34.807IRELESS IMPORTANT NOTICE Dear customer, As from August 2nd 2008, the wireless operations of STMicroelectronics have moved to a new company, ST-NXP Wireless. As a result, the following changes are applicable to the attached document. ● Company name - STMicroelectronics NV is replaced with ST-NXP Wireless. ● Copyright - the copyright notice at the bottom of the last page “© STMicroelectronics 200x - All rights reserved”, shall now read: “© ST-NXP Wireless 200x - All rights reserved”. ● Web site - http://www.st.com is replaced with http://www.stnwireless.com ● Contact information - the list of sales offices is found at http://www.stnwireless.com under Contacts. If you have any questions related to the document, please contact our nearest sales office. Thank you for your cooperation and understanding. ST-NXP Wireless 34.807IRELESS www.stnwireless.com STw4811M STw4811N 34.807IRELESS Power management for multimedia processors Features ■ 2 step-down converters – 1 to 1.45 V with 15 steps at 700 mA – 1.8 V at 600 mA for general purpose usage ■ 3 low-drop output regulators for different uses – PLL analog supplies: 1.05 V, 1.2 V, 1.3 V 1.8 V - 10 mA – Processor analog functions: 2.5 V - 10 mA – Auxiliary device: 1.5 V, 1.8V , 2.5 V, 2.8 V - 150 mA ■ USB OTG module – Full and low speed USB OTG transceiver – Charge-pump (5 V, 100 mA) for USB cable ■ Mass memory cards (SD/MMC/SDIO) – 1 linear regulator: 1.8 V, 1.85 V, 2.6 V, 2.7 V, 2.85 V, 3 V, 3.3 V - 150 mA – Level shifter ■ Miscellaneous – 32 kHz control for multimedia processor – Processor supply monitoring – Processor reset control – 2 serial I2C interfaces STw4811 TFBGA 84 6x6x1.2mm 0.5mm pitch STw4811 VFBGA 84 4.6x4.6x1.0mm 0.4mm pitch Description STw4811 is a power management companion chip for multimedia processors used in portable applications. It supplies the multimedia processor including its memories and peripherals. STw4811 supports the main mass memory standard cards. SDIOTM is also supported and allows to connect multimedia peripherals like cameras. Applications ■ ST NomadikTM STn881x ■ Multimedia processor ■ Mobile phones, PDA, videophone August 2008 Rev 3 1/85 www.stnwireless.com 1 Contents STw4811M/STw4811N Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Ball information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 3.1 Ball connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Ball functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 Digital control module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.3 4.4 4.5 4.2.1 State machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2.2 POWER OFF / VDDOK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2.3 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2.4 I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2.5 Control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2.6 IT generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2.7 Clock switching and control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Power management module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3.1 Bandgap, biasing and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3.2 VCORE regulator: DC/DC STEP- DOWN regulator . . . . . . . . . . . . . . . 41 4.3.3 VIO_VMEM regulator: DC/DC step- down regulator . . . . . . . . . . . . . . . 41 4.3.4 VPLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3.5 VANA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3.6 VAUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3.7 Power supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3.8 Power supply domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3.9 Thermal shut-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 USB OTG module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.4.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.4.2 Modes and operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.4.3 USB enable control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 SD/MMC/SDIO module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.5.1 2/85 SD/MMC/SDIO LDO supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 34.807IRELESS STw4811M/STw4811N 4.5.2 5 7 Level shifters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Electrical and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.1 Absolute maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.2 Package dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.3 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.4 6 Contents 5.3.1 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3.2 VREF18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3.3 VCORE DC/DC step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.3.4 VIO_VMEM DC/DC step-down converter . . . . . . . . . . . . . . . . . . . . . . . 59 5.3.5 LDO regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.3.6 Power supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Digital specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.4.1 CMOS input/output static characteristics: I2C interface . . . . . . . . . . . . . 64 5.4.2 CMOS input/output dynamic characteristics: I2C interface . . . . . . . . . . 65 5.4.3 CMOS input/output static characteristics: VIO level . . . . . . . . . . . . . . . 66 5.4.4 CMOS input/output static characteristics: VBAT level . . . . . . . . . . . . . . . 68 5.4.5 CMOS input/output static characteristics: VMMC level . . . . . . . . . . . . . 69 5.5 USB OTG transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.6 SD/MMC/SDIO card interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.1 Components list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.2 Application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.1 TFBGA 84 balls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.2 VFBGA 84 balls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 34.807IRELESS 3/85 List of tables STw4811M/STw4811N List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. 4/85 STw4811 ball connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 STw4811 balls function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Device ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Register address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Register data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Register general information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Power control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 USB register address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Vendor ID and Product ID: Read only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 USB control register 1 (address = 04h set and 05h clearh) . . . . . . . . . . . . . . . . . . . . . . . . 25 USB control register 2 (address = 06h set and 07h clearh) . . . . . . . . . . . . . . . . . . . . . . . . 26 USB Interrupt source register (address = 08h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 USB interrupt latch registers (address = 0Ah set and 0Bh clearh) . . . . . . . . . . . . . . . . . . . 27 USB interrupt enable low register (address = 0Ch and 0Dh) . . . . . . . . . . . . . . . . . . . . . . . 28 USB interrupt enable high register (address = 0Eh and 0Fh). . . . . . . . . . . . . . . . . . . . . . . 28 USB EN register (address = 10h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Configuration 1 register (11h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Power control register - General information (address = 1Eh) . . . . . . . . . . . . . . . . . . . . . . 31 Power control register - General information (address = 1Fh) . . . . . . . . . . . . . . . . . . . . . . 31 Power control register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Power control register at address 05h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Power control register at address 06h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Power control register at address 07h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Power control register at address 08h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Power control register at address 09h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Power control register at address 0Ah . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Configuration 2 register at address = 20h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 VCORE_sleep register at address = 21h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Power supply domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Thermal threshold values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Data transmission via USB control register 1 (DAT_SE0 mode) - Suspend = 0 . . . . . . . . 48 Data transmission via USB control register 1 (DAT_SE0 mode) - Suspend = 1 . . . . . . . . 49 Data receiver via USB control register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 STw4811 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Package dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Operating conditions (temperature range: -30 to +85 °C). . . . . . . . . . . . . . . . . . . . . . . . . . 57 VREF18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 VCORE DC/DC step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 VIO_VMEM DC/DC step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 LDO regulators - VPLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 LDO regulators - VANA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 LDO regulators - VAUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Power supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 CMOS input/output static characteristics: I²C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 CMOS input/output dynamic characteristics: I²C interface . . . . . . . . . . . . . . . . . . . . . . . . . 65 VIO level: USB and control I/Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 VIO level: MMC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 34.807IRELESS STw4811M/STw4811N Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 56. Table 57. Table 58. Table 59. List of tables CMOS input/output static characteristics: VBAT level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 CMOS input/output static characteristics VMMC level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 USB OTG transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 SD/MMC/SDIO card interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Components list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Recommended coils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 TFBGA 84 balls 6x6x1.2mm body size / 0.5 ball pitch dimensions . . . . . . . . . . . . . . . . . . 79 VFBGA 84 balls / 4.6x4.6x1.0 mm body size / 0.4 mm ball pitch . . . . . . . . . . . . . . . . . . . . 81 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 34.807IRELESS 5/85 List of figures STw4811M/STw4811N List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. 6/85 Typical mobile multimedia system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 STw4811 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Start-up timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Switching power to sleep timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 VDDOK block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 I2C interface block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Control interface: I2C format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Control interface: I2C timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Clock switching between master and internal clock (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Block diagram of biasing and references of the device . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ‘vcore_available’ bit behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Thermal threshold temperatures for ‘it_warn’ bit and VDDOK ball . . . . . . . . . . . . . . . . . . . 45 USB OTG transceiver block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 SD/MMC/SDIO block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Propagation and clock/data skew times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 STw4811 application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 TFBGA 84 balls 6x6x1.2mm body size / 0.5 ball pitch drawing . . . . . . . . . . . . . . . . . . . . . 80 VFBGA 84 balls 4.6x4.6x1.0 mm ball pitch 0.4 drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 34.807IRELESS STw4811M/STw4811N 1 Overview Overview The STw4811 power management device has the following features: ● ● ● ● ● 34.807IRELESS Power management module – 1 step-down converter for processor core (1 V to 1.45 V with 15 steps at 700 mA) – 1 step-down converter (1.8 V at 600 mA) for general purpose usage such as processor input/output supply, external memory, DDR and SDRAM and peripherals – 1 low-drop output regulator for analog supplies, such as PLL (1.05 V, 1.2 V, 1.3 V, 1.8 V at 10 mA) – 1 low-drop output regulator for processor analog functions (2.5 V at 10 mA) – 1 low-drop output regulator for auxiliary devices (1.5 V, 1.8 V, 2.5 V, 2.8 V at 150 mA) Auxiliary device – STw4811M: Vaux OFF at start up – STw4811N: Vaux ON at start up USB OTG module – Full and low speed USB OTG transceiver – 1 linear regulator 3.1 V supplying transceiver – 1 charge-pump (5 V at 100 mA) supplying VBUS line of the USB cable Mass memory cards (SD/MMC/SDIO) – 1 linear regulator (1.8 V, 1.85 V, 2.6 V, 2.7 V, 2.85 V, 3 V, 3.3 V at 150 mA) – Level shifters Miscellaneous – 32 kHz control for multimedia processor – Processor supply monitoring – Processor reset control – 2 serial I2C interfaces 7/85 Overview STw4811M/STw4811N Figure 1. Typical mobile multimedia system 1 STw4811 8/85 34.807IRELESS STw4811M/STw4811N Functional block diagram 2 Functional block diagram Figure 2. STw4811 block diagram V B A T _ V IO _ V M E M V IO _ V M E M V L X _ V IO _ V M E M V B A T _ D IG V M IN U S _ D IG VBAT_V C O R E V M IN U S _ V IO _ V M E M VCORE VLX_VC O R E V M IN U S _ V C O R E V IO _ V M E M VCORE STEP DOW N STEP DOW N V BAT_AN A V M IN U S _ A N A M AS TER _C LK C L K 3 2 K _ IN C LK 32K IN T E R N A L REFERENCE O S C IL L A T O R SOFT START C L O C K S W IT C H IN G & CONTROL VP LL LDO TC XO _E N 1 .0 5 , 1 . 