STMICROELECTRONICS TDA7575BPDTR

TDA7575B
2 x 75W multifunction dual-bridge power amplifier
with integrated digital diagnostics
Features
■
Multipower bcd technology
■
MOSFET output power stage
■
DMOS power output
■
New Hi-efficiency (class AB)
■
Single-channel 1Ω driving capability
■
High output power capability 2x28W/4Ω @
14.4V, 1KHz, 10% THD
■
Max. output power 2x75W/2Ω, 1x150W/1Ω
■
Single-channel 1Ω driving capability
– 84W undistorted power
– Full I2C bus driving with 4 address
possibilities:
- St-by
- Play/mute
- Gain 12/26dB
- Full digital diagnostic (AC and DC loads)
PowerSO36 (Slug up)
Description
■
Possibility to disable the I2C bus
■
Differential inputs
■
Full fault protection
■
DC offset detection
■
Two independent short circuit protections
■
Diagnostic on clipping detector with selectable
threshold (2%/10%)
■
Clipping detector as diagnostic pin when I2C
bus is disabled
■
St-by/mute pins
■
ESD protection
Table 1.
Flexiwatt 27
The TDA7575B is a new MOSFET dual bridge
amplifier specially intended for car radio
applications. Thanks to the DMOS output stage
the TDA7575B has a very low distortion allowing
a clear powerful sound.
Among the features, its superior efficiency
performance coming from the internal exclusive
structure, makes it the most suitable device to
simplify the thermal management in high power
sets.The dissipated output power under average
listening condition is in fact reduced up to 50%
when compared to the level provided by
conventional class AB solutions.
This device is equipped with a full diagnostic array
that communicates the status of each speaker
through the I2C bus. The TDA7575B has also the
possibility of driving loads down to 1Ω paralleling
the outputs into a single channel. It is also
possible to disable the I2C and control the
TDA7575B by means of the usual ST-BY and
MUTE pins.
Device summary
Order code
Package
Packing
TDA7575B
Flexiwatt 27
Tube
TDA7575BPD
PowerSSO36 (slug up)
Tube
TDA7575BPDTR
PowerSSO36 (slug up)
Tape and reel
October 2007
Rev 1
1/32
www.st.com
1
Contents
TDA7575B
Contents
1
Block and pins diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4
Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5
I2C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6
5.1
Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2
Start and stop conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3
Byte format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.5
1W capability setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.6
I2C abilitation setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Software specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.1
7
Examples of bytes sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Diagnostics functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.1
Turn-on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.2
Permanent diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.3
Output DC offset detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.4
AC diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.5
Multiple faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.6
Faults availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.7
I2C programming/reading sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2/32
TDA7575B
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Address selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
IB1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
IB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
DB1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
DB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Double fault table for turn on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3/32
List of figures
TDA7575B
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
(4Ω - SINE)
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
4/32
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Quiescent drain current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Output power vs. supply voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Output power vs. supply voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Output power vs. supply voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Distortion vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Distortion vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Distortion vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Distortion vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Distortion vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Distortion vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Distortion vs. output voltage (LD mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Cross talk vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Cross talk vs. frequency (LD mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
CMRRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Output attenuation vs. supply voltage (vs. dependent muting) . . . . . . . . . . . . . . . . . . . . . . 13
Output attenuation vs. mute pin voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Power dissipation vs. output power
13
Power dissipation vs. output power (2Ω - SINE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Power dissipation vs. average output power (Audio program simulation, 4Ω) . . . . . . . . . . 14
Power dissipation vs. average output power (Audio program simulation, 2Ω) . . . . . . . . . . 14
ITU R-ARM frequency response, weighting filter for transient pop. . . . . . . . . . . . . . . . . . . 14
Application circuit (TDA7575B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Application circuit (TDA7575BPD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Data validity on the I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Timing diagram on the I2C bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Timing acknowledge clock pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Turn - on diagnostic: working principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
SVR and output behavior - case 1: without turn-on diagnostic . . . . . . . . . . . . . . . . . . . . . . 23
SVR and output pin behavior - case 2: with turn-on diagnostic . . . . . . . . . . . . . . . . . . . . . 24
Short circuit detection thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Load detection thresholds - high gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Load detection thresholds - high gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Restart timing without diagnostic enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Restart timing with diagnostic enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Current detection high: Load impedance |Z| vs. output peak voltage. . . . . . . . . . . . . . . . . 27
Current detection low: Load impedance |Z| vs. output peak voltage . . . . . . . . . . . . . . . . . 27
PowerSO36 (slug up) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . 29
Flexiwatt 27 mechanical data and package dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . 30
TDA7575B
1
Block and pins diagrams
Block and pins diagrams
Figure 1.
Block diagram
ADDRESS
A
B
VS
CLK DATA
VCC
CD_OUT
CLIP
DETECTOR
I2CBUS
IN1+
OUT1+
IN1OUT1SHORT CIRCUIT
PROTECTION
IN2+
OUT2+
IN2-
OUT2SHORT CIRCUIT
PROTECTION
SVR
S_GND
ST-BY/HE
PW_GND
TAB
I2C EN
1Ω
MUTE
D01AU1269
Figure 2.
OUT1+
Pin connections (top view)
1
36
TAB
27
TAB
26
PWGND
25
A
24
OUT2+
N.C.
OUT1+
35
2
IN1+
VCC
34
3
IN1-
23
VCC
33
4
MUTE
22
OUT2-
B
32
5
ST_BY
21
VCC
PWGND
31
6
SGND
20
IN2+
19
IN2-
PWGND
30
7
DATA
18
I2CEN
OUT1-
29
8
CK
17
1Ω
OUT1-
28
9
N.C.
16
CD_OUT
OUT2-
27
10
N.C.
15
SVR
14
CK
OUT2-
26
11
N.C.
13
DATA
PWGND
25
12
N.C.
12
SGND
PWGND
24
13
SVR
11
STT-BY
A
23
14
CD-OUT
10
MUTE
VCC
22
15
VCC
21
OUT2+
OUT2+
9
IN1-
1-OHM
8
IN1+
16
I2C-EN
7
VCC
20
17
IN2-
6
OUT1-
19
18
IN2+
5
N.C.
