STMICROELECTRONICS TS482IQT

TS482
100mW Stereo Headphone Amplifier
■
Operating from Vcc=2V to 5.5V
■
100mW into 16Ω at 5V
■
TS482ID, TS482IDT - SO-8
38mW into 16Ω at 3.3V
■
11.5mW into 16Ω at 2V
■
Switch ON/OFF click reduction circuitry
■
High power supply rejection ratio: 85dB at 5V
■
High signal-to-noise ratio: 110dB(A) at 5V
■
High crosstalk immunity: 100dB (F=1kHz)
■
Rail-to-rail input and output
■
Unity-gain stable
■
Available in SO-8, MiniSO-8 & DFN8
OUT (1)
1
8
VCC
VIN- (1)
2
7
OUT (2)
VIN+ (1)
3
6
VIN- (2)
GND
4
5
VIN+ (2)
TS482IST - MiniSO-8
OUT (1)
1
8
VCC
VIN- (1)
2
7
OUT (2)
VIN+ (1)
3
6
VIN- (2)
GND
4
5
VIN+ (2)
TS482IQT - DFN8
Description
The TS482 is a dual audio power amplifier able to
drive a 16 or 32Ω stereo headset down to low
voltages.
It is delivering up to 100mW per channel (into 16Ω
loads) of continuous average power with 0.1%
THD+N from a 5V power supply.
OUT (1)
1
8
Vcc
VIN - (1)
2
7
OUT (2)
VIN + (1)
3
6
VIN - (2)
GND
4
5
VIN + (2)
Typical application schematic
Rfeed1
The unity gain stable TS482 can be configured by
external gain-setting resistors.
1µF
Vcc
3.9k
RpolVcc
Cs
100k
8
3.9k
2
1
Rin1
3
+
Cb
TS482
+
5
+
7
Rin2 1µF
6
3.9k
4
100k
Rpol
3.9k
+
■
Stereo headphone amplifier
2.2µF
■
Optical storage
■
Computer motherboard
■
PDA, organizers & notebook computers
■
High-end TV, set-top box, DVD players
■
Sound cards
+
Left In
Cin2
220µF
Cout1
Cout2
+
+
2.2µF
+
Right In Cin1
Applications
+
+
RL=32Ohms
RL=32Ohms
220µF
Rfeed2
Order Codes
Part Number
Temperature Range
Package
Packing
SO-8
Tube or Tape & Reel
-40, +85°C
miniSO-8
TS482ID/IDT
TS482IST
TS482IQT
November 2005
DFN8
Tape & Reel
Marking
482I
Rev 2
1/26
www.st.com
26
Absolute Maximum Ratings
1
TS482
Absolute Maximum Ratings
Table 1.
Key parameters and their absolute maximum ratings
Symbol
VCC
Vi
Parameter
Supply voltage (1)
Input Voltage
Value
Unit
6
V
-0.3 to VCC +0.3
V
Toper
Operating Free Air Temperature Range
-40 to + 85
°C
Tstg
Storage Temperature
-65 to +150
°C
150
°C
Tj
Maximum Junction Temperature
Thermal Resistance Junction to Ambient
Rthja
175
215
70
SO8
MiniSO8
DFN8
°C/W
Power Dissipation (2)
Pd
0.71
0.58
1.79
SO-8
MiniSO-8
DFN8
ESD
Human Body Model (pin to pin)
ESD
Latch-up
W
2
kV
Machine Model - 220pF - 240pF (pin to pin)
200
V
Latch-up Immunity (all pins)
200
mA
Lead Temperature (soldering, 10sec)
250
°C
Lead Temperature (soldering, 10sec) for lead-free
260
°C
Output Short-Circuit Duration
see note (3)
1. All voltages values are measured with respect to the ground pin.
2. Pd has been calculated with Tamb = 25°C, Tjunction = 150°C.
3. Attention must be paid to continuous power dissipation. Exposure of the IC to a short circuit on one or two
amplifiers simultaneously can cause excessive heating and the destruction of the device.
Table 2.
