TDA7500A DIGITAL AM/FM SIGNAL PROCESSOR ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ FULL SOFTWARE FLEXIBILITY WITH TWO 24X24 BIT DSP CORES SOFTWARE AM/FM, AUDIO AND SOUNDPROCESSING HARDWARE RDS FILTER, DEMODULATOR & DECODER INTEGRATED CODEC (4ADCs, 6DACs) IIC AND SPI CONTROL INTERFACES SPI DEDICATED TO DISPLAY MICRO 6 CHANNEL SERIAL AUDIO INTERFACE (SAI) SPDIF RECEIVER WITH SAMPLE RATE CONVERTER EXTERNAL MEMORY INTERFACE (EMI) DOUBLE DEBUG INTERFACE ON-CHIP PLL 5V-TOLERANT 3V I/O INTERFACE 12x2 MULTIFUNCTION GENERAL PURPOSE I/O PORTS TQFP100 (with slug down) ORDERING NUMBER: TDA7500A DESCRIPTION The TDA7500A is an integrated circuit implementing a fully digital, integrated and advanced solution to perform the signal processing in front of the power amplifier and behind the AM/FM tuner or any other audio source. The chip integrates two 45 MIPs DSP cores: one for stereo decoding, noise blanking, weak signal processing and multipath detection and one for sound processing, Dolby B, echo and noise cancelling for the telephone. BLOCK DIAGRAM analog in Σ∆ ADC-ref Σ∆ Decimation Filter Σ∆ analog audio out Σ∆ Decimation Filter PLL Clock Generator SC Filter SC Filter Noise Shaper SC Filter SC Filter Noise Shaper SC Filter DAC-ref Noise Shaper Oversampl. Oversampl. Oversampl. Filter Filter Filter ADCVDD ADCGND AVDD AGND RDS Filter Grp & blk sync., error correction Demod. CLK in Crystal Oscillator 6 Ch. Audio Bus 2 receive bit&word clk digital audio in SPDIF audio in SAI 6ch. Receiver SPDIF 2ch. Interface 10 word SPI 1 receive stack 2ch Sample Rate Converter Dolby B FM processing, AM processing, Traffic memorization 4 Debug Interface RDS RDS bit/blk Int. 4 RDS SPI SPI Error corr. RDS blocks or RDS clk, dat, qual 4 λP control 4 Display λP IIC / SPI 1 SPI 2 3 2 SAI Transmitter External Memory Interface DSP1 Orpheus Core SRAM 4Mx8 DRAM 128kx4 X Ram 1024 Xchg Interf. Int Reset including 12 GPIO´s X Ram 1024 Y Ram 1024 Y Ram 1024 P Ram 2048 P Rom 256 P Ram 5632 P Rom 512 Audio processing, Sound processing, Noise & Echo Canc. Debug Interface 6 Channel Audio Bus 8+3 17 DSP0 Orpheus Core including 12 GPIO´s December 2001 SC Filter 4 4 VDD GND 2 Test 4 1/40 TDA7500A DESCRIPTION (continued) An I2C/SPI interface is implemented for control and communication with the main micro. A separate SPI is available to interface the display micro.The DSP cores are integrated with their associated data and program memories. The peripherals and interfaces I 2C, SPI, Serial Audio Interface (SAI), PLL Oscillator, External Memory Interface, (EMI), General Purpose I/O register (Port A) and the D/A registers are connected to and controlled by DSP0, whereas the A/D registers, the SPDIF and the General Purpose I/O register (Port B) are connected to and controlled by DSP1. An hardware RDS filter , demodulator and decoder block is also embedded. No support is needed from the DSPs but at initialisation so that RDS can work in background and in parallel with other DSP processing. Separated Debug and Test Interfaces are connected to both DSP cores. The TDA7500A is supposed to be used in kit with the TDA7501 or any other device of the same family. Thanks to the serial audio interface also digital sources can be processed and a direct output to a digital bus is also available. The flexibility allowed by the wide memory space and by the two powerfull DSP cores make the TDA7500A usable for different applications. In example, inside the main radio as an audio co-processor or to perform the signal processing and equalisation associated to a digital power amplifier. ABSOLUTE MAXIMUM RATINGS Symbol Parameter Value Unit -0.5 to +4.6 -0.5 to +4.6 V V VDD VCC Power supplies Vaio Analog Input and Output Voltage -0.5 to (VCC+0.5) V Vdio Digital Input and Output Voltage -0.5 to (VDD+0.5) V Vdi5 Digital Input Voltage (5V tolerant) -0.5 to 6.5 V Operating Junction Temperature Range -40 to 125 °C Storage Temperature -55 to 150 °C Tj Tstg Digital Analog Warning: Operation at or beyond these limit may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. THERMAL DATA Symbol Rth j-amb Rth j-case Parameter Value Unit Thermal resistance junction to ambient (1) 45 °C/W Thermal resistance junction to ambient (2) 20 °C/W Thermal junction to case (3) 5 °C/W Note: 1. In still air 2. On 4 layers board with soldered slug 3. Measured on top side of the package 2/40 TDA7500A PIN DESCRIPTION N° Name Type Description 1 GND1 Ground pin dedicated to the digital circuitry. 2 VDD1 Supply pin dedicated to the digital circuitry. 3 TESTEN I Test Enable (Input). When low, puts the chip into test mode and muxes the XTI clock to all flip-flops. When TEST_SE is also active, the scan chain shifting is enabled. To be connected to Vdd in operating mode. 4 TESTSE I SCAN Enable (Input). When high with TESTEN also active, controls the shifting of the internal scan chains. When active with TESTEN not active, sets all tri-state outputs into hi-impedance mode. To be connected to GND in operating mode. 5 NRESET I System Reset (Input). A low level applied to NRESET input initializes the IC. 6 SCKM/DSP0_GPIO0 I/O I2C Serial Clock Line (Input/Output)/SPI Bit Clock (Input)/ General Purpose I/O (Input/Output). Clock line for I2C bus. If SPI interface is enabled, behaves as SPI bit clock. Optionally it can be used as general purpose I/O controlled by DSP0. 7 MISOM/DSP0_GPIO1 I/O I2C Serial Data Line (Input/Output)/SPI Master Input Slave Output Serial Data (Input/Output)/General Purpose I/O (Input/ Output). Data line for I2C bus. If SPI is enabled, behaves as Serial Data Input when in SPI Master Mode and Serial Data Output when in SPI Slave Mode. Optionally it can be used as general purpose I/O controlled by DSP0. 8 MOSIM/DSP0_GPIO2 I/O SPI Master Output Slave Input Serial Data (Input/Output)/ General Purpose I/O (Input/Output). Serial Data Output when in SPI Master Mode and Serial Data Input when in SPI Slave Mode. Optionally it can be used as general purpose I/O controlled by DSP0. 9 SSM/DSP0_GPIO3 I SPI Slave Select (Input)/General Purpose I/O (Input/Output). If SPI is enabled, behaves as Slave Select line for SPI bus. Optionally it can be used as general purpose I/O controlled by DSP0. 10 SCKD/DSP0_GPIO4 I SPI Bit Clock (Input)/General Purpose I/O (Input/Output). SPI bit clock. Optionally it can be used as general purpose I/O controlled by DSP0. 11 MISOD/DSP0_GPIO5 I/O SPI Master Input Slave Output Serial Data (Input/Output)/ General Purpose I/O (Input/Output). Behaves as Serial Data Input when in SPI Master Mode and Serial Data Output when in SPI Slave Mode. Optionally it can be used as general purpose I/ O controlled by DSP0. 12 MISOD/DSP0_GPIO6 I/O SPI Master Output Slave Input Serial Data (Input/Output)/ General Purpose I/O (Input/Output). Serial Data Output when in SPI Master Mode and Serial Data Input when in SPI Slave Mode. Optionally it can be used as general purpose I/O controlled by DSP0. 13 SSD/DSP0_GPIO7 I SPI Slave Select (Input)/General Purpose I/O (Input/Output). Behaves as Slave Select line for SPI bus. Optionally it can be used as general purpose I/O controlled by DSP0. 3/40 TDA7500A PIN DESCRIPTION (continued) N° Name Type Description I Clock Input pin (Input). Clock from external digital audio source to synchronize the internal PLL. 14 CLKIN 15 AVDD 16 XTI I Crystal Oscillator Input (Input). External Clock Input or crystal Oscillator input. 17 XTO O Crystal Oscillator Output (Output). Crystal Oscillator output drive. 18 AGND 19 RDSINT/DSP1_GPIO4 O RDS bit/block interrupt (Output)/General Purpose I/O (Input/ Output). Provides an interrupt to the main micro. Optionally it can be used as general purpose I/O controlled by DSP1. 