4
OUT1+
D01AU1270
3
B
PowerSO-36 (slug up)
2
PWGND
1
TAB
D03IN1512
Flexiwatt 27
5/32
Electrical specifications
TDA7575B
2
Electrical specifications
2.1
Absolute maximum ratings
Table 2.
Absolute maximum ratings
Symbol
Parameter
Value
Unit
Vop
Operating supply voltage
18
V
VS
DC supply voltage
28
V
Peak supply voltage (for t = 50ms)
50
V
CK pin voltage
6
V
Data pin voltage
6
V
IO
Output peak current (not repetitive t = 100ms)
8
A
IO
Output peak current (repetitive f > 10Hz)
6
A
Power dissipation Tcase = 70°C
86
W
-55 to 150
°C
Vpeak
VCK
VDATA
Ptot
Tstg, Tj
Storage and junction temperature
2.2
Thermal data
Table 3.
Thermal data
Symbol
Rth j-case
Parameter
Thermal resistance junction to case
Max
PowerSO36
Flexiwatt 27
Unit
1
1
°C/W
2.3
Electrical characteristics
Table 4.
Electrical characteristics
(VS = 14.4V; f=1KHz; RL=4Ω; Tamb= 25°C unless otherwise specified)
Symbol
Parameter
Test condition
Min.
Typ.
Max.
Unit
18
V
200
mA
Power amplifier
VS
Supply voltage range
8
Id
Total quiescent drain current
50
130
Max. power(1)
35
40
W
THD = 10%
THD = 1%; BTL mode
25
28
22
W
RL = 2Ω; THD 10%
RL = 2Ω; THD 1%
RL = 2Ω; Max. power(1)
45
50
37
75
W
Po
6/32
Output power
70
TDA7575B
Table 4.
Electrical specifications
Electrical characteristics (continued)
(VS = 14.4V; f=1KHz; RL=4Ω; Tamb= 25°C unless otherwise specified)
Symbol
Po
THD
Parameter
Output power
Total harmonic distortion
CT
Cross talk
RIN
GV1
Test condition
Single channel configuration
(1Ω pin >2.5V); RL = 1Ω;
THD 3%
Max. power(1)
Min.
Typ.
80
140
84
150
Max.
Unit
W
PO = 1-12W; STD MODE
HE MODE; PO = 1-2W
HE MODE; PO = 4-8W
0.03
0.03
0.5
0.1
0.1
%
PO = 1-12W, f = 10kHz
0.15
0.5
%
RL = 2; HE MODE; Po = 3W
0.03
0.5
%
Single channel configuration
(1Ω pin >2.5V); RL = 1; PO = 430W
0.02
0.1
%
60
75
Input impedance
60
100
130
KΩ
Voltage gain 1 (default)
25
26
27
dB
Voltage gain match 1
-1
0
1
dB
Voltage gain 2
11
12
13
dB
ΔGV2
Voltage gain match 2
-1
0
1
dB
EIN1
Output noise voltage gain 1
Rg = 600Ω; Gv = 26dB
filter 20 to 22kHz
40
60
μV
EIN2
Output noise voltage gain 2
Rg = 600Ω; Gv = 12dB
filter 20 to 22kHz
15
25
μV
SVR
Supply voltage rejection
f = 100Hz to 10kHz; Vr = 1Vpk;
Rg = 600Ω
50
BW
Power bandwidth
(-3dB)
100
ASB
Stand-by attenuation
ISB
Stand-by current consumption
AM
Mute attenuation
VOS
Offset voltage
VAM
Min. supply mute threshold
ΔGV1
GV2
CMRR
Input CMRR
Rg = 600Ω; PO = 1W
90
Vst-by = 0V
Mute & play
VCM = 1Vpk-pk; Rg = 0 Ω
VMC
Maximum common mode input
f = 1kHz
level
SR
Slew rate
ΔVOS
During mute ON/OFF output
offset voltage
During St-By ON/OFF output
offset voltage
60
dB
KHz
100
2
dB
10
μA
80
90
-45
0
45
mV
7
7.5
8
V
56
60
dB
dB
1
1.5
ITU R-ARM weighted
see Figure 23
dB
4
Vrms
V/μs
-10
+10
mV
-10
+10
mV
7/32
Electrical specifications
Table 4.
TDA7575B
Electrical characteristics (continued)
(VS = 14.4V; f=1KHz; RL=4Ω; Tamb= 25°C unless otherwise specified)
Symbol
Parameter
Test condition
Min.
Typ.
Max.
Unit
TON
Turn on delay
D2 (IB1) 0 to 1
15
40
ms
TOFF
Turn off delay
D2 (IB1) 1 to 0
15
40
ms
VOFF
St-by pin for st-by
0
1.5
V
VSB
St-by pin for standard bridge
3.5
5
V
VHE
St-by pin for Hi-eff
7
18
V
IO
St-by pin current
1.5 < Vstby/HE < 18V
St-by pin current
Vstby < 1.5V
7
160
200
μA
-10
0
10
μA
Vm
Mute pin voltage for mute mode
0
1.5
V
Vm
Mute pin voltage for play mode
3.5
18
V
Im
Mute pin current (st_by)
Vmute = 0V, Vstby < 1.5V
0
5
μA
Im
Mute pin current (operative)
0V < Vmute < 18V, Vstby > 3.5V
65
100
μA
0
1.5
V
2.5
18
V
-5
VI2C
I2C pin voltage for I2C disabled
VI2C
I2C
2C
I2C
I2C
I2C
V1Ω
1Ω pin voltage for 2ch mode
V1Ω
1Ω pin voltage for 1Ω mode
I1Ω
1Ω pin current (st-by)
0V < 1Ω <18V, Vstby < 1.5V
-5
I1Ω
1Ω pin current (operative)
1Ω <18V, Vstby > 3.5V
7
Low logic level
I
I2C
pin voltage for
enabled
-5
0
5
μA
7
11
15
μA
0
1.5
V
2.5
18
V
0
5
μA
11
15
μA
0
1.5
V
High logic level
2.5
18
V
pin current (st-by)
0V <
pin current (operative)
I2C
La
I2C
EN < 18V, Vstby < 1.5V
EN <18V, Vstby>3.5V
A pin voltage
Ha
Ia
A pin current (st-by)
0V < A < 18V, Vstby < 1.5V
-5
0
5
μA
Ia
A pin current (operative)
A<18V, Vstby > 3.5V
7
11
15
μA
Low logic level
0
1.5
V
High logic level
2.5
18
V
Lb
B pin voltage
Hb
Ib
B pin current (st-by)
0V < B < 18V, Vstby < 1.5V
-5
0
5
μA
Ib
B pin current (operative)
B < 18V, Vstby > 3.5V
7
11
15
μA
TW
Thermal warning
150
°C
TPI
Thermal protection intervention
170
°C
ICDH
Clip pin high leakage current
CD off, 0V < VCD < 5.5V
ICDL
Clip pin low sink current
CD on; VCD < 300mV
CD
Clip detect THD level
(*) ST-BY Pin high enables
8/32
I2
-15
0
15
1
μA
mA
D0 (IB1) = 0
0.8
1.3
2.5
%
D0 (IB1) = 1
5
10
15
%
C bus; ST-BY Pin low puts the device in ST-BY condition.(see “prog” for more details)
TDA7575B
Table 4.
