TS482 100mW Stereo Headphone Amplifier ■ Operating from Vcc=2V to 5.5V ■ 100mW into 16Ω at 5V ■ TS482ID, TS482IDT - SO-8 38mW into 16Ω at 3.3V ■ 11.5mW into 16Ω at 2V ■ Switch ON/OFF click reduction circuitry ■ High power supply rejection ratio: 85dB at 5V ■ High signal-to-noise ratio: 110dB(A) at 5V ■ High crosstalk immunity: 100dB (F=1kHz) ■ Rail-to-rail input and output ■ Unity-gain stable ■ Available in SO-8, MiniSO-8 & DFN8 OUT (1) 1 8 VCC VIN- (1) 2 7 OUT (2) VIN+ (1) 3 6 VIN- (2) GND 4 5 VIN+ (2) TS482IST - MiniSO-8 OUT (1) 1 8 VCC VIN- (1) 2 7 OUT (2) VIN+ (1) 3 6 VIN- (2) GND 4 5 VIN+ (2) TS482IQT - DFN8 Description The TS482 is a dual audio power amplifier able to drive a 16 or 32Ω stereo headset down to low voltages. It is delivering up to 100mW per channel (into 16Ω loads) of continuous average power with 0.1% THD+N from a 5V power supply. OUT (1) 1 8 Vcc VIN - (1) 2 7 OUT (2) VIN + (1) 3 6 VIN - (2) GND 4 5 VIN + (2) Typical application schematic Rfeed1 The unity gain stable TS482 can be configured by external gain-setting resistors. 1µF Vcc 3.9k RpolVcc Cs 100k 8 3.9k 2 1 Rin1 3 + Cb TS482 + 5 + 7 Rin2 1µF 6 3.9k 4 100k Rpol 3.9k + ■ Stereo headphone amplifier 2.2µF ■ Optical storage ■ Computer motherboard ■ PDA, organizers & notebook computers ■ High-end TV, set-top box, DVD players ■ Sound cards + Left In Cin2 220µF Cout1 Cout2 + + 2.2µF + Right In Cin1 Applications + + RL=32Ohms RL=32Ohms 220µF Rfeed2 Order Codes Part Number Temperature Range Package Packing SO-8 Tube or Tape & Reel -40, +85°C miniSO-8 TS482ID/IDT TS482IST TS482IQT November 2005 DFN8 Tape & Reel Marking 482I Rev 2 1/26 www.st.com 26 Absolute Maximum Ratings 1 TS482 Absolute Maximum Ratings Table 1. Key parameters and their absolute maximum ratings Symbol VCC Vi Parameter Supply voltage (1) Input Voltage Value Unit 6 V -0.3 to VCC +0.3 V Toper Operating Free Air Temperature Range -40 to + 85 °C Tstg Storage Temperature -65 to +150 °C 150 °C Tj Maximum Junction Temperature Thermal Resistance Junction to Ambient Rthja 175 215 70 SO8 MiniSO8 DFN8 °C/W Power Dissipation (2) Pd 0.71 0.58 1.79 SO-8 MiniSO-8 DFN8 ESD Human Body Model (pin to pin) ESD Latch-up W 2 kV Machine Model - 220pF - 240pF (pin to pin) 200 V Latch-up Immunity (all pins) 200 mA Lead Temperature (soldering, 10sec) 250 °C Lead Temperature (soldering, 10sec) for lead-free 260 °C Output Short-Circuit Duration see note (3) 1. All voltages values are measured with respect to the ground pin. 2. Pd has been calculated with Tamb = 25°C, Tjunction = 150°C. 3. Attention must be paid to continuous power dissipation. Exposure of the IC to a short circuit on one or two amplifiers simultaneously can cause excessive heating and the destruction of the device. Table 2. Operating conditions Symbol Parameter Value Unit VCC Supply Voltage 2 to 5.5 V RL Load Resistor >= 16 Ω 400 100 pF G ND to VCC V Load Capacitor CL Vicm RL = 16 to 100Ω RL > 100Ω Common Mode Input Voltage Range Thermal Resistance Junction to Ambient Rthja SO-8 MiniSO-8 DFN8(1) 1. When mounted on a 4-layer PCB. 2/26 150 190 41 °C/W TS482 2 Electrical Characteristics Electrical Characteristics Table 3. Electrical characteristics when VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol Parameter ICC Supply Current No input signal, no load VIO Input Offset Voltage (VICM = V CC/2) IIB Input Bias Current (V ICM = VCC/2) Min. Typ. Max. Unit 