TDA7505 Car radio DSP for advanced signal processing Features ■ Full software flexibility with two 24x24 bit DSP cores ■ FM processing ■ AM processing ■ Dolby B noise reduction ■ MP3 and C3 decoding ■ Echo AND noise cancellation ■ Audio processor ■ Special sound effect processor ■ Dual media processing ■ RDS Filter, Demodulator & Decoder ■ 4 + 1 channel ADC, 6 channel DAC CODEC ■ IIC/SPI control busses ■ SAI 6 channel serial audio interface ■ SPDIF interface with sample rate converter ■ Dual core external memory interface ■ Debug interface ■ On-chip PLL Table 1. LQFP100 (14x14x1.4mm) ■ 5V-tolerant 3V I/O interface ■ Multifunction general purpose I/O ports Description The TDA7505 is an MPX-sampling DSP for car radio applications. Device summary Order code Package Packing TDA7505 LQFP100 Tray October 2007 Rev 1 1/38 www.st.com 1 Contents TDA7505 Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5 2/38 4.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.3.1 Recommended DC operating conditions . . . . . . . . . . . . . . . . . . . . . . . . 16 4.3.2 Power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.3.3 Oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.3.4 General interface electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 17 4.3.5 High voltage CMOS interface DC electrical characteristics . . . . . . . . . . 17 4.3.6 DSP core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.4 SAI interface timing - receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.5 SAI interface timing - transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.6 SAI protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.7 SPDIF receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.8 SPI interfaces (Buffered SPI, Display SPI, RDS SPI) . . . . . . . . . . . . . . . 20 4.9 I2C Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.10 DRAM/SRAM interface (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.11 Debug port interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.1 24-bit DSP core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.2 DSP peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.2.1 Data and program memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.2.2 Serial audio interface (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.2.3 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.2.4 Sony/Philips digital interface (S/PDIF) . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.2.5 I2C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 TDA7505 6 Contents 5.2.6 DRAM/SRAM interface (DEMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.2.7 Debug interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2.8 General purpose input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2.9 Asynchronous sample rate converter . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2.10 SINCOS co-processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2.11 PLL clock oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2.12 CODEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.2.13 Radio data system (RDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.2.14 Clock scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Software features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.1 AM/FM base band signal processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.2 Generic audio signal processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.3 TAPE signal processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.4 CD signal processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.5 Audiophile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.6 Audio decompression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.7 Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.8 Functional modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3/38 List of tables TDA7505 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. 4/38 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Recommended DC operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 General interface electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 High voltage CMOS interface DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 17 DSP core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 SAI interface timing - receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 SAI interface timing - transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 SPDIF receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 SPI interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 I2C Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 DRAM timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 DRAM refresh period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 SRAM Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Debug port interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 ASRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Fractional-N PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 ADC electrical characteristics - measurement bandwidth 10Hz to 20kHz . . . . . . . . . . . . . 25 ADC electrical characteristics - measurement bandwidth 10Hz to 53kHz . . . . . . . . . . . . . 25 ADC electrical characteristics - measurement bandwidth 10Hz to 192kHz . . . . . . . . . . . . 25 Level ADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 DAC Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 FM stereo decoder (SW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Examples of convenient clock schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Example of possible modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 TDA7505 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 LQFP100 pins connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 SAI interface timing - receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 SAI interface timing - transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 SAI protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 SPI interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 SPI clocking scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 I2C Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Debug port serial clock timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Debug port acknowledge timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Debug port data I/O to status timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Debug port read timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Debug port DBCK next command after read register timing. . . . . . . . . . . . . . . . . . . . . . . . 24 LQFP100 (14x14x1.4mm) mechanical data and package dimensions. . . . . . . . . . . . . . . . 