20 RDSARI_SCK/DSP1_GPIO3 O SPI Bit Clock (Input)/ARI indicator (Output)/General Purpose I/O (Input/Output). If SPI interface is enabled, behaves as SPI bit clock. Optionally it provides the ARI indication bit. Optionally it can be used as general purpose I/O controlled by DSP1. 21 RDSQAL_SO/DSP1_GPIO2 O SPI Slave Output Serial Data (Output)/RDS Bit Quality (Output)/ General Purpose I/O (Input/Output). If SPI is enabled, behaves as Serial Data Output. Optionally it provides the RDS serial data quality information. Optionally it can be used as general purpose I/O controlled by DSP1. 22 RDSDAT_SI/DSP1_GPIO1 I SPI Slave Input Serial Data (Input)/RDS Bit Data (Output)/ General Purpose I/O (Input/Output). If SPI is enabled, behaves as Serial Data Input. Optionally it provides the RDS serial data stream. Optionally it can be used as general purpose I/O controlled by DSP1. 23 RDSCLK_SS/DSP1_GPIO0 I SPI Chip Select (Input)/RDS Bit Clock (Output)/General Purpose I/O (Input/Output). If SPI is enabled, behaves as Chip Select line for SPI bus. Optionally it provides the 1187.5Hz RDS Bit Clock. Optionally it can be used as general purpose I/O controlled by DSP1. 24 INT I External interrupt line (Input). When this line is asserted low, the DSP may be interrupted. Acts as IRQA line of DSP0 core. 25 CGND1 Ground pin dedicated to the digital circuitry. 26 CVDD1 Supply pin dedicated to the digital circuitry. 27 SCRCCD I SPDIF Input 1 (Input). Stereo SPDIF input to connect a digital audio source like a CD. 28 SCRMD I SPDIF Input 2 (Input). Stereo SPDIF input to connect a digital audio source like a MD. 29 DSRA<7> I/O DSP SRAM Data Lines<7> (Input/Output). When in SRAM Mode this pin act as the EMI data line 7. 30 DSRA<6> I/O DSP SRAM Data Lines<6> (Input/Output). When in SRAM Mode this pin act as the EMI data line 6. 4/40 Supply pin dedicated to the PLL. Ground pin dedicated to the PLL. TDA7500A PIN DESCRIPTION (continued) N° Name Type Description 31 DSRA<5> I/O DSP SRAM Data Lines<5> (Input/Output). When in SRAM Mode this pin act as the EMI data line 5. 32 DSRA<4> I/O DSP SRAM Data Lines<4> (Input/Output). When in SRAM Mode this pin act as the EMI data line 4. 33 DSRA<3> I/O DSP SRAM Data Lines<3> (Input/Output)/DSP DRAM Data Line<3>(Input/Output). This pin act as the EMI data line 3 in both SRAM Mode and DRAM Mode. 34 DSRA<2> I/O DSP SRAM Data Lines<2> (Input/Output)/DSP DRAM Data Line<2>(Input/Output). This pin act as the EMI data line 2 in both SRAM Mode and DRAM Mode. 35 DSRA<1> I/O DSP SRAM Data Lines<1> (Input/Output)/DSP DRAM Data Line<1>(Input/Output). This pin act as the EMI data line 1 in both SRAM Mode and DRAM Mode. 36 DSRA<0> I/O DSP SRAM Data Lines<0> (Input/Output)/DSP DRAM Data Line<0>(Input/Output). This pin act as the EMI data line 0 in both SRAM Mode and DRAM Mode. 37 SRA<0> O DSP SRAM Address Line<0> (Output)/DSP DRAM Address Line<0> (Output). This pin acts as the EMI address line 0 in both SRAM Mode and DRAM Mode 38 SRA<1> O DSP SRAM Address Line<1> (Output)/DSP DRAM Address Line<1> (Output). This pin acts as the EMI address line 1 in both SRAM Mode and DRAM Mode 39 SRA<2> O DSP SRAM Address Line<2> (Output)/DSP DRAM Address Line<2> (Output). This pin acts as the EMI address line 2 in both SRAM Mode and DRAM Mode 40 SRA<3> O DSP SRAM Address Line<3> (Output)/DSP DRAM Address Line<3> (Output). This pin acts as the EMI address line 3 in both SRAM Mode and DRAM Mode 41 SRA<4> O DSP SRAM Address Line<4> (Output)/DSP DRAM Address Line<4> (Output). This pin acts as the EMI address line 4 in both SRAM Mode and DRAM Mode 42 SRA<5> O DSP SRAM Address Line<5> (Output)/DSP DRAM Address Line<5> (Output). This pin acts as the EMI address line 5 in both SRAM Mode and DRAM Mode 43 SRA<6> O DSP SRAM Address Line<6> (Output)/DSP DRAM Address Line<6> (Output). This pin acts as the EMI address line 6 in both SRAM Mode and DRAM Mode 44 SRA<7> O DSP SRAM Address Line<7> (Output)/DSP DRAM Address Line<7> (Output). This pin acts as the EMI address line 7 in both SRAM Mode and DRAM Mode 45 SRA<8> O DSP SRAM Address Line<8> (Output)/DSP DRAM Address Line<8> (Output). This pin acts as the EMI address line 8 in both SRAM Mode and DRAM Mode 5/40 TDA7500A PIN DESCRIPTION (continued) N° Name Type Description 46 SRA<9> O DSP SRAM Address Line<9> (Output)/DSP DRAM Address Line<9> (Output). This pin acts as the EMI address line 9 in both SRAM Mode and DRAM Mode 47 SRA<10> O DSP SRAM Address Line<10> (Output)/DSP DRAM Address Line<10> (Output). This pin acts as the EMI address line 10 in both SRAM Mode and DRAM Mode 48 SRA<11> O DSP SRAM Address Line<11> (Output)/DSP DRAM Address Line<11> (Output). This pin acts as the EMI address line 11 in both SRAM Mode and DRAM Mode 49 SRA<12> O DSP SRAM Address Line<12> (Output)/DSP DRAM Address Line<12> (Output). This pin acts as the EMI address line 12 in both SRAM Mode and DRAM Mode 50 CGND2 Ground pin dedicated to the digital circuitry. 51 CVDD2 Supply pin dedicated to the digital circuitry. 52 SRA<13> O DSP SRAM Address Line<13> (Output)/DSP DRAM Address Line<13> (Output). This pin act as the EMI address line 13 in both SRAM Mode and DRAM Mode. 53 SRA<14> O DSP SRAM Address Line<14> (Output)/DSP DRAM Address Line<14> (Output). This pin act as the EMI address line 14 in both SRAM Mode and DRAM Mode. 54 SRA<15> O DSP SRAM Address Line<15> (Output)/DSP DRAM Address Line<15> (Output). This pin act as the EMI address line 15 in both SRAM Mode and DRAM Mode. 55 SRA<16>/DSP0_GPIO8 O DSP SRAM Address Line<16> (Output)/DSP DRAM Address Line<16> (Output)/General Purpose I/O (Input/Output). This pin acts as the EMI address line 16 in both SRAM Mode and DRAM Mode. Optionally it can be used as general purpose I/O controlled by DSP0. After reset the state of this pin is read by the boot SW to select the boot mode (Refer to HW/SW maual). 56 DWR O DSP SRAM Write Enable (Output)/DRAM Write Enable (Output). This pin serves as the write enable for the EMI in both DRAM and SRAM Mode (active low). To be connected to R/W of the RAM. 57 DRD O DSP SRAM Read Enable(Output)/DRAM Read Enable (Output). This pin serves as the read enable for the EMI in both DRAM and SRAM Mode (active low). To be connected to R/W of the RAM. 58 CASALE O DSP DRAM Column Address Strobe (Output). When in DRAM Mode this pin acts as the column address strobe. 59 SDO<2>/SRA<17>/DSP1_GPIO<8> O SAI Outputs (Output)/EMI SRAM Address Line<17> (Output)/ General Purpose I/O (Input/Output). One stereo channel SAI data output in SAI mode. EMI address line 17 in SRAM Mode. Optionally it can be used as a general purpose I/O. 6/40 TDA7500A PIN DESCRIPTION (continued) N° Name Type 60 SDO<2>/SRA<18>/DSP1_GPIO<7> O SAI Outputs (Output)/EMI SRAM Address Line<18> (Output)/ General Purpose I/O (Input/Output). One stereo channel SAI data output in SAI mode. EMI address line 18 in SRAM Mode. Optionally it can be used as a general purpose I/O. 61 SDO<0>/SRA<19> O SAI Output (Output)/EMI SRAM Address Line<19> (Output). One stereo channel SAI data output in SAI mode. EMI address line 19 in SRAM Mode. 62 SDI<2>/SRA<20>/DSP1_GPIO<6> I SAI Input (Input)/EMI SRAM Address Line<20> (Output)/ General Purpose I/O (Input/Output). One stereo channel SAI data input in SAI mode. EMI address line 20 in SRAM Mode. Optionally it can be used as a general purpose I/O. 63 SDI<1>/SRA<21>/RAS/DSP1_GPIO<5> I SAI Input (Input)/EMI SRAM Address Line<21> (Output)/DRAM Row Address Strobe (Output)/General Purpose I/O (Input/ Output). One stereo channel SAI data input in SAI mode. EMI address line 21 in SRAM Mode. When in DRAM Mode this pin acts as the row address strobe. Optionally it can be used as a general purpose I/O. 64 SDI<0>/SRCCDC I SAI Input (Input)/SPDIF Input 3 (Input). One stereo channel SAI data input in SAI mode. Stereo SPDIF input intended to connect a digital audio source like a CD changer in SPDIF mode. 65 SCKT I/O SAI transmitter Bit Clock (Input/Output). SAI transmitter bit clock. Master or slave. 