5.5 7.2 1 5 mV 200 500 nA mA Output Power PO THD+N = THD+N = THD+N = THD+N = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω 60 95 65 67.5 100 107 mW Total Harmonic Distortion + Noise (Av=-1) (1) THD + N PSRR IO VO SNR RL = 32Ω, Pout = 60mW, 20Hz ≤F ≤20kHz RL = 16Ω, Pout = 90mW, 20Hz ≤F ≤20kHz Power Supply Rejection Ratio (Av=1), inputs floating GBP SR dB 85 F = 100Hz, Vripple = 100mVpp Max Output Current THD +N < 1%, RL = 16Ω connected between out and VCC /2 Output Swing VOL: R L = 32Ω VOH: R L = 32Ω VOL: R L = 16Ω VOH: R L = 16Ω 106 4.2 95 110 Signal-to-Noise Ratio (Filter Type A, Av=-1) RL = 32Ω, THD +N < 0.2%, 20Hz ≤F ≤20kHz mA 120 0.4 4.6 0.55 4.4 4.45 Channel Separation, R L = 32Ω F = 1kHz F = 20Hz to 20kHz Crosstalk Channel Separation, R L = 16Ω F = 1kHz F = 20Hz to 20kHz CI % 0.03 0.03 100 80 0.48 V 0.65 dB dB 100 80 Input Capacitance 1 pF Gain Bandwidth Product (R L = 32Ω) 1.35 2.2 MHz Slew Rate, Unity Gain Inverting (R L = 16Ω) 0.45 0.7 V/µs 1. Fig. 68 to 79 show dispersion of these parameters. 3/26 Electrical Characteristics Table 4. TS482 Electrical characteristics when VCC = +3.3V, GND = 0V, Tamb = 25°C (unless otherwise specified) (1) Symbol Parameter ICC Supply Current No input signal, no load VIO Input Offset Voltage (VICM = V CC/2) IIB Input Bias Current (V ICM = VCC/2) Min. Typ. Max. Unit 5.3 7.2 1 5 mV 200 500 nA mA Output Power PO THD+N = THD+N = THD+N = THD+N = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω 23 36 27 28 38 42 mW Total Harmonic Distortion + Noise (Av=-1) (1) THD + N PSRR IO VO SNR RL = 32Ω, Pout = 16mW, 20Hz ≤F ≤20kHz RL = 16Ω, Pout = 35mW, 20Hz ≤F ≤20kHz Power Supply Rejection Ratio (Av=1), inputs floating GBP SR Max Output Current THD +N < 1%, RL = 16Ω connected between out and VCC/2 Output Swing VOL: R L = 32Ω VOH: R L = 32Ω VOL: R L = 16Ω VOH: R L = 16Ω 64 2.68 0.3 3 0.45 2.85 92 107 2.85 RL = 32Ω, THD +N < 0.2%, 20Hz ≤F ≤20kHz mA 75 Signal-to-Noise Ratio (Filter Type A, Av=-1) 100 80 0.38 V 0.52 dB dB 100 80 Input Capacitance 1 pF Gain Bandwidth Product (R L = 32Ω) 1.2 2 MHz Slew Rate, Unity Gain Inverting (R L = 16Ω) 0.45 0.7 V/µs 1. Fig. 68 to 79 show dispersion of these parameters. 1. All electrical values are guaranteed with correlation measurements at 2V and 5V. 4/26 dB 80 F = 100Hz, Vripple = 100mVpp Channel Separation, R L = 32Ω F = 1kHz F = 20Hz to 20kHz Crosstalk Channel Separation, R L = 16Ω F = 1kHz F = 20Hz to 20kHz CI % 0.03 0.03 Electrical Characteristics Table 5. TS482 Electrical characteristics when VCC = +2.5V, GND = 0V, Tamb = 25°C (unless otherwise specified) (2) Symbol Parameter ICC Supply Current No input signal, no load VIO Input Offset Voltage (VICM = VCC/2) IIB Input Bias Current (VICM = V CC/2) Min. Typ. Max. Unit 5.1 7.2 1 5 mV 200 500 nA mA Output Power PO THD+N THD+N THD+N THD+N = 0.1% Max, F = 1kHz, RL = 32Ω = 1% Max, F = 1kHz, RL = 32Ω = 0.1% Max, F = 1kHz, RL = 16Ω = 1% Max, F = 1kHz, RL = 16Ω 12.5 17.5 13.5 14.5 20.5 22 mW Total Harmonic Distortion + Noise (Av=-1) (1) THD + N PSRR IO VO SNR RL = 32Ω, Pout = 10mW, 20Hz ≤F ≤20kHz RL = 16Ω, Pout = 16mW, 20Hz ≤F ≤20kHz Power Supply Rejection Ratio (Av=1), inputs floating GBP SR Max Output Current THD +N < 1%, RL = 16Ω connected between out and V CC/2 Output Swing VOL: RL = 32Ω VOH: RL = 32Ω VOL: RL = 16Ω VOH: RL = 16Ω 45 1.97 0.25 2.25 0.35 2.15 89 102 2.14 RL = 32Ω, THD +N < 0.2%, 20Hz ≤F ≤20kHz mA 56 Signal-to-Noise Ratio (Filter Type A, Av=-1) 100 80 0.325 V 0.45 dB dB 100 80 Input Capacitance 1 pF Gain Bandwidth Product (RL = 32Ω) 1.2 2 MHz Slew Rate, Unity Gain Inverting (RL = 16Ω) 0.45 0.7 V/µs 1. Fig. 68 to 79 show dispersion of these parameters. 