36 5/38 Overview 1 TDA7505 Overview The TDA7505 integrates two 75 MIPS DSP cores. One core is used for stereo decoding, noise blanking, weak signal processing, Dolby B, music search and MP3 decoding. The second core is used for audio and sound processing and Echo & Noise cancellation. All functions are realized in SW and thus are flexible on customer request. The device may be controlled by a main micro through either SPI or I2C interface. Through the same pins, but with separate device address (I2C) respectively separate chip select line (SPI) the main micro may communicate with the DSP or with the RDS block. An additional SPI is available allowing a separate communication (e.g. to a display micro). The DSP cores are integrated with their associated data and program memories. DSP0 is declared as master. Its associated peripherals and interfaces are: I2C, SPI1 (Master SPI), SPI2 (Display SPI), Serial Audio Interface (SAI), PLL Oscillator, External Memory Interface (EMI), General Purpose I/O ports (DSP0 GPIO[0..11]), RDS filter and D/A converters. DSP1 is declared as Co-DSP. Its associated peripherals and interfaces are: A/D converters, SPDIF, Sample Rate Converter (SRC) and General Purpose I/O ports (DSP1 GPIO[0..11]). Both DSP´s are identical (ST Orpheus core, 75 MHz clock). Only the peripherals and memory configurations are different. The internal communication takes place through a bidirectional 24/10-word exchange interface (XCHG) with complex flag and interrupts capability. The Radio Data System (RDS, respectively RBDS) function is realized via dedicated hardware. It may run fully autonomous without SW intervention. Thus an efficient background mode as well as a low current standby mode is possible. The RDS input is connected to the A/D converter to receive the FM multiplex signal (MPX) automatically. Its output may be configured to I2C or SPI format. The pins are shared with the I2C and SPI1 of DSP0. The device is equipped with a debug and test interface. It allows the SW development with a 100% compatible emulation system. All functions, except RDS, are implemented in SW. Thus, the device may be adapted to customers´ requirements. This implies the variable implementation of SW modules developed by the customer, ST and third parties. This flexibility also allows the usage for applications others than car radios, e.g.: Boosters. 6/38 TDA7505 Block diagram 2 Block diagram Figure 1. Block diagram analog audio in Navi. CD CC Tel. 2 4 2 Qdiff. AM/FM Mpx AM/FMLevel Mpx RDS 2 3 Diff. Diff. Qdiff. analog audio out Input Source Selector PLL Clock Generator ADC-ref ΣΔ ADCVDD ADCGND AVDD AGND CLK in 8.55MHz ΣΔ Decimation Audio ΣΔ ΣΔ Decimation FM/Audio AM/FM level ADC SPDIF audio in SC Filter RDS Filter SC Filter SC Filter DSP1 Orpheus Core Including 12 GPIO´s 10 word SPI 1 receive stack AM processing, FM processing, CD compression, Dolby B, MP3 Debug Interface 2ch sample rate converter X Ram 4096 X Rom 4096 Y Ram 40969 P Ram 4096 P Rom 16384 DACVDD Oversampl. Filter Grp & blk sync., error correction Demod. DAC-ref DACGND RDS Int. SPI/ IIC RDSCS 4 Crystal Oscillator SPDIF 2ch. Interface SC Filter Noise Shaper Oversampl. Filter SINCOS SAI 6ch. Receiver SC Filter Noise Shaper Noise Shaper Oversampl. Filter 6 Ch. Audio Bus 2 receive bit&word clk digital audio in SC Filter IIC / SPI 1 SPI 2 External Memory Interface 4 SAI Transmitter 3 2 SRAM 4Mx8 DRAM 64Mx4 8+3 17 Xchg Interface X Ram 4096 Y Ram 4096 P Ram 4096 P Rom 16384 Audio processing, Sound processing, TAM, Echo & noise cancell. Debug Interface Display μP 6 Channel Audio Bus INT DSP0 Orpheus Core Including 12 GPIO´s μP control NRESET 4 4 VDD GND Debug/Test 5 7/38 Pin description TDA7505 3 Pin description Table 2. Pin description N° Name Type 1 DAC4 A Signal output D/A converter (single ended) 2 DAC5 A Signal output D/A converter (single ended) N° Name Type Voltage 3 VDD1V8_1 S 1.8V Digital Supply dedicated to internal logic 4 GND1V8_1 S 0V Digital Ground dedicated to internal logic N° Name Type 5 NRESET 6 SRCCD MISOD output MISOD input 7 SRCMD MOSID input MOSID output DSP0 GPIO0 DSP0 GPIO0 8 SSD input INT DSP0 GPIO1 DSP0 GPIO1 9 CLKIN SCKD input SCKD output N° I/O Reset Function After boot with I/O state SPI I2C * EMI E0 E1 E1 E1 Z Z Z Z I/O Z I/O I/O Z Z Z Z Z Z Z Z Z Z Z Function Input 5VT System Reset. A low level applied to NRESET input initializes the IC. Input 5VT Output 2mA PP/OD Input 5VT SPDIF input source 1 (e.g.: CD) Display SPI SO (slave mode) Display SPI MI (master mode) Input 5VT Input 5VT Output 2mA PP Input 5VT Output 2mA PP SPDIF input source 2 (e.g.: MD) Display SPI SI (slave mode) Display SPI MO (master mode) GPIO input GPIO output Input 5VT Input 5VT Input 5VT Output 2mA PP Display SPI SS slave select DSP0 external interrupt (IRQA) GPIO input GPIO output Input 5VT Input 5VT Output 2mA PP External clock input for PLL Display SPI clock (slave mode) Display SPI clock (master mode) Type Voltage 10 AVDD S 3.3V 11 XTI A AC Crystal oscillator input 12 XTO A AC Crystal oscillator output 13 AGND S 0V Ground dedicated to the PLL 8/38 Name I Function Function Supply dedicated to the PLL TDA7505 Table 2. N° Pin description Pin description (continued) Name RDSCS 14 DSP0 GPIO2 DSP0 GPIO2 INT 15 RDSINT DSP0 GPIO3 DSP0 GPIO3 N° Name Type I/O Reset State Z After boot with I2C * SPI Z Z I/O Z I/O Z Z Z Function EMI Z Input 5VT Output 2mA OD Input 5VT Output 2mA PP RDS SPI CS chip select in RDS bit data GPIO input GPIO output Input 5VT Output 2mA OD Output 2mA PP Input 5VT Output 2mA PP DSP0 external interrupt (IRQA) RDS bit clock RDS Interrupt Output GPIO input GPIO output Type Voltage 16 VDD3V3_1 S 3.3V Digital supply dedicated to I/O structures 17 GND3V3_1 S 0V Digital ground dedicated to I/O structures SCKM input SCKM output 18 SCL bi-direct DSP0 GPIO4 DSP0 GPIO4 N° Name MISOM output MISOM input 19 ADDR select DSP0 GPIO5 DSP0 GPIO5 I/O 0/1 Z Z Type Reset state I/O Z SPI 0/1 I/O SSM input 21 DSP0 GPIO7 DSP0 GPIO7 I/O Z 22 DSRA<0> DSRA<0> I/O 0 23 DSRA<1> DSRA<1> I/O 24 DSRA<2> DSRA<2> I/O Input 5VT Output 2mA PP In 5VT/Out 2mA OD Input 5VT Output 2mA PP Master/RDS SPI clock (slave m.) Master SPI clock (master mode) I2C clock GPIO input GPIO output I/O Function After boot with I2C * EMI Z Z MOSIM input MOSIM output 20 SDA bi-direct DSP0 GPIO6 DSP0 GPIO6 Function Z 0/1 Z Z Z Z Output 2mA PP/OD Input 5VT Input 5VT Input 5VT Output 2mA PP Master/RDS SPI SO (slave m.) Master SPI MI (master mode) I2C Address select line GPIO input GPIO output Input 5VT Output 2mA PP In 5VT/Out 2mA OD Input 5VT Output 2mA PP Master/RDS SPI SI (slave m.) Master SPI MO (master mode) I2C data GPIO input GPIO output Z Z Input 5VT Input 5VT Output 2mA PP Master SPI SS slave select GPIO input GPIO output 1 1 Z In/Out 2mA PP In/Out 2mA PP EMI SRAM Data 0 EMI DRAM Data 0 0 1 1 Z In/Out 2mA PP In/Out 2mA PP EMI SRAM Data 1 EMI DRAM Data 1 0 1 1 Z In/Out 2mA PP In/Out 2mA PP EMI SRAM Data 2 EMI DRAM Data 2 9/38 Pin description Table 2. N° TDA7505 Pin description (continued) Name Type Reset After boot with I/O state SPI I2C * EMI Function DSRA<3> DSRA<3> I/O 0 1 1 Z In/Out 2mA PP In/Out 2mA PP EMI SRAM Data 3 EMI DRAM Data 3 26 DSRA<4> I/O 0 1 1 Z In/Out 2mA PP EMI SRAM Data 4 27 DSRA<5> I/O 0 1 1 Z In/Out 2mA PP EMI SRAM Data 5 28 DSRA<6> I/O 0 1 1 Z In/Out 2mA PP EMI SRAM Data 6 29 DSRA<7> I/O 0 1 1 Z In/Out 2mA PP EMI SRAM Data 7 25 30 SRA<0> SRA<0> O 0 1 1 0/1 Output 2mA PP Output 2mA