STMICROELECTRONICS STW4811MBHD/LF

34.807IRELESS
IMPORTANT NOTICE
Dear customer,
As from August 2nd 2008, the wireless operations of STMicroelectronics have moved to a
new company, ST-NXP Wireless.
As a result, the following changes are applicable to the attached document.
●
Company name - STMicroelectronics NV is replaced with ST-NXP Wireless.
●
Copyright - the copyright notice at the bottom of the last page “© STMicroelectronics
200x - All rights reserved”, shall now read: “© ST-NXP Wireless 200x - All rights
reserved”.
●
Web site - http://www.st.com is replaced with http://www.stnwireless.com
●
Contact information - the list of sales offices is found at http://www.stnwireless.com
under Contacts.
If you have any questions related to the document, please contact our nearest sales office.
Thank you for your cooperation and understanding.
ST-NXP Wireless
34.807IRELESS
www.stnwireless.com
STw4811M
STw4811N
34.807IRELESS
Power management for multimedia processors
Features
■
2 step-down converters
– 1 to 1.45 V with 15 steps at 700 mA
– 1.8 V at 600 mA for general purpose usage
■
3 low-drop output regulators for different uses
– PLL analog supplies:
1.05 V, 1.2 V, 1.3 V 1.8 V - 10 mA
– Processor analog functions:
2.5 V - 10 mA
– Auxiliary device:
1.5 V, 1.8V , 2.5 V, 2.8 V - 150 mA
■
USB OTG module
– Full and low speed USB OTG transceiver
– Charge-pump (5 V, 100 mA) for USB cable
■
Mass memory cards (SD/MMC/SDIO)
– 1 linear regulator: 1.8 V, 1.85 V, 2.6 V,
2.7 V, 2.85 V, 3 V, 3.3 V - 150 mA
– Level shifter
■
Miscellaneous
– 32 kHz control for multimedia processor
– Processor supply monitoring
– Processor reset control
– 2 serial I2C interfaces
STw4811
TFBGA 84
6x6x1.2mm
0.5mm pitch
STw4811
VFBGA 84
4.6x4.6x1.0mm
0.4mm pitch
Description
STw4811 is a power management companion
chip for multimedia processors used in portable
applications. It supplies the multimedia processor
including its memories and peripherals. STw4811
supports the main mass memory standard cards.
SDIOTM is also supported and allows to connect
multimedia peripherals like cameras.
Applications
■
ST NomadikTM STn881x
■
Multimedia processor
■
Mobile phones, PDA, videophone
August 2008
Rev 3
1/85
www.stnwireless.com
1
Contents
STw4811M/STw4811N
Contents
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2
Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3
Ball information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4
3.1
Ball connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2
Ball functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2
Digital control module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3
4.4
4.5
4.2.1
State machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.2
POWER OFF / VDDOK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.3
Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.4
I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.5
Control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.6
IT generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.7
Clock switching and control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Power management module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.1
Bandgap, biasing and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.2
VCORE regulator: DC/DC STEP- DOWN regulator . . . . . . . . . . . . . . . 41
4.3.3
VIO_VMEM regulator: DC/DC step- down regulator . . . . . . . . . . . . . . . 41
4.3.4
VPLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.5
VANA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.6
VAUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.7
Power supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.8
Power supply domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.9
Thermal shut-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
USB OTG module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.2
Modes and operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.3
USB enable control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
SD/MMC/SDIO module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5.1
2/85
SD/MMC/SDIO LDO supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
34.807IRELESS
STw4811M/STw4811N
4.5.2
5
7
Level shifters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Electrical and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1
Absolute maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2
Package dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3
Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4
6
Contents
5.3.1
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.2
VREF18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.3
VCORE DC/DC step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.4
VIO_VMEM DC/DC step-down converter . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.5
LDO regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.6
Power supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Digital specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4.1
CMOS input/output static characteristics: I2C interface . . . . . . . . . . . . . 64
5.4.2
CMOS input/output dynamic characteristics: I2C interface . . . . . . . . . . 65
5.4.3
CMOS input/output static characteristics: VIO level . . . . . . . . . . . . . . . 66
5.4.4
CMOS input/output static characteristics: VBAT level . . . . . . . . . . . . . . . 68
5.4.5
CMOS input/output static characteristics: VMMC level . . . . . . . . . . . . . 69
5.5
USB OTG transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.6
SD/MMC/SDIO card interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.1
Components list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2
Application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.1
TFBGA 84 balls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2
VFBGA 84 balls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
34.807IRELESS
3/85
List of tables
STw4811M/STw4811N
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
4/85
STw4811 ball connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
STw4811 balls function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Device ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Register address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Register data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Register general information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Power control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
USB register address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Vendor ID and Product ID: Read only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
USB control register 1 (address = 04h set and 05h clearh) . . . . . . . . . . . . . . . . . . . . . . . . 25
USB control register 2 (address = 06h set and 07h clearh) . . . . . . . . . . . . . . . . . . . . . . . . 26
USB Interrupt source register (address = 08h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
USB interrupt latch registers (address = 0Ah set and 0Bh clearh) . . . . . . . . . . . . . . . . . . . 27
USB interrupt enable low register (address = 0Ch and 0Dh) . . . . . . . . . . . . . . . . . . . . . . . 28
USB interrupt enable high register (address = 0Eh and 0Fh). . . . . . . . . . . . . . . . . . . . . . . 28
USB EN register (address = 10h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Configuration 1 register (11h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Power control register - General information (address = 1Eh) . . . . . . . . . . . . . . . . . . . . . . 31
Power control register - General information (address = 1Fh) . . . . . . . . . . . . . . . . . . . . . . 31
Power control register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Power control register at address 05h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Power control register at address 06h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Power control register at address 07h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Power control register at address 08h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Power control register at address 09h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Power control register at address 0Ah . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Configuration 2 register at address = 20h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
VCORE_sleep register at address = 21h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Power supply domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Thermal threshold values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Data transmission via USB control register 1 (DAT_SE0 mode) - Suspend = 0 . . . . . . . . 48
Data transmission via USB control register 1 (DAT_SE0 mode) - Suspend = 1 . . . . . . . . 49
Data receiver via USB control register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
STw4811 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Package dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Operating conditions (temperature range: -30 to +85 °C). . . . . . . . . . . . . . . . . . . . . . . . . . 57
VREF18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
VCORE DC/DC step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
VIO_VMEM DC/DC step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
LDO regulators - VPLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
LDO regulators - VANA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
LDO regulators - VAUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Power supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
CMOS input/output static characteristics: I²C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
CMOS input/output dynamic characteristics: I²C interface . . . . . . . . . . . . . . . . . . . . . . . . . 65
VIO level: USB and control I/Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
VIO level: MMC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
34.807IRELESS
STw4811M/STw4811N
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 56.
Table 57.
Table 58.
Table 59.
List of tables
CMOS input/output static characteristics: VBAT level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
CMOS input/output static characteristics VMMC level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
USB OTG transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
SD/MMC/SDIO card interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Components list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Recommended coils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
TFBGA 84 balls 6x6x1.2mm body size / 0.5 ball pitch dimensions . . . . . . . . . . . . . . . . . . 79
VFBGA 84 balls / 4.6x4.6x1.0 mm body size / 0.4 mm ball pitch . . . . . . . . . . . . . . . . . . . . 81
Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
34.807IRELESS
5/85
List of figures
STw4811M/STw4811N
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
6/85
Typical mobile multimedia system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
STw4811 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Start-up timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Switching power to sleep timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
VDDOK block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
I2C interface block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Control interface: I2C format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Control interface: I2C timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Clock switching between master and internal clock (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Block diagram of biasing and references of the device . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
‘vcore_available’ bit behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Thermal threshold temperatures for ‘it_warn’ bit and VDDOK ball . . . . . . . . . . . . . . . . . . . 45
USB OTG transceiver block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
SD/MMC/SDIO block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Propagation and clock/data skew times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
STw4811 application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
TFBGA 84 balls 6x6x1.2mm body size / 0.5 ball pitch drawing . . . . . . . . . . . . . . . . . . . . . 80
VFBGA 84 balls 4.6x4.6x1.0 mm ball pitch 0.4 drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
34.807IRELESS
STw4811M/STw4811N
1
Overview
Overview
The STw4811 power management device has the following features:
●
●
●
●
●
34.807IRELESS
Power management module
–
1 step-down converter for processor core (1 V to 1.45 V with 15 steps at 700 mA)
–
1 step-down converter (1.8 V at 600 mA) for general purpose usage such as
processor input/output supply, external memory, DDR and SDRAM and
peripherals
–
1 low-drop output regulator for analog supplies, such as PLL (1.05 V, 1.2 V, 1.3 V,
1.8 V at 10 mA)
–
1 low-drop output regulator for processor analog functions (2.5 V at 10 mA)
–
1 low-drop output regulator for auxiliary devices (1.5 V, 1.8 V, 2.5 V, 2.8 V at
150 mA)
Auxiliary device
–
STw4811M: Vaux OFF at start up
–
STw4811N: Vaux ON at start up
USB OTG module
–
Full and low speed USB OTG transceiver
–
1 linear regulator 3.1 V supplying transceiver
–
1 charge-pump (5 V at 100 mA) supplying VBUS line of the USB cable
Mass memory cards (SD/MMC/SDIO)
–
1 linear regulator (1.8 V, 1.85 V, 2.6 V, 2.7 V, 2.85 V, 3 V, 3.3 V at 150 mA)
–
Level shifters
Miscellaneous
–
32 kHz control for multimedia processor
–
Processor supply monitoring
–
Processor reset control
–
2 serial I2C interfaces
7/85
Overview
STw4811M/STw4811N
Figure 1.
Typical mobile multimedia system
1
STw4811
8/85
34.807IRELESS
STw4811M/STw4811N
Functional block diagram
2
Functional block diagram
Figure 2.
STw4811 block diagram
V B A T _ V IO _ V M E M
V IO _ V M E M
V L X _ V IO _ V M E M
V B A T _ D IG
V M IN U S _ D IG
VBAT_V C O R E
V M IN U S _ V IO _ V M E M
VCORE
VLX_VC O R E
V M IN U S _ V C O R E
V IO _ V M E M
VCORE
STEP DOW N
STEP DOW N
V BAT_AN A
V M IN U S _ A N A
M AS TER _C LK
C L K 3 2 K _ IN
C LK 32K
IN T E R N A L
REFERENCE
O S C IL L A T O R
SOFT START
C L O C K S W IT C H IN G
& CONTROL
VP LL LDO
TC XO _E N
1 .0 5 , 1 . 2 , 1 . 3 , 1 . 8 V
R E Q U E ST_M C
THERMAL
PON
SHUTDOW N
PORn
GENERAL
SUPPLY
PW REN
CONTROL
M O N IT O R I N G
V AN A LD O
V AU X LD O
PORn
1 . 5 , 1 . 8 , 2 .5 , 2 .8 V
VBAT
150 m A
U S B IN T n
VANA
V BAT_VA U X
VAUX
STw 4811
USB
IT _ W A K E _ U P
V BAT_VP LL_VAN A
2 .5 V / 1 0 m A
SW RESETn
GPO2
V PLL
10 m A
VDDOK
GPO1
V R EF_18
V O LTAG E
CONTROL
CP
I2 C
US B O TG
IN T E R F A C E
t r a n s c e iv e r
SDA
CHARGE PUMP
5 V / 100 m A
VBUS
V BAT_U SB
SCL
I2 C
USBSDA
CN
CONTROL
MUX
VUSB
USBSCL
VUSB
3 .1 V
USBOEn
ID
D R IV E R S
USBVP
USBVM
USBRCV
&
P ULL U P &
LEV EL
PULL DOW N
DP
DN
S H IF T E R S
V M IN U S _ U S B
M C C M D D IR
VMMC
M C D A T 0 D IR
M C D A T 2 D IR
1 .8 , 1 .8 5 , 2 . 6 , 2 . 7
CONTROL
VBAT_M M C
VMMC
2 .8 5 , 3 , 3 . 3 V
M C D A T 3 1 D IR
150 m A
LATC H C LK
M C FBC LK
M C C LK
C LKO U T
MCCMD
CMDOUT
MCDATA0
LEVEL
DATA0
MCDATA1
S H IF T E R S
DATA1
MCDATA2
DATA2
MCDATA3
DATA3
S D /M M C I N T E R F A C E
34.807IRELESS
9/85
Ball information
STw4811M/STw4811N
3
Ball information
3.1
Ball connections
Table 1.
STw4811 ball connections
1
2
3
6
7
8
9
10
CLK32K_IN
VMINUS_
VIO_VMEM
VLX_VIO_
VMEM
VAUX
VANA
VPLL
VREF_18
VCORE
B
“Reserved”
REQUEST_ VMINUS_ VBAT_VIO_
MC
VIO_VMEM
VMEM
VMINUS_
ANA
VBAT_
VAUX
“Reserved”
“Reserved”
“Reserved”
VMINUS_
VCORE
C
TCXO_EN
IT_WAKE_
UP
VMINUS_
DIG
“Reserved”
VBAT_ANA
VBAT_
VPLL_ANA
PON
VMINUS_
VCORE
VLX_
VCORE
D
VBAT_DIG
MASTER_
CLK
“reserved”
VLX_
VCORE
VBAT_
VCORE
VBAT_
VCORE
E
DATAOUT0
DATAOUT
<1>
DATAOUT
<2>
ID
DP
DN
F
DATAOUT
<3>
CMDOUT
LATCHCLK
“Reserved”
VBAT_USB
VUSB
G
CLKOUT
MCCLK
MCCMD
DIR
“Reserved”
USBSCL
VBUS
H
MCCMD
MCDATA
<3>
MCDATA
<1>
MCDATA31
DIR
MCFBCLK
PWREN
SDA
USBINTn
USBSDA
CP
J
MCDATA
<2>
VDDOK
PORN
VBAT_
MMC
GPO1
SCL
USBVP
USBVM
VMINUS_
USB
CN
K
MCDATA0
MCDAT0
DIR
CLK32K
SW_
RESET
VMMC
GPO2
USBRCV
USBOEn
MCDAT2
DIR
“Reserved”
A
3.2
4
5
VBAT_VIO_
VIO_VMEM
VMEM
VLX_VIO_
VMEM
Ball functions
STw4811 includes the following ball types
●
VDDD/VDDA: digital/analog power supply
●
VSSD/VSSA: digital/analog ground supply
●
DO/DI/DIO: digital output / digital input / digital input output
●
DOz: digital output with high impedance capability
●
AO/AI/AIO: analog output / analog input / analog input-output
●
G: to be connected to ground
●
O: to be left open
●
Int-Ref: associated to internal reference
Table 2 details the ballout.
10/85
34.807IRELESS
STw4811M/STw4811N
Table 2.
Ball information
STw4811 balls function
Ball
Ball name
Ball type
Description
General supplies
D1
VBAT_DIG
VDDD-VBAT
Battery supply for digital/oscillator
C3
VMINUS_DIG
VSSD
Ground for digital and oscillator
C6
VBAT_ANA
VDDA-VBAT
Battery supply for analog
B5
VMINUS_ANA
VSSA
Ground for analog
F9
VBAT_USB
VDDA-VBAT
Battery supply for USB block
J9
VMINUS_USB
VSSA
Ground for USB block
A9
VREF_18
Int-Ref
Internal reference
Control balls
C8
PON
DI(VBAT)
Pull down 1.5MΩ
Power-on and reset
K4
SW_RESETn
DI(VIO_VMEM)
Pull up 1.5MΩ
Software reset. Reset all registers except
power control and configuration 2 (address
20h) registers when SW_RESETn = 0
J2
VDDOK
DO(VIO_VMEM)
Supply monitoring for multimedia processors.
