TDA7575BPDTR - STMicroelectronics

TDA7575B
2 x 75W multifunction dual-bridge power amplifier
with integrated digital diagnostics
Features
■
Multipower bcd technology
■
MOSFET output power stage
■
DMOS power output
■
New high-efficiency (class AB)
■
Single-channel 1driving capability
■
High output power capability 2x28 W/4  @
14.4 V, 1 kHz, 10 % THD
■
Max. output power 2x75 W/2 1x150 W/1 
■
Single-channel 1  driving capability
■
84 W undistorted power
■
Full I2C bus driving with 4 address possibilities:
– Standby
– Play/mute
– Gain 12/26 dB
– Full digital diagnostic (AC and DC loads)
PowerSO36
(slug up)
■
Possibility to disable the I2C bus
■
Differential inputs
■
Full fault protection
■
DC offset detection
■
Two independent short circuit protections
■
Diagnostic on clipping detector with selectable
threshold (2 % / 10 %)
■
Clipping detector as diagnostic pin when I2C
bus is disabled
■
Standby/mute pins
■
ESD protection
Table 1.
Flexiwatt27
Description
The TDA7575B is a new MOSFET dual bridge
amplifier specially intended for car radio
applications. Thanks to the DMOS output stage
the TDA7575B has a very low distortion allowing
a clear powerful sound.
Among the features, its superior efficiency
performance coming from the internal exclusive
structure, makes it the most suitable device to
simplify the thermal management in high power
sets.The dissipated output power under average
listening condition is in fact reduced up to 50%
when compared to the level provided by
conventional class AB solutions.
This device is equipped with a full diagnostic array
that communicates the status of each speaker
through the I2C bus. The TDA7575B has also the
possibility of driving loads down to 1 paralleling
the outputs into a single channel. It is also
possible to disable the I2C and control the
TDA7575B by means of the usual standby and
mute pins.
Device summary
Order code
Package
Packing
TDA7575B
Flexiwatt27
Tube
TDA7575BPD
PowerSO36 (slug up)
Tube
TDA7575BPDTR
PowerSO36 (slug up)
Tape and reel
September 2013
Doc ID 14103 Rev 3
1/32
www.st.com
1
Contents
TDA7575B
Contents
1
Block and pins diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4
Application circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5
I2C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6
5.1
Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2
Start and stop conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3
Byte format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.5
1 W capability setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.6
I2C abilitation setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Software specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.1
7
Examples of bytes sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Diagnostics functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.1
Turn-on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.2
Permanent diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.3
Output DC offset detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.4
AC diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.5
Multiple faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.6
Faults availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.7
I2C programming/reading sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2/32
Doc ID 14103 Rev 3
TDA7575B
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Address selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
IB1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
IB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
DB1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
DB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Double fault table for turn-on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Doc ID 14103 Rev 3
3/32
List of figures
TDA7575B
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
4/32
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pins connection diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Quiescent drain current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Output power vs. supply voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Output power vs. supply voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Output power vs. supply voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Distortion vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Distortion vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Distortion vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Distortion vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Distortion vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Distortion vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Distortion vs. output voltage (LD mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Cross talk vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Cross talk vs. frequency (LD mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
CMRRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Output attenuation vs. supply voltage (vs. dependent muting) . . . . . . . . . . . . . . . . . . . . . . 13
Output attenuation vs. mute pin voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Power dissipation vs. output power (4 - SINE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Power dissipation vs. output power (2 - SINE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Power dissipation vs. average output power (Audio program simulation, 4) . . . . . . . . . . 14
Power dissipation vs. average output power (Audio program simulation, 2) . . . . . . . . . . 14
ITU R-ARM frequency response, weighting filter for transient pop. . . . . . . . . . . . . . . . . . . 14
Application circuit (TDA7575B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Application circuit (TDA7575BPD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Data validity on the I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Timing diagram on the I2C bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Timing acknowledge clock pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Turn-on diagnostic: working principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
SVR and output behavior - case 1: without turn-on diagnostic . . . . . . . . . . . . . . . . . . . . . . 23
SVR and output pin behavior - case 2: with turn-on diagnostic . . . . . . . . . . . . . . . . . . . . . 24
Short circuit detection thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Load detection thresholds - high gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Load detection thresholds - high gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Restart timing without diagnostic enable (permanent) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Restart timing with diagnostic enable (permanent). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Current detection high: load impedance |Z| vs. output peak voltage . . . . . . . . . . . . . . . . . 27
Current detection low: load impedance |Z| vs. output peak voltage . . . . . . . . . . . . . . . . . . 27
PowerSO36 (slug up) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . 29
Flexiwatt27 (vertical) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . 30
Doc ID 14103 Rev 3
TDA7575B
1
Block and pins diagrams
Block and pins diagrams
Figure 1.
Block diagram
ADDRESS
A
B
VS
CLK DATA
VCC
CD_OUT
CLIP
DETECTOR
I2CBUS
IN1+
OUT1+
IN1OUT1SHORT CIRCUIT
PROTECTION
IN2+
OUT2+
IN2-
OUT2SHORT CIRCUIT
PROTECTION
SVR
S_GND
ST-BY/HE
PW_GND
TAB
I2C EN
1Ω
MUTE
D01AU1269
Figure 2.
OUT1+
Pins connection diagram (top view)
1
36
TAB
27
TAB
26
PWGND
25
A
24
OUT2+
N.C.
OUT1+
35
2
IN1+
VCC
34
3
IN1-
23
VCC
33
4
MUTE
22
OUT2-
B
32
5
ST_BY
21
VCC
PWGND
31
6
SGND
20
IN2+
19
IN2-
PWGND
30
7
DATA
18
I2CEN
OUT1-
29
8
CK
17
1Ω
OUT1-
28
9
N.C.
16
CD_OUT
OUT2-
27
10
N.C.
15
SVR
14
CK
OUT2-
26
11
N.C.
13
DATA
PWGND
25
12
N.C.
12
SGND
PWGND
24
13
SVR
11
STT-BY
A
23
14
CD-OUT
10
MUTE
VCC
22
15
VCC
21
OUT2+
OUT2+
9
IN1-
1-OHM
8
IN1+
16
I2C-EN
7
VCC
20
17
IN2-
6
OUT1-
19
18
IN2+
5
N.C.