2 , 1 . 3 , 1 . 8 V R E Q U E ST_M C THERMAL PON SHUTDOW N PORn GENERAL SUPPLY PW REN CONTROL M O N IT O R I N G V AN A LD O V AU X LD O PORn 1 . 5 , 1 . 8 , 2 .5 , 2 .8 V VBAT 150 m A U S B IN T n VANA V BAT_VA U X VAUX STw 4811 USB IT _ W A K E _ U P V BAT_VP LL_VAN A 2 .5 V / 1 0 m A SW RESETn GPO2 V PLL 10 m A VDDOK GPO1 V R EF_18 V O LTAG E CONTROL CP I2 C US B O TG IN T E R F A C E t r a n s c e iv e r SDA CHARGE PUMP 5 V / 100 m A VBUS V BAT_U SB SCL I2 C USBSDA CN CONTROL MUX VUSB USBSCL VUSB 3 .1 V USBOEn ID D R IV E R S USBVP USBVM USBRCV & P ULL U P & LEV EL PULL DOW N DP DN S H IF T E R S V M IN U S _ U S B M C C M D D IR VMMC M C D A T 0 D IR M C D A T 2 D IR 1 .8 , 1 .8 5 , 2 . 6 , 2 . 7 CONTROL VBAT_M M C VMMC 2 .8 5 , 3 , 3 . 3 V M C D A T 3 1 D IR 150 m A LATC H C LK M C FBC LK M C C LK C LKO U T MCCMD CMDOUT MCDATA0 LEVEL DATA0 MCDATA1 S H IF T E R S DATA1 MCDATA2 DATA2 MCDATA3 DATA3 S D /M M C I N T E R F A C E 34.807IRELESS 9/85 Ball information STw4811M/STw4811N 3 Ball information 3.1 Ball connections Table 1. STw4811 ball connections 1 2 3 6 7 8 9 10 CLK32K_IN VMINUS_ VIO_VMEM VLX_VIO_ VMEM VAUX VANA VPLL VREF_18 VCORE B “Reserved” REQUEST_ VMINUS_ VBAT_VIO_ MC VIO_VMEM VMEM VMINUS_ ANA VBAT_ VAUX “Reserved” “Reserved” “Reserved” VMINUS_ VCORE C TCXO_EN IT_WAKE_ UP VMINUS_ DIG “Reserved” VBAT_ANA VBAT_ VPLL_ANA PON VMINUS_ VCORE VLX_ VCORE D VBAT_DIG MASTER_ CLK “reserved” VLX_ VCORE VBAT_ VCORE VBAT_ VCORE E DATAOUT0 DATAOUT <1> DATAOUT <2> ID DP DN F DATAOUT <3> CMDOUT LATCHCLK “Reserved” VBAT_USB VUSB G CLKOUT MCCLK MCCMD DIR “Reserved” USBSCL VBUS H MCCMD MCDATA <3> MCDATA <1> MCDATA31 DIR MCFBCLK PWREN SDA USBINTn USBSDA CP J MCDATA <2> VDDOK PORN VBAT_ MMC GPO1 SCL USBVP USBVM VMINUS_ USB CN K MCDATA0 MCDAT0 DIR CLK32K SW_ RESET VMMC GPO2 USBRCV USBOEn MCDAT2 DIR “Reserved” A 3.2 4 5 VBAT_VIO_ VIO_VMEM VMEM VLX_VIO_ VMEM Ball functions STw4811 includes the following ball types ● VDDD/VDDA: digital/analog power supply ● VSSD/VSSA: digital/analog ground supply ● DO/DI/DIO: digital output / digital input / digital input output ● DOz: digital output with high impedance capability ● AO/AI/AIO: analog output / analog input / analog input-output ● G: to be connected to ground ● O: to be left open ● Int-Ref: associated to internal reference Table 2 details the ballout. 10/85 34.807IRELESS STw4811M/STw4811N Table 2. Ball information STw4811 balls function Ball Ball name Ball type Description General supplies D1 VBAT_DIG VDDD-VBAT Battery supply for digital/oscillator C3 VMINUS_DIG VSSD Ground for digital and oscillator C6 VBAT_ANA VDDA-VBAT Battery supply for analog B5 VMINUS_ANA VSSA Ground for analog F9 VBAT_USB VDDA-VBAT Battery supply for USB block J9 VMINUS_USB VSSA Ground for USB block A9 VREF_18 Int-Ref Internal reference Control balls C8 PON DI(VBAT) Pull down 1.5MΩ Power-on and reset K4 SW_RESETn DI(VIO_VMEM) Pull up 1.5MΩ Software reset. Reset all registers except power control and configuration 2 (address 20h) registers when SW_RESETn = 0 J2 VDDOK DO(VIO_VMEM) Supply monitoring for multimedia processors. Interruption for high temperature warning J3 PORn DO(VIO_VMEM) Multimedia processor Resetn H6 PWREN DI(VIO_VMEM) Pull Up 1.5MΩ Sleep mode from multimedia processor C1 TCXO_EN DI(VIO_VMEM) Pull Down 1.5MΩ Request of master clock from modem part B2 REQUEST_MC DO(VIO_VMEM) Request to master clock oscillator J6 SCL DI(VIO_VMEM) Clock for Main I2C interface H7 SDA DIO(VIO_VMEM) SDA for Main I2C interface D2 MASTER_CLK AI Pull Down 1.5MΩ 26 MHz, 13 MHz or 19.2 MHz from modem A1 CLK32K_IN DI(VIO_VMEM) Pull down 1.5MΩ 32 kHz input K3 CLK32K DO(VIO_VMEM) 32 kHz to multimedia processor 34.807IRELESS 11/85 Ball information Table 2. STw4811M/STw4811N STw4811 balls function (continued) Ball Ball name Ball type Description General supplies Regulator balls A4 B4 VBAT_VIO_VMEM VDDA-VBAT Battery power supply for step down VIO_VMEM A2 B3 VMINUS_VIO_VMEM VSSA Ground for step down VIO_VMEM A3 C4 VLX_VIO_VMEM AIO BUCK of step down VIO_VMEM A5 VIO_VMEM AI VIO_VMEM Feed back input D9 D10 VBAT_VCORE VDDA-VBAT Battery power supply for step down VCORE B10 C9 VMINUS_VCORE VSSA Ground for step down VCORE C10 D8 VLX_VCORE AIO BUCK of step-down VCORE A10 VCORE AI VCORE sense C7 VBAT_VPLL_ANA VDDA-VBAT Battery supply for VPLL, VANA A7 VANA AO VANA output A8 VPLL AO VPLL output A6 VAUX AO VAUX output B6 VBAT_VAUX VDDA-VBAT Battery supply for VAUX C2 IT_WAKE_UP DO (Open drain) Interrupt to modem or APE for wake-up due to USB plug K8 USBOEn DIO(VIO_VMEM) Pull down 1.5MΩ Output enable of the differential driver in the USB mode J7 USBVP DIO(VIO_VMEM) Pull down 1.5MΩ Data input in the USB transmit mode, positive data input the single-ended transmit mode, or TXD in UART mode J8 USBVM DIO(VIO_VMEM) Pull Down 1.5MΩ Single-ended zero input in the USB transmit mode, negative data input in the single-ended transmit mode, or RXD in the UART mode K7 USBRCV DO(VIO_VMEM) Differential receiver output E9 DP AIO(VUSB) Positive data line in the USB mode, or serial data input in the UART mode E10 DN AIO(VUSB) Negative data line in the USB mode, or serial data output in the UART mode. E8 ID AI(VBAT-USB) ID ball of the USB detector used for protocol identification. USB balls 12/85 34.807IRELESS STw4811M/STw4811N Table 2. Ball information STw4811 balls function (continued) Ball Ball name Ball type Description General supplies H10 CP AIO(VBUS) C plus flying capacitor (VBUS level 4.4 to 5.25) J10 CN AIO(VBUS) C minus flying capacitor (VBUS Level) G10 VBUS AIO(VBUS) USB cable supply (VBUS Level) F10 VUSB AIO Decoupling capacitor for USB internal regulator G9 USBSCL DI(VIO_VMEM) Clock for dedicated USB I2C H9 USBSDA DIO(VIO_VMEM) SDA for dedicated USB I2C H8 USBINTn DO(VIO_VMEM) Interrupt to multimedia processor for USB or accessory plug SD/MMC/SDIO balls G3 MCCMDDIR DI(VIO_VMEM) Pull down 1.5MΩ CMD direction. - “high”: CMD signal from processor to card - “Low”: CMD signal from card to processor K2 MCDAT0DIR DI(VIO_VMEM) Pull down 1.5MΩ DATA0 direction - “high”: DATA0 signal from processor to card - “Low”: DATA0 signal from card to processor K9 MCDAT2DIR DI(VIO_VMEM) Pull down 1.5MΩ DATA2 direction - “high”: DATA2 signal from processor to card - “Low”: DATA2 signal from card to processor H4 MCDAT31DIR DI(VIO_VMEM) Pull down 1.5MΩ DATA(3,1) direction - “high”: DATA(3,1) signal from processor to card - “Low”: DATA(3,1) signal from card to processor G2 MCCLK DI(VIO_VMEM) Pull Down 1.5MΩ Host clock, between processor and STw4811, to the card (processor clock). H5 MCFBCLK DO(VIO_VMEM) Host feedback clock between STw4811 and processor, to re-synchronize data in processor. H1 MCCMD DIO(VIO_VMEM) Pull Up 1.5MΩ Bidirectional command/response signal between processor and STw4811. K1 MCDATA0 DIO(VIO_VMEM) Pull Up1.5MΩ Bidirectional data0 between processor and STw4811 H2 H3 J1 MCDATA[3:1] DIO(VIO_VMEM) Pull up 1.5MΩ Bidirectional data [3:1] between processor and STw4811. F3 LATCHCLK DI(VMMC) Pull down 1.5MΩ Host feedback clock to STw4811, to resynchronize data in processor. G1 CLKOUT DO(VMMC) Host clock, between STw4811 and card (processor clock). F2 CMDOUT DIO(VMMC) Pull up 1.5MΩ Bidirectional command/response signal between STw4811 and processor. 34.807IRELESS 13/85 Ball information Table 2. STw4811M/STw4811N STw4811 balls function (continued) Ball Ball name Ball type Description General supplies E1 DATAOUT0 DIO(VMMC) Pull up 1.5MΩ Bidirectional data0 between STw4811 and card F1 E3 E2 DATAOUT[3:1] DIO(VMMC) Pull up 1.5MΩ Bidirectional data[3:1] between STw4811 and card. J4 VBAT_MMC VDDA-VBAT Battery supply for VMMC K5 VMMC AIO VMMC supply output J5 GPO1 AO General purpose output K6 GPO2 AO General purpose output B9 D3 “Reserved” G To be connected to ground B1 B7 B8 C5 F8 G8 K10 “Reserved” O To be left open Other balls 14/85 34.807IRELESS STw4811M/STw4811N 4 Functional description 4.1 Introduction Functional description The STw4811 integrates all the power supplies for a multimedia processor as well as memories and peripherals: 4.2 ● Two switched mode power supply regulators: one for the multimedia processor core, one for multimedia processor I/Os and memories ● Three low-drop output regulators for multimedia processor analog supplies (PLL and others) and auxiliary components ● USB OTG FS/LS physical interface ● MMC card power supplies and level shifters ● Multimedia processor supply monitoring / power-on reset and power supply alarms / interrupt management ● Two serial I2C communication interfaces; one to control the devices (SDA, SCL) and one to control the USB (USBSDA, USBSCL). Digital control module This module describes the interfaces used to program the device and the related registers. 4.2.1 State machine Description of each states: (Figure 3.) OFF: In this mode the STw4811 is switched off. Off is when PON=0, when battery level is under 2.4 V or when thermal shutdown is activated. There is no multimedia processor power supply. The only active cell is the USB cable detection and VBAT level detection. OSC_START: Oscillator is enabled and the power up module is waiting for the rising edge of the internal signal OSC_OK to start power up sequence. This state duration is 300 µs. START_BIAS: Bias, reference and thermal shut-down are enabled, a counter is activated to wait for rising edge of internal signals PDN_regulators. This state duration has a typical value of 7.77 ms and a worst case value of 9.46 ms. START_PM: after a 1 ms wait, multimedia processor power supplies are available (VIO_VMEM, VCORE, VPLL, and VANA). The device can allow I2C communication, output power supply monitoring and application (USB,SD/MMC/SDIO). OFF2: STw4811 is waiting for the 32 kHz multimedia processor signal. This state has an indeterminate duration. If 32kHz is present during the states describes above, it has no effect. The 32 kHz signal is taken into account by STw4811 only when the ‘VDDOK’ ball is high, that is at the end of START_PM state. RESET: STw4811 forces a reset during 11*1/32 kHz period before setting PORn high. INT_OSC: The STw4811 can work without MASTER_CLK via its internal oscillator. The device waits for an external clock detection before switching to the external clock. When receiving a rising edge on PWREN ball (coming from multimedia processor) or on TCXO_EN ball (coming from modem), STw4811 answers by asserting to “1” the 34.807IRELESS 15/85 Functional description STw4811M/STw4811N REQUEST_MC ball. STw4811 remains in internal oscillator mode until it receives the external clock signal on MASTER_CLK ball (optional). EXT_CLK: if MASTER_CLK is used, when detected, the STw4811 uses this clock as reference and switches off its internal oscillator. MASTERCLK should remain connected up to sleep mode. SLEEP: sleep mode is required by multimedia processor by setting a PWREN at low level. Then VDDOK is forced to 0, regulators (VCORE, VIO_VMEM) switch to sleep mode and wait for PWREN at high level (Figure 4). WAKE-UP: from sleep mode, the multimedia processor requests to switch back to high power mode. Thus the device restarts its internal oscillator and then switches regulators from SLEEP to high power mode and informs multimedia processor with VDDOK at high level (Figure 4). Note: The default state of VAUX is different for STw4811M and for STw4811N. - VAUX default state is OFF at start up for STw4811M. - VAUX default state is ON at start up for STw4811N. VAUX can be programmed in high power mode only by asserted pdn_vaux bit to “1” (Table 18). If MASTER_CLK is used instead of internal oscillator all the features are not supported in sleep mode (see Section 4.2.3). 16/85 34.807IRELESS STw4811M/STw4811N Figure 3. Functional description Start-up timing OFF VBAT 9.38ms (11ms wc) PON ball 300µs PDN__OSC START_BIAS 7.77ms (9.46ms wc) PDN_regulators START_PM 1ms VDDOK ball 11*(1/32kHz) CLK32K_IN ball (*) Reset PORn ball PWREN ball Internal_OSC MASTER_CLK ball TCXO_EN ball “or” REQUEST_MC ball OFF2 Reset INT_OSC VPLL / VIO_VMEM VCORE Voutput(s) ball CLK32K ball Delays are worst case maximum delays (*) If 32 kHz available before VDDOK signal rising edge, OFF2 state duration is null All regulators are started with PDN_regulators or EN_regulators but can be switched off from the beginning or during application by software, ‘pdn_(regulator)’ or ‘en_(regulator)’ bits (Table 18,Table 24, and Table 25). 34.807IRELESS 17/85 Functional description Figure 4. STw4811M/STw4811N Switching power to sleep timing HPM HPM Sleep ~100µs PWREN Sleep regulators VDDOK PDN_regulators CLK32K PDN_intOSC int_OSC _detect REQUEST_MC Internal_OSC MASTER_CLK TCXO_EN “0” Register reset In the event of a hardware reset coming from the modem, PON ball set to “0”, all registers are reset at initial value when PON ball goes back to “1” level. A software reset from multimedia processor of STw4811, through SW_RESETn ball set to “0”, resets all registers except power control register (at address 1E & 1F) and the configuration 2 register at address 20h. Main clock oscillator control REQUEST_MC is an OR output gate between PWREN (coming from multimedia processor) and TCXO_EN (coming from modem supply), it is synchronized on 32 kHz, except during power-up where PWREN is masked and considered as high. REQUEST_MC enabled or disabled the master clock oscillator device. 