitter (UART) . . . . . . . . . . . . . . . 27 3.21 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S) . 28 3.22 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.23 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.24 Infrared Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.25 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.26 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.26.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.26.2 Embedded trace macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 59 6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 59 6.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Doc ID 023353 Rev 5 3/133 Contents 7 STM32F302xx/STM32F303xx 6.3.6 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.3.10 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.3.16 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.3.17 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.3.18 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.3.19 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.3.20 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.3.21 Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.3.22 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.3.23 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 7.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 7.2.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . 127 8 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 4/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 STM32F30xB/C family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . 10 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 STM32F30xB/C I2C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 STM32F30xB/C SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Capacitive sensing GPIOs available on STM32F302xx/STM32F303xx devices . . . . . . . . 29 No. of capacitive sensing channels available on STM32F302xx/STM32F303xx devices . 30 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 STM32F302xx/STM32F303xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Alternate functions for port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Alternate functions for port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Alternate functions for port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Alternate functions for port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Alternate functions for port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Alternate functions for port F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 STM32F30xB/C memory map and peripheral register boundary addresses . . . . . . . . . . . 51 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 59 Programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Typical and maximum current consumption from VDD supply at VDD = 3.6V . . . . . . . . . . . 62 Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . . 63 Typical and maximum VDD consumption in Stop and Standby modes. . . . . . . . . . . . . . . . 65 Typical and maximum VDDA consumption in Stop and Standby modes. . . . . . . . . . . . . . . 65 Typical and maximum current consumption from VBAT supply. . . . . . . . . . . . . . . . . . . . . . 66 Typical current consumption in Run mode, code with data processing running from Flash 67 Typical current consumption in Sleep mode, code running from Flash or RAM . . . . . . . . . 68 Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Doc ID 023353 Rev 5 5/133 List of tables Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. 6/133 STM32F302xx/STM32F303xx ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 IWDG min/max timeout period at 40 kHz (LSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 WWDG min-max timeout value @72 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 USB: Full-speed electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 LQPF100 – 14 x 14 mm, low-profile quad flat package mechanical data. . . . . . . . . . . . . 120 LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . 122 LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package mechanical data . . . . . . . . . . 124 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. STM32F302xB/STM32F302xC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 STM32F303xB/STM32F303xC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 STM32F302xx/STM32F303xx LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 STM32F302xx/STM32F303xx LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 STM32F302xx/STM32F303xx LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 STM32F30xB/C memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0] = ’00’) . . . . . . . . . . . 66 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 HSI oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 TC and TTa I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 TC and TTa I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port. . . . . . . . . . . . . . . . . 88 Five volt tolerant (FT and FTf) I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . 89 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 103 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 LQFP100 – 14 x 14 mm, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . 120 Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 122 Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 124 Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Doc ID 023353 Rev 5 7/133 Introduction 1 STM32F302xx/STM32F303xx Introduction This datasheet provides the ordering information and mechanical device characteristics of the STM32F30xB/C microcontrollers. This STM32F30xB/C datasheet should be read in conjunction with the STM32F30xB/C reference manual. The reference manual is available from the STMicroelectronics website www.st.com. For information on the Cortex™-M4F core please refer to: 8/133 ● Cortex™-M4F Technical Reference Manual, available from the www.arm.com website at the following address: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.cortexm.m4/ index.html ● STM32F3xxx and STM32F4xxx Cortex-M4 programming manual (PM0214) available from the www.st.com website at the following address: http://www.st.com/internet/com/TECHNICAL_RESOURCES/ TECHNICAL_LITERATURE/PROGRAMMING_MANUAL/DM00046982.pdf Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx 2 Description Description The STM32F302xx/STM32F303xx family is based on the high-performance ARM® Cortex™-M4F 32-bit RISC core operating at a frequency of up to 72 MHz, and embedding a floating point unit (FPU), a memory protection unit (MPU) and an embedded trace macrocell (ETM). The family incorporates high-speed embedded memories (up to 256 Kbytes of Flash memory, up to 48 Kbytes of SRAM) and an extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer up to four fast 12-bit ADCs (5 Msps), up to seven comparators, up to four operational amplifiers, up to two DAC channels, a low-power RTC, up to five generalpurpose 16-bit timers, one general-purpose 32-bit timer, and two timers dedicated to motor control. They also feature standard and advanced communication interfaces: up to two I2Cs, up to three SPIs (two SPIs are with multiplexed full-duplex I2Ss on STM32F303xB/STM32F303xC devices), three USARTs, up to two UARTs, CAN and USB. To achieve audio class accuracy, the I2S peripherals can be clocked via an external PLL. The STM32F302xx/STM32F303xx family operates in the -40 to +85 °C and -40 to +105 °C temperature ranges from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications. The STM32F302xx/STM32F303xx family offers devices in three packages ranging from 48 pins to 100 pins. The set of included peripherals changes with the device chosen. Doc ID 023353 Rev 5 9/133 Description Table 2. STM32F302xx/STM32F303xx STM32F30xB/C family device features and peripheral counts Peripheral STM32F 302Cx STM32F 302Rx STM32F 302Vx STM32F 303Cx STM32F 303Rx STM32F 303Vx Flash (Kbytes) 128 256 128 256 128 256 128 256 128 256 128 256 SRAM (Kbytes) on data bus 24 32 24 32 24 32 32 40 32 40 32 40 SRAM (Kbytes) on instruction bus (CCM: core coupled memory) 8 Advanced control Timers 1 (16-bit) General purpose 5 (16-bit) 1 (32-bit) Basic SPI(I2S)(1) I2C Comm. USART interfaces UART GPIOs 2 (16-bit) 1 (16-bit) 2 (16-bit) 3 3(2) 2 3 0 2 0 CAN 1 USB 1 2 Normal I/Os (TC, TTa) 20 27 45 20 27 45 5 volts Tolerant I/Os (FT, FTf) 17 25 42 17 25 42 17 18 24 DMA channels Capacitive sensing channels 12 17 18 24 12-bit ADCs 2 4 12-bit DAC channels 1 2 Analog comparator 4 7 Operational amplifiers 2 4 CPU frequency 72 MHz Operating voltage 2.0 to 3.6 V Operating temperature Packages Ambient operating temperature: - 40 to 85 °C / - 40 to 105 °C Junction temperature: - 40 to 125 °C LQFP48 LQFP64 LQFP100 LQFP48 LQFP64 LQFP100 1. In STM32F303xB/STM32F303xC devices the SPI interfaces can work in an exclusive way in either the SPI mode or the I2S audio mode. 10/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx STM32F302xB/STM32F302xC block diagram TPIU ETM SWJTAG Trace/Trig OBL Voltage reg. 3.3 V to 1.8V MPU/FPU Ibus Cortex M4 CPU Fmax: 72 MHz System CCM RAM 8KB PLL XTAL OSC 4 -32 MHz Ind. WDG32K Standby interface AHBPCLK APBP1CLK APBP2CLK HCLK FCLK IF GPIO PORT C PD[15:0] GPIO PORT D PE[15:0] GPIO PORT E PF[7:0] GPIO PORT F XTAL 32kHz Backup RTC Reg AWU (64Byte) Backup interface USARTCLK I2CCLK ADC SAR 1/2/3/4 CLK CRC EXT.IT WKUP 1 Channel, 1 Comp Channel, BRK as AF TIMER 16 1 Channel, 1 Comp Channel, BRK as AF TIMER 17 TIMER 1 / PWM MOSI, MISO, SCK,NSS as AF SPI1 RX, TX, CTS, RTS, SmartCard as AF USART1 ANTI-TAMP 4 Channels, ETR as AF TIMER 3 4 Channels, ETR as AF TIMER 4 4 Channels, ETR as AF AHB2 APB1 SPI2 MOSI, MISO, SCK, NSS as AF SPI3 MOSI, MISO, SCK, NSS as AF USART2 RX, TX, CTS, RTS, as AF USART3 RX, TX, CTS, RTS, as AF UART4 RX, TX as AF UART5 RX, TX as AF I2C1 SCL, SDA, SMBA as AF I2C2 SCL, SDA, SMBA as AF bx CAN & 512B SRAM CAN TX, CAN RX USB 2.0 FS USB_DP, USB_DM IF 12bit DAC1 DAC1_CH1 as AF USB SRAM 512B TIMER6 @VDDA SYSCFG CTL @VDDA GP Comparator 6 GP Comparator 4 GP Comparator 2 GP Comparator 1 Xx Ins, 4 OUTs as AF INTERFACE TIMER 15 OSC32_IN OSC32_OUT WinWATCHDOG APB2 fmax = 72 MHz 2 Channels,1 Comp Channel, BRK as AF VBAT = 1.65V to 3.6V TIMER2 (32-bit/PWM) Touch Sensing Controller AHB2 APB2 OSC_IN OSC_OUT @VSW APB1 Fmax = 36 MHz PC[15:0] Reset & clock control AHB decoder GPIO PORT B @VDDIO RC LS 12-bit ADC1 12-bit ADC2 NRESET VDDA VSSA @VDDA @VDDA GP DMA2 5 channels PB[15:0] 4 Channels, 4 Comp channels, ETR, BRK as AF POR /PDR RC HS 8MHz GPIO PORT A XX AF Supply Supervision Reset Int. GP DMA1 7 channels PA[15:0] XX Groups of 4 channels as AF POR PVD SRAM 40 KB Temp. sensor VREF+ VREF- VDDIO = 2 to 3.6 V VSS @VDDIO FLASH 256 KB 64 bits Dbus NVIC Power VDD18 Flash interface TRADECLK TRACED[0-3] as AF JTRST JTDI JTCK/SWCLK JTMS/SWDIO JTDO As AF BusMatrix Figure 1. Description OpAmp1 INxx / OUTxx OpAmp2 INxx / OUTxx @VDDA MS18959V5 1. AF: alternate function on I/O pins. Doc ID 023353 Rev 5 11/133 Description STM32F303xB/STM32F303xC block diagram TPIU ETM SWJTAG Trace/Trig OBL Voltage reg. 3.3 V to 1.8V MPU/FPU Ibus Cortex M4 CPU Fmax: 72 MHz System NVIC CCM RAM 8KB POR Supply Supervision Reset Int. POR /PDR NRESET VDDA VSSA PVD SRAM 40 KB @VDDA @VDDA GP DMA1 7 channels RC HS 8MHz GP DMA2 5 channels PLL @VDDIO RC LS XTAL OSC 4 -32 MHz Ind. WDG32K Standby interface AHBPCLK Temp. sensor APBP1CLK 12-bit ADC1 APBP2CLK HCLK FCLK IF Reset & clock control AHB3 VREF+ VREF- VDDIO = 2 to 3.6 V VSS @VDDIO FLASH 256 KB 64 bits Dbus 12-bit ADC2 Power VDD18 Flash interface TRADECLK TRACED[0-3] as AF JTRST JTDI JTCK/SWCLK JTMS/SWDIO JTDO As AF BusMatrix Figure 2. STM32F302xx/STM32F303xx IF 12-bit ADC4 VBAT = 1.65V to 3.6V @VSW XTAL 32kHz Backup RTC Reg AWU (64Byte) Backup interface USARTCLK I2CCLK ADC SAR 1/2/3/4 CLK 12-bit ADC3 OSC_IN OSC_OUT OSC32_IN OSC32_OUT ANTI-TAMP TIMER2 (32-bit/PWM) 4 Channels, ETR as AF GPIO PORT B TIMER 3 4 Channels, ETR as AF PC[15:0] GPIO PORT C TIMER 4 4 Channels, ETR as AF PD[15:0] GPIO PORT D SPI2/I2S MOSI/SD, MISO/ext_SD, SCK/CK, NSS/WS, MCLK as AF PE[15:0] GPIO PORT E SPI3/I2S PF[7:0] GPIO PORT F MOSI/SD, MISO/ext_SD, SCK/CK, NSS/WS, MCLK as AF USART2 RX, TX, CTS, RTS, as AF USART3 RX, TX, CTS, RTS, as AF PB[15:0] XX Groups of 4 channels as AF CRC APB1 Fmax = 36 MHz GPIO PORT A AHB2 PA[15:0] Touch Sensing Controller AHB2 APB2 AHB2 APB1 UART4 RX, TX as AF UART5 RX, TX as AF I2C1 SCL, SDA, SMBA as AF I2C2 SCL, SDA, SMBA as AF WinWATCHDOG EXT.IT WKUP TIMER 15 1 Channel, 1 Comp Channel, BRK as AF TIMER 16 1 Channel, 1 Comp Channel, BRK as AF TIMER 17 4 Channels, 4 Comp channels, ETR, BRK as AF 4 Channels, 4 Comp channels, ETR, BRK as AF TIMER 1 / PWM TIMER7 RX, TX, CTS, RTS, SmartCard as AF USART1 DAC1_CH2 as AF OpAmp1 INxx / OUTxx OpAmp2 INxx / OUTxx OpAmp3 INxx / OUTxx OpAmp4 INxx / OUTxx @VDDA @VDDA GP Comparator p 7 GP Comparator... GP Comparator 1 Xx Ins, 7 OUTs as AF 1. AF: alternate function on I/O pins. 12/133 DAC1_CH1 as AF IF 12bit DAC1 @VDDA SYSCFG CTL SPI1 USB_DP, USB_DM TIMER6 TIMER 8 / PWM MOSI, MISO, SCK,NSS as AF CAN TX, CAN RX USB 2.0 FS INTERFACE 2 Channels,1 Comp Channel, BRK as AF bx CAN & 512B SRAM USB SRAM 512B APB2 fmax = 72 MHz XX AF Doc ID 023353 Rev 5 MS18960V4 STM32F302xx/STM32F303xx Functional overview 3 Functional overview 3.1 ARM® Cortex™-M4F core with embedded Flash and SRAM The ARM Cortex-M4F processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts. The ARM Cortex-M4F 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution. Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation. With its embedded ARM core, the STM32F302xx/STM32F303xx family is compatible with all ARM tools and software. Figure 1 and Figure 2 show the general block diagrams of the STM32F302xx/STM32F303xx family devices. 3.2 Memory protection unit (MPU) The memory protection unit (MPU) is used to separate the processing of tasks from the data protection. The MPU can manage up to 8 protection areas that can all be further divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory. The memory protection unit is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed. The MPU is optional and can be bypassed for applications that do not need it. 3.3 Embedded Flash memory All STM32F302xx/STM32F303xx devices feature up to 256 Kbytes of embedded Flash memory available for storing programs and data. The Flash memory access time is adjusted to the CPU clock frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above). Doc ID 023353 Rev 5 13/133 Functional overview 3.4 STM32F302xx/STM32F303xx Embedded SRAM STM32F302xx/STM32F303xx devices feature up to 48 Kbytes of embedded SRAM with hardware parity check. The memory can be accessed in read/write at CPU clock speed with 0 wait states, allowing the CPU to achieve 90 Dhrystone Mips at 72 MHz (when running code from CCM, core coupled memory). ● 8 Kbytes of SRAM mapped on the instruction bus (Core Coupled Memory (CCM)), used to execute critical routines or to access data (parity check on all of CCM RAM). ● 3.5 40 Kbytes of SRAM mapped on the data bus (parity check on first 16 Kbytes of SRAM). Boot modes At startup, Boot0 pin and Boot1 option bit are used to select one of three boot options: ● Boot from user Flash ● Boot from system memory ● Boot from embedded SRAM The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1 (PA9/PA10), USART2 (PD5/PD6) or USB (PA11/PA12) through DFU (device firmware upgrade) . 3.6 Cyclic redundancy check (CRC) The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. 14/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Functional overview 3.7 Power management 3.7.1 Power supply schemes 3.7.2 ● VSS, VDD = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. It is provided externally through VDD pins ● VSSA, VDDA = 2.0 to 3.6 V: external analog power supply for ADC, DACs, comparators operational amplifiers, reset blocks, RCs and PLL (minimum voltage to be applied to VDDA is 2.4 V when the DACs and operational amplifiers are used). The VDDA voltage level must be always greater or equal to the VDD voltage level and must be provided first. ● VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. Power supply supervisor The device has an integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, VPOR/PDR, without the need for an external reset circuit. ● The POR monitors only the VDD supply voltage. During the startup phase it is required that VDDA should arrive first and be greater than or equal to VDD. ● The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that VDDA is higher than or equal to VDD. The device features an embedded programmable voltage detector (PVD) that monitors the VDD power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD drops below the VPVD threshold and/or when VDD is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. 3.7.3 Voltage regulator The regulator has three operation modes: main (MR), low power (LPR), and power-down. ● The MR mode is used in the nominal regulation mode (Run) ● The LPR mode is used in Stop mode. ● The power-down mode is used in Standby mode: the regulator output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption. The voltage regulator is always enabled after reset. It is disabled in Standby mode. Doc ID 023353 Rev 5 15/133 Functional overview 3.7.4 STM32F302xx/STM32F303xx Low-power modes The STM32F302xx/STM32F303xx supports three low power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: ● Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. ● Stop mode Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode. The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the USB wakeup on STM32F303xB/STM32F303xC devices, the RTC alarm, COMPx, I2Cx or U(S)ARTx. ● Standby mode The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry. The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin or an RTC alarm occurs. Note: 16/133 The RTC, the IWDG and the corresponding clock sources are not stopped by entering Stop or Standby mode. Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx 3.8 Functional overview Clocks and startup System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator). Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz, while the maximum allowed frequency of the low speed APB domain is 36 MHz. Doc ID 023353 Rev 5 17/133 Functional overview Figure 3. STM32F302xx/STM32F303xx Clock tree FLITFCLK to Flash programming interface HSI to I2Cx (x = 1,2) SYSCLK I2SSRC SYSCLK to I2Sx (x = 2,3) Ext. clock I2S_CKIN USB prescaler /1,1.5 8 MHz HSI HSI RC USBCLK to USB interface /2 HCLK PLLSRC PLLMUL PLL x2,x3,.. x16 SW HSI PLLCLK HSE /8 AHB AHB prescaler /1,2,..512 APB1 prescaler /1,2,4,8,16 SYSCLK OSC_OUT OSC_IN OSC32_IN OSC32_OUT PCLK1 SYSCLK HSI LSE 4-32 MHz HSE OSC /32 LSE OSC 32.768kHz APB2 prescaler /1,2,4,8,16 RTCCLK LSI LSI RC 40kHz Main clock output /2 PCLK2 to TIM 2,3,4,6,7 to U(S)ARTx (x = 2..5) to APB2 peripherals to RTC If (APB2 prescaler =1) x1 else x2 LSE RTCSEL[1:0] MCO PCLK1 If (APB1 prescaler =1) x1 else x2 CSS /2,/3,... /16 to AHB bus, core, memory and DMA to cortex System timer FHCLK Cortex free running clock to APB1 peripherals PCLK2 SYSCLK HSI LSE IWDGCLK to IWDG PLLCLK HSI LSI HSE SYSCLK x2 to TIM 15,16,17 to USART1 TIM1/8 MCO ADC Prescaler /1,2,4 to ADCxy (xy = 12, 34) ADC Prescaler /1,2,4,6,8,10,12,16, 32,64,128,256 MS19989V4 18/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx 3.9 Functional overview General-purpose input/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current capable except for analog inputs. The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. 3.10 Direct memory access (DMA) The flexible general-purpose DMA is able to manage memory-to-memory, peripheral-tomemory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer. Each of the 12 DMA channels is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose timers, DAC and ADC. 3.11 Interrupts and events 3.11.1 Nested vectored interrupt controller (NVIC) The STM32F302xx/STM32F303xx devices embed a nested vectored interrupt controller (NVIC) able to handle up to 66 maskable interrupt channels and 16 priority levels. The NVIC benefits are the following: ● Closely coupled NVIC gives low latency interrupt processing ● Interrupt entry vector table address passed directly to the core ● Closely coupled NVIC core interface ● Allows early processing of interrupts ● Processing of late arriving higher priority interrupts ● Support for tail chaining ● Processor state automatically saved ● Interrupt entry restored on interrupt exit with no instruction overhead The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency. Doc ID 023353 Rev 5 19/133 Functional overview 3.12 STM32F302xx/STM32F303xx Fast analog-to-digital converter (ADC) Up to four fast analog-to-digital converters 5 MSPS, with selectable resolution between 12 and 6 bit, are embedded in the STM32F302xx/STM32F303xx family devices. The ADCs have up to 39 external channels. Some of the external channels are shared between ADC1&2 and between ADC3&4, performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADCs have also internal channels: Temperature sensor connected to ADC1 channel 16, VBAT/2 connected to ADC1 channel 17, Voltage reference VREFINT connected to the 4 ADCs channel 18, VOPAMP1 connected to ADC1 channel 15, VOPAMP2 connected to ADC2 channel 17, VOPAMP3 connected to ADC3 channel 17, VOPAMP4 connected to ADC4 channel 17. Additional logic functions embedded in the ADC interface allow: ● Simultaneous sample and hold ● Interleaved sample and hold ● Single-shunt phase current reading techniques. The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. The events generated by the general-purpose timers and the advanced-control timers (TIM1 on all devices and TIM8 on STM32F303xB/STM32F303xC devices) can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers. 3.12.1 Temperature sensor The temperature sensor (TS) generates a voltage VSENSE that varies linearly with temperature. The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value. The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. 3.12.2 Internal voltage reference (VREFINT) The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and Comparators. VREFINT is internally connected to the ADC_IN18 input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode. 20/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx 3.12.3 Functional overview VBAT battery voltage monitoring This embedded hardware feature allows the application to measure the VBAT battery voltage using the internal ADC channel ADC_IN17. As the VBAT voltage may be higher than VDDA, and thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by 2. As a consequence, the converted digital value is half the VBAT voltage. 3.12.4 OPAMP reference voltage (VOPAMP) Every OPAMP reference voltage can be measured using a corresponding ADC internal channel: VOPAMP1 connected to ADC1 channel 15, VOPAMP2 connected to ADC2 channel 17, VOPAMP3 connected to ADC3 channel 17, VOPAMP4 connected to ADC4 channel 17. Doc ID 023353 Rev 5 21/133 Functional overview 3.13 STM32F302xx/STM32F303xx Digital-to-analog converter (DAC) Up to two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration. This digital interface supports the following features: 3.14 ● Up to two DAC output channels on STM32F303xB/STM32F303xC devices ● 8-bit or 10-bit monotonic output ● Left or right data alignment in 12-bit mode ● Synchronized update capability on STM32F303xB/STM32F303xC devices ● Noise-wave generation ● Triangular-wave generation ● Dual DAC channel independent or simultaneous conversions on STM32F303xB/STM32F303xC devices ● DMA capability (for each channel on STM32F303xB/STM32F303xC devices) ● External triggers for conversion Operational amplifier (OPAMP) The STM32F302xx/STM32F303xx embeds up to four operational amplifiers with external or internal follower routing and PGA capability (or even amplifier and filter capability with external components). When an operational amplifier is selected, an external ADC channel is used to enable output measurement. The operational amplifier features: 3.15 ● 8.2 MHz bandwidth ● 0.5 mA output capability ● Rail-to-rail input/output ● In PGA mode, the gain can be programmed to be 2, 4, 8 or 16. Fast comparators (COMP) The STM32F302xx/STM32F303xx devices embed seven fast rail-to-rail comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low power) and with selectable output polarity. The reference voltage can be one of the following: ● External I/O ● DAC output pin ● Internal reference voltage or submultiple (1/4, 1/2, 3/4). Refer to Table 26: Embedded internal reference voltage on page 60 for the value and precision of the internal reference voltage. All comparators can wake up from STOP mode, generate interrupts and breaks for the timers and can be also combined per pair into a window comparator 22/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx 3.16 Functional overview Timers and watchdogs The STM32F302xx/STM32F303xx includes up to two advanced control timers, up to 6 general-purpose timers, two basic timers, two watchdog timers and a SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers. Table 3. Timer feature comparison Timer type Timer Counter resolution Counter type Prescaler factor DMA request generation Advanced TIM1, TIM8 (on STM32F303xB /STM32F303x C devices only) 16-bit Up, Down, Up/Down Any integer between 1 and 65536 Yes 4 Yes Generalpurpose TIM2 32-bit Up, Down, Up/Down Any integer between 1 and 65536 Yes 4 No Generalpurpose TIM3, TIM4 16-bit Up, Down, Up/Down Any integer between 1 and 65536 Yes 4 No Generalpurpose TIM15 16-bit Up Any integer between 1 and 65536 Yes 2 1 Generalpurpose TIM16, TIM17 16-bit Up Any integer between 1 and 65536 Yes 1 1 Basic TIM6, TIM7 (on STM32F303xB /STM32F303x C devices only) 16-bit Up Any integer between 1 and 65536 Yes 0 No 3.16.1 Capture/ Complementary compare outputs Channels Advanced timers (TIM1, TIM8) The advanced-control timers (TIM1 on all devices and TIM8 on STM32F303xB/STM32F303xC devices) can each be seen as a three-phase PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as complete general-purpose timers. The 4 independent channels can be used for: ● Input capture ● Output compare ● PWM generation (edge or center-aligned modes) with full modulation capability (0100%) ● One-pulse mode output Doc ID 023353 Rev 5 23/133 Functional overview STM32F302xx/STM32F303xx In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switches driven by these outputs. Many features are shared with those of the general-purpose TIM timers (described in Section 3.16.2 using the same architecture, so the advanced-control timers can work together with the TIM timers via the Timer Link feature for synchronization or event chaining. 3.16.2 General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17) There are up to six synchronizable general-purpose timers embedded in the STM32F302xx/STM32F303xx (see Table 3 for differences). Each general-purpose timer can be used to generate PWM outputs, or act as a simple time base. ● TIM2, 3, and TIM4 These are full-featured general-purpose timers: – TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler – TIM3 and 4 have 16-bit auto-reload up/downcounters and 16-bit prescalers. These timers all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together, or with the other generalpurpose timers via the Timer Link feature for synchronization or event chaining. The counters can be frozen in debug mode. All have independent DMA request generation and support quadrature encoders. ● TIM15, 16 and 17 These three timers general-purpose timers with mid-range features: They have 16-bit auto-reload upcounters and 16-bit prescalers. – TIM15 has 2 channels and 1 complementary channel – TIM16 and TIM17 have 1 channel and 1 complementary channel All channels can be used for input capture/output compare, PWM or one-pulse mode output. The timers can work together via the Timer Link feature for synchronization or event chaining. The timers have independent DMA request generation. The counters can be frozen in debug mode. 3.16.3 Basic timers (TIM6, TIM7) These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base. 3.16.4 Independent watchdog (IWDG) The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode. 24/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx 3.16.5 Functional overview Window watchdog (WWDG) The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. 3.16.6 SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features: 3.17 ● A 24-bit down counter ● Autoreload capability ● Maskable system interrupt generation when the counter reaches 0. ● Programmable clock source Real-time clock (RTC) and backup registers The RTC and the 16 backup registers are supplied through a switch that takes power from either the VDD supply when present or the VBAT pin. The backup registers are sixteen 32-bit registers used to store 64 bytes of user application data when VDD power is not present. They are not reset by a system or power reset, or when the device wakes up from Standby mode. The RTC is an independent BCD timer/counter. It supports the following features: ● Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format. ● Automatic correction for 28, 29 (leap year), 30 and 31 days of the month. ● Two programmable alarms with wake up from Stop and Standby mode capability. ● On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock. ● Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy. ● Three anti-tamper detection pins with programmable filter. The MCU can be woken up from Stopand Standby modes on tamper event detection. ● Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection. ● 17-bit Auto-reload counter for periodic interrupt with wakeup from STOP/STANDBY capability. The RTC clock sources can be: ● A 32.768 kHz external crystal ● A resonator or oscillator ● The internal low-power RC oscillator (typical frequency of 40 kHz) ● The high-speed external clock divided by 32. Doc ID 023353 Rev 5 25/133 Functional overview 3.18 STM32F302xx/STM32F303xx Inter-integrated circuit interface (I2C) Up to two I2C bus interfaces can operate in multimaster and slave modes. They can support standard (up to 100 KHz), fast (up to 400 KHz) and fast mode + (up to 1 MHz) modes. Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask). They also include programmable analog and digital noise filters. Table 4. Comparison of I2C analog and digital filters Analog filter Digital filter Pulse width of suppressed spikes ≥ 50 ns Programmable length from 1 to 15 I2C peripheral clocks Benefits Available in Stop mode 1. Extra filtering capability vs. standard requirements. 2. Stable length Drawbacks Variations depending on temperature, voltage, process Disabled when Wakeup from Stop mode is enabled In addition, they provide hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. They also have a clock domain independent from the CPU clock, allowing the I2Cx (x=1,2) to wake up the MCU from Stop mode on address match. The I2C interfaces can be served by the DMA controller. Refer to Table 5 for the features available in I2C1 and I2C2. Table 5. STM32F30xB/C I2C implementation I2C features(1) I2C1 I2C2 7-bit addressing mode X X 10-bit addressing mode X X Standard mode (up to 100 kbit/s) X X Fast mode (up to 400 kbit/s) X X Fast Mode Plus with 20mA output drive I/Os (up to 1 Mbit/s) X X Independent clock X X SMBus X X Wakeup from STOP X X 1. X = supported. 26/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx 3.19 Functional overview Universal synchronous/asynchronous receiver transmitter (USART) The STM32F302xx/STM32F303xx devices have three embedded universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3). The USART interfaces are able to communicate at speeds of up to 9 Mbits/s. They provide hardware management of the CTS and RTS signals, they support IrDA SIR ENDEC, the multiprocessor communication mode, the single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART interfaces can be served by the DMA controller. 3.20 Universal asynchronous receiver transmitter (UART) The STM32F302xx/STM32F303xx devices have 2 embedded universal asynchronous receiver transmitters (UART4, and UART5). The UART interfaces support IrDA SIR ENDEC, multiprocessor communication mode and single-wire half-duplex communication mode. The UART interfaces can be served by the DMA controller. Refer to Table 6 for the features available in all U(S)ARTs interfaces Table 6. USART features USART modes/features(1) USART1 USART2 USART3 UART4 UART5 Hardware flow control for modem X X X Continuous communication using DMA X X X X X Multiprocessor communication X X X X X Synchronous mode X X X Smartcard mode X X X Single-wire half-duplex communication X X X X X IrDA SIR ENDEC block X X X X X LIN mode X X X X X Dual clock domain and wakeup from Stop mode X X X X X Receiver timeout interrupt X X X X X Modbus communication X X X X X Auto baud rate detection X X X Driver Enable X X X 1. X = supported. Doc ID 023353 Rev 5 27/133 Functional overview 3.21 STM32F302xx/STM32F303xx Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S) Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits. Two standard I2S interfaces (multiplexed with SPI2 and SPI3) supporting four different audio standards can operate as master or slave at half-duplex and full duplex communication modes. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by 8-bit programmable linear prescaler. When operating in master mode it can output a clock for an external audio component at 256 times the sampling frequency. Refer to Table 7 for the features available in SPI1, SPI2 and SPI3. Table 7. STM32F30xB/C SPI/I2S implementation SPI features(1) SPI1 SPI2 SPI3 Hardware CRC calculation X X X Rx/Tx FIFO X X X NSS pulse mode X X X X X X X I2S mode TI mode X 1. X = supported. 3.22 Controller area network (CAN) The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks. 3.23 Universal serial bus (USB) The STM32F302xx/STM32F303xx devices embed an USB device peripheral compatible with the USB full-speed 12 Mbs. The USB interface implements a full-speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator). The USB has a dedicated 512-bytes SRAM memory for data transmission and reception. 3.24 Infrared Transmitter The STM32F302xx/STM32F303xx devices provide an infrared transmitter solution. The solution is based on internal connections between TIM16 and TIM17 as shown in the figure below. 28/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Functional overview TIM17 is used to provide the carrier frequency and TIM16 provides the main signal to be sent. The infrared output signal is available on PB9 or PA13. To generate the infrared remote control signals, TIM16 channel 1 and TIM17 channel 1 must be properly configured to generate correct waveforms. All standard IR pulse modulation modes can be obtained by programming the two timers output compare channels. Figure 4. Infrared transmitter TIMER 16 OC (for envelop) TIMER 17 PB9/PA13 OC (for carrier) MS30365V1 3.25 Touch sensing controller (TSC) The STM32F302xx/STM32F303xx devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 24 capacitive sensing channels distributed over 8 analog I/O groups. Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate. Table 8. Group Capacitive sensing GPIOs available on STM32F302xx/STM32F303xx devices Capacitive sensing signal name Pin name TSC_G1_IO1 PA0 TSC_G1_IO2 PA1 Group 1 Capacitive sensing signal name Pin name TSC_G5_IO1 PB3 TSC_G5_IO2 PB4 5 TSC_G1_IO3 PA2 TSC_G5_IO3 PB6 TSC_G1_IO4 PA3 TSC_G5_IO4 PB7 TSC_G2_IO1 PA4 TSC_G6_IO1 PB11 TSC_G2_IO2 PA5 TSC_G6_IO2 PB12 2 6 TSC_G2_IO3 PA6 TSC_G6_IO3 PB13 TSC_G2_IO4 PA7 TSC_G6_IO4 PB14 Doc ID 023353 Rev 5 29/133 Functional overview STM32F302xx/STM32F303xx Table 8. Capacitive sensing GPIOs available on STM32F302xx/STM32F303xx devices (continued) Group Capacitive sensing signal name Pin name TSC_G3_IO1 PC5 TSC_G3_IO2 PB0 Group 3 Capacitive sensing signal name Pin name TSC_G7_IO1 PE2 TSC_G7_IO2 PE3 7 TSC_G3_IO3 PB1 TSC_G7_IO3 PE4 TSC_G3_IO4 PB2 TSC_G7_IO4 PE5 TSC_G4_IO1 PA9 TSC_G8_IO1 PD12 TSC_G4_IO2 PA10 TSC_G8_IO2 PD13 4 8 Table 9. TSC_G4_IO3 PA13 TSC_G8_IO3 PD14 TSC_G4_IO4 PA14 TSC_G8_IO4 PD15 No. of capacitive sensing channels available on STM32F302xx/STM32F303xx devices Number of capacitive sensing channels Analog I/O group STM32F30xVx STM32F30xRx STM32F30xCx G1 3 3 3 G2 3 3 3 G3 3 3 2 G4 3 3 3 G5 3 3 3 G6 3 3 3 G7 3 0 0 G8 3 0 0 Number of capacitive sensing channels 24 18 17 3.26 Development support 3.26.1 Serial wire JTAG debug port (SWJ-DP) The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. 3.26.2 Embedded trace macrocell™ The ARM embedded trace macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the 30/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Functional overview STM32F302xx/STM32F303xx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using a highspeed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools. Doc ID 023353 Rev 5 31/133 Pinouts and pin description STM32F302xx/STM32F303xx Pinouts and pin description Figure 5. STM32F302xx/STM32F303xx LQFP48 pinout VDD_1 VSS_1 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PA15 PA14 4 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 4 32 5 31 6 ,1&0 30 7 29 8 28 9 27 10 26 11 25 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 PA3 PA4 PA5 PA6 PA7 PB0 PB1 PB2 PB10 PB11 VSS_2 VDD_2 VBAT PC13 PC14/OSC32_IN PC15/OSC32_OUT PF0/OSC_IN PF1/OSC_OUT NRST VSSA/VREFVDDA/VREF+ PA0 PA1 PA2 32/133 Doc ID 023353 Rev 5 VDD_3 VSS_3 PA13 PA12 PA11 PA10 PA9 PA8 PB15 PB14 PB13 PB12 .47 STM32F302xx/STM32F303xx STM32F302xx/STM32F303xx LQFP64 pinout VDD_1 VSS_1 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD2 PC12 PC11 PC10 PA15 PA14 Figure 6. Pinouts and pin description 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 1 47 2 46 3 45 4 44 5 43 6 42 7 41 8 ,1&0 40 9 39 10 38 11 37 12 36 13 35 14 34 15 33 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 VDD_3 VSS_3 PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12 PA3 PF4 VDD_4 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PB10 PB11 VSS_2 VDD_2 VBAT PC13 PC14/OSC32_IN PC15/OSC32_OUT PF0/OSC_IN PF1/OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA/VREFVDDA PA0 PA1 PA2 AI6 Doc ID 023353 Rev 5 33/133 Pinouts and pin description STM32F302xx/STM32F303xx LQFP100 pinout 6$$? 633? 0% 0% 0" 0" "//4 0" 0" 0" 0" 0" 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0# 0# 0# 0! 0! Figure 7. STM32F302xx/STM32F303xx ,1&0 6$$? 633? 0& 0! 0! 0! 0! 0! 0! 0# 0# 0# 0# 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0" 0" 0" 0" 0! 0& 6$$? 0! 0! 0! 0! 0# 0# 0" 0" 0" 0% 0% 0% 0% 0% 0% 0% 0% 0% 0" 0" 633? 6$$? 0% 0% 0% 0% 0% 6"!4 0# 0#/3#?). 0#/3#?/54 0& 0& 0&/3#?). 0&/3#?/54 .234 0# 0# 0# 0# 0& 633!62%& 62%& 6$$! 0! 0! 0! AI6 34/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Table 10. Pinouts and pin description Legend/abbreviations used in the pinout table Name Pin name Pin type Abbreviation Definition Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name S Supply pin I Input only pin I/O Input / output pin FT 5 V tolerant I/O FTf 5 V tolerant I/O, FM+ capable TTa 3.3 V tolerant I/O directly connected to ADC TC Standard 3.3V I/O B Dedicated BOOT0 pin RST Bidirectional reset pin with embedded weak pull-up resistor I/O structure Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset Alternate Functions selected through GPIOx_AFR registers functions Pin functions Additional Functions directly selected/enabled through peripheral registers functions Doc ID 023353 Rev 5 35/133 Pinouts and pin description Pin name (function after reset) I/O structure Notes STM32F302xx/STM32F303xx pin definitions Pin type Table 11. STM32F302xx/STM32F303xx 1 PE2 I/O FT (1) TRACECK, TIM3_CH1, TSC_G7_IO1 2 PE3 I/O FT (1) TRACED0, TIM3_CH2, TSC_G7_IO2 3 PE4 I/O FT (1) TRACED1, TIM3_CH3, TSC_G7_IO3 4 PE5 I/O FT (1) TRACED2, TIM3_CH4, TSC_G7_IO4 5 PE6 I/O FT (1) TRACED3 LQFP48 LQFP64 LQFP100 Pin number Pin functions Alternate functions Additional functions WKUP3, RTC_TAMP3 6 1 1 VBAT S 7 2 2 PC13(2) I/O TC PC14(2) OSC32_IN I/O (PC14) TC OSC32_IN OSC32_OUT 8 3 3 Backup power supply WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT TIM1_CH1N PC15(2) OSC32_ OUT (PC15) I/O TC 10 PF9 I/O FT (1) TIM15_CH1, SPI2_SCK 11 PF10 I/O FT (1) TIM15_CH2, SPI2_SCK PF0OSC_IN (PF0) I/O FTf TIM1_CH3N, I2C2_SDA OSC_IN PF1OSC_OUT I/O (PF1) FTf I2C2_SCL OSC_OUT 9 4 4 12 5 5 13 6 6 14 7 7 NRST I/O RST 15 8 PC0 I/O TTa (1) ADC12_IN6, COMP7_INM(3) 16 9 PC1 I/O TTa (1) ADC12_IN7, COMP7_INP(3) 17 10 PC2 I/O TTa (1) COMP7_OUT(3) ADC12_IN8 TIM1_BKIN2 ADC12_IN9 18 11 19 20 12 8 Device reset input / internal reset output (active low) PC3 I/O TTa (1) PF2 I/O TTa (1) VSSA/ VREF- S Analog ground/Negative reference voltage ADC12_IN10 21 VREF+ S Positive reference voltage 22 VDDA S Analog power supply VDDA/ VREF+ S Analog power supply/Positive reference voltage 13 36/133 9 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Pin name (function after reset) Pin functions Notes LQFP48 LQFP64 LQFP100 Pin number I/O structure STM32F302xx/STM32F303xx pin definitions (continued) Pin type Table 11. Pinouts and pin description Alternate functions Additional functions 23 14 10 PA0 I/O TTa USART2_CTS, TIM2_CH1_ETR, TIM8_BKIN(3), TIM8_ETR(3), TSC_G1_IO1, COMP1_OUT 24 15 11 PA1 I/O TTa USART2_RTS, TIM2_CH2, TSC_G1_IO2, TIM15_CH1N ADC1_IN2, COMP1_INP, OPAMP1_VINP, OPAMP3_VINP(3) 25 16 12 PA2 I/O TTa USART2_TX, TIM2_CH3, TIM15_CH1, TSC_G1_IO3, COMP2_OUT ADC1_IN3, COMP2_INM, OPAMP1_VOUT 26 17 13 PA3 I/O TTa USART2_RX, TIM2_CH4, TIM15_CH2, TSC_G1_IO4 ADC1_IN4, OPAMP1_VINP, COMP2_INP, OPAMP1_VINM 27 18 PF4 I/O TTa COMP1_OUT ADC1_IN5 28 19 VDD_4 S SPI1_NSS, SPI3_NSS, I2S3_WS(3), USART2_CK, TSC_G2_IO1, TIM3_CH2 ADC2_IN1, DAC1_OUT1, OPAMP4_VINP(3), COMP1_INM, COMP2_INM, COMP3_INM(3), COMP4_INM, COMP5_INM(3), COMP6_INM, COMP7_INM(3) TTa SPI1_SCK, TIM2_CH1_ETR, TSC_G2_IO2 ADC2_IN2, DAC1_OUT2(3) OPAMP1_VINP, OPAMP2_VINM, OPAMP3_VINP(3), COMP1_INM, COMP2_INM, COMP3_INM(3), COMP4_INM, COMP5_INM(3), COMP6_INM, COMP7_INM(3) TTa SPI1_MISO, TIM3_CH1, TIM8_BKIN(3), TIM1_BKIN, TIM16_CH1, COMP1_OUT, TSC_G2_IO3 ADC2_IN3, OPAMP2_VOUT SPI1_MOSI, TIM3_CH2, TIM17_CH1, TIM1_CH1N, TIM8_CH1N(3), TSC_G2_IO4, COMP2_OUT ADC2_IN4, COMP2_INP, OPAMP2_VINP, OPAMP1_VINP 29 30 31 20 21 22 32 23 33 34 14 15 16 17 PA4 PA5 PA6 I/O I/O I/O (1) TTa ADC1_IN1, COMP1_INM, RTC_ TAMP2, WKUP1, COMP7_INP(3) PA7 I/O TTa 24 PC4 I/O TTa (1) USART1_TX ADC2_IN5 25 PC5 I/O TTa (1) USART1_RX, TSC_G3_IO1 ADC2_IN11, OPAMP2_VINM, OPAMP1_VINM Doc ID 023353 Rev 5 37/133 Pinouts and pin description Pin name (function after reset) Pin functions Notes LQFP48 LQFP64 LQFP100 Pin number I/O structure STM32F302xx/STM32F303xx pin definitions (continued) Pin type Table 11. STM32F302xx/STM32F303xx Alternate functions Additional functions ADC3_IN12(3), COMP4_INP, OPAMP3_VINP(3), OPAMP2_VINP 35 26 18 PB0 I/O TTa TIM3_CH3, TIM1_CH2N, TIM8_CH2N(3), TSC_G3_IO2 36 27 19 PB1 I/O TTa TIM3_CH4, TIM1_CH3N, TIM8_CH3N(3), COMP4_OUT, TSC_G3_IO3 ADC3_IN1(3), OPAMP3_VOUT(3) 37 28 20 PB2 I/O TTa TSC_G3_IO4 ADC2_IN12, COMP4_INM, OPAMP3_VINM(3) 38 PE7 I/O TTa (1) TIM1_ETR ADC3_IN13(3), COMP4_INP 39 PE8 I/O TTa (1) TIM1_CH1N COMP4_INM, ADC34_IN6(3) TIM1_CH1 ADC3_IN2(3) 40 PE9 I/O TTa (1) 41 PE10 I/O TTa (1) TIM1_CH2N ADC3_IN14(3) 42 PE11 I/O TTa (1) TIM1_CH2 ADC3_IN15(3) 43 PE12 I/O TTa (1) TIM1_CH3N ADC3_IN16(3) TIM1_CH3 ADC3_IN3(3) 44 PE13 I/O TTa (1) 45 PE14 I/O TTa (1) TIM1_CH4, TIM1_BKIN2 ADC4_IN1(3) 46 PE15 I/O TTa (1) USART3_RX, TIM1_BKIN ADC4_IN2(3) 47 29 21 PB10 I/O TTa USART3_TX, TIM2_CH3, TSC_SYNC COMP5_INM(3), OPAMP4_VINM(3), OPAMP3_VINM(3) 48 30 22 PB11 I/O TTa USART3_RX, TIM2_CH4, TSC_G6_IO1 COMP6_INP, OPAMP4_VINP(3) 49 31 23 VSS_2 S Digital ground 50 32 24 VDD_2 S Digital power supply 51 52 53 54 33 34 35 26 27 28 PB12 PB13 PB14 I/O I/O I/O TTa ADC4_IN3(3), COMP3_INM(3), OPAMP4_VOUT(3), TTa SPI2_SCK, I2S2_CK(3), USART3_CTS, TIM1_CH1N, TSC_G6_IO3 ADC3_IN5(3), COMP5_INP(3), OPAMP4_VINP(3), OPAMP3_VINP(3) TTa SPI2_MISO, I2S2ext_SD(3), USART3_RTS, TIM1_CH2N, TIM15_CH1, TSC_G6_IO4 COMP3_INP(3), ADC4_IN4(3), OPAMP2_VINP SPI2_MOSI, I2S2_SD(3), TIM1_CH3N, TIM15_CH1N, TIM15_CH2 ADC4_IN5(3), RTC_REFIN, COMP6_INM PB15 I/O TTa 55 PD8 I/O TTa (1) USART3_TX ADC4_IN12(3), OPAMP4_VINM(3) 56 PD9 I/O TTa (1) USART3_RX ADC4_IN13(3) 57 PD10 I/O TTa (1) USART3_CK ADC34_IN7(3), COMP6_INM 38/133 36 25 SPI2_NSS, I2S2_WS(3), I2C2_SMBA, USART3_CK, TIM1_BKIN, TSC_G6_IO2 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Pin name (function after reset) I/O structure Notes STM32F302xx/STM32F303xx pin definitions (continued) Pin type Table 11. Pinouts and pin description 58 PD11 I/O TTa (1) USART3_CTS ADC34_IN8(3), COMP6_INP, OPAMP4_VINP(3) 59 PD12 I/O TTa (1) USART3_RTS, TIM4_CH1, TSC_G8_IO1 ADC34_IN9(3), COMP5_INP(3) 60 PD13 I/O TTa (1) TIM4_CH2, TSC_G8_IO2 ADC34_IN10(3), COMP5_INM(3) TIM4_CH3, TSC_G8_IO3 COMP3_INP(3), ADC34_IN11(3), OPAMP2_VINP COMP3_INM(3) LQFP48 LQFP64 LQFP100 Pin number Pin functions Alternate functions 61 PD14 I/O TTa (1) 62 PD15 I/O TTa (1) SPI2_NSS, TIM4_CH4, TSC_G8_IO4 63 37 PC6 I/O FT (1) I2S2_MCK(3), COMP6_OUT, TIM8_CH1(3), TIM3_CH1 64 38 PC7 I/O FT (1) I2S3_MCK(3), TIM8_CH2(3), TIM3_CH2, COMP5_OUT(3) 65 39 PC8 I/O FT (1) TIM8_CH3(3), TIM3_CH3, COMP3_OUT(3) 66 40 PC9 I/O FT (1) TIM8_CH4(3), TIM8_BKIN2(3), TIM3_CH4, I2S_CKIN(3) 67 68 69 70 41 42 43 44 29 30 31 32 PA8 PA9 PA10 PA11 I/O I/O I/O I/O FT I2C2_SMBA, I2S2_MCK(3), USART1_CK, TIM1_CH1, TIM4_ETR, MCO, COMP3_OUT(3) FTf I2C2_SCL, I2S3_MCK(3), USART1_TX, TIM1_CH2, TIM2_CH3, TIM15_BKIN, TSC_G4_IO1, COMP5_OUT(3) FTf I2C2_SDA, USART1_RX, TIM1_CH3, TIM2_CH4, TIM8_BKIN(3), TIM17_BKIN, TSC_G4_IO2, COMP6_OUT FT USART1_CTS, USB_DM, CAN_RX, TIM1_CH1N, TIM1_CH4, TIM1_BKIN2, TIM4_CH1, COMP1_OUT 71 45 33 PA12 I/O FT USART1_RTS, USB_DP, CAN_TX, TIM1_CH2N, TIM1_ETR, TIM4_CH2, TIM16_CH1, COMP2_OUT 72 46 34 PA13 I/O FT USART3_CTS, TIM4_CH3, TIM16_CH1N, TSC_G4_IO3, IR_OUT, SWDIO-JTMS PF6 I/O FTf 73 (1) Additional functions I2C2_SCL, USART3_RTS, TIM4_CH4 Doc ID 023353 Rev 5 39/133 Pinouts and pin description LQFP48 74 47 35 VSS_3 S 75 48 36 VDD_3 S 76 49 77 50 78 51 79 37 38 52 PA14 I/O Pin functions Notes LQFP64 Pin name (function after reset) LQFP100 Pin number I/O structure STM32F302xx/STM32F303xx pin definitions (continued) Pin type Table 11. STM32F302xx/STM32F303xx Alternate functions Ground Digital power supply FTf I2C1_SDA, USART2_TX, TIM8_CH2(3), TIM1_BKIN, TSC_G4_IO4, SWCLK-JTCK I2C1_SCL, SPI1_NSS, SPI3_NSS, I2S3_WS(3), JTDI, USART2_RX, TIM1_BKIN, TIM2_CH1_ETR, TIM8_CH1(3) PA15 I/O FTf PC10 I/O FT (1) SPI3_SCK, I2S3_CK(3), USART3_TX, UART4_TX, TIM8_CH1N(3) FT (1) SPI3_MISO, I2S3ext_SD(3), USART3_RX, UART4_RX, TIM8_CH2N(3) SPI3_MOSI, I2S3_SD(3), USART3_CK, UART5_TX, TIM8_CH3N(3) PC11 I/O PC12 I/O FT (1) 81 PD0 I/O FT (1) CAN_RX 82 PD1 I/O FT (1) CAN_TX, TIM8_CH4(3), TIM8_BKIN2(3) PD2 I/O FT (1) UART5_RX, TIM3_ETR, TIM8_BKIN(3) 84 PD3 I/O FT (1) USART2_CTS, TIM2_CH1_ETR 85 PD4 I/O FT (1) USART2_RTS, TIM2_CH2 86 PD5 I/O FT (1) USART2_TX FT (1) USART2_RX, TIM2_CH4 FT (1) USART2_CK, TIM2_CH3 80 83 53 54 87 PD6 88 89 90 40/133 PD7 55 56 39 40 Additional functions PB3 PB4 I/O I/O I/O I/O FT SPI3_SCK, I2S3_CK(3), SPI1_SCK, USART2_TX, TIM2_CH2, TIM3_ETR, TIM4_ETR, TIM8_CH1N(3), TSC_G5_IO1, JTDOTRACESWO FT SPI3_MISO, I2S3ext_SD(3), SPI1_MISO, USART2_RX, TIM3_CH1, TIM16_CH1, TIM17_BKIN, TIM8_CH2N(3), TSC_G5_IO2, NJTRST Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx 91 92 57 58 41 42 Pin name (function after reset) PB5 PB6 I/O I/O FTf I2C1_SCL, USART1_TX, TIM16_CH1N, TIM4_CH1, TIM8_CH1(3), TSC_G5_IO3, TIM8_ETR(3), TIM8_BKIN2(3) I2C1_SDA, USART1_RX, TIM3_CH4, TIM4_CH2, TIM17_CH1N, TIM8_BKIN(3), TSC_G5_IO4 43 PB7 I/O FTf 94 60 44 BOOT0 I B 96 62 45 46 PB8 I/O Additional functions FT 59 61 Alternate functions SPI3_MOSI, SPI1_MOSI, I2S3_SD(3), I2C1_SMBA, USART2_CK, TIM16_BKIN, TIM3_CH2, TIM8_CH3N(3), TIM17_CH1 93 95 Pin functions Notes LQFP48 LQFP64 LQFP100 Pin number I/O structure STM32F302xx/STM32F303xx pin definitions (continued) Pin type Table 11. Pinouts and pin description Boot memory selection FTf I2C1_SCL, CAN_RX, TIM16_CH1, TIM4_CH3, TIM8_CH2(3), TIM1_BKIN, TSC_SYNC, COMP1_OUT I2C1_SDA, CAN_TX, TIM17_CH1, TIM4_CH4, TIM8_CH3(3), IR_OUT, COMP2_OUT PB9 I/O FTf 97 PE0 I/O FT (1) USART1_TX, TIM4_ETR, TIM16_CH1 98 PE1 I/O FT (1) USART1_RX, TIM17_CH1 99 63 47 VSS_1 S Ground 100 64 48 VDD_1 S Digital power supply 1. Function availability depends on the chosen device. When using the small packages (48 and 64 pin packages), the GPIO pins which are not present on these packages, must not be configured in analog mode. 2. PC13, PC14 and PC15 are supplied through the power switch. Since the switch sinks only a limited amount of current (3 mA), the use of GPIO PC13 to PC15 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF - These GPIOs must not be used as current sources (e.g. to drive an LED). After the first backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the Backup registers which is not reset by the main reset. For details on how to manage these GPIOs, refer to the Battery backup domain and BKP register description sections in the reference manual. 3. On STM32F303xx devices only. Doc ID 023353 Rev 5 41/133 Port & Pin Name Alternate functions for port A AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 TIM8_ ETR AF11 AF12 AF14 AF15 Doc ID 023353 Rev 5 PA0 TIM2_ CH1_ ETR TSC_ G1_IO1 USART2 COMP1 TIM8_ _CTS _OUT BKIN PA1 TIM2_ CH2 TSC_ G1_IO2 USART2 _RTS TIM15_ CH1N EVENT OUT PA2 TIM2_ CH3 TSC_ G1_IO3 USART2 COMP2 TIM15_ _TX _OUT CH1 EVENT OUT PA3 TIM2_ CH4 TSC_ G1_IO4 USART2 _RX EVENT OUT PA4 TIM3_ TSC_ CH2 G2_IO1 SPI1_ NSS TSC_ G2_IO2 SPI1_ SCK SPI3_NSS, I2S3_WS EVENT OUT TIM15_ CH2 USART2 _CK EVENT OUT PA5 TIM2_ CH1_ ETR PA6 TIM16_ TIM3_ TSC_ TIM8_ CH1 CH1 G2_IO3 BKIN SPI1_ MISO TIM1_BKIN COMP1 _OUT EVENT OUT PA7 TIM8_ TIM17_ TIM3_ TSC_ CH1 CH2 G2_IO4 CH1N SPI1_ MOSI TIM1_CH1N COMP2 _OUT EVENT OUT I2C2_ SMBA I2S2_ MCK TIM1_CH1 USART1 COMP3 _CK _OUT TIM4_ ETR EVENT OUT TSC_ I2C2_ G4_IO1 SCL I2S3_ MCK TIM1_CH2 USART1 COMP5 TIM15_ _TX _OUT BKIN TIM2_ CH3 EVENT OUT TIM1_CH3 USART1 COMP6 _RX _OUT TIM2_ CH4 TIM1_CH1N USART1 COMP1 TIM4_ CAN_RX _CTS _OUT CH1 MCO PA9 PA10 PA11 TIM17_ BKIN TSC_ I2C2_ G4_IO2 SDA EVENT OUT TIM8_ BKIN TIM1_CH4 EVENT OUT TIM1_ USB_ BKIN2 DM EVENT OUT STM32F302xx/STM32F303xx PA8 Pinouts and pin description 42/133 Table 12. Port & Pin Name Alternate functions for port A (continued) AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 PA12 TIM16_ CH1 PA13 SWDIO TIM16_ -JTMS CH1N TSC_ G4_IO3 IR_ OUT USART3 _CTS PA14 SWCLK -JTCK TSC_ I2C1_ G4_IO4 SDA TIM8_ TIM1_BKIN CH2 USART2 _TX SPI1_ NSS USART2 _RX PA15 JTDI TIM2_ CH1_ ETR TIM1_CH2N TIM8_ CH1 I2C1_ SCL SPI3_NSS, I2S3_WS AF8 AF9 AF10 USART1 COMP2 TIM4_ CAN_TX _RTS _OUT CH2 TIM4_ CH3 AF11 TIM1_ETR AF12 AF14 USB_ DP AF15 EVENT OUT EVENT OUT EVENT OUT TIM1_ BKIN STM32F302xx/STM32F303xx Table 12. EVENT OUT Doc ID 023353 Rev 5 Pinouts and pin description 43/133 Port & Pin Name Alternate functions for port B AF0 AF1 AF2 AF3 AF4 AF5 AF6 PB0 TIM3_ CH3 TSC_ G3_IO2 TIM8_ CH2N TIM1_CH2N PB1 TIM3_ CH4 TSC_ G3_IO3 TIM8_ CH3N TIM1_CH3N AF7 AF8 AF9 AF10 AF12 EVENT OUT COMP4_ OUT EVENT OUT TSC_ G3_IO4 PB2 Doc ID 023353 Rev 5 PB3 JTDOTIM2_ TRACES CH2 WO PB4 NJTRST AF15 EVENT OUT TSC_ G5_IO1 TIM8_ CH1N SPI1_ SCK SPI3_SCK, I2S3_CK USART2_ TX TIM3_ ETR EVENT OUT TIM16_ TIM3_ CH1 CH1 TSC_ G5_IO2 TIM8_ CH2N SPI1_ MISO SPI3_MISO, I2S3ext_SD USART2_ RX TIM17_ BKIN EVENT OUT PB5 TIM16_ TIM3_ BKIN CH2 TIM8_ CH3N I2C1_ SMBA SPI1_ MOSI SPI3_MOSI, I2S3_SD USART2_ CK TIM17_ CH1 EVENT OUT PB6 TIM16_ TIM4_ CH1N CH1 TSC_ G5_IO3 I2C1_SCL TIM8_CH1 TIM8_ ETR USART1_ TX TIM8_ BKIN2 EVENT OUT PB7 TIM17_ TIM4_ CH1N CH2 TSC_ G5_IO4 I2C1_ SDA TIM8_ BKIN USART1_ RX TIM3_ CH4 EVENT OUT PB8 TIM16_ TIM4_ CH1 CH3 TSC_ SYNC I2C1_SCL PB9 TIM17_ TIM4_ CH1 CH4 PB10 TIM2_ CH3 TSC_ SYNC USART3_ TX EVENT OUT PB11 TIM2_ CH4 TSC_ G6_IO1 USART3_ RX EVENT OUT USART3_ CK EVENT OUT I2C1_ SDA TSC_ G6_IO2 I2C2_ SMBA IR_OUT SPI2_NSS, I2S2_WS TIM1_ BKIN COMP1_ CAN_RX OUT TIM8_ CH2 COMP2_ CAN_TX OUT TIM8_ CH3 TIM1_ BKIN EVENT OUT EVENT OUT STM32F302xx/STM32F303xx TIM4_ ETR PB12 Pinouts and pin description 44/133 Table 13. Port & Pin Name Alternate functions for port B (continued) AF0 AF1 AF2 PB13 PB14 TIM15_ CH1 PB15 TIM15_ TIM15_ CH2 CH1N AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF12 AF15 TSC_ G6_IO3 SPI2_SCK, I2S2_CK TIM1_ CH1N USART3_ CTS EVENT OUT TSC_ G6_IO4 SPI2_MISO, I2S2ext_SD TIM1_ CH2N USART3_ RTS EVENT OUT TIM1_ CH3N SPI2_MOSI, I2S2_SD EVENT OUT STM32F302xx/STM32F303xx Table 13. Doc ID 023353 Rev 5 Pinouts and pin description 45/133 Port & Pin Name Alternate functions for port C AF1 AF2 AF3 AF4 AF5 AF6 AF7 Doc ID 023353 Rev 5 PC0 EVENTOUT PC1 EVENTOUT PC2 EVENTOUT PC3 EVENTOUT PC4 EVENTOUT PC5 EVENTOUT PC6 EVENTOUT TIM3_CH1 TIM8_CH1 I2S2_MCK COMP6_OUT PC7 