2. All electrical values are guaranteed with correlation measurements at 2V and 5V. 5/26 dB 75 F = 100Hz, Vripple = 100mVpp Channel Separation, RL = 32Ω F = 1kHz F = 20Hz to 20kHz Crosstalk Channel Separation, RL = 16Ω F = 1kHz F = 20Hz to 20kHz CI % 0.03 0.03 Electrical Characteristics Table 6. TS482 Electrical characteristics when VCC = +2V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit ICC Supply Current No input signal, no load 5 7.2 VIO Input Offset Voltage (VICM = V CC/2) 1 5 mV IIB Input Bias Current (V ICM = VCC/2) 200 500 nA mA Output Power PO THD+N = THD+N = THD+N = THD+N = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω 7 9.5 8 9 11.5 13 mW Total Harmonic Distortion + Noise (Av=-1) (1) THD + N PSRR IO VO SNR RL = 32Ω, Pout = 6.5mW, 20Hz ≤F ≤20kHz RL = 16Ω, Pout = 8mW, 20Hz ≤F ≤20kHz Power Supply Rejection Ratio (Av=1), inputs floating GBP SR Max Output Current THD +N < 1%, RL = 16Ω connected between out and VCC/2 Output Swing VOL: R L = 32Ω VOH: R L = 32Ω VOL: R L = 16Ω VOH: R L = 16Ω 33 1.53 0.24 1.73 0.33 1.63 88 101 1.67 RL = 32Ω, THD +N < 0.2%, 20Hz ≤F ≤20kHz mA 41.5 Signal-to-Noise Ratio (Filter Type A, Av=-1) 100 80 0.295 V 0.41 dB dB 100 80 Input Capacitance 1 pF Gain Bandwidth Product (R L = 32Ω) 1.2 2 MHz Slew Rate, Unity Gain Inverting (R L = 16Ω) 0.42 0.65 V/µs 1. Fig. 68 to 79 show dispersion of these parameters. 6/26 dB 75 F = 100Hz, Vripple = 100mVpp Channel Separation, R L = 32Ω F = 1kHz F = 20Hz to 20kHz Crosstalk Channel Separation, R L = 16Ω F = 1kHz F = 20Hz to 20kHz CI % 0.02 0.025 Electrical Characteristics Table 7. Components description Components Functional Description Rin Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (fc = 1 / (2 x Pi x Rin x Cin)) Cin Input coupling capacitor which blocks the DC voltage at the amplifier input terminal Rfeed Feed back resistor which sets the closed loop gain in conjunction with Rin Cs Supply Bypass capacitor which provides power supply filtering Cb Bypass capacitor which provides half supply filtering Cout Output coupling capacitor which blocks the DC voltage at the load input terminal This capacitor also forms a high pass filter with RL (fc = 1 / (2 x Pi x RL x Cout)) Rpol These 2 resistors form a voltage divider which provide a DC biasing voltage (Vcc/2) for the 2 amplifiers. Av 7/26 TS482 Closed loop gain = -Rfeed / Rin Electrical Characteristics Table 8. TS482 Index of graphics Description Figure Page Open loop gain and phase vs. frequency response Figure 1 to10 Page 9 to10 Phase and Gain Margin vs. Power Supply Voltage Figure 11 to 20 Page 10 to12 Output power vs. power supply voltage Figure 21 to 23 Page 12 Output power vs. load resistance Figure 24 to 27 Page 12 to13 Power dissipation vs. output power Figure 28 to 31 Page 13 to14 Power derating vs. ambient temperature Figure 32 Page 14 Current consumption vs. power supply voltage Figure 33 Page 14 Power supply rejection ratio vs. frequency Figure 34 Page 14 THD + N vs. output power Figure 35 to 49 Page 14 to17 THD + N vs. frequency Figure 50 to 54 Page 17 Signal to noise ratio Figure 55 to 58 Page 18 Equivalent input noise voltage vs. frequency Figure 59 Page 18 Output voltage swing vs. power supply Figure 60 Page 18 Figure 61 to 65 Page 19 Lower cut off frequency vs. output capacitor Figure 66 Page 19 Lower cut off frequency vs. input capacitor Figure 67 Page 20 Figure 68 to 79 Page 20 to22 Crosstalk vs. frequency Typical distribution of TDH + N 8/26 Electrical Characteristics 60 60 0 Gain (dB) 80 20 1 Figure 3. 