4
OUT1+
D01AU1270
3
B
PowerSO36 (slug up)
2
PWGND
1
TAB
D03IN1512
Flexiwatt27
Doc ID 14103 Rev 3
5/32
Electrical specifications
TDA7575B
2
Electrical specifications
2.1
Absolute maximum ratings
Table 2.
Absolute maximum ratings
Symbol
Parameter
Value
Unit
Vop
Operating supply voltage
18
V
VS
DC supply voltage
28
V
Peak supply voltage (for t = 50 ms)
50
V
CK pin voltage
6
V
Data pin voltage
6
V
IO
Output peak current (not repetitive t = 100 ms)
8
A
IO
Output peak current (repetitive f > 10 Hz)
6
A
Power dissipation Tcase = 70 °C
86
W
-55 to 150
°C
Vpeak
VCK
VDATA
Ptot
Tstg, Tj
Storage and junction temperature
2.2
Thermal data
Table 3.
Thermal data
Symbol
Rth j-case
2.3
Parameter
Thermal resistance junction-to-case
Max
PowerSO36
Flexiwatt 27
Unit
1
1
°C/W
Electrical characteristics
VS = 14.4 V; f = 1 kHz; RL = 4 ; Tamb= 25 °C unless otherwise specified.
Table 4.
Electrical characteristics
Symbol
Parameter
Test condition
Min.
Typ.
Max.
Unit
8
-
18
V
50
130
200
mA
Max. power
35
40
-
W
THD = 10 %
THD = 1 %; BTL mode
25
28
22
-
W
RL = 2 ; THD 10 %
RL = 2 ; THD 1 %
RL = 2 ; Max. power(1)
45
50
37
75
-
W
Power amplifier
VS
Supply voltage range
-
Id
Total quiescent drain current
(1)
Po
6/32
Output power
Doc ID 14103 Rev 3
70
TDA7575B
Table 4.
Electrical specifications
Electrical characteristics (continued)
Symbol
Po
THD
Parameter
Output power
Total harmonic distortion
Test condition
Min.
Typ.
Max.
Unit
80
140
84
150
-
W
Po = 1-12 W; STD mode
HE mode; Po = 1-2 W
HE mode; Po = 4-8 W
-
0.03
0.03
0.5
0.1
0.1
%
Po = 1-12 W, f = 10 kHz
-
0.15
0.5
%
RL = 2; HE mode; Po = 3 W
-
0.03
0.5
%
Single channel configuration
(1  pin > 2.5 V); RL = 1;
Po = 4-30 W
-
0.02
0.1
%
Single channel configuration
(1  pin > 2.5 V); RL = 1 ;
THD 3 %
Max. power(1)
CT
Cross talk
Rg = 600 Po = 1 W
60
75
-
dB
RIN
Input impedance
-
60
100
130
k
GV1
Voltage gain 1 (default)
-
25
26
27
dB
Voltage gain match 1
-
-1
0
1
dB
Voltage gain 2
-
11
12
13
dB
GV2
Voltage gain match 2
-
-1
0
1
dB
EIN1
Output noise voltage gain 1
Rg = 600 ; Gv = 26 dB
filter 20 to 22 kHz
-
40
60
V
EIN2
Output noise voltage gain 2
Rg = 600 ; Gv = 12d B
filter 20 to 22 kHz
-
15
25
V
SVR
Supply voltage rejection
f = 100 Hz to 10 kHz; Vr = 1 Vpk;
Rg = 600 
50
60
-
dB
BW
Power bandwidth
(-3 dB)
100
-
-
KHz
ASB
Standby attenuation
-
90
100
-
dB
ISB
Standby current consumption
Vst-by = 0 V
-
2
10
A
AM
Mute attenuation
-
80
90
VOS
Offset voltage
Mute and play
-45
0
45
mV
VAM
Min. supply mute threshold
-
7
7.5
8
V
Input CMRR
VCM = 1 Vpk-pk; Rg = 0 
56
60
-
-
1
Vrms
1.5
4
-
V/s
-10
-
+10
mV
-10
-
+10
mV
GV1
GV2
CMRR
VMC
Maximum common mode input
f = 1 kHz
level
SR
Slew rate
VOS
-
During mute on/off output offset
voltage
ITU R-ARM weighted
see Figure 23
During standby on/off output
offset voltage
Doc ID 14103 Rev 3
dB
dB
7/32
Electrical specifications
Table 4.
TDA7575B
Electrical characteristics (continued)
Symbol
Parameter
Test condition
Min.
Typ.
Max.
Unit
TON
Turn on delay
D2 (IB1) 0 to 1
-
15
40
ms
TOFF
Turn off delay
D2 (IB1) 1 to 0
-
15
40
ms
VOFF
Standby pin for standby
-
0
-
1.5
V
VSB
Standby pin for standard bridge -
3.5
-
5
V
VHE
Standby pin for high-efficiency
-
7
-
18
V
Standby pin current
1.5 < Vst-by/HE < 18 V
7
160
200
A
Standby pin current
Vst-by < 1.5 V
-10
0
10
A
IO
Vm
Mute pin voltage for mute mode -
0
-
1.5
V
Vm
Mute pin voltage for play mode -
3.5
-
18
V
Im
Mute pin current (standby)
Vmute = 0 V, Vst-by < 1.5V
-5
0
5
A
Im
Mute pin current (operative)
0 V < Vmute < 18 V, Vst-by > 3.5 V
-
65
100
A
0
-
1.5
V
-
2.5
-
18
V
VI2C
I2C
VI2C
I2C
I2C
I2C pin current (standby)
0V < I2C EN < 18V, Vstby < 1.5V
-5
0
5
A
I2C
I2C
7
11
15
A
I
2C
pin voltage for
I2C
disabled -
pin voltage for
I2C
enabled
pin current (operative)
EN <18V, Vst-by>3.5V
V1
1  pin voltage for 2ch mode
-
0
-
1.5
V
V1
1  pin voltage for 1  mode
-
2.5
-
18
V
I1
1  pin current (standby)
0 V < 1  <18 V, Vs-tby < 1.5 V
-5
0
5
A
I1
1  pin current (operative)
1  < 18 V, Vst-by > 3.5 V
7
11
15
A
Low logic level
0
-
1.5
V
High logic level
2.5
-
18
V
La
A pin voltage
Ha
Ia
A pin current (standby)
0V < A < 18V , Vstby < 1.5 V
-5
0
5
A
Ia
A pin current (operative)
A<18V, Vst-by > 3.5V
7
11
15
A
Low logic level
0
-
1.5
V
High logic level
2.5
-
18
V
Lb
B pin voltage
Hb
Ib
B pin current (standby)
0 V < B < 18 V, Vs-tby < 1.5 V
-5
0
5
A
Ib
B pin current (operative)
B < 18 V, Vst-by > 3.5 V
7
11
15
A
TW
Thermal warning
-
-
150
-
°C
TPI
Thermal protection intervention -
-
170
-
°C
-15
0
15
A
ICDH
Clip pin high leakage current
CD off, 0 V < VCD < 5.5 V
ICDL
Clip pin low sink current
CD on; VCD < 300 mV
CD
Clip detect THD level
1
mA
D0 (IB1) = 0
0.8
1.3
2.5
%
D0 (IB1) = 1
5
10
15
%
(*) Standby pin high enables I2C bus; Standby pin low puts the device in standby condition. (see “prog” for more details)
8/32
Doc ID 14103 Rev 3
TDA7575B
Table 4.