Interruption for high temperature warning
J3
PORn
DO(VIO_VMEM)
Multimedia processor Resetn
H6
PWREN
DI(VIO_VMEM)
Pull Up 1.5MΩ
Sleep mode from multimedia processor
C1
TCXO_EN
DI(VIO_VMEM)
Pull Down 1.5MΩ
Request of master clock from modem part
B2
REQUEST_MC
DO(VIO_VMEM)
Request to master clock oscillator
J6
SCL
DI(VIO_VMEM)
Clock for Main I2C interface
H7
SDA
DIO(VIO_VMEM)
SDA for Main I2C interface
D2
MASTER_CLK
AI
Pull Down 1.5MΩ
26 MHz, 13 MHz or 19.2 MHz from modem
A1
CLK32K_IN
DI(VIO_VMEM)
Pull down 1.5MΩ
32 kHz input
K3
CLK32K
DO(VIO_VMEM)
32 kHz to multimedia processor
34.807IRELESS
11/85
Ball information
Table 2.
STw4811M/STw4811N
STw4811 balls function (continued)
Ball
Ball name
Ball type
Description
General supplies
Regulator balls
A4
B4
VBAT_VIO_VMEM
VDDA-VBAT
Battery power supply for step down
VIO_VMEM
A2
B3
VMINUS_VIO_VMEM
VSSA
Ground for step down VIO_VMEM
A3
C4
VLX_VIO_VMEM
AIO
BUCK of step down VIO_VMEM
A5
VIO_VMEM
AI
VIO_VMEM Feed back input
D9
D10
VBAT_VCORE
VDDA-VBAT
Battery power supply for step down VCORE
B10
C9
VMINUS_VCORE
VSSA
Ground for step down VCORE
C10
D8
VLX_VCORE
AIO
BUCK of step-down VCORE
A10
VCORE
AI
VCORE sense
C7
VBAT_VPLL_ANA
VDDA-VBAT
Battery supply for VPLL, VANA
A7
VANA
AO
VANA output
A8
VPLL
AO
VPLL output
A6
VAUX
AO
VAUX output
B6
VBAT_VAUX
VDDA-VBAT
Battery supply for VAUX
C2
IT_WAKE_UP
DO (Open drain)
Interrupt to modem or APE for wake-up due to
USB plug
K8
USBOEn
DIO(VIO_VMEM)
Pull down 1.5MΩ
Output enable of the differential driver in the
USB mode
J7
USBVP
DIO(VIO_VMEM)
Pull down 1.5MΩ
Data input in the USB transmit mode, positive
data input the single-ended transmit mode, or
TXD in UART mode
J8
USBVM
DIO(VIO_VMEM)
Pull Down 1.5MΩ
Single-ended zero input in the USB transmit
mode, negative data input in the single-ended
transmit mode, or RXD in the UART mode
K7
USBRCV
DO(VIO_VMEM)
Differential receiver output
E9
DP
AIO(VUSB)
Positive data line in the USB mode, or serial
data input in the UART mode
E10
DN
AIO(VUSB)
Negative data line in the USB mode, or serial
data output in the UART mode.
E8
ID
AI(VBAT-USB)
ID ball of the USB detector used for protocol
identification.
USB balls
12/85
34.807IRELESS
STw4811M/STw4811N
Table 2.
Ball information
STw4811 balls function (continued)
Ball
Ball name
Ball type
Description
General supplies
H10
CP
AIO(VBUS)
C plus flying capacitor
(VBUS level 4.4 to 5.25)
J10
CN
AIO(VBUS)
C minus flying capacitor (VBUS Level)
G10
VBUS
AIO(VBUS)
USB cable supply (VBUS Level)
F10
VUSB
AIO
Decoupling capacitor for USB internal regulator
G9
USBSCL
DI(VIO_VMEM)
Clock for dedicated USB I2C
H9
USBSDA
DIO(VIO_VMEM)
SDA for dedicated USB I2C
H8
USBINTn
DO(VIO_VMEM)
Interrupt to multimedia processor for USB or
accessory plug
SD/MMC/SDIO balls
G3
MCCMDDIR
DI(VIO_VMEM)
Pull down 1.5MΩ
CMD direction.
- “high”: CMD signal from processor to card
- “Low”: CMD signal from card to processor
K2
MCDAT0DIR
DI(VIO_VMEM)
Pull down 1.5MΩ
DATA0 direction
- “high”: DATA0 signal from processor to card
- “Low”: DATA0 signal from card to processor
K9
MCDAT2DIR
DI(VIO_VMEM)
Pull down 1.5MΩ
DATA2 direction
- “high”: DATA2 signal from processor to card
- “Low”: DATA2 signal from card to processor
H4
MCDAT31DIR
DI(VIO_VMEM)
Pull down 1.5MΩ
DATA(3,1) direction
- “high”: DATA(3,1) signal from processor to
card
- “Low”: DATA(3,1) signal from card to
processor
G2
MCCLK
DI(VIO_VMEM)
Pull Down 1.5MΩ
Host clock, between processor and STw4811,
to the card (processor clock).
H5
MCFBCLK
DO(VIO_VMEM)
Host feedback clock between STw4811 and
processor, to re-synchronize data in processor.
H1
MCCMD
DIO(VIO_VMEM)
Pull Up 1.5MΩ
Bidirectional command/response signal
between processor and STw4811.
K1
MCDATA0
DIO(VIO_VMEM)
Pull Up1.5MΩ
Bidirectional data0 between processor and
STw4811
H2
H3
J1
MCDATA[3:1]
DIO(VIO_VMEM)
Pull up 1.5MΩ
Bidirectional data [3:1] between processor and
STw4811.
F3
LATCHCLK
DI(VMMC)
Pull down 1.5MΩ
Host feedback clock to STw4811, to resynchronize data in processor.
G1
CLKOUT
DO(VMMC)
Host clock, between STw4811 and card
(processor clock).
F2
CMDOUT
DIO(VMMC)
Pull up 1.5MΩ
Bidirectional command/response signal
between STw4811 and processor.
34.807IRELESS
13/85
Ball information
Table 2.
STw4811M/STw4811N
STw4811 balls function (continued)
Ball
Ball name
Ball type
Description
General supplies
E1
DATAOUT0
DIO(VMMC)
Pull up 1.5MΩ
Bidirectional data0 between STw4811 and card
F1
E3
E2
DATAOUT[3:1]
DIO(VMMC)
Pull up 1.5MΩ
Bidirectional data[3:1] between STw4811 and
card.
J4
VBAT_MMC
VDDA-VBAT
Battery supply for VMMC
K5
VMMC
AIO
VMMC supply output
J5
GPO1
AO
General purpose output
K6
GPO2
AO
General purpose output
B9
D3
“Reserved”
G
To be connected to ground
B1
B7
B8
C5
F8
G8
K10
“Reserved”
O
To be left open
Other balls
14/85
34.807IRELESS
STw4811M/STw4811N
4
Functional description
4.1
Introduction
Functional description
The STw4811 integrates all the power supplies for a multimedia processor as well as
memories and peripherals:
4.2
●
Two switched mode power supply regulators: one for the multimedia processor core,
one for multimedia processor I/Os and memories
●
Three low-drop output regulators for multimedia processor analog supplies
(PLL and others) and auxiliary components
●
USB OTG FS/LS physical interface
●
MMC card power supplies and level shifters
●
Multimedia processor supply monitoring / power-on reset and power supply alarms /
interrupt management
●
Two serial I2C communication interfaces; one to control the devices (SDA, SCL) and
one to control the USB (USBSDA, USBSCL).
Digital control module
This module describes the interfaces used to program the device and the related registers.
4.2.1
State machine
Description of each states: (Figure 3.)
OFF: In this mode the STw4811 is switched off. Off is when PON=0, when battery level is
under 2.4 V or when thermal shutdown is activated. There is no multimedia processor power
supply. The only active cell is the USB cable detection and VBAT level detection.
OSC_START: Oscillator is enabled and the power up module is waiting for the rising edge of
the internal signal OSC_OK to start power up sequence. This state duration is 300 µs.
START_BIAS: Bias, reference and thermal shut-down are enabled, a counter is activated to
wait for rising edge of internal signals PDN_regulators. This state duration has a typical
value of 7.77 ms and a worst case value of 9.46 ms.
START_PM: after a 1 ms wait, multimedia processor power supplies are available
(VIO_VMEM, VCORE, VPLL, and VANA). The device can allow I2C communication, output
power supply monitoring and application (USB,SD/MMC/SDIO).
OFF2: STw4811 is waiting for the 32 kHz multimedia processor signal. This state has an
indeterminate duration. If 32kHz is present during the states describes above, it has no
effect. The 32 kHz signal is taken into account by STw4811 only when the ‘VDDOK’ ball is
high, that is at the end of START_PM state.
RESET: STw4811 forces a reset during 11*1/32 kHz period before setting PORn high.
INT_OSC: The STw4811 can work without MASTER_CLK via its internal oscillator. The
device waits for an external clock detection before switching to the external clock. When
receiving a rising edge on PWREN ball (coming from multimedia processor) or on
TCXO_EN ball (coming from modem), STw4811 answers by asserting to “1” the
34.807IRELESS
15/85
Functional description
STw4811M/STw4811N
REQUEST_MC ball. STw4811 remains in internal oscillator mode until it receives the
external clock signal on MASTER_CLK ball (optional).
EXT_CLK: if MASTER_CLK is used, when detected, the STw4811 uses this clock as
reference and switches off its internal oscillator. MASTERCLK should remain connected up
to sleep mode.
SLEEP: sleep mode is required by multimedia processor by setting a PWREN at low level.
Then VDDOK is forced to 0, regulators (VCORE, VIO_VMEM) switch to sleep mode and
wait for PWREN at high level (Figure 4).
WAKE-UP: from sleep mode, the multimedia processor requests to switch back to high
power mode. Thus the device restarts its internal oscillator and then switches regulators
from SLEEP to high power mode and informs multimedia processor with VDDOK at high
level (Figure 4).
Note:
The default state of VAUX is different for STw4811M and for STw4811N.
- VAUX default state is OFF at start up for STw4811M.
- VAUX default state is ON at start up for STw4811N.
VAUX can be programmed in high power mode only by asserted pdn_vaux bit to “1”
(Table 18).
If MASTER_CLK is used instead of internal oscillator all the features are not supported in
sleep mode (see Section 4.2.3).
16/85
34.807IRELESS
STw4811M/STw4811N
Figure 3.
Functional description
Start-up timing
OFF
VBAT
9.38ms (11ms wc)
PON ball
300µs
PDN__OSC
START_BIAS
7.77ms (9.46ms wc)
PDN_regulators
START_PM
1ms
VDDOK ball
11*(1/32kHz)
CLK32K_IN ball
(*)
Reset
PORn ball
PWREN ball
Internal_OSC
MASTER_CLK ball
TCXO_EN ball
“or”
REQUEST_MC ball
OFF2
Reset
INT_OSC
VPLL / VIO_VMEM
VCORE
Voutput(s) ball
CLK32K ball
Delays are worst case maximum delays
(*) If 32 kHz available before VDDOK signal rising edge, OFF2 state duration is null
All regulators are started with PDN_regulators or EN_regulators but can be switched off
from the beginning or during application by software, ‘pdn_(regulator)’ or ‘en_(regulator)’
bits (Table 18,Table 24, and Table 25).
34.807IRELESS
17/85
Functional description
Figure 4.
STw4811M/STw4811N
Switching power to sleep timing
HPM
HPM
Sleep
~100µs
PWREN
Sleep regulators
VDDOK
PDN_regulators
CLK32K
PDN_intOSC
int_OSC _detect
REQUEST_MC
Internal_OSC
MASTER_CLK
TCXO_EN
“0”
Register reset
In the event of a hardware reset coming from the modem, PON ball set to “0”, all registers
are reset at initial value when PON ball goes back to “1” level.
A software reset from multimedia processor of STw4811, through SW_RESETn ball set to
“0”, resets all registers except power control register (at address 1E & 1F) and the
configuration 2 register at address 20h.
Main clock oscillator control
REQUEST_MC is an OR output gate between PWREN (coming from multimedia processor)
and TCXO_EN (coming from modem supply), it is synchronized on 32 kHz, except during
power-up where PWREN is masked and considered as high.
REQUEST_MC enabled or disabled the master clock oscillator device.
18/85
34.807IRELESS
STw4811M/STw4811N
4.2.2
Functional description
POWER OFF / VDDOK
●
In case of VDDOK falling edge due to under voltage on VCORE or VIO_VMEM
detection, or ‘it_twarn’ bit set to “1” (Table 18); the multimedia processor is then reset
(PORn low during a minimum time of 333 µs) and restarted with no time-out. (see
Figure 5). In case of VDDOK falling edge because PWREN balls equals “0”, there is no
reset (PORn still high).
●
In case of PON falling edge (STw4811 switched off from modem); the multimedia
processor is also reset with no time-out. We consider that clean switch off between
modem and multimedia processor is done by software directly.
Figure 5.
VDDOK block diagram
Digital block
&
PWREN
VDDOK
it_twarn
mask_twarn
register reset after
read operation
or PON falling edge
or PORN_VBAT.
4.2.3
Reg status
Sleep mode
STw4811 goes into sleep mode by different ways. Whether VCORE, VIO_VMEM and VAUX
are programmed to sleep mode or not is indicated in Table 26 and Table 27.
Taking in account the bit programming from Table 26 and Table 27, sleep mode is
summarized with the following formula:
SLEEP = (‘vxxx_sleep’ x PWREN) + (‘vxxx_force_sleep’) = 1
(vxxx = vcore or vio_vmem or vaux)
Note:
The configuration vxxx_sleep = 0 (device in active mode) and vxxx_force_sleep = 1 (device
in sleep mode, but no priority level on this bit) is forbidden.
If the master clock is used in high power mode when switching to sleep mode, the following
features are not available:
34.807IRELESS
–
Bit 1 (vcore_sleep) and bit 2 (vio_vmem_sleep) in power control register address 9
must be at high level
(VIO_VMEM and VCORE cannot remain in high power mode)
–
USB charge pump is not available in sleep mode: bit 5 in USB control register
address 07h must be set
19/85
Functional description
4.2.4
STw4811M/STw4811N
I2C Interface
The device supports two I2C bus interfaces. One main interface (SDA,SCL) controls power
management and all programmable functions, the second interface (USBSDA, USBSCL) is
dedicated to USB control. STw4811 allows to work with only the main I2C interface to
control all the functions, including the USB, via ‘usb_i2c_ctrl’ bit of power control register
(Table 23). I2C interface is used to read status information from inside the device.
Flags, interrupt and write registers are used to configure the device functions (threshold,
clock division, output voltage, etc....). By default, the main I2C interface (SCL,SDA) controls
the main registers and USB I2C interface (USBSCL, USBSDA) controls USB registers.
Figure 6.
I2C interface block diagram
SCL
SDA
usb_i2c_ctrl
Main registers
SDA
USBSCL
MUX
SCL
USBSDA
SCL or USBSCL
SDA or USBSDA
USB registers
Both I2C are configured as slave serial interface compatible with I2C registered trademark
of Phillips Inc. (version 2.1).
I2C interface description
Note:
When not using the USB I2C interface, the two pins USBSCL and USCSDA must be
connected to the VIO voltage.
STw4811 I2C is a slave serial interface with a serial data line (SDA or USBSDA) and a serial
clock line (SCL or USBSCL):
●
SCL / USBSCL: input clock used to shift data
●
SDA / USBSDA: input/output bidirectional data transfers
It is composed of:
●
One filter to reject spikes on the bus data line and preserve data integrity
●
Bidirectional data transfers up to 400kbit/s (fast mode) via SDA or USBSDA signal
The SDA or USBSDA signal contains the input/output control and data signals that are
shifted in the device, MSB first. The first bit must be high (START) followed by the Device ID
(7 bits) and Read/Write bit control (1 indicates read access, a logical 0 indicates a write
access).
●
Device ID in write mode: 5Ah (01011010)
●
Device ID in read mode: 5Bh (01011011)
Then STw4811 sends an acknowledge at the end of an 8 bit transfer. The next 8 bits
correspond to the register address followed by another acknowledge. The 8-bit data field is
sent last, followed by a last acknowledge.
20/85
34.807IRELESS
STw4811M/STw4811N
Table 3.
Functional description
Device ID
b7
b6
b5
b4
b3
b2
b1
b0
AdrID6
AdrID5
AdrID4
AdrID3
AdrID2
AdrID1
AdrID0
R/W
Table 4.