10 100 Frequency (kHz) 1000 10000 Phase 80 60 40 20 -20 0 -40 0.1 -20 Open loop gain and phase vs. frequency response 1 Figure 4. 10 100 Frequency (kHz) 1000 10000 Vcc = 5V RL = 16Ω Tamb = 25°C Gain 60 180 80 160 140 Gain 60 Vcc = 2V RL = 16Ω Tamb = 25°C 80 60 0 Gain (dB) Phase Phase (Deg) Gain (dB) 20 100 40 20 20 80 60 40 20 -20 0 0 -40 0.1 1 Figure 5. 10 100 Frequency (kHz) 1000 10000 -40 0.1 -20 Open loop gain and phase vs. frequency response 1 Figure 6. 10 100 Frequency (kHz) 1000 10000 Vcc = 5V RL = 32Ω Tamb = 25°C Gain 60 180 80 160 140 Vcc = 2V RL = 32Ω Tamb = 25°C Gain 60 80 60 0 40 20 -20 Gain (dB) Phase Phase (Deg) Gain (dB) 20 100 40 9/26 1 10 100 Frequency (kHz) 1000 10000 -20 140 20 100 Phase 80 60 0 40 20 -20 0 0 -40 0.1 160 120 120 40 -20 Open loop gain and phase vs. frequency response 180 80 140 100 Phase 0 40 -20 160 120 120 40 -20 Open loop gain and phase vs. frequency response 180 80 140 100 20 0 -40 0.1 160 120 0 40 -20 Vcc = 2V RL = 8Ω Tamb = 25°C 40 Phase (Deg) Gain (dB) 60 140 100 Phase 180 Gain 160 120 40 20 80 180 Vcc = 5V RL = 8Ω Tamb = 25°C Gain Open loop gain and phase vs. frequency response Phase (Deg) 80 Figure 2. Phase (Deg) Open loop gain and phase vs. frequency response -40 0.1 1 10 100 Frequency (kHz) 1000 10000 -20 Phase (Deg) Figure 1. TS482 Electrical Characteristics Open loop gain and phase vs. frequency response Figure 8. Open loop gain and phase vs. frequency response 180 180 Gain 60 Vcc = 5V RL = 600Ω Tamb = 25°C 80 160 140 Vcc = 2V RL = 600Ω Tamb = 25°C Gain 60 Phase 60 0 Gain (dB) 20 80 Phase (Deg) Gain (dB) 100 40 100 20 80 Phase 60 0 40 20 -20 40 20 -20 0 0 -40 0.1 1 Figure 9. 10 100 1000 Frequency (kHz) 10000 -40 0.1 -20 Open loop gain and phase vs. frequency response 1 10 100 Frequency (kHz) 1000 10000 Gain 60 Vcc = 5V RL = 5kΩ Tamb = 25°C 180 80 160 140 Vcc = 2V RL = 5kΩ Tamb = 25°C Gain 60 120 20 80 Phase 60 0 40 40 20 80 Phase 60 0 40 20 -20 0 -40 0.1 1 Figure 11. 10 100 1000 Frequency (kHz) 10000 -20 0 -40 0.1 10 100 Frequency (kHz) 1000 10000 -20 50 RL=8Ω Tamb=25°C RL=8Ω Tamb=25°C 40 Gain Margin (dB) 40 Phase Margin (Deg) 1 Phase margin vs. power supply voltage Figure 12. Phase margin vs. power supply voltage 50 30 CL= 0 to 500pF 20 10 0 2.0 10/26 140 100 20 -20 160 120 Gain (dB) 100 Phase (Deg) Gain (dB) 40 -20 Figure 10. Open loop gain and phase vs. frequency response 180 80 140 120 120 40 160 Phase (Deg) 80 Phase (Deg) Figure 7. TS482 30 CL=0 to 500pF 20 10 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 Electrical Characteristics TS482 Figure 13. Phase margin vs. power supply voltage Figure 14. Gain margin vs. power supply voltage 50 50 RL=16Ω Tamb=25°C 40 30 Gain Margin (dB) Phase Margin (Deg) 40 CL= 0 to 500pF 20 10 30 20 CL=0 to 500pF 10 RL=16Ω Tamb=25°C 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 0 2.0 5.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 Figure 15. Phase margin vs. power supply voltage Figure 16. Gain margin vs. power supply voltage 50 50 RL=32Ω Tamb=25°C 40 CL= 0 to 500pF Gain Margin (dB) Phase Margin (Deg) 40 30 20 10 30 20 CL=0 to 500pF 10 RL=32Ω Tamb=25°C 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 0 2.0 5.