66 LRCKT I/O SAI transmitter Left-Right Clock (Input/Output). SAI transmitter Left-Right clock. Can be master or slave mode. 67 SCKR I SAI receiver Bit Clock (Input). SAI receiver bit clock. Slave only. 68 LRCKR I SAI receiver Left-Right Clock (Input/Output). SAI receiver LeftRight clock. Slave only. 69 DBOUT1/DSP1_GPIO10 I/O Debug Port Serial Output (Input/Output)/ General Purpose I/O (Input/Output). The serial data output for the Debug Port. Optionally it can be used as a general purpose I/O. 70 DBIN1/OS10/DSP1_GPIO11 I/O Debug Port Serial Input/Chip Status 0 (Input/Output)/ General Purpose I/O (Input/Output). The serial data input for the Debug Port is provided when an input. When an output, together with OS1 provides information about the chip status. Optionally it can be used as a general purpose I/O. 71 DBCK1/OS11/DSP1_GPIO9 I/O Debug Port Bit Clock/Chip Status 1 (Input/Output)/General Purpose I/O (Input/Output). The serial clock for the Debug Port is provided when an input. When an output, together with OS0 provides information about the chip status. Optionally it can be used as a general purpose I/O. 72 DBRQN1 I Debug Port Request Input (Input). Means of entering the Debug mode of operation. 73 DBOUT0/DSP0_GPIO10 I/O Description Debug Port Serial Output (Input/Output)/ General Purpose I/O (Input/Output). The serial data output for the Debug Port. Optionally it can be used as a general purpose I/O. 7/40 TDA7500A PIN DESCRIPTION (continued) N° Name Type Description 74 DBIN0/OS00/DSP0_GPIO11 I/O Debug Port Serial Input/Chip Status 0 (Input/Output)/ General Purpose I/O (Input/Output). The serial data input for the Debug Port is provided when an input. When an output, together with OS1 provides information about the chip status. Optionally it can be used as a general purpose I/O. 75 DBCK0/OS01/DSP0_GPIO9 I/O Debug Port Bit Clock/Chip Status 1 (Input/Output)/General Purpose I/O (Input/Output). The serial clock for the Debug Port is provided when an input. When an output, together with OS0 provides information about the chip status. Optionally it can be used as a general purpose I/O. 76 DBRQN0 I Debug Port Request Input (Input). Means of entering the Debug mode of operation. 77 VDD2 Supply pin dedicated to the digital circuitry. 78 GND2 Ground pin dedicated to the digital circuitry. 79 ADC<0> I Analog Inputs (Input). Single ended analog signal inputs to the ADC. 80 ADC<1> I Analog Inputs (Input). Single ended analog signal inputs to the ADC. 81 ADC<2> I Analog Inputs (Input). Single ended analog signal inputs to the ADC. 82 ADC<3> I Analog Inputs (Input). Single ended analog signal inputs to the ADC. 83 S2DREF I To be connected to ADCGND 84 ADCVDDREF I Voltage Reference (Input). Analog voltage reference input. Signal is supplied by A354. (typical 3.3V). 85 ADCREF<2> I Voltage Reference (Input). External decoupling of the analog references used for the sigma delta modulator. 86 ADCREF<1> I Voltage Reference (Input). External decoupling of the analog references used for the sigma delta modulator. 87 ADCREF<0> I Voltage Reference (Input). External decoupling of the analog references used for the sigma delta modulator. 88 ADCVDD Analog Supply pin dedicated to the A/D converter. 89 ADCGND Analog Ground pin dedicated to the A/D converter. 90 DAC<0> O Analog Outputs (Output). Analog signal outputs of the DAC 91 DAC<1> O Analog Outputs (Output). Analog signal outputs of the DAC 92 DAC<2> O Analog Outputs (Output). Analog signal outputs of the DAC 93 DAC<3> O Analog Outputs (Output). Analog signal outputs of the DAC 94 DAC<4> O Analog Outputs (Output). Analog signal outputs of the DAC 95 DAC<5> O Analog Outputs (Output). Analog signal outputs of the DAC 8/40 TDA7500A PIN DESCRIPTION (continued) N° Name Type Description 96 DACREF<2> I Voltage Reference (Input). External decoupling of the analog references of the CODEC and voltage biasing. 97 DACREF<1> I Voltage Reference (Input). It can be connected to pin 100. 98 DACREF<0> I Voltage Reference (Input). External decoupling of the analog references of the CODEC and voltage biasing. 99 DACGND Analog Ground pin dedicated to the D/A converter. 100 DACVDD Analog Supply pin dedicated to the D/A converter. I/O DEFINITION AND STATUS O: logic low output X: undefined input/output Z: high impedance 1: logic input output Pin # Function Reset State After Boot SPI I2C I/O Comments EMI 1 GND1 supply 2 VDD1 supply To be connected to VDD 3 TESTEN X X X X input To be connected to GND 4 TESTSE X X X X input Ext. Pulldown 5 NRESET X X X X input 5VT 6 MSPI: SCKM input MSPI: SCKM output I2C: SCL bi-direct DSP0: GPIO0 input DSP0: GPIO0 output (1) (1) input 5VT (1) undefined output 4mA PP input input 5VT/output 4mA OD input 5VT output 4mA OD X X X X X X X X X X 7 8 9 10 MSPI: MISOM input MSPI: MISOM output I2C: SDA bi-direct DSP0: GPIO1 input DSP0: GPIO1 output MSPI: MOSIM input MSPI: MOSIM output DSP0: GPIO2 input DSP0: GPIO2 output MSPI: SSM input DSP0: GPIO3 input DSP0: GPIO3 output DSPI: SCKD input DSPI: SCKD output DSP0: GPIO4 input DSP0: GPIO4 output X X 0 or 1 X X X X X X X input 5VT output 4mA OD input 5VT/output 4mA OD input 5VT output 4mA PP input 5VT output 4mA OD input 5VT output 4mA OD input 5VT input 5VT output 4mA PP input 5VT output 4mA PP input 5VT output 4mA PP 9/40 TDA7500A I/O DEFINITION AND STATUS (continued) Pin # 11 12 Function DSPI: MISOD input DSPI: MISOD output DSP0: GPIO5 input DSP0: GPIO5 output DSPI: MOSID input DSPI: MOSID output DSP0: GPIO6 input DSP0: GPIO6 output Reset State After Boot I/O SPI I2C EMI X X X X X X input 5VT output 4mA OD input 5VT output 4mA OD X X X input 5VT input 5VT output 4mA PP X X X input X X input 5VT output 4mA OD input 5VT output 4mA OD 13 DSPI: SSD input DSP0 : GPIO7 input DSP0 : GPIO7 output 14 PLL: CLKIN input 15 PLL: AVDD 16 PLL: XTI input X X X X analog input 17 PLL: XTO output X X X X analog output 18 PLL: AGND 19 RDS: RDSINT output DSP1: GPIO4 input DSP1: GPIO4 output 20 21 22 23 RDS: RDSARI output RDS SPI: SCK input DSP1: GPIO3 input DSP1: GPIO3 output RDS: RDSQAL output RDS SPI: SO input DSP1: GPIO2 input DSP1: GPIO2 output RDS: RDSDAT output RDS SPI: SI input DSP1: GPIO1 input DSP1: GPIO1 output RDS: RDSCLK output RDS SPI: SS input DSP1: GPIO0 input DSP1: GPIO0 output X supply max. 20 MHz supply X X X X X X X X X X X X X X X X X X X X X X X X output 4mA PP onput 5VT output 4mA PP output 4mA PP input 5VT input 5VT output 4mA PP output 4mA OD output 4mA OD input 5VT output 4mA OD output 4mA PP input 5VT input 5VT output 4mA PP output 4mA PP input 5VT input 5VT output 4mA PP 24 INT input 25 CGND1 supply 26 CVDD1 supply 27 SCRCCD input X X X X input 5VT 28 SCRCMD input X X X X input 5VT 29 EMI SRAM: Data<7> bi-direct 1 1 1 Z input/output 2mA PP 10/40 Comments input 5VT Ext. Pullup TDA7500A I/O DEFINITION AND STATUS (continued) Pin # Function 30 After Boot Reset State SPI I2C EMI EMI SRAM: Data<6> bi-direct 1 1 1 Z input/output 2mA PP 31 EMI SRAM: Data<5> bi-direct 1 1 1 Z input/output 2mA PP 32 EMI SRAM: Data<4> bi-direct 1 1 1 Z input/output 2mA PP 33 EMI SRAM: Data<3> bi-direct EMI SRAM: Data<3> bi-direct 1 1 1 Z input/output 2mA PP 34 EMI SRAM: Data<2> bi-direct EMI SRAM: Data<2> bi-direct 1 1 1 Z input/output 2mA PP 35 EMI SRAM: Data<1> bi-direct EMI SRAM: Data<1> bi-direct 1 1 1 Z input/output 2mA PP 36 EMI SRAM: Data<0> bi-direct EMI SRAM: Data<0> bi-direct 1 1 1 Z input/output 2mA PP 37 EMI SRAM: Add<0> output EMI SRAM: Add<0> output 1 1 1 0/1 output 2mA PP output 2mA PP 38 EMI SRAM: Add<1> output EMI SRAM: Add<1> output 