Operating conditions
Symbol
Parameter
Value
Unit
VCC
Supply Voltage
2 to 5.5
V
RL
Load Resistor
>= 16
Ω
400
100
pF
G ND to VCC
V
Load Capacitor
CL
Vicm
RL = 16 to 100Ω
RL > 100Ω
Common Mode Input Voltage Range
Thermal Resistance Junction to Ambient
Rthja
SO-8
MiniSO-8
DFN8(1)
1. When mounted on a 4-layer PCB.
2/26
150
190
41
°C/W
TS482
2
Electrical Characteristics
Electrical Characteristics
Table 3.
Electrical characteristics when VCC = +5V, GND = 0V, Tamb = 25°C (unless
otherwise specified)
Symbol
Parameter
ICC
Supply Current
No input signal, no load
VIO
Input Offset Voltage (VICM = V CC/2)
IIB
Input Bias Current (V ICM = VCC/2)
Min.
Typ.
Max.
Unit
5.5
7.2
1
5
mV
200
500
nA
mA
Output Power
PO
THD+N =
THD+N =
THD+N =
THD+N =
0.1% Max, F = 1kHz, RL = 32Ω
1% Max, F = 1kHz, RL = 32Ω
0.1% Max, F = 1kHz, RL = 16Ω
1% Max, F = 1kHz, RL = 16Ω
60
95
65
67.5
100
107
mW
Total Harmonic Distortion + Noise (Av=-1) (1)
THD + N
PSRR
IO
VO
SNR
RL = 32Ω, Pout = 60mW, 20Hz ≤F ≤20kHz
RL = 16Ω, Pout = 90mW, 20Hz ≤F ≤20kHz
Power Supply Rejection Ratio (Av=1), inputs floating
GBP
SR
dB
85
F = 100Hz, Vripple = 100mVpp
Max Output Current
THD +N < 1%, RL = 16Ω connected between out and VCC /2
Output Swing
VOL: R L = 32Ω
VOH: R L = 32Ω
VOL: R L = 16Ω
VOH: R L = 16Ω
106
4.2
95
110
Signal-to-Noise Ratio (Filter Type A, Av=-1)
RL = 32Ω, THD +N < 0.2%, 20Hz ≤F ≤20kHz
mA
120
0.4
4.6
0.55
4.4
4.45
Channel Separation, R L = 32Ω
F = 1kHz
F = 20Hz to 20kHz
Crosstalk
Channel Separation, R L = 16Ω
F = 1kHz
F = 20Hz to 20kHz
CI
%
0.03
0.03
100
80
0.48
V
0.65
dB
dB
100
80
Input Capacitance
1
pF
Gain Bandwidth Product (R L = 32Ω)
1.35
2.2
MHz
Slew Rate, Unity Gain Inverting (R L = 16Ω)
0.45
0.7
V/µs
1. Fig. 68 to 79 show dispersion of these parameters.
3/26
Electrical Characteristics
Table 4.
TS482
Electrical characteristics when VCC = +3.3V, GND = 0V, Tamb = 25°C (unless
otherwise specified) (1)
Symbol
Parameter
ICC
Supply Current
No input signal, no load
VIO
Input Offset Voltage (VICM = V CC/2)
IIB
Input Bias Current (V ICM = VCC/2)
Min.
Typ.
Max.
Unit
5.3
7.2
1
5
mV
200
500
nA
mA
Output Power
PO
THD+N =
THD+N =
THD+N =
THD+N =
0.1% Max, F = 1kHz, RL = 32Ω
1% Max, F = 1kHz, RL = 32Ω
0.1% Max, F = 1kHz, RL = 16Ω
1% Max, F = 1kHz, RL = 16Ω
23
36
27
28
38
42
mW
Total Harmonic Distortion + Noise (Av=-1) (1)
THD + N
PSRR
IO
VO
SNR
RL = 32Ω, Pout = 16mW, 20Hz ≤F ≤20kHz
RL = 16Ω, Pout = 35mW, 20Hz ≤F ≤20kHz
Power Supply Rejection Ratio (Av=1), inputs floating
GBP
SR
Max Output Current
THD +N < 1%, RL = 16Ω connected between out and VCC/2
Output Swing
VOL: R L = 32Ω
VOH: R L = 32Ω
VOL: R L = 16Ω
VOH: R L = 16Ω
64
2.68
0.3
3
0.45
2.85
92
107
2.85
RL = 32Ω, THD +N < 0.2%, 20Hz ≤F ≤20kHz
mA
75
Signal-to-Noise Ratio (Filter Type A, Av=-1)
100
80
0.38
V
0.52
dB
dB
100
80
Input Capacitance
1
pF
Gain Bandwidth Product (R L = 32Ω)
1.2
2
MHz
Slew Rate, Unity Gain Inverting (R L = 16Ω)