Symbol
Electrical specifications
Electrical characteristics (continued)
(VS = 14.4V; f=1KHz; RL=4Ω; Tamb= 25°C unless otherwise specified)
Parameter
Test condition
Min.
Typ.
Max.
Unit
1.2
V
Turn on diagnostics (Power amplifier mode)
Pgnd
Short to GND det. (below this
limit, the Output is considered
in Short Circuit to GND)
Pvs
Short to Vs det. (above this
limit, the Output is considered
in Short Circuit to VS)
Vs -0.9
Pnop
Normal operation
thresholds.(Within these limits,
the Output is considered
without faults).
1.8
Power amplifier in st-by condition
Lsc
Shorted load det.
Lop
Open load det.
130
Lnop
Normal load det.
1.5
V
Vs -1.5
V
0.5
Ω
Ω
70
Ω
1.2
V
TUrn on diagnostics (Line driver mode)
Pgnd
Short to GND det. (below this
limit, the Output is considered
in Short Circuit to GND)
Pvs
Short to Vs det. (above this
limit, the Output is considered
in Short Circuit to VS)
Pnop
Normal operation
thresholds.(Within these limits,
the Output is considered
without faults).
Vs -0.9
V
Power amplifier in st-by
1.8
Lsc
Shorted load det.
Lop
Open load det.
400
Lnop
Normal load det.
4.5
Vs -1.5
V
1.5
Ω
Ω
200
Ω
1.2
V
Permanent diagnostics (Power amplifier mode or line driver mode)
Pgnd
Short to GND det. (below this
limit, the Output is considered
in Short Circuit to GND)
Pvs
Short to Vs det. (above this
limit, the Output is considered
in Short Circuit to VS)
Vs 0.9
Pnop
Normal operation
thresholds.(Within these limits,
the Output is considered
without faults).
1.8
Lsc
Power amplifier in Mute or Play
condition, one or more short
circuits protection activated
V
Vs -1.5
V
Pow. amp. mode
0.5
Ω
Line driver mode
1.5
Ω
Shorted load det.
9/32
Electrical specifications
Table 4.
Electrical characteristics (continued)
(VS = 14.4V; f=1KHz; RL=4Ω; Tamb= 25°C unless otherwise specified)
Symbol
I2
TDA7575B
Parameter
Test condition
Min.
Typ.
Max.
Unit
±2
±2.5
V
VO
Offset detection
Power amplifier in play condition
AC input signals = 0
±1.5
INLH
Normal load current detection
VO < (VS - 5)pk IB2 (D0) = 0
500
mA
INLL
Normal load current detection
VO < (VS - 5)pk IB2 (D0) = 1
250
mA
IOLH
Open load current detection
VO < (VS - 5)pk IB2 (D0) = 0
250
mA
IOLL
Open load current detection
VO < (VS - 5)pk IB2 (D0) =1
125
mA
C bus interface
fSCL
Clock frequency
400
KHz
VIL
Input low voltage
1.5
V
VIH
Input high voltage
1. Saturated sqare wave output.
10/32
2.3
V
TDA7575B
Electrical characteristics curves
3
Electrical characteristics curves
Figure 3.
Quiescent drain current vs. supply
voltage
Figure 4.
Id (mA)
Po (W)
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
5
160
150
Vi=0
NO LOADS
140
130
120
110
100
90
80
70
8
Output power vs. supply voltage
10
12
14
16
18
Po-max
RL=4 Ohm
f=1 KHz
THD=10%
THD=1%
8
9
10
11
12
Vs (V)
Figure 5.
Output power vs. supply voltage
Figure 6.
130
120
110
100
90
80
70
60
50
40
30
20
10
0
Po-max
RL=2 Ohm
f=1 KHz
THD=10%
THD=1%
8
9
Figure 7.
10
11
12
13
Vs (V)
14
15
16
17
18
Distortion vs. output power
16
17
18
Output power vs. supply voltage
Po-max
RL=2 Ohm
f=1 KHz
THD=10%
THD=1%
8
9
Figure 8.
THD (%)
10
15
Po (W)
Po (W)
130
120
110
100
90
80
70
60
50
40
30
20
10
0
13
14
Vs (V)
10
11
12
13
Vs (V)
14
15
16
17
18
Distortion vs. output power
THD (%)
10
HI-EFF mode
Vs=14.4V
RL=2 Ohm
HI-EFF mode
Vs=14.4V
RL=4 Ohm
1
1
f=10 KHz
f=10 KHz
0.1
0.1
f=1 KHz
f=1 KHz
0.01
0.01
0.1
1
10
Po (W)
100
0.1
1
Po (W)
10
100
11/32
Electrical characteristics curves
Figure 9.