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 Figure 17. Phase margin vs. power supply voltage Figure 18. Gain margin vs. power supply voltage 70 20 CL=0pF 50 CL=0pF CL=500pF 40 30 20 10 CL=100pF CL=200pF 10 CL=500pF RL=600Ω Tamb=25°C 0 2.0 11/26 Gain Margin (dB) Phase Margin (Deg) 60 2.5 RL=600Ω Tamb=25°C 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 Electrical Characteristics Figure 19. TS482 Phase margin vs. power supply voltage Figure 20. Gain margin vs. power supply voltage 70 20 CL=0pF 50 CL=0pF 40 CL=300pF Gain Margin (dB) Phase Margin (Deg) 60 CL=500pF 30 20 10 CL=200pF 10 CL=500pF RL=5kΩ Tamb=25°C RL=5kΩ Tamb=25°C 0 2.0 2.5 Figure 21. 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 0 2.0 5.0 2.5 Output power vs. power supply voltage Figure 22. 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 Output power vs. power supply voltage 200 250 Av = -1 RL = 8Ω F = 1kHz BW < 125kHz Tamb = 25°C 200 175 Av = -1 RL = 16Ω F = 1kHz BW < 125kHz Tamb = 25°C 175 THD+N=1% 150 150 Output power (mW) 225 Output power (mW) CL=100pF THD+N=10% 125 100 75 50 125 THD+N=1% THD+N=10% 100 75 50 THD+N=0.1% THD+N=0.1% 25 25 0 2.0 Figure 23. 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 0 2.0 5.5 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 Output power vs. power supply voltage Figure 24. Output power vs. load resistance 200 75 Av = -1 Vcc = 5V F = 1kHz BW < 125kHz Tamb = 25°C 180 THD+N=1% THD+N=10% 50 25 THD+N=1% 160 Output power (mW) Output power (mW) 100 Av = -1 RL = 32Ω F = 1kHz BW < 125kHz Tamb = 25°C THD+N=0.1% 140 120 100 THD+N=10% 80 60 40 THD+N=0.1% 20 0 2.0 12/26 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 0 8 16 24 32 40 48 Load Resistance ( ) 56 64 Electrical Characteristics TS482 Figure 25. Output power vs. load resistance Figure 26. Output power vs. load resistance 50 THD+N=1% 60 Output power (mW) Av = -1 Vcc = 3.3V F = 1kHz BW < 125kHz Tamb = 25°C 50 40 THD+N=10% 30 20 0 40 30 25 THD+N=10% 20 15 THD+N=0.1% 5 8 16 24 32 40 48 Load Resistance (ohm) 56 0 64 Figure 27. Output power vs. load resistance 20 THD+N=1% 15 THD+N=10% 10 Power Dissipation (mW) Av = -1 Vcc = 2V F = 1kHz BW < 125kHz Tamb = 25°C 8 16 24 32 40 48 Load Resistance (ohm) 56 64 Figure 28. Power dissipation vs. output power 25 Output power (mW) THD+N=1% 35 10 THD+N=0.1% 10 Av = -1 Vcc = 2.6V F = 1kHz BW < 125kHz Tamb = 25°C 45 Output power (mW) 70 160 Vcc=5V F=1kHz 140 THD+N<1% RL=8Ω 120 100 80 60 RL=16Ω 40 5 20 THD+N=0.1% 0 0 8 16 24 32 40 48 Load Resistance (ohm) 56 64 RL=32Ω 0 20 40 60 80 100 120 140 Output Power (mW) Figure 29. Power dissipation vs. output power Figure 30. Power dissipation vs. output power Vcc=3.3V 60 F=1kHz THD+N<1% RL=8Ω 50 40 30 RL=16Ω 20 20 RL=16Ω 10 RL=32Ω 0 0 10 20 30 40 Output Power (mW) 13/26 RL=8Ω 30 RL=32Ω 10 0 Vcc=2.6V F=1kHz THD+N<1% 40 Power Dissipation (mW) Power Dissipation (mW) 70 50 60 0 5 10 15 20 Output Power (mW) 25 30 Electrical Characteristics TS482 Figure 31. Power dissipation vs. output power Figure 32. Power derating vs. ambient temperature 25 Power Dissipation (mW) Vcc=2V F=1kHz 20 THD+N<1% RL=8Ω 15 10 RL=16Ω 5 RL=32Ω 0 0 2 4 6 8 10 12 14 Output Power (mW) Figure 33. Current consumption vs. power supply voltage Figure 