18/85 34.807IRELESS STw4811M/STw4811N 4.2.2 Functional description POWER OFF / VDDOK ● In case of VDDOK falling edge due to under voltage on VCORE or VIO_VMEM detection, or ‘it_twarn’ bit set to “1” (Table 18); the multimedia processor is then reset (PORn low during a minimum time of 333 µs) and restarted with no time-out. (see Figure 5). In case of VDDOK falling edge because PWREN balls equals “0”, there is no reset (PORn still high). ● In case of PON falling edge (STw4811 switched off from modem); the multimedia processor is also reset with no time-out. We consider that clean switch off between modem and multimedia processor is done by software directly. Figure 5. VDDOK block diagram Digital block & PWREN VDDOK it_twarn mask_twarn register reset after read operation or PON falling edge or PORN_VBAT. 4.2.3 Reg status Sleep mode STw4811 goes into sleep mode by different ways. Whether VCORE, VIO_VMEM and VAUX are programmed to sleep mode or not is indicated in Table 26 and Table 27. Taking in account the bit programming from Table 26 and Table 27, sleep mode is summarized with the following formula: SLEEP = (‘vxxx_sleep’ x PWREN) + (‘vxxx_force_sleep’) = 1 (vxxx = vcore or vio_vmem or vaux) Note: The configuration vxxx_sleep = 0 (device in active mode) and vxxx_force_sleep = 1 (device in sleep mode, but no priority level on this bit) is forbidden. If the master clock is used in high power mode when switching to sleep mode, the following features are not available: 34.807IRELESS – Bit 1 (vcore_sleep) and bit 2 (vio_vmem_sleep) in power control register address 9 must be at high level (VIO_VMEM and VCORE cannot remain in high power mode) – USB charge pump is not available in sleep mode: bit 5 in USB control register address 07h must be set 19/85 Functional description 4.2.4 STw4811M/STw4811N I2C Interface The device supports two I2C bus interfaces. One main interface (SDA,SCL) controls power management and all programmable functions, the second interface (USBSDA, USBSCL) is dedicated to USB control. STw4811 allows to work with only the main I2C interface to control all the functions, including the USB, via ‘usb_i2c_ctrl’ bit of power control register (Table 23). I2C interface is used to read status information from inside the device. Flags, interrupt and write registers are used to configure the device functions (threshold, clock division, output voltage, etc....). By default, the main I2C interface (SCL,SDA) controls the main registers and USB I2C interface (USBSCL, USBSDA) controls USB registers. Figure 6. I2C interface block diagram SCL SDA usb_i2c_ctrl Main registers SDA USBSCL MUX SCL USBSDA SCL or USBSCL SDA or USBSDA USB registers Both I2C are configured as slave serial interface compatible with I2C registered trademark of Phillips Inc. (version 2.1). I2C interface description Note: When not using the USB I2C interface, the two pins USBSCL and USCSDA must be connected to the VIO voltage. STw4811 I2C is a slave serial interface with a serial data line (SDA or USBSDA) and a serial clock line (SCL or USBSCL): ● SCL / USBSCL: input clock used to shift data ● SDA / USBSDA: input/output bidirectional data transfers It is composed of: ● One filter to reject spikes on the bus data line and preserve data integrity ● Bidirectional data transfers up to 400kbit/s (fast mode) via SDA or USBSDA signal The SDA or USBSDA signal contains the input/output control and data signals that are shifted in the device, MSB first. The first bit must be high (START) followed by the Device ID (7 bits) and Read/Write bit control (1 indicates read access, a logical 0 indicates a write access). ● Device ID in write mode: 5Ah (01011010) ● Device ID in read mode: 5Bh (01011011) Then STw4811 sends an acknowledge at the end of an 8 bit transfer. The next 8 bits correspond to the register address followed by another acknowledge. The 8-bit data field is sent last, followed by a last acknowledge. 20/85 34.807IRELESS STw4811M/STw4811N Table 3. Functional description Device ID b7 b6 b5 b4 b3 b2 b1 b0 AdrID6 AdrID5 AdrID4 AdrID3 AdrID2 AdrID1 AdrID0 R/W Table 4. Register address b7 b6 b5 b4 b3 b2 b1 b0 RegADR7 RegADR6 RegADR5 RegADR4 RegADR3 RegADR2 RegADR1 RegADR0 Table 5. Register data b7 b6 b5 b4 b3 b2 b1 b0 DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0 I2C interface modes Figure 7. Control interface: I2C format ACK ACK REGn ADDRESS REGn Data In DEVICE ADDRESS WRITE SINGLE BYTE ACK 01011010 START STOP ACK ACK REGn ADDRESS REGn Data In DEVICE ADDRESS WRITE MULTI BYTE ACK ACK ACK REGn+m Data In 01011010 STOP START m+1 data bytes RANDOM ADDR READ SINGLE BYTE ACK ACK REGn ADDRESS DEVICE ADDRESS DEVICE ADDRESS 01011010 ACK REGn Data Out NO ACK 01011011 START START RANDOM ADDR READ MULTI BYTE DEVICE ADDRESS ACK ACK REGn ADDRESS ACK DEVICE ADDRESS 01011010 ACK ACK Reg n Data Out 01011011 START NO ACK Reg n + m Data Out START STOP m+1 data bytes Figure 8. Control interface: I2C timing tbuf SDA USBSDA tsu_sta thd_sta tf SCL USBSCL tlow Stop 34.807IRELESS Start thd_dat tr tsu_dat thd_sta tsu_sto thigh Start repeated Stop 21/85 Functional description 4.2.5 STw4811M/STw4811N Control registers Control registers have the following functions: Table 6. ● select level of regulation for multimedia processor supply ● control the USB interface ● control the SD/MMC/SDIO interface ● control the state machine Register general information Address Comment I2C control 00h to 10h USB registers (Table 9 to Table 17) USBSDA / USBSCL or SDA / SCL (1) 11h Configuration 1 register (Table 18) SDA / SCL 12h to 1Dh Reserved registers 1Eh to 1Fh Power control registers (Table 19 to Table 27) SDA / SCL 20h Configuration 2 register (Table 28) SDA / SCL 21h VCORE_sleep (Table 29) SDA/SCL 1. Controlled by USB_I2C_CTRL bit of power control register (Table 23) 22/85 34.807IRELESS STw4811M/STw4811N Functional description Register summary Table 7. Register summary Register Addr. 7 6 5 4 3 2 1 0 00h 1 0 0 0 0 0 1 1 01h 0 0 0 0 0 1 0 0 02h 0 0 0 1 0 0 0 1 03h 0 1 0 0 0 0 0 0 Vendor ID Product ID USB control register 1 04h 05h Not used uart_en oe_int_en bdis_ acon_en not used USB control register 2 06h 07h vbus_ chrg vbus_ dischrg vbus_ drv id_gnd dn_ dp_ dn_ pulldown pulldown pullup dp_ pullup USB interrupt source 08h cr_int bdis_ acon id_float dn_hi id_gnd_ forced dp_hi sess_vld vbus_vld USB interrupt latch 0Ah 0Bh cr_int bdis_ acon id_float dn_hi id_gnd_ forced dp_hi sess_vld vbus_vld USB interrupt mask false 0Ch 0Dh cr_int bdis_ acon id_float dn_hi id_gnd_ forced dp_hi sess_vld vbus_vld USB interrupt mask true 0Eh 0Fh cr_int bdis_ acon id_float dn_hi id_gnd_ forced dp_hi sess_vld vbus_vld USB EN 10h Not used B_sess_ end Not used th_ Bdevice usb_en not used Configuration 1 11h pdn_ vaux it_warn monitoring _vio_ mmc_ls_ vmmc_sel[2:0] vmem_ status vcore Configuration 2 20h not used Vcore_Sleep 21h not used Table 8. Addr. not used 1 Eh 34.807IRELESS suspend speed pdn_ vmmc mask_it_ external_ mask_ twarn wake_up vmmc gpo2 gpo1 vcore_ available vcore_sleep[3:0] Power control register 15 14 13 1Fh Addr. dat_se0 12 11 10 Not used 7 6 reg address 3 bits 5 9 8 reg address 2 bits 4 3 2 data din/dout 4 bits 1 0 ena write 23/85 Functional description STw4811M/STw4811N Registers controlled by I2C USB bus The registers described in this chapter are controlled through the USB serial I2C interface, USBSCL and USBSDA balls. These registers can also be controlled through the main I2C interface, SCL and SDA balls by setting to “1” ‘usb_i2c_ctrl’ bit in power control register (Table 23). Table 9. USB register address Address Note: Register Type 00h - 01h Vendor ID R 02h - 03h Product ID R 04h set USB control register 1 R/W 05h clearh USB control register 1 R/W 06h set USB control register 2 R/W 07h clearh USB control register 2 R/W 08h USB interrupt source R 09h Not used 0Ah set USB interrupt latch R/W 0Bh clearh USB interrupt latch R/W 0Ch set USB interrupt mask false R/W 0Dh clearh USB interrupt mask false R/W 0Eh set USB interrupt mask true R/W 0Fh clearh USB interrupt mask true R/W 10h USB_EN R/W A bit of register 1 is set at “1” by writing a “1” at address 04h, is reset at “0” by writing a “1” at address 05h. This is also applicable for USB control register 2 (06h, 07h), USB interrupt register (0Ah,0Bh), USB interrupt mask false register (0Ch, 0Dh) and USB interrupt mask true register (0Eh, 0Fh). Writing “0” at any address has not effect on the content of any register. Table 10. Vendor ID and Product ID: Read only Name Address Register value Vendor ID 00h 83h Vendor ID 01h 04h 02h 11h 03h 40h Product ID 24/85 34.807IRELESS STw4811M/STw4811N Functional description USB control register 1 Table 11. USB control register 1 (address = 04h set and 05h clearh) 7 6 5 4 3 2 1 0 Not used uart_en oe_int_en bdis_ acon_en not used dat_se0 suspend speed - R/W R/W R/W - R/W R/W R/W Bits Name Value Settings Default 6 uart_en 0 1 Inactive UART logic buffers are enabled 0 5 oe_int_en 0 1 Inactive Allow to send interruption through USBOEn 0 4 bdis_acon_en 0 1 Inactive (default) Enable A-device to connect if B-device disconnect detected: 0 2 dat_se0 0 1 VP_VM USB mode DAT_SE0 USB mode 0 1 suspend 0 1 Inactive (default) Put transceiver in low power mode 0 0 speed 0 1 Set rise and fall times of transmit Low speed Full speed 0 34.807IRELESS 25/85 Functional description STw4811M/STw4811N USB control register 2 Table 12. 7 6 5 4 3 2 1 0 vbus_chrg vbus_ dischrg vbus_drv id_gnd dn_ pulldown dp_ pulldown dn_pullup dp_pullup R/W R/W R/W R/W R/W R/W R/W R/W Bits 26/85 USB control register 2 (address = 06h set and 07h clearh) Name Value Settings Default 7 vbus_chrg 0 1 Inactive Charge VBUS through a resistor 0 6 vbus_dischrg 0 1 Inactive Discharge VBUS through a resistor to ground. 0 5 vbus_drv 0 1 Inactive Provide power to VBUS 0 4 id_gnd 0 1 Inactive Connect ID ball to ground 0 3 dn_pulldown 0 1 Inactive Connect DN pull-down 0 2 dp_pulldown 0 1 Inactive Connect DP pull-down 0 1 dn_pullup 0 1 Inactive Connect DN pull-up 0 0 dp_pullup 0 1 Inactive Connect DP pull-up 0 34.807IRELESS STw4811M/STw4811N Functional description USB interrupt source register Table 13. USB Interrupt source register (address = 08h) 7 6 5 4 3 2 1 0 cr_int bdis_acon id_float dn_hi id_gnd_ forced dp_hi sess_vld vbus_vld R R R R R R R R Bits 7 Name Value 0 1 cr_int 0 1 Settings Default Inactive DP ball is above the carkit interrupt threshold 0 Inactive Set when bdis_acon_en is set, and transceiver asserts dp_pullup after detecting B-device disconnect. 0 6 bdis_acon 5 id_float 0 1 Inactive ID ball floating 0 4 dn_hi 0 1 Inactive DN ball is high 0 3 id_gnd_forced 0 1 Inactive ID ball grounded 0 2 dp_hi 0 1 Inactive DP asserted during SRP, 0 1 sess_vld 0 1 Session valid comparator threshold < 2V 2 V < Session valid comparator threshold 0 0 vbus_vld 0 1 A-device VBUS valid comparator threshold < 4.4V A-device VBUS valid comparator threshold > 4.4V 0 USB interrupt source register indicates the current state of the signals that can generate an interrupt. USB latch register Table 14. Register Bit name Default Type USB interrupt latch registers (address = 0Ah set and 0Bh clearh) 7 6 5 4 3 2 1 0 cr_int bdis_ acon id_float dn_hi id_gnd_ forced dp_hi sess_ vld vbus_ vld 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/W USB interrupt latch register indicates which source has generated an interrupt. 34.807IRELESS 27/85 Functional description STw4811M/STw4811N USB interrupt enable low register Table 15. USB interrupt enable low register (address = 0Ch and 0Dh) 7 6 5 4 3 2 1 0 cr_int bdis_acon id_float dn_hi id_gnd_ forced dp_hi sess_vld vbus_ vld 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/W USB interrupt enable low register enables interrupts on transition from high to low. USB interrupt enable high register Table 16. USB interrupt enable high register (address = 0Eh and 0Fh) 7 6 5 4 3 2 cr_int bdis_acon id_float dn_hi id_gnd_ forced dp_hi R/W R/W R/W R/W R/W R/W 1 0 sess_vld vbus_vld R/W R/W USB interrupt enable high register enables interrupts on transition from low to high. Interrupts Table 13 indicates the signals that can generate interrupts. Any of the signals given in Table 13 can generate an interrupt when the signal becomes either low or high. After an interrupt, the OTG controller is able to read each signal status as well as the bit that indicates whether or not that signal generated the interrupt. A bit in the interrupt latch register is set when any of the following occurs: ● writing “1” to its set address causes the corresponding bit to be set. ● the corresponding bit in the interrupt enable high register is set, and the associated signal changes from low to high ● the corresponding bit in the interrupt enable low register is set, and the associated signal changes from high to low The interrupt latch register is cleared by writing “1” to its clear address. 