PP EMI SRAM Address 0 EMI DRAM Address 0 31 SRA<1> SRA<1> O 0 1 1 0/1 Output 2mA PP Output 2mA PP EMI SRAM Address 1 EMI DRAM Address 1 N° Name Type Voltage 32 VDD3V3_2 S 3.3V Digital Supply dedicated to I/O structures 33 GND3V3_2 S 0V Digital Ground dedicated to I/O structures N° Name Type Reset Function After boot with I/O state SPI I2C * EMI Function 34 SRA<2> SRA<2> O 0 1 1 0/1 Output 2mA PP Output 2mA PP EMI SRAM Address 2 EMI DRAM Address 2 35 SRA<3> SRA<3> O 0 1 1 0/1 Output 2mA PP Output 2mA PP EMI SRAM Address 3 EMI DRAM Address 3 36 SRA<4> SRA<4> O 0 1 1 0/1 Output 2mA PP Output 2mA PP EMI SRAM Address 4 EMI DRAM Address 4 37 SRA<5> SRA<5> O 0 1 1 0/1 Output 2mA PP Output 2mA PP EMI SRAM Address 5 EMI DRAM Address 5 38 SRA<6> SRA<6> O 0 1 1 0/1 Output 2mA PP Output 2mA PP EMI SRAM Address 6 EMI DRAM Address 6 39 SRA<7> SRA<7> O 0 1 1 0/1 Output 2mA PP Output 2mA PP EMI SRAM Address 7 EMI DRAM Address 7 40 SRA<8> SRA<8> O 0 1 1 0/1 Output 2mA PP Output 2mA PP EMI SRAM Address 8 EMI DRAM Address 8 N° Name Type Reset After boot with I/O state SPI I2C * EMI Function 41 SRA<9> SRA<9> O 0 1 1 0/1 Output 2mA PP Output 2mA PP EMI SRAM Address 9 EMI DRAM Address 9 42 SRA<10> SRA<10> O 0 1 1 0/1 Output 2mA PP Output 2mA PP EMI SRAM Address 10 EMI DRAM Address 10 10/38 TDA7505 Table 2. N° Pin description Pin description (continued) Name Type Reset After boot with I/O state SPI I2C * EMI Function 43 SRA<11> SRA<11> O 0 1 1 0/1 Output 2mA PP Output 2mA PP EMI SRAM Address 11 EMI DRAM Address 11 44 SRA<12> SRA<12> O 0 1 1 0/1 Output 2mA PP Output 2mA PP EMI SRAM Address 12 EMI DRAM Address 12 N° Name 45 VDD1V8_2 46 GND1V8_2 & GND3V3_3 47 VDD3V3_3 N° Name Type Voltage S 1.8V S 0V S 3.3V Type Reset Function Digital Supply dedicated to internal logic Digital Ground dedicated to internal logic and I/O structures Digital Supply dedicated to I/O structures After boot with I/O state SPI I2C * EMI Function 48 DRD O 1 1 1 1 Output 2mA PP EMI data read strobe 49 DWR O 1 1 1 1 Output 2mA PP EMI data write strobe 0 1 1 0/1 Output 2mA PP Output 2mA PP EMI DRAM CAS EMI SRAM Address 13 CAS SRA<13> O 51 SRA<14> O 0 1 1 0/1 Output 2mA PP EMI SRAM Address 14 SRA<15> 52 DSP0 GPIO8 DSP0 GPIO8 I/O Z Z Z 0/1 Output 2mA PP Input 5VT Output 2mA PP EMI SRAM Address 15 GPIO input GPIO output In 5VT/Out 2mA PP Output 2mA PP Input 5VT Output 2mA PP Multi function I/O EMI SRAM Address 16 GPIO input GPIO output In 5VT/Out 2mA PP Output 2mA PP Input 5VT Output 2mA PP Multi function I/O EMI SRAM Address 17 GPIO input GPIO output In 5VT/Out 2mA PP Output 2mA PP Input 5VT Output 2mA PP Multi function I/O EMI SRAM Address 18 GPIO input GPIO output 50 INOUTA SRA<16> 53 DSP1 GPIO0 DSP1 GPIO0 INOUTB SRA<17> 54 DSP1 GPIO1 DSP1 GPIO1 INOUTC SRA<18> 55 DSP1 GPIO2 DSP1 GPIO2 N° Name INOUTD SRA<19> 56 DSP1 GPIO3 DSP1 GPIO3 I/O I/O I/O Type I/O Z Z Z Reset state Z Z Z Z Z Z 0/1 0/1 0/1 After boot with SPI I2C * I/O 0/1 Z Z Z Function EMI In 5VT/Out 2mA PP Output 2mA PP Input 5VT Output 2mA PP Multi function I/O EMI SRAM Address 19 GPIO input GPIO output 11/38 Pin description Table 2. N° TDA7505 Pin description (continued) Name INOUTE SRA<20> 57 DSP1 GPIO4 DSP1 GPIO4 Type I/O I/O INOUTG 59 DSP1 GPIO6 DSP1 GPIO6 INOUTH 60 DSP1 GPIO7 DSP1 GPIO7 I2C * SPI I/O 0/1 Z Function EMI Z 0/1 In 5VT/Out 2mA PP Output 2mA PP Input 5VT Output 2mA PP Multi function I/O EMI SRAM Address 20 GPIO input GPIO output In 5VT/Out 2mA PP Output 2mA PP Output 2mA PP Input 5VT Output 2mA PP Multi function I/O EMI SRAM Address 21 EMI DRAM RAS GPIO input GPIO output Z Z Z I/O Z Z Z Z In 5VT/Out 2mA PP Input 5VT Output 2mA PP Multi function I/O GPIO input GPIO output I/O Z Z Z Z In 5VT/Out 2mA PP Input 5VT Output 2mA PP Multi function I/O GPIO input GPIO output Type Voltage 61 VDD3V3_4 S 3.3V Digital Supply dedicated to I/O structures 62 GND3V3_4 S 0V Digital Ground dedicated to I/O structures N° Name state After boot with Z INOUTF SRA<21> 58 RAS DSP1 GPIO5 DSP1 GPIO5 N° Reset Name Type Reset Function After boot with I/O state SPI I2C * EMI Function INOUTI 63 DSP1 GPIO8 DSP1 GPIO8 I/O Z Z Z Z In 5VT/Out 2mA PP Input 5VT Output 2mA PP Multi function I/O GPIO input GPIO output 64 INOUTJ I/O Z Z Z Z In 5VT/Out 2mA PP Multi function I/O Input 5VT Out 2mA PP Input 5VT Output 2mA PP Debug clock Chip status 1 GPIO input GPIO output Output 2mA PP Input 5VT Output 2mA PP Debug output GPIO input GPIO output DBCK OS1 65 DSP0/1 GPIO9 DSP0/1 GPIO9 I/O DBOUT 66 DSP0/1 GPIO10 DSP0/1 GPIO10 I/O N° Name DBIN OS0 67 DSP0/1 GPIO11 DSP0/1 GPIO11 12/38 Z Type Z Reset state I/O Z 0 0 0 1 1 1 After boot with SPI 0 I2C * 0 I/O Function EMI 0 Input 5VT Out 2mA PP Input 5VT Output 2mA PP Debug input Chip status 0 GPIO input GPIO output TDA7505 Pin description Table 2. N° Pin description (continued) Name Type Reset After boot with I/O state SPI I2C * EMI Function 68 Debug/Test_Sel0 I E1 E1 E1 E1 Input Mode select (Debug0/1, Test) 69 Debug/Test_Sel1 I E1 E1 E1 E1 Input Mode select (Debug0/1, Test) I/O 0 0 0 0 In 5VT/Out 2mA PP Multi function I/O 70 INOUTK N° Type Voltage 71 VDD1V8_3 S 1.8V 72 GNDSUB_D S 0V N° Name Name Function Digital Supply dedicated to internal logic Digital substrate Ground Type Function 73 LEVEL_AM/FM A Signal input to level ADC (single ended) 74 MPX_AM+ A Signal input tuner AM (quasi differential) 75 MPX_AM/FM- A Signal input tuner common ground (quasi differential) 76 MPX_FM+ A Signal input tuner FM (quasi differential) 77 MPX_RDS A Signal input background tuner (for RDS) single ended 78 Navi- A Signal input from navigation system (differential) 79 Navi+ A Signal input from navigation system (differential) 80 Phone- A Signal input from Telephone (differential) 81 Phone+ A Signal input from Telephone (differential) N° Type Voltage 82 ADCGND S 0V Analog Ground dedicated to the A/D converter 83 ADCVDD S 3.3V Analog Supply dedicated to the A/D converter N° Name Name Function Type Function 84 ADCREF3 A ADC reference voltage decoupling 85 CD_R+ A Signal right input from CD-changer (differential) 86 CD_R- A Signal right input from CD-changer (differential) 87 ADCREF2 A ADC reference voltage decoupling 88 CD_L- A Signal left input from CD-changer (differential) 89 CD_L+ A Signal left input from CD-changer (differential) 90 ADCREF1 A ADC reference voltage decoupling 91 CC_R A Signal right input from cassette (single ended) 92 CC_L A Signal left input from cassette (single ended) N° Name Type Voltage 93 GNDSUB_A S 0V 94 DACVDD S 3.3V Function Analog substrate Ground Analog Supply dedicated to the D/A converter. 