TDA7575B
Distortion vs. output power
Figure 10. Distortion vs. output power
THD (%)
10
THD (%)
10
STD mode
Vs=14.4V
RL=4 Ohm
1
STD mode
Vs=14.4V
RL=2 Ohm
1
f=10 KHz
f=10 KHz
0.1
0.1
f=1 KHz
f=1 KHz
0.01
0.01
0.001
0.001
0.1
1
10
100
0.1
Po (W)
10
100
Po (W)
Figure 11. Distortion vs. output power
Figure 12. Distortion vs. frequency
THD (%)
THD (%)
10
1
10
STD mode
Vs=14.4V
RL=1 Ohm
Vs=14.4V
STD mode
1
1
1Ω - 40W
2Ω - 24W
4Ω - 12W
f=10 KHz
0.1
0.1
0.01
f=1 KHz
0.001
0.01
0.1
1
10
10
100
100
Po (W)
Figure 13. Distortion vs. output voltage
(LD mode)
THD (%)
LD mode
Vs=14.4V
RL=100 Ohm
1
10000
100000
Figure 14. Cross talk vs. frequency
CROSSTALK (dB)
-20
10
1000
f (Hz)
-30
STD mode
RL=2 Ohm
Rg=600 Ohm
-40
-50
-60
0.1
-70
f=10 KHz
-80
0.01
-90
f=1 KHz
0.001
-100
0
1
2
3
4
5
6
Vout
12/32
7
8
9
10 11 12
10
100
1000
f (Hz)
10000
100000
TDA7575B
Electrical characteristics curves
Figure 15. Cross talk vs. frequency
(LD mode)
Figure 16. CMRRR vs. frequency
CROSSTALK (dB)
-20
CMRR (dB)
-40
-30
LD mode
Vo=1 Vrms
RL=100 Ohm
-40
Vcm=1 Vpp
-50
-50
-60
-70
-60
-80
-90
-100
-70
10
100
1000
10000
100000
10
100
1000
10000
100000
f (Hz)
f (Hz)
Figure 17. Output attenuation vs. supply
voltage (vs. dependent muting)
Figure 18. Output attenuation vs. mute pin
voltage
OUT ATTN (dB)
OUT ATTN (dB)
20
20
0 dB=1 Vrms
RL=2 Ohm
0
0 dB=2 Vrms
RL=2 Ohm
0
-20
-20
-40
-40
-60
-60
-80
-80
-100
-100
-120
5
6
7
8
9
1
10
1.5
2
2.5
3
3.5
4
MUTE PIN V (V)
Vs (V)
Figure 19. Power dissipation vs. output power Figure 20. Power dissipation vs. output power
(4Ω - SINE)
(2Ω - SINE)
Ptot (W)
Ptot (W)
35
60
Vs=14.4V
RL=2 x 4 Ohm
f=1 KHz
30
25
Vs=14.4V
RL:=2 x 2 Ohm
f=1 KHz
50
40
STD
STD
20
30
15
20
10
HI-EFF
HI-EFF
10
5
0
0
0.1
1
10
Po (W)
100
0.1
1
10
100
Po (W)
13/32
Electrical characteristics curves
TDA7575B
Figure 21. Power dissipation vs. average
output power (Audio program
simulation, 4Ω)
Figure 22. Power dissipation vs. average output
power (Audio program simulation,
2Ω)
Ptot (W)
Ptot (W)
30
35
Vs=14 V
RL=2 x 4Ω
GAUSSIAN NOISE
25
20
START
CLIP
START
20
HI-EFF
15
STD
10
10
5
HI-EFF
5
0
0
0
1
2
3
4
5
Figure 23. ITU R-ARM frequency response,
weighting filter for transient pop
Output attenuation (dB)
10
0
-10
-20
-30
-40
-50
100
1000
Hz
0
1
2
3
4
5
Po (W)
Po (W)
14/32
STD
25
CLIP
15
10
Vs=14V
RL=2 x 2 Ohm
GAUSSIAN NOISE
30
10000
100000
AC00343
6
7
8
9
10
TDA7575B
4
Application circuit
Application circuit
Figure 24. Application circuit (TDA7575B)
VS
I2C BUS
A
B
CLK
CD_OUT
DATA
C8
2200μF
C7
0.1μF
R1 47KΩ
V
VCC
25
3
14
13
7-21
16
C1 0.22μF
IN1+
8
OUT1+
4
IN1-
9
6
IN2+
20
24
IN2-
19
OUT1-
C2 0.22μF
C3 0.22μF
OUT2+
22
OUT2-
C4 0.22μF
11
15
12
1
2-26
PW_GND
S_GND
TAB
MUTE
C5
10μF
C6
1μF
ST-BY/HE
D05AU1615
I2C BUS
ENABLE
18
10
17
R2 47KΩ
1Ω SETTING
Figure 25. Application circuit (TDA7575BPD)
VS
I2C BUS
A
B
CLK
CD_OUT
DATA
C8
2200μF
C7
0.1μF
R1 47KΩ
V
VCC
23
32
8
7
21-2-33-34
14
C1 0.22μF
IN1+
2
IN1-
3
28-29
IN2+
18
19-20
IN2-
17
OUT1+
35-36
OUT1-
C2 0.22μF
C3 0.22μF
OUT2+
26-29
OUT2-
C4 0.22μF
13
5
6
24-25-30-31
S_GND
C5
10μF
D05AU1616
PW_GND
1
TAB
MUTE
C6
1μF
ST-BY/HE
I2C BUS
ENABLE
16
4
15
R2 47KΩ
1Ω SETTING
15/32
I2C bus interface
5
TDA7575B
I2C bus interface
Data transmission from microprocessor to the TDA7575B and vice versa takes place
through the 2 wires I2C BUS interface, consisting of the two lines SDA and SCL (pull-up
resistors to positive supply voltage must be connected).
5.1
Data validity
As shown by Figure 26, the data on the SDA line must be stable during the high period of
the clock.
The HIGH and LOW state of the data line can only change when the clock signal on the SCL
line is LOW.
5.2
Start and stop conditions
As shown by Figure 27 a start condition is a HIGH to LOW transition of the SDA line while
SCL is HIGH.
The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH.
5.3
Byte format
Every byte transferred to the SDA line must contain 8 bits. Each byte must be followed by an
acknowledge bit. The MSB is transferred first.
5.4
Acknowledge
The transmitter(*) puts a resistive HIGH level on the SDA line during the acknowledge clock
pulse (see Figure 28). The receiver(**) the acknowledges has to pull-down (LOW) the SDA
line during the acknowledge clock pulse, so that the SDA line is stable LOW during this clock
pulse.