Register address
b7
b6
b5
b4
b3
b2
b1
b0
RegADR7
RegADR6
RegADR5
RegADR4
RegADR3
RegADR2
RegADR1
RegADR0
Table 5.
Register data
b7
b6
b5
b4
b3
b2
b1
b0
DATA7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA1
DATA0
I2C interface modes
Figure 7.
Control interface: I2C format
ACK
ACK
REGn ADDRESS
REGn Data In
DEVICE ADDRESS
WRITE
SINGLE BYTE
ACK
01011010
START
STOP
ACK
ACK
REGn ADDRESS
REGn Data In
DEVICE ADDRESS
WRITE
MULTI BYTE
ACK
ACK
ACK
REGn+m Data In
01011010
STOP
START
m+1 data bytes
RANDOM ADDR
READ
SINGLE BYTE
ACK
ACK
REGn ADDRESS
DEVICE ADDRESS
DEVICE ADDRESS
01011010
ACK
REGn Data Out
NO ACK
01011011
START
START
RANDOM ADDR
READ
MULTI BYTE
DEVICE ADDRESS
ACK
ACK
REGn ADDRESS
ACK
DEVICE ADDRESS
01011010
ACK
ACK
Reg n Data Out
01011011
START
NO ACK
Reg n + m Data Out
START
STOP
m+1 data bytes
Figure 8.
Control interface: I2C timing
tbuf
SDA
USBSDA
tsu_sta
thd_sta
tf
SCL
USBSCL
tlow
Stop
34.807IRELESS
Start
thd_dat
tr
tsu_dat
thd_sta
tsu_sto
thigh
Start repeated
Stop
21/85
Functional description
4.2.5
STw4811M/STw4811N
Control registers
Control registers have the following functions:
Table 6.
●
select level of regulation for multimedia processor supply
●
control the USB interface
●
control the SD/MMC/SDIO interface
●
control the state machine
Register general information
Address
Comment
I2C control
00h to 10h
USB registers (Table 9 to Table 17)
USBSDA / USBSCL or SDA / SCL (1)
11h
Configuration 1 register (Table 18)
SDA / SCL
12h to 1Dh
Reserved registers
1Eh to 1Fh
Power control registers (Table 19 to Table 27)
SDA / SCL
20h
Configuration 2 register (Table 28)
SDA / SCL
21h
VCORE_sleep (Table 29)
SDA/SCL
1. Controlled by USB_I2C_CTRL bit of power control register (Table 23)
22/85
34.807IRELESS
STw4811M/STw4811N
Functional description
Register summary
Table 7.
Register summary
Register
Addr.
7
6
5
4
3
2
1
0
00h
1
0
0
0
0
0
1
1
01h
0
0
0
0
0
1
0
0
02h
0
0
0
1
0
0
0
1
03h
0
1
0
0
0
0
0
0
Vendor ID
Product ID
USB control
register 1
04h
05h
Not used uart_en
oe_int_en
bdis_
acon_en
not used
USB control
register 2
06h
07h
vbus_
chrg
vbus_
dischrg
vbus_
drv
id_gnd
dn_
dp_
dn_
pulldown pulldown pullup
dp_
pullup
USB interrupt
source
08h
cr_int
bdis_
acon
id_float
dn_hi
id_gnd_
forced
dp_hi
sess_vld
vbus_vld
USB interrupt
latch
0Ah
0Bh
cr_int
bdis_
acon
id_float
dn_hi
id_gnd_
forced
dp_hi
sess_vld
vbus_vld
USB interrupt
mask false
0Ch
0Dh
cr_int
bdis_
acon
id_float
dn_hi
id_gnd_
forced
dp_hi
sess_vld
vbus_vld
USB interrupt
mask true
0Eh
0Fh
cr_int
bdis_
acon
id_float
dn_hi
id_gnd_
forced
dp_hi
sess_vld
vbus_vld
USB EN
10h
Not used
B_sess_
end
Not used
th_
Bdevice
usb_en
not used
Configuration 1
11h
pdn_
vaux
it_warn
monitoring
_vio_
mmc_ls_
vmmc_sel[2:0]
vmem_
status
vcore
Configuration 2
20h
not used
Vcore_Sleep
21h
not used
Table 8.
Addr.
not used
1 Eh
34.807IRELESS
suspend
speed
pdn_
vmmc
mask_it_ external_ mask_
twarn
wake_up vmmc
gpo2
gpo1
vcore_
available
vcore_sleep[3:0]
Power control register
15
14
13
1Fh
Addr.
dat_se0
12
11
10
Not used
7
6
reg address 3 bits
5
9
8
reg address 2 bits
4
3
2
data din/dout 4 bits
1
0
ena write
23/85
Functional description
STw4811M/STw4811N
Registers controlled by I2C USB bus
The registers described in this chapter are controlled through the USB serial I2C interface,
USBSCL and USBSDA balls.
These registers can also be controlled through the main I2C interface, SCL and SDA balls
by setting to “1” ‘usb_i2c_ctrl’ bit in power control register (Table 23).
Table 9.
USB register address
Address
Note:
Register
Type
00h - 01h
Vendor ID
R
02h - 03h
Product ID
R
04h set
USB control register 1
R/W
05h clearh
USB control register 1
R/W
06h set
USB control register 2
R/W
07h clearh
USB control register 2
R/W
08h
USB interrupt source
R
09h
Not used
0Ah set
USB interrupt latch
R/W
0Bh clearh
USB interrupt latch
R/W
0Ch set
USB interrupt mask false
R/W
0Dh clearh
USB interrupt mask false
R/W
0Eh set
USB interrupt mask true
R/W
0Fh clearh
USB interrupt mask true
R/W
10h
USB_EN
R/W
A bit of register 1 is set at “1” by writing a “1” at address 04h, is reset at “0” by writing a “1” at
address 05h. This is also applicable for USB control register 2 (06h, 07h), USB interrupt
register (0Ah,0Bh), USB interrupt mask false register (0Ch, 0Dh) and USB interrupt mask
true register (0Eh, 0Fh). Writing “0” at any address has not effect on the content of any
register.
Table 10.
Vendor ID and Product ID: Read only
Name
Address
Register value
Vendor ID
00h
83h
Vendor ID
01h
04h
02h
11h
03h
40h
Product ID
24/85
34.807IRELESS
STw4811M/STw4811N
Functional description
USB control register 1
Table 11.
USB control register 1 (address = 04h set and 05h clearh)
7
6
5
4
3
2
1
0
Not used
uart_en
oe_int_en
bdis_
acon_en
not used
dat_se0
suspend
speed
-
R/W
R/W
R/W
-
R/W
R/W
R/W
Bits
Name
Value
Settings
Default
6
uart_en
0
1
Inactive
UART logic buffers are enabled
0
5
oe_int_en
0
1
Inactive
Allow to send interruption through USBOEn
0
4
bdis_acon_en
0
1
Inactive (default)
Enable A-device to connect if B-device disconnect
detected:
0
2
dat_se0
0
1
VP_VM USB mode
DAT_SE0 USB mode
0
1
suspend
0
1
Inactive (default)
Put transceiver in low power mode
0
0
speed
0
1
Set rise and fall times of transmit
Low speed
Full speed
0
34.807IRELESS
25/85
Functional description
STw4811M/STw4811N
USB control register 2
Table 12.
7
6
5
4
3
2
1
0
vbus_chrg
vbus_
dischrg
vbus_drv
id_gnd
dn_
pulldown
dp_
pulldown
dn_pullup
dp_pullup
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Bits
26/85
USB control register 2 (address = 06h set and 07h clearh)
Name
Value
Settings
Default
7
vbus_chrg
0
1
Inactive
Charge VBUS through a resistor
0
6
vbus_dischrg
0
1
Inactive
Discharge VBUS through a resistor to ground.
0
5
vbus_drv
0
1
Inactive
Provide power to VBUS
0
4
id_gnd
0
1
Inactive
Connect ID ball to ground
0
3
dn_pulldown
0
1
Inactive
Connect DN pull-down
0
2
dp_pulldown
0
1
Inactive
Connect DP pull-down
0
1
dn_pullup
0
1
Inactive
Connect DN pull-up
0
0
dp_pullup
0
1
Inactive
Connect DP pull-up
0
34.807IRELESS
STw4811M/STw4811N
Functional description
USB interrupt source register
Table 13.
USB Interrupt source register (address = 08h)
7
6
5
4
3
2
1
0
cr_int
bdis_acon
id_float
dn_hi
id_gnd_
forced
dp_hi
sess_vld
vbus_vld
R
R
R
R
R
R
R
R
Bits
7
Name
Value
0
1
cr_int
0
1
Settings
Default
Inactive
DP ball is above the carkit interrupt threshold
0
Inactive
Set when bdis_acon_en is set, and transceiver
asserts dp_pullup after detecting B-device
disconnect.
0
6
bdis_acon
5
id_float
0
1
Inactive
ID ball floating
0
4
dn_hi
0
1
Inactive
DN ball is high
0
3
id_gnd_forced
0
1
Inactive
ID ball grounded
0
2
dp_hi
0
1
Inactive
DP asserted during SRP,
0
1
sess_vld
0
1
Session valid comparator threshold < 2V
2 V < Session valid comparator threshold
0
0
vbus_vld
0
1
A-device VBUS valid comparator threshold < 4.4V
A-device VBUS valid comparator threshold > 4.4V
0
USB interrupt source register indicates the current state of the signals that can generate an
interrupt.
USB latch register
Table 14.
Register
Bit name
Default
Type
USB interrupt latch registers (address = 0Ah set and 0Bh clearh)
7
6
5
4
3
2
1
0
cr_int
bdis_
acon
id_float
dn_hi
id_gnd_
forced
dp_hi
sess_
vld
vbus_
vld
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
USB interrupt latch register indicates which source has generated an interrupt.
34.807IRELESS
27/85
Functional description
STw4811M/STw4811N
USB interrupt enable low register
Table 15.
USB interrupt enable low register (address = 0Ch and 0Dh)
7
6
5
4
3
2
1
0
cr_int
bdis_acon
id_float
dn_hi
id_gnd_
forced
dp_hi
sess_vld
vbus_
vld
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
USB interrupt enable low register enables interrupts on transition from high to low.
USB interrupt enable high register
Table 16.
USB interrupt enable high register (address = 0Eh and 0Fh)
7
6
5
4
3
2
cr_int
bdis_acon
id_float
dn_hi
id_gnd_
forced
dp_hi
R/W
R/W
R/W
R/W
R/W
R/W
1
0
sess_vld vbus_vld
R/W
R/W
USB interrupt enable high register enables interrupts on transition from low to high.
Interrupts
Table 13 indicates the signals that can generate interrupts. Any of the signals given in
Table 13 can generate an interrupt when the signal becomes either low or high. After an
interrupt, the OTG controller is able to read each signal status as well as the bit that
indicates whether or not that signal generated the interrupt.
A bit in the interrupt latch register is set when any of the following occurs:
●
writing “1” to its set address causes the corresponding bit to be set.
●
the corresponding bit in the interrupt enable high register is set, and the associated
signal changes from low to high
●
the corresponding bit in the interrupt enable low register is set, and the associated
signal changes from high to low
The interrupt latch register is cleared by writing “1” to its clear address.
28/85
34.807IRELESS
STw4811M/STw4811N
Functional description
USB EN register
Table 17.
USB EN register (address = 10h)
7
6
Not used
B_sess_
end
-
R
Bits
Name
5
4
3
Not used
-
-
Value
-
2
1
0
th_
Bdevice
usb_en
not used
R/W
R/W
-
Settings
Default
1
usb_en
0
1
Inactive
Enable USB PHY
0
2
th_Bdevice
0
1
Threshold for vbus_valid = 4.4 V
Threshold for vbus_valid = 3.87 V
0
0
Vbus voltage is below B_session_end threshold
(0.2 to 0.8 V)
Vbus voltage is above B_session_end threshold
(0.2 to 0.8 V)
0
6
34.807IRELESS
B_sess_end
1
29/85
Functional description
STw4811M/STw4811N
Registers controlled by main I2C BUS
I2C controlled registers are controlled through the main serial I2C interface, SCL and SDA
balls.
Configuration 1 register
Table 18.
Configuration 1 register (11h)
7
6
pdn_vaux
it_warn
R/W
R(1)
5
monitoring_vio_
vmem_vcore
4
3
2
1
0
mmc_ls_
status
vmmc_sel[2:0]
pdn_
vmmc
R/W
R/W
R/W
R(1)
1. These bits are reset (0) after reading
Bits
Name
Value
Settings
Default
7
pdn_vaux
0
1
Inactive
Enable LDO vaux
6
it_warn
0
1
Below temperature threshold
Above temperature threshold
0
5
monitoring_vio_
vmem_vcore
0
1
Outputs in the good range
Outputs lower than expected on vio_vmem or vcore
0
0
Level shifters ON, if ‘pdn_vmmc’ or
‘external_vmmc’ = 1
Level shifters High Impedance, if ‘pdn_vmmc’ or
‘external_vmmc’ =1
0
4
mmc_ls_status
[3:1] vmmc_sel[2:0]
0
pdn_vmmc
1
000
001
010
011
100
101
110
111
0
1
1.8V selection
1.8V selection
2.85V selection
3V selection
1.85 V selection
2.6 V selection
2.7 V selection
3.3 V selection
Inactive
Enable SD/MMC/SDIO function.
0(1)
000
0
1. In STw4811M, pdn_vaux = 0 is the default. In STw4811N, pdn_vaux = 1 is the default.
In Flash OTP two registers allow to program STw4811 energy management part.
These two registers are at addresses 1E and 1F and must be programmed with 1F register
first followed by 1E register.
30/85
34.807IRELESS
STw4811M/STw4811N
Functional description
Power control register at address 1Eh
Table 19.
Power control register - General information (address = 1Eh)
7
6
5
4
3
2
1
0
reg address 3 bits LSB’s
data din/dout 4 bits
EN
R/W
R/W
R/W
Bits
Name
Value
[7:5]
reg address 3
bits
[4:1]
data din/
dout 4 bits
0
EN
Settings
0
1
Default
See Table 21 “Address” column (LSB’s).
0
See Table 21 control register
0
Read enabled
Write enabled
0
Power control register at address 1Fh
Table 20.
Power control register - General information (address = 1Fh)
15
14
13
12
11
10
9
8
reg address 2 bits
MSB’s
Not used
R/W
Bits
[9:8]
Name
Value
Settings
reg address 2
bits MSB’s
Default
See Table 21 “Address” column (MSB’s).
0
Power control register mapping
Table 21.
Power control register mapping
Address 1Fh
Address 1Eh
reg address
2 bits
MSB’s
Not used
15
14
13
12
11
10
9
8
3 bits
LSB’s
7
6
data din/dout 4
bits
5
4
3
2
00h to 04h
05h to 0Ah
0Bh to 1E
Caution:
1
Comments
EN
0
Reserved
Setting
See Table 22 to Table 27
Reserved
Only the latest value written in register at address 1E/1F can be read.
34.807IRELESS
31/85
Functional description
STw4811M/STw4811N
Power control register at address 05h
Table 22.
Power control register at address 05h
Address 1Fh
15
Bits
[4:1]
32/85
14
13
12
11
Address 1Eh
9
8
7
6
5
Not used
0
0
1
0
1
Name
Value
vcore_sel [3:0]
10
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
4
3
vcore_sel [3:0]
Settings
= 1.00V
= 1.05V
= 1.10V
= 1.15V
= 1.20V
= 1.22V
= 1.24V
= 1.26V (default)
= 1.28V
= 1.30V
= 1.32V
= 1.34V
= 1.36V
= 1.38V
= 1.40V
= 1.45V
2
1
0
EN
Default
0111
34.807IRELESS
STw4811M/STw4811N
Functional description
Power control register at address 06h
Table 23.