Symbol
Electrical specifications
Electrical characteristics (continued)
Parameter
Test condition
Min.
Typ.
Max.
Unit
-
-
1.2
V
Vs -0.9
-
-
V
Turn-on diagnostics (Power amplifier mode)
Pgnd
Pvs
Short to GND det. (below this
Power amplifier in standby
limit, the output is considered in
condition
short circuit to GND)
Short to Vs det. (above this
limit, the output is considered in short circuit to VS)
Normal operation
thresholds.(within these limits,
the output is considered
without faults).
-
1.8
-
Vs -1.5
V
Lsc
Shorted load det.
-
-
-
0.5

Lop
Open load det.
-
130
-
-

Lnop
Normal load det.
-
1.5
-
70

Pnop
Turn-on diagnostics (Line driver mode)
Pgnd
Short to GND det. (below this
limit, the output is considered in
short circuit to GND)
-
-
1.2
V
Pvs
Short to Vs det. (above this
limit, the Output is considered
in Short Circuit to VS)
Vs -0.9
-
-
V
Pnop
Normal operation
thresholds.(within these limits,
the output is considered
without faults).
1.8
-
Vs -1.5
V
-
-
1.5

Power amplifier in standby
Lsc
Shorted load det.
Lop
Open load det.
400
-
-

Lnop
Normal load det.
4.5
-
200

-
-
1.2
V
Permanent diagnostics (Power amplifier mode or line driver mode)
Pgnd
Short to GND det. (below this
Power amplifier in Mute or Play
limit, the output is considered in condition, one or more short
short circuit to GND)
circuits protection activated
Pvs
Short to Vs det. (above this
limit, the Output is considered
in Short Circuit to VS)
-
Vs 0.9
-
-
V
Pnop
Normal operation
thresholds.(Within these limits,
the Output is considered
without faults).
-
1.8
-
Vs -1.5
V
Pow. amp. mode
-
-
0.5

Line driver mode
-
-
1.5

Lsc
Shorted load det.
Doc ID 14103 Rev 3
9/32
Electrical specifications
Table 4.
TDA7575B
Electrical characteristics (continued)
Symbol
Parameter
Test condition
Min.
Typ.
Max.
Unit
VO
Offset detection
Power amplifier in play condition
AC input signals = 0
±1.5
±2
±2.5
V
INLH
Normal load current detection
VO < (VS - 5)pk IB2 (D0) = 0
500
-
-
mA
INLL
Normal load current detection
VO < (VS - 5)pk IB2 (D0) = 1
250
-
-
mA
IOLH
Open load current detection
VO < (VS - 5)pk IB2 (D0) = 0
-
-
250
mA
IOLL
Open load current detection
VO < (VS - 5)pk IB2 (D0) =1
-
-
125
mA
2
I C bus interface
fSCL
Clock frequency
-
-
-
400
kHz
VIL
Input low voltage
-
-
-
1.5
V
VIH
Input high voltage
-
2.3
-
-
V
1. Saturated sqare wave output.
10/32
Doc ID 14103 Rev 3
TDA7575B
Electrical characteristics curves
3
Electrical characteristics curves
Figure 3.
Quiescent drain current vs. supply
voltage
Figure 4.
Id (mA)
Po (W)
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
5
160
150
Vi=0
NO LOADS
140
130
120
110
100
90
80
70
8
Output power vs. supply voltage
10
12
14
16
18
Po-max
RL=4 Ohm
f=1 KHz
THD=10%
THD=1%
8
9
10
11
12
Vs (V)
Figure 5.
Output power vs. supply voltage
Figure 6.
Po (W)
130
120
110
100
90
80
70
60
50
40
30
20
10
0
Po-max
THD=10%
THD=1%
9
Figure 7.
10
11
12
13
Vs (V)
14
15
16
17
18
Distortion vs. output power
16
17
18
Output power vs. supply voltage
Po-max
RL=2 Ohm
f=1 KHz
THD=10%
THD=1%
8
9
Figure 8.
THD (%)
10
15
Po (W)
130
120
110
100
90
80
70
60
50
40
30
20
10
0
RL=2 Ohm
f=1 KHz
8
13
14
Vs (V)
10
11
12
13
Vs (V)
14
15
16
17
18
Distortion vs. output power
THD (%)
10
HI-EFF mode
Vs=14.4V
RL=2 Ohm
HI-EFF mode
Vs=14.4V
RL=4 Ohm
1
1
f=10 KHz
f=10 KHz
0.1
0.1
f=1 KHz
f=1 KHz
0.01
0.01
0.1
1
10
100
0.1
Po (W)
Doc ID 14103 Rev 3
1
Po (W)
10
100
11/32
Electrical characteristics curves
Figure 9.