13/38 Pin description Table 2. N° Pin description (continued) Name 95 DACREF N° Type A Name 96 DACGND N° TDA7505 Name Function DAC reference voltage decoupling Type Voltage S 0V Function Analog Ground dedicated to the D/A converter. Type Function 97 DAC0 A Signal output D/A converter (single ended) 98 DAC1 A Signal output D/A converter (single ended) 99 DAC2 A Signal output D/A converter (single ended) 100 DAC3 A Signal output D/A converter (single ended) Type: S: Supply pin 0: logic low output PP: push-pull I: Digital Input pin 1: logic high output OD: open drain O: Digital Output pin E0: logic low input 5VT: 5 volt tolerant A: Analog pin E1: logic high input Schmitt-trigger on all inputs Z: high impedance (Input mode of bi-directional pin) *) I2C Master boot mode, using multiplexed debug interface (pin15: INT/RDSINT = 1, pin21: SSM = 0, pin52: SRA15 = 0) LQFP100 pins connection (top view) 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 DAC3 DAC2 DAC1 DAC0 DACGND DACREF DACVDD GNDSUB_A CC_L CC_R ADCREF1 CD_L+ CD_LADCREF2 CD_RCD_R+ ADCREF3 ADCVDD ADCGND Phone+ PhoneNavi+ NaviMPX_RDS MPX_FM+ Figure 2. DSP0 GPIO0 DSP0 GPIO1 DSP0 GPIO2 DSP0 GPIO3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 CODEC SPDIF DSPI Debug/Test PLL RDS Bootsel0 TDA7505 SAI/SPDIF BSPI/I2C Bootsel1 Bootsel2 EMI 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 DSRA<4> DSRA<5> DSRA<6> DSRA<7> SRA<0> SRA<1> VDD3V3_2 GND3V3_2 SRA<2> SRA<3> SRA<4> SRA<5> SRA<6> SRA<7> SRA<8> SRA<9> SRA<10> SRA<11> SRA<12> VDD1V8_2 GND1V8_2/GND3V3_3 VDD3V3_3 DRD DWR CAS/SRA<13> 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 DSP0 GPIO4 DSP0 GPIO5 DSP0 GPIO6 DSP0 GPIO7 DAC4 DAC5 VDD1V8_1 GND1V8_1 NRESET SRCCD/MISOD SRCMD/MOSID INT/SSD CLKIN/SCKD AVDD XTI XTO AGND RDSCS INT/RDSINT VDD3V3_1 GND3V3_1 SCL/SCKM ADDR/MISOM SDA/MOSIM SSM DSRA<0> DSRA<1> DSRA<2> DSRA<3> 14/38 MPX_AM/FMMPX_AM+ LEVEL_AM/FM GNDSUB_D VDD1V8_3 INOUTK Debug/Test_Sel1 Debug/Test_Sel0 DBIN_OS0 DSP0/1 GPIO11 DBOUT DSP0/1 GPIO10 DBCK_OS1 DSP0/1 GPIO9 INOUTJ DSP1 GPIO8 INOUTI GND3V3_4 VDD3V3_4 DSP1 GPIO7 INOUTH INOUTG DSP1 GPIO6 INOUTF/SRA<21>/RAS DSP1 GPIO5 INOUTE/SRA<20> DSP1 GPIO4 INOUTD/SRA<19> DSP1 GPIO3 INOUTC/SRA<18> DSP1 GPIO2 INOUTB/SRA<17> DSP1 GPIO1 DSP1 GPIO0 INOUTA/SRA<16> SRA<15> DSP0 GPIO8 SRA<14> TDA7505 Electrical specifications 4 Electrical specifications 4.1 Absolute maximum ratings Table 3. Absolute maximum ratings Symbol VDD1V8 VDD3V3 AVDD DACVDD ADCVDD Parameter Power supplies digital I/O Analog DAC ADC Analog input or output voltage (2) Digital input or output voltage, 5V tolerant Normal Fail-safe(3) Value Unit -0.5 to +1.95 -0.5 to +3.6 -0.5 to +3.6(1) -0.5 to +3.6(1) -0.5 to +3.6(1) V V V V V -0.5 to (AVDD+0.5) (1) V -0.5 to 6.3 -0.5 to 3.8 V V Top Operating temperature range -40 to 85 °C Tstg Storage temperature -55 to 150 °C 1. The maximum difference in the voltage of AVDD, DACVDD, ADCVDD, analog inputs and analog outputs must not exceed 0.5V. Warning: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. 2. During Normal Mode operation VDD3 is always available as specified. 3. During Fail-save Mode operation VDD3 may be not available. 4.2 Thermal data Table 4. Symbol Rth j-amb Tj Rth j-case Thermal data Parameter Value Unit Thermal resistance junction to ambient (1) 55 °C/W Operating junction temperature 125 °C 10 °C/W Thermal junction to case (2) 1. In still air 2. Measured on top side of the package 15/38 Electrical specifications TDA7505 4.3 Electrical characteristics 4.3.1 Recommended DC operating conditions Table 5. Recommended DC operating conditions Symbol Parameter VDD1V8 Digital supply voltage 1.7 1.8 1.9 V VDD3V3 I/O supply voltage 3.15 3.3 3.49 V Analog supply voltage 3.15 3.3 3.49 V DACVDD D/A supply voltage 3.15 3.3 3.49 V ADCVDD A/D supply voltage 3.15 3.3 3.49 V Min. Typ. Max. Unit AVDD Test condition 4.3.2 Power consumption Table 6. Power consumption Symbol Parameter Test condition Idd Maximum current Digital power supply @ 1.8V Idio Maximum current IDAC IADC Min. Typ. Max. Unit 195 mA Digital IO power supply @ 3.3V 6 mA Maximum current DAC analog power supply @ 3.3V 22 mA Maximum current ADC analog power supply @ 3.3V 43 mA Note: 75MHz internal DSP clock, all CODEC channels enabled at Tamb = 25 °C 4.3.3 Oscillator characteristics Table 7. Oscillator characteristics Symbol FOSC FEXT FCLKIN Parameter Test condition Min. Crystal oscillator frequency(1) External oscillator frequency External oscillator frequency Typ. Max. 8.55 Unit MHz connected through pin XTI(1) 75 MHz connected through pin CLKIN(2) 80 MHz 1. RDS works only with 8.55Mhz quartz or alternative with 74.1MHz applied externally on XTI pin. 2. An alternative clock input (pin CLKIN) can be used for PLL to adjust the audio sampling rate. RDS can work in parallel with the 8.55MHz quartz. 16/38 TDA7505 Electrical specifications 4.3.4 General interface electrical characteristics Table 8. General interface electrical characteristics Symbol Parameter Test condition Min. Typ. Max. Unit lil Low level input current without pull-up Vi = 0V(1) device 1 μA lih High level input current without pull-up Vi = VDD3V3 (1) device 1 μA Ioz Tri-state output leakage without pull up/down device Vo = 0V or VDD3V3(1) 1 μA 5V tolerant tri-state output leakage without pull up/down device Vo = 0V or VDD3V3(1) 1 μA IozFT 7 μA Ilatchup Vesd Vo = 5.5V 1 I/O latch-up current Vi < 0V, Vi > VDD3V3 200 mA Electrostatic protection Leakage, 1μA (2) 2000 V 1. The leakage currents are generally very small, <1nA. The value given here, 1 A, is a maximum that can occur after an electrostatic stress on the pin. 2. Human Body Model. 4.3.5 High voltage CMOS interface DC electrical characteristics Table 9. High voltage CMOS interface DC electrical characteristics Symbol Parameter Test condition Min. Typ. Max. Unit 0.3*VDD3V3 V Vil Low Level Input Voltage 3.0V<VDD3V3<3.6V Vih High Level Input Voltage 3.0V<VDD3V3<3.6V 0.5*VDD3V3 V Vhyst Schmitt trigger hysteresis 3.0V<VDD3V3<3.6V 0.8 V Vol Low level output Voltage Iol = XmA (1),(2) Voh High level output Voltage 0.1*VDD3V3 V 0.89*VDD3V3 V 1. Takes into account 200mV voltage drop in both supply lines. 2. X is the source/sink current under worst-case conditions and is depicted for every I/O or output pin in the pin description. 4.3.6 DSP core Table 10. DSP core Symbol Parameter Test condition Min. Typ. Max. Unit Fdsp DSP clock frequency 75 MHz Tres Reset signal low state duration 1 µs 17/38 Electrical specifications 4.4 TDA7505 SAI interface timing - receiver Figure 3. SAI interface timing - receiver Valid SDI0-2 LRCKR Valid SCKR (RCKP=0) t lrckrs t lrckrh tsdis tsdih tsckrl tsckrh tsckr Table 11. SAI interface timing - receiver Timing Description TDSP(1) Min Internal DSP clock period (typical 1/75MHz) tsckr Minimum clock cycle tlrckrs 13.33 Unit ns ns LRCKR setup time TDSP ns tlrckrh LRCKR hold time TDSP ns tsdid SDI setup time TDSP ns tsdih SDI hold time TDSP ns tsckrh Minimum SCKR high time 0.35 tsckr ns tsckrl Minimum SCKR low time 0.35 tsckr ns SAI interface timing - transmitter Figure 4. SAI interface timing - transmitter Valid SDO0-2 LRCKT Valid SCKT (TCKP=0) t lrckts t lrckth t dt tscktl tsckth tsckt 18/38 Max 6 TDSP 1. TDSP = DSP master clock cycle time = 1/Fdsp 4.5 Typ TDA7505 Electrical specifications Table 12. SAI interface timing - transmitter Timing Description TDSP(1) Min Typ Internal DSP clock period (typical 1/75MHz) tsckt Minimum clock cycle tlrckts tlrckth tdt Max 13.33 Unit ns 6 TDSP ns LRCKT setup time TDSP ns LRCKT hold time TDSP ns SCKT active edge to data out valid TDSP ns tsckth Minimum SCKT high time 0.35 tsckr ns tscktl Minimum SCKT low time 0.35 tsckr ns 1. TDSP = DSP master clock cycle time = 1/Fdsp 4.6 SAI protocol Figure 5. SAI protocol LEFT CHANNEL SCKX XCKP = 0 SCKX XCKP = 1 LRCKX XREL = 0 XLRS = 0 LRCKX XREL = 0 XLRS = 1 LRCKX XREL = 1 XLRS = 0 SDY0-2 XDIR = 0 1 SDY0-2 XDIR = 1 14 15 0 30 31 Notes: 1) X = R for receiver 2) Y = I for receiver 4.7 SPDIF receiver Table 13. SPDIF receiver Symbol fspdif 0 15 14 13 6 31 30 29 1 2 5 4 3 2 RIGHT CHANNEL 1 0 15 14 13 6 31 30 29 9 10 11 12 13 14 15 0 25 26 27 28 29 30 31 1 2 5 4 3 2 1 0 15 14 13 31 30 29 9 10 11 12 13 14 15 0 25 26 27 28 29 30 31 1 2 X = T for transmitter Y = O for transmitter Parameter Max Unit 96 kHz Input precision with direct interface to DSP 24 bit Input precision with interface to ASRC 20 bit Input sampling rate Test condition Fdsp = 75 MHz Min 32 Typ 19/38 Electrical specifications 4.8 TDA7505 SPI interfaces (Buffered SPI, Display SPI, RDS SPI) Figure 6. SPI interfaces V alid SS M ISO M O SI V alid SCK (CP O L=0,CPH A=0) t setup tdtr tsssetup t hold t sshold tsclkl tsclkh tsclk Table 14. SPI interfaces Symbol TDSP Description Min Internal DSP clock period (typical 1/75MHz) Typ 13.33 Max Unit ns Master mode tsclk Clock cycle tdtr 12 TDSP ns SCK edge to MOSI valid 40 ns tsetup MISO setup time 16 ns thold MISO hold time 9 ns tsclkh SCK high time 0.5 tsclk ns tsclkl SCK low time 0.5 tsclk ns 40 ns 25 ns 12 TDSP ns tsssetup SS setup time tsshold SS hold time Slave mode tsclk Clock cycle tdtr SCK edge to MOSI valid 40 ns tsetup MOSI setup time 16 ns thold MOSI hold time 9 ns tsclkh SCK high time 0.5 tsclk ns tsclkl SCK high low 0.5 tsclk ns 40 ns 20 ns tsssetup SS setup time tsshold 20/38 SS hold time TDA7505 Electrical specifications Figure 7. SPI clocking scheme SS SCK (CPOL=0,CPHA=0) SCK (CPOL=0,CPHA=1) SCK (CPOL=1,CPHA=0) SCK (CPOL=1,CPHA=1) MISO MOSI MSB 6 5 4 3 2 1 0 I2C Timing 4.9 I2C Timing Figure 8. Table 15. Symbol I2C Timing Parameter Test condition Standard mode I2C bus Fast mode I2C bus Unit Min. Max. Min. Max. 0 100 0 400 kHz FSCL SCLl clock frequency tBUF Bus free between a STOP and Start Condition 4.7 – 1.3 – ms Hold time (repeated) START condition. After this period, the first clock pulse is generated 4.0 – 0.6 – ms tLOW LOW period of the SCL clock 4.7 – 1.3 – ms tHIGH HIGH period of the SCL clock 4.0 – 0.6 – ms tSU:STA Set-up time for a repeated start condition 4.7 – 0.6 – ms tHD:DAT DATA hold time 0 – 0 0.9 ms – 1000 20+0.1Cb 300 ns tHD:STA tR Rise time of both SDA and SCL signals Cb in pF 21/38 Electrical specifications Table 15. TDA7505 I2C Timing (continued) Symbol Test condition Parameter tF Fall time of both SDA and SCL signals tSU;STO Set-up time for STOP condition tSU:DAT Data set-up time Cb Standard mode I2C bus Max. Min. Max. – 300 20+0.1Cb 300 ns 4 – 0.6 – ms 250 – 100 – ns – 400 – 400 pF Max. Unit Capacitive load for each bus line DRAM/SRAM interface (EMI) Table 16. DRAM timing Symbol Parameter Unit Min. Cb in pF 4.10 Fast mode I2C bus Test condition Min. Typ. Tacc0 Fast DRAM access time EDTM=0, 16 bit word 17 Tdsp Tacc0 Fast DRAM access time EDTM=0, 24 bit word 23 Tdsp Tacc1 Slow DRAM access time EDTM=1, 16 bit word 24 Tdsp Tacc1 Slow DRAM access time EDTM=1, 24 bit word 32 Tdsp Table 17. DRAM refresh period Symbol Parameter Tref DRAM refresh period Table 18. SRAM Timing Symbol Tacc 4.11 Parameter Min. Typ. Max. Unit 782 Tdsp Max. Unit 9 Tdsp 469 Test condition Min. SRAM access time Typ. 2 Debug port interface Table 19. No. 22/38 Test condition Debug port interface Characteristics (Fdsp = 75MHz) Min. Max. Unit 1 DBCK rise time 2 ns 2 DBCK fall time 2 ns 3 DBCK low 40 ns 4 DBCK high 40 ns 5 DBCK cycle time 200 ns 6 DBRQN asserted to DBOUT (ACK) asserted 5*TDSP ns 7 DBCK high to DBOUT valid 40 ns TDA7505 Electrical specifications Table 19. No. Debug port interface (continued) Characteristics (Fdsp = 75MHz) Min. Max. Unit 8 DBCK high to DBOUT invalid 3 ns 9 DBIN valid to DBCK low (set-up) 15 ns 10 DBCK low to DBIN invalid (hold) 3 ns 2*TDSP ns DBOUT (ACK) asserted to first DBCK high DBOUT (ACK) assertion width 5*TDSP - 3 11 Last DBCK low of read register to first DBCK high of next command 12 Last DBCK low to DBOUT invalid (hold) DBSEL setup to DBCK Figure 9. 5*TDSP + 7 ns 7*TDSP + 10 ns 3 ns TDSP ns Debug port serial clock timing (1) (2) (3) DBCK (input) (4) (5) D02AU1363 Figure 10. Debug port acknowledge timing DBRQN (input) (6) DBOUT (output) (ACK) D02AU1364 Figure 11. Debug port data I/O to status timing DBCK (input) (Last) DBOUT (output) (9) (10) DBIN (input) (Note 1) Note: 1 High Impedance, external pull-down resistor D02AU1365 23/38 Electrical specifications TDA7505 Figure 12. Debug port read timing DBCK (input) (Last) (Note 1) (7) (12) (8) DBOUT (output) Note: 1 High Impedance, external pull-down resistor D02AU1369 Figure 13. Debug port DBCK next command after read register timing DBCK (input) (NEXT COMMAND) (11) D02AU1370 Table 20. ASRC Symbol Parameters Total harmonic distortion + noise, unweighted, THD+N Fsin / Fsout = 0.82 (36 kHz → 44.1 kHz) DR IPD Dynamic range, A-weighted, dithered input, Fsin / Fsout = 0.82 (36 kHz → 44.1 kHz) Test conditions min typ max Unit 20 Hz–20 kHz, full scale, 16 bit inp. -95 dB 20 Hz–20 kHz, Full scale, 20 bit inp. -98 dB 1 kHz, full scale, 16 bit inp. -95 dB 15 kHz, full scale, 16 bit inp. -95 dB 1 kHz, full scale, 20 bit inp. -105 dB 15 kHz, full scale, 20 bit inp. -98 dB 1 kHz, -60 dB, 16 bit inp. 98 dB 1 kHz, -60 dB, 16 bit inp. 120 dB Interchannel phase deviation Input sample rate range No input signal decimation Input sample rate Input signal decimation by 2 Output sample rate range 32 0 deg 48 kHz 96 32 kHz 48 kHz Digital filter fp Passband Frequency Rp Passband Ripple fs Stopband Corner Frequency Rs Stopband Attenuation Table 21. Symbol fVCO 24/38 0.4110 0–0.4110 Fsin -0.01 @ fs Fsin +0.01 dB 0.5510 Fsin -120 dB Fractional-N PLL Parameter VCO output frequency Test condition Min. 130 Typ. Max. Unit 310 MHz TDA7505 Table 22. Symbol Electrical specifications ADC electrical characteristics - measurement bandwidth 10Hz to 20kHz (Tamb = 25°C, ADCVDD = 3.3V, A-weighted filter.) Parameter Test condition Min. Typ. Max. Input voltage dynamic range Single ended mode Differential mode fs Sampling rate Audio mode DR(1) Dynamic range -60dB analog input 84 88 dB SNR Signal to noise ratio 1kHz; -3dB analog input 84 88 dB Vin THD+N Ri ICL(2) 0.5 1 Unit 48 Total harmonic distortion + noise 1kHz; -3dB analog input Input impedance @ fs = 44.1kHz Interchannel isolation Full scale input @ 1kHz Vrms -85 45 -80 kHz dB 80 kΩ -95 dB 1. The specified value is obtained by adding 60dB to THD+N measure @ full scale -60dB 2. ICL can be influenced by external anti alias filter Table 23. Symbol Vin fs DR (1) SNR THD+N ADC electrical characteristics - measurement bandwidth 10Hz to 53kHz (Tamb = 25°C, ADCVDD = 3.3V) Parameter Test condition Input voltage dynamic range Min. Typ. Max. 0.5 Unit Vrms Sampling rate FM-mode 192 Dynamic range -60dB analog input 80 dB Signal to noise ratio 1kHz; -3dB analog input 80 dB Total harmonic distortion + noise 1kHz; -3dB analog input kHz -80 dB Max. Unit 1. The specified value is obtained