28/85 34.807IRELESS STw4811M/STw4811N Functional description USB EN register Table 17. USB EN register (address = 10h) 7 6 Not used B_sess_ end - R Bits Name 5 4 3 Not used - - Value - 2 1 0 th_ Bdevice usb_en not used R/W R/W - Settings Default 1 usb_en 0 1 Inactive Enable USB PHY 0 2 th_Bdevice 0 1 Threshold for vbus_valid = 4.4 V Threshold for vbus_valid = 3.87 V 0 0 Vbus voltage is below B_session_end threshold (0.2 to 0.8 V) Vbus voltage is above B_session_end threshold (0.2 to 0.8 V) 0 6 34.807IRELESS B_sess_end 1 29/85 Functional description STw4811M/STw4811N Registers controlled by main I2C BUS I2C controlled registers are controlled through the main serial I2C interface, SCL and SDA balls. Configuration 1 register Table 18. Configuration 1 register (11h) 7 6 pdn_vaux it_warn R/W R(1) 5 monitoring_vio_ vmem_vcore 4 3 2 1 0 mmc_ls_ status vmmc_sel[2:0] pdn_ vmmc R/W R/W R/W R(1) 1. These bits are reset (0) after reading Bits Name Value Settings Default 7 pdn_vaux 0 1 Inactive Enable LDO vaux 6 it_warn 0 1 Below temperature threshold Above temperature threshold 0 5 monitoring_vio_ vmem_vcore 0 1 Outputs in the good range Outputs lower than expected on vio_vmem or vcore 0 0 Level shifters ON, if ‘pdn_vmmc’ or ‘external_vmmc’ = 1 Level shifters High Impedance, if ‘pdn_vmmc’ or ‘external_vmmc’ =1 0 4 mmc_ls_status [3:1] vmmc_sel[2:0] 0 pdn_vmmc 1 000 001 010 011 100 101 110 111 0 1 1.8V selection 1.8V selection 2.85V selection 3V selection 1.85 V selection 2.6 V selection 2.7 V selection 3.3 V selection Inactive Enable SD/MMC/SDIO function. 0(1) 000 0 1. In STw4811M, pdn_vaux = 0 is the default. In STw4811N, pdn_vaux = 1 is the default. In Flash OTP two registers allow to program STw4811 energy management part. These two registers are at addresses 1E and 1F and must be programmed with 1F register first followed by 1E register. 30/85 34.807IRELESS STw4811M/STw4811N Functional description Power control register at address 1Eh Table 19. Power control register - General information (address = 1Eh) 7 6 5 4 3 2 1 0 reg address 3 bits LSB’s data din/dout 4 bits EN R/W R/W R/W Bits Name Value [7:5] reg address 3 bits [4:1] data din/ dout 4 bits 0 EN Settings 0 1 Default See Table 21 “Address” column (LSB’s). 0 See Table 21 control register 0 Read enabled Write enabled 0 Power control register at address 1Fh Table 20. Power control register - General information (address = 1Fh) 15 14 13 12 11 10 9 8 reg address 2 bits MSB’s Not used R/W Bits [9:8] Name Value Settings reg address 2 bits MSB’s Default See Table 21 “Address” column (MSB’s). 0 Power control register mapping Table 21. Power control register mapping Address 1Fh Address 1Eh reg address 2 bits MSB’s Not used 15 14 13 12 11 10 9 8 3 bits LSB’s 7 6 data din/dout 4 bits 5 4 3 2 00h to 04h 05h to 0Ah 0Bh to 1E Caution: 1 Comments EN 0 Reserved Setting See Table 22 to Table 27 Reserved Only the latest value written in register at address 1E/1F can be read. 34.807IRELESS 31/85 Functional description STw4811M/STw4811N Power control register at address 05h Table 22. Power control register at address 05h Address 1Fh 15 Bits [4:1] 32/85 14 13 12 11 Address 1Eh 9 8 7 6 5 Not used 0 0 1 0 1 Name Value vcore_sel [3:0] 10 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 4 3 vcore_sel [3:0] Settings = 1.00V = 1.05V = 1.10V = 1.15V = 1.20V = 1.22V = 1.24V = 1.26V (default) = 1.28V = 1.30V = 1.32V = 1.34V = 1.36V = 1.38V = 1.40V = 1.45V 2 1 0 EN Default 0111 34.807IRELESS STw4811M/STw4811N Functional description Power control register at address 06h Table 23. Power control register at address 06h Address 1Fh 15 14 Bits 4 13 12 11 Address 1Eh 10 9 8 7 6 5 4 Not used 0 0 1 1 0 vpll_sel [0] Name Value vpll_sel[1:0] on 06h and 07h address [3:2] vaux_sel[1:0] 1 usb_i2c_ctrl 3 2 vaux_sel <1:0> 1 0 usb_ i2c_ctrl EN Settings Default 00 01 10 11 = 1.05V = 1.2V = 1.3V = 1.8V 11 00 01 10 11 = 1.5V = 1.8V = 2.5V = 2.8V 00 0 1 USB I2C interface controls USB registers Main I2C interface controls USB registers 0 Power control register at address 07h Table 24. Power control register at address 07h Address 1Fh 15 Bits 14 13 12 11 Address 1Eh 10 9 8 7 6 5 4 3 2 1 0 Not used 0 0 1 1 1 en_vpll not used en_ vcore vpll_sel [1] EN Name Value Settings Default 4 en_vpll 0 1 Disabled / VPLL = OFF Enabled / VPLL = ON(1) 1 2 en_vcore 0 1 Disabled / VCORE = OFF Enabled / VCORE = ON(1) 1 1 vpll_sel[1] - See Table 23 - 1. No soft start feature at supply enabled after a disabled/enabled sequence 34.807IRELESS 33/85 Functional description STw4811M/STw4811N Power control register at address 08h Table 25. Power control register at address 08h Address 1Fh 15 14 13 12 11 Address 1Eh 10 9 8 7 6 5 4 3 2 1 0 Not used 0 1 0 0 0 en_clk squarer en_ mo nitoring en_ vana not used EN Bits Name Value 4 en_clock_squarer 0 1 Disabled ([0; vio_vmem] digital signal) Enabled (master clock input not in the range [0; vio_vmem]) 0 3 en_monitoring 0 1 Disabled / MONITORING = OFF Enabled / VCORE & VIO_VMEM monitoring = ON 1 2 en_vana 0 1 Disabled / VANA = OFF Enabled / VANA = ON 1 Settings Default Power control register at address 09h Table 26. Power control register at address 09h Address 1Fh 15 14 13 12 11 Address 1Eh 10 9 Not used 0 8 1 7 0 6 0 5 4 3 1 vaux_ sleep not used 2 1 vio_ vcore_ vmem_ sleep sleep (1) 0 EN (1) 1. Must be left at default value if the master clock is used. Bits 34/85 Name Value Settings Default 4 vaux_sleep 0 1 When PWREN is low: VAUX stays in high power mode VAUX goes in sleep mode 1 2 vio_vmem_sleep 0 1 When PWREN is low: VIO_VMEM stays in high power mode VIO_VMEM goes in sleep mode 1 1 vcore_sleep 0 1 When PWREN is low: VCORE stays in high power mode VCORE goes in sleep mode 1 34.807IRELESS STw4811M/STw4811N Functional description Power control register at address 0Ah Table 27. Power control register at address 0Ah Address 1Fh 15 14 13 12 11 Address 1Eh 10 9 8 4 3 0 vaux_ force_ sleep not used 2 1 vio_ vcore_ vmem_ force_ force_ sleep sleep 0 Bits Name Value Settings Default 0 4 vaux_force_sleep 0: Vaux keeps the state controlled by Vaux_sleep and Pwren 1: VAUX goes in sleep mode (for any PWREN level) 0 0: VIO_VMEM keeps the state controlled by vio_vmem_sleep and Pwren 1: VIO_VMEM goes in sleep mode (for any PWREN level) 0 0: VCORE keeps the state controlled by vcore_sleep and Pwren 1: VCORE goes in sleep mode (for any PWREN level) 0 0 2 1 vcore_force_sleep 1 0 1 34.807IRELESS 1 5 0 vio_vmem_force_ sleep 0 6 Not used 1 1 7 EN 35/85 Functional description STw4811M/STw4811N Configuration 2 register Table 28. Configuration 2 register at address = 20h 7 6 Not used Bits 36/85 5 Not used - R/W Name Value 4 3 2 1 0 gpo2 gpo1 mask_it_ wake_up external_ vmmc mask_ twarn R/W R/W R/W R/W R/W Settings Default 0 1 Inactive Mask TWARN interruption (it_twarn bit) through VDDOK 0 external_vmmc 0 1 Internal LDO VMMC is used External VMMC is used 0 2 mask_it_wake _up 0 1 Inactive IT_WAKE_UP ball masked 0 3 gpo1 0 1 GPO1 in High impedance GPO1 at low level 0 4 gpo2 0 1 GPO2 in High impedance GPO2 at low level 0 5 not used 0 1 Not used 0 0 mask_twarn 1 34.807IRELESS STw4811M/STw4811N Functional description VCORE_sleep register Table 29. VCORE_sleep register at address = 21h Register 7 6 Bit name Type Bits [3:0] 4 Name (1) 4 0 1 3 2 1 vcore_ available vcore_sleep[3:0] R R/W Value 0000 0001 0010 0011 0100 0101 0110 0111 vcore_sleep[3:0] 1000 1001 1010 1011 1100 1101 1110 1111 vcore_available 5 Settings = 1.00V = 1.05V = 1.10V = 1.15V = 1.20V = 1.22V = 1.24V = 1.26V (default) = 1.28V = 1.30V = 1.32V = 1.34V = 1.36V = 1.38V = 1.40V = 1.45V Inactive Reach the expected value when Vcore decreases or increases 0 Default 0111 0 1. read operation reset the value after status read operation from APE, functionality is described in Section 4.3.7: Power supply monitoring 34.807IRELESS 37/85 Functional description 4.2.6 STw4811M/STw4811N IT generation STw4811 has three interrupt balls: IT_WAKE_UP: with only VBAT supply, no other supply available, when a USB cable is plugged this interrupt is activated to wake up the host or the modem, depends of application (open drain, active low). By default this feature is available independently of PON level, it can be masked when PON = 1 by ‘mask_it_wake_up’ bit of Configuration 2 register (see Table 28) USBINTn: This interrupt ball is dedicated to USB protocol and sent to multimedia processor. Independently of PWREN ball state, this ball goes to low level if an USB interrupt source is detected. In sleep mode, PWREN = 0, an interrupt source is detected only if unmasked before PWREN goes to low level. VDDOK: This ball has two functions: - When high, it indicates that VIO_VMEM and VCORE output voltages are within the right range and that the device internal temperature is below the maximum allowed temperature. - When low, it indicates that output regulators (VCORE or VIO_VMEM) are not regulated properly or PWREN = “0”, or that the temperature is above the allowed threshold (see Thermal shut-down section), ‘it_warm’ bit of Configuration 1 register is the temperature interruption source (see Table 18). 4.2.7 Clock switching and control This block generates the clock used by the DC/DC converter (USB charge pump, step-down VIO_VMEM and step-down VCORE). STw4811 is able to sustain the master clock frequencies of 26 MHz, 19.2MHz and 13 MHz. If the clock is not detected the internal oscillator is automatically selected. STw4811 allows customers to use the internal clock issued from the internal oscillator to switch the SMPS and charge pump; or, they can provide an external clock and connect it to the master clock input. If it is not necessary, it is recommended to run the device on the internal clock. Nevertheless, if the external clock is used, this clock has some constraints: Note: 38/85 – the master-clk must be provided each time the device is in high power mode. When the device changes from sleep mode to high power mode the master-clk must be active before the device is in high power mode (the master-clk must be available and stable when PWREN pin goes to high level). – the only way to stop the use of the master_clk, in HPM mode, is to restart the device with the OFF/ON sequence on PON (PON = 1 then 0 then 1) When present the Master clock should remain connected up to sleep mode. 34.807IRELESS STw4811M/STw4811N Figure 9. Functional description Clock switching between master and internal clock (1) * Phase delay is less than 90 between int and ext clock internal clock transition external clock PON INT_OSC INT_OSC_OK MASTER_CLK_OK Third rising edge after switching PDN_INT_OSC CONTROL_SWITCH MASTER_DIV_CLK STEP_DOWN_CLK 34.807IRELESS 39/85 Functional description 4.3 STw4811M/STw4811N Power management module STw4811 includes several regulators that supply the multimedia processor and its peripherals. All regulators can work in different modes depending on the processor needs. When the STw4811 is in ‘low current mode’”, the output current is reduced to save energy via the lower quiescent current. The nominal mode is called high power mode (HPM). The mode is selected by PWREN ball signal according to both multimedia processor and STw4811 state. When PWREN = “0”, sleep mode is selected. HPM is selected as default when PWREN = “1”. Except for VIO_VMEM, each supply can be powered down by a bit ‘pdn_(regulator name) or ‘en_(regulator name)’ (Table 18, 24 and 27). In this mode, the regulator is switched off and only a leakage current is present (max. 1µA). VCORE, VAUX and VPLL output voltages are programmable, through main I2C interface, using the ‘(regulator”_sel[x:0])’ bits of the power control registers (Table 22 to Table 27). In addition, an output current limitation prevents high current delivery in case of output short circuit. All multimedia processor power supplies have the same soft start to prevent leakage in the multimedia processor device during the start-up phase. There is an exception with VAUX which can be started independently. 4.3.1 Bandgap, biasing and references Figure 10. Block diagram of biasing and references of the device BG VREF_18 Voltage reference control All internal references All internal biasing Bias generator 40/85 34.807IRELESS STw4811M/STw4811N 4.3.2 Functional description VCORE regulator: DC/DC STEP- DOWN regulator This regulator drives the core of the multimedia processor. VCORE is a DC/DC step-down regulator that generates the regulated power supply with very high efficiency. The 16 voltage levels enable dynamic voltage and frequency scaling suitable for any supply voltage of CMOS process, they also follow the processor process roadmap. The regulated output voltage level is adjustable via the main I2C interface (SDA, SCL): in high power mode by the power control registers (Table 22), in sleep mode by Vcore_sleep register (Table 29). The master clock (13, 19.2 or 26 MHz) is automatically detected, squared and divided to generate the switching clock of the SMPS. When this clock is not available, regulators run with the internal RC oscillator. The DC/DC step-down regulator has the following main features; ● Programmable output voltage, – When changing the output voltage value (during a voltage scaling phase) the voltage step must be less than 100mV. – In high power mode, 16 levels from 1.0 V to 1.45 V through ‘vcore_sel [3:0]’ bits of power control register (Table 22) – In sleep mode,16 levels from 1.0 V to 1.45 V through ‘vcore_sleep [3:0]’ bits of Vcore_sleep register (Table 29). Note: By default ‘vcore_sel’ = ‘vcore_sleep’ ● 3 power domains: – ‘High power mode’ when multimedia processor is in run mode, 700 mA full load – ‘Low current mode’ when multimedia processor is in sleep mode, 5 mA current capability. Fast switching from low current to high power mode. The regulator is in ‘low current mode’ when multimedia processor is in sleep mode. PWREN signal indicates that the multimedia processor is about to switch to high power mode. VDDOK signal indicates to the multimedia processor that all supplies are in the specified range. Note: The definition of sleep mode is given in section 4.2.3: Sleep mode. – ‘Power down mode’ or ‘standby mode’ when regulator is switched off, no consumption (‘en_vcore’ bit of power control register - Table 24) ● Soft start circuitry at start up, from power off to high power mode, when PON ball changes from “0” to “1”. 