TDA7575B
Distortion vs. output power
Figure 10. Distortion vs. output power
THD (%)
THD (%)
10
10
STD mode
Vs=14.4V
RL=4 Ohm
1
STD mode
Vs=14.4V
RL=2 Ohm
1
f=10 KHz
f=10 KHz
0.1
0.1
f=1 KHz
f=1 KHz
0.01
0.01
0.001
0.001
0.1
1
10
100
0.1
1
Po (W)
Figure 11. Distortion vs. output power
100
Figure 12. Distortion vs. frequency
THD (%)
THD (%)
10
10
Po (W)
10
STD mode
Vs=14.4V
RL=1 Ohm
Vs=14.4V
STD mode
1
1
1Ω - 40W
2Ω - 24W
4Ω - 12W
f=10 KHz
0.1
0.1
0.01
f=1 KHz
0.01
0.001
0.1
1
10
100
10
100
Po (W)
Figure 13. Distortion vs. output voltage
(LD mode)
THD (%)
10000
100000
Figure 14. Cross talk vs. frequency
CROSSTALK (dB)
-20
10
LD mode
Vs=14.4V
RL=100 Ohm
1
1000
f (Hz)
-30
STD mode
RL=2 Ohm
Rg=600 Ohm
-40
-50
-60
0.1
-70
f=10 KHz
0.01
-80
-90
f=1 KHz
0.001
-100
0
1
2
3
4
5
6
7
8
9
10 11 12
10
Vout
12/32
100
1000
f (Hz)
Doc ID 14103 Rev 3
10000
100000
TDA7575B
Electrical characteristics curves
Figure 15. Cross talk vs. frequency
(LD mode)
Figure 16. CMRRR vs. frequency
CMRR (dB)
CROSSTALK (dB)
-20
-40
-30
LD mode
Vo=1 Vrms
RL=100 Ohm
-40
Vcm=1 Vpp
-50
-50
-60
-70
-60
-80
-90
-70
-100
10
100
1000
10000
10
100000
100
1000
f (Hz)
f (Hz)
Figure 17. Output attenuation vs. supply
voltage (vs. dependent muting)
10000
100000
Figure 18. Output attenuation vs. mute pin
voltage
OUT ATTN (dB)
OUT ATTN (dB)
20
20
0 dB=1 Vrms
RL=2 Ohm
0
0 dB=2 Vrms
RL=2 Ohm
0
-20
-20
-40
-40
-60
-60
-80
-80
-100
-100
-120
5
6
7
8
9
1
10
1.5
2
Vs (V)
2.5
3
3.5
4
MUTE PIN V (V)
Figure 19. Power dissipation vs. output power Figure 20. Power dissipation vs. output power
(4 - SINE)
(2 - SINE)
Ptot (W)
Ptot (W)
35
60
Vs=14.4V
RL=2 x 4 Ohm
f=1 KHz
30
25
Vs=14.4V
RL:=2 x 2 Ohm
f=1 KHz
50
40
STD
STD
20
30
15
20
10
HI-EFF
HI-EFF
10
5
0
0
0.1
1
10
100
0.1
Po (W)
1
10
100
Po (W)
Doc ID 14103 Rev 3
13/32
Electrical characteristics curves
TDA7575B
Figure 21. Power dissipation vs. average
output power (Audio program
simulation, 4)
Figure 22. Power dissipation vs. average output
power (Audio program simulation,
2)
Ptot (W)
Ptot (W)
30
35
Vs=14 V
RL=2 x 4
GAUSSIAN NOISE
25
Vs=14V
RL=2 x 2 Ohm
GAUSSIAN NOISE
30
20
START
CLIP
START
20
15
HI-EFF
15
STD
10
10
5
HI-EFF
5
0
0
0
1
2
3
4
5
0
Figure 23. ITU R-ARM frequency response,
weighting filter for transient pop
Output attenuation (dB)
10
0
-10
-20
-30
-40
-50
100
1000
Hz
14/32
1
2
3
4
5
Po (W)
Po (W)
10
STD
25
CLIP
10000
100000
AC00343
Doc ID 14103 Rev 3
6
7
8
9
10
TDA7575B
4
Application circuits
Application circuits
Figure 24. Application circuit (TDA7575B)
VS
I2C BUS
A
B
CLK
CD_OUT
DATA
C8
2200μF
C7
0.1μF
R1 47KΩ
V
VCC
25
3
14
13
7-21
16
C1 0.22μF
IN1+
8
OUT1+
4
IN1-
9
6
IN2+
20
24
IN2-
19
OUT1-
C2 0.22μF
C3 0.22μF
OUT2+
22
OUT2-
C4 0.22μF
11
15
12
1
2-26
PW_GND
S_GND
TAB
MUTE
C5
10μF
C6
1μF
ST-BY/HE
D05AU1615
I2C BUS
ENABLE
18
10
17
R2 47KΩ
1Ω SETTING
Figure 25. Application circuit (TDA7575BPD)
VS
I2C BUS
A
B
CLK
CD_OUT
DATA
C8
2200μF
C7
0.1μF
R1 47KΩ
V
VCC
23
32
8
7
21-2-33-34
14
C1 0.22μF
IN1+
2
IN1-
3
28-29
IN2+
18
19-20
IN2-
17
OUT1+
35-36
OUT1-
C2 0.22μF
C3 0.22μF
OUT2+
26-29
OUT2-
C4 0.22μF
13
5
6
24-25-30-31
S_GND
PW_GND
C5
10μF
D05AU1616
1
TAB
MUTE
C6
1μF
ST-BY/HE
Doc ID 14103 Rev 3
I2C BUS
ENABLE
16
4
15
R2 47KΩ
1Ω SETTING
15/32
I2C bus interface
5
TDA7575B
I2C bus interface
Data transmission from microprocessor to the TDA7575B and vice versa takes place
through the 2 wires I2C BUS interface, consisting of the two lines SDA and SCL (pull-up
resistors to positive supply voltage must be connected).
5.1
Data validity
As shown by Figure 26, the data on the SDA line must be stable during the high period of
the clock.
The high and low state of the data line can only change when the clock signal on the SCL
line is low.
5.2
Start and stop conditions
As shown by Figure 27 a start condition is a high to low transition of the SDA line while SCL
is high.
The stop condItion Is A Low To High Transition of the SDA line while SCL is high.
5.3
Byte format
Every byte transferred to the SDA line must contain 8 bits. Each byte must be followed by an
acknowledge bit. The MSB is transferred first.
5.4
Acknowledge
The transmitter(*) puts a resistive HIGH level on the SDA line during the acknowledge clock
pulse (see Figure 28). The receiver(**) the acknowledges has to pull-down (LOW) the SDA
line during the acknowledge clock pulse, so that the SDA line is stable LOW during this clock
pulse.