(*) Transmitter
= master (μP) when it writes an address to the TDA7575B
= slave (TDA7575B) when the µP reads a data byte from TDA7575B
(**) Receiver
= slave (TDA7575B) when the µP writes an address to the TDA7575B
= master (μP) when it reads a data byte from TDA7575B
Figure 26. Data validity on the I2C bus
SDA
SCL
DATA LINE
STABLE, DATA
VALID
16/32
CHANGE
DATA
ALLOWED
D99AU1031
TDA7575B
I2C bus interface
Figure 27. Timing diagram on the I2C bus
SCL
I2CBUS
SDA
D99AU1032
START
STOP
Figure 28. Timing acknowledge clock pulse
SCL
1
2
3
7
8
9
SDA
MSB
START
5.5
D99AU1033
ACKNOWLEDGMENT
FROM RECEIVER
1Ω capability setting
It is possible to drive 1Ω load paralleling the outputs into a single channel.
In order to implement this feature, outputs are to be connected on the board as follows:
OUT1+ (PIN35 and PIN36) shorted to OUT2+ (PIN19 and PIN20)
OUT1- (PIN28 and PIN29) shorted to OUT2- (PIN26 and PIN27).
It is recommended to minimize the impedance on the board between OUT2 and the load in
order to minimize THD distortion. It is also recommended to control the maximum mismatch
impedance between VCC pins (PIN21/PIN22 respect to PIN33/PIN34) and between
PWGND pins (PIN24/PIN25 respect to PIN30/PIN31), mismatch that must not exceed a
value of 20 mΩ.
With 1Ω feature settled the active input is IN2 (PIN17 and PIN18), therefore IN1 pins should
be let floating.
It is possible to set the load capability acting on 1Ω pin as follows:
1Ω PIN (PIN15) < 1.5V: two channels mode (for a minimum load of 2Ω)
1Ω PIN (PIN15) > 2.5V: one channel mode (for 1Ω load).
IT IS TO REMEMBER THAT 1
OHM FUNCTION IS A HARDWARE SELECTION.
Therefore it is recommended to leave 1Ω PIN floating or shorted to GND to set the two
channels mode configuration, or to short 1Ω PIN to VCC to set the one channel (1Ω)
configuration.
5.6
I2C abilitation setting
It is possible to disable the I2C interface by acting on I2C PIN (PIN16) and control the
TDA7575B by means of the usual ST-BY and MUTE pins. In order to activate or deactivate
this feature, I2C PIN must be set as follows:
17/32
I2C bus interface
TDA7575B
I2C PIN (PIN16) < 1.5V: I2C bus interface deactivated
I2C PIN (PIN16) > 2.5V: I2C bus interface activated
It is also possible to let I2C PIN floating to deactivate the I2C bus interface, or to short I2C
PIN to VCC to activate it.
In particular:
I2C ENABLED: I2C pin (PIN16) > 2.5V
–
STD MODE: Vstby (PIN5) > 3.5V, IB2(D1)=0
–
HE MODE: Vstby (PIN5) > 3.5V, IB2(D1)=1
–
PLAY MODE: Vmute (pin 4) >3.5V, IB1 (D2) = 1
The amplifier can always be switched off by putting Vstby to 0V, but with I2C enabled it can
be turn on only through I2C (with Vstby>3.5V).
I2C DISABLED: I2C pin (PIN16) < 1.5V
–
STD MODE: 3.5V < st-by (PIN5) < 5
–
HE MODE: Vstby (PIN5) > 7V
–
PLAY MODE: Vmute (pin 4) >3.5V
For both STD and HE MODE the play/mute mode can be set acting on Vmute pin.
When I2C BUS is disabled, when a fault is detected PIN 14 (CD-OUT) is pulled down by the
internal logic circuitry. The faults detected are the short circuit to ground, to VCC and across
the load (after an aver current detection).
18/32
TDA7575B
6
Software specifications
Software specifications
All the functions of the TDA7575B are activated by I2C interface.
The bit 0 of the "ADDRESS BYTE" defines if the next bytes are write instruction (from μP to
TDA7575B) or read instruction (from TDA7575B to µP).
Table 5.
Address selection
A6
1
A5
1
A4
0
A3
1
A2
0
A1
B
A0
A
R/W
X
If R/W = 0, the μP sends 2 "Instruction Bytes": IB1 and IB2.
Table 6.
IB1
D7
0
D6
Diagnostic enable (D6 = 1)
Diagnostic defeat (D6 = 0)
D5
Offset Detection enable (D5 = 1)
Offset Detection defeat (D5 = 0)
D4
Gain = 26dB (D4 = 0)
Gain = 12dB (D4 = 1)
D3
0
D2
Mute (D2 = 0)
Unmute (D2 = 1)
D1
0
D0
CD 2% (D0 = 0)
CD 10% (D0 = 1)
19/32
Software specifications
Table 7.
TDA7575B
IB2
D7
0
D6
0
D5
0
D4
Stand-by on - Amplifier not working - (D4 = 0)
Stand-by off - Amplifier working - (D4 = 1)
D3
Power Amplifier Mode Diagnostic (D3 = 0);
Line Driver Mode Diagnostic (D3 = 1)
D2
Current Detection Diagnostic Enabled (D2 = 1)
Current Detection Diagnostic Defeat (D2 = 0)
D1
Power amplifier working in standard mode (D1 = 0)
Power amplifier working in high efficiency mode (D1 = 1)
D0
Current Detection Threshold HIGH (D7 =0)
Current Detection Threshold LOW (D7 =1)
If R/W = 1, the TDA7575B sends 2 "Diagnostics Bytes" to μP: DB1 and DB2.
Table 8.
DB1
D7
Thermal warming (if Tchip ≥ 150°C, D7 = 1)
D6
Diag. cycle not activated or not terminated (D6 = 0)
Diag. cycle terminated (D6 = 1)
D5
Channel 1
current detection IB2 (D0) = 0
Output peak current < 250 mA - Open load (D5 = 1)
Output peak current > 500 mA - Normal load (D5 = 0)
D4
Channel 1
Turn-on diagnostic (D4 = 0)
Permanent diagnostic (D4 = 1)
D3
Channel 1
Normal load (D3 = 0)
Short load (D3 = 1)
D2
Channel 1
Turn-on diag.: No open load (D2 = 0)
Open load detection (D2 = 1)
Offset diag.: No output offset (D2 = 0)
Output offset detection (D2 = 1)
D1
Channel 1
No short to Vcc (D1 = 0)
Short to Vcc (D1 = 1)
D0
Channel 1
No short to GND (D1 = 0)
Short to GND (D1 = 1)
20/32
Channel LF
current detection IB2 (D0) = 1
Output peak current < 125 mA - Open load (D5 = 1)
Output peak current > 250 mA - Normal load (D5 = 0)
TDA7575B
Table 9.