EVENTOUT TIM3_CH2 TIM8_CH2 I2S3_MCK COMP5_OUT PC8 EVENTOUT TIM3_CH3 TIM8_CH3 PC9 EVENTOUT TIM3_CH4 TIM8_CH4 I2S_CKIN TIM8_BKIN2 PC10 EVENTOUT TIM8_CH1N UART4_TX SPI3_SCK, I2S3_CK USART3_TX PC11 EVENTOUT TIM8_CH2N UART4_RX SPI3_MISO, I2S3ext_SD USART3_RX PC12 EVENTOUT TIM8_CH3N UART5_TX SPI3_MOSI, I2S3_SD USART3_CK PC13 COMP7_OUT TIM1_BKIN2 Pinouts and pin description 46/133 Table 14. USART1_TX TSC_G3_IO1 USART1_RX COMP3_OUT TIM1_CH1N PC14 STM32F302xx/STM32F303xx PC15 Port & Pin Name Alternate functions for port D AF1 AF2 AF3 AF4 AF5 AF6 AF7 Doc ID 023353 Rev 5 PD0 EVENTOUT CAN_RX PD1 EVENTOUT PD2 EVENTOUT TIM3_ETR PD3 EVENTOUT TIM2_CH1_ETR USART2_CTS PD4 EVENTOUT TIM2_CH2 USART2_RTS PD5 EVENTOUT PD6 EVENTOUT TIM2_CH4 USART2_RX PD7 EVENTOUT TIM2_CH3 USART2_CK PD8 EVENTOUT USART3_TX PD9 EVENTOUT USART3_RX PD10 EVENTOUT USART3_CK PD11 EVENTOUT USART3_CTS PD12 EVENTOUT TIM4_CH1 TSC_G8_IO1 PD13 EVENTOUT TIM4_CH2 TSC_G8_IO2 PD14 EVENTOUT TIM4_CH3 TSC_G8_IO3 PD15 EVENTOUT TIM4_CH4 TSC_G8_IO4 TIM8_CH4 TIM8_BKIN TIM8_BKIN2 CAN_TX UART5_RX STM32F302xx/STM32F303xx Table 15. USART2_TX USART3_RTS SPI2_NSS Pinouts and pin description 47/133 Alternate functions for port E Port & Pin Name AF0 AF1 PE0 EVENTOUT PE1 EVENTOUT AF2 AF3 TIM4_ETR PE2 TRACECK EVENTOUT TIM3_CH1 TSC_G7_IO1 PE3 TRACED0 EVENTOUT TIM3_CH2 TSC_G7_IO2 PE4 TRACED1 EVENTOUT TIM3_CH3 TSC_G7_IO3 PE5 TRACED2 EVENTOUT TIM3_CH4 TSC_G7_IO4 PE6 TRACED3 EVENTOUT Doc ID 023353 Rev 5 PE7 EVENTOUT TIM1_ETR PE8 EVENTOUT TIM1_CH1N PE9 EVENTOUT TIM1_CH1 PE10 EVENTOUT TIM1_CH2N PE11 EVENTOUT TIM1_CH2 PE12 EVENTOUT TIM1_CH3N PE13 EVENTOUT TIM1_CH3 PE14 EVENTOUT TIM1_CH4 PE15 EVENTOUT TIM1_BKIN AF4 AF6 AF7 TIM16_CH1 USART1_TX TIM17_CH1 USART1_RX Pinouts and pin description 48/133 Table 16. TIM1_BKIN2 USART3_RX STM32F302xx/STM32F303xx Port & Pin Name Alternate functions for port F AF1 AF2 AF3 AF4 PF0 I2C2_SDA PF1 I2C2_SCL AF5 AF6 AF7 TIM1_CH3N PF2 EVENTOUT PF4 EVENTOUT COMP1_OUT PF6 EVENTOUT TIM4_CH4 PF9 EVENTOUT TIM15_CH1 SPI2_SCK PF10 EVENTOUT TIM15_CH2 SPI2_SCK I2C2_SCL USART3_RTS STM32F302xx/STM32F303xx Table 17. Doc ID 023353 Rev 5 Pinouts and pin description 49/133 Memory mapping STM32F302xx/STM32F303xx 5 Memory mapping Figure 8. STM32F30xB/C memory map 0x5000 07FF AHB3 0xFFFF FFFF 7 0x5000 0000 Cortex-M4F Internal Peripherals Reserved 0x4800 1800 AHB2 0xE000 0000 0x4800 0000 Reserved 6 0x4002 43FF AHB1 0xC000 0000 0x4002 0000 Reserved 5 0x4001 6C00 APB2 0xA000 0000 0x4001 0000 Reserved 4 0x4000 A000 APB1 0x8000 0000 0x4000 0000 3 0x1FFF FFFF Option bytes 0x6000 0000 0x1FFF F800 System memory 2 0x1FFF D800 Reserved 0x1000 2000 0x4000 0000 Peripherals 1 0x2000 0000 0 CCM RAM 0x1000 0000 0x0804 0000 SRAM Reserved Flash memory 0x0800 0000 CODE Reserved 0x0004 0000 0x0000 0000 Reserved Flash, system memory or SRAM, depending on BOOT configuration 0x0000 0000 MS30355V1 50/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Table 18. Bus Memory mapping STM32F30xB/C memory map and peripheral register boundary addresses Boundary address Size (bytes) Peripheral 0x5000 0400 - 0x5000 07FF 1K ADC3 - ADC4 0x5000 0000 - 0x5000 03FF 1K ADC1 - ADC2 0x4800 1800 - 0x4FFF FFFF ~132 M 0x4800 1400 - 0x4800 17FF 1K GPIOF 0x4800 1000 - 0x4800 13FF 1K GPIOE 0x4800 0C00 - 0x4800 0FFF 1K GPIOD 0x4800 0800 - 0x4800 0BFF 1K GPIOC 0x4800 0400 - 0x4800 07FF 1K GPIOB 0x4800 0000 - 0x4800 03FF 1K GPIOA 0x4002 4400 - 0x47FF FFFF ~128 M 0x4002 4000 - 0x4002 43FF 1K TSC 0x4002 3400 - 0x4002 3FFF 3K Reserved 0x4002 3000 - 0x4002 33FF 1K CRC 0x4002 2400 - 0x4002 2FFF 3K Reserved 0x4002 2000 - 0x4002 23FF 1K Flash interface 0x4002 1400 - 0x4002 1FFF 3K Reserved 0x4002 1000 - 0x4002 13FF 1K RCC 0x4002 0800 - 0x4002 0FFF 2K Reserved 0x4002 0400 - 0x4002 07FF 1K DMA2 0x4002 0000 - 0x4002 03FF 1K DMA1 0x4001 8000 - 0x4001 FFFF 32 K Reserved 0x4001 4C00 - 0x4001 7FFF 13 K Reserved 0x4001 4800 - 0x4001 4BFF 1K TIM17 0x4001 4400 - 0x4001 47FF 1K TIM16 0x4001 4000 - 0x4001 43FF 1K TIM15 0x4001 3C00 - 0x4001 3FFF 1K Reserved 0x4001 3800 - 0x4001 3BFF 1K USART1 0x4001 3400 - 0x4001 37FF 1K TIM8 0x4001 3000 - 0x4001 33FF 1K SPI1 0x4001 2C00 - 0x4001 2FFF 1K TIM1 0x4001 0800 - 0x4001 2BFF 9K Reserved 0x4001 0400 - 0x4001 07FF 1K EXTI 0x4001 0000 - 0x4001 03FF 1K SYSCFG + COMP + OPAMP AHB3 Reserved AHB2 Reserved AHB1 APB2 Doc ID 023353 Rev 5 51/133 Memory mapping Table 18. Bus STM32F302xx/STM32F303xx STM32F30xB/C memory map and peripheral register boundary addresses (continued) Boundary address Size (bytes) Peripheral 0x4000 8000 - 0x4000 FFFF 32 K Reserved 0x4000 7800 - 0x4000 7FFF 2K Reserved 0x4000 7400 - 0x4000 77FF 1K DAC (dual) 0x4000 7000 - 0x4000 73FF 1K PWR 0x4000 6C00 - 0x4000 6FFF 1K Reserved 0x4000 6800 - 0x4000 6BFF 1K Reserved 0x4000 6400 - 0x4000 67FF 1K bxCAN 0x4000 6000 - 0x4000 63FF 1K USB SRAM 512 bytes 0x4000 5C00 - 0x4000 5FFF 1K USB device FS 0x4000 5800 - 0x4000 5BFF 1K I2C2 0x4000 5400 - 0x4000 57FF 1K I2C1 0x4000 5000 - 0x4000 53FF 1K UART5 0x4000 4C00 - 0x4000 4FFF 1K UART4 0x4000 4800 - 0x4000 4BFF 1K USART3 0x4000 4400 - 0x4000 47FF 1K USART2 0x4000 4000 - 0x4000 43FF 1K I2S3ext 0x4000 3C00 - 0x4000 3FFF 1K SPI3/I2S3 0x4000 3800 - 0x4000 3BFF 1K SPI2/I2S2 0x4000 3400 - 0x4000 37FF 1K I2S2ext 0x4000 3000 - 0x4000 33FF 1K IWDG 0x4000 2C00 - 0x4000 2FFF 1K WWDG 0x4000 2800 - 0x4000 2BFF 1K RTC 0x4000 1800 - 0x4000 27FF 4K Reserved 0x4000 1400 - 0x4000 17FF 1K TIM7 0x4000 1000 - 0x4000 13FF 1K TIM6 0x4000 0C00 - 0x4000 0FFF 1K Reserved 0x4000 0800 - 0x4000 0BFF 1K TIM4 0x4000 0400 - 0x4000 07FF 1K TIM3 0x4000 0000 - 0x4000 03FF 1K TIM2 APB1 52/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Electrical characteristics 6 Electrical characteristics 6.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3σ). 6.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3.3 V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2σ). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 9. 6.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 10. Figure 9. Pin loading conditions Figure 10. Pin input voltage -#5PIN -#5PIN C = 50 pF 6). -36 Doc ID 023353 Rev 5 -36 53/133 Electrical characteristics 6.1.6 STM32F302xx/STM32F303xx Power supply scheme Figure 11. Power supply scheme VBAT GP I/Os IN VDD 4 × VDD Level shifter OUT 4 × 100 nF + 1 × 4.7 μF Backup circuitry (LSE,RTC, Wake-up logic Backup registers) Po wer swi tch 1.65 - 3.6V IO Logic Kernel logic (CPU, Digital & Memories) Regulator 3 × VSS VDDA VDDA VREF 10 nF + 1 μF VREF+ 10 nF + 1 μF VREF- ADC/ DAC !NALOG2#S0,, COMPARATORS/0!-0 VSSA MS19875V3 1. Dotted lines represent the internal connections on low pin count packages, joining the dedicated supply pins. Caution: 54/133 Each power supply pair (VDD/VSS, VDDA/VSSA etc..) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below the appropriate pins on the underside of the PCB to ensure the good functionality of the device. Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx 6.1.7 Electrical characteristics Current consumption measurement Figure 12. Current consumption measurement scheme )$$?6"!4 6"!4 )$$ 6$$ )$$! 6$$! -36 Doc ID 023353 Rev 5 55/133 Electrical characteristics 6.2 STM32F302xx/STM32F303xx Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 19: Voltage characteristics, Table 20: Current characteristics, and Table 21: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 19. Voltage characteristics(1) Symbol Ratings Min Max VDD–VSS External main supply voltage (including VDDA, VBAT and VDD) -0.3 4.0 VDD–VDDA Allowed voltage difference for VDD > VDDA - 0.4 Allowed voltage difference for VREF+ > VDDA - 0.4 Input voltage on FT and FTf pins VSS − 0.3 VDD + 4.0 Input voltage on TTa pins VSS − 0.3 4.0 Input voltage on any other pin VSS − 0.3 4.0 Variations between different VDD power pins - 50 Variations between all the different ground pins - 50 VREF+–VDDA(2) VIN(3) |ΔVDDx| |VSSX − VSS| VESD(HBM) Electrostatic discharge voltage (human body model) Unit V mV see Section 6.3.12: Electrical sensitivity characteristics 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. The following relationship must be respected between VDDA and VDD: VDDA must power on before or at the same time as VDD in the power up sequence. VDDA must be greater than or equal to VDD. 2. VREF+ must be always lower or equal than VDDA (VREF+ ≤ VDDA). If unused then it must be connected to VDDA. 3. VIN maximum must always be respected. Refer to Table 20: Current characteristics for the maximum allowed injected current values. 56/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Table 20. Electrical characteristics Current characteristics Symbol Ratings Max. IVDD(Σ) Total current into sum of all VDD_x power lines (source) 160 IVSS(Σ) Total current out of sum of all VSS_x ground lines (sink) − 160 (1) IVDD Maximum current into each VDD_x power line (source) IVSS Maximum current out of each VSS _x ground line (sink)(1) 100 − 100 Output current sunk by any I/O and control pin IIO(PIN) 25 − 25 Output current source by any I/O and control pin (2) ΣIIO(PIN) Total output current sunk by sum of all IOs and control pins Total output current sourced by sum of all IOs and control pins(2) Injected current on FT, FTf and B Injected current on TC and RST IINJ(PIN) pins(3) pin(4) (5) ΣIINJ(PIN) Unit mA 80 − 80 -5/+0 ±5 Injected current on TTa pins ±5 Total injected current (sum of all I/O and control pins)(6) ± 25 1. All main power (VDD, VDDA) and ground (VSS and VSSA) pins must always be connected to the external power supply, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins.The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages 3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must never be exceeded. Refer to Table 19: Voltage characteristics for the maximum allowed input voltage values. 5. A positive injection is induced by VIN>VDDA while a negative injection is induced by VIN<VSS. IINJ(PIN) must never be exceeded. Refer also to Table 19: Voltage characteristics for the maximum allowed input voltage values. Negative injection disturbs the analog performance of the device. See note (2) below Table 68. 6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). Table 21. Thermal characteristics Symbol TSTG TJ Ratings Storage temperature range Maximum junction temperature Doc ID 023353 Rev 5 Value Unit –65 to +150 °C 150 °C 57/133 Electrical characteristics STM32F302xx/STM32F303xx 6.3 Operating conditions 6.3.1 General operating conditions Table 22. General operating conditions Symbol Parameter fHCLK Min Max Internal AHB clock frequency 0 72 fPCLK1 Internal APB1 clock frequency 0 36 fPCLK2 Internal APB2 clock frequency 0 72 Standard operating voltage 2 3.6 2 3.6 VDD Analog operating voltage (OPAMP and DAC not used) VDDA VBAT Analog operating voltage (OPAMP and DAC used) Conditions Must have a potential equal to or higher than VDD 3.6 1.65 3.6 –0.3 VDD+0.3 –0.3 VDDA+0.3 –0.3 5.5 BOOT0 0 5.5 LQFP100 - 488 LQFP64 - 444 LQFP48 - 364 Maximum power dissipation –40 85 Low power dissipation(3) –40 105 Maximum power dissipation –40 105 TC I/O TTa I/O VIN PD I/O input voltage FT and FTf Power dissipation at TA = 85 °C for suffix 6 or TA = 105 °C for suffix 7(2) Ambient temperature for 6 suffix version I/O(1) MHz V V 2.4 Backup operating voltage Unit V V mW °C TA Ambient temperature for 7 suffix version TJ °C (3) Low power dissipation –40 125 6 suffix version –40 105 7 suffix version –40 125 Junction temperature range °C 1. To sustain a voltage higher than VDD+0.3 V, the internal pull-up/pull-down resistors must be disabled. 2. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 21: Thermal characteristics). 3. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Table 21: Thermal characteristics). 58/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx 6.3.2 Electrical characteristics Operating conditions at power-up / power-down The parameters given in Table 23 are derived from tests performed under the ambient temperature condition summarized in Table 22. Table 23. Operating conditions at power-up / power-down Symbol Parameter tVDD tVDDA 6.3.3 Conditions Min VDD rise time rate 0 VDD fall time rate 20 VDDA rise time rate 0 VDDA fall time rate 20 Max Unit ∞ ∞ ∞ ∞ µs/V Embedded reset and power control block characteristics The parameters given in Table 24 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 22. Table 24. Embedded reset and power control block characteristics Symbol VPOR/PDR(1) VPDRhyst (1) tRSTTEMPO(3) Parameter Power on/power down reset threshold Conditions Min Typ Max Unit Falling edge 1.8(2) 1.88 1.96 V Rising edge 1.84 1.92 2.0 V - 40 - mV 1.5 2.5 4.5 ms PDR hysteresis POR reset temporization 1. The PDR detector monitors VDD and also VDDA (if kept enabled in the option bytes). The POR detector monitors only VDD. 2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value. 3. Guaranteed by design, not tested in production Doc ID 023353 Rev 5 59/133 Electrical characteristics Table 25. Symbol STM32F302xx/STM32F303xx Programmable voltage detector characteristics Min(1) Typ Max(1) Rising edge 2.1 2.18 2.26 Falling edge 2 2.08 2.16 Rising edge 2.19 2.28 2.37 Falling edge 2.09 2.18 2.27 Rising edge 2.28 2.38 2.48 Falling edge 2.18 2.28 2.38 Rising edge 2.38 2.48 2.58 Falling edge 2.28 2.38 2.48 Rising edge 2.47 2.58 2.69 Falling edge 2.37 2.48 2.59 Rising edge 2.57 2.68 2.79 Falling edge 2.47 2.58 2.69 Rising edge 2.66 2.78 2.9 Falling edge 2.56 2.68 2.8 Rising edge 2.76 2.88 3 Falling edge 2.66 2.78 2.9 Parameter VPVD0 PVD threshold 0 VPVD1 PVD threshold 1 VPVD2 PVD threshold 2 VPVD3 PVD threshold 3 Conditions Unit V VPVD4 PVD threshold 4 VPVD5 PVD threshold 5 VPVD6 PVD threshold 6 VPVD7 PVD threshold 7 VPVDhyst(2) PVD hysteresis - 100 - mV IDD(PVD) PVD current consumption - 0.15 0.26 µA 1. Data based on characterization results only, not tested in production. 2. Guaranteed by design, not tested in production. 6.3.4 Embedded reference voltage The parameters given in Table 26 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 22. Table 26. Symbol Parameter VREFINT Internal reference voltage TS_vrefint ADC sampling time when reading the internal reference voltage VRERINT Internal reference voltage spread over the temperature range TCoeff 60/133 Embedded internal reference voltage Conditions Min Typ Max Unit –40 °C < TA < +105 °C 1.16 1.2 1.25 V –40 °C < TA < +85 °C 1.16 1.2 1.24(1) V 2.2 - - µs - - 10(2) mV - - 100(2) ppm/°C VDD = 3 V ±10 mV Temperature coefficient Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Electrical characteristics 1. Data based on characterization results, not tested in production. 2. Guaranteed by design, not tested in production Table 27. Internal reference voltage calibration values Calibration value name VREFINT_CAL 6.3.5 Description Raw data acquired at temperature of 30 °C VDDA= 3.3 V Memory address 0x1FFF F7BA - 0x1FFF F7BB Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 12: Current consumption measurement scheme. All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code. Typical and maximum current consumption The MCU is placed under the following conditions: ● All I/O pins are in input mode with a static value at VDD or VSS (no load) ● All peripherals are disabled except when explicitly mentioned ● The Flash memory access time is adjusted to the fHCLK frequency (0 wait state from 0 to 24 MHz,1 wait state from 24 to 48 MHz and 2 wait states from 48 to 72 MHz) ● Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling) ● When the peripherals are enabled fPCLK2 = fHCLK and fPCLK1 = fHCLK/2 ● When fHCLK > 8 MHz, the PLL is ON and the PLL input is equal to HSI/2 (4 MHz) or HSE (8 MHz) in bypass mode. The parameters given in Table 28 to Table 32 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 22. Doc ID 023353 Rev 5 61/133 Electrical characteristics Table 28. STM32F302xx/STM32F303xx Typical and maximum current consumption from VDD supply at VDD = 3.6V All peripherals enabled Symbol Parameter Conditions Max @ TA(1) fHCLK Max @ TA(1) Typ External clock (HSE bypass) Supply current in Run mode, executing from Flash Internal clock (HSI) IDD Supply current in Run mode, executing from RAM Internal clock (HSI) 62/133 Unit Typ 25 °C 85 °C 105 °C 25 °C 85 °C 105 °C 72 MHz 61.2 65.8 67.6 68.5 27.8 30.3 30.7 31.5 64 MHz 54.7 59.1 60.2 61.1 24.6 27.2 27.6 28.3 48 MHz 41.7 45.1 46.2 47.2 19.2 21.1 21.4 21.8 32 MHz 28.1 31.5 32.5 32.7 12.9 14.6 14.8 15.3 24 MHz 21.4 23.7 24.4 25.2 10.0 11.4 11.4 12.1 8 MHz 7.4 8.4 8.6 9.4 3.6 4.1 4.4 5.0 1 MHz 1.3 1.6 1.8 2.6 0.8 1.0 1.2 2.1 64 MHz 49.7 54.4 55.4 56.3 24.5 27.2 27.4 28.1 48 MHz 37.9 42.2 43.0 43.5 18.9 21.4 21.5 21.6 32 MHz 25.8 29.2 29.2 30.0 12.7 14.2 14.6 15.2 24 MHz 19.7 22.3 22.6 23.2 6.7 7.7 7.9 8.5 8 MHz 7.8 8.3 8.8 3.5 4.0 4.4 5.0 69.7 70.4(2) 27.4 31.7(2) 32.2 32.5(2) 6.9 72 MHz 60.8 66.2 External clock (HSE bypass) All peripherals disabled (2) 64 MHz 54.3 59.1 62.2 63.3 24.3 28.3 28.7 28.8 48 MHz 41.0 45.6 47.3 47.9 18.3 21.6 21.9 22.1 32 MHz 27.6 32.4 32.4 32.9 12.3 15.0 15.2 15.4 24 MHz 20.8 23.9 24.3 25.0 9.3 11.3 11.4 12.0 8 MHz 6.9 7.8 8.7 9.0 3.1 3.7 4.2 4.9 1 MHz 0.9 1.2 1.5 2.3 0.4 0.6 1.0 1.8 64 MHz 49.2 53.9 55.2 57.4 23.9 27.8 28.2 28.4 48 MHz 37.3 40.8 41.4 44.1 18.2 21.0 21.6 21.9 32 MHz 25.1 27.6 29.1 30.1 12.0 14.0 14.5 15.1 24 MHz 19.0 21.6 22.1 22.9 6.3 7.2 7.7 8.1 8 MHz 7.3 7.9 8.4 3.0 3.5 4.0 4.7 6.4 Doc ID 023353 Rev 5 mA STM32F302xx/STM32F303xx Table 28. Electrical characteristics Typical and maximum current consumption from VDD supply at VDD = 3.6V All peripherals enabled Symbol Parameter Conditions Max @ TA(1) fHCLK Max @ TA(1) Typ IDD Supply current in Sleep mode, executing from Flash or RAM External clock (HSE bypass) All peripherals disabled Unit Typ 25 °C 85 °C 105 °C 25 °C 85 °C 105 °C 72 MHz 44.0 48.4 49.4 50.5 6.6 7.5 7.9 8.7 64 MHz 39.2 43.3 44.0 45.2 6.0 6.8 7.2 7.9 48 MHz 29.6 32.7 33.3 34.3 4.5 5.2 5.6 6.3 32 MHz 19.7 23.3 23.3 23.5 3.1 3.5 4.0 4.8 24 MHz 14.9 17.6 17.8 18.3 2.4 2.8 3.3 3.9 8 MHz 4.9 5.7 6.1 6.9 0.8 1.0 1.4 2.2 1 MHz 0.6 0.9 1.2 2.1 0.1 0.3 0.6 1.5 64 MHz 34.2 38.1 39.2 40.3 5.7 6.3 6.8 7.5 48 MHz 25.8 28.7 29.6 30.3 4.3 4.8 5.2 5.9 32 MHz 17.4 19.4 19.9 20.7 2.9 3.2 3.7 4.5 24 MHz 13.2 15.1 15.6 15.9 1.5 1.8 2.2 2.9 8 MHz 5.0 5.6 6.2 0.7 0.9 1.2 2.1 mA Internal clock (HSI) 4.5 1. Data based on characterization results, not tested in production unless otherwise specified. 