4.3.3 VIO_VMEM regulator: DC/DC step- down regulator VIO_VMEM step-down regulator has the same structure than VCORE. The VIO_VMEM regulator supplies the IOs of the multimedia processor and its peripherals. This regulator can be used to supply the memories working with the multimedia processor, such as DDR-SDRAM. A switched mode power supply - voltage down converter is used to generate the 1.8 V regulated power supply with very high efficiency. The master clock (13, 19.2 or 26 MHz) is automatically detected and divided to generate the SMPS switching clock. Master clock is squared when bit en_clock_squarer is enabled (Table 25: Power control register at address 08h). When this clock is not available, regulators can run with the internal RC oscillator. 34.807IRELESS 41/85 Functional description STw4811M/STw4811N Main features ● Fixed 1.8 V output voltage ● Two power domains: – ‘High power mode’ when multimedia processor is in run mode - 600 mA full load – ‘Low current mode’ when multimedia processor is in sleep mode, 5 mA current capability. Fast switching from low current to high power mode. The regulator is in ‘low current mode’ when multimedia processor is in sleep mode. PWREN signal indicates that the multimedia processor is about to switch to run mode. VDDOK signal indicates to the multimedia processor that all supplies are in the specified range. Note: The definition of sleep mode is given in 4.2.3: Sleep mode section. ● Soft start circuitry at start up, from power off to high power mode, when PON ball changes from “0” to “1”. 4.3.4 VPLL This LDO is dedicated to the multimedia processor PLL (1.05, 1.2, 1.3, 1.8 V) power supply with 10 mA max full load (power control registers - Table 23 and Table 24). Main features ● Programmable output voltage, ‘vpll_sel[1:0]’ bits of power control register - Table 23 and Table 24) ● Two power domains: ● 4.3.5 – ‘High power mode’ 10 mA full load – ‘Power down mode’ or ‘standby mode’ when regulators are switched off and there is no power consumption (‘en_vpll’ bit of power control register - Table 24) Soft start circuitry at start up, from power off to high power mode, when PON ball changes from “0” to “1”. VANA This LDO is dedicated to the multimedia processor analog function (2.5 V) power supply with 10 mA full load. Main features: 42/85 ● 2.5 V output voltage, ● Two power domains – ‘High power mode’ 10 mA full load – ‘Power down mode’ or ‘standby mode’ when regulators are switched off and there is no power consumption (‘en_vana’ bit of power control register - Table 25), 34.807IRELESS STw4811M/STw4811N 4.3.6 Functional description VAUX This LDO is dedicated either to the multimedia processor input/output signals or to the auxiliary devices. Power supply values are 1.5, 1.8, 2.5, 2.8 V with 150 mA full load and 0.5 mA in sleep mode. In case of 1.5 V on the output, this LDO can be supplied by using VIO_VMEM DC/DC converter (1.8 V). One pad feed-back is used. Main features: ● Programmable output voltage, 4 levels (‘vaux_sel[1:0]’ bits of power control register - Table 23) ● Three power domains: – ‘High power mode’ when multimedia processor is in run mode, 150 mA full load – ‘Low current mode’ when multimedia processor is in sleep mode, 0.5 mA current capability. Fast switching from low current to high power mode. Note: The definition of sleep mode is given in 4.2.3: Sleep mode section. – ‘Power down mode’ or ‘standby mode’ when regulator is switched off, no power consumption (‘pdn_vaux’ bit of configuration 1 register - Table 18). 4.3.7 Power supply monitoring This block monitors the VCORE and VIO_VMEM output voltage. If VCORE or VIO_VMEM drop below the threshold, the multimedia processor is reset, through PORn output ball. In high power mode, this feature can be disabled by setting ‘en_monitoring’ bit of power control register to “0” (Table 25). When VCORE programmed value changes, ‘vcore_available’ bit (Table 29) gives the status of VCORE output supply value and informs the APE that the expected output voltage is reached, this bit is a read only bit and is reset after an APE read operation. Figure 11 describes ‘vcore_available’ bit behavior. Figure 11. ‘vcore_available’ bit behavior Vcore vcore_available bit read operation to reset bit 34.807IRELESS 43/85 Functional description 4.3.8 STw4811M/STw4811N Power supply domains Table 30 lists the register bits that control STw4811 supply domains for each supply. Table 30. Supply name VCORE Power supply domains Supply domains Description High power STEP-DOWN VIO_VMEM STEP-DOWN Sleep Power down vcore_sleep[3:0] vcore_sleep vcore_force_sleep en_vcore - vio_vmem_sleep vio_vmem_force_sleep - vcore_sel[3:0] VPLL LDO vpll_sel[1:0] - en_vpll VANA LDO - - en_vana VAUX LDO vaux_sel[1:0] vaux_sleep vaux_force_sleep pdn_vaux VMMC LDO vmmc_sel[2:0] - pdn_vmmc Note: More details on VMMC supply are given in Section 4.5 4.3.9 Thermal shut-down A thermal sensor is used to monitor the die temperature. ● As soon as the die temperature exceeds the thermal warning rising threshold, VDDOK ball goes to “0” and ‘it_warn’ bit is set to “1” (configuration 1 register - Table 18). The IC turns back VDDOK ball to “1” and ‘it_warn’ bit to “0” when the device temperature drops below the thermal warning falling threshold of the thermal sensor. ● A second thermal detection level, thermal shutdown threshold, puts all STw4811 supplies OFF, the supplies goes back to ON state when the temperature is under the thermal shutdown threshold and after a new startup phase. Table 31. Thermal threshold values Description Min Typ Max Unit Rising threshold 134 140 149 °C Falling threshold 117 123 131 °C 149 155 164 °C Thermal warning threshold Thermal shutdown threshold Threshold 44/85 34.807IRELESS STw4811M/STw4811N Functional description Figure 12. Thermal threshold temperatures for ‘it_warn’ bit and VDDOK ball ‘it_warn’ bit All supplies are turn “OFF” VDDOK ball Rising warning threshold 4.4 Shutdown threshold Temperature USB OTG module This transceiver complies with the USB specification; ● Universal serial bus specification Rev 2.0 ● On the go supplement to the USB specification Rev 1.0-a ● Car kit interface specification (see: OTG transceiver specification Rev 0.92) The USB OTG Transceiver has two modes: USB mode and UART mode. It includes: Note: ● Full and low speed transceiver (12 Mbit/s and 1.5 Mbit/s data rate) ● Support data line and VBUS pulsing session request ● Contains Host Negotiation Protocol (HNP) command and status register ● Charge pump regulator (5 V at 100 mA) to supply VBUS line of the USB cable ● VBUS pull-up and pull-down resistors as defined by Session Request Protocol (SRP) ● VBUS threshold comparators ● VUSB LDO internal regulator which provides power supply for the bus driver and receiver. ● ID line detector and interrupt generator ● Dedicated I²C serial control interface The transceiver complies with USB specification if Vbat is greater than 3.2 V. 34.807IRELESS 45/85 Functional description 4.4.1 STw4811M/STw4811N Block diagram Figure 13. USB OTG transceiver block diagram CLK vbus_drv Charge pump 5V - 100mA REF VBUS VBUS_MONITOR 4.4 V vbus_vld sess_vld B_sess_end 100 mA 1.9 V 0.6 V VBAT_USB Gnd usb_i2c_ctrl VUSB_LDO vbus_dischrg USBSDA SCL SDA SW_RESETn VUSB DP_MONITOR 5.7 R DP cr_int TRANCEIVER RXD RXD dp_pullup dn_pullup DAT_VP USBVP Diff Tx SEO_VM USBVM R DP < [0.4 to 0.6] V RPU_DN USBSCL B_sess_end vbus_drv bdis_acon_en dn_pullup dp_pullup Control dn_pulldown Registers dp_pulldown id_gnd vbus_chrg vbus_dischrg speed uart_en dat_se0 oe_int_en suspend RA_BUS_IN vbus_chrg RPU_DP USB_INTn vbus_vld sess_vld dn_hi Interrupt dp_hi Control bdis_acon Register id_gnd_forced id_float cr_int usb_en CN R_VBUS_SRP VMINUS_DIG CP R_VBUS_PD VBAT_USB VBAT_DIG OE_TP_INT USBOEn DP out_diff_Rx Diff Rx suspend SE_DP VP RPD_DP RCV DN RPD_DN USBRCV SINGLE ENDED dn_pulldown DECODER VM SE_DN dp_pulldown VBAT_USB R IT_WAKE_UP Plug detect Management Open Drain id_float sess_vld ID 4.7 R id_gnd 0.15*ID OR ID Detector 46/85 RID_PU 0.85*ID id_gnd R 34.807IRELESS STw4811M/STw4811N Functional description Interrupt management IT_WAKE_UP: with only VBAT supply, no other supply available, when a USB cable is plugged this interrupt is activated to wake up the host or the modem, depends of application (open drain, active low). By default this feature is available independently of PON level, it can be masked when PON = 1 by ‘mask_it_wake_up’ bit of configuration 2 register (see Table 28) USBINTn: This interrupt ball is dedicated to USB protocol and sent to multimedia processor. Independently of PWREN ball state, this ball goes to low level if an USB interrupt source is detected. In sleep mode, PWREN = 0, an interrupt source is detected only if unmasked before PWREN goes to low level. VBUS monitoring These comparators monitor the VBUS voltage. They detect the current status of the VBUS line: ● VBUS > 4.4 V means A-Device VBUS_Valid ● 0.8 V < VBUS < 2 V means A-Device Session Valid and 0.8 V < VBUS < 4 V means BDevice Session Valid. To be compatible with both Session Valid threshold, STw4811 threshold is equal to 1.9 V. ● VBUS < 0.8 V means B_Device Session End These three bits generate an interrupt when active (see USB interrupt registers (Table 13)). VUSB LDO: Internal regulator which provides power supply for the bus driver and receiver. ID detector: This block detects the status of the ID line. It is capable of detecting three different states of line: ● ball is floating ‘id_float’ bit is high, Threshold detection is equal to 0.85 * Vbattery. ● ball is tied to ground ‘id_gnd_forced’ bit is high, Threshold detection is equal to 0.15 * Vbattery. ● ball is grounded via resistor, voltage is between 0.85 * Vbattery and 0.15 * Vbattery. ‘id_float’ and ‘id_gnd_forced’ bits are low. This detection generates interrupts (see USB interrupt registers (Table 13)). Transceiver: The driver can operate in different modes. It can act as a classical low-speed and full-speed differential driver, as two independent single-ended drivers or as a singleended driver in UART mode. This block contains one differential receiver for the USB mode of operation and two single-ended receivers for USB signaling and UART mode. DP monitor: This block is used to detect car kit peripheral, ‘cr_int’,0.6 V on DP (see USB interrupt registers (Table 13)). Pull up and pull down resistors: Configurable integrated pull-up and pull-down resistor of data line and VBUS (see USB control register 2 (Table 12)). 34.807IRELESS 47/85 Functional description 4.4.2 STw4811M/STw4811N Modes and operations Power modes The transceiver power modes are: ● active mode ● suspend mode ● power down mode In suspend mode the differential transmitter and receiver are turned off to save power but the USB interface is still active (pull-up and pull-down on, VBUS on). In power down mode, only the serial interface is active and the transceiver is able to detect SRP. In power down mode, ID ball can be grounded by ‘id_gnd’ bit of USB control register 2 (Table 12). USB modes The two transceiver modes are: ● DAT_SEO mode (dat_se0 = 1 in USB control register 1 - Table 11) ● VP_VM mode (dat_se0 = 0 in USB control register 1 - Table 11) Data transmission The transceiver transmits USB data in the following conditions for USB control register 1 (Table 32, Table 33): uart_en=0; oe_int_en=0 and USBOEn ball at low level. Table 32. Data transmission via USB control register 1 (DAT_SE0 mode) - Suspend = 0 USB mode (DAT_SE0) Inputs Outputs Comments USBVP USBVM DP DN 1 (DAT_SE0 mode) 0 0 0 1 Not used Single ended data (zero sent) 1 (DAT_SE0 mode) 1 0 1 0 Not used Single ended data (1 sent) 1 (DAT_SE0 mode) x 1 0 0 Not used Force single ended zero 0 (VP_VM mode) 0 0 0 0 DIFF_RX 0 (VP_VM mode) 1 0 1 0 DIFF_RX 0 (VP_VM mode) 0 1 0 1 DIFF_RX 0 (VP_VM mode) 1 1 1 1 DIFF_RX 48/85 USBRCV DAT_VP drives the level of DP SE0_VM drives the level of DN 34.807IRELESS STw4811M/STw4811N Table 33. Functional description Data transmission via USB control register 1 (DAT_SE0 mode) - Suspend = 1 Inputs Outputs USB mode (dat_se0) Comments USBVP USBVM DP DN USBRCV 1 (DAT_SE0 mode) 0 0 0 1 Not used Single ended data (zero sent) 1 (DAT_SE0 mode) 1 0 1 0 Not used Single ended data (1 sent) 1 (DAT_SE0 mode) x 1 0 0 Not used Force single ended zero 0 (VP_VM mode) 0 0 0 0 0 (off) 0 (VP_VM mode) 1 0 1 0 0 (off) 0 (VP_VM mode) 0 1 0 1 0 (off) 0 (VP_VM mode) 1 1 1 1 0 (off) Driver are suspended If oe_int_en = 1 and suspend=1 (USB control register 1 - Table 11), the USBOEn ball becomes an output used to generate an IT to multimedia processor. Data reception The transceiver receives USB data in the following conditions: uart_en = 0 (USB control register 1); oe_int_en = 1 and USBOEn at high level. Table 34. Data receiver via USB control register 1 Inputs USB mode (dat_se0) Outputs Suspend DP DN USBVP USBVM USBRCV 1 (DAT_SE0 mode) 0 0 0 Diff rcv 1 1 Not used 1 (DAT_SE0 mode) 0 1 0 1 0 Not used 1 (DAT_SE0 mode) 0 0 1 0 0 Not used 1 (DAT_SE0 mode) 0 1 1 Diff rcv 1 0 Not used 1 (DAT_SE0 mode) 1 0 0 0 1 Not used 1 (DAT_SE0 mode) 1 1 0 1 0 Not used 1 (DAT_SE0 mode) 1 0 1 0 0 Not used 1 (DAT_SE0 mode) 1 1 1 1 0 Not used 0 (VP_VM mode) 0 0 0 0 0 diff rcv 1 0 (VP_VM mode) 0 1 0 1 0 1 0 (VP_VM mode) 0 0 1 0 1 0 0 (VP_VM mode) 0 1 1 1 1 diff rcv 1 0 (VP_VM mode) 1 0 0 0 0 Not used 0 (VP_VM mode) 1 1 0 1 0 Not used 0 (VP_VM mode) 1 0 1 0 1 Not used 0 (VP_VM mode) 1 1 1 1 1 Not used 34.807IRELESS 49/85 Functional description STw4811M/STw4811N UART mode UART mode is entered by setting the ‘uart_en’ bit to 