Software specifications
DB2
D7
Offset detection not activated (D7 = 0)
Offset detection activated (D7 = 1)
D6
Current sensor not activated (D6 = 0)
Current sensor activated (D6 = 1)
D5
Channel LR
Current detection IB2 (D0) = 0
Output peak current < 250 mA - Open load (D5 = 1)
Output peak current > 500 mA - Normal load (D5 = 0)
D4
Channel 2
Turn-on diagnostic (D4 = 0)
Permanent diagnostic (D4 = 1)
D3
Channel 2
Normal load (D3 = 0)
Short load (D3 = 1)
D2
Channel 2
Turn-on diag.: No open load (D2 = 0)
Open load detection (D2 = 1)
Permanent diag.: No output offset (D2 = 0)
Output offset detection (D2 = 1)
D1
Channel 2
No short to Vcc (D1 = 0)
Short to Vcc (D1 = 1)
D0
Channel 2
No short to GND (D1 = 0)
Short to GND (D1 = 1)
Channel LR
Current detection IB2 (D0) = 1
Output peak current < TBD mA - Open load (D5 = 1)
Output peak current > TBD mA - Normal load (D5 = 0)
21/32
Software specifications
6.1
TDA7575B
Examples of bytes sequence
1 - Turn-On diagnostic - Write operation
Start Address byte with D0 = 0
ACK
IB1 with D6 = 1
ACK
IB2
ACK
STOP
L
2 - Turn-On diagnostic - Read operation
Start
Address byte with D0 = 1
ACK
DB1
ACK
DB2
ACK
STOP
The delay from 1 to 2 can be selected by software, starting from T.B.D. ms
3a - Turn-On of the power amplifier with mute on, diagnostic defeat.
Start
Address byte with D0 = 0
ACK
IB1
ACK
X000XXXX
IB2
ACK
STOP
ACK
STOP
ACK
STOP
XXX1XX1X
3b - Turn-Off of the power amplifier
Start
Address byte with D0 = 0
ACK
IB1
ACK
X0XXXXXX
IB2
XXX0XXXX
4 - Offset detection procedure enable
Start
Address byte with D0 = 0
ACK
IB1
ACK
XX1XX1XX
IB2
XXX1XXXX
5 - Offset detection procedure stop and reading operation (the results are valid only for the
offset detection bits (D2 of the bytes DB1, DB2, DB3, DB4).
Start
22/32
Address byte with D0 = 1
ACK
DB1
ACK
DB2
ACK
STOP
●
The purpose of this test is to check if a D.C. offset (2V typ.) is present on the outputs,
produced by input capacitor with anomalous leakage current or humidity between pins.
●
The delay from 4 to 5 can be selected by software, starting from T.B.D. ms
TDA7575B
Diagnostics functional description
7
Diagnostics functional description
7.1
Turn-on diagnostic
It is activated at the turn-on (stand-by out) under I2C bus request. Detectable output faults are:
–
SHORT TO GND
–
SHORT TO Vs
–
SHORT ACROSS THE SPEAKER
–
OPEN SPEAKER
To verify if any of the above misconnections are in place, a subsonic (inaudible) current
pulse (Figure 29) is internally generated, sent through the speaker(s) and sunk back. The
Turn On diagnostic status is internally stored until a successive diagnostic pulse is
requested (after a I2C reading).
If the "stand-by out" and "diag. enable" commands are both given through a single
programming step, the pulse takes place first (power stage still in stand-by mode, low,
outputs = high impedance).
Afterwards, when the Amplifier is biased, the PERMANENT diagnostic takes place. The
previous Turn On state is kept until a short appears at the outputs.
Figure 29. Turn - on diagnostic: working principle
Vs~5V
Isource
I (mA)
Isource
CH+
Isink
CHIsink
~100mS
t (ms)
Measure time
Fig. Figure 30 and Figure 31 show SVR and OUTPUT waveforms at the turn-on (stand-by
out) with and without Turn-on diagnostic.
Figure 30. SVR and output behavior - case 1: without turn-on diagnostic
Vsvr
Out
Permanent diagnostic
acquisition time (100mS Typ)
Bias (power amp turn-on)
I2CB DATA
Diagnostic Enable
(Permanent)
t
FAULT
event
Read Data
Permanent Diagnostics data (output)
permitted time
23/32
Diagnostics functional description
TDA7575B
Figure 31. SVR and output pin behavior - case 2: with turn-on diagnostic
Vsvr
Out
Turn-on diagnostic
acquisition time (100mS Typ)
Diagnostic Enable
(Turn-on)
Permanent diagnostic
acquisition time (100mS Typ)
Turn-on Diagnostics data (output)
permitted time
Bias (power amp turn-on)
permitted time
I2CB DATA
FAULT
event
Diagnostic Enable
(Permanent)
Read Data
t
Permanent Diagnostics data (output)
permitted time
The information related to the outputs status is read and memorized at the end of the
current pulse top. The acquisition time is 100 ms (typ.). No audible noise is generated in the
process. As for SHORT TO GND / Vs the fault-detection thresholds remain unchanged from
26 dB to 12 dB gain setting. They are as follows:
Figure 32. Short circuit detection thresholds
S.C. to GND
0V
x
1.2V
Normal Operation
1.8V
x
VS-1.5V
S.C. to Vs
VS-0.9V
D02AU1341
VS
Concerning SHORT ACROSS THE SPEAKER / OPEN SPEAKER, the threshold varies
from 26 dB to 12 dB gain setting, since different loads are expected (either normal speaker's
impedance or high impedance). The values in case of 26 dB gain are as follows:
Figure 33. Load detection thresholds - high gain setting
S.C. across Load
0V
x
0.5Ω
Normal Operation
1.5Ω
x
Open Load
130Ω
70Ω
Infinite
D01AU1254
If the Line-Driver mode (Gv= 12 dB and Line Driver Mode diagnostic = 1) is selected, the
same thresholds will change as follows:
Figure 34. Load detection thresholds - high gain setting
S.C. across Load
0Ω
1.5Ω
x
Normal Operation
4.5Ω
200Ω
x
Open Load
400Ω
infinite
D01AU1252
24/32
TDA7575B
7.2
Diagnostics functional description
Permanent diagnostics
Detectable conventional faults are:
–
SHORT TO GND
–
SHORT TO Vs
–
SHORT ACROSS THE SPEAKER
The following additional features are provided:
–
OUTPUT OFFSET DETECTION
The TDA7575B has 2 operating statuses:
1.