Power control register at address 06h
Address 1Fh
15
14
Bits
4
13
12
11
Address 1Eh
10
9
8
7
6
5
4
Not used
0
0
1
1
0
vpll_sel
[0]
Name
Value
vpll_sel[1:0]
on 06h and 07h
address
[3:2] vaux_sel[1:0]
1
usb_i2c_ctrl
3
2
vaux_sel
<1:0>
1
0
usb_
i2c_ctrl
EN
Settings
Default
00
01
10
11
= 1.05V
= 1.2V
= 1.3V
= 1.8V
11
00
01
10
11
= 1.5V
= 1.8V
= 2.5V
= 2.8V
00
0
1
USB I2C interface controls USB registers
Main I2C interface controls USB registers
0
Power control register at address 07h
Table 24.
Power control register at address 07h
Address 1Fh
15
Bits
14
13
12
11
Address 1Eh
10
9
8
7
6
5
4
3
2
1
0
Not used
0
0
1
1
1
en_vpll
not
used
en_
vcore
vpll_sel
[1]
EN
Name
Value
Settings
Default
4
en_vpll
0
1
Disabled / VPLL = OFF
Enabled / VPLL = ON(1)
1
2
en_vcore
0
1
Disabled / VCORE = OFF
Enabled / VCORE = ON(1)
1
1
vpll_sel[1]
-
See Table 23
-
1. No soft start feature at supply enabled after a disabled/enabled sequence
34.807IRELESS
33/85
Functional description
STw4811M/STw4811N
Power control register at address 08h
Table 25.
Power control register at address 08h
Address 1Fh
15
14
13
12
11
Address 1Eh
10
9
8
7
6
5
4
3
2
1
0
Not used
0
1
0
0
0
en_clk
squarer
en_
mo
nitoring
en_
vana
not
used
EN
Bits
Name
Value
4
en_clock_squarer
0
1
Disabled ([0; vio_vmem] digital signal)
Enabled
(master clock input not in the range [0; vio_vmem])
0
3
en_monitoring
0
1
Disabled / MONITORING = OFF
Enabled / VCORE & VIO_VMEM monitoring = ON
1
2
en_vana
0
1
Disabled / VANA = OFF
Enabled / VANA = ON
1
Settings
Default
Power control register at address 09h
Table 26.
Power control register at address 09h
Address 1Fh
15
14
13
12
11
Address 1Eh
10
9
Not used
0
8
1
7
0
6
0
5
4
3
1
vaux_
sleep
not
used
2
1
vio_
vcore_
vmem_
sleep
sleep
(1)
0
EN
(1)
1. Must be left at default value if the master clock is used.
Bits
34/85
Name
Value
Settings
Default
4
vaux_sleep
0
1
When PWREN is low:
VAUX stays in high power mode
VAUX goes in sleep mode
1
2
vio_vmem_sleep
0
1
When PWREN is low:
VIO_VMEM stays in high power mode
VIO_VMEM goes in sleep mode
1
1
vcore_sleep
0
1
When PWREN is low:
VCORE stays in high power mode
VCORE goes in sleep mode
1
34.807IRELESS
STw4811M/STw4811N
Functional description
Power control register at address 0Ah
Table 27.
Power control register at address 0Ah
Address 1Fh
15
14
13
12
11
Address 1Eh
10
9
8
4
3
0
vaux_
force_
sleep
not
used
2
1
vio_
vcore_
vmem_
force_
force_
sleep
sleep
0
Bits
Name
Value
Settings
Default
0
4
vaux_force_sleep
0: Vaux keeps the state controlled by Vaux_sleep and
Pwren
1: VAUX goes in sleep mode (for any PWREN level)
0
0: VIO_VMEM keeps the state controlled by
vio_vmem_sleep and Pwren
1: VIO_VMEM goes in sleep mode (for any PWREN
level)
0
0: VCORE keeps the state controlled by vcore_sleep
and Pwren
1: VCORE goes in sleep mode (for any PWREN level)
0
0
2
1
vcore_force_sleep
1
0
1
34.807IRELESS
1
5
0
vio_vmem_force_
sleep
0
6
Not used
1
1
7
EN
35/85
Functional description
STw4811M/STw4811N
Configuration 2 register
Table 28.
Configuration 2 register at address = 20h
7
6
Not used
Bits
36/85
5
Not used
-
R/W
Name
Value
4
3
2
1
0
gpo2
gpo1
mask_it_
wake_up
external_
vmmc
mask_
twarn
R/W
R/W
R/W
R/W
R/W
Settings
Default
0
1
Inactive
Mask TWARN interruption (it_twarn bit) through
VDDOK
0
external_vmmc
0
1
Internal LDO VMMC is used
External VMMC is used
0
2
mask_it_wake
_up
0
1
Inactive
IT_WAKE_UP ball masked
0
3
gpo1
0
1
GPO1 in High impedance
GPO1 at low level
0
4
gpo2
0
1
GPO2 in High impedance
GPO2 at low level
0
5
not used
0
1
Not used
0
0
mask_twarn
1
34.807IRELESS
STw4811M/STw4811N
Functional description
VCORE_sleep register
Table 29.
VCORE_sleep register at address = 21h
Register
7
6
Bit name
Type
Bits
[3:0]
4
Name
(1)
4
0
1
3
2
1
vcore_
available
vcore_sleep[3:0]
R
R/W
Value
0000
0001
0010
0011
0100
0101
0110
0111
vcore_sleep[3:0]
1000
1001
1010
1011
1100
1101
1110
1111
vcore_available
5
Settings
= 1.00V
= 1.05V
= 1.10V
= 1.15V
= 1.20V
= 1.22V
= 1.24V
= 1.26V (default)
= 1.28V
= 1.30V
= 1.32V
= 1.34V
= 1.36V
= 1.38V
= 1.40V
= 1.45V
Inactive
Reach the expected value when Vcore decreases or
increases
0
Default
0111
0
1. read operation reset the value after status read operation from APE, functionality is described in
Section 4.3.7: Power supply monitoring
34.807IRELESS
37/85
Functional description
4.2.6
STw4811M/STw4811N
IT generation
STw4811 has three interrupt balls:
IT_WAKE_UP: with only VBAT supply, no other supply available, when a USB cable is
plugged this interrupt is activated to wake up the host or the modem, depends of application
(open drain, active low).
By default this feature is available independently of PON level, it can be masked when
PON = 1 by ‘mask_it_wake_up’ bit of Configuration 2 register (see Table 28)
USBINTn: This interrupt ball is dedicated to USB protocol and sent to multimedia processor.
Independently of PWREN ball state, this ball goes to low level if an USB interrupt source is
detected. In sleep mode, PWREN = 0, an interrupt source is detected only if unmasked
before PWREN goes to low level.
VDDOK: This ball has two functions:
- When high, it indicates that VIO_VMEM and VCORE output voltages are within the right
range and that the device internal temperature is below the maximum allowed temperature.
- When low, it indicates that output regulators (VCORE or VIO_VMEM) are not regulated
properly or PWREN = “0”, or that the temperature is above the allowed threshold (see
Thermal shut-down section), ‘it_warm’ bit of Configuration 1 register is the temperature
interruption source (see Table 18).
4.2.7
Clock switching and control
This block generates the clock used by the DC/DC converter (USB charge pump, step-down
VIO_VMEM and step-down VCORE). STw4811 is able to sustain the master clock
frequencies of 26 MHz, 19.2MHz and 13 MHz. If the clock is not detected the internal
oscillator is automatically selected.
STw4811 allows customers to use the internal clock issued from the internal oscillator to
switch the SMPS and charge pump; or, they can provide an external clock and connect it to
the master clock input. If it is not necessary, it is recommended to run the device on the
internal clock. Nevertheless, if the external clock is used, this clock has some constraints:
Note:
38/85
–
the master-clk must be provided each time the device is in high power mode.
When the device changes from sleep mode to high power mode the master-clk
must be active before the device is in high power mode (the master-clk must be
available and stable when PWREN pin goes to high level).
–
the only way to stop the use of the master_clk, in HPM mode, is to restart the
device with the OFF/ON sequence on PON (PON = 1 then 0 then 1)
When present the Master clock should remain connected up to sleep mode.
34.807IRELESS
STw4811M/STw4811N
Figure 9.
Functional description
Clock switching between master and internal clock (1)
* Phase delay is less than 90 between int and ext clock
internal clock
transition
external clock
PON
INT_OSC
INT_OSC_OK
MASTER_CLK_OK
Third rising edge after switching
PDN_INT_OSC
CONTROL_SWITCH
MASTER_DIV_CLK
STEP_DOWN_CLK
34.807IRELESS
39/85
Functional description
4.3
STw4811M/STw4811N
Power management module
STw4811 includes several regulators that supply the multimedia processor and its
peripherals. All regulators can work in different modes depending on the processor needs.
When the STw4811 is in ‘low current mode’”, the output current is reduced to save energy
via the lower quiescent current. The nominal mode is called high power mode (HPM). The
mode is selected by PWREN ball signal according to both multimedia processor and
STw4811 state.
When PWREN = “0”, sleep mode is selected. HPM is selected as default when PWREN =
“1”.
Except for VIO_VMEM, each supply can be powered down by a bit ‘pdn_(regulator name) or
‘en_(regulator name)’ (Table 18, 24 and 27). In this mode, the regulator is switched off and
only a leakage current is present (max. 1µA). VCORE, VAUX and VPLL output voltages are
programmable, through main I2C interface, using the ‘(regulator”_sel[x:0])’ bits of the power
control registers (Table 22 to Table 27).
In addition, an output current limitation prevents high current delivery in case of output short
circuit.
All multimedia processor power supplies have the same soft start to prevent leakage in the
multimedia processor device during the start-up phase. There is an exception with VAUX
which can be started independently.
4.3.1
Bandgap, biasing and references
Figure 10. Block diagram of biasing and references of the device
BG
VREF_18
Voltage reference control
All internal
references
All internal
biasing
Bias generator
40/85
34.807IRELESS
STw4811M/STw4811N
4.3.2
Functional description
VCORE regulator: DC/DC STEP- DOWN regulator
This regulator drives the core of the multimedia processor. VCORE is a DC/DC step-down
regulator that generates the regulated power supply with very high efficiency. The 16 voltage
levels enable dynamic voltage and frequency scaling suitable for any supply voltage of
CMOS process, they also follow the processor process roadmap. The regulated output
voltage level is adjustable via the main I2C interface (SDA, SCL): in high power mode by the
power control registers (Table 22), in sleep mode by Vcore_sleep register (Table 29).
The master clock (13, 19.2 or 26 MHz) is automatically detected, squared and divided to
generate the switching clock of the SMPS. When this clock is not available, regulators run
with the internal RC oscillator.
The DC/DC step-down regulator has the following main features;
●
Programmable output voltage,
–
When changing the output voltage value (during a voltage scaling phase) the
voltage step must be less than 100mV.
–
In high power mode, 16 levels from 1.0 V to 1.45 V through ‘vcore_sel [3:0]’ bits of
power control register (Table 22)
–
In sleep mode,16 levels from 1.0 V to 1.45 V through ‘vcore_sleep [3:0]’ bits of
Vcore_sleep register (Table 29).
Note:
By default ‘vcore_sel’ = ‘vcore_sleep’
●
3 power domains:
–
‘High power mode’ when multimedia processor is in run mode, 700 mA full load
–
‘Low current mode’ when multimedia processor is in sleep mode, 5 mA current
capability.
Fast switching from low current to high power mode.
The regulator is in ‘low current mode’ when multimedia processor is in sleep
mode. PWREN signal indicates that the multimedia processor is about to switch to
high power mode. VDDOK signal indicates to the multimedia processor that all
supplies are in the specified range.
Note:
The definition of sleep mode is given in section 4.2.3: Sleep mode.
–
‘Power down mode’ or ‘standby mode’ when regulator is switched off, no
consumption (‘en_vcore’ bit of power control register - Table 24)
●
Soft start circuitry at start up, from power off to high power mode, when PON ball
changes from “0” to “1”.
4.3.3
VIO_VMEM regulator: DC/DC step- down regulator
VIO_VMEM step-down regulator has the same structure than VCORE.
The VIO_VMEM regulator supplies the IOs of the multimedia processor and its peripherals.
This regulator can be used to supply the memories working with the multimedia processor,
such as DDR-SDRAM. A switched mode power supply - voltage down converter is used to
generate the 1.8 V regulated power supply with very high efficiency.
The master clock (13, 19.2 or 26 MHz) is automatically detected and divided to generate the
SMPS switching clock. Master clock is squared when bit en_clock_squarer is enabled
(Table 25: Power control register at address 08h). When this clock is not available,
regulators can run with the internal RC oscillator.
34.807IRELESS
41/85
Functional description
STw4811M/STw4811N
Main features
●
Fixed 1.8 V output voltage
●
Two power domains:
–
‘High power mode’ when multimedia processor is in run mode - 600 mA full load
–
‘Low current mode’ when multimedia processor is in sleep mode, 5 mA current
capability.
Fast switching from low current to high power mode.
The regulator is in ‘low current mode’ when multimedia processor is in sleep
mode. PWREN signal indicates that the multimedia processor is about to switch to
run mode. VDDOK signal indicates to the multimedia processor that all supplies
are in the specified range.
Note:
The definition of sleep mode is given in 4.2.3: Sleep mode section.
●
Soft start circuitry at start up, from power off to high power mode, when PON ball
changes from “0” to “1”.
4.3.4
VPLL
This LDO is dedicated to the multimedia processor PLL (1.05, 1.2, 1.3, 1.8 V) power supply
with 10 mA max full load (power control registers - Table 23 and Table 24).
Main features
●
Programmable output voltage, ‘vpll_sel[1:0]’ bits of power control register - Table 23
and Table 24)
●
Two power domains:
●
4.3.5
–
‘High power mode’ 10 mA full load
–
‘Power down mode’ or ‘standby mode’ when regulators are switched off and there
is no power consumption (‘en_vpll’ bit of power control register - Table 24)
Soft start circuitry at start up, from power off to high power mode, when PON ball
changes from “0” to “1”.
VANA
This LDO is dedicated to the multimedia processor analog function (2.5 V) power supply
with 10 mA full load.
Main features:
42/85
●
2.5 V output voltage,
●
Two power domains
–
‘High power mode’ 10 mA full load
–
‘Power down mode’ or ‘standby mode’ when regulators are switched off and there
is no power consumption (‘en_vana’ bit of power control register - Table 25),
34.807IRELESS
STw4811M/STw4811N
4.3.6
Functional description
VAUX
This LDO is dedicated either to the multimedia processor input/output signals or to the
auxiliary devices. Power supply values are 1.5, 1.8, 2.5, 2.8 V with 150 mA full load and
0.5 mA in sleep mode. In case of 1.5 V on the output, this LDO can be supplied by using
VIO_VMEM DC/DC converter (1.8 V). One pad feed-back is used.
Main features:
●
Programmable output voltage, 4 levels
(‘vaux_sel[1:0]’ bits of power control register - Table 23)
●
Three power domains:
–
‘High power mode’ when multimedia processor is in run mode, 150 mA full load
–
‘Low current mode’ when multimedia processor is in sleep mode, 0.5 mA current
capability.
Fast switching from low current to high power mode.
Note:
The definition of sleep mode is given in 4.2.3: Sleep mode section.
–
‘Power down mode’ or ‘standby mode’ when regulator is switched off, no power
consumption (‘pdn_vaux’ bit of configuration 1 register - Table 18).
4.3.7
Power supply monitoring
This block monitors the VCORE and VIO_VMEM output voltage. If VCORE or VIO_VMEM
drop below the threshold, the multimedia processor is reset, through PORn output ball.
In high power mode, this feature can be disabled by setting ‘en_monitoring’ bit of power
control register to “0” (Table 25).
When VCORE programmed value changes, ‘vcore_available’ bit (Table 29) gives the status
of VCORE output supply value and informs the APE that the expected output voltage is
reached, this bit is a read only bit and is reset after an APE read operation.
Figure 11 describes ‘vcore_available’ bit behavior.
Figure 11. ‘vcore_available’ bit behavior
Vcore
vcore_available bit
read operation to reset bit
34.807IRELESS
43/85
Functional description
4.3.8
STw4811M/STw4811N
Power supply domains
Table 30 lists the register bits that control STw4811 supply domains for each supply.
Table 30.