(*) Transmitter
= master (P) when it writes an address to the TDA7575B
= slave (TDA7575B) when the µP reads a data byte from TDA7575B
(**) Receiver
= slave (TDA7575B) when the µP writes an address to the TDA7575B
= master (P) when it reads a data byte from TDA7575B
Figure 26. Data validity on the I2C bus
SDA
SCL
DATA LINE
STABLE, DATA
VALID
16/32
CHANGE
DATA
ALLOWED
Doc ID 14103 Rev 3
D99AU1031
TDA7575B
I2C bus interface
Figure 27. Timing diagram on the I2C bus
SCL
I2CBUS
SDA
D99AU1032
START
STOP
Figure 28. Timing acknowledge clock pulse
SCL
1
2
3
7
8
9
SDA
MSB
START
5.5
D99AU1033
ACKNOWLEDGMENT
FROM RECEIVER
1  capability setting
It is possible to drive 1 load paralleling the outputs into a single channel.
In order to implement this feature, outputs are to be connected on the board as follows:
●
OUT1+ (pin 35 and pin 36) shorted to OUT2+ (pin 19 and pin 20)
●
OUT1- (pin 28 and pin 29) shorted to OUT2- (pin 26 and pin 27).
It is recommended to minimize the impedance on the board between OUT2 and the load in
order to minimize THD distortion. It is also recommended to control the maximum mismatch
impedance between VCC pins (pin 21/pin 22 respect to pin 33/pin 34) and between PWGND
pins (pin 24/pin 25 respect to pin 30/pin 31), mismatch that must not exceed a value of
20 m
With 1  feature settled the active input is IN2 (pin 17 and pin 18), therefore IN1 pins should
be let floating.
It is possible to set the load capability acting on 1  pin as follows:
1  pin (pin 15) < 1.5 V: two channels mode (for a minimum load of 2 )
1  pin (pin 15) > 2.5 V: one channel mode (for 1  load).
It is to remember that 1
Ohmfunction is a hardware selection.
Therefore it is recommended to leave 1pin floating or shorted to GND to set the two
channels mode configuration, or to short 1 pin to VCC to set the one channel (1)
configuration.
Doc ID 14103 Rev 3
17/32
I2C bus interface
5.6
TDA7575B
I2C abilitation setting
It is possible to disable the I2C interface by acting on I2C pin (pin 16) and control the
TDA7575B by means of the usual standby and mute pins. In order to activate or deactivate
this feature, I2C pin must be set as follows:
●
I2C pin (pin 16) < 1.5V: I2C bus interface deactivated
●
I2C pin (pin 16) > 2.5V: I2C bus interface activated
It is also possible to let I2C pin floating to deactivate the I2C bus interface, or to short I2C pin
to VCC to activate it.
In particular:
●
I2C enabled: I2C pin (pin 16) > 2.5 V
–
STD mode: Vst-by (pin 5) > 3.5 V, IB2(D1)=0
–
HE mode: Vst-by (pin 5) > 3.5 V, IB2(D1)=1
–
Play mode: Vmute (pin 4) >3.5 V, IB1 (D2) = 1
The amplifier can always be switched off by putting Vst-by to 0V , but with I2C enabled it can
be turn on only through I2C (with Vst-by > 3.5 V).
●
I2C disabled: I2C pin (pin 16) < 1.5 V
–
STD mode: 3.5V < standby (pin 5) < 5
–
HE mode: Vstby (pin 5) > 7 V
–
Play mode: Vmute (pin 4) > 3.5 V
For both STD and HE mode the play/mute mode can be set acting on Vmute pin.
When I2C bus is disabled, when a fault is detected pin 14 (CD-OUT) is pulled down by the
internal logic circuitry. The faults detected are the short circuit to ground, to VCC and across
the load (after an aver current detection).
18/32
Doc ID 14103 Rev 3
TDA7575B
6
Software specifications
Software specifications
All the functions of the TDA7575B are activated by I2C interface.
The bit 0 of the "Address Byte" defines if the next bytes are write instruction (from P to
TDA7575B) or read instruction (from TDA7575B to µP).
Table 5.
Address selection
Bit
Address
A6
1
A5
1
A4
0
A3
1
A2
0
A1
B
A0
A
R/W
X
If R/W = 0, the P sends 2 "instruction bytes": IB1 and IB2.
Table 6.
IB1
Bit
Instruction decoding bit
D7
0
D6
Diagnostic enable (D6 = 1)
Diagnostic defeat (D6 = 0)
D5
Offset detection enable (D5 = 1)
Offset detection defeat (D5 = 0)
D4
Gain = 26 dB (D4 = 0)
Gain = 12 dB (D4 = 1)
D3
0
D2
Mute (D2 = 0)
Unmute (D2 = 1)
D1
0
D0
CD 2% (D0 = 0)
CD 10% (D0 = 1)
Doc ID 14103 Rev 3
19/32
Software specifications
Table 7.
TDA7575B
IB2
Bit
Instruction decoding bit
D7
0
D6
0
D5
0
D4
Standby on - Amplifier not working - (D4 = 0)
Standby off - Amplifier working - (D4 = 1)
D3
Power amplifier mode diagnostic (D3 = 0);
Line driver mode diagnostic (D3 = 1)
D2
Current detection diagnostic enabled (D2 = 1)
Current detection diagnostic defeat (D2 = 0)
D1
Power amplifier working in standard mode (D1 = 0)
Power amplifier working in high efficiency mode (D1 = 1)
D0
Current detection threshold high (D7 =0)
Current detection threshold low (D7 =1)
If R/W = 1, the TDA7575B sends 2 "Diagnostics Bytes" to P: DB1 and DB2.
Table 8.
DB1
Bit
Instruction decoding bit
D7
Thermal warming (if Tchip  150°C, D7 = 1)
D6
Diag. cycle not activated or not terminated (D6 = 0)
Diag. cycle terminated (D6 = 1)
D5
Channel 1
current detection IB2 (D0) = 0
Output peak current < 250 mA - Open load (D5 = 1)
Output peak current > 500 mA - Normal load (D5 = 0)
D4
Channel 1
Turn-on diagnostic (D4 = 0)
Permanent diagnostic (D4 = 1)
D3
Channel 1
Normal load (D3 = 0)
Short load (D3 = 1)
D2
Channel 1
Turn-on diag.: No open load (D2 = 0)
Open load detection (D2 = 1)
Offset diag.: No output offset (D2 = 0)
Output offset detection (D2 = 1)
D1
Channel 1
No short to Vcc (D1 = 0)
Short to Vcc (D1 = 1)
D0
Channel 1
No short to GND (D1 = 0)
Short to GND (D1 = 1)
20/32
Channel LF
current detection IB2 (D0) = 1
Output peak current < 125 mA - Open load (D5 = 1)
Output peak current > 250 mA - Normal load (D5 = 0)
Doc ID 14103 Rev 3
TDA7575B
Table 9.