1 1 1 0/1 output 2mA PP output 2mA PP 39 EMI SRAM: Add<2> output EMI SRAM: Add<2> output 1 1 1 0/1 output 2mA PP output 2mA PP 40 EMI SRAM: Add<3> output EMI SRAM: Add<3> output 1 1 1 0/1 output 2mA PP output 2mA PP 41 EMI SRAM: Add<4> output EMI SRAM: Add<4> output 1 1 1 0/1 output 2mA PP output 2mA PP 42 EMI SRAM: Add<5> output EMI SRAM: Add<5> output 1 1 1 0/1 output 2mA PP output 2mA PP 43 EMI SRAM: Add<6> output EMI SRAM: Add<6> output 1 1 1 0/1 output 2mA PP output 2mA PP 44 EMI SRAM: Add<7> output EMI SRAM: Add<7> output 1 1 1 0/1 output 2mA PP output 2mA PP 45 EMI SRAM: Add<8> output EMI SRAM: Add<8> output 1 1 1 0/1 output 2mA PP output 2mA PP 46 EMI SRAM: Add<9> output EMI SRAM: Add<9> output 1 1 1 0/1 output 2mA PP output 2mA PP 47 EMI SRAM: Add<10> output EMI SRAM: Add<10> output 1 1 1 0/1 output 2mA PP output 2mA PP 48 EMI SRAM: Add<11> output EMI SRAM: Add<11> output 1 1 1 0/1 output 2mA PP output 2mA PP 49 EMI SRAM: Add<12> output EMI SRAM: Add<12> output 1 1 1 0/1 output 2mA PP output 2mA PP 50 CGND2 supply 51 CVDD2 supply I/O Comments 11/40 TDA7500A I/O DEFINITION AND STATUS (continued) Pin # Function After Boot Reset State SPI I2C EMI I/O 52 EMI SRAM: Add<13> output EMI SRAM: Add<13> output 1 1 1 0/1 output 2mA PP output 2mA PP 53 EMI SRAM: Add<14> output EMI SRAM: Add<14> output 1 1 1 0/1 output 2mA PP output 2mA PP 54 EMI SRAM: Add<15> output EMI SRAM: Add<15> output 1 1 1 0/1 output 2mA PP output 2mA PP 55 EMI SRAM: Add<16> output EMI SRAM: Add<16> output DSP0:GPIO8 input DSP0: GPIO8 output X X X X output 2mA PP output 2mA PP input output 2mA PP 56 EMI SRAM: WR output EMI DRAM: WR output 1 1 1 1 output 2mA PP output 2mA PP 57 EMI SRAM: RD output EMI DRAM: RD output 1 1 1 1 output 2mA PP output 2mA PP 58 EMI SRAM: ALE output EMI DRAM: CAS output 1 1 1 0 output 2mA PP output 2mA PP 59 SAI: SDO2 output EMI SRAM: Add<17>output DSP1: GPIO8 input DSP1: GPIO8 output 60 SAI: SDO1 output EMI SRAM: Add<18>output DSP1: GPIO7 input DSP1: GPIO7 output 61 SAI: SDO0 output EMI SRAM: Add<19> output 62 SAI:SDI2 input EMI SRAM: Add<20> output DSP1: GPIO6 input DSP1: GPIO6 output 63 SAI:SDI2 input EMI SRAM: Add<21> output EMI DRAM: RAS output DSP1: GPIO5 input DSP1: GPIO5 output X X X X X X X X 1 1 1 1 X X X X X X X X output 2mA PP output 2mA PP input output 2mA PP output 2mA PP output 2mA PP input output 2mA PP output 2mA PP output 2mA PP input output 2mA PP input output 2mA PP input output 2mA PP output 2mA PP input output 2mA PP 64 SAI: SDI0 input SPDIF: CD input X X X X input input 65 SAI: SCKT input SAI: SCKT output X X X X input output 2mA PP 66 SAI: LRCKT input SAI: LRCKT output X X X X input output 2mA PP 67 SAI: SCKR input X X X X input 68 SAI: LRCKR input X X X X input 12/40 Comments TDA7500A I/O DEFINITION AND STATUS (continued) Pin # 69 70 71 Function DSP1 Debug: DBOUT output DSP1: GPIO10 input DSP1: GPIO10 output DSP1 Debug: DBIN input DSP1 : OS10 output DSP1: GPIO11 input DSP1: GPIO11 output DSP1 Debug: DBCK input DSP1 : OS11 output DSP1: GPIO9 input DSP1: GPIO9 output Reset State 73 DSP0 Debug: DBOUT output DSP0: GPIO10 input DSP0: GPIO10 output X 75 DSP0 Debug: DBCK input DSP0 : OS01 output DSP0: GPIO9 input DSP0: GPIO9 output EMI 1 1 1 output 4mA PP input 5VT output 4mA PP After boot in debug mode X X X input 5VT output 4mA PP input 5VT output 4mA PP After boot in debug mode X X X input 5VT output 4mA PP input 5VT output 4mA PP After boot in debug mode X X X input 5VT After boot in debug mode 1 1 1 output 4mA PP input 5VT output 4mA PP After boot in debug mode X X X input 5VT output 4mA PP input 5VT output 4mA PP After boot in debug mode X X X input 5VT output 4mA PP input 5VT output 4mA PP After boot in debug mode X X X input 5VT X X X X X Comments I2C X DSP1 Debug: DBRQN input DSP0 Debug: DBIN input DSP0 : OS00 output DSP0: GPIO11 input DSP0: GPIO11 output I/O SPI X 72 74 After Boot 76 DSP0 Debug: DBRQN input 77 GND2 supply 78 VDD2 supply 79 ADC<0>input X X X X analog input 80 ADC<1>input X X X X analog input 81 ADC<2>input X X X X analog input 82 ADC<3>input X X X X analog input 83 ADC: S2DREF input Substrate biasing connected to GND 84 ADC: ADCVDDREF input voltage reference connect 47µF electolytic and 100nF Ceramic parallel to ADCGND 85 ADC: REF<2> input voltage reference connect 100µF electolytic and 100nF Ceramic parallel to ADCGND 13/40 TDA7500A I/O DEFINITION AND STATUS (continued) After Boot Pin # Function 86 ADC: REF<1> input voltage reference connect 47µF electolytic and 100nF Ceramic parallel to ADCGND 87 ADC: REF<0> input voltage reference connect 47µF electolytic and 100nF Ceramic parallel to ADCGND 88 ADCVDD ADC power supply 89 ADCGND ADC ground 90 DAC<0> output X X X X analog output 91 DAC<1> output X X X X analog output 92 DAC<2> output X X X X analog output 93 DAC<3> output X X X X analog output 94 DAC<4> output X X X X analog output 95 DAC<5> output X X X X analog output 96 DAC: REF<2> input voltage reference connect 47µF electolytic and 100nF Ceramic parallel to DACGND 97 DAC: REF<1> input voltage reference connect 47µF electolytic and 100nF Ceramic parallel to DACGND (It can be connected to Pin100) 98 DAC: REF<0> input voltage reference connect to DACGND (It can be connected to Pin99) 99 DACGND DAC ground 100 DACVDD DAC power supply Reset State SPI I2C I/O Output PP: Push-Pull/ OD: Open-Drain 5VT input: TTL Five Volt Tolerant Input - Schmitt-trigger for all inputs. 14/40 Comments EMI TDA7500A RDSQAL_SO RDSDAT_SI RDSCLK_SS OD OD OD OD OD 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 77 76 ADC1 ADC0 GND2 VDD2 DBRQN0 S2DREF ADC3 ADC2 85 84 83 82 81 80 79 78 ADCVDD ADCREF0 ADCREF1 ADCREF2 ADCVDDREF DAC1 DAC0 ADCGND Test Debug DSP1 IIC/SPI master SAI SPI display PLL oscillator EMI RDS OD: 5V tolerant Open Drain Output SPDIF 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 SPDIF 60 59 58 57 56 55 54 53 52 51 EMI DBCK0OS01 DBIN0OS00 DBOUT0 DBRQN1 DBCK1_OS11 DBIN1_OS10 DBOUT1 LRCKR SCKR LRCKT SCKT SDI0 DSP0 GPIO9 DSP0 GPIO11 DSP0 GPIO10 DSP1 GPIO9 DSP1 GPIO11 DSP1 GPIO10 SRCCDC SDI1/SRA<21>/RAS DSP1 GPIO5 SDI2 / SRA<20> DSP1 GPIO6 SDO0 / SRA<19> SDO1 / SRA<18> DSP1 GPIO7 SDO2 / SRA<17> DSP1 GPIO8 CASALE DRD DWR SRA<16> SRA<15> SRA<14> SRA<13> CVDD2 DSP0 GPIO8 CVDD1 SCRCCD SCRCMD DSRA<7> DSRA<6> DSRA<5> DSRA<4> DSRA<3> DSRA<2> DSRA<1> DSRA<0> SRA<0> SRA<1> SRA<2> SRA<3> SRA<4> SRA<5> SRA<6> SRA<7> SRA<8> SRA<9> SRA<10> SRA<11> SRA<12> CGND2 26 27 28 29 30 31 32 33 34 35 INT CGND1 4 5 Debug DSP0 46 47 48 49 50 DSP1 GPIO2 DSP1 GPIO1 DSP1 GPIO0 CODEC 2 3 40 41 42 43 44 45 DSP1 GPIO4 DSP1 GPIO3 MISOD MOSID SSD CLKIN AVDD XTI XTO AGND RDSINT RDSARI_SCK 1 36 37 38 39 DSP0 GPIO0 DSP0 GPIO1 DSP0 GPIO2 DSP0 GPIO3 DSP0 GPIO4 DSP0 GPIO5 DSP0 GPIO6 DSP0 GPIO7 GND1 VDD1 TESTEN TESTSE NRESET SCKM MISOM MOSIM SSM SCKD 97 96 95 94 93 92 91 90 89 88 87 86 DACGND DACREF0 DACREF1 DACREF2 DAC5 DAC4 DAC3 DAC2 100 99 98 DACVDD PIN CONNECTION (Top view) RECOMMENDED DC OPERATING CONDITIONS Symbol Parameter VDD VCC Test Condition Min. Typ. Max. Unit 3.3V Digital Power Supply Voltage 3.15 3.3 3.45 V 3.3V Analog Power Supply Voltage 3.15 3.3 3.45 V Min. Typ. Max. Unit 450 490 mA Typ. Max. Unit 3 ms 140 MHz POWER CONSUMPTION Symbol Idd Parameter Total Maximum Current Test Condition power supply @ 3.3V and Tj = 125°C Note: 45MHz internal DSP clock, 4ADC and 6DAC enabled. PLL CHARACTERISTICS Symbol Parameter Lock Time (note1) FVCO VCO Frequency (note 2) Test Condition Min. power supply @ 3.3V and Tj = 125°C 70 Note: 1. Depending on VCO output frequency. 