by adding 60dB to THD+N measure @ full scale -60dB Table 24. Symbol Vin ADC electrical characteristics - measurement bandwidth 10Hz to 192kHz (Tamb = 25°C, AVDD = 3.3V) Parameter Test condition Input voltage dynamic range Min. Typ. 0.5 Vrms fs Sampling rate FM-mode for spike and RDS DR(1) 384 kHz Dynamic range -60dB analog input 60 dB SNR Signal to noise ratio 1kHz; -3dB analog input 60 dB 1. The specified value is obtained by adding 60dB to THD+N measure @ full scale -60dB Table 25. Symbol Vin THD THD+N SNR Level ADC electrical characteristics (Tamb = 25°C, AVDD = 3.3V) Parameter Input voltage range Test condition Min. Typ. 0 Max. Unit 2.5 V Total harmonic distortion -57 dB Total harmonic distortion + noise -46 dB Signal to noise ratio 46 dB 25/38 Electrical specifications Table 26. DAC Performance (Tamb = 25°C, DACVDD = 3.3V, measurement bandwidth 10Hz to 20kHz) Symbol THD+N TDA7505 Parameter Test condition Min. Typ. Max. Unit Total harmonic distortion + noise 1kHz; -1dBFS, flat -90 dB THD Total harmonic distortion 1kHz; -1dBFS, flat -90 dB SNR Signal to noise ratio 1kHz;IEC61606 A-weighted RMS 100 dB DR(1) Dynamic range 1kHz; -60dBFS; IEC61606 A-weighted RMS 100 dB NF(2) Noise floor IEC61606 A-weighted RMS -100 dBV ICL Interchannel isolation 1kHz; 0dBFS -90 dB Xtlk Crosstalk 1kHz; 0dBFS -90 dB IGM Interchannel gain mismatch 1kHz; 0dBFS 0.1 dB 1. The specified value is obtained by adding 60dB to THD+N measure @ full scale -60dB 2. With 00h input Table 27. Symbol a_ch FM stereo decoder (SW) (Tamb = 25°C, ADCVDD = 3.3V, measurement bandwidth 10Hz to 20kHz, A-Weighted Filter.) Parameter Channel separation (THD+N) Total harmonic distortion SNR 26/38 Test condition Signal to noise ratio Min. Typ. Max. Unit >40 dB -3dB analog input -80 dB 1kHz; -3dB analog input; mono 86 dB TDA7505 5 Functional description Functional description The TDA7505 is broken up into three distinct blocks. One block contains the two DSP Cores and their associated peripherals. The second contains the analog modules ADC with input multiplexer and level adjust and the DAC. The third module contains the RDS processing: filter, demodulator, decoder with error correction and the I2C/SPI interface with data buffer and interrupts output. 5.1 24-bit DSP core The two DSP cores are used to process the audio and FM/AM data, coming from the ADC, or any kind of digital data coming via SPDIF or SAI. After the digital signal processing these data are sent to the DAC for analog conversion. Functions such as volume, tone, balance, and fader control, as well as spatial enhancement and general purpose signal processing may be performed by the DSP0. When FM/AM mode is selected, DSP1 is fully devoted to AM/FM processing. Nevertheless it can be used for any kind of different application, when a different input source is selected. Some capabilities of the DSPs are listed below: ● Single cycle multiply and accumulate with convergent rounding and condition code generation ● 2 x 56-bit Accumulators ● Double precision multiply ● Scaling and saturation arithmetic ● 48-bit or 2 x 24-bit parallel moves ● 64 interrupt vector locations ● Fast or long interrupts possible ● Programmable interrupt priorities and masking ● Repeat instruction and zero overhead DO loops ● Hardware stack capable of nesting combinations of 7 DO loops or 15 interrupts/subroutines ● Bit manipulation instructions possible on all registers and memory locations, also Jump on bit test ● 4 pin serial debug interface ● Debug access to all internal registers, buses and memory locations ● 5 word deep program address history FIFO ● Hardware and software breakpoints for both program and data memory accesses ● Debug Single stepping, Instruction injection and Disassembly of program memory 27/38 Functional description 5.2 TDA7505 DSP peripherals There are a number of peripherals that are tightly coupled to the two DSP Cores. Some of the peripherals are connected to DSP 0 others are connected to DSP 1. 5.2.1 ● 4k x 24-Bit Program RAM for DSP0 ● 16k x 24-Bit mask programmable Program ROM for DSP0 ● 4k x 24-Bit X-Data RAM for DSP0 ● 4k x 24-Bit Y-Data RAM for DSP0 ● 4k x 24-Bit Program RAM for DSP1 ● 16k x 24-Bit mask programmable Program ROM for DSP1 ● 4k x 24-Bit X-Data RAM for DSP1 ● 4k x 24-Bit mask programmable X-Data ROM for DSP1 ● 4k x 24-Bit Y-Data RAM for DSP1 ● 6 channel Serial Audio Interface (SAI) ● 2 channel SPDIF receiver with sampling rate conversion ● I2C and SPI interfaces ● XCHG Interface for DSP to DSP communication ● External Memory Interface (DRAM/SRAM) for time-delay and traffic information ● Debug Port for both DSP´s ● General-purpose Input/Output lines ● Asynchronous Sample Rate Converter ● SINCOS co-processor ● PLL Clock Oscillator ● ADC´s, ADC input multiplexer and DAC´s (see Section 5.2.12: CODEC on page 32) Data and program memories Both DSP0 and DSP1 have data and program memories attached to them. Each memory type is described below: X-RAM This is a 24-Bit Single Port SRAM used for storing coefficients. The 16-Bit XRAM address, XABx(15:0) is generated by the Address Generation Unit of the DSP core. The 24-Bit XRAM Data, XDBx(23:0), may be written to and read from the Data ALU of the DSP core. X-ROM This is a 24-Bit Single Port mask programmable ROM used for storing coefficients. The 16Bit XRAM address, XABx(15:0) is generated by the Address Generation Unit of the DSP core. The 24-Bit XRAM Data, XDBx(23:0), may be read from the Data ALU of the DSP core. Y-RAM This is a 24-Bit Single Port SRAM used for storing coefficients. The 16-Bit address, YABx(15:0) is generated by the Address Generation Unit of the DSP core. The 24-Bit Data, YDBx(23:0), is written to and read from the Data ALU of the DSP core. 28/38 TDA7505 Functional description Program RAM This is a 24-Bit Single Port SRAM used for storing and executing program code. The 16-Bit PRAM Address, PABx(15:0) is generated by the Program Address Generator of the DSP core for Instruction Fetching, and by the AGU in the case of the Move Program Memory (MOVEM) Instruction. The 24-Bit PRAM Data (Program Code), PDBx(23:0), can only be written to using the MOVEM instruction. During instruction fetching the PDBx Bus is routed to the Program Decode Controller of the DSP core for instruction decoding. Program ROM This is a 24-Bit Single Port mask programmable ROM used for storing and executing program code. Additionally the boot loader SW is placed here. Essentially this consists of reading the data via I2C, SPI or EMI interface and store it in PRAM, XRAM and YRAM. The 16-Bit PROM Address, PABx(15:0) is generated by the Program Address Generator of the DSP core for Instruction Fetching, and by the AGU in the case of the Move Program Memory (MOVEM) Instruction. The 24-Bit PROM Data (Program Code), PDBx(23:0), can only be read but not written. During instruction fetching the PDBx Bus is routed to the Program Decode Controller of the DSP core for instruction decoding. 