2. Data based on characterization results and tested in production with code executing from RAM. Table 29. Typical and maximum current consumption from the VDDA supply VDDA = 2.4 V Symbol Parameter Conditions (1) VDDA = 3.6 V Max @ TA(2) fHCLK Max @ TA(2) 25 °C IDDA Supply current in Run mode, code executing from Flash or RAM HSE bypass Unit Typ Typ 85 °C 105 °C 25 °C 85 °C 105 °C 72 MHz 225 276 289 297 245 302 319 329 64 MHz 198 249 261 268 216 270 284 293 48 MHz 149 195 204 211 159 209 222 230 32 MHz 102 145 152 157 110 154 162 169 24 MHz 80 119 124 128 86 126 131 135 8 MHz 2 3 4 6 3 4 5 9 1 MHz 2 3 5 7 3 4 6 9 64 MHz 270 323 337 344 299 354 371 381 48 MHz 220 269 280 286 244 293 309 318 32 MHz 173 218 228 233 193 239 251 257 24 MHz 151 194 200 204 169 211 219 225 8 MHz 73 97 99 103 88 105 110 116 µA HSI clock Doc ID 023353 Rev 5 63/133 Electrical characteristics STM32F302xx/STM32F303xx 1. Current consumption from the VDDA supply is independent of whether the peripherals are on or off. Furthermore when the PLL is off, IDDA is independent from the frequency. 2. Data based on characterization results, not tested in production. 64/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Table 30. Typical and maximum VDD consumption in Stop and Standby modes Symbol Parameter IDD Electrical characteristics Typ @VDD (VDD=VDDA) Max(1) 2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V TA = TA = TA = 25 °C 85 °C 105 °C Conditions Regulator in run mode, 20.05 20.33 20.42 20.50 20.67 20.80 44.2(2) 553 1202(2) Supply all oscillators OFF current in Stop mode Regulator in low-power 7.63 7.77 7.90 8.07 8.17 8.33 30.6(2) 529 1156(2) mode, all oscillators OFF Supply current in Standby mode LSI ON and IWDG ON 0.80 0.96 1.09 1.23 1.37 1.51 - LSI OFF and IWDG OFF 0.60 0.74 0.83 0.93 1.02 1.11 5.0(2) - - 7.8 13.3(2) Unit µA 1. Data based on characterization results, not tested in production unless otherwise specified. 2. Data based on characterization results and tested in production. Table 31. Typical and maximum VDDA consumption in Stop and Standby modes IDDA Supply current in Standby mode Supply current in Stop mode Supply current in Standby mode VDDA monitoring OFF Supply current in Stop mode Max(1) 2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V TA = TA = TA = 25 °C 85 °C 105 °C Conditions VDDA monitoring ON Symbol Parameter Typ @VDD (VDD = VDDA) Regulator in run mode, 1.81 1.95 2.07 2.20 2.35 2.52 all oscillators OFF 3.7 5.5 8.8 Regulator in low-power mode, all oscillators 1.81 1.95 2.07 2.20 2.35 2.52 OFF 3.7 5.5 8.8 - - - 3.5 5.4 9.2 LSI ON and IWDG ON 2.22 2.42 2.59 2.78 LSI OFF and IWDG OFF 3.0 3.24 1.69 1.82 1.94 2.08 2.23 2.40 µA Regulator in run mode, 1.05 1.08 1.10 1.15 1.22 1.29 all oscillators OFF - - - Regulator in low-power mode, all oscillators 1.05 1.08 1.10 1.15 1.22 1.29 OFF - - - LSI ON and IWDG ON 1.44 1.52 1.60 1.71 1.84 1.98 - - - LSI OFF and IWDG OFF - - - 0.93 0.95 0.98 1.02 1.08 1.15 Unit 1. Data based on characterization results, not tested in production. Doc ID 023353 Rev 5 65/133 Electrical characteristics Table 32. STM32F302xx/STM32F303xx Typical and maximum current consumption from VBAT supply Max @VBAT = 3.6 V(2) Typ @VBAT Symbol Para meter Conditions Unit (1) LSE & RTC ON; "Xtal mode" lower driving capability; LSEDRV[1: Backup 0] = '00' domain IDD_VBAT supply LSE & RTC ON; "Xtal current mode" higher driving capability; LSEDRV[1: 0] = '11' 1.65V 1.8V 2V 0.48 0.50 0.52 2.4V 2.7V 0.58 3V T = TA = TA = 3.3V 3.6V A 25°C 85°C 105°C 0.65 0.72 0.80 0.90 1.1 1.5 2.0 µA 0.83 0.86 0.90 0.98 1.03 1.10 1.20 1.30 1.5 2.2 2.9 1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values. 2. Data based on characterization results, not tested in production. Figure 13. Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0] = ’00’) 6 6 6 6 6 6 ) 6"!4! 6 6 # # # # 4! # -36 66/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Electrical characteristics Typical current consumption The MCU is placed under the following conditions: Table 33. ● VDD = VDDA = 3.3 V ● All I/O pins available on each package are in analog input configuration ● The Flash access time is adjusted to fHCLK frequency (0 wait states from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz), and Flash prefetch is ON ● When the peripherals are enabled, fAPB1 = fAHB/2, fAPB2 = fAHB ● PLL is used for frequencies greater than 8 MHz ● AHB prescaler of 2, 4, 8,16 and 64 is used for the frequencies 4 MHz, 2 MHz, 1 MHz, 500 kHz and 125 kHz respectively. Typical current consumption in Run mode, code with data processing running from Flash Typ Symbol IDD Parameter Conditions Supply current in Run mode from VDD supply Running from HSE crystal clock 8 MHz, code executing from Flash IDDA(1) (2) Supply current in Run mode from VDDA supply fHCLK Peripherals enabled Peripherals disabled 72 MHz 61.3 28.0 64 MHz 54.8 25.4 48 MHz 41.9 19.3 32 MHz 28.5 13.3 24 MHz 21.8 10.4 16 MHz 14.9 7.2 8 MHz 7.7 3.9 4 MHz 4.5 2.5 2 MHz 2.8 1.7 1 MHz 1.9 1.3 500 kHz 1.4 1.1 125 kHz 1.1 0.9 72 MHz 240.3 239.5 64 MHz 210.9 210.3 48 MHz 155.8 155.6 32 MHz 105.7 105.6 24 MHz 82.1 82.0 16 MHz 58.8 58.8 8 MHz 2.4 2.4 4 MHz 2.4 2.4 2 MHz 2.4 2.4 1 MHz 2.4 2.4 500 kHz 2.4 2.4 125 kHz 2.4 2.4 Unit mA µA 1. VDDA monitoring is ON. Doc ID 023353 Rev 5 67/133 Electrical characteristics STM32F302xx/STM32F303xx 2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators, OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections. Table 34. Typical current consumption in Sleep mode, code running from Flash or RAM Typ Symbol IDD Parameter Conditions Supply current in Sleep mode from VDD supply Running from HSE crystal clock 8 MHz, code executing from Flash or RAM IDDA(1) (2) Supply current in Sleep mode from VDDA supply fHCLK Peripherals enabled Peripherals disabled 72 MHz 44.1 7.0 64 MHz 39.7 6.3 48 MHz 30.3 4.9 32 MHz 20.5 3.5 24 MHz 15.4 2.8 16 MHz 10.6 2.0 8 MHz 5.4 1.1 4 MHz 3.2 1.0 2 MHz 2.1 0.9 1 MHz 1.5 0.8 500 kHz 1.2 0.8 125 kHz 1.0 0.8 72 MHz 239.7 238.5 64 MHz 210.5 209.6 48 MHz 155.0 155.6 32 MHz 105.3 105.2 24 MHz 81.9 81.8 16 MHz 58.7 58.6 8 MHz 2.4 2.4 4 MHz 2.4 2.4 2 MHz 2.4 2.4 1 MHz 2.4 2.4 500 kHz 2.4 2.4 125 kHz 2.4 2.4 Unit mA µA 1. VDDA monitoring is ON 2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators, OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections. 68/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Electrical characteristics I/O system current consumption The current consumption of the I/O system has two components: static and dynamic. I/O static current consumption All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 52: I/O static characteristics. For the output pins, any external pull-down or external load must also be considered to estimate the current consumption. Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs. Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode. I/O dynamic current consumption In addition to the internal peripheral current consumption (seeTable 36: Peripheral current consumption), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin: I SW = V DD × f SW × C where ISW is the current sunk by a switching I/O to charge/discharge the capacitive load VDD is the MCU supply voltage fSW is the I/O switching frequency C is the total capacitance seen by the I/O pin: C = CINT+ CEXT+CS The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency. Doc ID 023353 Rev 5 69/133 Electrical characteristics Table 35. Symbol STM32F302xx/STM32F303xx Switching output I/O current consumption Parameter Conditions(1) I/O toggling frequency (fSW) Typ 2 MHz 0.90 4 MHz 0.93 8 MHz 1.16 18 MHz 1.60 36 MHz 2.51 48 MHz 2.97 2 MHz 0.93 4 MHz 1.06 8 MHz 1.47 18 MHz 2.26 36 MHz 3.39 48 MHz 5.99 2 MHz 1.03 4 MHz 1.30 8 MHz 1.79 18 MHz 3.01 36 MHz 5.99 2 MHz 1.10 4 MHz 1.31 8 MHz 2.06 18 MHz 3.47 36 MHz 8.35 2 MHz 1.20 4 MHz 1.54 8 MHz 2.46 18 MHz 4.51 36 MHz 9.98 VDD = 3.3 V Cext = 0 pF C = CINT + CEXT+ CS VDD = 3.3 V Cext = 10 pF C = CINT + CEXT +CS ISW I/O current consumption VDD = 3.3 V Cext = 22 pF C = CINT + CEXT +CS VDD = 3.3 V Cext = 33 pF C = CINT + CEXT+ CS VDD = 3.3 V Cext = 47 pF C = CINT + CEXT+ CS 1. CS = 5 pF (estimated value). 70/133 Doc ID 023353 Rev 5 Unit mA STM32F302xx/STM32F303xx Electrical characteristics On-chip peripheral current consumption The MCU is placed under the following conditions: ● all I/O pins are in analog input configuration ● all peripherals are disabled unless otherwise mentioned ● the given value is calculated by measuring the current consumption ● – with all peripherals clocked off – with only one peripheral clocked on ambient operating temperature at 25°C and VDD = VDDA = 3.3 V. Table 36. Peripheral current consumption Typical consumption(1) Peripheral Unit IDD BusMatrix (2) 5.6 DMA1 15.3 DMA2 12.5 CRC 2.1 GPIOA 10.0 GPIOB 10.3 GPIOC 2.2 GPIOD 8.8 GPIOE 3.3 GPIOF 3.0 TSC 5.5 ADC1&2 17.3 ADC3&4 18.8 APB2-Bridge (3) 3.6 SYSCFG 7.3 TIM1 40.0 SPI1 8.8 TIM8 36.4 USART1 23.3 TIM15 17.1 TIM16 10.1 TIM17 APB1-Bridge µA/MHz 11.0 (3) 6.1 TIM2 49.1 TIM3 38.8 TIM4 38.3 Doc ID 023353 Rev 5 71/133 Electrical characteristics Table 36. STM32F302xx/STM32F303xx Peripheral current consumption (continued) Typical consumption(1) Peripheral Unit IDD TIM6 9.7 TIM7 12.1 WWDG 6.4 SPI2 40.4 SPI3 40.0 USART2 41.9 USART3 40.2 UART4 36.5 UART5 30.8 I2C1 10.5 I2C2 10.4 USB 26.2 CAN 33.4 PWR 5.7 DAC 15.4 µA/MHz 1. The power consumption of the analog part (IDDA) of peripherals such as ADC, DAC, Comparators, OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections. 2. BusMatrix is automatically active when at least one master is ON (CPU, DMA1 or DMA2). 3. The APBx bridge is automatically active when at least one peripheral is ON on the same bus. 72/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx 6.3.6 Electrical characteristics Wakeup time from low-power mode The wakeup times given in Table 37 are measured starting from the wakeup event trigger up to the first instruction executed by the CPU: ● For Stop or Sleep mode: the wakeup event is WFE. ● WKUP1 (PA0) pin is used to wakeup from Standby, Stop and Sleep modes. All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 22. Table 37. Low-power mode wakeup timings Typ @VDD, VDD = VDDA Symbol tWUSTOP Parameter Wakeup from Stop mode Conditions Max 2.0 V 2.4 V 2.7 V 3V 3.3 V 3.6 V Regulator in run mode 4.1 3.9 3.8 3.7 3.6 3.5 4.5 Regulator in low power mode 7.9 6.7 6.1 5.7 5.4 5.2 9 69.2 60.3 56.4 53.7 51.7 50 100 tWUSTANDBY(1) Wakeup from LSI and Standby mode IWDG OFF tWUSLEEP Wakeup from Sleep mode 6 - Unit µs CPU clock cycles 1. Data based on characterization results, not tested in production. Doc ID 023353 Rev 5 73/133 Electrical characteristics 6.3.7 STM32F302xx/STM32F303xx External clock source characteristics High-speed external user clock generated from an external source In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in Figure 14. Table 38. High-speed external user clock characteristics Symbol Parameter Conditions Min Typ Max Unit 1 8 32 MHz fHSE_ext User external clock source frequency(1) VHSEH OSC_IN input pin high level voltage 0.7VDD - VDD VHSEL OSC_IN input pin low level voltage VSS - 0.3VDD tw(HSEH) tw(HSEL) OSC_IN high or low time(1) 15 - - tr(HSE) tf(HSE) OSC_IN rise or fall time(1) - - 20 V ns 1. Guaranteed by design, not tested in production. Figure 14. High-speed external clock source AC timing diagram T7(3%( 6(3%( 6(3%, TR(3% TF(3% T7(3%, T 4(3% -36 74/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Electrical characteristics Low-speed external user clock generated from an external source In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in Figure 15 Table 39. Low-speed external user clock characteristics Symbol Parameter Conditions Min Typ Max Unit - 32.768 1000 kHz 0.7VDD - VDD fLSE_ext User External clock source frequency(1) VLSEH OSC32_IN input pin high level voltage VLSEL OSC32_IN input pin low level voltage VSS - 0.3VDD tw(LSEH) tw(LSEL) OSC32_IN high or low time(1) 450 - - V tr(LSE) tf(LSE) ns OSC32_IN rise or fall time(1) - - 50 1. Guaranteed by design, not tested in production. Figure 15. Low-speed external clock source AC timing diagram T7,3%( 6,3%( 6,3%, TR,3% TF,3% T7,3%, T 4,3% -36 Doc ID 023353 Rev 5 75/133 Electrical characteristics STM32F302xx/STM32F303xx High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 40. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 40. Symbol fOSC_IN RF HSE oscillator characteristics Parameter Conditions(1) Min(2) Typ Max(2) Unit 4 8 32 MHz - 200 - - 8.5 VDD=3.3 V, Rm= 30Ω, CL=10 pF@8 MHz - 0.4 - VDD=3.3 V, Rm= 45Ω, CL=10 pF@8 MHz - 0.5 - VDD=3.3 V, Rm= 30Ω, CL=10 pF@32 MHz - 0.8 - VDD=3.3 V, Rm= 30Ω, CL=10 pF@32 MHz - 1 - VDD=3.3 V, Rm= 30Ω, CL=10 pF@32 MHz - 1.5 - Startup 10 - - mA/V VDD is stabilized - 2 - ms Oscillator frequency Feedback resistor During startup IDD gm tSU(HSE)(4) HSE current consumption Oscillator transconductance Startup time (3) kΩ mA 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Guaranteed by design, not tested in production. 3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer 76/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Electrical characteristics For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 16). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 16. Typical application with an 8 MHz crystal 2ESONATORWITH INTEGRATEDCAPACITORS #, F(3% /3#?). -( Z RESONATOR #, 2%84 2& "IAS CONTROLLED GAIN /3#?/5 4 -36 1. REXT value depends on the crystal characteristics. Doc ID 023353 Rev 5 77/133 Electrical characteristics STM32F302xx/STM32F303xx Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 41. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 41. Symbol IDD gm tSU(LSE)(3) LSE oscillator characteristics (fLSE = 32.768 kHz) Parameter Conditions(1) Min(2) Typ Max(2) LSEDRV[1:0]=00 lower driving capability - 0.5 0.9 LSEDRV[1:0]=01 medium low driving capability - - 1 LSE current consumption Oscillator transconductance Startup time Unit µA LSEDRV[1:0]=10 medium high driving capability - - 1.3 LSEDRV[1:0]=11 higher driving capability - - 1.6 LSEDRV[1:0]=00 lower driving capability 5 - - LSEDRV[1:0]=01 medium low driving capability 8 - µA/V LSEDRV[1:0]=10 medium high driving capability 15 - - LSEDRV[1:0]=11 higher driving capability 25 - - VDD is stabilized - 2 - s 1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”. 2. Guaranteed by design, not tested in production. 3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer Note: 78/133 For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Electrical characteristics Figure 17. Typical application with a 32.768 kHz crystal 2ESONATORWITH INTEGRATEDCAPACITORS #, F,3% /3#?). $RIVE PROGRAMMABLE AMPLIFIER K( Z RESONATOR #, Note: /3#?/5 4 An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one. Doc ID 023353 Rev 5 79/133 Electrical characteristics 6.3.8 STM32F302xx/STM32F303xx Internal clock source characteristics The parameters given in Table 42 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 22. High-speed internal (HSI) RC oscillator Table 42. HSI oscillator characteristics(1) Symbol fHSI TRIM DuCy(HSI) ACCHSI Parameter Conditions Min Typ Max Unit Frequency - 8 - MHz HSI user trimming step - - 1(2) % Duty cycle (2) 45 Accuracy of the HSI oscillator (factory calibrated) - (2) 55 % % TA = –40 to 105 °C –3.8(3) - 4.6(3) TA = –10 to 85 °C –2.9(3) - 2.9(3) % - - - % –1 - 1 % TA = 0 to 70 °C TA = 25 °C tsu(HSI) HSI oscillator startup time 1(2) - 2(2) µs IDD(HSI) HSI oscillator power consumption - 80 100(3) µA 1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 3. Data based on characterization results, not tested in production. Figure 18. HSI oscillator accuracy characterization results !## (3) -!8 -). 4!; #= -36 1. The above curves are based on characterisation results, not tested in production 80/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Electrical characteristics Low-speed internal (LSI) RC oscillator Table 43. LSI oscillator characteristics(1) Symbol fLSI Parameter Min Typ Max Unit 30 40 50 kHz Frequency tsu(LSI)(2) LSI oscillator startup time - - 85 µs IDD(LSI)(2) LSI oscillator power consumption - 0.75 1.2 µA 1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 6.3.9 PLL characteristics The parameters given in Table 44 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 22. Table 44. PLL characteristics Value Symbol Parameter Typ Max 1(2) - 24(2) MHz PLL input clock duty cycle 40 (2) - 60(2) % PLL multiplier output clock 16(2) - 72 MHz PLL input clock(1) fPLL_IN fPLL_OUT Unit Min tLOCK PLL lock time - - 200(2) µs Jitter Cycle-to-cycle jitter - - 300(2) ps 1. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by fPLL_OUT. 2. Guaranteed by design, not tested in production. Doc ID 023353 Rev 5 81/133 Electrical characteristics 6.3.10 STM32F302xx/STM32F303xx Memory characteristics Flash memory The characteristics are given at TA = –40 to 105 °C unless otherwise specified. Table 45. Flash memory characteristics Min Typ Max(1) Unit 16-bit programming time TA = –40 to +105 °C 40 53.5 60 µs Page (2 KB) erase time TA = –40 to +105 °C 20 - 40 ms tME Mass erase time TA = –40 to +105 °C 20 - 40 ms Write mode - - 10 mA IDD Supply current Erase mode - - 12 mA Symbol tprog tERASE Parameter Conditions 1. Guaranteed by design, not tested in production. Table 46. Flash memory endurance and data retention Value Symbol NEND tRET Parameter Endurance Data retention Conditions TA = –40 to +85 °C (6 suffix versions) TA = –40 to +105 °C (7 suffix versions) 10 1 kcycle(2) at TA = 85 °C 30 1 kcycle 10 (2) at TA = 105 °C kcycles(2) at TA = 55 °C 1. Data based on characterization results, not tested in production. 2. Cycling performed over the whole temperature range. 82/133 Min(1) Doc ID 023353 Rev 5 10 20 Unit kcycles Years STM32F302xx/STM32F303xx 6.3.11 Electrical characteristics EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: ● Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. ● FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 47. They are based on the EMS levels and classes defined in application note AN1709. Table 47. EMS characteristics Symbol Parameter Conditions Level/ Class VFESD VDD = 3.3 V, LQFP100, TA = +25 °C, Voltage limits to be applied on any I/O pin to fHCLK = 72 MHz induce a functional disturbance conforms to IEC 61000-4-2 3B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 3.3 V, LQFP100, TA = +25 °C, fHCLK = 72 MHz conforms to IEC 61000-4-4 4A Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: ● Corrupted program counter ● Unexpected reset ● Critical Data corruption (control registers...) Doc ID 023353 Rev 5 83/133 Electrical characteristics STM32F302xx/STM32F303xx Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 48. Symbol SEMI 6.3.12 EMI characteristics Parameter Peak level Monitored frequency band Conditions Max vs. [fHSE/fHCLK] Unit 8/72 MHz 0.1 to 30 MHz VDD = 3.3 V, TA = 25 °C, 30 to 130 MHz LQFP100 package compliant with IEC 130 MHz to 1GHz 61967-2 SAE EMI Level 7 20 dBµV 27 4 - Electrical sensitivity characteristics Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. Table 49. Symbol VESD(HBM) ESD absolute maximum ratings Ratings Conditions Electrostatic discharge TA = +25 °C, conforming voltage (human body model) to JESD22-A114 Electrostatic discharge TA = +25 °C, conforming VESD(CDM) voltage (charge device model) to JESD22-C101 1. Data based on characterization results, not tested in production. 84/133 Doc ID 023353 Rev 5 Class Maximum value(1) Unit 2 2000 V II 500 STM32F302xx/STM32F303xx Electrical characteristics Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: ● A supply overvoltage is applied to each power supply pin ● A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 50. Symbol LU 6.3.13 Electrical sensitivities Parameter Conditions Static latch-up class TA = +105 °C conforming to JESD78A Class II level A I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of –5 µA/+0 µA range), or other functional failure (for example reset occurrence or oscillator frequency deviation). The test results are given in Table 51 Doc ID 023353 Rev 5 85/133 Electrical characteristics STM32F302xx/STM32F303xx Table 51. I/O current injection susceptibility Functional susceptibility Symbol IINJ Note: 86/133 Description Negative injection Positive injection Injected current on BOOT0 –0 NA Injected current on PC0, PC1, PC2, PC3, PF2, PA0, PA1, PA2, PA3, PF4, PA4, PA5, PA6, PA7, PC4, PC5, PB2 with induced leakage current on other pins from this group less than -50 µA –5 - Injected current on PB0, PB1, PE7, PE8, PE9, PE10, PE11, PE12, PE13, PE14, PE15, PB12, PB13, PB14, PB15, PD8, PD9, PD10, PD11, PD12, PD13, PD14 with induced leakage current on other pins from this group less than -50 µA –5 - Injected current on PC0, PC1, PC2, PC3, PF2, PA0, PA1, PA2, PA3, PF4, PA4, PA5, PA6, PA7, PC4, PC5, PB2, PB0, PB1, PE7, PE8, PE9, PE10, PE11, PE12, PE13, PE14, PE15, PB12, PB13, PB14, PB15, PD8, PD9, PD10, PD11, PD12, PD13, PD14 with induced leakage current on other pins from this group less than 400 µA - +5 Injected current on any other FT and FTf pins –5 NA Injected current on any other pins –5 +5 mA It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Doc ID 023353 Rev 5 Unit STM32F302xx/STM32F303xx 6.3.14 Electrical characteristics I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 52 are derived from tests performed under the conditions summarized in Table 22. All I/Os are CMOS and TTL compliant. Table 52. Symbol VIL VIH I/O static characteristics Parameter Low level input voltage High level input voltage Conditions Vhys Ilkg Input leakage current (3) Typ Max Unit (1) TC and TTa I/O - - 0.3 VDD+0.07 FT and FTf I/O - - 0.475 VDD-0.2 (1) BOOT0 - - 0.3 VDD–0.3 (1) All I/Os except BOOT0 - - 0.3 VDD (2) TC and TTa I/O 0.445 VDD+0.398 (1) - - FT and FTf I/O 0.5 VDD+0.2 (1) - - - - BOOT0 All I/Os except BOOT0 Schmitt trigger hysteresis Min 0.2 VDD+0.95 0.7 VDD (2) (1) - V (1) - TC and TTa I/O - 200 FT and FTf I/O - 100 (1) - BOOT0 - 300 (1) - TC, FT and FTf I/O TTa I/O in digital mode VSS ≤ VIN ≤ VDD - - ±0.1 TTa I/O in digital mode VDD ≤ VIN ≤ VDDA - - 1 TTa I/O in analog mode VSS ≤ VIN ≤ VDDA - - ±0.2 FT and FTf I/O(4) VDD ≤ VIN ≤ 5 V - - 10 mV µA RPU Weak pull-up equivalent resistor(5) VIN = VSS 25 40 55 kΩ RPD Weak pull-down equivalent resistor(5) VIN = VDD 25 40 55 kΩ CIO I/O pin capacitance - 5 - pF 1. Data based on design simulation. 2. Tested in production. 3. Leakage could be higher than the maximum value. if negative current is injected on adjacent pins. Refer to Table 51: I/O current injection susceptibility. 4. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. 5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum (~10% order). Doc ID 023353 Rev 5 87/133 Electrical characteristics STM32F302xx/STM32F303xx All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in Figure 19 and Figure 20 for standard I/Os. Figure 19. TC and TTa I/O input characteristics - CMOS port VIL/VIH (V) min nts VIH dard S stan CMO VIHmin 2.0 Tested eme requir = 0.7 VDD 98 ns +0.3 5V DD imulatio 0.44 s = n V IHmin on desig d Base ns 0.07imulatio D+ 0.3V Design s = x V ILma ed on d Bas uction in prod 1.3 Area not determined CMOS standard requirements VILmax = 0.3VDD VILmax 0.7 0.6 in Tested ion product VDD (V) 2.0 2.7 3.0 3.6 3.3 MS30255V2 Figure 20. TC and TTa I/O input characteristics - TTL port VIL/VIH (V) 98 ns +0.3 tio 45V DD simula n = 0.4 V IHmin on desig d Base s 0.07 ulation D+ 0.3V D sign sim x= a e m d V IL d on Base TTL standard requirements VIHmin = 2 V VIHmin 2.0 1.3 Area not determined VILmax 0.8 0.7 TTL standard requirements VILmax = 0.8 V VDD (V) 2.7 2.0 3.0 3.3 3.6 MS30256V2 Figure 21. Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port VIL/VIH (V) 2.0 Tested in production oduction 7 VDD VIHmin = 0. 0.2 ulations V DD+ = 0.5 sign sim e on d ased V IHmin B Area not determined 1.0 0.5 irements dard requ an CMOS st -0.2 tions 75V DD simula = 0.4 ign V ILmax on des d Base CMOS standard requirements VILmax = 0.3VDD Tested in pr VDD (V) 2.0 3.6 MS30257V2 88/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Electrical characteristics Figure 22. Five volt tolerant (FT and FTf) I/O input characteristics - TTL port VIL/VIH (V) TTL standard requirements VIHmin = 2 V 2.0 Area not determined 1.0 ns 0.2 V DD+ simulatio = 0.5 n V IHmin n desig o d Base -0.2 tions 75V DDn simula = 0.4 ig V ILmin d on des Base 0.8 TTL standard requirements VILmax = 0.8 V 0.5 VDD (V) 2.0 2.7 3.6 MS30258V2 Doc ID 023353 Rev 5 89/133 Electrical characteristics STM32F302xx/STM32F303xx Output driving current The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed VOL/VOH). In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2: ● The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD(Σ) (see Table 20). ● The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS(Σ) (see Table 20). Output voltage levels Unless otherwise specified, the parameters given in Table 53 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 22. All I/Os (FT, TTa and Tc unless otherwise specified) are CMOS and TTL compliant. Table 53. Output voltage characteristics Symbol Parameter VOL(1) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin VOL (1) Output low level voltage for an I/O pin VOH (3) Output high level voltage for an I/O pin VOL(1)(4) Output low level voltage for an I/O pin VOH(3)(4) Output high level voltage for an I/O pin VOL(1)(4) Output low level voltage for an I/O pin VOH(3)(4) Output high level voltage for an I/O pin VOLFM+(1)(4) Output low level voltage for an FTf I/O pin in FM+ mode Conditions Min Max CMOS port(2) IIO = +8 mA 2.7 V < VDD < 3.6 V - 0.4 VDD–0.4 - - 0.4 2.4 - - 1.3 VDD–1.3 - - 0.4 VDD–0.4 - - 0.4 TTL port(2) IIO =+ 8mA 2.7 V < VDD < 3.6 V IIO = +20 mA 2.7 V < VDD < 3.6 V IIO = +6 mA 2 V < VDD < 2.7 V IIO = +20 mA 2.7 V < VDD < 3.6 V Unit V 1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 20 and the sum of IIO (I/O ports and control pins) must not exceed ΣIIO(PIN). 2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. 3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 20 and the sum of IIO (I/O ports and control pins) must not exceed ΣIIO(PIN). 4. Data based on design simulation. 90/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Electrical characteristics Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 23 and Table 54, respectively. Unless otherwise specified, the parameters given are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 22. Table 54. I/O AC characteristics(1) OSPEEDRy [1:0] value(1) Symbol Min Max Unit - 2(3) MHz - 125(3) - (3) 125 - 10(3) - 25(3) - 25 (3) - 50(3) MHz - 30(3) MHz - 20(3) MHz CL = 30 pF, VDD = 2.7 V to 3.6 V Output high to low level fall CL = 50 pF, VDD = 2.7 V to 3.6 V time CL = 50 pF, VDD = 2 V to 2.7 V - 5(3) - 8(3) - 12(3) CL = 30 pF, VDD = 2.7 V to 3.6 V - 5(3) CL = 50 pF, VDD = 2.7 V to 3.6 V - 8(3) CL = 50 pF, VDD = 2 V to 2.7 V - 12(3) Maximum frequency(2) - 2(4) tf(IO)out Output high to low level fall time CL = 50 pF, VDD = 2 V to 3.6 V - 12(4) tr(IO)out Output low to high level rise time - 34(4) tEXTIpw Pulse width of external signals detected by the EXTI controller 10(3) - fmax(IO)out x0 01 Parameter Maximum frequency(2) tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time fmax(IO)out Maximum frequency(2) tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time Conditions CL = 50 pF, VDD = 2 V to 3.6 V CL = 50 pF, VDD = 2 V to 3.6 V CL = 50 pF, VDD = 2 V to 3.6 V fmax(IO)out Maximum CL = 50 pF, VDD = 2.7 V to 3.6 V CL = 50 pF, VDD = 2 V to 2.7 V 11 tf(IO)out tr(IO)out fmax(IO)out FM+ configuration(4) - Output low to high level rise time MHz CL = 50 pF, VDD = 2 V to 3.6 V CL = 30 pF, VDD = 2.7 V to 3.6 V frequency(2) ns ns ns MHz ns ns 1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0316 reference manual for a description of GPIO Port configuration register. 2. The maximum frequency is defined in Figure 23. 3. Guaranteed by design, not tested in production. 4. The I/O speed configuration is bypassed in FM+ I/O mode. Refer to the STM32F30xB/C reference manual RM0316 for a description of FM+ I/O mode configuration. Doc ID 023353 Rev 5 91/133 Electrical characteristics STM32F302xx/STM32F303xx Figure 23. I/O AC characteristics definition 90% 10% 50% 50% 90% 10% EXT ERNAL OUTPUT ON 50pF tr(I O)out tr(I O)out T Maximum frequency is achieved if (tr + tf) ≤ 2/3)T and if the duty cycle is (45-55%) when loaded by 50pF ai14131 6.3.15 NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 52). Unless otherwise specified, the parameters given in Table 55 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 22. Table 55. Symbol NRST pin characteristics Parameter Conditions VIL(NRST)(1) NRST Input low level voltage Min Typ Max - - 0.3VDD+ 0.07(1) Unit V VIH(NRST)(1) NRST Input high level voltage Vhys(NRST) NRST Schmitt trigger voltage hysteresis Weak pull-up equivalent resistor(2) RPU VF(NRST) (1) VNF(NRST)(1) VIN = VSS NRST Input filtered pulse NRST Input not filtered pulse 0.445VDD+ 0.398(1) - - - 200 - mV 25 40 55 kΩ - - 100 ns 500 - - ns 1. Guaranteed by design, not tested in production. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). 92/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Electrical characteristics Figure 24. Recommended NRST pin protection 6$$ %XTERNAL RESETCIRCUIT 205 .234 )NTERNAL2ESET &ILTER & -36 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 55. Otherwise the reset will not be taken into account by the device. 6.3.16 Timer characteristics Symbol Parameter Conditions Min Typ Max Unit 0.475VDDA - 0.2 VIL(NPOR)(1) NPOR Input low level voltage V 0.5VDDA + 0.2 VIH(NPOR)(1) NPOR Input high level voltage Vhys(NPOR)(1) RPU NPOR Schmitt trigger voltage hysteresis 200 Weak pull-up equivalent resistor(2) VIN = VSS 25 mV 40 55 kΩ 1. Guaranteed by design, not tested in production. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order). The parameters given in Table 56 are guaranteed by design. Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 56. Symbol tres(TIM)(2) fEXT(2) ResTIM(2) TIMx(1) characteristics Parameter Timer resolution time Timer external clock frequency on CH1 to CH4 Conditions Min Max Unit 1 - tTIMxCLK fTIMxCLK = 72 MHz (except TIM1/8) 13.9 - ns fTIMxCLK = 144 MHz, x= 1.8 6.95 - ns 0 fTIMxCLK/2 MHz fTIMxCLK = 72 MHz 0 36 MHz TIMx (except TIM2) - 16 TIM2 - 32 Timer resolution bit Doc ID 023353 Rev 5 93/133 Electrical characteristics Table 56. Symbol STM32F302xx/STM32F303xx TIMx(1) characteristics (continued) Parameter Conditions Min Max Unit 1 65536 tTIMxCLK 0.0139 910 µs 0.0069 455 µs - 65536 × 65536 tTIMxCLK fTIMxCLK = 72 MHz - 59.65 s fTIMxCLK = 144 MHz, x= 1.8 - 29.825 s fTIMxCLK = 72 MHz tCOUNTER(2) 16-bit counter clock period (except TIM1/8) fTIMxCLK = 144 MHz, x= 1.8 tMAX_COUNT Maximum possible count with 32-bit counter (2) 1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM4, TIM8, TIM15, TIM16 and TIM17 timers 2. Guaranteed by design, not tested in production. 94/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Table 57. Electrical characteristics IWDG min/max timeout period at 40 kHz (LSI) (1) Prescaler divider PR[2:0] bits Min timeout (ms) RL[11:0]= 0x000 Max timeout (ms) RL[11:0]= 0xFFF /4 0 0.1 409.6 /8 1 0.2 819.2 /16 2 0.4 1638.4 /32 3 0.8 3276.8 /64 4 1.6 6553.6 /128 5 3.2 13107.2 /256 7 6.4 26214.4 1. These timings are given for a 40 kHz clock but the microcontroller’s internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty. Table 58. WWDG min-max timeout value @72 MHz (PCLK) Prescaler WDGTB Min timeout value Max timeout value 1 0 0.05687 (1) 3.6409 (1) 2 1 0.1137 (1) 7.2817 (1) 4 2 0.2275 (1) 14.564 (1) 8 3 0.4551 (1) 29.127 (1) 1. Guaranteed by design, not tested in production. Doc ID 023353 Rev 5 95/133 Electrical characteristics 6.3.17 STM32F302xx/STM32F303xx Communications interfaces I2C interface characteristics Unless otherwise specified, the parameters given in Table 59 are derived from tests performed under ambient temperature, fPCLK1 frequency and VDD supply voltage conditions summarized in Table 22. The I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” opendrain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. The I2C characteristics are described in Table 59. Refer also to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Table 59. I2C characteristics(1) Symbol Standard mode Parameter Fast mode Fast Mode Plus Unit Min Max Min Max Min Max tw(SCLL) SCL clock low time 4.7 - 1.3 - 0.5 - tw(SCLH) SCL clock high time 4.0 - 0.6 - 0.26 - tsu(SDA) SDA setup time 250 - 100 - 50 - th(SDA) SDA data hold time 0(3) 3450(2) 0(3) 900(2) 0 450 tr(SDA) tr(SCL) SDA and SCL rise time - 1000 - 300 - 120 tf(SDA) tf(SCL) SDA and SCL fall time - 300 - 300 - 120 th(STA) Start condition hold time 4.0 - 0.6 - 0.26 - tsu(STA) Repeated Start condition setup time 4.7 - 0.6 - 0.26 - tsu(STO) Stop condition setup time 4.0 - 0.6 - 0.26 - μs tw(STO:STA) Stop to Start condition time (bus free) 4.7 - 1.3 - 0.5 - μs - 400 - 400 - 550 pF Cb µs ns µs Capacitive load for each bus line 1. The I2C characteristics are the requirements from I2C bus specification rev03. They are guaranteed by design when I2Cx_TIMING register is correctly programmed (Refer to reference manual). These characteristics are not tested in production. 2. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal. 3. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL. Table 60. Symbol tSP I2C analog filter characteristics(1) Parameter Pulse width of spikes that are suppressed by the analog filter 1. Guaranteed by design, not tested in production. 96/133 Doc ID 023353 Rev 5 Min Max Unit 50 260 ns STM32F302xx/STM32F303xx Electrical characteristics Figure 25. I2C bus AC waveforms and measurement circuit 6$$ 6$$ 2 2 -#5 Ω 3$! )#BUS Ω 3#, 3 4!242%0%!4%$ 3 4!24 3 4!24 TSU34! 3$! TF3$! TR3$! TH34! 3#, TW3#,( TSU3$! TW3#,, TR3#, TH3$! TF3#, 3 4/0 TW34/34! TSU34/ -36 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. Doc ID 023353 Rev 5 97/133 Electrical characteristics STM32F302xx/STM32F303xx SPI/I2S characteristics Unless otherwise specified, the parameters given in Table 61 for SPI or in Table 62 for I2S are derived from tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 22. Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S). Table 61. SPI characteristics Symbol fSCK 1/tc(SCK)(1) Parameter Conditions Min Max Master mode - 18 Slave mode - 18 - 8 ns % SPI clock frequency MHz tr(SCK) tf(SCK)(1) SPI clock rise and fall time Capacitive load: C = 30 pF DuCy(SCK)(1) SPI slave input clock duty cycle Slave mode 30 70 tsu(NSS)(1) NSS setup time Slave mode 2Tpclk - th(NSS)(1) NSS hold time Slave mode 4Tpclk - SCK high and low time Master mode, fPCLK = 36 MHz, presc = 4 Tpclk/2 Tpclk/2 -3 +3 (1) tw(SCKH) tw(SCKL)(1) tsu(MI) (1) tsu(SI)(1) th(MI) Master mode 5.5 - Slave mode 6.5 - Master mode 5 - Slave mode 5 - Data input setup time (1) th(SI)(1) Data input hold time ta(SO)(1)(2) Data output access time Slave mode, fPCLK = 24 MHz 0 4Tpclk tdis(SO)(1)(3) Data output disable time Slave mode 0 24 (1) Data output valid time Slave mode (after enable edge) - 39 tv(MO)(1) Data output valid time Master mode (after enable edge) - 3 Slave mode (after enable edge) 15 - Master mode (after enable edge) 4 - tv(SO) th(SO)(1) th(MO)(1) Unit Data output hold time 1. Data based on characterization results, not tested in production. 2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. 3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z. 98/133 Doc ID 023353 Rev 5 ns STM32F302xx/STM32F303xx Electrical characteristics Figure 26. SPI timing diagram - slave mode and CPHA = 0 NSS input tc(SCK) th(NSS) SCK Input tSU(NSS) CPHA= 0 CPOL=0 tw(SCKH) tw(SCKL) CPHA= 0 CPOL=1 tv(SO) ta(SO) MISO OUT P UT tr(SCK) tf(SCK) th(SO) MS B O UT BI T6 OUT tdis(SO) LSB OUT tsu(SI) MOSI I NPUT B I T1 IN M SB IN LSB IN th(SI) ai14134c Figure 27. SPI timing diagram - slave mode and CPHA = 1(1) NSS input SCK Input tSU(NSS) CPHA=1 CPOL=0 CPHA=1 CPOL=1 tc(SCK) tw(SCKH) tw(SCKL) tv(SO) ta(SO) MISO OUT P UT th(SO) MS B O UT tsu(SI) MOSI I NPUT th(NSS) BI T6 OUT tr(SCK) tf(SCK) tdis(SO) LSB OUT th(SI) M SB IN B I T1 IN LSB IN ai14135 1. Measurement points are done at 0.5VDD and with external CL = 30 pF. Doc ID 023353 Rev 5 99/133 Electrical characteristics STM32F302xx/STM32F303xx Figure 28. SPI timing diagram - master mode(1) (IGH .33INPUT 3#+/UTPUT #0(! #0/, 3#+/UTPUT TC3#+ #0(! #0/, #0(! #0/, #0(! #0/, TW3#+( TW3#+, TSU-) -)3/ ).0 54 TR3#+ TF3#+ -3 "). ") 4). ,3"). TH-) -/3) /54054 " ) 4/54 - 3"/54 TV-/ ,3"/54 TH-/ AI6 1. Measurement points are done at 0.5VDD and with external CL = 30 pF. I2S characteristics Table 62. Symbol Parameter Conditions Min Max fCK I2S clock frequency Master data: 16 bits, audio freq=48 kHz 1.496 1.503 Slave 0 12.288 - 8 1/tc(CK)(1) MHz tr(CK) tf(CK)(1) I S clock rise and fall time Capacitive load CL = 30 pF tw(CKH) (1) I2S clock high time 331 - tw(CKL) (1) I2S clock low time Master fPCLK= 36 MHz, audio frequency = 48 kHz 332 - tv(WS) (1) WS valid time Master mode 4 - th(WS) (1) WS hold time Master mode 4 - tsu(WS) (1) WS setup time Slave mode 4 - th(WS) (1) WS hold time Slave mode 0 - I2S slave input clock duty cycle Slave mode 30 70 Duty Cycle(1) 100/133 2 Doc ID 023353 Rev 5 Unit ns % STM32F302xx/STM32F303xx Electrical characteristics I2S characteristics (continued) Table 62. Symbol Parameter Conditions Min (1) Data input setup time Master receiver 9 tsu(SD_SR) (1) Data input setup time Slave receiver 2 Master receiver 0 Slave receiver 0 tsu(SD_MR) th(SD_MR)(1) th(SD_SR) (1) Unit Data input hold time Data output valid time Slave transmitter (after enable edge) th(SD_ST) (1) Data output hold time Slave transmitter (after enable edge) tv(SD_MT) (1) Data output valid time Master transmitter (after enable edge) th(SD_MT) (1) Data output hold time Master transmitter (after enable edge) tv(SD_ST) (1) Max 29 ns 12 3 2 1. Data based on characterization results, not tested in production. Figure 29. I2S slave timing diagram (Philips protocol)(1) CK Input tc(CK) CPOL = 0 CPOL = 1 tw(CKH) th(WS) tw(CKL) WS input tv(SD_ST) tsu(WS) SDtransmit LSB transmit(2) MSB transmit tsu(SD_SR) SDreceive LSB receive(2) Bitn transmit th(SD_ST) LSB transmit th(SD_SR) MSB receive Bitn receive LSB receive ai14881b 1. Measurement points are done at 0.5VDD and with external CL=30 pF 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. Doc ID 023353 Rev 5 101/133 Electrical characteristics STM32F302xx/STM32F303xx Figure 30. I2S master timing diagram (Philips protocol)(1) tf(CK) tr(CK) CK output tc(CK) CPOL = 0 tw(CKH) CPOL = 1 tv(WS) th(WS) tw(CKL) WS output tv(SD_MT) SDtransmit LSB transmit(2) MSB transmit LSB receive(2) LSB transmit th(SD_MR) tsu(SD_MR) SDreceive Bitn transmit th(SD_MT) MSB receive Bitn receive LSB receive ai14884b 1. Measurement points are done at 0.5VDD and with external CL=30 pF 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. USB characteristics Table 63. USB startup time Symbol tSTARTUP(1) Parameter USB transceiver startup time 1. Guaranteed by design, not tested in production. 102/133 Doc ID 023353 Rev 5 Max Unit 1 µs STM32F302xx/STM32F303xx Table 64. Electrical characteristics USB DC electrical characteristics Symbol Parameter Min.(1) Max.(1) Unit 3.0(3) 3.6 V I(USB_DP, USB_DM) 0.2 - Includes VDI range 0.8 2.5 1.3 2.0 Conditions Input levels VDD USB operating voltage(2) VDI(4) Differential input sensitivity VCM(4) Differential common mode range VSE(4) Single ended receiver threshold V Output levels VOL Static output level low RL of 1.5 kΩ to 3.6 V(5) - 0.3 VOH Static output level high RL of 15 kΩ to VSS(5) 2.8 3.6 V 1. All the voltages are measured from the local ground potential. 2. To be compliant with the USB 2.0 full-speed electrical specification, the USB_DP (D+) pin should be pulled up with a 1.5 kΩ resistor to a 3.0-to-3.6 V voltage range. 3. The STM32F3xxx USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range. 4. Guaranteed by design, not tested in production. 5. RL is the load connected on the USB drivers Figure 31. USB timings: definition of data signal rise and fall time Crossover points Differen tial Data L ines VCRS VS S tf tr ai14137 Doc ID 023353 Rev 5 103/133 Electrical characteristics Table 65. STM32F302xx/STM32F303xx USB: Full-speed electrical characteristics(1) Symbol Parameter Conditions Min Typ Max Unit CL = 50 pF 4 - 20 ns CL = 50 pF 4 - 20 ns tr/tf 90 - 110 % 1.3 - 2.0 V 28 40 44 Ω Driver characteristics tr tf trfm VCRS Rise time(2) Fall time (2) Rise/ fall time matching Output signal crossover voltage Output driver Z Impedance(3) DRV driving high and low 1. Guaranteed by design, not tested in production. 2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0). 3. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-), the matching impedance is already included in the embedded driver. CAN (controller area network) interface Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX). 104/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx 6.3.18 Electrical characteristics ADC characteristics Unless otherwise specified, the parameters given in Table 66 to Table 69 are guaranteed by design, with conditions summarized in Table 22. Table 66. Symbol ADC characteristics Parameter Min Typ Max Unit 2 - 3.6 V 0.14 - 72 MHz Resolution = 12 bits, Fast Channel 0.01 - 5.14 Resolution = 10 bits, Fast Channel 0.012 - 6 Resolution = 8 bits, Fast Channel 0.014 - 7.2 Resolution = 6 bits, Fast Channel 0.0175 - 9 fADC = 72 MHz Resolution = 12 bits - - 5.14 MHz Resolution = 12 bits - - 14 1/fADC Conversion voltage range 0 - VDDA V External input impedance - - 100 kΩ CADC(1) Internal sample and hold capacitor - 5 - pF tCAL(1) Calibration time tlatr(1) Trigger conversion latency Regular and injected channels without conversion abort VDDA Analog supply voltage for ADC fADC ADC clock frequency fS(1) fTRIG(1) VAIN RAIN (1) tlatrinj(1) tS(1) TADCVREG (1) _STUP tCONV(1) Sampling rate External trigger frequency Trigger conversion latency Injected channels aborting a regular conversion Sampling time Conditions fADC = 72 MHz 1.56 µs 112 1/fADC CKMODE = 00 1.5 2 2.5 1/fADC CKMODE = 01 - - 2 1/fADC CKMODE = 10 - - 2.25 1/fADC CKMODE = 11 - - 2.125 1/fADC CKMODE = 00 2.5 3 3.5 1/fADC CKMODE = 01 - - 3 1/fADC CKMODE = 10 - - 3.25 1/fADC CKMODE = 11 - - 3.125 1/fADC fADC = 72 MHz 0.021 - 8.35 µs 1.5 - 601.5 1/fADC - - 10 µs 0.19 - 3.5 µs ADC Voltage Regulator Start-up time Total conversion time (including sampling time) MSPS fADC = 72 MHz Resolution = 12 bits Resolution = 12 bits 14 to 252 (tS for sampling + 12.5 for successive approximation) 1/fADC 1. Data guaranteed by design Doc ID 023353 Rev 5 105/133 Electrical characteristics Table 67. STM32F302xx/STM32F303xx Maximum ADC RAIN Resolution Sampling cycle @ 72 MHz Sampling time [ns] @ 72 MHz 1.5 RAIN max (kΩ) Fast channels(1) Slow channels Other channels(2) 20.83 0.018 NA NA 2.5 34.72 0.150 NA 0.022 4.5 62.50 0.470 0.220 0.180 7.5 104.17 0.820 0.560 0.470 19.5 270.83 2.70 1.80 1.50 61.5 854.17 8.20 6.80 4.70 181.5 2520.83 22.0 18.0 15.0 601.5 8354.17 82.0 68.0 47.0 1.5 20.83 0.082 NA NA 2.5 34.72 0.270 0.082 0.100 4.5 62.50 0.560 0.390 0.330 7.5 104.17 1.20 0.82 0.68 19.5 270.83 3.30 2.70 2.20 61.5 854.17 10.0 8.2 6.8 181.5 2520.83 33.0 27.0 22.0 601.5 8354.17 100.0 82.0 68.0 1.5 20.83 0.150 NA 0.039 2.5 34.72 0.390 0.180 0.180 4.5 62.50 0.820 0.560 0.470 7.5 104.17 1.50 1.20 1.00 19.5 270.83 3.90 3.30 2.70 61.5 854.17 12.00 12.00 8.20 181.5 2520.83 39.00 33.00 27.00 601.5 8354.17 100.00 100.00 82.00 1.5 20.83 0.270 0.100 0.150 2.5 34.72 0.560 0.390 0.330 4.5 62.50 1.200 0.820 0.820 7.5 104.17 2.20 1.80 1.50 19.5 270.83 5.60 4.70 3.90 61.5 854.17 18.0 15.0 12.0 181.5 2520.83 56.0 47.0 39.0 601.5 8354.17 100.00 100.0 100.0 12 bits 10 bits 8 bits 6 bits 1. All fast channels, expect channels on PA2, PA6, PB1, PB12. 2. Channels available on PA2, PA6, PB1 and PB12. 106/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Table 68. Symbol ET Electrical characteristics ADC accuracy - limited test conditions (1)(2) Parameter Min Conditions (3) Fast channel 5.1 Ms - ±3.5 ±6 Slow channel 4.8 Ms - ±4.5 ±7 Fast channel 5.1 Ms - ±3.5 ±6 Slow channel 4.8 Ms - ±3.5 ±6 Fast channel 5.1 Ms - ±1 ±5 Slow channel 4.8 Ms - ±1 ±5 Fast channel 5.1 Ms - ±1 ±3 Slow channel 4.8 Ms - ±1 ±3 Fast channel 5.1 Ms - ±3 ±6 Slow channel 4.8 Ms - ±4 ±6 Fast channel 5.1 Ms - ±1 ±2 Slow channel 4.8 Ms - ±1.5 ±3 Fast channel 5.1 Ms - ±1 ±1 Slow channel 4.8 Ms - ±1 ±1.5 Fast channel 5.1 Ms - ±1 ±1 Slow channel 4.8 Ms - ±1 ±1 Fast channel 5.1 Ms - ±1.5 ±3 Slow channel 4.8 Ms - ±2 ±3 Fast channel 5.1 Ms - ±1 ±2 Slow channel 4.8 Ms - ±1 ±2 Fast channel 5.1 Ms 10.3 10.7 Slow channel 4.8 Ms 10.4 10.7 Fast channel 5.1 Ms 10.9 11.3 Slow channel 4.8 Ms 10.9 11.3 Fast channel 5.1 Ms 64 66 - Slow channel 4.8 Ms 65 66 - Fast channel 5.1 Ms 67 70 - Slow channel 4.8 Ms 67 70 - Single ended Total unadjusted error Differential Single ended EO Offset error Differential Single ended EG Gain error Differential ED EL Differential linearity error Integral linearity error ADC clock freq. ≤ 72 MHz Sampling freq ≤ 5 Msps VDDA = VREF+ = 3.3 V 25°C Typ Max(3) Unit Single ended Differential Single ended Differential LSB - Single ended ENOB Effective number of bits bits - Differential SINAD Signal-tonoise and distortion ratio - Single ended dB Differential Doc ID 023353 Rev 5 107/133 Electrical characteristics Table 68. Symbol STM32F302xx/STM32F303xx ADC accuracy - limited test conditions (1)(2) (continued) Parameter Min Conditions (3) Typ Max(3) Unit Fast channel 5.1 Ms 64 67 Slow channel 4.8 Ms 65 67 Fast channel 5.1 Ms 68 70 Slow channel 4.8 Ms 69 70 Fast channel 5.1 Ms - −75 −72 Slow channel 4.8 Ms - −72 −70 Fast channel 5.1 Ms - −80 −74 Slow channel 4.8 Ms - −76 −71 - Single ended SNR THD Signal-tonoise ratio Total harmonic distortion ADC clock freq. ≤ 72 MHz Sampling freq ≤ 5 Msps VDDA = VREF+ = 3.3 V 25°C - Differential Single ended Differential dB - 1. ADC DC accuracy values are measured after internal calibration. 2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC accuracy. 3. Data based on characterization results, not tested in production. 108/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Table 69. Symbol ET Electrical characteristics ADC accuracy (1)(2)(3) Parameter Min (4) Max(4) Fast channel 5.1 Ms - ±7 Slow channel 4.8 Ms - ±7 Fast channel 5.1 Ms - ±7 Slow channel 4.8 Ms - ±7 Fast channel 5.1 Ms - ±5 Slow channel 4.8 Ms - ±5 Fast channel 5.1 Ms - ±4 Slow channel 4.8 Ms - ±4 Fast channel 5.1 Ms - ±7 Slow channel 4.8 Ms - ±7 Fast channel 5.1 Ms - ±3 Slow channel 4.8 Ms - ±3 Fast channel 5.1 Ms - ±1.5 Slow channel 4.8 Ms - ±1.5 Fast channel 5.1 Ms - ±1.5 Slow channel 4.8 Ms - ±1 Fast channel 5.1 Ms - ±3 Slow channel 4.8 Ms - ±3 Fast channel 5.1 Ms - ±2 Slow channel 4.8 Ms - ±2 Fast channel 5.1 Ms 10.2 Slow channel 4.8 Ms 10.2 Conditions Single Ended Total unadjusted error Differential Single Ended EO Offset error Differential Single Ended EG Gain error Differential ED Differential linearity error ADC clock freq. ≤ 72 MHz, Sampling freq. ≤ 5 Msps 2V ≤ VDDA , VREF+ ≤ 3.6 V Single Ended Differential Single Ended EL Integral linearity error Differential Unit LSB - Single Ended ENOB Effective number of bits bits Fast channel 5.1 Ms 10.8 Slow channel 4.8 Ms 10.8 - Differential Doc ID 023353 Rev 5 - 109/133 Electrical characteristics Table 69. Symbol SINAD ADC accuracy (1)(2)(3) (continued) Parameter Max(4) Fast channel 5.1 Ms - 63 Slow channel 4.8 Ms - 63 Fast channel 5.1 Ms - 67 Slow channel 4.8 Ms - 67 Fast channel 5.1 Ms 64 Slow channel 4.8 Ms 64 Unit Single Ended Differential ADC clock freq. ≤ 72 MHz, Sampling freq. ≤ 5 Msps, 2V ≤ VDDA , VREF+ ≤ 3.6 V - Single Ended dB Fast channel 5.1 Ms 67 Slow channel 4.8 Ms 67 Fast channel 5.1 Ms - −71 Slow channel 4.8 Ms - −69 Fast channel 5.1 Ms - −73 Slow channel 4.8 Ms - −70 - Differential Single Ended Total harmonic distortion THD Min (4) Conditions Signal-tonoise and distortion ratio Signal-tonoise ratio SNR STM32F302xx/STM32F303xx Differential - 1. ADC DC accuracy values are measured after internal calibration. 2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC accuracy. 3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges. 4. Data based on characterization results, not tested in production. Figure 32. ADC accuracy characteristics V V [1LSBIDEAL = REF+ (or DDA depending on package)] 4096 4096 EG 4095 4094 (1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line 4093 (2) ET (3) 7 (1) 6 5 EO 4 EL 3 ED 2 ET=Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO=Offset Error: deviation between the first actual transition and the first ideal one. EG=Gain Error: deviation between the last ideal transition and the last actual one. ED=Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL=Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line. 1 LSBIDEAL 1 0 1 VSSA 110/133 2 3 4 5 6 7 4093 4094 4095 4096 VDDA Doc ID 023353 Rev 5 ai14395b STM32F302xx/STM32F303xx Electrical characteristics Figure 33. Typical connection diagram using the ADC 6$$! RAIN(1) VAIN Sample and hold ADC converter VT 0.6 V RADC AINx Cparasitic VT 0.6 V IL±1 μA 12-bit converter CADC -36 1. Refer to Table 66 for the values of RAIN. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced. General PCB design guidelines Power supply decoupling should be performed as shown in Figure 11. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip. Doc ID 023353 Rev 5 111/133 Electrical characteristics STM32F302xx/STM32F303xx 6.3.19 DAC electrical specifications Table 70. DAC characteristics Symbol VDDA Parameter Analog supply voltage for DAC ON RLOAD(1) Resistive load with buffer ON RO (1) Impedance output with buffer OFF CLOAD(1) Capacitive load Min Typ Max Unit 2.4 - 3.6 V 5 - - kΩ Comments - - 15 When the buffer is OFF, the Minimum resistive load between DAC_OUT kΩ and VSS to have a 1% accuracy is 1.5 MΩ - - 50 Maximum capacitive load at pF DAC_OUT pin (when the buffer is ON). It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xF1C) at VDDA = 3.6 V and (0x155) and (0xEAB) at VDDA = 2.4 V DAC_OUT Lower DAC_OUT voltage min(1) with buffer ON 0.2 - - V DAC_OUT Higher DAC_OUT voltage max(1) with buffer ON - - VDDA – 0.2 V DAC_OUT Lower DAC_OUT voltage min(1) with buffer OFF - 0.5 - mV DAC_OUT Higher DAC_OUT voltage max(1) with buffer OFF - - VDDA – 1LSB V DAC DC current consumption in quiescent mode (Standby mode)(2) - - 380 µA With no load, middle code (0x800) on the input - - 480 µA With no load, worst code (0xF1C) on the input Differential non linearity Difference between two consecutive code-1LSB) - - ±0.5 LSB Given for a 10-bit input code - - ±2 LSB Given for a 12-bit input code Integral non linearity (difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023) - - ±1 LSB Given for a 10-bit input code - - ±4 LSB Given for a 12-bit input code - - ±10 mV - - ±3 LSB Given for a 10-bit input code at VDDA = 3.6 V - - ±12 LSB Given for a 12-bit input code at VDDA = 3.6 V - - ±0.5 IDDA(3) DNL(3) INL(3) Offset(3) Gain error(3) 112/133 Offset error (difference between measured value at Code (0x800) and the ideal value = VDDA/2) Gain error It gives the maximum output excursion of the DAC. Doc ID 023353 Rev 5 % Given for a 12-bit input code STM32F302xx/STM32F303xx Table 70. Symbol Electrical characteristics DAC characteristics (continued) Min Typ Max Settling time (full scale: for a 10-bit input code transition between the lowest and the (3) tSETTLING highest input codes when DAC_OUT reaches final value ±1LSB - 3 4 µs CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB) - - 1 MS/s CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ Wakeup time from off state tWAKEUP(3) (Setting the ENx bit in the DAC Control register) - 6.5 10 CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ µs input code between lowest and highest possible ones. Power supply rejection ratio PSRR+ (1) (to VDDA) (static DC measurement - –67 –40 dB No RLOAD, CLOAD = 50 pF Update rate(3) Parameter Unit Comments 1. Guaranteed by design, not tested in production. 2. Quiescent mode refers to the state of the DAC a keeping steady value on the output, so no dynamic consumption is involved. 3. Data based on characterization results, not tested in production. Figure 34. 