2. Fdsp = Fvco/2 when PLL is running 15/40 TDA7500A OSCILLATOR CHARACTERISTICS Symbol FOSC Parameter Max Oscillator Frequency (XTI) Test Condition Min. Typ. power supply @ 3.3V and Tj = 125°C Max. Unit 20 MHz Max. Unit GENERAL INTERFACE ELECTRICAL CHARACTERISTICS Symbol Parameter Test Condition Min. Typ. lil Low Level Input Current without pullup device Vi = 0V (note 1) 1 µA lih High Level Input Current without pullup device Vi = Vdd (note 1) 1 µA Ioz Tri-state Output leakage without pull up/down device Vo = 0V or Vdd (note 1) 1 µA 5V Tolerant Tri-state Output leakage without pull up/down device Vo = 0V or Vdd (note 1) 1 µA Vo = 5.5V 3 µA I/O latch-up current V < 0V, V > Vdd 200 mA Electrostatic Protection Leakage , 1µA (note 2) 2000 V IozFT Ilatchup Vesd 1 Note: 1. The leakage currents are generally very small, <1nA. The value given here, 1mA, ia amaximum that can occur after an Electrostatic Stress on the pin. 2. Human Body Model. LOW VOLTAGE CMOS INTERFACE DC ELECTRICAL CHARACTERISTICS Symbol Parameter Test Condition Min. Typ. Max. Unit 0.2*Vdd V Vil Low Level Input Voltage Vih High Level Input Voltage 0.8*Vdd V Vhyst Schmitt trigger hysteresis 0.8 V Vol Low level output Voltage Voh High level output Voltage Iol = XmA (notes 1, 2) 0.4 0.85*Vdd V V Note: 1. Takes into account 200mV voltage drop in both supply lines. 2. X is the source/sink current under worst case conditions and is reflected in the name of the I/O cell according to the drive capability. LOW VOLTAGE TTL INTERFACE DC ELECTRICAL CHARACTERISTICS Symbol Parameter Test Condition Min. Typ. Max. Unit 0.8 V Vil Low Level Input Voltage (note 1) Vih High Level Input Voltage (note 1) 2 Vilhyst Low level threshold input falling (note 1) 0.9 1.35 V Vihhyst Low level threshold input falling (note 1) 1.3 1.9 V Vhyst Schmitt trigger hysteresis (note 1) 0.4 0.7 V Vol Low level output Voltage Iol = XmA (notes 1, 2 & 3) 0.4 V Voh High level output Voltage 2.4 V V Note: 1. TTL specifications only apply to the supply voltage range Vdd = 3.0V to 3.6V 2. Takes into account 200mV voltage drop in both supply lines. 3. X is the source/sink current under worst case conditions and is reflected in the name of the I/O cell according to the drive capability. 16/40 TDA7500A DSP CORE Symbol Fdsp Parameter Maximum DSP clock frequency Test Condition Min. power supply @ 3.3V and Tj = 125°C 48 Test Condition Min. Typ. Max. Unit MHz FM Stereo Decoder Symbol Parameter Typ. Max. Unit a_ch Channel Separation >50 dB THD Total Harmonic Distortion 0.02 % 86 dB (S+N)/N Signal plus Noise to Noise ratio ADC ELECTRICAL CHARACTERISTCS (Tamb = 25°C, VCC = 3.3V, measurement bandwidth 10Hz to 20KHz, A-Weighted Filter.) Symbol Parameter Test Condition Min. Input Voltage Dynamic Range Sampling rate Audio mode Attenuation @ 20KHz @ fs = 44.1KHz Dynamic Range -60dB analog input SNR 1KHz; -3dB analog input (THD + N) -3dB analog input (note 1) Input Impedance @ fs = 44.1KHz Crosstalk 1Vrms input @ 1KHz Gain mismatch between four input @ 1KHz Typ. Max. Unit 0.75 0.8 Vrms 48 KHz -0.6 dB 84 88 dB 84 88 dB 40 -85 -80 dB 55 75 kΩ -85 dB 0.5 dB -0.5 Note1: 0dB reference at 0.75Vrms input ADC ELECTRICAL CHARACTERISTCS (Tamb = 25°C, VCC = 3.3V, measurement bandwidth 10Hz to 53KHz.) Symbol Parameter Test Condition Min. Input Voltage Dynamic Range Typ. Max. Unit 0.75 0.8 Vrms 192 KHz Sampling rate AM-Mode Dynamic Range -60dB analog input 80 dB SNR 1KHz; -3dB analog input 80 dB (THD +N) -3dB analog input -80 dB 17/40 TDA7500A ADC ELECTRICAL CHARACTERISTCS (Tamb = 25°C, VCC = 3.3V, measurement bandwidth 10Hz to 160KHz.) Symbol Parameter Test Condition Min. Input Voltage Dynamic Range Typ. Max. Unit 0.75 0.8 Vrms 390 KHz Sampling rate FM-Mode Dynamic Range -60dB analog input 60 dB SNR 1KHz; -3dB analog input 60 dB DAC PERFORMANCE (Tamb = 25°C, VCC = 3.3V, measurement bandwidth 10Hz to 20KHz, A-Weighted Filter 0dB gain, output load 30kΩ) Symbol Parameter Test Condition Output voltage dynamic range Min. Typ. Max. Unit 0.87 0.9 0.93 Vrms 48 KHz Sampling rate Attenuation @ 20kHz @ 20KHz with fs = 44.1KHz -0.3 -0.2 dB Dynamic Range -60dB analog input 90 93 dB SNR 1KHz -3dB analog output 90 93 dB Digital Silence 0000hex digital input 93 dB (THD + N)/S @ digital full scale -85 -83 dB 25 50 Ω -90 -86 dB 0.5 dB Output Impedance 18/40 Crosstalk 1Vrms output @ 1KHz Gain mismatch between six outputs @ 1KHz -0.5 TDA7500A SAI INTERFACE Figure 1. SAI Timings SDI0-3 Valid LRCKR Valid t lrh SCKR (RCKP=0) t sckph t sckpl tsdih tlrs tsdis tdt Timing tsckr t sckr Description Minimum Clock Cycle Value Unit 4TDSP ns 10 ns tdt SCKR active edge to data out valid tlrs LRCK setup time 5 ns tlrh LRCK hold time 5 ns tsdid SDI setup time 15 ns tsdih SDI hold time 15 ns tsckph Minimum SCK high time 0.35 tsckr ns tsckpl Minimum SCK low time 0.35 tsckr ns Note T DSP = dsp master clock cycle time = 1/FDSP Figure 2. SAI protocol when RLRS=0; RREL=0; RCKP=1; RDIR=0 LRCKR (#68) LEFT RIGHT SCKR (#67) LSB(n-1) MSB(word n) MSB-1 (n) MSB-2 (n) SDI0,1,2 (#62, #63, #64) 19/40 TDA7500A Figure 3. SAI protocol when RLRS=1; RREL=0; RCKP=1; RDIR=1. Figure 4. SAI protocol when RLRS=0; RREL=0; RCKP=0; RDIR=0. Figure 5. SAI protocol when RLRS=0; RREL=1; RCKP=1; RDIR=0. 20/40 TDA7500A SPI INTERFACES 10 WORDS MAIN MICRO SPI Symbol Description Min Value Unit 12TDSP ns MASTER tsclk Clock Cycle tdtr Sclk edge to MOSI valid 40 ns tmisosetup MISO setup time 16 ns tmisohold MISO hold time 4 ns tsclkh SCK high time 0.5tsclk ns tsclkl SCK high low 0.5tsclk ns 12TDSP ns SLAVE tsclk Clock Cycle tdtr Sclk edge to MOSI valid 40 ns tmosisetup MOSI setup time 16 ns tmosihold MOSI hold time 4 ns tsclkh SCK high time 0.5tsclk ns tsclkl SCK high low 0.5tsclk ns 6TDSP ns 6TDSP ns DISPLAY SPI (different timings) MASTER tsclk Clock Cycle SLAVE tsclk Clock Cycle Figure 6. SPI Clocking scheme. SSM, SSD (#9, #13) SCLKD, SCLKM (#6, #10) (CPOL=0, CPHA=0) SCLKD, SCLKM (#6, #10) (CPOL=0, CPHA=1) SCLKD, SCLKM (#6, #10) (CPOL=1, CPHA=0) SCLKD, SCLKM (#6, #10) (CPOL=1, CPHA=1) MISOM, MOSIM (#7, #8) MISOD, MOSID (#11, #12) MSB 6 5 4 3 2 1 LSB Internal Strobe for Data Capture 21/40 TDA7500A Debug Port Interface dclk = 40MHz No. Characteristics Unit Min. Max. 1 DBCK rise time -- 3 ns 2 DBCK fall time -- 3 ns 3 DBCK Low 40 -- ns 4 DBCK High 40 -- ns 5 DBCK Cycle Time 200 -- ns 6 DBRQN Asserted to DBOUT (ACK) Asserted 5 TDSP -- ns 7 DBCK High to DBOUT Valid -- 42 ns 8 DBCK High to DBOUT Invalid 3 -- ns 9 DBIN Valid to DBCK Low (Set-up) 15 -- ns 10 DBCK Low to DBIN Invalid (Hold) 3 -- ns 2 Tc -- ns DBOUT (ACK) Assertion Width 4.5 TDSP - 3 5 TDSP + 7 ns 11 Last DBCK Low of Read Register to First DBCK High of Next Command 7 TDSP + 10 -- ns 12 Last DBCK Low to DBOUT Invalid (Hold) 3 -- ns DBOUT (ACK) Asserted to First DBCK High DBSEL setup to DBCK Figure 7. Debug Port Serial Clock Timing. Figure 8. Debug Port Acknowledge Timing. 22/40 TDSP ns TDA7500A Figure 9. Debug Port Data I/O to Status Timing. Figure 10. Debug Port Read Timing. Figure 11. Debug Port DBCK Next Command After Read Register Timing. 23/40 TDA7500A EXTERNAL MEMORY INTERFACE (EMI) DRAM MODE Characteristics Timing Mode 40MHz Unit Min. Max. Page Mode Cycle Time slow fast 10075 ---- ns ns RAS or RD Assertion to Data Valid slow fast --- 159 109 ns ns CAS Assertion to Data Valid slow fast --- 65 40 ns ns Column Address Valid to Data Valid slow fast --- 80 55 ns ns 0 -- ns slow 264 -- ns fast 189 -- ns RAS Assertion Pulse Width (Single Access Only) slow fast 164 114 --- ns ns RAS or CAS Negation to RAS Assertion slow fast 120 70 --- ns ns CAS Assertion Pulse Width slow fast 65 40 --- ns ns Last CAS Assertion to RAS Negation (Page Mode Access Only) slow fast 60 35 --- ns ns CAS Assertion to Data Active RAS Assertion Pulse Width (Note 1) (Page Mode Access Only) Note: 1. n is the number of successive accesses. n = 2, 3, 4, or 6. DRAM Refresh Timing 40MHz Timing Mode Min. Max. RAS Negation to RAS Assertion slow fast 143 93 --- ns ns CAS Negation to CAS Assertion slow fast 118 68 --- ns ns Refresh Cycle Time slow fast 325 225 --- ns ns RAS Assertion Pulse Width slowf ast 166 116 --- ns ns RAS Negation to RAS Assertion for Refresh Cycle (Note 1) slow fast 120 70 --- ns ns 18 -- ns Characteristics CAS Assertion to RAS Assertion on Refresh Cycle Unit RAS Assertion to CAS Negation on Refresh Cycle slow fast 160 110 --- ns ns RAS Negation to CAS Assertion on a Refresh Cycle slow fast 114 64 --- ns ns 0 -- ns CAS Negation to Data Not Valid Note: 1. Happens when a Refresh Cycle is followed by an Access Cycle. 