5.2.2 Serial audio interface (SAI) The SAI is used to deliver digital audio to the device from an external source. Once processed by the device, either it can be returned through this interface or sent to the DAC for D/A conversion. The features of the SAI are listed below: 5.2.3 ● 3 Synchronized Stereo Data Transmission Lines ● 3 Synchronized Stereo Data Reception Lines ● Master and Slave operating mode: clock lines can be both master and slave. ● Receive and Transmit Data Registers have two locations to hold left and right data. Serial peripheral interface (SPI) The DSP core requires a serial interface to receive commands and data over the LAN. During an SPI transfer, data are transmitted and received simultaneously. A serial clock line synchronizes shifting and sampling of the information on the two serial data lines. A slave select line allows individual selection of a slave SPI device. When an SPI transfer occurs an 8-bit word is shifted out through one data pin while another 8-bit word is simultaneously shifted in through a second data pin. The central elements in the SPI system are the shift register and the read data buffer. The system is single buffered in the transfer direction and has a 10 word buffer in the receive direction (only master SPI; the display SPI is single word buffered only). 5.2.4 Sony/Phillips digital interface (S/PDIF) The S/PDIF receiver is a serial digital audio interface. It receives and decodes serial audio data according to one of the following standards: AES/EBU, IEC 958, S/PDIF, and EIAJ CP340 in a frequency range from 32kHz up to 96kHz. The transfer protocol provides two audio data channels. There is a direct output connected to Asynchronous Sample Rate Converter. Left and right 20 bit audio-channels and sample clock are provided. 29/38 Functional description 5.2.5 TDA7505 I2C interface The inter Integrated Circuit bus is a single bidirectional two-wire bus used for efficient inter IC control. The device is compliant with the I2C specification including the highs peed (400 kHz) mode. Every component hooked up to the I2C bus has its own unique address whether it is a CPU, memory or some other complex function chip. Each of these chips can act as a receiver and /or transmitter on its functionality. The device may act as master or as slave. XCHG interface (DSP to DSP exchange interface) The Exchange Interface peripheral provides bidirectional communication between DSP0 and DSP1. Both 24 bit word data and four bit Flag data can be exchanged. A FIFO is utilized for received data. It minimizes the number of times an Exchange Interrupt Service Routine would have to be called if multi-word blocks of data were to be received. The Transmit FIFO is in effect the Receive FIFO of the other DSP and is written directly by the transmitting DSP. The features of the XCHG are listed below: 5.2.6 ● 10 Word XCHG FIFO on DSP0 to transfer data to DSP1 ● 24 Word XCHG FIFO on DSP1 to transfer data to DSP0 ● Four Flags for each XCHG for DSP to DSP signaling ● Condition flags can optionally trigger interrupts on both DSP´s DRAM/SRAM interface (DEMI) The External DRAM/SRAM Interface is viewed as a memory mapped peripheral of both DSP cores. Data transfers are performed by moving data into/from data registers. The control is exercised by polling status flags in the control/status register or by servicing interrupts. This can be done by both DSP cores. The features of the DEMI (Dual core Extended Memory Interface) are listed below: 30/38 ● Data bus width fixed at 4 bits for DRAM and 8 bits for SRAM ● Data word length 16 or 24 bits for DRAM ● Data word length 8 or 16 or 24 bits for SRAM ● 13 DRAM address lines means 226 = 256M bit addressable DRAM ● Refresh rate for DRAM can be chosen among eight divider factors ● SRAM relative addressing mode; 222 = 32M bit addressable SRAM ● Four SRAM Timing choices ● Two Read Offset Registers TDA7505 5.2.7 Functional description Debug interface A multiplexed Debug Port is available for the DSP Cores. The debug logic is contained in the core design of the DSP. The features of the Debug Port are listed below: 5.2.8 ● Breakpoint Logic ● Trace Logic ● Single stepping ● Instruction Injection ● Program Disassembly General purpose input/output The DSP requires a set of external general purpose input/output lines, and a reset line. These signals are used by external devices to signal events to the DSP. The GPIO lines are implemented as DSP 's peripherals. The GPIO lines are grouped in Port A, connected to DSP 0, and Port B, connected to DSP1. 5.2.9 Asynchronous sample rate converter The ASRC, embedded in the device, offers a fully digital stereo asynchronous sample rate conversion of digital audio sources to the device's internal sample frequency. This solves the problem of mixing audio sources with different sample rates. The ASRC is able to do both up- and down-sampling. There is no need to explicitly program the input and output sample rates, as the ASRC solves this problem with an automatic Digital Ratio Locked Loop. In case of down sampling, an internal low pass filter limits the bandwidth. Thus any down folding products are avoided. The ASRC is intended for applications up to 20 bit input word width. Digital Audio Sources can be applied in general Serial Audio Interface format (3 wires) as well as in AES/EBU, IEC 958, S/PDIF and EIAJ CP-340 format (1 wire). An interface to the DSP core offers the possibility of interrupt controlled sample delivery. Furthermore, a programmable Control/Status Register inside the ASRC allows a great variety of adjustments and status information. The ASRC is intended for applications 5.2.10 – up to 20 bit input and 24 bit output word width, – 32kHz to 96kHz sample rate for input signal (SPDIF Receiver features) – 32kHz to 48kHz sample rate for output signal. SINCOS co-processor The SINCOS is a cordic-based co-processor for calculation of sine and cosine without using DSP resources. 5.2.11 PLL clock oscillator The PLL Clock Oscillator can accept an external clock at CLKIN or it can be configured to run with an internal oscillator when a crystal is connected across pins XTI & XTO. There is an input divide block IDF (1 -> 32) at the XTI clock input and a multiply block MF (9 -> 128) 31/38 Functional description TDA7505 in the PLL loop. Hence the PLL can multiply the external input clock by a ratio MF/IDF to generate the internal clock. This allows the internal clock to be within 1 MHz of any desired frequency even when XTI is much greater than 1 MHz. It is recommended that the input clock is not divided down to less than 1 MHz as this reduces the Phase Detector's update rate. The clocks to the DSP can be selected to be either the VCO output divided by 2 to 16, or be driven by the XTI pin directly. The crystal oscillator and the PLL will be gated off when entering the power-down mode (by setting a register on DSP0). 