12-bit buffered /non-buffered DAC Buffered/Non-buffered DAC Buffer(1) R LOAD 12-bit digital to analog converter DACx_OUT C LOAD ai17157 1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register. Doc ID 023353 Rev 5 113/133 Electrical characteristics STM32F302xx/STM32F303xx 6.3.20 Comparator characteristics Table 71. Comparator characteristics Symbol VDDA Parameter Conditions Min(1) Typ Max(1) Unit Analog supply voltage 2 - 3.6 VIN Comparator input voltage range 0 - VDDA VBG Scaler input voltage - 1.2 - VSC Scaler offset voltage - ±5 ±10 mV tS_SC Scaler startup time from power down - - 0.1 ms tSTART Comparator startup time Startup time to reach propagation delay specification - - 60 µs Ultra-low power mode - 2 4.5 - 0.7 1.5 - 0.3 0.6 VDDA ≥ 2.7 V - 50 100 VDDA < 2.7 V - 100 240 Ultra-low power mode - 2 7 Low power mode - 0.7 2.1 Medium power mode - 0.3 1.2 VDDA ≥ 2.7 V - 90 180 VDDA < 2.7 V - 110 300 Low power mode Propagation delay for 200 mV step with 100 mV Medium power mode overdrive High speed mode tD Propagation delay for full range step with 100 mV overdrive High speed mode V µs ns µs ns Voffset Comparator offset error - ±4 ±10 mV dVoffset/dT Offset error temperature coefficient - 18 - µV/° C Ultra-low power mode - 1.2 1.5 Low power mode - 3 5 Medium power mode - 10 15 High speed mode - 75 100 IDD(COMP) 114/133 COMP current consumption µA Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Table 71. Symbol Electrical characteristics Comparator characteristics (continued) Parameter Conditions No hysteresis (COMPxHYST[1:0]=00) Vhys Comparator hysteresis Min(1) Typ Max(1) Unit - High speed mode Low hysteresis (COMPxHYST[1:0]=01) All other power modes 3 High speed mode Medium hysteresis (COMPxHYST[1:0]=10) All other power modes 7 High speed mode High hysteresis (COMPxHYST[1:0]=11) All other power modes 18 0 13 8 5 10 26 mV 15 9 19 49 31 19 40 1. Data based on characterization results, not tested in production. Doc ID 023353 Rev 5 115/133 Electrical characteristics STM32F302xx/STM32F303xx 6.3.21 Operational amplifier characteristics Table 72. Operational amplifier characteristics(1) Symbol Parameter VDDA Analog supply voltage CMIR Common mode input range Condition 25°C, No Load on output. Maximum calibration range All voltage/Temp. VIOFFSET Min Typ Max Unit 2.4 - 3.6 V 0 - VDDA V - - 4 - - 6 Input offset voltage mV 25°C, No Load on output. - - 1.6 All voltage/Temp. - - 3 Input offset voltage drift - 5 - µV/°C ILOAD Drive current - - 500 µA IDDOPAMP Consumption - 690 1450 µA - 90 - dB 73 117 - dB After offset calibration ΔVIOFFSET No load, quiescent mode CMRR Common mode rejection ratio PSRR Power supply rejection ratio GBW Bandwidth - 8.2 - MHz SR Slew rate - 4.7 - V/µs RLOAD Resistive load 4 - - kΩ CLOAD Capacitive load - - 50 pF Rload = min, Input at VDDA. - - 100 Rload = 20K, Input at VDDA. - - 20 Rload = min, input at 0V - - 100 Rload = 20K, input at 0V. - - 20 Phase margin - 62 - ° Offset trim time: during calibration, minimum time needed between two steps to have 1 mV accuracy - - 2 ms - 2.8 5 µs VOHSAT VOLSAT ϕm tOFFTRIM tWAKEUP 116/133 DC High saturation voltage mV Low saturation voltage Wake up time from OFF state. CLOAD ≤ 50 pf, RLOAD ≥ 4 kΩ, Follower configuration Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Table 72. Operational amplifier characteristics(1) Symbol PGA gain Rnetwork Electrical characteristics Parameter Condition Min Typ Max - 2 - - 4 - - 8 - - 16 - Gain=2 - 5.4/5.4 - Gain=4 - 16.2/5.4 - Gain=8 - 37.8/5.4 - Gain=16 - 40.5/2.7 - -1% - 1% - - ±0.2(3) Non inverting gain value R2/R1 internal resistance values in PGA mode (2) kΩ PGA gain error PGA gain error Ibias Unit OPAMP input bias current µA 1. Data guaranteed by design. 2. R2 is the internal resistance between OPAMP output and OPAMP inverting input. R1 is the internal resistance between OPAMP inverting input and ground. The PGA gain =1+R2/R1 3. Mostly TTa I/O leakage, when used in analog mode. Doc ID 023353 Rev 5 117/133 Electrical characteristics 6.3.22 STM32F302xx/STM32F303xx Temperature sensor characteristics Table 73. TS characteristics Symbol Parameter TL(1) Avg_Slope Min Typ Max Unit - ±1 ±2 °C Average slope 4.0 4.3 4.6 mV/°C Voltage at 25 °C 1.34 1.43 1.52 V 4 - 10 µs 2.2 - - µs VSENSE linearity with temperature (1) V25 tSTART(1) TS_temp(1)(2) Startup time ADC sampling time when reading the temperature 1. Guaranteed by design, not tested in production. 2. Shortest sampling time can be determined in the application by multiple iterations. Table 74. Temperature sensor calibration values Calibration value name 6.3.23 Description Memory address TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V 0x1FFF F7B8 - 0x1FFF F7B9 TS_CAL2 TS ADC raw data acquired at temperature of 110 °C VDDA= 3.3 V 0x1FFF F7C2 - 0x1FFF F7C3 VBAT monitoring characteristics Table 75. VBAT monitoring characteristics Symbol Parameter Min Typ Max Unit KΩ R Resistor bridge for VBAT - 50 - Q Ratio on VBAT measurement - 2 - Error on Q -1 - +1 % ADC sampling time when reading the VBAT 1mV accuracy 2.2 - - µs Er(1) TS_vbat(1)(2) 1. Guaranteed by design, not tested in production. 2. Shortest sampling time can be determined in the application by multiple iterations. 118/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Package characteristics 7 Package characteristics 7.1 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Doc ID 023353 Rev 5 119/133 Package characteristics STM32F302xx/STM32F303xx Figure 35. LQFP100 – 14 x 14 mm, 100-pin low-profile quad flat package outline C ! ! ! 3%!4).' 0,!.% # MM '!5'%0,!.% , $ + ! CCC # , $ $ 0). )$%.4)&)#!4)/. % % % B E ,?-%?6 1. Drawing is not to scale. Table 76. LQPF100 – 14 x 14 mm, low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ A 0.05 A2 1.35 b 0.17 c 0.09 D 15.80 D1 13.80 D3 120/133 Min Typ 1.60 A1 E Max 0.063 0.15 0.002 1.40 1.45 0.0531 0.0551 0.0571 0.22 0.27 0.0067 0.0087 0.0106 0.2 0.0035 16.00 16.2 0.622 0.6299 0.6378 14.00 14.2 0.5433 0.5512 0.5591 12.00 15.80 Max 16.00 0.0059 0.0079 0.4724 16.2 Doc ID 023353 Rev 5 0.622 0.6299 0.6378 STM32F302xx/STM32F303xx Table 76. Package characteristics LQPF100 – 14 x 14 mm, low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol E1 Min Typ Max Min Typ Max 13.80 14.00 14.2 0.5433 0.5512 0.5591 E3 12.00 0.4724 e 0.50 0.0197 L 0.45 0.60 L1 K 0.75 0.0177 0.0236 1.00 0° 0.0295 0.0394 3.5° 7° ccc 0° 3.5° 0.08 7° 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 36. Recommended footprint 75 51 76 50 0.5 0.3 16.7 14.3 100 26 1.2 1 25 12.3 16.7 ai14906b 1. Dimensions are in millimeters. Doc ID 023353 Rev 5 121/133 Package characteristics STM32F302xx/STM32F303xx Figure 37. LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package outline C ! ! ! 3%!4).' 0,!.% # MM '!5'%0,!.% ! CCC # + , $ , $ $ 0). )$%.4)&)#!4)/. % % % B E 7?-%?6 1. Drawing is not to scale. Table 77. LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ A 0.05 A2 1.350 b 0.17 c 0.09 D 11.80 D1 9.80 122/133 Min Typ 1.60 A1 D3 Max Max 0.0630 0.15 0.0020 1.40 1.45 0.0531 0.0551 0.0571 0.22 0.27 0.0067 0.0087 0.0106 0.20 0.0035 12.00 12.20 0.4646 0.4724 0.4803 10.00 10.20 0.3858 0.3937 0.4016 7.50 0.0059 0.0079 0.2953 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Table 77. Package characteristics LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max E 11.80 12.00 12.20 0.4646 0.4724 0.4803 E1 9.80 10.00 10.20 0.3858 0.3937 0.4016 E3 7.50 0.2953 e 0.50 0.0197 L 0.45 L1 K 0.60 0.75 0.0177 0.0236 1.00 0° 0.0295 0.0394 3.5° 7° ccc 0° 3.5° 0.08 7° 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 38. Recommended footprint AIB 1. Dimensions are in millimeters. Doc ID 023353 Rev 5 123/133 Package characteristics STM32F302xx/STM32F303xx Figure 39. LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package outline C ! ! ! 3%!4).' 0,!.% # MM '!5'%0,!.% CCC # + ! $ $ , , $ 0). )$%.4)&)#!4)/. % % % B E "?-%?6 1. Drawing is not to scale. Table 78. LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ A Max Min Typ 1.60 A1 0.05 A2 1.35 b 0.17 c 0.09 D 8.80 D1 6.80 D3 Max 0.0630 0.15 0.0020 1.40 1.45 0.0531 0.0551 0.0571 0.22 0.27 0.0067 0.0087 0.0106 0.20 0.0035 9.00 9.20 0.3465 0.3543 0.3622 7.00 7.20 0.2677 0.2756 0.2835 5.50 0.0059 0.0079 0.2165 E 8.80 9.00 9.20 0.3465 0.3543 0.3622 E1 6.80 7.00 7.20 0.2677 0.2756 0.2835 E3 5.50 0.2165 e 0.50 0.0197 124/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Table 78. Package characteristics LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol L Min Typ Max Min Typ Max 0.45 0.60 0.75 0.0177 0.0236 0.0295 7° 0° L1 K 1.00 0° 0.0394 3.5° ccc 3.5° 0.08 7° 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 40. Recommended footprint AID 1. Dimensions are in millimeters. Doc ID 023353 Rev 5 125/133 Package characteristics 7.2 STM32F302xx/STM32F303xx Thermal characteristics The maximum chip junction temperature (TJmax) must never exceed the values given in Table 22: General operating conditions on page 58. The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max x ΘJA) Where: ● TA max is the maximum ambient temperature in °C, ● ΘJA is the package junction-to-ambient thermal resistance, in °C/W, ● PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), ● PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Table 79. Package thermal characteristics Symbol ΘJA 7.2.1 Parameter Value Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch 45 Thermal resistance junction-ambient LQFP48 - 7 × 7 mm 55 Thermal resistance junction-ambient LQFP100 - 14 × 14 mm / 0.5 mm pitch 41 Unit °C/W Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org 126/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx 7.2.2 Package characteristics Selecting the product temperature range When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in Section 8: Part numbering. Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature. As applications do not commonly use the STM32F30xB/C at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application. The following examples show how to calculate the temperature range needed for a given application. Example 1: High-performance application Assuming the following application conditions: Maximum ambient temperature TAmax = 82 °C (measured according to JESD51-2), IDDmax = 50 mA, VDD = 3.5 V, maximum 3 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V and maximum 2 I/Os used at the same time in output at low level with IOL = 20 mA, VOL= 1.3 V PINTmax = 50 mA × 3.5 V= 175 mW PIOmax = 3 × 8 mA × 0.4 V + 2 × 20 mA × 1.3 V = 61.6 mW This gives: PINTmax = 175 mW and PIOmax = 61.6 mW: PDmax = 175 + 61.6 = 236.6 mW Thus: PDmax = 236.6 mW Using the values obtained in Table 79 TJmax is calculated as follows: – For LQFP64, 45°C/W TJmax = 82 °C + (45°C/W × 236.6 mW) = 82 °C + 10.65 °C = 92.65 °C This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C). In this case, parts must be ordered at least with the temperature range suffix 6 (see Section 8: Part numbering). Example 2: High-temperature application Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature TJ remains within the specified range. Assuming the following application conditions: Maximum ambient temperature TAmax = 115 °C (measured according to JESD51-2), IDDmax = 20 mA, VDD = 3.5 V, maximum 9 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V PINTmax = 20 mA × 3.5 V= 70 mW PIOmax = 9 × 8 mA × 0.4 V = 28.8 mW This gives: PINTmax = 70 mW and PIOmax = 28.8 mW: PDmax = 70 + 28.8 = 98.8 mW Thus: PDmax = 98.8 mW Doc ID 023353 Rev 5 127/133 Package characteristics STM32F302xx/STM32F303xx Using the values obtained in Table 79 TJmax is calculated as follows: – For LQFP100, 41°C/W TJmax = 115 °C + (41°C/W × 98.8 mW) = 115 °C + 4.05 °C = 119.05 °C This is within the range of the suffix 7 version parts (–40 < TJ < 125 °C). In this case, parts must be ordered at least with the temperature range suffix 7 (see Section 8: Part numbering). 128/133 Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Part numbering 8 Part numbering Table 80. Ordering information scheme Example: STM32 F 303 R B T 6 xxx Device family STM32 = ARM-based 32-bit microcontroller Product type F = general-purpose Device subfamily 302 = STM32F302xx 303 = STM32F303xx Pin count C = 48 pins R = 64 pins V = 100 pins Flash memory size B = 128 Kbytes of Flash memory (medium density) C = 256 Kbytes of Flash memory (high density) Package T = LQFP Temperature range 6 = Industrial temperature range, –40 to 85 °C 7 = Industrial temperature range, –40 to 105 °C Options xxx = programmed parts TR = tape and reel Doc ID 023353 Rev 5 129/133 Revision history 9 STM32F302xx/STM32F303xx Revision history Table 81. 130/133 Document revision history Date Revision Changes 22-Jun-2012 1 Initial release 07-Sep-2012 2 Modified Features on cover page. Modified Table 2: STM32F301xx family device features and peripheral counts Added clock tree to Section 3.8: Clocks and startup Added Table 5: STM32F30xB/C I2C implementation Added Table 6: USART features Added Table 7: STM32F30xB/C SPI/I2S implementation Modified Table 8: Capacitive sensing GPIOs available on STM32F302xx/STM32F303xx devices Modified Figure 5, Figure 6 and Figure 7: STM32F302xx/STM32F303xx LQFP100 pinout Modified Table 11: STM32F302xx/STM32F303xx pin definitions Modified Figure 11: Power supply scheme Modified Table 19: Voltage characteristics Modified Table 20: Current characteristics Modified Table 23: Operating conditions at power-up / power-down Added footnote to Table 29: Typical and maximum current consumption from the VDDA supply Added footnote to Table 33 and Table 34: Typical current consumption in Sleep mode, code running from Flash or RAM Removed table “Switching output I/O current consumption” and table “Peripheral current consumption” Added note under Figure 17: Typical application with a 32.768 kHz crystal Updated Table 42: HSI oscillator characteristics Updated Wakeup time from low-power mode and Table 37: Low-power mode wakeup timings Updated Table 45: Flash memory characteristics Updated Table 50: Electrical sensitivities Updated Table 51: I/O current injection susceptibility Updated Table 52: I/O static characteristics Updated Table 53: Output voltage characteristics Updated Table 55: NRST pin characteristics Updated Table 61: SPI characteristics Updated Table 62: I2S characteristics Corrected LQFP100 in Section 7.2.3: Selecting the product temperature range 21-Sep-2012 3 Updated Table 61: SPI characteristics Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Table 81. Revision history Document revision history Date 05-Dec-2012 Revision Changes 4 Updated first page Removed references to VDDSDx and VSSSD Added reference to PM0214 in Section 1 Moved Temp. sensor calibartion values toTable 74 and VREF calibration values to Table 27 Updated Table 2: STM32F30xB/C family device features and peripheral counts on page 10 UpdatedSection 3.4: Embedded SRAM on page 14 Updated Section 3.2: Memory protection unit (MPU) on page 13 Updated Section 3.23: Universal serial bus (USB) on page 28 Modified Section 3.25: Touch sensing controller (TSC) on page 29 Updated heading of Table 6: USART features on page 27 Updated Table 11: STM32F302xx/STM32F303xx pin definitions on page 36 Added notes to PC13, PC14 and PC15 in Table 11: STM32F302xx/STM32F303xx pin definitions on page 36 Updated Figure 11: Power supply scheme on page 54 Modified Table 19: Voltage characteristics on page 56 Modified Table 20: Current characteristics on page 57 Modified Table 22: General operating conditions on page 58 Modified Figure 13: Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0] = ’00’) on page 66 Updated Section 6.3.14: I/O port characteristics on page 87 Updated Table 28: Typical and maximum current consumption from VDD supply at VDD = 3.6V on page 62 and Table 29: Typical and maximum current consumption from the VDDA supply on page 63 Updated Table 30: Typical and maximum VDD consumption in Stop and Standby modes on page 65 and Table 31: Typical and maximum VDDA consumption in Stop and Standby modes on page 65 Updated Table 32: Typical and maximum current consumption from VBAT supply on page 66 Added Figure 13: Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0] = ’00’) Updated Table 33: Typical current consumption in Run mode, code with data processing running from Flash on page 67 and Table 34: Typical current consumption in Sleep mode, code running from Flash or RAM on page 68 Added Table 36: Peripheral current consumption on page 71 Added Table 35: Switching output I/O current consumption on page 70 Updated Section 6.3.6: Wakeup time from low-power mode on page 73 Modified ESD absolute maximum ratings on page 84 Modified Table 53: Output voltage characteristics on page 90 Updated EMI characteristics on page 84 Updated Table 54: I/O AC characteristics on page 91 Updated Table 51: I/O current injection susceptibility on page 86 Updated Table 56: TIMx characteristics on page 93 Updated Section 7.2: Thermal characteristics on page 126 Added Table 67: Maximum ADC RAIN on page 106 Added Table 68: ADC accuracy - limited test conditions on page 107 Updated Table 69: ADC accuracy on page 109 Updated Table 70: DAC characteristics on page 112 Updated Table 72: Operational amplifier characteristics on page 116 Updated figures and tables in Section 7: Package characteristics Doc ID 023353 Rev 5 131/133 Revision history STM32F302xx/STM32F303xx Table 81. Document revision history Date 08-Jan-2013 132/133 Revision Changes 5 Updated Vhys and Ilkg in Table 52: I/O static characteristics. Updated VIL(NRST), VIH(NRST), and VNF(NRST) in Table 55: NRST pin characteristics. Updated Table 68: ADC accuracy - limited test conditions and Table 69: ADC accuracy. Doc ID 023353 Rev 5 STM32F302xx/STM32F303xx Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com Doc ID 023353 Rev 5 133/133