24/40 TDA7500A EXTERNAL MEMORY INTERFACE (EMI) SRAM MODE 40MHz Characteristics Unit Min. Max. Address Valid and CS Assertion Pulse Width 89 -- ns Address Valid to RD or WR Assertion 23 -- ns RD or WR Assertion Pulse Width 45 -- ns RD or WR Negation to RD or WR Assertion 39 -- ns RD or WR Negation to Address not Valid 5 -- ns Address Valid to Input Data Valid -- 72 ns RD Assertion to Input Data Valid -- 35 ns RD Negation to Data Not Valid (Data Hold Time) 0 -- ns Address Valid to WR Negation 73 -- ns Data Setup Time to WR Negation 32 -- ns Data Hold Time from WR Negation 5 -- ns WR Assertion to Data Valid -- 18 ns WR Negation to Data High-Z (Note 1) -- 23 ns WR Assertion to Data Active 5 -- ns Figure 12. External Memory Interface SRAM Read Cycle. SRA_D [7:0] data add. [7:0] SRA_D add. [13:8] [13:8] ALE DRD Figure 13. External Memory Interface SRAM Write Cycle. SRA [7:0] add. [7:0] data SRA [13:8] add. [13:8] ALE DWR 25/40 TDA7500A Figure 14. DRAM Read Cycle. DRA [8:0] Row address 1 Column address 1 Column address 2 Row address 2 RAS CAS DRD nibble 1 nibble 2 DRD [3:0] Figure 15. DRAM Write Cycle. DRA [8:0] Row address 1 Column address 1 Column address 2 RAS CAS DWR nibble 1 DRD[3:0] 26/40 nibble 2 Row address 2 TDA7500A SAMPLE RATE CONVERTER Fsin/Fsout = 1 (44.1KHz) Symbol THD+N DR IPD Parameter Total Harmonic Distortion + Noise Dynamic Range Test Condition Min. Typ. Max. Unit 20Hz to 20kHz, Full Scale, 16 bit inp. -98 dB 20Hz to 20kHz, Full Scale, 20 bit inp. -101 dB 1 kHz Full Scale, 16 bit inp. -98 dB 10 kHz Full Scale, 16 bit inp. -98 dB 1 kHz Full Scale, 20 bit inp. -109 dB 10 kHz Full Scale, 20 bit inp -102 dB 1 kHz -60 dB - 16 bit inp.,A-Weighted 98 dB 1 kHz -60 dB - 20 bit inp.,A-Weighted 120 dB Interchannel Phase Deviation 0 fc Cutoff Frequency @ -3 dB Rp Pass Band Ripple from 0 to 20kHz Rs Stopband Attenuation @24.1kHz -105 dB Tg Group Delay Fsout = 44.1 kHz 612 µs Fratio 20 Degree Fsin / Fsout -0.05 Hz +0.05 0.7 dB 1.05 RDS TIMING Symbol Fcrystal Parameter Crystal Frequency tbclk RDS SPI Bit Clock tdis SPI Disable time between 2 transfers Test Condition Min. Typ. Max. Unit First mode - 8.55 - MHz Second mode - 8.664 - MHz 3TDSP - - ns 3TDSP - - ns (TDSP is the period of the dsp core) The RDS block adhere to the timings defined by the RDS standard EN50067. More information are also available in the dedicated Appllication Note. 27/40 TDA7500A I2C TIMING Figure 16. Definition of Timing for the I2C BUS. Symbol Parameter Test Condition Standard Mode I2C BUS Fast Mode I2C BUS Unit Min. Max. Min. Max. 0 100 0 400 kHz FSCL SCLl clock frequency tBUF Bus free between a STOP and Start Condition 4.7 – 1.3 – µs tHD:STA Hold time (repeated) START condition. After this period, the first clock pulse is generated 4.0 – 0.6 – µs tLOW LOW period of the SCL clock 4.7 – 1.3 – µs tHIGH HIGH period of the SCL clock 4.0 – 0.6 – µs tSU:STA Set-up time for a repeated start condition 4.7 – 0.6 – µs tHD:DAT DATA hold time 0 – 0 0.9 µs tR Rise time of both SDA and SCL signals Cb in pF – 1000 20+ 0.1Cb 300 ns tF Fall time of both SDA and SCL signals Cb in pF – 300 20+ 0.1Cb 300 ns tSU;STO Set-up time for STOP condition 4 – 0.6 – µs tSU:DAT Data set-up time 250 -- -- 100 ns – 400 – 400 pF Min. Typ. Max. Unit 0.2 0.5 3.3 Vpp – 6 – kΩ – 40 – mV Cb Capacitive load for each bus line SPDIF TIMING Symbol Parameter SPVL AC input level SPIR Input impedance SPHYS 28/40 Hysteresis of input Test Condition @ 1 kHz TDA7500A FUNCTIONAL DESCRIPTION The TDA7500A IC broken up into two distinct blocks. One block contains the two DSP Cores and their associated peripherals. The other contains the ADC, DAC and the RDS filter, demodulator and decoder. 24-BIT DSP CORE The two DSP cores are used to process the audio and FM/AM data, coming from the ADC, either any kind of digital data coming via SPDIF or SAI. After the digital signal processing these data are sent to the DAC for analog conversion. Functions such as volume, tone, balance, and fader control, as well as spatial enhancement and general purpose signal processing may be performed by the DSP0. When FM/AM mode is selected, DSP1 is fully devoted to AM/FM processing. Nevertheless it can be used for any kind of different application, when a different input source is selected. Some capabilities of the DSPs are listed below: ■ Single cycle multiply and accumulate with convergent rounding and condition code generation ■ 2 x 56-bit Accumulators ■ Double precision multiply ■ Scaling and saturation arithmetic ■ 48-bit or 2 x 24-bit parallel moves ■ 64 interrupt vector locations ■ Fast or long interrupts possible ■ Programmable interrupt priorities and masking ■ 8 each of Address Registers, Address Offset Registers and Address Modulo Registers ■ Linear, Reverse Carry, Multiple Buffer Modulo, Multiple Wrap-around Modulo address arithmetic ■ Post-increment or decrement by 1 or by offset, Index by offset, predecrement address ■ Repeat instruction and zero overhead DO loops ■ Hardware stack capable of nesting combinations of 7 DO loops or 15 interrupts/subroutines ■ Bit manipulation instructions possible on all registers and memory locations, also Jump on bit test ■ 4 pin serial debug interface ■ Debug ccess to all internal registers, buses and memory locations ■ 5 word deep program address history FIFO ■ Hardware and software breakpoints for both program and data memory accesses ■ Debug Single stepping, Instruction injection and Disassembly of program memory DSP PERIPHERALS There are a number of peripherals that are tightly coupled to the two DSP Cores. Same of the peripherals are connected to DSP 0 others are connected to DSP1. ■ 5.5k x 24-Bit Program RAM for DSP0 ■ 1k x 24-Bit X-Data RAM for DSP0 ■ 1k x 24-Bit Y-Data RAM for DSP0 ■ 2k x 24-Bit Program RAM for DSP1 ■ 1k x 24-Bit X-Data RAM for DSP1 ■ 1k x 24-Bit Y-Data RAM for DSP1 ■ Serial Audio Interface (SAI) ■ SPDIF receiver with sampling rate conversion 29/40 TDA7500A ■ I2C and SPI interface ■ XCHG Interface for DSP to DSP communication ■ External Memory Interface (DRAM/SRAM) for time-delay and traffic information ■ Double Debug Port DATA AND PROGRAM MEMORY Both DSP0 and DSP1 have Data and Program memories attached to them. Each of the memories are described below and it is implied that there are two of each type, one set connected to DSP0 and the other to DSP1. The only exception is the case of the P-RAM where DSP1 has a 2048 x 24-Bit PRAM and DSP0 has a 5.5K x 24Bit PRAM. 1024 x 24-Bit X-RAM (XRAM) This is a 1024 x 24-Bit Single Port SRAM used for storing coefficients. The 16-Bit XRAM address, XABx(15:0) is generated by the Address Generation Unit of the DSP core. The 24-Bit XRAM Data, XDBx(23:0), may be written to and read from the Data ALU of the DSP core. The XDBx Bus is also connected to the Internal Bus Switch so that it can be routed to and from all peripheral blocks. 1024 x 24 Bit Y-RAM (YRAM) This is a 512 x 24-Bit Single Port SRAM used for storing coefficients. The 16-Bit address, YABx(15:0) is generated by the Address Generation Unit of the DSP core. The 24-Bit Data, YDBx(23:0), is written to and read from the Data ALU of the DSP core. The YDBx Bus is also connected to the Internal Bus Switch so that it can be routed to and from other blocks. 