34. Power supply rejection ratio vs. frequency 6 80 4 Ta=85°C Ta=-40°C 3 Ta=25°C Vcc=3.3V 60 20 1 0 1 2 3 Power Supply Voltage (V) 4 0 20 5 Figure 35. THD + N vs. output power Vcc=2.6V & 2V Vripple=100mVpp Vpin3,5=Vcc/2 (forced bias) RL >= 8Ω 0db=70mVrms Tamb=25°C 40 2 0 100 1000 10000 Frequency (Hz) 100000 Figure 36. THD + N vs. output power 10 10 RL = 8Ω F = 20Hz Av = -1 BW < 125kHz 1 Tamb = 25°C RL = 16Ω F = 20Hz Av = -1 BW < 125kHz Tamb = 25°C 1 THD + N (%) THD + N (%) Vcc=5V 100 PSRR (dB) Current Consumption (mA) No load 5 Vcc=2V Vcc=2.6V Vcc=2V 0.1 Vcc=2.6V 0.1 0.01 Vcc=3.3V Vcc=5V Vcc=3.3V 0.01 14/26 1 10 Output Power (mW) 100 1E-3 1 Vcc=5V 10 Output Power (mW) 100 Electrical Characteristics TS482 Figure 37. THD + N vs. output power Figure 38. THD + N vs. output power 10 10 Vcc=2V 0.1 Vcc=2.6V Vcc=3.3V Vcc=2.6V Vcc=3.3V 0.1 Vcc=5V 1 1E-3 Vcc=5V 10 Output Power (mW) 100 Figure 39. THD + N vs. output power 0.01 0.1 Output Voltage (Vrms) 1 Figure 40. THD + N vs. output power 10 10 RL = 5kΩ F = 20Hz 1 Av = -1 BW < 125kHz Tamb = 25°C Vcc=2V Vcc=2.6V THD + N (%) THD + N (%) Vcc=2V 0.01 0.01 1E-3 RL = 600Ω F = 20Hz 1 Av = -1 BW < 125kHz Tamb = 25°C THD + N (%) THD + N (%) RL = 32Ω F = 20Hz Av = -1 1 BW < 125kHz Tamb = 25°C Vcc=3.3V 0.1 Vcc=5V RL = 8Ω F = 1kHz Av = -1 BW < 125kHz 1 Tamb = 25°C Vcc=2V Vcc=2.6V 0.1 0.01 Vcc=3.3V Vcc=5V 1E-3 0.01 0.1 Output Voltage (Vrms) 0.01 1 Figure 41. THD + N vs. output power THD + N (%) THD + N (%) Vcc=2V Vcc=2.6V 0.01 15/26 RL = 32Ω F = 1kHz Av = -1 1 BW < 125kHz Tamb = 25°C Vcc=2V 0.1 Vcc=2.6V 0.01 Vcc=3.3V 1E-3 100 10 RL = 16Ω F = 1kHz Av = -1 BW < 125kHz Tamb = 25°C 0.1 10 Output Power (mW) Figure 42. THD + N vs. output power 10 1 1 1 Vcc=5V 10 Output Power (mW) Vcc=3.3V 100 1E-3 1 Vcc=5V 10 Output Power (mW) 100 Electrical Characteristics TS482 Figure 43. THD + N vs. output power Figure 44. THD + N vs. output power 10 10 RL = 5kΩ F = 1kHz Av = -1 1 BW < 125kHz Tamb = 25°C Vcc=2V Vcc=2.6V THD + N (%) THD + N (%) RL = 600Ω F = 1kHz Av = -1 1 BW < 125kHz Tamb = 25°C Vcc=3.3V 0.1 Vcc=5V Vcc=3.3V Vcc=5V 0.01 1E-3 0.01 0.1 Output Voltage (Vrms) 1E-3 0.01 1 Figure 45. THD + N vs. output power Vcc=2V Vcc=2.6V RL = 16Ω F = 20kHz Av = -1 BW < 125kHz Tamb = 25°C 1 THD + N (%) THD + N (%) 1 10 RL = 8Ω F = 20kHz Av = -1 BW < 125kHz 1 Tamb = 25°C Vcc=2V Vcc=2.6V 0.1 0.1 Vcc=3.3V 1 Vcc=5V 10 Output Power (mW) Vcc=3.3V 0.01 100 Figure 47. THD + N vs. output power THD + N (%) Vcc=2V Vcc=2.6V 0.01 Vcc=3.3V 1 Vcc=5V 10 Output Power (mW) 100 10 RL = 32Ω F = 20kHz Av = -1 BW < 125kHz 1 Tamb = 25°C 0.1 1 Figure 48. THD + N vs. output power 10 THD + N (%) 0.1 Output Voltage (Vrms) Figure 46. THD + N vs. output power 10 16/26 Vcc=2.6V 0.1 0.01 0.01 Vcc=2V Vcc=2V Vcc=2.6V Vcc=3.3V 0.1 Vcc=5V 0.01 Vcc=5V 10 Output Power (mW) RL = 600Ω F = 20kHz Av = -1 1 BW < 125kHz Tamb = 25°C 100 0.01 0.1 Output Voltage (Vrms) 1 Electrical Characteristics TS482 Figure 49. THD + N vs. output power Figure 50. THD + N vs. frequency 0.1 RL = 5kΩ F = 20kHz Av = -1 1 BW < 125kHz Tamb = 25°C Vcc=2V Vcc=2V, Po=10mW Vcc=2.6V, Po=20mW Vcc=3.3V, Po=40mW Vcc=5V, Po=100mW Vcc=2.6V THD + N (%) THD + N (%) 10 Vcc=3.3V Vcc=5V 0.1 RL=8Ω Av=-1 Bw < 125kHz Tamb=25°C 0.01 0.01 0.01 0.1 Output Voltage (Vrms) 1 Figure 51. THD + N vs. frequency 20 100 1000 Frequency (Hz) 10000 20k Figure 52. THD + N vs. frequency 0.1 0.1 RL=16Ω Av=-1 Bw < 125kHz Tamb=25°C