Supply
name
VCORE
Power supply domains
Supply domains
Description
High power
STEP-DOWN
VIO_VMEM STEP-DOWN
Sleep
Power down
vcore_sleep[3:0]
vcore_sleep
vcore_force_sleep
en_vcore
-
vio_vmem_sleep
vio_vmem_force_sleep
-
vcore_sel[3:0]
VPLL
LDO
vpll_sel[1:0]
-
en_vpll
VANA
LDO
-
-
en_vana
VAUX
LDO
vaux_sel[1:0]
vaux_sleep
vaux_force_sleep
pdn_vaux
VMMC
LDO
vmmc_sel[2:0]
-
pdn_vmmc
Note:
More details on VMMC supply are given in Section 4.5
4.3.9
Thermal shut-down
A thermal sensor is used to monitor the die temperature.
●
As soon as the die temperature exceeds the thermal warning rising threshold, VDDOK
ball goes to “0” and ‘it_warn’ bit is set to “1” (configuration 1 register - Table 18). The IC
turns back VDDOK ball to “1” and ‘it_warn’ bit to “0” when the device temperature drops
below the thermal warning falling threshold of the thermal sensor.
●
A second thermal detection level, thermal shutdown threshold, puts all STw4811
supplies OFF, the supplies goes back to ON state when the temperature is under the
thermal shutdown threshold and after a new startup phase.
Table 31.
Thermal threshold values
Description
Min
Typ
Max
Unit
Rising threshold
134
140
149
°C
Falling threshold
117
123
131
°C
149
155
164
°C
Thermal warning threshold
Thermal shutdown threshold
Threshold
44/85
34.807IRELESS
STw4811M/STw4811N
Functional description
Figure 12. Thermal threshold temperatures for ‘it_warn’ bit and VDDOK ball
‘it_warn’ bit
All supplies
are turn “OFF”
VDDOK ball
Rising warning
threshold
4.4
Shutdown
threshold
Temperature
USB OTG module
This transceiver complies with the USB specification;
●
Universal serial bus specification Rev 2.0
●
On the go supplement to the USB specification Rev 1.0-a
●
Car kit interface specification (see: OTG transceiver specification Rev 0.92)
The USB OTG Transceiver has two modes: USB mode and UART mode. It includes:
Note:
●
Full and low speed transceiver (12 Mbit/s and 1.5 Mbit/s data rate)
●
Support data line and VBUS pulsing session request
●
Contains Host Negotiation Protocol (HNP) command and status register
●
Charge pump regulator (5 V at 100 mA) to supply VBUS line of the USB cable
●
VBUS pull-up and pull-down resistors as defined by Session Request Protocol (SRP)
●
VBUS threshold comparators
●
VUSB LDO internal regulator which provides power supply for the bus driver and
receiver.
●
ID line detector and interrupt generator
●
Dedicated I²C serial control interface
The transceiver complies with USB specification if Vbat is greater than 3.2 V.
34.807IRELESS
45/85
Functional description
4.4.1
STw4811M/STw4811N
Block diagram
Figure 13. USB OTG transceiver block diagram
CLK
vbus_drv
Charge
pump
5V - 100mA
REF
VBUS
VBUS_MONITOR
4.4 V
vbus_vld
sess_vld
B_sess_end
100 mA
1.9 V
0.6 V
VBAT_USB
Gnd
usb_i2c_ctrl
VUSB_LDO
vbus_dischrg
USBSDA
SCL
SDA
SW_RESETn
VUSB
DP_MONITOR
5.7 R
DP
cr_int
TRANCEIVER
RXD
RXD
dp_pullup
dn_pullup
DAT_VP
USBVP
Diff Tx
SEO_VM
USBVM
R
DP < [0.4 to 0.6] V
RPU_DN
USBSCL
B_sess_end
vbus_drv
bdis_acon_en
dn_pullup
dp_pullup
Control dn_pulldown
Registers dp_pulldown
id_gnd
vbus_chrg
vbus_dischrg
speed
uart_en
dat_se0
oe_int_en
suspend
RA_BUS_IN
vbus_chrg
RPU_DP
USB_INTn
vbus_vld
sess_vld
dn_hi
Interrupt dp_hi
Control bdis_acon
Register id_gnd_forced
id_float
cr_int
usb_en
CN
R_VBUS_SRP
VMINUS_DIG
CP
R_VBUS_PD
VBAT_USB
VBAT_DIG
OE_TP_INT
USBOEn
DP
out_diff_Rx
Diff Rx
suspend
SE_DP
VP
RPD_DP
RCV
DN
RPD_DN
USBRCV
SINGLE
ENDED
dn_pulldown
DECODER
VM
SE_DN
dp_pulldown
VBAT_USB
R
IT_WAKE_UP
Plug detect
Management
Open
Drain
id_float
sess_vld
ID
4.7 R
id_gnd
0.15*ID
OR
ID Detector
46/85
RID_PU
0.85*ID
id_gnd
R
34.807IRELESS
STw4811M/STw4811N
Functional description
Interrupt management
IT_WAKE_UP: with only VBAT supply, no other supply available, when a USB cable is
plugged this interrupt is activated to wake up the host or the modem, depends of application
(open drain, active low).
By default this feature is available independently of PON level, it can be masked when
PON = 1 by ‘mask_it_wake_up’ bit of configuration 2 register (see Table 28)
USBINTn: This interrupt ball is dedicated to USB protocol and sent to multimedia processor.
Independently of PWREN ball state, this ball goes to low level if an USB interrupt source is
detected. In sleep mode, PWREN = 0, an interrupt source is detected only if unmasked
before PWREN goes to low level.
VBUS monitoring
These comparators monitor the VBUS voltage. They detect the current status of the VBUS
line:
●
VBUS > 4.4 V means A-Device VBUS_Valid
●
0.8 V < VBUS < 2 V means A-Device Session Valid and 0.8 V < VBUS < 4 V means BDevice Session Valid. To be compatible with both Session Valid threshold, STw4811
threshold is equal to 1.9 V.
●
VBUS < 0.8 V means B_Device Session End
These three bits generate an interrupt when active (see USB interrupt registers (Table 13)).
VUSB LDO: Internal regulator which provides power supply for the bus driver and receiver.
ID detector: This block detects the status of the ID line. It is capable of detecting three
different states of line:
●
ball is floating ‘id_float’ bit is high, Threshold detection is equal to 0.85 * Vbattery.
●
ball is tied to ground ‘id_gnd_forced’ bit is high, Threshold detection is equal to 0.15 *
Vbattery.
●
ball is grounded via resistor, voltage is between 0.85 * Vbattery and 0.15 * Vbattery.
‘id_float’ and ‘id_gnd_forced’ bits are low.
This detection generates interrupts (see USB interrupt registers (Table 13)).
Transceiver: The driver can operate in different modes. It can act as a classical low-speed
and full-speed differential driver, as two independent single-ended drivers or as a singleended driver in UART mode. This block contains one differential receiver for the USB mode
of operation and two single-ended receivers for USB signaling and UART mode.
DP monitor: This block is used to detect car kit peripheral, ‘cr_int’,0.6 V on DP (see USB
interrupt registers (Table 13)).
Pull up and pull down resistors: Configurable integrated pull-up and pull-down resistor of
data line and VBUS (see USB control register 2 (Table 12)).
34.807IRELESS
47/85
Functional description
4.4.2
STw4811M/STw4811N
Modes and operations
Power modes
The transceiver power modes are:
●
active mode
●
suspend mode
●
power down mode
In suspend mode the differential transmitter and receiver are turned off to save power but
the USB interface is still active (pull-up and pull-down on, VBUS on).
In power down mode, only the serial interface is active and the transceiver is able to detect
SRP. In power down mode, ID ball can be grounded by ‘id_gnd’ bit of USB control register 2
(Table 12).
USB modes
The two transceiver modes are:
●
DAT_SEO mode (dat_se0 = 1 in USB control register 1 - Table 11)
●
VP_VM mode (dat_se0 = 0 in USB control register 1 - Table 11)
Data transmission The transceiver transmits USB data in the following conditions for USB
control register 1 (Table 32, Table 33):
uart_en=0; oe_int_en=0
and USBOEn ball at low level.
Table 32.
Data transmission via USB control register 1 (DAT_SE0 mode) - Suspend = 0
USB mode
(DAT_SE0)
Inputs
Outputs
Comments
USBVP
USBVM
DP
DN
1 (DAT_SE0 mode)
0
0
0
1
Not used
Single ended data (zero sent)
1 (DAT_SE0 mode)
1
0
1
0
Not used
Single ended data (1 sent)
1 (DAT_SE0 mode)
x
1
0
0
Not used
Force single ended zero
0 (VP_VM mode)
0
0
0
0
DIFF_RX
0 (VP_VM mode)
1
0
1
0
DIFF_RX
0 (VP_VM mode)
0
1
0
1
DIFF_RX
0 (VP_VM mode)
1
1
1
1
DIFF_RX
48/85
USBRCV
DAT_VP drives the level of DP
SE0_VM drives the level of DN
34.807IRELESS
STw4811M/STw4811N
Table 33.
Functional description
Data transmission via USB control register 1 (DAT_SE0 mode) - Suspend = 1
Inputs
Outputs
USB mode (dat_se0)
Comments
USBVP
USBVM
DP
DN
USBRCV
1 (DAT_SE0 mode)
0
0
0
1
Not used
Single ended data (zero sent)
1 (DAT_SE0 mode)
1
0
1
0
Not used
Single ended data (1 sent)
1 (DAT_SE0 mode)
x
1
0
0
Not used
Force single ended zero
0 (VP_VM mode)
0
0
0
0
0 (off)
0 (VP_VM mode)
1
0
1
0
0 (off)
0 (VP_VM mode)
0
1
0
1
0 (off)
0 (VP_VM mode)
1
1
1
1
0 (off)
Driver are suspended
If oe_int_en = 1 and suspend=1 (USB control register 1 - Table 11), the USBOEn ball
becomes an output used to generate an IT to multimedia processor.
Data reception The transceiver receives USB data in the following conditions:
uart_en = 0 (USB control register 1); oe_int_en = 1
and USBOEn at high level.
Table 34.
Data receiver via USB control register 1
Inputs
USB mode (dat_se0)
Outputs
Suspend
DP
DN
USBVP
USBVM
USBRCV
1 (DAT_SE0 mode)
0
0
0
Diff rcv 1
1
Not used
1 (DAT_SE0 mode)
0
1
0
1
0
Not used
1 (DAT_SE0 mode)
0
0
1
0
0
Not used
1 (DAT_SE0 mode)
0
1
1
Diff rcv 1
0
Not used
1 (DAT_SE0 mode)
1
0
0
0
1
Not used
1 (DAT_SE0 mode)
1
1
0
1
0
Not used
1 (DAT_SE0 mode)
1
0
1
0
0
Not used
1 (DAT_SE0 mode)
1
1
1
1
0
Not used
0 (VP_VM mode)
0
0
0
0
0
diff rcv 1
0 (VP_VM mode)
0
1
0
1
0
1
0 (VP_VM mode)
0
0
1
0
1
0
0 (VP_VM mode)
0
1
1
1
1
diff rcv 1
0 (VP_VM mode)
1
0
0
0
0
Not used
0 (VP_VM mode)
1
1
0
1
0
Not used
0 (VP_VM mode)
1
0
1
0
1
Not used
0 (VP_VM mode)
1
1
1
1
1
Not used
34.807IRELESS
49/85
Functional description
STw4811M/STw4811N
UART mode
UART mode is entered by setting the ‘uart_en’ bit to 1 (USB control register 1 - Table 11).
The transceiver contains two digital logic level translators between the following balls:
●
TXD signal: from USBVM ball to DN ball
●
RXD signal: from DP ball to USBVP ball
When not in UART mode the level translators are disabled.
VBUS monitoring and control
The monitoring is made of three comparators that determine if the VBUS voltage is at a valid
level for operation:
●
VBUS VALID: It corresponds to the minimum level on VBUS. Any voltage on VBUS
below the threshold is considered to be a fault. During power-up, it is expected that this
comparator output is ignored.
●
VBUS SESSION VALID: This threshold is necessary for session request protocol to
detect the VBUS pulsing.
●
VBUS SESSION END: Session is ended. In this USB block, a B-device Session End
threshold is defined within the range [0.2; 0.8] V. The reason for a low 0.2 V limit is that
the leakage current could charge the VBUS up to 0.2 V (maximum).
When the A-device (default master) is power supplied and does not supply VBUS, it
presents an input impedance RA_BUS_IN on VBUS of no more than 100 kΩ. If the A-device
responds to the VBUS pulsing method of SRP, then the input impedance RA_BUS_IN may
not be lower than 40 kΩ.
When the A-device supplies power, the rise time TA_VBUS_RISE on VBUS to go from 0 to
4.4 V is less than 100 ms when driving 100 mA and with an external load capacitance of
10 µF (in addition to VBUS decoupling capacitance). If VBUS does not reach this voltage
within TA_VBUS_RISE maximum time, it indicates that the B-device is drawing more current
that the A-device is capable of providing and an over-current condition exists. In this case,
the A-device turns VBUS off and terminates the session.
VBUS capacitance
A dual-role device must have a VBUS capacitance CDRD_VBUS value comprised between
1 µF and 6.5 µF (see charge pump specification). The limit on the decoupling capacitance
allows a B-device to differentiate between a powered-down dual-role device and a powereddown standard host. The capacitance on a host is higher than 96 µF.
Data line pull-down resistance
The two bits of USB control register, dp_pulldown and dn_pulldown (Table 12) are used to
connect/disconnect the pull-down resistors.
When an A-device is idle or acting as host, it activates the pull-down resistors RPD on both
DP and DN lines.
When an A-device is acting as peripheral, it disables RPD on DP, not DN.
The A-device can disable both pull-down resistors during the interval of a packet
transmission when acting as either host or peripheral.
When the line is not used, the pull-down is activated and the maximum level on this ball
should not exceed 0.342 V.
50/85
34.807IRELESS
STw4811M/STw4811N
Functional description
Data line pull-up resistance
The two bits of USB control register dp_pullup and dn_pullup (Table 12) are used to
connect/disconnect pull-up resistors.
Full-speed and low-speed devices are differentiated by the position of the pull-up resistor
from the peripheral device. A pull-up resistor is connected to DP line for a full-speed device
and a pull-up resistor is connected to DN line for a low-speed device. The pull-up resistor
value is in the range of 900 Ω to 1600 Ω when the bus is idle and 1425 Ω to 3100 Ω when the
upstream device is transmitting.
Session Request Protocol (SRP)
To save power, the OTG supplement allows an A-device to leave the VBUS turned off when
the bus is not being used. If the B-device wants to use the bus when VBUS is turned off,
then it requires the A-device to supply power on VBUS using the Session Request Protocol
(SRP).
●
Initial conditions
The B-device does not attempt to start a new session until it has determined if the A-device
has detected the end of the previous session. The B-device must ensure that VBUS is below
VBUS_SESSION_END before requesting a new session.
Additionally, the B-device switches a pull-down resistor (R_VBUS_PD) from VBUS to
ground in order to quicken the discharge process as long as the B-device does not draw
more than 8 mA from VBUS. R_VBUS_PD is activated by bit ‘vbus_dischrg’ of USB control
register 2, (Table 12).
When the B-device detects that VBUS is below the VBUS_SESSION_END and that both
DP and DN have been low (SEO) for at least 2 ms, then any previous session on the Adevice is over and a new session can start.
●
Data-line pulsing
To indicate a request for a new session using the data line pulsing, the B-device turns on the
DP pull-up resistor for 5 ms to 10 ms (only at full speed, no DN pulsing). The DP pull-up
resistor is connected to VUSB (regulator output voltage). Timing is controlled by the USB
digital control.
●
VBUS pulsing
To indicate a request for a new session using the VBUS pulsing method, the B-device waits
for the initial conditions and then drives VBUS. VBUS is driven for a long enough period for a
capacitance on VBUS that is smaller than 2x6.5 µF to be charged to 2.1 V while a
capacitance on VBUS higher than 97 µF is not charged above 2.0 V. In this USB block, the
VBUS_SESSION_VALID threshold is used to determine if an A-device is DRD (dual role
device) or a standard host.
The B-device VBUS pulsing block is designed so that the maximum drawn current does not
exceed 8 mA. In this USB block, the pull-up is 600 Ω +/- 30%.