1 (USB control register 1 - Table 11). The transceiver contains two digital logic level translators between the following balls: ● TXD signal: from USBVM ball to DN ball ● RXD signal: from DP ball to USBVP ball When not in UART mode the level translators are disabled. VBUS monitoring and control The monitoring is made of three comparators that determine if the VBUS voltage is at a valid level for operation: ● VBUS VALID: It corresponds to the minimum level on VBUS. Any voltage on VBUS below the threshold is considered to be a fault. During power-up, it is expected that this comparator output is ignored. ● VBUS SESSION VALID: This threshold is necessary for session request protocol to detect the VBUS pulsing. ● VBUS SESSION END: Session is ended. In this USB block, a B-device Session End threshold is defined within the range [0.2; 0.8] V. The reason for a low 0.2 V limit is that the leakage current could charge the VBUS up to 0.2 V (maximum). When the A-device (default master) is power supplied and does not supply VBUS, it presents an input impedance RA_BUS_IN on VBUS of no more than 100 kΩ. If the A-device responds to the VBUS pulsing method of SRP, then the input impedance RA_BUS_IN may not be lower than 40 kΩ. When the A-device supplies power, the rise time TA_VBUS_RISE on VBUS to go from 0 to 4.4 V is less than 100 ms when driving 100 mA and with an external load capacitance of 10 µF (in addition to VBUS decoupling capacitance). If VBUS does not reach this voltage within TA_VBUS_RISE maximum time, it indicates that the B-device is drawing more current that the A-device is capable of providing and an over-current condition exists. In this case, the A-device turns VBUS off and terminates the session. VBUS capacitance A dual-role device must have a VBUS capacitance CDRD_VBUS value comprised between 1 µF and 6.5 µF (see charge pump specification). The limit on the decoupling capacitance allows a B-device to differentiate between a powered-down dual-role device and a powereddown standard host. The capacitance on a host is higher than 96 µF. Data line pull-down resistance The two bits of USB control register, dp_pulldown and dn_pulldown (Table 12) are used to connect/disconnect the pull-down resistors. When an A-device is idle or acting as host, it activates the pull-down resistors RPD on both DP and DN lines. When an A-device is acting as peripheral, it disables RPD on DP, not DN. The A-device can disable both pull-down resistors during the interval of a packet transmission when acting as either host or peripheral. When the line is not used, the pull-down is activated and the maximum level on this ball should not exceed 0.342 V. 50/85 34.807IRELESS STw4811M/STw4811N Functional description Data line pull-up resistance The two bits of USB control register dp_pullup and dn_pullup (Table 12) are used to connect/disconnect pull-up resistors. Full-speed and low-speed devices are differentiated by the position of the pull-up resistor from the peripheral device. A pull-up resistor is connected to DP line for a full-speed device and a pull-up resistor is connected to DN line for a low-speed device. The pull-up resistor value is in the range of 900 Ω to 1600 Ω when the bus is idle and 1425 Ω to 3100 Ω when the upstream device is transmitting. Session Request Protocol (SRP) To save power, the OTG supplement allows an A-device to leave the VBUS turned off when the bus is not being used. If the B-device wants to use the bus when VBUS is turned off, then it requires the A-device to supply power on VBUS using the Session Request Protocol (SRP). ● Initial conditions The B-device does not attempt to start a new session until it has determined if the A-device has detected the end of the previous session. The B-device must ensure that VBUS is below VBUS_SESSION_END before requesting a new session. Additionally, the B-device switches a pull-down resistor (R_VBUS_PD) from VBUS to ground in order to quicken the discharge process as long as the B-device does not draw more than 8 mA from VBUS. R_VBUS_PD is activated by bit ‘vbus_dischrg’ of USB control register 2, (Table 12). When the B-device detects that VBUS is below the VBUS_SESSION_END and that both DP and DN have been low (SEO) for at least 2 ms, then any previous session on the Adevice is over and a new session can start. ● Data-line pulsing To indicate a request for a new session using the data line pulsing, the B-device turns on the DP pull-up resistor for 5 ms to 10 ms (only at full speed, no DN pulsing). The DP pull-up resistor is connected to VUSB (regulator output voltage). Timing is controlled by the USB digital control. ● VBUS pulsing To indicate a request for a new session using the VBUS pulsing method, the B-device waits for the initial conditions and then drives VBUS. VBUS is driven for a long enough period for a capacitance on VBUS that is smaller than 2x6.5 µF to be charged to 2.1 V while a capacitance on VBUS higher than 97 µF is not charged above 2.0 V. In this USB block, the VBUS_SESSION_VALID threshold is used to determine if an A-device is DRD (dual role device) or a standard host. The B-device VBUS pulsing block is designed so that the maximum drawn current does not exceed 8 mA. In this USB block, the pull-up is 600 Ω +/- 30%. If a B-device is attached to a standard device, the pull-up must be disconnected after the defined timing to prevent damage of standard hosts not designed to withstand a voltage externally applied to VBUS. 34.807IRELESS 51/85 Functional description ● STw4811M/STw4811N Session Request Protocol (SRP) If the B-device is in correct condition to start a new session, it first performs data line pulsing, followed by VBUS pulsing. When VBUS next crosses the SESSION VALID threshold, the B- device considers a session to be in progress and asserts the DP or DN data line within 100 ms. After SRP initialization, the B- device is set up to wait for at least 5 seconds for the A-device to respond before informing the user that the consumption attempt has failed. ● Host Negotiation Protocol (HNP) At the start of a session, the A-device has the role of host as default. During a session, the host role can be transferred back and forth between the A-device and the B-device any number of times using the Host Negotiation Protocol (HNP). The sequence of events for this exchange of host role is described in the “On the Go Supplement to the USB 2.0 Specification” (rev 1.0) as follow: – The A-device puts the bus in the suspend state – The B-device simulates a disconnect by de-asserting its DP pull-up – The A-device detects SE0 on the bus and asserts its DP pull-up – The B-device detects that DP line is high and takes the role of the host. ID detector In either active or suspended power mode, the ID detector detects the condition of the ID line and differentiates between the following three conditions: ● ID ball floating: (e.g. with USB B-device connected) ● ID ball shorted to ground: (e.g. with USB A-device connected) ● ID ball connected to ground through resistor RACC_ID: (e.g.with an accessory). The transceiver pulls the ID ball to VID_HI (VBAT) through a resistance of RID_PU when an accessory is plugged in. In this case, the ID ball is externally connected to ground via Racc_ID resistor. Two comparators are used to detect the ID voltage: VID_GND and VID_FLOAT (Figure 13). The ID detector also has a switch that can be used to ground the ID ball. This switch is controlled by ‘id_gnd bit’ of USB control register 2 (Table 12); This pull-down is used for CEA_KARKIT purposes. Car kit interrupt detector The transceiver is able to detect when the DP line is below the car kit interrupt threshold ‘cr_int’, (see USB interrupt register in Table 13 and refer to OTG specifications, Rev 0.92, §2.7, p13). Charge pump From VBAT_USB, the charge pump supplies VBUS, ‘vbus_drv’ bit of USB control register 2 (Table 12) is used to enable/disable the charge pump. If VBUS is “ON” before going to sleep mode, it remains “ON” in sleep mode. LDO USB From VBAT_USB, a LDO provides VUSB supply, ‘usb_en’ bit of USB_EN register (Table 17) is used to enable/disable the VUSB LDO and the transceiver. 52/85 34.807IRELESS STw4811M/STw4811N 4.4.3 Functional description USB enable control STw4811 OFF In this state: PON ball = 0 In this state, the overall system is able to detect USB connection through IT_WAKE_UP ball and with VBUS session valid comparator and ID detection ON. IT_WAKE_UP ball is activated (low level if tied by an external Pull Up resistor to VIO or VBAT) in either of the two following cases: ● When a mini A connector cable is connected and ID goes low ● When activity on VBUS, that is a mini B is connected and is able to communicate. This mode is used to wake-up the platform. In this configuration, USBINTn ball is not enabled and IT_WAKE_UP ball cannot be masked by ‘mask_it_wake_up’ bit (Table 28). STw4811 ON, USB driver not enabled In this state: PON = 1 If ‘mask_it_wake_up’ bit is set to “0”, IT_WAKE_UP ball has the same behavior as above (PON = 0) and turns ON the transceiver, ‘usb_en’ bit set to “1” (Table 17). If ‘mask_it_wake_up’ is set to “1”, IT_WAKE_UP ball feature is disabled and always stay at level “1” if tied by an external pull up resistor to VIO or VBAT and the transceiver is not turn ON. In sleep mode and in HIGH POWER mode, USBINTn ball is now enabled. If the USB cable is already connected while STw4811 is starting, the USB driver will be enabled when power management is ready. ● ● ● 34.807IRELESS Wake-up USB driver conditions – A plug-in on a mini A-device and active ID detector – B device is connected and ready to start data transfer, VBUS is driven high (session valid high) – Activity on USB registers (00h to 0Fh - Table 9 to Table 16). Multimedia processor ready to wake-up and set-up USB PHY. – Possibility to force PHY high (enable) when writing ‘usb_en’ = 1 in USB EN register (Table 17) Set condition: one among the following possibilities – External it_wake_up =0 – usb_en = 1 by writing to I2C USB interface – Access to any other USB register (00h to 0Fh) Power down USB driver conditions in order to set the USB driver to power down mode: – it_wake_up = 1, and only then – Set ‘usb_en’ bit of USB EN register (Table 17) to “0” 53/85 Functional description 4.5 STw4811M/STw4811N SD/MMC/SDIO module Figure 14. SD/MMC/SDIO block diagram SD/ MMC/SDIO interface VBAT_VMMC MCCMDDIR MCDATA0DIR MCDATA2DIR MCDATA31DIR VMMC LDO 150 mA CLKOUT MCCLK Driver 5*RB VIO_VMEM 3*RA EMIF 3*RA SD, MMC SDIO OR cards Level RC Rs shifter CMDOUT MCCMD MCDATA0 MCDATA[3:1] MCFBCLK Dz Dz DATAOUT0 DATAOUT[3:1] LATCHCLK RB 4.5.1 SD/MMC/SDIO LDO supply The Vmmc LDO is supplied via the input Vbat_Vmmc. According to the protection diode design, the voltage on this input pin Vbat_Vmmc must be always higher or equal to the battery voltage. Vbat_Vmmc >= Vbat By programming ‘vmmc_sel[2:0] bits of configuration 1 register (Table 18), this LDO provides the power supply (1.8 V, 1.85 V, 2.6 V, 2.7 V, 2.85 V, 3 V, 3.3 V) with a 150 mA current compliance for any of the following peripherals. ● SD card ● MMC card ● SDIO card If an application does not request to use the level shifter feature, this LDO can be used to supply an other peripheral, in this case, to reduce the internal current consumption due to level shifter it is recommended to set to “1” ‘mmc_ls_status’ bit of configuration 1 register (Table 18). If an application, like HDD, requests more than 150 mA current supply and the use of the internal level shifters, internal LDO must be disabled. The application will be supplied by an external LDO and internal level shifter will be directly supplied by the external LDO. In this configuration, ‘pdn_vmmc’ bit is set to “0”, ‘mmc_ls_status’ is set to “0” (Table 18) and ‘external_vmmc’ bit is set to “1” (Table 28). 54/85 34.807IRELESS STw4811M/STw4811N 4.5.2 Functional description Level shifters Signal shifting cards voltage level value is automatically done by the multimedia processor system. Following a card detection, the multimedia processor starts the SD/MMC/SDIO application by writing in the configuration 1 register (Table 18) to program LDO VMMC output supply and then starts the protocol initialization. The module includes: ● Five bidirectional level shifter channels compatible with 1.8 V, 1.85 V, 2.6 V, 2.7 V, 2.85 V, 3.0 V, 3.3 V ● Two unidirectional lines for clock: multimedia processor to card and feedback clock to multimedia processor for synchronization. ● Four control signals for channel direction. When direction balls (MCCMDDIR, MCDATA0DIR, MCDATA2DIR, MCDATA31DIR) are at low level, data is transmitted from Card to APE. When direction balls are at high level data is transmitted from APE to card. When the level shifters are “ON”, the APE interface MCDATA[3:0] and the MCCMD balls have a 1.5 Mohm pull up resistor to VIO_VMEM. It is possible to connect another card on the APE interface (1.8 V interface) for this: ● 34.807IRELESS set to “1” ‘mmc_ls_status’ bits of configuration 1 register (Table 18) with this configuration: – the APE interface MCDATA[3:0] and the MCCMD balls are put in high impedance and the pull up resistors are disconnected. – the card interface DATAOUT[3:0] and the CMDOUT balls are set to “1” with an internal 1.5 Mohm pull up resistor – the card clock, CLKOUT ball, is set to “0” and the APE feedback clock, MCFBCLK ball is configured in high impedance. 