Vcc=2V, Po=6.5mW Vcc=2.6V, Po=12mW THD + N (%) THD + N (%) Vcc=2V, Po=8mW Vcc=2.6V, Po=18mW Vcc=3.3V, Po=35mW Vcc=5V, Po=90mW RL=32Ω Av=-1 Bw < 125kHz Tamb=25°C Vcc=3.3V, Po=16mW Vcc=5V, Po=60mW 0.01 0.01 20 100 1000 Frequency (Hz) 10000 20k Figure 53. THD + N vs. frequency 20 RL=5kΩ Av=-1 Bw < 125kHz Tamb=25°C THD + N (%) Vcc=5V, Vo=1.4Vrms THD + N (%) 10000 20k 0.1 RL=600Ω Av=-1 Bw < 125kHz Tamb=25°C 17/26 1000 Frequency (Hz) Figure 54. THD + N vs. frequency 0.1 Vcc=3.3V, Vo=1Vrms 0.01 Vcc=2.6V, Vo=0.75Vrms Vcc=2V, Vo=0.55Vrms 1E-3 100 20 100 1000 Frequency (Hz) 10000 20k Vcc=5V, Vo=1.4Vrms Vcc=3.3V, Vo=1Vrms Vcc=2.6V, Vo=0.75Vrms 0.01 Vcc=2V, Vo=0.55Vrms 1E-3 20 100 1000 Frequency (Hz) 10000 20k Electrical Characteristics TS482 Figure 55. Signal to noise ratio vs. power Figure 56. Signal to noise ratio vs. power supply with unweighted filter (20Hz supply with unweighted filter (20Hz to 20kHz) to 20kHz) 110 110 104 102 RL=32Ω 100 98 96 RL=8Ω 94 RL=16Ω 92 90 2.0 2.5 Av = -1 THD+N < 0.2% Tamb = 25°C 108 Signal to Noise Ratio (dB) Signal to Noise Ratio (dB) Av = -1 108 THD+N < 0.2% 106 Tamb = 25°C 3.0 106 104 102 RL=600Ω 100 98 RL=5kΩ 96 94 92 3.5 4.0 4.5 90 2.0 5.0 2.5 3.0 Figure 57. Signal to noise ratio vs. power supply with A weighted filter Signal to Noise Ratio (dB) Signal to Noise Ratio (dB) 110 RL=32Ω 105 100 5.0 RL=8Ω RL=16Ω 95 2.5 3.0 3.5 4.0 4.5 Av = -1 THD+N < 0.2% Tamb = 25°C 115 110 105 RL=600Ω RL=5kΩ 100 95 90 2.0 5.0 2.5 3.0 3.5 4.0 4.5 5.0 Power Supply (V) Power Supply (V) Figure 59. Equivalent input noise voltage vs. frequency Figure 60. Output voltage swing vs. power supply 25 5.0 Vcc=5V Rs=100Ω Tamb=25°C 4.5 Tamb=25°C 4.0 20 VOH & VOL (V) Equivalent Input Noise Voltage (nv/ Hz) 4.5 120 Av = -1 THD+N < 0.2% Tamb = 25°C 90 2.0 15 3.5 3.0 2.5 RL=32Ω 2.0 RL=16Ω 1.5 RL=8Ω 10 1.0 0.5 5 0.02 18/26 4.0 Figure 58. Signal to noise ratio vs. power supply with A weighted filter 120 115 3.5 Power Supply (V) Power Supply (V) 0.1 1 Frequency (kHz) 10 0.0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 Electrical Characteristics TS482 Figure 61. Crosstalk vs. frequency Figure 62. Crosstalk vs. frequency 100 100 80 ChB to ChA ChA to ChB 60 RL=8Ω Vcc=5V Pout=100mW Av=-1 Bw < 125kHz Tamb=25°C 40 20 20 100 1000 Frequency (Hz) Crosstalk (dB) Crosstalk (dB) 80 ChA to ChB 60 RL=16Ω Vcc=5V Pout=90mW Av=-1 Bw < 125kHz Tamb=25°C 40 20 10000 20k Figure 63. Crosstalk vs. frequency ChB to ChA 20 100 1000 Frequency (Hz) 10000 20k Figure 64. Crosstalk vs. frequency 120 100 100 60 RL=32Ω Vcc=5V Pout=60mW Av=-1 Bw < 125kHz Tamb=25°C 40 20 20 100 1000 Frequency (Hz) 60 RL=600Ω Vcc=5V Vout=1.4Vrms Av=-1 Bw < 125kHz Tamb=25°C 40 0 20 100 1000 Frequency (Hz) 10000 20k 1000 100 Crosstalk (dB) ChB to ChA & ChA to Chb Figure 66. Lower cut off frequency vs. output capacitor 120 80 ChB to ChA & ChA to Chb 60 RL=5kΩ Vcc=5V Vout=1.5Vrms Av=-1 Bw < 125kHz Tamb=25°C 40 20 19/26 80 20 10000 20k Figure 65. Crosstalk vs. frequency 0 Crosstalk (dB) ChB to ChA & ChA to Chb 20 100 1000 Frequency (Hz) 10000 20k -3dB Cut Off Frequency (Hz) Crosstalk (dB) 80 RL=8Ω 100 RL=16Ω RL=32Ω 10 1 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 Output Capacitor Cout ( F) Electrical Characteristics TS482 Figure 67. Lower cut off frequency vs. input capacitor Figure 68. Typical distribution of TDH + N 40 1000 Vcc=5V RL=16Ω Av=-1 Pout=90mW 20Hz≤F≤20kHz Tamb=25°C 32 Rin=10kΩ 100 