If a B-device is attached to a standard device, the pull-up must be disconnected after the
defined timing to prevent damage of standard hosts not designed to withstand a voltage
externally applied to VBUS.
34.807IRELESS
51/85
Functional description
●
STw4811M/STw4811N
Session Request Protocol (SRP)
If the B-device is in correct condition to start a new session, it first performs data line
pulsing, followed by VBUS pulsing. When VBUS next crosses the SESSION VALID
threshold, the B- device considers a session to be in progress and asserts the DP or DN
data line within 100 ms. After SRP initialization, the B- device is set up to wait for at least 5
seconds for the A-device to respond before informing the user that the consumption attempt
has failed.
●
Host Negotiation Protocol (HNP)
At the start of a session, the A-device has the role of host as default. During a session, the
host role can be transferred back and forth between the A-device and the B-device any
number of times using the Host Negotiation Protocol (HNP). The sequence of events for this
exchange of host role is described in the “On the Go Supplement to the USB 2.0
Specification” (rev 1.0) as follow:
–
The A-device puts the bus in the suspend state
–
The B-device simulates a disconnect by de-asserting its DP pull-up
–
The A-device detects SE0 on the bus and asserts its DP pull-up
–
The B-device detects that DP line is high and takes the role of the host.
ID detector
In either active or suspended power mode, the ID detector detects the condition of the ID
line and differentiates between the following three conditions:
●
ID ball floating: (e.g. with USB B-device connected)
●
ID ball shorted to ground: (e.g. with USB A-device connected)
●
ID ball connected to ground through resistor RACC_ID: (e.g.with an accessory).
The transceiver pulls the ID ball to VID_HI (VBAT) through a resistance of RID_PU when an
accessory is plugged in. In this case, the ID ball is externally connected to ground via
Racc_ID resistor.
Two comparators are used to detect the ID voltage: VID_GND and VID_FLOAT (Figure 13).
The ID detector also has a switch that can be used to ground the ID ball. This switch is
controlled by ‘id_gnd bit’ of USB control register 2 (Table 12); This pull-down is used for
CEA_KARKIT purposes.
Car kit interrupt detector
The transceiver is able to detect when the DP line is below the car kit interrupt threshold
‘cr_int’, (see USB interrupt register in Table 13 and refer to OTG specifications, Rev 0.92,
§2.7, p13).
Charge pump
From VBAT_USB, the charge pump supplies VBUS, ‘vbus_drv’ bit of USB control register 2
(Table 12) is used to enable/disable the charge pump.
If VBUS is “ON” before going to sleep mode, it remains “ON” in sleep mode.
LDO USB
From VBAT_USB, a LDO provides VUSB supply, ‘usb_en’ bit of USB_EN register (Table 17)
is used to enable/disable the VUSB LDO and the transceiver.
52/85
34.807IRELESS
STw4811M/STw4811N
4.4.3
Functional description
USB enable control
STw4811 OFF
In this state: PON ball = 0
In this state, the overall system is able to detect USB connection through IT_WAKE_UP ball
and with VBUS session valid comparator and ID detection ON.
IT_WAKE_UP ball is activated (low level if tied by an external Pull Up resistor to VIO or
VBAT) in either of the two following cases:
●
When a mini A connector cable is connected and ID goes low
●
When activity on VBUS, that is a mini B is connected and is able to communicate.
This mode is used to wake-up the platform. In this configuration, USBINTn ball is not
enabled and IT_WAKE_UP ball cannot be masked by ‘mask_it_wake_up’ bit
(Table 28).
STw4811 ON, USB driver not enabled
In this state: PON = 1
If ‘mask_it_wake_up’ bit is set to “0”, IT_WAKE_UP ball has the same behavior as above
(PON = 0) and turns ON the transceiver, ‘usb_en’ bit set to “1” (Table 17).
If ‘mask_it_wake_up’ is set to “1”, IT_WAKE_UP ball feature is disabled and always stay at
level “1” if tied by an external pull up resistor to VIO or VBAT and the transceiver is not turn
ON.
In sleep mode and in HIGH POWER mode, USBINTn ball is now enabled.
If the USB cable is already connected while STw4811 is starting, the USB driver will be
enabled when power management is ready.
●
●
●
34.807IRELESS
Wake-up USB driver conditions
–
A plug-in on a mini A-device and active ID detector
–
B device is connected and ready to start data transfer, VBUS is driven high
(session valid high)
–
Activity on USB registers (00h to 0Fh - Table 9 to Table 16). Multimedia processor
ready to wake-up and set-up USB PHY.
–
Possibility to force PHY high (enable) when writing ‘usb_en’ = 1 in USB EN
register (Table 17)
Set condition: one among the following possibilities
–
External it_wake_up =0
–
usb_en = 1 by writing to I2C USB interface
–
Access to any other USB register (00h to 0Fh)
Power down USB driver conditions in order to set the USB driver to power down mode:
–
it_wake_up = 1, and only then
–
Set ‘usb_en’ bit of USB EN register (Table 17) to “0”
53/85
Functional description
4.5
STw4811M/STw4811N
SD/MMC/SDIO module
Figure 14. SD/MMC/SDIO block diagram
SD/ MMC/SDIO interface
VBAT_VMMC
MCCMDDIR
MCDATA0DIR
MCDATA2DIR
MCDATA31DIR
VMMC
LDO
150 mA
CLKOUT
MCCLK
Driver
5*RB
VIO_VMEM
3*RA
EMIF
3*RA
SD, MMC
SDIO OR
cards
Level
RC
Rs
shifter
CMDOUT
MCCMD
MCDATA0
MCDATA[3:1]
MCFBCLK
Dz
Dz
DATAOUT0
DATAOUT[3:1]
LATCHCLK
RB
4.5.1
SD/MMC/SDIO LDO supply
The Vmmc LDO is supplied via the input Vbat_Vmmc. According to the protection diode
design, the voltage on this input pin Vbat_Vmmc must be always higher or equal to the
battery voltage.
Vbat_Vmmc >= Vbat
By programming ‘vmmc_sel[2:0] bits of configuration 1 register (Table 18), this LDO
provides the power supply (1.8 V, 1.85 V, 2.6 V, 2.7 V, 2.85 V, 3 V, 3.3 V) with a 150 mA
current compliance for any of the following peripherals.
●
SD card
●
MMC card
●
SDIO card
If an application does not request to use the level shifter feature, this LDO can be used to
supply an other peripheral, in this case, to reduce the internal current consumption due to
level shifter it is recommended to set to “1” ‘mmc_ls_status’ bit of configuration 1 register
(Table 18).
If an application, like HDD, requests more than 150 mA current supply and the use of the
internal level shifters, internal LDO must be disabled.
The application will be supplied by an external LDO and internal level shifter will be directly
supplied by the external LDO.
In this configuration, ‘pdn_vmmc’ bit is set to “0”, ‘mmc_ls_status’ is set to “0” (Table 18) and
‘external_vmmc’ bit is set to “1” (Table 28).
54/85
34.807IRELESS
STw4811M/STw4811N
4.5.2
Functional description
Level shifters
Signal shifting cards voltage level value is automatically done by the multimedia processor
system. Following a card detection, the multimedia processor starts the SD/MMC/SDIO
application by writing in the configuration 1 register (Table 18) to program LDO VMMC
output supply and then starts the protocol initialization.
The module includes:
●
Five bidirectional level shifter channels compatible with 1.8 V, 1.85 V, 2.6 V, 2.7 V,
2.85 V, 3.0 V, 3.3 V
●
Two unidirectional lines for clock: multimedia processor to card and feedback clock to
multimedia processor for synchronization.
●
Four control signals for channel direction. When direction balls (MCCMDDIR,
MCDATA0DIR, MCDATA2DIR, MCDATA31DIR) are at low level, data is transmitted from
Card to APE. When direction balls are at high level data is transmitted from APE to
card.
When the level shifters are “ON”, the APE interface MCDATA[3:0] and the MCCMD balls
have a 1.5 Mohm pull up resistor to VIO_VMEM.
It is possible to connect another card on the APE interface (1.8 V interface) for this:
●
34.807IRELESS
set to “1” ‘mmc_ls_status’ bits of configuration 1 register (Table 18) with this
configuration:
–
the APE interface MCDATA[3:0] and the MCCMD balls are put in high impedance
and the pull up resistors are disconnected.
–
the card interface DATAOUT[3:0] and the CMDOUT balls are set to “1” with an
internal 1.5 Mohm pull up resistor
–
the card clock, CLKOUT ball, is set to “0” and the APE feedback clock, MCFBCLK
ball is configured in high impedance.
55/85
Electrical and timing characteristics
5
STw4811M/STw4811N
Electrical and timing characteristics
Otherwise specified typical parameters are defined for T = 25 °C / VBAT = 3.6 V.
5.1
Absolute maximum rating
Table 35.
Symbol
STw4811 absolute maximum ratings
Description
Values
Units
-0.5 to 7
V
-30 to +85
°C
-2 to +2
kV
-300 to +1000
V
Maximum power supply
Ta
Maximum operating ambient temperature
Human body
VESD
Electrostatic discharge model
model(1)
Charge device
model(2)
1. HBM tests have been performed in compliance with JESD22-A114-B and ESD STM 5.1-2001.HBM
2. CDM tests have been performed in compliance with CDM ANSI-ESD STM 5.3.1-1999
5.2
Package dissipation
Table 36.
Package dissipation
Symbol
Description
Min.
Typ.
Max.
Units
TFBGA 84 6x6x1.2mm 0.5mm ball pitch
RTHJ-A
Thermal resistance junction to ambient
70
°C/W
76
°C/W
VFBGA84 4.6x4.6x1.0mm 0.4mm ball pitch
RTHJ-A
Thermal resistance junction to ambient
5.3
Power supply
Note:
STw4811 has different ways to go in sleep mode.
The different possibilities for VCORE, VIO_VMEM and VAUX to be programmed to sleep
mode are given in Table 26 and Table 27.
Taking in account the bit programming from Table 26 and Table 27, sleep mode is
summarized with the following formula:
SLEEP = (Vxxx_SLEEP x PWREN) + (Vxxx_FORCE_SLEEP) = 1
(Vxx = VCORE or VIO_VMEM or VAUX)
56/85
34.807IRELESS
STw4811M/STw4811N
Note:
Electrical and timing characteristics
The configuration Vxxx_SLEEP = 0 (device in active mode) and Vxxx_FORCE_SLEEP = 1
(device in sleep mode, but no priority level on this bit) is forbidden.
In all the following tables:
–
“High power mode” is defined as “SLEEP = ‘0’”
–
“Sleep mode” is defined as “SLEEP = ‘1’”
Use Table 27 to refer to each Vxxx supply (VCORE or VIO_VMEM or VAUX).
5.3.1
Operating conditions
Table 37.
Symbol
VBAT
Operating conditions (temperature range: -30 to +85 °C)
Description
Power supply
IQSLEEP
Quiescent current
Min.
Typ.
2.7
Sleep mode
VBAT = 3.6 V
Max.
Units
4.8
V
140
OFF mode
VBAT = 3.6 V
IQSTDBY
5.3.2
Test conditions
µA
4
µA
Max.
Units
4.8
V
1.84
V
VREF18
Table 38.
Symbol
VREF18
Description
Test conditions
Min.
Typ.
VBAT
Supply voltage
2.7
VREF_18
Output voltage
1.78
PSRR
Power supply
rejection ratio
Vpp = 0.3 V
f ≤100 kHz
60
dB
Noise
100 Hz ≤f ≤100 kHz
30
µV
tS
34.807IRELESS
Settling time
1.8
7.77
9.46
ms
57/85
Electrical and timing characteristics
5.3.3
STw4811M/STw4811N
VCORE DC/DC step-down converter
Table 39.
Symbol
VCORE DC/DC step-down converter
Description
Test conditions
Min.
Typ.
Max.
Units
VCORE regulator in high power mode (SLEEP = 0) unless otherwise specified, VCORE = 1.26V
VBAT
Input power supply Battery voltage
VRIPPLE
Output voltage
ripple
VOUT
58/85
Programmable
output voltage
2.7
3.6
4.8
6
’vcore_sel’[3:0]
1111
1110
1101
1100
1011
1010
1001
1000
0111 (default)
0110
0101
0100
0011
0010
0001
0000
-3.7%
-4.25%
-5%
1.45
1.40
1.38
1.36
1.34
1.32
1.30
1.28
1.26
1.24
1.22
1.20
1.15
1.10
1.05
1.00
V
mVpp
+3.7%
V
+4.25%
+5%
IOUT
Output current
PEFF
Power efficiency
VBAT = 3.6 V
IOUT = 200 mA
LIR
Line regulation
VBAT: [2.7; 4.8]V
10
mV
LDR(1)
Load regulation
IOUT: [0.1; 700] mA
10
mV
ISHORT
Short circuit
current limitation
1.2
1.4
A
IQ
Quiescent current
IOUT = 0 mA
130
200
µA
ILKG
Power-down
current
‘en_vcore’ = 0
1
µA
PSRR(1)
Power supply
rejection
Vpp = 0.3 V
[0; 20] kHz
LIRT
Transient line
regulation
ΔVBAT = 300 mV
tR = tF = 10 µs
7
mV
LDRT
Transient load
regulation
IOUT = [1; 700] mA
tR = tF = 100 ns
70
mV
700
86
0.9
40
mA
%
dB
34.807IRELESS
STw4811M/STw4811N
Table 39.
Symbol
Electrical and timing characteristics
VCORE DC/DC step-down converter (continued)
Description
Test conditions
Min.
Typ.
Max.
Units
2.7
3.6
4.8
V
VCORE regulator in sleep mode (SLEEP= ‘1’)
VBAT
Input power supply Battery voltage
VRIPPLE
VCORE output
voltage ripple
LIR
Line regulation
VBAT: [2.7; 4.8]V
10
mV
LDR
Load regulation
IOUT: [0.1; 5] mA
10
mV
IOUT
VCORE output
current
5
mA
PEFF
Power efficiency
VBAT= 3.6 V
IOUT: [0.1; 5] mA
85
IQ
Quiescent current
IOUT = 0 mA
20
LIRT
Transient line
regulation
Δ VBAT= 300 mV
tR = tF = 10 µs
7
6
mVpp
%
30
µA
mV
1. Guaranteed by design
5.3.4
VIO_VMEM DC/DC step-down converter
Table 40.
Symbol
VIO_VMEM DC/DC step-down converter
Description
Test conditions
Min.
Typ.
Max.
Units
2.7
3.6
4.8
V
-3%
1.8
+3%
V
VIO_VMEM regulator in high power mode (SLEEP = ‘0’)
VBAT
Input power supply Battery voltage
(1)
VOUT
Output voltage
VRIPPLE
Output ripple
LIR
Line regulation
VBAT: [2.7; 4.8]V
10
mV
LDR(2)
Load regulation
IOUT: [0.1; 600] mA
10
mV
IOUT
Output current
600
mA
PEFF
Power efficiency
6
VBAT = 3.6 V,
VIO = 1.8 V
IOUT= 200 mA
mVpp
90
%
ISHORT
Short circuit
current limitation
IQ
Quiescent current
IOUT = 0 mA
PSRR(2)
Power supply
rejection
Vpp = 0.3 V
[0; 20] kHz
LIRT
Transient line
regulation
ΔVBAT = 300 mV
tR = tF = 10 µs
7
mV
LDRT
Transient load
regulation
IOUT= [1; 600] mA
tR = tF = 100 ns
70
mV
34.807IRELESS
0.9
1.2
1.4
A
130
250
µA
40
dB
59/85
Electrical and timing characteristics
Table 40.
Symbol
STw4811M/STw4811N
VIO_VMEM DC/DC step-down converter (continued)
Description
Test conditions
Min.
Typ.
Max.