2048 x 24-Bit Program RAM (PRAM 5.5K x 24-bit for DSP0) This is a 2048 x 24-Bit Single Port SRAM used for storing and executing program code. The 16-Bit PRAM Address, PABx(15:0) is generated by the Program Address Generator of the DSP core for Instruction Fetching, and by the AGU in the case of the Move Program Memory (MOVEM) Instruction. The 24-Bit PRAM Data (Program Code), PDBx(23:0), can only be written to using the MOVEM instruction. During instruction fetching the PDBx Bus is routed to the Program Decode Controller of the DSP core for instruction decoding. 512 x 24-Bit Bootstrap ROM (PROM 256 x 24 Bit for DSP1) This is a 512 x 24-Bit factory programmed Boot ROM used for storing the program sequence and for initializing the DSP. Essentially this consists of reading the data via I2C, SPI or EMI interface and store it in PRAM, XRAM, YRAM, and/or external DRAM. 30/40 TDA7500A Figure 17. DSP1 and DSP0 Memory Spaces $FFFF Boot-Space $FFFF P-Space $FFFF $FFC0 $FFBF X-Space Y-Space X-Peripherals $FFFF Boot-Space $FFFF P-Space $FFFF $FFC0 $FFBF Not Accessible Not Accessible Not Accessible Not Accessible X-Space Y-Space X-Peripherals Not Accessible Not Accessible Not Accessible Not Accessible $1600 $15FF P-RAM $0800 $07FF P-RAM $0400 $03FF $0400 $03FF $0200 $01FF X-RAM Y-RAM Boot-ROM X-RAM $0100 $00FF Y-RAM Boot-ROM $0000 $0000 DSP0 DSP1 Serial Audio Interface (SAI) The SAI is used to deliver digital audio to the DSPs from an external source. Once processed by the DSPs, it can be returned through this interface either sent to the DAC for D/A conversion. The features of the SAI are listed below. ■ 3 Synchronized Stereo Data Transmission Lines ■ 3 Synchronized Stereo Data Reception Lines ■ Master and Slave operating mode: clock lines can be both master and slave. ■ Receive and Transmit Data Registers have two locations to hold left and right data. XCHG Interface (DSP to DSP Exchange Interface) The Exchange Interface peripheral provides bidirectional communication between DSP0 and DSP1. Both 24 bit word data and four bit Flag data can be exchanged. A FIFO is utilized for received data. It minimizes the number of times an Exchange Interrupt Service Routine would have to be called if multi-word blocks of data were to be received. The Transmit FIFO is in effect the Receive FIFO of the other DSP and is written directly by the transmitting DSP. The features of the XCHG are listed below. ■ 10 Word XCHG Receive FIFO on both DSPs ■ Four Flags for each XCHG for DSP to DSP signaling ■ Condition flags can optionally trigger interrupts on both DSPs DRAM/SRAM Interface (EMI) The External DRAM/SRAM Interface is viewed as a memory mapped peripheral. Data transfers are performed by moving data into/from data registers and the control is exercised by polling status flags in the control/status register or by servicing interrupts. An external memory write is executed by writing data into the EMI Data Write Register. An external memory read operation is executed by either writing to the offset register or reading the EMI Data Read Register, depending on the configuration. 31/40 TDA7500A The features of the EMI are listed below. ■ Data bus width fixed at 4 bits for DRAM and 8 bits for SRAM ■ Data word length 16 or 24 bits for DRAM ■ Data word length 8 or 16 or 24 bits for SRAM ■ DRAM address lines means 226 = 256MB addressable DRAM ■ Refresh rate for DRAM can be chosen among eight divider factor ■ SRAM relative addressing mode; 2 22 = 4MB addressable SRAM ■ Four SRAM Timing choices ■ Two Read Offset Registers Debug Interface A dedicated Debug Port is available for each DSP Cores. The debug logic is contained in the core design of the DSP. The features of the Debug Port are listed below: ■ Breakpoint Logic ■ Trace Logic ■ Single stepping ■ Instruction Injection ■ Program Disassembly Serial Peripheral Interface The DSP core requires a serial interface to receive commands and data over the LAN. During an SPI transfer, data is transmitted and received simultaneously. A serial clock line synchronizes shifting and sampling of the information on the two serial data lines. A slave select line allows individual selection of a slave SPI device. When an SPI transfer occurs an 8-bit word is shifted out one data pin while another 8-bit character is simultaneously shifted in a second data pin.The central element in the SPI system is the shift register and the read data buffer. The system is single buffered in the transfer direction and double buffered in the receive direction. I2C Interface The inter Integrated Circuit bus is a single bidirectional two-wire bus used for efficient inter IC control. All I2C bus compatible devices incorporate an on-chip interface which allows them communicate directly with each other via the I2C bus. Every component hooked up to the I2C bus has its own unique address whether it is a CPU, memory or some other complex function chip. Each of these chips can act as a receiver and /or transmitter on its functionality. General Purpose Input/Output The DSP requires a set of external general purpose input/output lines, and a reset line. These signals are used by external devices to signal events to the DSP. The GPIO lines are implemented as DSP 's peripherals. The GPIO lines are grouped in Port A which is connected to DSP 0, and Port B, which is connected to DSP1. RDS The RDS block is an hardware cell able to deliver the RDS frames through a dedicated serial interface. RDS quality signalis also available. This block needs to be initialised at reset by the DSP, after that it works in background and does not need any further DSP support. RDS is made of 57kHz filter, demodulator and decoder. 32/40 TDA7500A Asynchronous Sample Rate Converter The ASRC, embedded in the TDA7500A, offers a fully digital stereo asynchronous sample rate conversion of digital audio sources to the TDA7500A's internal sample frequency. This solves the problem of mixing audio sources with different sample rates and doesn't need the "classical" approach of synchronizing the PLL. As the usual internal sample rate of TDA7500A is around 48.51 kHz, the ASRC works with the common input signals only in upsampling mode. There is no need to explicitly program the input and output sample rates, as the ASRC solves this problem with an automatic Digital Ratio Locked Loop. The ASRC is intended for applications up to 20 bit input word width. Digital Audio Sources can be applied in general Serial Audio Interface format (3 wires) as well as in AES/EBU, IEC and EIAJ CP-340 format (1 wire). An interface to the DSP core offers the possibility of interrupt controlled sample delivery. Furthermore, a programmable Control/Status Register inside the ASRC allows a great variety of adjustments and status informations. Figure 18. shows, how the ASRC interfaces the other blocks. PLL Clock Oscillator The PLL Clock Oscillator can accept an external clock at XTI or it can be configured to run an internal oscillator when a crystal is connected across pins XTI & XTO. There is an input divide block IDF (1 -> 32) at the XTI clock input and a multiply block MF (9 -> 128) in the PLL loop. Hence the PLL can multiply the external input clock by a ratio MF/IDF to generate the internal clock. This allows the internal clock to be within 1 MHz of any desired frequency even when XTI is much greater than 1 MHz. It is recommended that the input clock is not divided down to less than 1 MHz as this reduces the Phase Detector's update rate. The clocks to the DSP can be selected to be either the VCO output divided by 2 to 16, or be driven by the XTI pin directly. The crystal oscillator and the PLL will be gated off when entering