Number of Units -3dB Cut Off Frequency (Hz) 36 Rin=3.9kΩ Rin=22kΩ 10 28 24 20 16 12 8 4 1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0 2.2 0.012 0.018 0.024 Input Capacitor Cin ( F) Figure 69. Best case distribution of THD + N 0.048 28 24 20 16 Vcc=5V RL=16Ω Av=-1 Pout=90mW 20Hz≤F≤20kHz Tamb=25°C 36 32 Number of Units Number of Units 32 12 28 24 20 16 12 8 8 4 4 0 0.012 0.018 0.024 0.030 0.036 0.042 0.048 0.012 0.018 0.024 Figure 71. Typical distribution of TDH + N 0.036 0.042 0.048 Figure 72. Best case distribution of THD + N 40 40 32 28 24 20 16 12 Vcc=2V RL=16Ω Av=-1 Pout=8mW 20Hz≤F≤20kHz Tamb=25°C 36 32 Number of Units Vcc=2V RL=16Ω Av=-1 Pout=8mW 20Hz≤F≤20kHz Tamb=25°C 36 28 24 20 16 12 8 8 4 4 0 0.030 THD+N (%) THD+N (%) Number of Units 0.042 40 Vcc=5V RL=16Ω Av=-1 Pout=90mW 20Hz≤F≤20kHz Tamb=25°C 36 0 0.012 0.018 0.024 0.030 0.036 THD+N (%) 20/26 0.036 Figure 70. Worst case distribution of THD + N 40 0 0.030 THD+N (%) 0.042 0.048 0.012 0.018 0.024 0.030 0.036 THD+N (%) 0.042 0.048 Electrical Characteristics TS482 Figure 73. Worst case distribution of THD + N Figure 74. Typical distribution of TDH + N 40 20 Number of Units 32 28 24 20 16 12 16 14 12 10 8 6 8 4 4 2 0 0.012 0.018 0.024 0.030 0.036 0.042 Vcc=5V RL=32Ω Av=-1 Pout=60mW 20Hz≤F≤20kHz Tamb=25°C 18 Number of Units Vcc=2V RL=16Ω Av=-1 Pout=8mW 20Hz≤F≤20kHz Tamb=25°C 36 0 0.012 0.048 0.018 0.024 THD+N (%) Figure 75. Best case distribution of THD + N 14 12 10 8 6 18 16 Number of Units Number of Units 16 14 12 0.048 8 6 4 2 2 0.018 0.024 0.030 0.036 0.042 Vcc=5V RL=32Ω Av=-1 Pout=60mW 20Hz≤F≤20kHz Tamb=25°C 10 4 0 0.012 0 0.012 0.048 0.018 0.024 THD+N (%) 0.030 0.036 0.042 0.048 THD+N (%) Figure 77. Typical distribution of TDH + N Figure 78. Best case distribution of THD + N 40 40 32 28 24 20 16 12 32 28 24 20 16 12 8 8 4 4 0.012 0.018 0.024 0.030 0.036 THD+N (%) 0.042 0.048 Vcc=2V RL=32Ω Av=-1 Pout=6.5mW 20Hz≤F≤20kHz Tamb=25°C 36 Number of Units Vcc=2V RL=32Ω Av=-1 Pout=6.5mW 20Hz≤F≤20kHz Tamb=25°C 36 Number of Units 0.042 20 Vcc=5V RL=32Ω Av=-1 Pout=60mW 20Hz≤F≤20kHz Tamb=25°C 18 21/26 0.036 Figure 76. Worst case distribution of THD + N 20 0 0.030 THD+N (%) 0 0.012 0.018 0.024 0.030 0.036 THD+N (%) 0.042 0.048 Electrical Characteristics TS482 Figure 79. Worst case distribution of THD + N 40 Vcc=2V RL=32Ω Av=-1 Pout=6.5mW 20Hz≤F≤20kHz Tamb=25°C 36 Number of Units 32 28 24 20 16 12 8 4 0 0.012 0.018 0.024 0.030 0.036 THD+N (%) 22/26 0.042 0.048 Package Mechanical Data 3 TS482 Package Mechanical Data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 3.1 SO-8 Package SO-8 MECHANICAL DATA DIM. mm. MIN. TYP inch MAX. MIN. TYP. 0.053 MAX. 0.069 A 1.35 1.75 A1 0.10 0.25 0.04 0.010 A2 1.10 1.65 0.043 0.065 B 0.33 0.51 0.013 0.020 C 0.19 0.25 0.007 0.010 D 4.80 5.00 0.189 0.197 E 3.80 4.00 0.150 0.157 e 1.27 0.050 H 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k ddd 8˚ (max.) 0.1 0.04 0016023/C 23/26 Package Mechanical Data 3.2 24/26 MiniSO-8 Package TS482 Package Mechanical Data 3.3 25/26 DFN8 Package TS482 Revision history 4 TS482 Revision history Date Revision June 2003 1 Initial release. 2 The following changes were made in this revision: – Lead temperature for lead-free added see Table 1: Key parameters and their absolute maximum ratings on page 2. – Formatting changes throughout. Nov. 2005 Changes Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 26/26