Units
2.7
3.6
4.8
V
VIO_VMEM regulator in sleep mode (SLEEP=’1’)
VBAT
Input power supply Battery voltage
VRIPPLE
Output ripple
LIR
Line regulation
VBAT: [2.7; 4.8]V
10
mV
LDR
Load regulation
IOUT: [0.1; 5] mA
10
mV
IOUT
Output current
5
mA
PEFF
Power efficiency
VBAT = 3.6 V
IOUT = [0.1; 5] mA
IQ
Quiescent current
IOUT = 0 mA
LIRT
Transient line
regulation
ΔVBAT = 300 mV
tR = tF = 10 µs
10
mVpp
85
%
20
2
µA
mV
1. Including output voltage temperature coefficient, DC line and load regulations, voltage reference accuracy,
industrial manufacturing tolerances and ripple voltage due to switching
2. Guaranteed by design
60/85
34.807IRELESS
STw4811M/STw4811N
5.3.5
Electrical and timing characteristics
LDO regulators
VPLL
Table 41.
Symbol
LDO regulators - VPLL
Description
Test conditions
Min.
Typ.
Max.
Units
VPLL regulator in high power mode unless otherwise specified, VPLL = 1.8 V
VBAT
Input power supply Battery voltage
’vpll_sel’[1:0]
11 (default)
10
01
00
2.7
-3%
3.6
4.8
V
+3%
V
3.5
10
mA
130
165
mA
30
40
µA
1
µA
1.8
1.3
1.2
1.05
VOUT
Output voltage
IOUT
Output current
ISHORT
Short-circuit
limitation
IQ
Quiescent current
IOUT = 0 mA
ILKG
Power-down
current
EN_VPLL = 0
PSRR(1)
Power supply
rejection
Vpp = 0.3 V
f < 10 kHz
10 kHz < f
<100 kHz
LIR
Line regulation
VBAT: [2.7; 4.8]V
5
mV
LDR
Load regulation
IOUT: [0.1; 10] mA
10
mV
LIRT
Transient line
regulation
ΔVBAT = 300 mV
tR = tF = 10 µs
1
mV
LDRT
Transient load
regulation
IOUT = [0.1; 10] mA
tR = tF = 1 µs
1
mV
En(1)
Noise density
at 1 kHz
BW = 100 Hz
95
55
45
dB
dB
250
nVrms
------------Hz
1. Guaranteed by design
34.807IRELESS
61/85
Electrical and timing characteristics
STw4811M/STw4811N
VANA
Table 42.
Symbol
LDO regulators - VANA
Description
Test conditions
Min.
Typ.
Max.
Units
VANA regulator in high power mode
VBAT
Input power supply Battery voltage
2.7
3.6
4.8
V
VOUT
Output voltage
-5%
2.5
+5%
V
IOUT
Output current
10
mA
ISHORT
Short-circuit
limitation
64
mA
IQ
Quiescent current
IOUT = 0 mA
30
µA
ILKG
Power-down
current
EN_VANA = 0
1
µA
PSRR(1)
Power supply
rejection
Vpp = 0.3 V
f < 10 kHz
LIR
Line regulation
VBAT: [2.7; 4.8] V
5
mV
LDR
Load regulation
IOUT: [0.1; 10] mA
5
mV
LIRT
Transient line
regulation
ΔVBAT = 300 mV
tR = tF = 10 µs
2
mV
LDRT
Transient load
regulation
IOUT = [0.1; 10] mA
tR = tF = 1 µs
15
mV
39
51
45
dB
1. Guaranteed by design
VAUX
Table 43.
Symbol
LDO regulators - VAUX
Description
Test conditions
Min.
Typ.
Max.
Units
4.8
V
V
VAUX regulator in high power mode (pdn_vaux = 1, SLEEP = 0)
VOUT = 1.5V
VBAT
Input power supply VOUT = 1.8/2.5 V
VOUT = 2.8 V
62/85
VOUT
Output voltage
IOUT
Output current
ISHORT
Short-circuit
limitation
IQ
Quiescent current
’vaux_sel’[1:0]
00 (default)
01
10
11
1.7
2.7
3.6
4.8
3
3.6
4.8
-3%
1.5
1.8
2.5
2.8
+3%
220
IOUT = 0 mA
V
150
mA
410
mA
30
µA
34.807IRELESS
STw4811M/STw4811N
Table 43.
Symbol
Electrical and timing characteristics
LDO regulators - VAUX (continued)
Description
Test conditions
Min.
Typ.
Max.
Units
1
µA
ILKG
Power-down
current
’pdn_vaux’ = 0
PSRR(1)
Power supply
rejection
VOUT=1.5 V
Vpp = 0.3 V
f < 10 kHz
LIR
Line regulation
VOUT=1.5 V
VBAT: [2.7; 4.8]V
5
mV
LDR(1)
Load regulation
VOUT=1.5 V
IOUT= [0.1; 150] mA
10
mV
LIRT
Transient line
regulation
ΔVBAT = 300 mV
tR = tF = 10 µs
2
mV
LDRT
Transient load
regulation
IOUT = [10; 90%]
mA
tR = tF = 1 µs
35
mV
tS
Settling time
40
dB
100
µs
4.8
V
V
VAUX regulator in sleep mode (’pdn_vaux’= 1, SLEEP=’1’)
VBAT
Input power supply
VOUT = 1.5V
VIO_VMEM supply
1.7
VOUT = 1.8/2.5 V
2.7
3.6
4.8
3
3.6
4.8
VOUT = 2.8 V
IOUT
Output current
IQ
Quiescent current
IOUT = 0 mA
PSRR(1)
Power supply
rejection
VOUT=1.5 V
Vpp = 0.3 V
f < 10 kHz
LIR
Line regulation
VOUT=1.5 V
VBAT: [2.7; 4.8]V
5
mV
LDR
Load regulation
VOUT=1.5 V
IOUT= [10; 90%] µA
10
mV
LIRT
Transient line
regulation
ΔVBAT = 300 mV
tR = tF = 10 µs
2
mV
LDRT
Transient load
regulation
IOUT = [10; 90%] µA
tR = tF = 1 µs
35
mV
500
µA
20
µA
38
dB
1. Guaranteed by design
34.807IRELESS
63/85
Electrical and timing characteristics
5.3.6
STw4811M/STw4811N
Power supply monitoring
This block monitors the VCORE and VIO_VMEM output voltage. If VCORE or VIO_VMEM
drops below the threshold, the multimedia processor is reset.
Table 44.
Power supply monitoring
Symbol
Description
Test conditions
Min.
Typ.
Max.
Units
-3%
VCORE-150
+3%
mV
-3%
1.65
+3%
V
2.7
3.6
4.8
V
Threshold
THCORE(1) Threshold VCORE
THVIO(1)
Threshold
VIO_VMEM
Comparators
VBAT
Supply voltage
tRES
Response time
100
ns
HYFALL
Hysteresis (input
voltage falling)
26
mV
HYRIS
Hysteresis (input
voltage rising)
+4
mV
1. Guaranteed by design
5.4
Digital specifications
5.4.1
CMOS input/output static characteristics: I2C interface
Table 45.
CMOS input/output static characteristics: I²C interface
Symbol
Description
Test conditions
Min.
Typ.
Max.
Units
0.3*VIO
V
I²C interface(1)
VIL
Low level input
voltage
VIH
High level input
voltage
0.7*VIO
IIL
Low level input
current
-1.0
1.0
µA
IIH
High level input
current
-1.0
1.0
µA
VOL
Low level output
voltage
IOL = 3mA
(with open drain or
open collector)
0.2*VIO
V
VOH
High level output
voltage
IOL = 3mA
(with open drain or
open collector)
0.8*VIO
V
V
1. Vio is for VIO_VMEM
64/85
34.807IRELESS
STw4811M/STw4811N
5.4.2
Electrical and timing characteristics
CMOS input/output dynamic characteristics: I2C interface
Table 46.
CMOS input/output dynamic characteristics: I²C interface
Symbol
Description
Min.
Typ.
Max.
Units
400
kHz
I²C interface (Figure 8)
Fscl
Clock frequency
thigh
Clock pulse width high
600
tlow
Clock pulse width low
1300
ns
ns
(1)
tr
SDA, SCL, USBSDA, USBSCL rise time 20+0.1*Cb
tf
SDA, SCL, USBSDA, USBSCL fall time
thd_sta
Start condition hold time
600
ns
tsu_sta
Start condition set up time
600
ns
thd_dat
Data input hold time
0
ns
tsu_dat
Data input set up time
100
ns
tsu_sto
Stop condition set up time
600
ns
tbuf
Bus free time
1300
ns
Cb
Capacitive load for each bus line
20+0.1*Cb
300
ns
300
ns
400
pF
1. Cb = total capacitance of one bus line in pF
34.807IRELESS
65/85
Electrical and timing characteristics
5.4.3
STw4811M/STw4811N
CMOS input/output static characteristics: VIO level
USB and control I/Os
Table 47.
Symbol
VIO level: USB and control I/Os
Description
Test conditions
Min.
Typ.
Max.
Units
SW_RESETn, VDDOK, PORN, PWREN, TCXO_EN, REQUEST_MC, CLK32K, CLK32K_IN,
USBOEN, USBVP, USBVM, USBRCV, USBINTn, MASTER_CLK
VIL(1)
Low level input
voltage
VIH
High level input
voltage
0.7*Vio
IIL
Low level input
current
-1.0
1.5
µA
IIH
High level input
current
-1.0
1.5
µA
CIN
Input capacitance
10
pF
VOL
Low level output
voltage
IOL = 4 mA
0.2*Vio
V
VOH
High level output
voltage
IOL = 4 mA
tOF
Output fall time
Capacitance 10pF
10
ns
tOR
Output rise time
Capacitance 10pF
10
ns
CI/O
Driving capability
100
pF
0.3*Vio
V
V
0.8*Vio
V
1. Vio for VIO_VMEM
66/85
34.807IRELESS
STw4811M/STw4811N
Electrical and timing characteristics
MMC interface
Table 48.
Symbol
VIO level: MMC interface
Description
Test conditions
Min.
Typ.
Max.
Units
MMC interface: MCCLK, MCFBCLK, MCCMDDIR, MCCMD, MCDATA2DIR, MCDAT2,
MCDATA0DIR, MCDAT0, MCDAT31DIR, MCDAT3, MCDAT1
VIL(1)
Low level input
voltage
VIH
High level input
voltage
0.7*Vio
IIL
Low level input
current
-1.0
1.5
µA
IIH
High level input
current
-1.0
1.5
µA
CIN
Input capacitance
10
pF
VOL
Low level output
voltage
IOL = 15 mA
0.2*Vio
V
VOH
High level output
voltage
IOL = 15 mA
CI/O
Driving capability
at 52 MHz
0.3*Vio
V
V
0.8*Vio
V
30
pF
1. Vio for VIO_VMEM
34.807IRELESS
67/85
Electrical and timing characteristics
5.4.4
STw4811M/STw4811N
CMOS input/output static characteristics: VBAT level
Table 49.
Symbol
CMOS input/output static characteristics: VBAT level
Description
Test conditions
Min.
Typ.
Max.
Units
0.3*Vbat
V
IT_WAKE_UP, PON, GPO1, GPO2
68/85
VIL
Low level input
voltage
PON
VIH
High level input
voltage
PON
0.7*Vbat
IIL
Low level input
current
PON
-1.0
1.5
µA
IIH
High level input
current
PON
-1.0
1.5
µA
CIN
Input capacitance
10
pF
VOL
Low level output
voltage
IT_WAKE_UP,
GPO1, GPO2
IOL = 2 mA
0.2*Vbat
V
VOH
High level output
voltage
IT_WAKE_UP,
GPO1, GPO2
IOL = 2 mA
tOF
Output fall time
Capacitance 10pF
5
ns
tOR
Output rise time
Capacitance 10pF
50
ns
CI/O
Driving capability
100
pF
V
0.8*Vbat
V
34.807IRELESS
STw4811M/STw4811N
5.4.5
Electrical and timing characteristics
CMOS input/output static characteristics: VMMC level
Table 50.
Symbol
CMOS input/output static characteristics VMMC level
Description
Test conditions
Min.
Typ.
Max.
Units
DATAOUT0, DATAOUT1, DATAOUT2, DATAOUT3, CMDOUT, LATCHCLK, CLKOUT
VIL
Low level input
voltage
VIH
High level input
voltage
0.7*VMMC
IIL
Low level input
current
-1.0
1.5
µA
IIH
High level input
current
-1.0
1.5
µA
CIN
Input capacitance
10
pF
VOL
Low level output
voltage
IOL = 25 mA
VOH
High level output
voltage
IOL = 25 mA
CI/O
Driving capability
34.807IRELESS
0.3*VMMC
0.2*VMMC
0.8*VMMC
40
pF
69/85
Electrical and timing characteristics
5.5
STw4811M/STw4811N
USB OTG transceiver
Table 51.
Symbol
USB OTG transceiver
Description
Test conditions
Min.
Typ.
Max.
Units
UART mode
tR
Rise time
CLOAD= [50;100] pF
[10; 90] % of
VOH-VOL
100
ns
tF
Fall time
CLOAD= [50;100] pF
10......90% of
VOH-VOL
100
ns
tPLH
Drive propagation
delay low => high
CLOAD= [50;100] pF
50% of |VOH-VOL|
100
ns
tPHL
Drive propagation
delay high => low
CLOAD= [50;100] pF
50% of |VOH-VOL|
100
ns
USB full speed mode (DP & DN signals)
tR
Rise time
4
20
ns
tF
Fall time
4
20
ns
DRFM
Differential rise an
fall time matching
USBVP & USBVM :
90
111
%
Output signal
crossover voltage
- Skew < 0.66 ns
OSCV
1.3
2
V
PDEL
Propagation delay
18
ns
- Trise & Tfall < 1 ns
USB low speed mode (DP & DN signals)
tR
Rise time
75
300
ns
tF
Fall time
75
300
ns
DRFM
Differential rise an
fall time matching
80
125
%
OSCV
Output signal
crossover voltage
1.3
2
V
4.8
V
VBUS comparators
70/85
VBAT
Input power supply
Battery voltage
3.1
3.6
tRR
Rising reacting time
1.7
µs
tFR
Fall reacting time
2.1
µs
34.807IRELESS
STw4811M/STw4811N
Table 51.
Symbol
Electrical and timing characteristics
USB OTG transceiver (continued)
Description
Test conditions
Min.
Typ.
Max.
Units
4.4
4.5
4.6
V
3.77
3.87
3.97
V
Threshold VBUS monitoring
VAval
VBUS valid
Vth_dev
Threshold device
VBses
VBUS session valid
1.8
2
V
VBsess_end
B_session_end
0.2
0.8
V
40
100
kΩ
100
ms
‘th_Bdevice’ = 1
VBUS
RA_BUS_
IN
VBUS = [0; 4.4] V
ILOAD = 100mA
External cap 10µF
TA_VBUS_
RISE
Data line pull-down resistance
RPD_DPDN
14
19
25
kΩ
Data line pull-up resistance
RPU_DP
Bus idle
Bus driven
900
1425
1200
2300
1600
3100
Ω
RPU_DN
Bus idle
Bus driven
900
1425
1200
2300
1600
3100
Ω
650
925
1200
Ω
420
600
780
Ω
PULL-DOWN on VBUS
RVBUS_PD
PULL-UP on VBUS
RVBUS_SRP
ID
VID_GND
ID_GND comparator 2.7 V < VBAT < 4.8
threshold
V
VID_HI
(VBAT)
Battery level
VID_FLOAT
ID_FLOAT
comparator
threshold
RPU_ID
0.15*
VBAT
2.7
3.6
V
4.8
0.85*
VBAT
70
RPD_ID
100
V
V
130
kΩ
10
kΩ
0.6
V
Carkit threshold detection
cR_INT
34.807IRELESS
Carkit interrupt
threshold
0.4
71/85
Electrical and timing characteristics
Table 51.
STw4811M/STw4811N
USB OTG transceiver (continued)
Symbol
Description
Test conditions
Min.
Typ.
Max.