RESTART mode. The diagnostic is not enabled. Each audio channel operates
independently from each other. If any of the a.m. faults occurs, only the channel(s)
interested is shut down. A check of the output status is made every 1 ms (fig. 30).
Restart takes place when the overload is removed.
2.
DIAGNOSTIC mode. It is enabled via I2C bus and self activates if an output overload
(such to cause the intervention of the short-circuit protection) occurs to the speakers
outputs. Once activated, the diagnostics procedure develops as follows (fig. 31):
–
To avoid momentary re-circulation spikes from giving erroneous diagnostics, a
check of the output status is made after 1ms: if normal situation (no overloads) is
detected, the diagnostic is not performed and the channel returns back active.
–
Instead, if an overload is detected during the check after 1 ms, then a diagnostic
cycle having a duration of about 100 ms is started.
–
After a diagnostic cycle, the audio channel interested by the fault is switched to
RESTART mode. The relevant data are stored inside the device and can be read
by the microprocessor. When one cycle has terminated, the next one is activated
by an I2C reading. This is to ensure continuous diagnostics throughout the carradio operating time.
–
To check the status of the device a sampling system is needed. The timing is
chosen at microprocessor level (over than half a second is recommended).
Figure 35. Restart timing without diagnostic enable (permanent)
each 1ms time, a sampling of the fault is done
Out
1-2mS
1mS
1mS
1mS
1mS
t
Overcurrent and short
circuit protection intervention
(i.e. short circuit to GND)
Short circuit removed
Figure 36. Restart timing with diagnostic enable (permanent)
1mS
100mS
1mS
1mS
t
Overcurrent and short
circuit protection intervention
(i.e. short circuit to GND)
Short circuit removed
25/32
Diagnostics functional description
7.3
TDA7575B
Output DC offset detection
Any DC output offset exceeding +/- 2 V are signalled out. This inconvenient might occur as a
consequence of initially defective or aged and worn-out input capacitors feeding a DC
component to the inputs, so putting the speakers at risk of overheating.
This diagnostic has to be performed with low-level output AC signal (or Vin = 0).
The test is run with selectable time duration by microprocessor (from a "start" to a "stop"
command):
–
START = Last reading operation or setting IB1 - D5 - (OFFSET enable) to 1
–
STOP = Actual reading operation
Excess offset is signalled out if persistent throughout the assigned testing time. This feature
is disabled if any overloads leading to activation of the short-circuit protection occurs in the
process.
7.4
AC diagnostic
It is targeted at detecting accidental disconnection of tweeters in 2-way speaker and, more
in general, presence of capacitively (AC) coupled loads.
This diagnostic is based on the notion that the overall speaker's impedance (woofer +
parallel tweeter) will tend to increase towards high frequencies if the tweeter gets
disconnected, because the remaining speaker (woofer) would be out of its operating range
(high impedance). The diagnostic decision is made according to peak output current
thresholds, and it is enabled by setting (IB2-D2) = 1. Two different detection levels are
available:
–
HIGH CURRENT THRESHOLD IB2 (D7) = 0
Iout > 500mApk = NORMAL STATUS
Iout < 250mApk = OPEN TWEETER
–
LOW CURRENT THRESHOLD IB2 (D7) = 1
Iout > 250mApk = NORMAL STATUS
Iout < 125mApk = OPEN TWEETER
To correctly implement this feature, it is necessary to briefly provide a signal tone (with the
amplifier in "play") whose frequency and magnitude are such to determine an output current
higher than 500mApk with IB2(D7)=0 (higher than 250mApk with IB2(D7)=1) in normal
conditions and lower than 250mApk with IB2(D7)=0 (lower than 125mApk with IB2(D7)=1)
should the parallel tweeter be missing.
The test has to last for a minimum number of 3 sine cycles starting from the activation of the
AC diagnostic function IB2<D2>) up to the I2C reading of the results (measuring period). To
confirm presence of tweeter, it is necessary to find at least 3 current pulses over the above
threholds over all the measuring period, else an "open tweeter" message will be issued.
The frequency / magnitude setting of the test tone depends on the impedance
characteristics of each specific speaker being used, with or without the tweeter connected
(to be calculated case by case). High-frequency tones (> 10 KHz) or even ultrasonic signals
26/32
TDA7575B
Diagnostics functional description
are recommended for their negligible acoustic impact and also to maximize the impedance
module's ratio between with tweeter-on and tweeter-off.
Figure 37 shows the Load Impedance as a function of the peak output voltage and the
relevant diagnostic fields.
This feature is disabled if any overloads leading to activation of the short-circuit protection
occurs in the process.
Figure 37. Current detection high: Load impedance |Z| vs. output peak voltage
Load |z| (Ohm)
50
Iout (peak) <250mA
30
20
Low current detection area
(Open load)
D5 = 1 of the DBx byres
Iout (peak) >500mA
10
IB2(D0) = 0
High current detection area
(Normal load)
D5 = 0 of the DBx bytes
5
3
2
1
1
2
3
4
5
6
7
8
Vout (Peak)
Figure 38. Current detection low: Load impedance |Z| vs. output peak voltage
Load |z| (Ohm)
50
Iout (peak) <125mA
30
20
Low current detection area
(Open load)
D5 = 1 of the DBx byres
Iout (peak) >250mA
10
IB2(D0) = 1
High current detection area
(Normal load)
D5 = 0 of the DBx bytes
5
3
2
1
0.5
1
1.5
2
2.5
3
3.5
4
Vout (Peak)
7.5
Multiple faults
When more misconnections are simultaneously in place at the audio outputs, it is
guaranteed that at least one of them is initially read out. The others are notified after
successive cycles of I2C reading and faults removal, provided that the diagnostic is enabled.
This is true for both kinds of diagnostic (Turn on and Permanent).
The table below shows all the couples of double-fault possible. It should be taken into
account that a short circuit with the 4Ω speaker unconnected is considered as double fault.
27/32
Diagnostics functional description
Table 10.