the power-down mode (by setting a register on DSP0). Figure 18. System Overview Digital Audio Sources e.g.: DAT DAB CD MD Broadcast 48 kHz 48 kHz 44.1 kHz 44.1 kHz 32 kHz lrckr_slv sckr_slv sdi0 3 1 S/PDIF Receiver SAI Receiver Channel 0 Left [19:0] Right [19:0] Fsin Left [19:0] Right [19:0] Fsin Master Clock Source AES/EBU IEC 958 EIAJ CP-340 ASRC Asynchr. Sample Rate Converter Fsout * 256 DSP 33/40 TDA7500A Codec The CODEC is composed of four AD mono converters, three DA stereo converters. The ADC can operate both in audio mode and in FM/AM mode. When in audio mode, it converts the audio bandwidth from 20 to 20KHz. The A to D is a third order Sigma-Delta converter, the converter resolutions is 20 bit with 88 dB of dynamic range and 85dB of total harmonic distortion. When in FM mode, the converted bandwidth is up to 192KHz. The D to A is a third order Sigma-Delta converter with a low noise reconstructing analog filter, the converter resolution is 20 bit with 93 dB of dynamic range and 85dB of total harmonic distortion. All the reference voltages are generated inside the chip. Some capabilities of the CODEC are listed below: ■ 20-Bit Resolution ■ Digital Anti-Alias Filtering embedded ■ Adjustable System Sampling Rates ■ 93dB D/A Dynamic Range (Not-Weighted)88dB A/D Dynamic Range (Not-Weighted) ■ 85dB D/A (THD+N/S)85dB A/D (THD+N/S) ■ Internal Differential Analog Architecture ■ +3.3V Power Supply SOFTWARE FEATURES A great flexibility is guaranteed by the two programmable DSP cores. A list of the main software functions which can be implemented in the TDA7500A is enclosed hereafter. A block diagram of the audio processing flow is shown in Fig. 19 below. Figure 19. Software Block Diagram of Audio & Sound Processing ANR DRC LD B T PEQ SM Stereo input RM + ANR DRC LD B Dynamic Loudness Bass Audio noise range reduction compression T ■ Integrated 19 kHz MPX filter and deemphasis ■ flexible noise cancellation ■ flexible multipath detector Generic Audio Signal Processsing ■ Loudness ■ Bass, treble, fader control ■ Volume control PEQ SM Treble Parametric Soft mute equaliser AM/FM Baseband Signal Processing ■ FM weak signal processing 34/40 HP HP LP DLY RF DLY CF DLY LF DLY RR DLY LR Routing Delay matrix SW TDA7500A ■ Distortion Limiting ■ Premium Equalization ■ Soft mute TAPE Signal Processsing ■ Dolby B Noise Reduction ■ Automatic Music Search CD Signal Proceessing ■ Dynamic Range Compression Audiophile Parametric Equalization ■ ■ Crossover ■ Channel Delays ■ Center Channel Imaging Output ■ Audio Noise Reduction Other ■ Voice compression/decompression for TIM storage ■ Echo and noise cancelling for mobile phone connection Application Scheme The TDA7500A can operate as a standalone device either it can interface the TDA7501 which contains the analog input multiplexer, analog volume control and the line-driver. The FM_MPX and FM_LEVEL signals coming from the tuner and other signals supplied by analog sources are adapted by the TDA7501 and fed to the TDA7500A. A block diagram of the system is shown in Fig. 20 below. The TDA7500A converts all the analog signals into digital domain and performs AM/FM processing and audio/sound processing. Thanks to this, it is possible to process any audio source as well analog as digital in parallel, to record FM mono for traffic information, telephone response, navigation and RDS. Finally the digital signals are D/A converted and sent to the TDA7501 for the final level adjustment and for the analog volume control. 35/40 TDA7500A Figure 20. lock Diagram of Car Amplifier Audio Sub-System. ANALOG INPUT FRONT END TDA7421 TDA7501 2 I C/SPI MAIN MICRO A/D D/A AUDIO POWER DISPLAY MICRO TDA7500A DIGITAL OUT SPDIF EEPROM/ FLASH DRAM/ SRAM Fig20TDA7500A DIGITAL IN Clock Scheme When TDA7500A is used in AD/FM mode the following scheme is choosen in order to avoid harmonics inside the FM band. Parts of the system are directly clocked by the crystal oscillator, whereas other parts are driven by the pll oscillator. Thanks to this it is possible to process any audio source as well analog as digital in parallel to record FM mono for traffic informations, telephone resp. navigation and RDS. Figure 21 shows the clock scheme. Regarding on the country and its FM bandwidth different crystals should be selected. Figure 21. Clock Scheme Fext: 44.1 kHz, 48kHz Fcomp: 1.425 MHz (8.55/6) 1.411 MHz (44.1*2*16) PLL 1.536 MHz (48*2*16) OSC Xtal West Europe East 87.5..108 65..74 Int./Ext. Stereo DSP Audio DSP 8.55 MHz 8.89 MHz A/D FM-rds / noise det. A/D mono level / tel. / navi. A/D FM-mpx/ stereo audio 36/40 Fvco: 173.85 MHz (Fcomp*122) 158.05 MHz (Fcomp*112) 172.03 MHz (Fcomp*112) FM Japan [MHz] 76..90 RDS-Demod. Fdsp: 43.46 MHz (Fvco/4) 39.51 MHz (Fvco/4) 43.01 MHz (Fvco/4) Frds: 8.55 MHz (Fxtal) Faudio: 48.51 kHz 44.1 kHz 48 kHz D/A Coverters Fconverter: 12.42 MHz (Fvco/14) 11.29 MHz (Fvco/14) 12.29 MHz (Fvco/14) 2nd Hamonics 90.38 3rd 135.57 Hamonics 86.92 86.92 90.38 130.38 130.38 135.57 C1 22pF AGND R1 1M XTAL SPI1 C3 10µF RDSINT XTO XTI AGND CLKIN AVDD SSO MOSIO MIOOO SCKO SSM MOSIM MISOM SCKW NRESET TESTSE TESTEN VDD1 GND1 SPDIF2 SPDIF1 CVDD1 R12 100 DACREF1 26 25 24 23 22 21 20 19 17 16 18 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 99 27 97 98 R11 100 SCRCCD CVDD1 CGND1 CGND1 INT RDSSCLK-SS RDSDAT-SI RDSQUAL-SO RDSARI-SCK AGND AVDD SPI2 GPIO3 RDS INTERFACES C2 22pF GND1 µP DACGND DACGND DACREF0 28 100 SCRCM0 C8 4.7µF DACVCC 96 29 DSRA7 30 DACREF2 DSRA6 C7 100nF 83 31 DSRA5 87 32 S2DREF DSRA4 33 ADCREF0 DSRA3 C6 47µF OUT4 OUT5 94 35 95 34 DSRA2 36 86 93 C10 100nF 92 38 39 85 40 TDA7500A 37 ADCREF1 SRA0 C5 100nF TO EXT MEMORY SRA1 DAC5 DSRA1 C9 47µF SRA2 DAC4 DSRA0 OUT3 DAC3 OUT2 DAC2 SRA3 C12 100nF 41 90 43 42 84 44 VREF C14 100nF 91 C13 100µF OUT1 ADCGND SRA5 C11 47µF SRA6 ADCREF2 SRA4 DAC1 OUT0 DAC0 SRA7 C15 47µF 45 ADCVDOREF SRA8 ADCGND 46 SRA9 AIN3 AIN2 AIN1 AIN0 C16 100nF 47 82 ADC3 SRA10 48 81 ADC2 SRA11 49 80 ADC1 SRA12 76 51 55 52 53 54 56 57 58 59 60 61 62 63 64 65 66 67 68 77 78 88 89 69 70 71 72 73 74 75 50 79 ADC0 CGND2 C4 47µF 4x 1µF R3 10K CVDD2 SRA16 SRA13 SRA14 (**) WHEN NOT USED ALL PINS CONNECTED TO CGND2 CVDD2 GPIO8 SPI DRD SRA15 R8 10K R10 10K 1º 1º 0* 1º 0* 1º PIN9 PIN55 GPIO3 GPIO8 0* 0* R7 10K D00AU1195 * = Connected to CGND2 º = Connected to CVDD2 EMI DRR I 2C CASALE R9 10K SDO2/SRA17 R5 10K TEST TO EXT MEMORY SAI INTERFACE (**) VDD2 GND2 ADCVD00 ADCGND R4 10K SDO1/SRA18 SDO0/SRA19 SDI2/SRA20 SDI1/SRA21/RAS SDI0 SCKT LRCKT SCKR LCRCKR VDD2 GND2 ADCVD00 ADCGND DBOUT1 DBIN1-OS10 DBCK1-OS11 DBRON1 DBOUT0 DBINOOS00 DBCKOOS01 DBCRON0 R2 10K DEBUG INTERFACE R6 10K NRESET CVDD2 CGND2 TDA7500A APPLICATION DIAGRAM The application diagram shown on the next page must be considered as one of the examples of a (limited) application of the chip. For the real application set-up the application notes are necessary. Figure 22. Application diagram. 37/40 TDA7500A PACKAGE MARKING 38/40 TDA7500A mm DIM. MIN. TYP. A inch MAX. MIN. TYP. 1.60 A1 0.05 A2 1.35 1.40 B 0.17 0.22 C 0.09 0.063 0.15 0.002 0.006 1.45 0.053 0.055 0.27 0.007 0.009 0.20 0.003 16.00 0.630 D1 14.00 0.551 D3 12.00 0.472 e 0.50 0.020 E 16.00 0.630 E1 14.00 0.551 E3 12.00 0.472 9.85 L 0.45 0.60 L1 0.011 0.388 0.75 0.018 0.024 1.00 0.030 0.039 S 8.80 0.346 S1 8.80 0.346 K 0.057 0.008 D H OUTLINE AND MECHANICAL DATA MAX. TQFP100 (14x14x1.40mm) with Slug Down (10x10mm) 0˚ (min.), 3.5˚ (typ.), 7˚(max.) ccc 0.080 0.003 D A D1 SEATING PLANE D3 A2 C A1 75 51 76 50 ccc C e H E3 S1 E1 E B 0.25mm PIN 1 IDENTIFICATION .010 inch GAGE PLANE 26 100 25 1 C K TQFP100M S L L1 39/40 TDA7500A Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics 2001 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. http://www.st.com 40/40