Software specifications
DB2
Bit
Instruction decoding bit
D7
Offset detection not activated (D7 = 0)
Offset detection activated (D7 = 1)
D6
Current sensor not activated (D6 = 0)
Current sensor activated (D6 = 1)
D5
Channel LR
Current detection IB2 (D0) = 0
Output peak current < 250 mA - Open load (D5 = 1)
Output peak current > 500 mA - Normal load (D5 = 0)
D4
Channel 2
Turn-on diagnostic (D4 = 0)
Permanent diagnostic (D4 = 1)
D3
Channel 2
Normal load (D3 = 0)
Short load (D3 = 1)
D2
Channel 2
Turn-on diag.: No open load (D2 = 0)
Open load detection (D2 = 1)
Permanent diag.: No output offset (D2 = 0)
Output offset detection (D2 = 1)
D1
Channel 2
No short to Vcc (D1 = 0)
Short to Vcc (D1 = 1)
D0
Channel 2
No short to GND (D1 = 0)
Short to GND (D1 = 1)
Channel LR
Current detection IB2 (D0) = 1
Output peak current < TBD mA - Open load (D5 = 1)
Output peak current > TBD mA - Normal load (D5 = 0)
Doc ID 14103 Rev 3
21/32
Software specifications
6.1
TDA7575B
Examples of bytes sequence
1 - Turn-on diagnostic - Write operation
Start Address byte with D0 = 0
ACK
IB1 with D6 = 1
ACK
IB2
ACK
STOP
L
2 - Turn-on diagnostic - Read operation
Start
Address byte with D0 = 1
ACK
DB1
ACK
DB2
ACK
STOP
The delay from 1 to 2 can be selected by software, starting from T.B.D. ms
3a - Turn-on of the power amplifier with mute on, diagnostic defeat.
Start
Address byte with D0 = 0
ACK
IB1
ACK
X000XXXX
IB2
ACK
STOP
ACK
STOP
ACK
STOP
XXX1XX1X
3b - Turn-off of the power amplifier
Start
Address byte with D0 = 0
ACK
IB1
ACK
X0XXXXXX
IB2
XXX0XXXX
4 - Offset detection procedure enable
Start
Address byte with D0 = 0
ACK
IB1
ACK
XX1XX1XX
IB2
XXX1XXXX
5 - Offset detection procedure stop and reading operation (the results are valid only for the
offset detection bits (D2 of the bytes DB1, DB2, DB3, DB4).
Start
22/32
Address byte with D0 = 1
ACK
DB1
ACK
DB2
ACK
STOP
●
The purpose of this test is to check if a D.C. offset (2 V typ.) is present on the outputs,
produced by input capacitor with anomalous leakage current or humidity between pins.
●
The delay from 4 to 5 can be selected by software, starting from T.B.D. ms
Doc ID 14103 Rev 3
TDA7575B
Diagnostics functional description
7
Diagnostics functional description
7.1
Turn-on diagnostic
It is activated at the turn-on (stand-by out) under I2C bus request. Detectable output faults are:
–
Short to GND
–
Short TO Vs
–
Short across the speaker
–
Open speaker
To verify if any of the above misconnections are in place, a subsonic (inaudible) current
pulse (Figure 29) is internally generated, sent through the speaker(s) and sunk back. The
Turn On diagnostic status is internally stored until a successive diagnostic pulse is
requested (after a I2C reading).
If the "stand-by out" and "diag. enable" commands are both given through a single
programming step, the pulse takes place first (power stage still in stand-by mode, low,
outputs = high impedance).
Afterwards, when the Amplifier is biased, the PERMANENT diagnostic takes place. The
previous Turn On state is kept until a short appears at the outputs.
Figure 29. Turn-on diagnostic: working principle
I (mA)
Vs~5V
Isource
Isource
CH+
Isink
CHIsink
~100mS
t (ms)
Measure time
Fig. Figure 30 and Figure 31 show SVR and OUTPUT waveforms at the turn-on (stand-by
out) with and without Turn-on diagnostic.
Figure 30. SVR and output behavior - case 1: without turn-on diagnostic
Vsvr
Out
Permanent diagnostic
acquisition time (100mS Typ)
Bias (power amp turn-on)
I2CB DATA
Diagnostic Enable
(Permanent)
t
FAULT
event
Read Data
Permanent Diagnostics data (output)
permitted time
Doc ID 14103 Rev 3
23/32
Diagnostics functional description
TDA7575B
Figure 31. SVR and output pin behavior - case 2: with turn-on diagnostic
Vsvr
Out
Turn-on diagnostic
acquisition time (100mS Typ)
Diagnostic Enable
(Turn-on)
Permanent diagnostic
acquisition time (100mS Typ)
Turn-on Diagnostics data (output)
permitted time
Bias (power amp turn-on)
permitted time
I2CB DATA
FAULT
event
Diagnostic Enable
(Permanent)
Read Data
t
Permanent Diagnostics data (output)
permitted time
The information related to the outputs status is read and memorized at the end of the
current pulse top. The acquisition time is 100 ms (typ.). No audible noise is generated in the
process. As for short to GND / Vs the fault-detection thresholds remain unchanged from 26
dB to 12 dB gain setting. They are as follows:
Figure 32. Short circuit detection thresholds
S.C. to GND
0V
x
1.2V
Normal Operation
1.8V
x
VS-1.5V
S.C. to Vs
VS-0.9V
D02AU1341
VS
Concerning short across the speaker / open speaker, the threshold varies from 26 dB to 12
dB gain setting, since different loads are expected (either normal speaker's impedance or
high impedance). The values in case of 26 dB gain are as follows:
Figure 33. Load detection thresholds - high gain setting
S.C. across Load
0V
x
0.5Ω
Normal Operation
1.5Ω
x
Open Load
130Ω
70Ω
Infinite
D01AU1254
If the line-driver mode (Gv= 12 dB and line driver mode diagnostic = 1) is selected, the same
thresholds will change as follows:
Figure 34. Load detection thresholds - high gain setting
S.C. across Load
0Ω
1.5Ω
x
Normal Operation
4.5Ω
200Ω
x
Open Load
400Ω
infinite
D01AU1252
24/32
Doc ID 14103 Rev 3
TDA7575B
7.2
Diagnostics functional description
Permanent diagnostics
Detectable conventional faults are:
–
Short to GND
–
Short to Vs
–
Short across the speaker
The following additional features are provided:
–
Output offset detection
The TDA7575B has 2 operating statuses:
1.