Units
3.6
V
0.4
V
Transceiver
VOH_TXD_
DAT
VOL_TXD_
DAT
VIH_RXD
_DAT
VIL_RXD_
DAT
TXD output high on
DN
ISOURCE = 500 µA
TXD output low on
DN
ISINK = 2mA
RXD input high on
DP
2.4
2
V
RXD input low on
DP
0.8
V
Charge pump
VBAT
Input power supply
Battery voltage
VBUS
Output voltage
Current load up to
100 mA
tS
Settling time
[0;4.8] V)
Ext. load: 100 mA +
External cap =
10µF
1.2
ms
IQ
Quiescent current
No Load
2.7
mA
VRipple
Amplitude output
ripple on VBUS
Current load 8 mA
Current load
100mA
25
40
mV
mV
IOUT
Output current
Eff
Efficiency
VUSB+0.1
3.6
4.8
V
4.75
5
5.25
V
100
VBAT = 3.0V
IOUT =100mA
VBAT= 3.6V.
IOUT = 8 mA.
mA
85
%
60
%
VUSB regulator
72/85
VBAT(1)
Input voltage
Battery voltage:
VBAT min =
VOUT + 0.1V
VOUT
Output voltage
VBAT min=
VOUT + 0.1V
ISHORT
Short circuit current
limitation
IQ
Quiescent current
No load
PSRR(2)
Power supply
rejection
VBAT= VOUT+0.2V
f < 20 kHz
LIRT
Transient line
regulation
ΔVBAT = 300 mV
tR = tF = 10µs.
VUSB+0.1
3.6
5.5
V
3.0
3.1
3.2
V
320
mA
70
µA
45
dB
5
mV
34.807IRELESS
STw4811M/STw4811N
Table 51.
Symbol
Electrical and timing characteristics
USB OTG transceiver (continued)
Description
Test conditions
Min.
Typ.
Max.
Units
tS
Settling time
OFF->ON
IOUT = 0mA
25
µs
tD
Discharge time
ON>OFF
IOUT = 0mA
400
µs
1. From 4.8 V to 5.5 V, charge pump is “Off” and no OTG feature is provided
2. Guaranteed by design
5.6
SD/MMC/SDIO card interface
Table 52.
Symbol
SD/MMC/SDIO card interface
Description
Test conditions
Min.
Typ.
Max.
Units
3.55
3.25
3.1
2.95
2.85
2.7
3.6
5.5
V
-3%
3.3
3
2.85
2.7
2.6
1.85
1.8
+3%
V
150
mA
600
mA
VMMC regulator specifications (’pdn_vmmc’ = 1)
VIN
Input voltage
VOUT = 3.3 V
VOUT = 3 V
VOUT = 2.85 V
VOUT = 2.7 V
VOUT = 2.6 V
VOUT = 1.8/1.85 V
VOUT
Output voltage
IOUT
Output current
ISHORT
Short circuit
current limitation
IQ
Quiescent current
IOUT = 0 mA
30
µA
ILKG
Power-down
current
’pdn_vmmc’ = 0
1
µA
PSRR(1)
Power supply
rejection
IOUT = 150 mA
Vpp = 0.3 V
f < 20 kHz
LIR(1)
Line regulation
VOUT=2.85 V
VBAT: [3.1; 4.8]V
5
mV
LDR(1)
Load regulation
VOUT=2.85 V
IOUT= [1; 150] mA
10
mV
LIRT
Transient line
regulation
VOUT=2.85 V
VBAT: 3.1 to 3.4V
tR = tF = 10 µs.
34.807IRELESS
240
360
45
dB
2
mV
73/85
Electrical and timing characteristics
Table 52.
Symbol
STw4811M/STw4811N
SD/MMC/SDIO card interface (continued)
Description
Test conditions
Min.
Typ.
Max.
Units
VMMC regulator specifications (’pdn_vmmc’ = 1)
LDRT
Transient load
regulation
IOUT = [1; 150] mA
tR = tF = 1 µs
tS
Settling time
OFF->ON
IOUT = 0 mA
100
µs
tD
Discharge time
ON>OFF
IOUT = 0 mA
1
ms
25
mV
Bus line specifications
RA(2)
Pull-up resistor
To prevent bus from
floating
1.5
MΩ
RB
Pull-down resistor
To prevent bus from
floating
1.5
MΩ
fDT
Clock frequency
data transfert
mode
With CL = 30pF
52
MHz
fID
Clock frequency
With CL = 30pF
identification mode
400
kHz
TPHC
Propagation time
from Host to card
Figure 15
7
ns
TPCH
Propagation time
from card to host
Figure 15
7
ns
TSHC
Clock /data skew
time from host to
card
Figure 15
Reference is
CLKOUT
+/- 0.5
ns
TSCH
Clock /data skew
time from card to
host
Figure 15
Reference is
MMCLK
+/- 0.5
ns
TR
Rise time
3
ns
TF
Fall time
3
ns
C1LINE
Between host and
STw4811
20(3)
pF
C2LINE
Bus line
Between STw4811
capacitance
and MMC card
f < 52 MHz
20 + 20(4)
pF
Bus line
capacitance
f < 52 MHz
1. Guaranteed by design
2. MMC interface pull up resistors are in EMIF06-HCM01F2 device (7 KΩ for CMD; 75 KΩ for Data wires)
3. 20 pF for equivalent board parasitic capacitance.
4. 20 pF for EMIF06 protection + 20 pF for board parasitic capacitance.
74/85
34.807IRELESS
STw4811M/STw4811N
Electrical and timing characteristics
Figure 15. Propagation and clock/data skew times
2 ns
2 ns
2 ns
MCCLK
MCCMD
MCDATA[3:0]
MCFBCLK
90%
90%
50%
10%
10%
TPHC
DATAOUT[3:0]
MCDATA[3:0]
t
2 ns
2 ns
90%
10%
2 ns
90%
50%
TSCH
90%
50%
10%
TPCH
t
CLKOUT 10%
MCCLK
50%
DATAOUT[3:0]
TPCH
34.807IRELESS
CLKOUT
MCCLK 10%
50%
TPHC
MCCLK
MCCMD
MCDATA[3:0]
MCFBCLK
50%
t
CLKOUT
CMDOUT
DATAOUT[3:0]
LATCHCLK
CLKOUT
CMDOUT
DATAOUT[3:0]
LATCHCLK
TSHC
90%
MCDATA[3:0]
t
75/85
Application information
STw4811M/STw4811N
6
Application information
6.1
Components list
Table 53.
Name
Components list
Typical
value
Comments
Function
C1
VIO_VMEM output filter
22µF
C4
VCORE output filter
C2
VBAT_VIOVMEM decoupling
C3
10µF
C5
C6
C7
C8
1µF
C10
C13
VBAT_ANA decoupling
In the complete system application, the
sum of the capacitors connected on
each STw4811 ball must never be less
than 30% of the value indicated in the
typical value column of this table. This
includes all capacitor parameters:
– production dispersion
– DC bias voltage applied
– temperature range of the complete
system application
– aging
VBAT_VCORE decoupling
VPLL output filter
VANA output filter
VREF output filter
VUSB output filter
VAUX output filter
C9
470nF
C11
4.7µF
C12
2.2µF
VSD_MMC output filter
C13, C14,
C15, C16,
C17
1 µF
Vbattery input voltage
decoupling capacitors
L1
Flying capacitor for charge pump
VBUS output filter (tank charge
pump capacitor)
Coil VIOVMEM DC/DC
4.7µH
See Table 54 for recommended coils
L2
Coil VCORE DC/DC
Table 54.
Supplier
TDK
Coilcraft
Recommended coils
DCR (Ω)
Irms(1) (A)
L x l x h (mm * mm * mm)
VLF3010AT-4R7MR70
0.28
0.7
2.8 * 2.6 * 1.0
VLF3012AT-4R7MR74
0.16
0.74
2.8 * 2.6 * 1.2
VLF4012AT-4R7M1R1
0.14
1.1
3.7 * 3.5 * 1.2
DO1605T-472MX
0.15
1.1
5.5 * 4.2 * 1.8
DO3314-472ML
0.32
1.1
3.3 * 3.3 * 1.4
ME3320-472MX
0.19
1.1
3.2 * 2.5 * 2.0
Part number
1. Irms: 30% decrease of initial value
76/85
34.807IRELESS
STw4811M/STw4811N
Table 55.
Application information
Other ST components
Name
Order code
Function
EMIF02
EMIF02USB05
USB ESD/EMI Protection
EMIF06
EMIF06-HMC01F2
MMC Interface ESD/EMI Protection
34.807IRELESS
77/85
Application information
6.2
STw4811M/STw4811N
Application schematics
Figure 16. STw4811 application schematics
C4
VLX_VCORE
VBAT_VCORE
VMINUS_ANA
VBAT_ANA
VIOVMEM_FB
PON
CLK32Kin
MASTER_CLK**
VLX_VIOVMEM
VMINUS_VIOVMEM
VBAT_DIG
VMINUS_DIG
VBAT_VIOVMEM
MODEM & SYSTEM CLOCK
C2
C13(*)
L2
C5
C3
VCORE
L1
VMINUS_VCORE
C1
C14(*)
VBAT_VPLL_VANA
C6
IT_WAKE_UP
VPLL
REQUEST_MC
TCXO_EN
C7
VANA
C8
B9
VREF
C15(*)
VBAT_VAUX
D3
C13
VAUX
C16(*)
VBAT_USB
PWREN
VDDOK
PORn
CLK32K
SW_RESETn
Multimedia processor
SDA
USBVP
USBOEn
USBVM
USBRCV
CN
STw4811
ID
ESD
DP
DN
USBSDA
MCDAT2DIR
MCDAT2
R1
R1
EMI
filter
MCCLK
MCFBCLK
3
C11
VBUS
USBSCL
MCDAT0DIR
MCDAT0
MCDAT31DIR
MCDAT[3,1]
C10
VUSB
USBINTn
MCCMDDIR
MCCMD
C9
CP
USB
SCL
VMINUS_USB
EMIF02
(*)
VBAT_MMC
C17
C12
VMMC
DATOUT[3:1]
DATAOUT0
CMDOUT
SD
MMC
3
EMI
Filter
SDIO
CARD
CLKOUT
LATCHCLK
GPO1
GPO2
EMIF06-HMC01F2
(*) The usefulness of these capacitors depend of PCB layout
(**) Master Clock can be connected on this ball. In this case see the feature use restriction in section 4.2.3
78/85
34.807IRELESS
STw4811M/STw4811N
7
Package mechanical data
Package mechanical data
In order to meet environmental requirements, ST offers these devices in ECOPACK®
packages. These packages have a Lead-free second level interconnect. The category of
second Level Interconnect is marked on the package and on the inner box label, in
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an ST trademark.
ECOPACK specifications are available at: www.st.com.
7.1
TFBGA 84 balls
See Figure 17: TFBGA 84 balls 6x6x1.2mm body size / 0.5 ball pitch drawing.
Table 56.
TFBGA 84 balls 6x6x1.2mm body size / 0.5 ball pitch dimensions(1)
Drawing dimensions (mm)
Min.
Typ.
A
A1
Max.
1.16
0.20
A2
0.25
0.30
0.82
b
0.25
0.30
0.35
D
5.90
6.00
6.10
D1
E
4.50
5.90
E1
6.00
6.10
4.50
e
0.45
0.50
0.55
f
0.65
0.75
0.85
ddd
0.08
1. These measurements conform to JEDEC standards
34.807IRELESS
79/85
Package mechanical data
STw4811M/STw4811N
Figure 17. TFBGA 84 balls 6x6x1.2mm body size / 0.5 ball pitch drawing
Note:
The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink
or metallized markings, or other feature of package body or integral heatslug. A
distinguishing feature is allowable on the bottom surface of the package to identify the
terminal A1 corner. Exact shape of each corner is optional.
80/85
34.807IRELESS
STw4811M/STw4811N
7.2
Package mechanical data
VFBGA 84 balls
See Figure 18: VFBGA 84 balls 4.6x4.6x1.0 mm ball pitch 0.4 drawing.
Table 57.
VFBGA 84 balls / 4.6x4.6x1.0 mm body size / 0.4 mm ball pitch(1)
Drawing dimensions (mm)
Min.
Typ.
A
A1
Max.
0.864
0.15
0.19
A2
0.615
A3
0.18
A4
0.435
0.23
b
0.21
0.25
0.29
D
4.55
4.60
4.65
D1
E
3.60
4.55
4.60
E1
3.60
e
0.40
f
0.50
4.65
ddd
0.08
eee
0.13
fff
0.04
1. These measurements conform to JEDEC standards
34.807IRELESS
81/85
Package mechanical data
STw4811M/STw4811N
Figure 18. VFBGA 84 balls 4.6x4.6x1.0 mm ball pitch 0.4 drawing
Note:
The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink
or metallized markings, or other feature of package body or integral heatslug. A
distinguishing feature is allowable on the bottom surface of the package to identify the
terminal A1 corner. Exact shape of each corner is optional.
82/85
34.807IRELESS
STw4811M/STw4811N
8
Ordering information
Ordering information
Table 58.
Order codes
Part number
Note:
Package
Packing
STW4811MBHD/LF
TFBGA84- 6x 6 x 1.2 mm / 0.5 mm pitch
Tray
STW4811MBHDT/LF
TFBGA84- 6x 6 x 1.2 mm / 0.5 mm pitch
Tape and Reel
STW4811MBRA/LF
VFBGA 84 - 4.6x 4.6 x 1 mm / 0.4 mm pitch
Tray
STW4811MBRAT/LF
VFBGA 84 - 4.6x 4.6 x 1 mm / 0.4 mm pitch
Tape and Reel
STW4811NBHD/LF
TFBGA84- 6x 6 x 1.2 mm / 0.5 mm pitch
Tray
STW4811NBHDT/LF
TFBGA84- 6x 6 x 1.2 mm / 0.5 mm pitch
Tape and Reel
STW4811NBRA/LF
VFBGA 84 - 4.6x 4.6 x 1 mm / 0.4 mm pitch
Tray
STW4811NBRAT/LF
VFBGA 84 - 4.6x 4.6 x 1 mm / 0.4 mm pitch
Tape and Reel
STw4811M: Vaux OFF at start up
STw4811N: Vaux ON at start up
34.807IRELESS
83/85
Revision history
9
STw4811M/STw4811N
Revision history
Table 59.
Document revision history
Date
Revision
05-Sep-2007
1
Initial release on www.st.com.
Reviewed the first sentence in Section 5.3: Power supply to precise
‘typical’ parameters.
17-Apr-2008
2
Updated the document status to ‘datasheet’ with respect to the
device maturity level.
3
Updated the maximum current value of the step-down converter for
processor core to 700 mA in Features, Chapter 1: Overview,
Section 4.3.2: VCORE regulator: DC/DC STEP- DOWN regulator
and Table 39: VCORE DC/DC step-down converter.
25-Aug-2008
84/85
Changes
34.807IRELESS
STw4811M/STw4811N
Please Read Carefully:
Information in this document is provided solely in connection with ST-NXP products. ST-NXP Wireless NV and its subsidiaries (“ST-NXP”)
reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described
herein at any time, without notice.
All ST-NXP products are sold pursuant to ST-NXP’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST-NXP products and services described herein, and ST-NXP
assumes no liability whatsoever relating to the choice, selection or use of the ST-NXP products and services described herein. No license,
express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document
refers to any third party products or services it shall not be deemed a license grant by ST-NXP for the use of such third party products or
services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third
party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST-NXP’S TERMS AND CONDITIONS OF SALE ST-NXP DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST-NXP PRODUCTS INCLUDING WITHOUT LIMITATION
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE
LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST-NXP REPRESENTATIVE, ST-NXP PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST-NXP PRODUCTS WHICH ARE NOT SPECIFIED AS
"AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST-NXP products with provisions different from the statements and/or technical features set forth in this document shall immediately
void any warranty granted by ST-NXP for the ST-NXP product or service described herein and shall not create or extend in any manner
whatsoever, any liability of ST-NXP.
ST-NXP and the ST-NXP logo are trademarks or registered trademarks of ST-NXP in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST-NXP logo is a registered trademark of ST-NXP Wireless. All other names are the property of their respective owners.
© 2008 ST-NXP Wireless - All rights reserved
ST-NXP Wireless group of companies
Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - India - Italy - Japan - Korea - Malaysia - Mexico Netherlands - Singapore - Sweden - Switzerland - Taiwan - United Kingdom - United States of America
www.stnwireless.com
34.807IRELESS
85/85