55/85 Electrical and timing characteristics 5 STw4811M/STw4811N Electrical and timing characteristics Otherwise specified typical parameters are defined for T = 25 °C / VBAT = 3.6 V. 5.1 Absolute maximum rating Table 35. Symbol STw4811 absolute maximum ratings Description Values Units -0.5 to 7 V -30 to +85 °C -2 to +2 kV -300 to +1000 V Maximum power supply Ta Maximum operating ambient temperature Human body VESD Electrostatic discharge model model(1) Charge device model(2) 1. HBM tests have been performed in compliance with JESD22-A114-B and ESD STM 5.1-2001.HBM 2. CDM tests have been performed in compliance with CDM ANSI-ESD STM 5.3.1-1999 5.2 Package dissipation Table 36. Package dissipation Symbol Description Min. Typ. Max. Units TFBGA 84 6x6x1.2mm 0.5mm ball pitch RTHJ-A Thermal resistance junction to ambient 70 °C/W 76 °C/W VFBGA84 4.6x4.6x1.0mm 0.4mm ball pitch RTHJ-A Thermal resistance junction to ambient 5.3 Power supply Note: STw4811 has different ways to go in sleep mode. The different possibilities for VCORE, VIO_VMEM and VAUX to be programmed to sleep mode are given in Table 26 and Table 27. Taking in account the bit programming from Table 26 and Table 27, sleep mode is summarized with the following formula: SLEEP = (Vxxx_SLEEP x PWREN) + (Vxxx_FORCE_SLEEP) = 1 (Vxx = VCORE or VIO_VMEM or VAUX) 56/85 34.807IRELESS STw4811M/STw4811N Note: Electrical and timing characteristics The configuration Vxxx_SLEEP = 0 (device in active mode) and Vxxx_FORCE_SLEEP = 1 (device in sleep mode, but no priority level on this bit) is forbidden. In all the following tables: – “High power mode” is defined as “SLEEP = ‘0’” – “Sleep mode” is defined as “SLEEP = ‘1’” Use Table 27 to refer to each Vxxx supply (VCORE or VIO_VMEM or VAUX). 5.3.1 Operating conditions Table 37. Symbol VBAT Operating conditions (temperature range: -30 to +85 °C) Description Power supply IQSLEEP Quiescent current Min. Typ. 2.7 Sleep mode VBAT = 3.6 V Max. Units 4.8 V 140 OFF mode VBAT = 3.6 V IQSTDBY 5.3.2 Test conditions µA 4 µA Max. Units 4.8 V 1.84 V VREF18 Table 38. Symbol VREF18 Description Test conditions Min. Typ. VBAT Supply voltage 2.7 VREF_18 Output voltage 1.78 PSRR Power supply rejection ratio Vpp = 0.3 V f ≤100 kHz 60 dB Noise 100 Hz ≤f ≤100 kHz 30 µV tS 34.807IRELESS Settling time 1.8 7.77 9.46 ms 57/85 Electrical and timing characteristics 5.3.3 STw4811M/STw4811N VCORE DC/DC step-down converter Table 39. Symbol VCORE DC/DC step-down converter Description Test conditions Min. Typ. Max. Units VCORE regulator in high power mode (SLEEP = 0) unless otherwise specified, VCORE = 1.26V VBAT Input power supply Battery voltage VRIPPLE Output voltage ripple VOUT 58/85 Programmable output voltage 2.7 3.6 4.8 6 ’vcore_sel’[3:0] 1111 1110 1101 1100 1011 1010 1001 1000 0111 (default) 0110 0101 0100 0011 0010 0001 0000 -3.7% -4.25% -5% 1.45 1.40 1.38 1.36 1.34 1.32 1.30 1.28 1.26 1.24 1.22 1.20 1.15 1.10 1.05 1.00 V mVpp +3.7% V +4.25% +5% IOUT Output current PEFF Power efficiency VBAT = 3.6 V IOUT = 200 mA LIR Line regulation VBAT: [2.7; 4.8]V 10 mV LDR(1) Load regulation IOUT: [0.1; 700] mA 10 mV ISHORT Short circuit current limitation 1.2 1.4 A IQ Quiescent current IOUT = 0 mA 130 200 µA ILKG Power-down current ‘en_vcore’ = 0 1 µA PSRR(1) Power supply rejection Vpp = 0.3 V [0; 20] kHz LIRT Transient line regulation ΔVBAT = 300 mV tR = tF = 10 µs 7 mV LDRT Transient load regulation IOUT = [1; 700] mA tR = tF = 100 ns 70 mV 700 86 0.9 40 mA % dB 34.807IRELESS STw4811M/STw4811N Table 39. Symbol Electrical and timing characteristics VCORE DC/DC step-down converter (continued) Description Test conditions Min. Typ. Max. Units 2.7 3.6 4.8 V VCORE regulator in sleep mode (SLEEP= ‘1’) VBAT Input power supply Battery voltage VRIPPLE VCORE output voltage ripple LIR Line regulation VBAT: [2.7; 4.8]V 10 mV LDR Load regulation IOUT: [0.1; 5] mA 10 mV IOUT VCORE output current 5 mA PEFF Power efficiency VBAT= 3.6 V IOUT: [0.1; 5] mA 85 IQ Quiescent current IOUT = 0 mA 20 LIRT Transient line regulation Δ VBAT= 300 mV tR = tF = 10 µs 7 6 mVpp % 30 µA mV 1. Guaranteed by design 5.3.4 VIO_VMEM DC/DC step-down converter Table 40. Symbol VIO_VMEM DC/DC step-down converter Description Test conditions Min. Typ. Max. Units 2.7 3.6 4.8 V -3% 1.8 +3% V VIO_VMEM regulator in high power mode (SLEEP = ‘0’) VBAT Input power supply Battery voltage (1) VOUT Output voltage VRIPPLE Output ripple LIR Line regulation VBAT: [2.7; 4.8]V 10 mV LDR(2) Load regulation IOUT: [0.1; 600] mA 10 mV IOUT Output current 600 mA PEFF Power efficiency 6 VBAT = 3.6 V, VIO = 1.8 V IOUT= 200 mA mVpp 90 % ISHORT Short circuit current limitation IQ Quiescent current IOUT = 0 mA PSRR(2) Power supply rejection Vpp = 0.3 V [0; 20] kHz LIRT Transient line regulation ΔVBAT = 300 mV tR = tF = 10 µs 7 mV LDRT Transient load regulation IOUT= [1; 600] mA tR = tF = 100 ns 70 mV 34.807IRELESS 0.9 1.2 1.4 A 130 250 µA 40 dB 59/85 Electrical and timing characteristics Table 40. Symbol STw4811M/STw4811N VIO_VMEM DC/DC step-down converter (continued) Description Test conditions Min. Typ. Max. Units 2.7 3.6 4.8 V VIO_VMEM regulator in sleep mode (SLEEP=’1’) VBAT Input power supply Battery voltage VRIPPLE Output ripple LIR Line regulation VBAT: [2.7; 4.8]V 10 mV LDR Load regulation IOUT: [0.1; 5] mA 10 mV IOUT Output current 5 mA PEFF Power efficiency VBAT = 3.6 V IOUT = [0.1; 5] mA IQ Quiescent current IOUT = 0 mA LIRT Transient line regulation ΔVBAT = 300 mV tR = tF = 10 µs 10 mVpp 85 % 20 2 µA mV 1. Including output voltage temperature coefficient, DC line and load regulations, voltage reference accuracy, industrial manufacturing tolerances and ripple voltage due to switching 2. Guaranteed by design 60/85 34.807IRELESS STw4811M/STw4811N 5.3.5 Electrical and timing characteristics LDO regulators VPLL Table 41. Symbol LDO regulators - VPLL Description Test conditions Min. Typ. Max. Units VPLL regulator in high power mode unless otherwise specified, VPLL = 1.8 V VBAT Input power supply Battery voltage ’vpll_sel’[1:0] 11 (default) 10 01 00 2.7 -3% 3.6 4.8 V +3% V 3.5 10 mA 130 165 mA 30 40 µA 1 µA 1.8 1.3 1.2 1.05 VOUT Output voltage IOUT Output current ISHORT Short-circuit limitation IQ Quiescent current IOUT = 0 mA ILKG Power-down current EN_VPLL = 0 PSRR(1) Power supply rejection Vpp = 0.3 V f < 10 kHz 10 kHz < f <100 kHz LIR Line regulation VBAT: [2.7; 4.8]V 5 mV LDR Load regulation IOUT: [0.1; 10] mA 10 mV LIRT Transient line regulation ΔVBAT = 300 mV tR = tF = 10 µs 1 mV LDRT Transient load regulation IOUT = [0.1; 10] mA tR = tF = 1 µs 1 mV En(1) Noise density at 1 kHz BW = 100 Hz 95 55 45 dB dB 250 nVrms ------------Hz 1. Guaranteed by design 34.807IRELESS 61/85 Electrical and timing characteristics STw4811M/STw4811N VANA Table 42. Symbol LDO regulators - VANA Description Test conditions Min. Typ. Max. Units VANA regulator in high power mode VBAT Input power supply Battery voltage 2.7 3.6 4.8 V VOUT Output voltage -5% 2.5 +5% V IOUT Output current 10 mA ISHORT Short-circuit limitation 64 mA IQ Quiescent current IOUT = 0 mA 30 µA ILKG Power-down current EN_VANA = 0 1 µA PSRR(1) Power supply rejection Vpp = 0.3 V f < 10 kHz LIR Line regulation VBAT: [2.7; 4.8] V 5 mV LDR Load regulation IOUT: [0.1; 10] mA 5 mV LIRT Transient line regulation ΔVBAT = 300 mV tR = tF = 10 µs 2 mV LDRT Transient load regulation IOUT = [0.1; 10] mA tR = tF = 1 µs 15 mV 39 51 45 dB 1. Guaranteed by design VAUX Table 43. Symbol LDO regulators - VAUX Description Test conditions Min. Typ. Max. Units 4.8 V V VAUX regulator in high power mode (pdn_vaux = 1, SLEEP = 0) VOUT = 1.5V VBAT Input power supply VOUT = 1.8/2.5 V VOUT = 2.8 V 62/85 VOUT Output voltage IOUT Output current ISHORT Short-circuit limitation IQ Quiescent current ’vaux_sel’[1:0] 00 (default) 01 10 11 1.7 2.7 3.6 4.8 3 3.6 4.8 -3% 1.5 1.8 2.5 2.8 +3% 220 IOUT = 0 mA V 150 mA 410 mA 30 µA 34.807IRELESS STw4811M/STw4811N Table 43. Symbol Electrical and timing characteristics LDO regulators - VAUX (continued) Description Test conditions Min. Typ. Max. Units 1 µA ILKG Power-down current ’pdn_vaux’ = 0 PSRR(1) Power supply rejection VOUT=1.5 V Vpp = 0.3 V f < 10 kHz LIR Line regulation VOUT=1.5 V VBAT: [2.7; 4.8]V 5 mV LDR(1) Load regulation VOUT=1.5 V IOUT= [0.1; 150] mA 10 mV LIRT Transient line regulation ΔVBAT = 300 mV tR = tF = 10 µs 2 mV LDRT Transient load regulation IOUT = [10; 90%] mA tR = tF = 1 µs 35 mV tS Settling time 40 dB 100 µs 4.8 V V VAUX regulator in sleep mode (’pdn_vaux’= 1, SLEEP=’1’) VBAT Input power supply VOUT = 1.5V VIO_VMEM supply 1.7 VOUT = 1.8/2.5 V 2.7 3.6 4.8 3 3.6 4.8 VOUT = 2.8 V IOUT Output current IQ Quiescent current IOUT = 0 mA PSRR(1) Power supply rejection VOUT=1.5 V Vpp = 0.3 V f < 10 kHz LIR Line regulation VOUT=1.5 V VBAT: [2.7; 4.8]V 5 mV LDR Load regulation VOUT=1.5 V IOUT= [10; 90%] µA 10 mV LIRT Transient line regulation ΔVBAT = 300 mV tR = tF = 10 µs 2 mV LDRT Transient load regulation IOUT = [10; 90%] µA tR = tF = 1 µs 35 mV 500 µA 20 µA 38 dB 1. Guaranteed by design 34.807IRELESS 63/85 Electrical and timing characteristics 5.3.6 STw4811M/STw4811N Power supply monitoring This block monitors the VCORE and VIO_VMEM output voltage. If VCORE or VIO_VMEM drops below the threshold, the multimedia processor is reset. Table 44. Power supply monitoring Symbol Description Test conditions Min. Typ. Max. Units -3% VCORE-150 +3% mV -3% 1.65 +3% V 2.7 3.6 4.8 V Threshold THCORE(1) Threshold VCORE THVIO(1) Threshold VIO_VMEM Comparators VBAT Supply voltage tRES Response time 100 ns HYFALL Hysteresis (input voltage falling) 26 mV HYRIS Hysteresis (input voltage rising) +4 mV 1. Guaranteed by design 5.4 Digital specifications 5.4.1 CMOS input/output static characteristics: I2C interface Table 45. CMOS input/output static characteristics: I²C interface Symbol Description Test conditions Min. Typ. Max. Units 0.3*VIO V I²C interface(1) VIL Low level input voltage VIH High level input voltage 0.7*VIO IIL Low level input current -1.0 1.0 µA IIH High level input current -1.0 1.0 µA VOL Low level output voltage IOL = 3mA (with open drain or open collector) 0.2*VIO V VOH High level output voltage IOL = 3mA (with open drain or open collector) 0.8*VIO V V 1. Vio is for VIO_VMEM 64/85 34.807IRELESS STw4811M/STw4811N 5.4.2 Electrical and timing characteristics CMOS input/output dynamic characteristics: I2C interface Table 46. CMOS input/output dynamic characteristics: I²C interface Symbol Description Min. Typ. Max. Units 400 kHz I²C interface (Figure 8) Fscl Clock frequency thigh Clock pulse width high 600 tlow Clock pulse width low 1300 ns ns (1) tr SDA, SCL, USBSDA, USBSCL rise time 20+0.1*Cb tf SDA, SCL, USBSDA, USBSCL fall time thd_sta Start condition hold time 600 ns tsu_sta Start condition set up time 600 ns thd_dat Data input hold time 0 ns tsu_dat Data input set up time 100 ns tsu_sto Stop condition set up time 600 ns tbuf Bus free time 1300 ns Cb Capacitive load for each bus line 20+0.1*Cb 300 ns 300 ns 400 pF 1. Cb = total capacitance of one bus line in pF 34.807IRELESS 65/85 Electrical and timing characteristics 5.4.3 STw4811M/STw4811N CMOS input/output static characteristics: VIO level USB and control I/Os Table 47. Symbol VIO level: USB and control I/Os Description Test conditions Min. Typ. Max. Units SW_RESETn, VDDOK, PORN, PWREN, TCXO_EN, REQUEST_MC, CLK32K, CLK32K_IN, USBOEN, USBVP, USBVM, USBRCV, USBINTn, MASTER_CLK VIL(1) Low level input voltage VIH High level input voltage 0.7*Vio IIL Low level input current -1.0 1.5 µA IIH High level input current -1.0 1.5 µA CIN Input capacitance 10 pF VOL Low level output voltage IOL = 4 mA 0.2*Vio V VOH High level output voltage IOL = 4 mA tOF Output fall time Capacitance 10pF 10 ns tOR Output rise time Capacitance 10pF 10 ns CI/O Driving capability 100 pF 0.3*Vio V V 0.8*Vio V 1. Vio for VIO_VMEM 66/85 34.807IRELESS STw4811M/STw4811N Electrical and timing characteristics MMC interface Table 48. Symbol VIO level: MMC interface Description Test conditions Min. Typ. Max. Units MMC interface: MCCLK, MCFBCLK, MCCMDDIR, MCCMD, MCDATA2DIR, MCDAT2, MCDATA0DIR, MCDAT0, MCDAT31DIR, MCDAT3, MCDAT1 VIL(1) Low level input voltage VIH High level input voltage 0.7*Vio IIL Low level input current -1.0 1.5 µA IIH High level input current -1.0 1.5 µA CIN Input capacitance 10 pF VOL Low level output voltage IOL = 15 mA 0.2*Vio V VOH High level output voltage IOL = 15 mA CI/O Driving capability at 52 MHz 0.3*Vio V V 0.8*Vio V 30 pF 1. Vio for VIO_VMEM 34.807IRELESS 67/85 Electrical and timing characteristics 5.4.4 STw4811M/STw4811N CMOS input/output static characteristics: VBAT level Table 49. Symbol CMOS input/output static characteristics: VBAT level Description Test conditions Min. Typ. Max. Units 0.3*Vbat V IT_WAKE_UP, PON, GPO1, GPO2 68/85 VIL Low level input voltage PON VIH High level input voltage PON 0.7*Vbat IIL Low level input current PON -1.0 1.5 µA IIH High level input current PON -1.0 1.5 µA CIN Input capacitance 10 pF VOL Low level output voltage IT_WAKE_UP, GPO1, GPO2 IOL = 2 mA 0.2*Vbat V VOH High level output voltage IT_WAKE_UP, GPO1, GPO2 IOL = 2 mA tOF Output fall time Capacitance 10pF 5 ns tOR Output rise time Capacitance 10pF 50 ns CI/O Driving capability 100 pF V 0.8*Vbat V 34.807IRELESS STw4811M/STw4811N 5.4.5 Electrical and timing characteristics CMOS input/output static characteristics: VMMC level Table 50. Symbol CMOS input/output static characteristics VMMC level Description Test conditions Min. Typ. Max. Units DATAOUT0, DATAOUT1, DATAOUT2, DATAOUT3, CMDOUT, LATCHCLK, CLKOUT VIL Low level input voltage VIH High level input voltage 0.7*VMMC IIL Low level input current -1.0 1.5 µA IIH High level input current -1.0 1.5 µA CIN Input capacitance 10 pF VOL Low level output voltage IOL = 25 mA VOH High level output voltage IOL = 25 mA CI/O Driving capability 34.807IRELESS 0.3*VMMC 0.2*VMMC 0.8*VMMC 40 pF 69/85 Electrical and timing characteristics 5.5 STw4811M/STw4811N