RESTART mode. The diagnostic is not enabled. Each audio channel operates
independently from each other. If any of the a.m. faults occurs, only the channel(s)
interested is shut down. A check of the output status is made every 1 ms (fig. 30).
Restart takes place when the overload is removed.
2.
DIAGNOSTIC mode. It is enabled via I2C bus and self activates if an output overload
(such to cause the intervention of the short-circuit protection) occurs to the speakers
outputs. Once activated, the diagnostics procedure develops as follows (fig. 31):
–
To avoid momentary re-circulation spikes from giving erroneous diagnostics, a
check of the output status is made after 1ms: if normal situation (no overloads) is
detected, the diagnostic is not performed and the channel returns back active.
–
Instead, if an overload is detected during the check after 1 ms, then a diagnostic
cycle having a duration of about 100 ms is started.
–
After a diagnostic cycle, the audio channel interested by the fault is switched to
RESTART mode. The relevant data are stored inside the device and can be read
by the microprocessor. When one cycle has terminated, the next one is activated
by an I2C reading. This is to ensure continuous diagnostics throughout the carradio operating time.
–
To check the status of the device a sampling system is needed. The timing is
chosen at microprocessor level (over than half a second is recommended).
Figure 35. Restart timing without diagnostic enable (permanent)
each 1ms time, a sampling of the fault is done
Out
1mS
1-2mS
1mS
1mS
1mS
t
Overcurrent and short
circuit protection intervention
(i.e. short circuit to GND)
Short circuit removed
Figure 36. Restart timing with diagnostic enable (permanent)
1mS
100mS
1mS
1mS
t
Overcurrent and short
circuit protection intervention
(i.e. short circuit to GND)
Short circuit removed
Doc ID 14103 Rev 3
25/32
Diagnostics functional description
7.3
TDA7575B
Output DC offset detection
Any DC output offset exceeding ± 2 V are signalled out. This inconvenient might occur as a
consequence of initially defective or aged and worn-out input capacitors feeding a DC
component to the inputs, so putting the speakers at risk of overheating.
This diagnostic has to be performed with low-level output AC signal (or Vin = 0).
The test is run with selectable time duration by microprocessor (from a "start" to a "stop"
command):
●
Start = Last reading operation or setting IB1 - D5 - (OFFSET enable) to 1
●
Stop = Actual reading operation
Excess offset is signalled out if persistent throughout the assigned testing time. This feature
is disabled if any overloads leading to activation of the short-circuit protection occurs in the
process.
7.4
AC diagnostic
It is targeted at detecting accidental disconnection of tweeters in 2-way speaker and, more
in general, presence of capacitively (AC) coupled loads.
This diagnostic is based on the notion that the overall speaker's impedance (woofer +
parallel tweeter) will tend to increase towards high frequencies if the tweeter gets
disconnected, because the remaining speaker (woofer) would be out of its operating range
(high impedance). The diagnostic decision is made according to peak output current
thresholds, and it is enabled by setting (IB2-D2) = 1. Two different detection levels are
available:
●
●
HIgh current threshold IB2 (D7) = 0
–
Iout > 500 mApk = normal status
–
Iout < 250 mApk = open tweeter
Low current threshold IB2 (D7) = 1
–
Iout > 250 mApk = normal status
–
Iout < 125 mApk = open tweeter
To correctly implement this feature, it is necessary to briefly provide a signal tone (with the
amplifier in "play") whose frequency and magnitude are such to determine an output current
higher than 500mApk with IB2(D7)=0 (higher than 250mApk with IB2(D7)=1) in normal
conditions and lower than 250 mApk with IB2(D7)=0 (lower than 125 mApk with IB2(D7)=1)
should the parallel tweeter be missing.
The test has to last for a minimum number of 3 sine cycles starting from the activation of the
AC diagnostic function IB2<D2>) up to the I2C reading of the results (measuring period). To
confirm presence of tweeter, it is necessary to find at least 3 current pulses over the above
threholds over all the measuring period, else an "open tweeter" message will be issued.
The frequency / magnitude setting of the test tone depends on the impedance
characteristics of each specific speaker being used, with or without the tweeter connected
(to be calculated case by case). High-frequency tones (> 10 kHz) or even ultrasonic signals
are recommended for their negligible acoustic impact and also to maximize the impedance
module's ratio between with tweeter-on and tweeter-off.
26/32
Doc ID 14103 Rev 3
TDA7575B
Diagnostics functional description
Figure 37 shows the load impedance as a function of the peak output voltage and the
relevant diagnostic fields.
This feature is disabled if any overloads leading to activation of the short-circuit protection
occurs in the process.
Figure 37. Current detection high: load impedance |Z| vs. output peak voltage
Load |z| (Ohm)
50
Iout (peak) <250mA
30
20
Low current detection area
(Open load)
D5 = 1 of the DBx byres
Iout (peak) >500mA
10
IB2(D0) = 0
High current detection area
(Normal load)
D5 = 0 of the DBx bytes
5
3
2
1
1
2
3
4
5
6
7
8
Vout (Peak)
Figure 38. Current detection low: load impedance |Z| vs. output peak voltage
Load |z| (Ohm)
50
Iout (peak) <125mA
30
20
Low current detection area
(Open load)
D5 = 1 of the DBx byres
Iout (peak) >250mA
10
IB2(D0) = 1
High current detection area
(Normal load)
D5 = 0 of the DBx bytes
5
3
2
1
0.5
1
1.5
2
2.5
3
3.5
4
Vout (Peak)
7.5
Multiple faults
When more misconnections are simultaneously in place at the audio outputs, it is
guaranteed that at least one of them is initially read out. The others are notified after
successive cycles of I2C reading and faults removal, provided that the diagnostic is enabled.
This is true for both kinds of diagnostic (turn-on and permanent).
The table below shows all the couples of double-fault possible. It should be taken into
account that a short circuit with the 4  speaker unconnected is considered as double fault.
Doc ID 14103 Rev 3
27/32
Diagnostics functional description
Table 10.