5.2.12 CODEC The CODEC is composed of four plus one A/D mono converters and three D/A stereo converters. Two channels of the ADC can operate both in audio mode and in FM mode. When in audio mode, it converts the audio bandwidth from 20Hz to 20KHz. The A to D is a third order Sigma-Delta converter with 20-bit resolution. When in FM mode, the converted bandwidth is up to 192KHz. Additionally a lower resolution A to D converter is implemented. It is used to convert the level signal of the tuner. Alternatively it may be used to convert voice signals. The DAC is a second order multi bits Sigma-Delta converter accepting 24 bits input data. All the reference voltages are generated inside the chip but they have to be decoupled with external capacitors. 5.2.13 Radio data system (RDS) The RDS block is a hardware cell able to deliver the RDS frames through a dedicated serial interface. An RDS quality signal is also available. This block needs to be initialized at reset by the DSP, after that it works in background and does not need any further DSP support. RDS is made of 57kHz filter, demodulator, decoder with error correction and an I2C/SPI programmable interface with data buffer and interrupt output. Due to its own interface, it may be considered as an independent function. Thus the module has a separate RDS I2C device address as well as a separate chip select line for the RDS SPI. Only the pins are shared with the DSP interfaces. 32/38 TDA7505 5.2.14 Functional description Clock scheme Due to the programmable PLL oscillator, the clock scheme is very flexible. The customer may choose the clock frequency according to the application needs. However one should take into account several constraints: ● The RDS module needs a crystal frequency of 8.55 MHz or alternative an external 74.1MHz Oscillator. However the PLL may be supplied by an external clock reference and the crystal in parallel may drive the RDS module. ● The CODEC (A/D and D/A) module needs a clock of 512 times the audio sample rate (Fs). ● The audio sample rate (Fs) should be close to 44.1 kHz. This allows CD quality. Higher sample rates will reduce the number of DSP clock cycles per Fs and hence will reduce the available MIPS. ● The DSP core clock frequency may not exceed 76 MHz ● In a car radio system the second and third system clock harmonics (DSP clock and CODEC clock) should be outside the radio frequency bands. Two examples of convenient clock schemes are shown in the following table: Table 28. Examples of convenient clock schemes Clock scheme Alternative(1) Fxtal 8.55 MHz 74.1 MHz Fcomp Fxtal / 4 2.14 MHz Fxtal/21 3.53 MHz Fvco Fcomp * 106 226.58 MHz Fcomp * 64 225.8 MHz Fdsp Fvco / 3 75.53 MHz Fvco / 3 75.28 MHz Fcodec Fvco / 10 22.66 MHz Fvco / 10 22.58 MHz Fs 44.25 kHz 44.11 kHz 1. External clock oscillator used 33/38 Software features 6 TDA7505 Software features A great flexibility is guaranteed by the two programmable DSP cores. A list of the main software functions, which can be implemented in the TDA7505, is enclosed hereafter: 6.1 6.2 6.3 6.4 AM/FM base band signal processing ● FM weak signal processing ● Integrated 19 kHz Pilot tone filter ● De-emphasis ● Stereo blend ● Variable high cut ● Flexible noise cancellation ● Flexible multipath detector ● Asynchronous demodulation allows the usage of any sample rate Generic audio signal processing ● Loudness ● Bass, treble, fader control ● Volume control ● Distortion Limiting ● Premium Equalization ● Soft mute TAPE signal processing ● Dolby B Noise Reduction ● Automatic Music Search CD signal processing ● 6.5 6.6 Audiophile ● Parametric Equalization ● Crossover ● Channel Delays ● Center Channel Imaging Output ● Audio Noise Reduction Audio decompression ● 34/38 Dynamic Range Compression MP3 including C3 block decoder TDA7505 6.7 Software features Other 6.8 ● Voice compression/decompression for traffic information storage ● Echo and noise canceling for mobile phone connection Functional modes The SW defines the whole functionality of the device, except RDS. Although ST is able to provide a complete set of SW, the customer may implement his own SW or may use third party SW. This allows a flexible adaptation to the application needs. The concept allows the parallel processing of two independent audio sources. For example one source may go through the loudspeakers, whereas another source may feed a headphone. Additionally other sources like a phone or a navigation system may be mixed to the audio source. In case the 150 MIPS available are not sufficient, a co-dsp (e.g.: TDA7502) may be connected through the serial audio interface (SAI). Finally the device may be embedded into an audio bus system (e.g.: MOST). Following table shows an example of possible modes: Table 29. Example of possible modes Source Comment AM/FM mode CD mode (digital) CD Changer mode (analog) Tape mode (digital) Traffic info play mode DSP1 Main source and RDS Alternative Rear Source and RDS Alternative Rear Source and RDS Alternative Rear Source and RDS Alternative Rear Source and RDS DSP1 Alternative Rear Source Alternative Rear Source Main source Alternative Rear Source Alternative Rear Source DSP0 Summed to Main source Summed to Main source Summed to Main source Summed to Main source Summed to Main source DSP1 Alternative Rear Source through SRC Main source through SRC Alternative Rear Source through SRC Alternative Rear Source through SRC Alternative Rear Source through SRC Tape via ADC (digital SAI) Dolby B on DSP1 Alternative Rear Source Alternative Rear Source Alternative Rear Source Main source Alternative Rear Source DSP co-processor MDSP: master Available (1) CO-dsp: slave Available(1) Available(1) Available(1) Available(1) Traffic info storage DSP0 Background recording Background recording Background recording Main source & Background recording MOST bus MDSP: slave Co-dsp: slave Available(1) MOST: master Available(1) Available(1) Available(1) Available(1) AM/FM MPX (analog) CD changer (analog) Phone/Navi (analog) CD/CD ROM audio/MP3 (digital SPDIF) Background recording 1. The total number of SAI channels is six. They must be split between MOST, Co-DSP and the external ADC for tape. In case of MOST, the DSP clock must be synchronized to the MOST bus. Note: The main source (blue) may run in parallel with one of the alternative rear sources (yellow). Phone/Navi, DSP Co-processor, traffic info storage and MOST (green) are available in parallel to all modes. 35/38 Package information 7 TDA7505 Package information In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. Figure 14. LQFP100 (14x14x1.4mm) mechanical data and package dimensions mm inch DIM. MIN. TYP. A MAX. MIN. TYP. MAX. 1.600 0.0630 0.150 0.0020 0.0059 A1 0.050 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 0.200 0.0035 0.0079 D 15.800 16.000 16.200 0.6220 0.6299 0.6378 D1 13.800 14.000 14.200 0.5433 0.5512 0.5591 D3 12.000 0.4724 E 15.800 16.000 16.200 0.6220 0.6299 0.6378 E1 13.800 14.000 14.200 0.5433 0.5512 0.5591 E3 12.000 e L 0.4724 0.500 0.450 0.600 0.0197 0.750 0.0177 0.0236 0.0295 L1 1.000 K 0˚ (min.), 3.5˚ (typ.), 7˚(max.) ccc OUTLINE AND MECHANICAL DATA 0.0394 0.080 LQFP100 (14x14x1.40mm) Low profile Quad Flat Package 0.003 0086901 D 36/38 TDA7505 8 Revision history Revision history Table 30. Document revision history Date Revision 23-Oct-2007 1 Changes Initial release. 37/38 TDA7505 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 38/38