USB OTG transceiver Table 51. Symbol USB OTG transceiver Description Test conditions Min. Typ. Max. Units UART mode tR Rise time CLOAD= [50;100] pF [10; 90] % of VOH-VOL 100 ns tF Fall time CLOAD= [50;100] pF 10......90% of VOH-VOL 100 ns tPLH Drive propagation delay low => high CLOAD= [50;100] pF 50% of |VOH-VOL| 100 ns tPHL Drive propagation delay high => low CLOAD= [50;100] pF 50% of |VOH-VOL| 100 ns USB full speed mode (DP & DN signals) tR Rise time 4 20 ns tF Fall time 4 20 ns DRFM Differential rise an fall time matching USBVP & USBVM : 90 111 % Output signal crossover voltage - Skew < 0.66 ns OSCV 1.3 2 V PDEL Propagation delay 18 ns - Trise & Tfall < 1 ns USB low speed mode (DP & DN signals) tR Rise time 75 300 ns tF Fall time 75 300 ns DRFM Differential rise an fall time matching 80 125 % OSCV Output signal crossover voltage 1.3 2 V 4.8 V VBUS comparators 70/85 VBAT Input power supply Battery voltage 3.1 3.6 tRR Rising reacting time 1.7 µs tFR Fall reacting time 2.1 µs 34.807IRELESS STw4811M/STw4811N Table 51. Symbol Electrical and timing characteristics USB OTG transceiver (continued) Description Test conditions Min. Typ. Max. Units 4.4 4.5 4.6 V 3.77 3.87 3.97 V Threshold VBUS monitoring VAval VBUS valid Vth_dev Threshold device VBses VBUS session valid 1.8 2 V VBsess_end B_session_end 0.2 0.8 V 40 100 kΩ 100 ms ‘th_Bdevice’ = 1 VBUS RA_BUS_ IN VBUS = [0; 4.4] V ILOAD = 100mA External cap 10µF TA_VBUS_ RISE Data line pull-down resistance RPD_DPDN 14 19 25 kΩ Data line pull-up resistance RPU_DP Bus idle Bus driven 900 1425 1200 2300 1600 3100 Ω RPU_DN Bus idle Bus driven 900 1425 1200 2300 1600 3100 Ω 650 925 1200 Ω 420 600 780 Ω PULL-DOWN on VBUS RVBUS_PD PULL-UP on VBUS RVBUS_SRP ID VID_GND ID_GND comparator 2.7 V < VBAT < 4.8 threshold V VID_HI (VBAT) Battery level VID_FLOAT ID_FLOAT comparator threshold RPU_ID 0.15* VBAT 2.7 3.6 V 4.8 0.85* VBAT 70 RPD_ID 100 V V 130 kΩ 10 kΩ 0.6 V Carkit threshold detection cR_INT 34.807IRELESS Carkit interrupt threshold 0.4 71/85 Electrical and timing characteristics Table 51. STw4811M/STw4811N USB OTG transceiver (continued) Symbol Description Test conditions Min. Typ. Max. Units 3.6 V 0.4 V Transceiver VOH_TXD_ DAT VOL_TXD_ DAT VIH_RXD _DAT VIL_RXD_ DAT TXD output high on DN ISOURCE = 500 µA TXD output low on DN ISINK = 2mA RXD input high on DP 2.4 2 V RXD input low on DP 0.8 V Charge pump VBAT Input power supply Battery voltage VBUS Output voltage Current load up to 100 mA tS Settling time [0;4.8] V) Ext. load: 100 mA + External cap = 10µF 1.2 ms IQ Quiescent current No Load 2.7 mA VRipple Amplitude output ripple on VBUS Current load 8 mA Current load 100mA 25 40 mV mV IOUT Output current Eff Efficiency VUSB+0.1 3.6 4.8 V 4.75 5 5.25 V 100 VBAT = 3.0V IOUT =100mA VBAT= 3.6V. IOUT = 8 mA. mA 85 % 60 % VUSB regulator 72/85 VBAT(1) Input voltage Battery voltage: VBAT min = VOUT + 0.1V VOUT Output voltage VBAT min= VOUT + 0.1V ISHORT Short circuit current limitation IQ Quiescent current No load PSRR(2) Power supply rejection VBAT= VOUT+0.2V f < 20 kHz LIRT Transient line regulation ΔVBAT = 300 mV tR = tF = 10µs. VUSB+0.1 3.6 5.5 V 3.0 3.1 3.2 V 320 mA 70 µA 45 dB 5 mV 34.807IRELESS STw4811M/STw4811N Table 51. Symbol Electrical and timing characteristics USB OTG transceiver (continued) Description Test conditions Min. Typ. Max. Units tS Settling time OFF->ON IOUT = 0mA 25 µs tD Discharge time ON>OFF IOUT = 0mA 400 µs 1. From 4.8 V to 5.5 V, charge pump is “Off” and no OTG feature is provided 2. Guaranteed by design 5.6 SD/MMC/SDIO card interface Table 52. Symbol SD/MMC/SDIO card interface Description Test conditions Min. Typ. Max. Units 3.55 3.25 3.1 2.95 2.85 2.7 3.6 5.5 V -3% 3.3 3 2.85 2.7 2.6 1.85 1.8 +3% V 150 mA 600 mA VMMC regulator specifications (’pdn_vmmc’ = 1) VIN Input voltage VOUT = 3.3 V VOUT = 3 V VOUT = 2.85 V VOUT = 2.7 V VOUT = 2.6 V VOUT = 1.8/1.85 V VOUT Output voltage IOUT Output current ISHORT Short circuit current limitation IQ Quiescent current IOUT = 0 mA 30 µA ILKG Power-down current ’pdn_vmmc’ = 0 1 µA PSRR(1) Power supply rejection IOUT = 150 mA Vpp = 0.3 V f < 20 kHz LIR(1) Line regulation VOUT=2.85 V VBAT: [3.1; 4.8]V 5 mV LDR(1) Load regulation VOUT=2.85 V IOUT= [1; 150] mA 10 mV LIRT Transient line regulation VOUT=2.85 V VBAT: 3.1 to 3.4V tR = tF = 10 µs. 34.807IRELESS 240 360 45 dB 2 mV 73/85 Electrical and timing characteristics Table 52. Symbol STw4811M/STw4811N SD/MMC/SDIO card interface (continued) Description Test conditions Min. Typ. Max. Units VMMC regulator specifications (’pdn_vmmc’ = 1) LDRT Transient load regulation IOUT = [1; 150] mA tR = tF = 1 µs tS Settling time OFF->ON IOUT = 0 mA 100 µs tD Discharge time ON>OFF IOUT = 0 mA 1 ms 25 mV Bus line specifications RA(2) Pull-up resistor To prevent bus from floating 1.5 MΩ RB Pull-down resistor To prevent bus from floating 1.5 MΩ fDT Clock frequency data transfert mode With CL = 30pF 52 MHz fID Clock frequency With CL = 30pF identification mode 400 kHz TPHC Propagation time from Host to card Figure 15 7 ns TPCH Propagation time from card to host Figure 15 7 ns TSHC Clock /data skew time from host to card Figure 15 Reference is CLKOUT +/- 0.5 ns TSCH Clock /data skew time from card to host Figure 15 Reference is MMCLK +/- 0.5 ns TR Rise time 3 ns TF Fall time 3 ns C1LINE Between host and STw4811 20(3) pF C2LINE Bus line Between STw4811 capacitance and MMC card f < 52 MHz 20 + 20(4) pF Bus line capacitance f < 52 MHz 1. Guaranteed by design 2. MMC interface pull up resistors are in EMIF06-HCM01F2 device (7 KΩ for CMD; 75 KΩ for Data wires) 3. 20 pF for equivalent board parasitic capacitance. 4. 20 pF for EMIF06 protection + 20 pF for board parasitic capacitance. 74/85 34.807IRELESS STw4811M/STw4811N Electrical and timing characteristics Figure 15. Propagation and clock/data skew times 2 ns 2 ns 2 ns MCCLK MCCMD MCDATA[3:0] MCFBCLK 90% 90% 50% 10% 10% TPHC DATAOUT[3:0] MCDATA[3:0] t 2 ns 2 ns 90% 10% 2 ns 90% 50% TSCH 90% 50% 10% TPCH t CLKOUT 10% MCCLK 50% DATAOUT[3:0] TPCH 34.807IRELESS CLKOUT MCCLK 10% 50% TPHC MCCLK MCCMD MCDATA[3:0] MCFBCLK 50% t CLKOUT CMDOUT DATAOUT[3:0] LATCHCLK CLKOUT CMDOUT DATAOUT[3:0] LATCHCLK TSHC 90% MCDATA[3:0] t 75/85 Application information STw4811M/STw4811N 6 Application information 6.1 Components list Table 53. Name Components list Typical value Comments Function C1 VIO_VMEM output filter 22µF C4 VCORE output filter C2 VBAT_VIOVMEM decoupling C3 10µF C5 C6 C7 C8 1µF C10 C13 VBAT_ANA decoupling In the complete system application, the sum of the capacitors connected on each STw4811 ball must never be less than 30% of the value indicated in the typical value column of this table. This includes all capacitor parameters: – production dispersion – DC bias voltage applied – temperature range of the complete system application – aging VBAT_VCORE decoupling VPLL output filter VANA output filter VREF output filter VUSB output filter VAUX output filter C9 470nF C11 4.7µF C12 2.2µF VSD_MMC output filter C13, C14, C15, C16, C17 1 µF Vbattery input voltage decoupling capacitors L1 Flying capacitor for charge pump VBUS output filter (tank charge pump capacitor) Coil VIOVMEM DC/DC 4.7µH See Table 54 for recommended coils L2 Coil VCORE DC/DC Table 54. Supplier TDK Coilcraft Recommended coils DCR (Ω) Irms(1) (A) L x l x h (mm * mm * mm) VLF3010AT-4R7MR70 0.28 0.7 2.8 * 2.6 * 1.0 VLF3012AT-4R7MR74 0.16 0.74 2.8 * 2.6 * 1.2 VLF4012AT-4R7M1R1 0.14 1.1 3.7 * 3.5 * 1.2 DO1605T-472MX 0.15 1.1 5.5 * 4.2 * 1.8 DO3314-472ML 0.32 1.1 3.3 * 3.3 * 1.4 ME3320-472MX 0.19 1.1 3.2 * 2.5 * 2.0 Part number 1. Irms: 30% decrease of initial value 76/85 34.807IRELESS STw4811M/STw4811N Table 55. Application information Other ST components Name Order code Function EMIF02 EMIF02USB05 USB ESD/EMI Protection EMIF06 EMIF06-HMC01F2 MMC Interface ESD/EMI Protection 34.807IRELESS 77/85 Application information 6.2 STw4811M/STw4811N Application schematics Figure 16. STw4811 application schematics C4 VLX_VCORE VBAT_VCORE VMINUS_ANA VBAT_ANA VIOVMEM_FB PON CLK32Kin MASTER_CLK** VLX_VIOVMEM VMINUS_VIOVMEM VBAT_DIG VMINUS_DIG VBAT_VIOVMEM MODEM & SYSTEM CLOCK C2 C13(*) L2 C5 C3 VCORE L1 VMINUS_VCORE C1 C14(*) VBAT_VPLL_VANA C6 IT_WAKE_UP VPLL REQUEST_MC TCXO_EN C7 VANA C8 B9 VREF C15(*) VBAT_VAUX D3 C13 VAUX C16(*) VBAT_USB PWREN VDDOK PORn CLK32K SW_RESETn Multimedia processor SDA USBVP USBOEn USBVM USBRCV CN STw4811 ID ESD DP DN USBSDA MCDAT2DIR MCDAT2 R1 R1 EMI filter MCCLK MCFBCLK 3 C11 VBUS USBSCL MCDAT0DIR MCDAT0 MCDAT31DIR MCDAT[3,1] C10 VUSB USBINTn MCCMDDIR MCCMD C9 CP USB SCL VMINUS_USB EMIF02 (*) VBAT_MMC C17 C12 VMMC DATOUT[3:1] DATAOUT0 CMDOUT SD MMC 3 EMI Filter SDIO CARD CLKOUT LATCHCLK GPO1 GPO2 EMIF06-HMC01F2 (*) The usefulness of these capacitors depend of PCB layout (**) Master Clock can be connected on this ball. In this case see the feature use restriction in section 4.2.3 78/85 34.807IRELESS STw4811M/STw4811N 7 Package mechanical data Package mechanical data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 7.1 TFBGA 84 balls See Figure 17: TFBGA 84 balls 6x6x1.2mm body size / 0.5 ball pitch drawing. Table 56. TFBGA 84 balls 6x6x1.2mm body size / 0.5 ball pitch dimensions(1) Drawing dimensions (mm) Min. Typ. A A1 Max. 1.16 0.20 A2 0.25 0.30 0.82 b 0.25 0.30 0.35 D 5.90 6.00 6.10 D1 E 4.50 5.90 E1 6.00 6.10 4.50 e 0.45 0.50 0.55 f 0.65 0.75 0.85 ddd 0.08 1. These measurements conform to JEDEC standards 34.807IRELESS 79/85 Package mechanical data STw4811M/STw4811N Figure 17. TFBGA 84 balls 6x6x1.2mm body size / 0.5 ball pitch drawing Note: The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metallized markings, or other feature of package body or integral heatslug. A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1 corner. Exact shape of each corner is optional. 80/85 34.807IRELESS STw4811M/STw4811N 7.2 Package mechanical data VFBGA 84 balls See Figure 18: VFBGA 84 balls 4.6x4.6x1.0 mm ball pitch 0.4 drawing. Table 57. VFBGA 84 balls / 4.6x4.6x1.0 mm body size / 0.4 mm ball pitch(1) Drawing dimensions (mm) Min. Typ. A A1 Max. 0.864 0.15 0.19 A2 0.615 A3 0.18 A4 0.435 0.23 b 0.21 0.25 0.29 D 4.55 4.60 4.65 D1 E 3.60 4.55 4.60 E1 3.60 e 0.40 f 0.50 4.65 ddd 0.08 eee 0.13 fff 0.04 1. These measurements conform to JEDEC standards 34.807IRELESS 81/85 Package mechanical data STw4811M/STw4811N Figure 18. VFBGA 84 balls 4.6x4.6x1.0 mm ball pitch 0.4 drawing Note: The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metallized markings, or other feature of package body or integral heatslug. A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1 corner. Exact shape of each corner is optional. 82/85 34.807IRELESS STw4811M/STw4811N 8 Ordering information Ordering information Table 58. Order codes Part number Note: Package Packing STW4811MBHD/LF TFBGA84- 6x 6 x 1.2 mm / 0.5 mm pitch Tray STW4811MBHDT/LF TFBGA84- 6x 6 x 1.2 mm / 0.5 mm pitch Tape and Reel STW4811MBRA/LF VFBGA 84 - 4.6x 4.6 x 1 mm / 0.4 mm pitch Tray STW4811MBRAT/LF VFBGA 84 - 4.6x 4.6 x 1 mm / 0.4 mm pitch Tape and Reel STW4811NBHD/LF TFBGA84- 6x 6 x 1.2 mm / 0.5 mm pitch Tray STW4811NBHDT/LF TFBGA84- 6x 6 x 1.2 mm / 0.5 mm pitch Tape and Reel STW4811NBRA/LF VFBGA 84 - 4.6x 4.6 x 1 mm / 0.4 mm pitch Tray STW4811NBRAT/LF VFBGA 84 - 4.6x 4.6 x 1 mm / 0.4 mm pitch Tape and Reel STw4811M: Vaux OFF at start up STw4811N: Vaux ON at start up 34.807IRELESS 83/85 Revision history 9 STw4811M/STw4811N Revision history Table 59. Document revision history Date Revision 05-Sep-2007 1 Initial release on www.st.com. Reviewed the first sentence in Section 5.3: Power supply to precise ‘typical’ parameters. 17-Apr-2008 2 Updated the document status to ‘datasheet’ with respect to the device maturity level. 3 Updated the maximum current value of the step-down converter for processor core to 700 mA in Features, Chapter 1: Overview, Section 4.3.2: VCORE regulator: DC/DC STEP- DOWN regulator and Table 39: VCORE DC/DC step-down converter. 25-Aug-2008 84/85 Changes 34.807IRELESS STw4811M/STw4811N Please Read Carefully: Information in this document is provided solely in connection with ST-NXP products. ST-NXP Wireless NV and its subsidiaries (“ST-NXP”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST-NXP products are sold pursuant to ST-NXP’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST-NXP products and services described herein, and ST-NXP assumes no liability whatsoever relating to the choice, selection or use of the ST-NXP products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST-NXP for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST-NXP’S TERMS AND CONDITIONS OF SALE ST-NXP DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST-NXP PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST-NXP REPRESENTATIVE, ST-NXP PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST-NXP PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST-NXP products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST-NXP for the ST-NXP product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST-NXP. ST-NXP and the ST-NXP logo are trademarks or registered trademarks of ST-NXP in various countries. Information in this document supersedes and replaces all information previously supplied. The ST-NXP logo is a registered trademark of ST-NXP Wireless. All other names are the property of their respective owners. © 2008 ST-NXP Wireless - All rights reserved ST-NXP Wireless group of companies Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - India - Italy - Japan - Korea - Malaysia - Mexico Netherlands - Singapore - Sweden - Switzerland - Taiwan - United Kingdom - United States of America www.stnwireless.com 34.807IRELESS 85/85