TDA7575B
Double fault table for turn-on diagnostic
S. GND (sc)
S. GND (sk)
S. Vs
S. Across L.
Open L.
S. GND (sc)
S. GND
S. GND
S. Vs + S.
GND
S. GND
S. GND
S. GND (sk)
/
S. GND
S. Vs
S. GND
Open L. (*)
S. Vs
/
/
S. Vs
S. Vs
S. Vs
S. Across L.
/
/
/
S. Across L.
N.A.
Open L.
/
/
/
/
Open L. (*)
S. GND (so) / S. GND (sk) in the above table make a distinction according to which of the 2
outputs is shorted to ground (test-current source side= so, test-current sink side = sk). More
precisely, in both the channels SO = CH+, and SK = CH-.
In permanent diagnostic the table is the same, with only a difference concerning open load
(*), which is not among the recognizable faults. Should an open load be present during the
device's normal working, it would be detected at a subsequent turn-on diagnostic cycle (i.e.
at the successive car radio turn-on).
7.6
Faults availability
All the results coming from I2C bus, by read operations, are the consequence of
measurements inside a defined period of time. If the fault is stable throughout the whole
period, it will be sent out. This is true for DC diagnostic (turn-on and permanent), for offset
detector.
To guarantee always resident functions, every kind of diagnostic cycles (turn-on, permanent,
offset) will be reactivate after any I2C reading operation. So, when the micro reads the I2C, a
new cycle will be able to start, but the read data will come from the previous diag. cycle (i.e.
The device is in turn-on state, with a short to GND, then the short is removed and micro
reads I2C. The short to GND is still present in bytes, because it is the result of the previous
cycle. If another I2C reading operation occurs, the bytes do not show the short). In general
to observe a change in diagnostic bytes, two I2C reading operations are necessary.
7.7
I2C programming/reading sequences
A correct turn on/off sequence respectful of the diagnostic timings and producing no audible
noises could be as follows (after battery connection):
●
Turn-on: (Standby OUT + DIAG enable) --- 500 ms (min) --- muting OUT
●
Turn-off: Muting IN --- 20 ms --- (DIAG disable + standby IN)
Car radio installation: DIAG enable (write) --- 20 0ms --- I2C read (repeat until all faults
disappear).
–
Offset test: device in play (no signal)
–
Offset enable - 30 ms - I2C reading
(repeat I2C reading until high-offset message disappears).
28/32
Doc ID 14103 Rev 3
TDA7575B
8
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Figure 39. PowerSO36 (slug up) mechanical data and package dimensions
DIM.
A
A2
A4
A5
a1
b
c
D
D1
D2
E
E1
E2
E3
E4
e
e3
G
H
h
L
N
s
MIN.
3.270
3.100
0.800
0.030
0.220
0.230
15.800
9.400
13.900
10.900
5.800
2.900
0
15.500
0.800
-
mm
TYP.
0.200
1.000
0.650
11.050
-
MAX.
3.410
3.180
1.000
-0.040
0.380
0.320
16.000
9.800
14.500
11.100
2.900
6.200
3.200
0.075
15.900
1.100
1.100
10˚
8˚
MIN.
0.1287
0.1220
0.0315
0.0012
0.0087
0.0091
0.6220
0.3701
0.5472
0.4291
0.2283
0.1142
0
0.6102
0.0315
-
inch
TYP.
0.0079
0.0394
0.0256
0.4350
-
MAX.
0.1343
0.1252
0.0394
-0.0016
0.0150
0.0126
0.6299
0.3858
0.5709
0.4370
0.1142
0.2441
0.1260
0.0031
0.6260
0.0433
0.0433
10˚
8˚
OUTLINE AND
MECHANICAL DATA
PowerSO36 (SLUG UP)
(1) “D and E1” do not include mold flash or protusions.
Mold flash or protusions shall not exceed 0.15mm (0.006”).
(2) No intrusion allowed inwards the leads.
7183931 G
Doc ID 14103 Rev 3
29/32
Package information
TDA7575B
Figure 40. Flexiwatt27 (vertical) mechanical data and package dimensions
DIM.
MIN.
4.45
1.80
A
B
C
D
E
F (1)
G
G1
H (2)
H1
H2
H3
L (2)
L1
L2 (2)
L3
L4
L5
M
M1
N
O
R
R1
R2
R3
R4
V
V1
V2
V3
0.75
0.37
0.80
25.75
28.90
22.07
18.57
15.50
7.70
3.70
3.60
mm
TYP.
4.50
1.90
1.40
0.90
0.39
1.00
26.00
29.23
17.00
12.80
0.80
22.47
18.97
15.70
7.85
5
3.5
4.00
4.00
2.20
2
1.70
0.5
0.3
1.25
0.50
MAX.
4.65
2.00
MIN.
0.175
0.070
1.05
0.42
0.57
1.20
26.25
29.30
0.029
0.014
0.031
1.014
1.139
22.87
19.37
15.90
7.95
0.869
0.731
0.610
0.303
4.30
4.40
0.145
0.142
inch
TYP.
0.177
0.074
0.055
0.035
0.015
0.040
1.023
1.150
0.669
0.503
0.031
0.884
0.747
0.618
0.309
0.197
0.138
0.157
0.157
0.086
0.079
0.067
0.02
0.12
0.049
0.019
MAX.
0.183
0.079
OUTLINE AND
MECHANICAL DATA
0.041
0.016
0.022
0.047
1.033
1.153
0.904
0.762
0.626
0.313
0.169
0.173
5˚ (Typ.)
3˚ (Typ.)
20˚ (Typ.)
45˚ (Typ.)
Flexiwatt27 (vertical)
(1): dam-bar protusion not included
(2): molding protusion included
V
C
B
V
H
H1
V3
A
H2
O
H3
R3
L4
R4
V1
R2
L2
N
L3
R
L
L1
V1
V2
R2
D
R1
L5
Pin 1
R1
R1
E
G
G1
F
FLEX27ME
M
M1
7139011
30/32
Doc ID 14103 Rev 3
TDA7575B
9
Revision history
Revision history
Table 11.
Document revision history
Date
Revision
Changes
30-Oct-2007
1
Initial release.
17-Dec-2009
2
Updated Figure 39: PowerSO36 (slug up) mechanical data and
package dimensions on page 29.
17-Sep-2013
3
Updated Disclaimer.
Doc ID 14103 Rev 3
31/32
TDA7575B
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2013 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
32/32
Doc ID 14103 Rev 3