TDA7575B
Double fault table for turn on diagnostic
S. GND (sc)
S. GND (sk)
S. Vs
S. Across L.
Open L.
S. GND (sc)
S. GND
S. GND
S. Vs + S.
GND
S. GND
S. GND
S. GND (sk)
/
S. GND
S. Vs
S. GND
Open L. (*)
S. Vs
/
/
S. Vs
S. Vs
S. Vs
S. Across L.
/
/
/
S. Across L.
N.A.
Open L.
/
/
/
/
Open L. (*)
S. GND (so) / S. GND (sk) in the above table make a distinction according to which of the 2
outputs is shorted to ground (test-current source side= so, test-current sink side = sk). More
precisely, in both the Channels SO = CH+, and SK = CH-.
In Permanent Diagnostic the table is the same, with only a difference concerning Open
Load(*), which is not among the recognizable faults. Should an Open Load be present
during the device's normal working, it would be detected at a subsequent Turn on Diagnostic
cycle (i.e. at the successive Car Radio Turn on).
7.6
Faults availability
All the results coming from I2C bus, by read operations, are the consequence of
measurements inside a defined period of time. If the fault is stable throughout the whole
period, it will be sent out. This is true for DC diagnostic (Turn on and Permanent), for Offset
Detector.
To guarantee always resident functions, every kind of diagnostic cycles (Turn on,
Permanent, Offset) will be reactivate after any I2C reading operation. So, when the micro
reads the I2C, a new cycle will be able to start, but the read data will come from the previous
diag. cycle (i.e. The device is in Turn On state, with a short to Gnd, then the short is
removed and micro reads I2C. The short to Gnd is still present in bytes, because it is the
result of the previous cycle. If another I2C reading operation occurs, the bytes do not show
the short). In general to observe a change in Diagnostic bytes, two I2C reading operations
are necessary.
7.7
I2C programming/reading sequences
A correct turn on/off sequence respectful of the diagnostic timings and producing no audible
noises could be as follows (after battery connection):
–
TURN-ON: (STAND-BY OUT + DIAG ENABLE) --- 500 ms (min) --- MUTING OUT
–
TURN-OFF: MUTING IN --- 20 ms --- (DIAG DISABLE + STAND-BY IN)
Car Radio Installation: DIAG ENABLE (write) --- 200ms --- I2C read (repeat until All faults
disappear).
–
OFFSET TEST: Device in Play (no signal) --
–
OFFSET ENABLE - 30ms - I2C reading
(repeat I2C reading until high-offset message disappears).
28/32
TDA7575B
8
Package information
Package information
In order to meet environmental requirements, ST offers these devices in ECOPACK®
packages. These packages have a lead-free second level interconnect. The category of
second level interconnect is marked on the package and on the inner box label, in
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label.
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.
Figure 39. PowerSO36 (slug up) mechanical data and package dimensions
DIM.
A
A2
A4
A5
a1
b
c
D
D1
D2
E
E1
E2
E3
E4
e
e3
G
H
h
L
N
s
MIN.
3.25
3.1
0.8
mm
TYP.
MAX.
3.43
3.2
1
MIN.
0.128
0.122
0.031
-0.040
0.38
0.32
16
9.8
0.0011
0.008
0.009
0.622
0.37
14.5
11.1
2.9
6.2
3.2
0.547
0.429
0.2
0.030
0.22
0.23
15.8
9.4
5.8
2.9
0.8
OUTLINE AND
MECHANICAL DATA
-0.0015
0.015
0.012
0.630
0.38
0.039
0.57
0.437
0.114
0.244
1.259
0.228
0.114
0.65
11.05
0
15.5
MAX.
0.135
0.126
0.039
0.008
1
13.9
10.9
inch
TYP.
0.026
0.435
0.075
15.9
1.1
1.1
10˚
8˚
0
0.61
0.031
0.003
0.625
0.043
0.043
10˚
8˚
PowerSO36 (SLUG UP)
(1) “D and E1” do not include mold flash or protusions.
Mold flash or protusions shall not exceed 0.15mm (0.006”)
(2) No intrusion allowed inwards the leads.
7183931 D
29/32
Package information
TDA7575B
Figure 40. Flexiwatt 27 mechanical data and package dimensions
DIM.
MIN.
4.45
1.80
A
B
C
D
E
F (1)
G
G1
H (2)
H1
H2
H3
L (2)
L1
L2 (2)
L3
L4
L5
M
M1
N
O
R
R1
R2
R3
R4
V
V1
V2
V3
0.75
0.37
0.80
25.75
28.90
22.07
18.57
15.50
7.70
3.70
3.60
mm
TYP.
4.50
1.90
1.40
0.90
0.39
1.00
26.00
29.23
17.00
12.80
0.80
22.47
18.97
15.70
7.85
5
3.5
4.00
4.00
2.20
2
1.70
0.5
0.3
1.25
0.50
MAX.
4.65
2.00
MIN.
0.175
0.070
1.05
0.42
0.57
1.20
26.25
29.30
0.029
0.014
0.031
1.014
1.139
22.87
19.37
15.90
7.95
0.869
0.731
0.610
0.303
4.30
4.40
0.145
0.142
inch
TYP.
0.177
0.074
0.055
0.035
0.015
0.040
1.023
1.150
0.669
0.503
0.031
0.884
0.747
0.618
0.309
0.197
0.138
0.157
0.157
0.086
0.079
0.067
0.02
0.12
0.049
0.019
MAX.
0.183
0.079
OUTLINE AND
MECHANICAL DATA
0.041
0.016
0.022
0.047
1.033
1.153
0.904
0.762
0.626
0.313
0.169
0.173
5˚ (Typ.)
3˚ (Typ.)
20˚ (Typ.)
45˚ (Typ.)
Flexiwatt27 (vertical)
(1): dam-bar protusion not included
(2): molding protusion included
V
C
B
V
H
H1
V3
A
H2
O
H3
R3
L4
R4
V1
R2
L2
N
L3
R
L
L1
V1
V2
R2
D
R1
L5
Pin 1
R1
R1
E
G
G1
F
FLEX27ME
M
M1
7139011
30/32
TDA7575B
9
Revision history
Revision history
Table 11.
Document revision history
Date
Revision
30-Oct-2007
1
Changes
Initial release.
31/32
TDA7575B
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2007 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
32/32