0.45
0.7
V/µs
1. Fig. 68 to 79 show dispersion of these parameters.
1. All electrical values are guaranteed with correlation measurements at 2V and 5V.
4/26
dB
80
F = 100Hz, Vripple = 100mVpp
Channel Separation, R L = 32Ω
F = 1kHz
F = 20Hz to 20kHz
Crosstalk
Channel Separation, R L = 16Ω
F = 1kHz
F = 20Hz to 20kHz
CI
%
0.03
0.03
Electrical Characteristics
Table 5.
TS482
Electrical characteristics when VCC = +2.5V, GND = 0V, Tamb = 25°C (unless
otherwise specified) (2)
Symbol
Parameter
ICC
Supply Current
No input signal, no load
VIO
Input Offset Voltage (VICM = VCC/2)
IIB
Input Bias Current (VICM = V CC/2)
Min.
Typ.
Max.
Unit
5.1
7.2
1
5
mV
200
500
nA
mA
Output Power
PO
THD+N
THD+N
THD+N
THD+N
= 0.1% Max, F = 1kHz, RL = 32Ω
= 1% Max, F = 1kHz, RL = 32Ω
= 0.1% Max, F = 1kHz, RL = 16Ω
= 1% Max, F = 1kHz, RL = 16Ω
12.5
17.5
13.5
14.5
20.5
22
mW
Total Harmonic Distortion + Noise (Av=-1) (1)
THD + N
PSRR
IO
VO
SNR
RL = 32Ω, Pout = 10mW, 20Hz ≤F ≤20kHz
RL = 16Ω, Pout = 16mW, 20Hz ≤F ≤20kHz
Power Supply Rejection Ratio (Av=1), inputs floating
GBP
SR
Max Output Current
THD +N < 1%, RL = 16Ω connected between out and V CC/2
Output Swing
VOL: RL = 32Ω
VOH: RL = 32Ω
VOL: RL = 16Ω
VOH: RL = 16Ω
45
1.97
0.25
2.25
0.35
2.15
89
102
2.14
RL = 32Ω, THD +N < 0.2%, 20Hz ≤F ≤20kHz
mA
56
Signal-to-Noise Ratio (Filter Type A, Av=-1)
100
80
0.325
V
0.45
dB
dB
100
80
Input Capacitance
1
pF
Gain Bandwidth Product (RL = 32Ω)
1.2
2
MHz
Slew Rate, Unity Gain Inverting (RL = 16Ω)
0.45
0.7
V/µs
1. Fig. 68 to 79 show dispersion of these parameters.
2. All electrical values are guaranteed with correlation measurements at 2V and 5V.
5/26
dB
75
F = 100Hz, Vripple = 100mVpp
Channel Separation, RL = 32Ω
F = 1kHz
F = 20Hz to 20kHz
Crosstalk
Channel Separation, RL = 16Ω
F = 1kHz
F = 20Hz to 20kHz
CI
%
0.03
0.03
Electrical Characteristics
Table 6.
TS482
Electrical characteristics when VCC = +2V, GND = 0V, Tamb = 25°C (unless
otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Unit
ICC
Supply Current
No input signal, no load
5
7.2
VIO
Input Offset Voltage (VICM = V CC/2)
1
5
mV
IIB
Input Bias Current (V ICM = VCC/2)
200
500
nA
mA
Output Power
PO
THD+N =
THD+N =
THD+N =
THD+N =
0.1% Max, F = 1kHz, RL = 32Ω
1% Max, F = 1kHz, RL = 32Ω
0.1% Max, F = 1kHz, RL = 16Ω
1% Max, F = 1kHz, RL = 16Ω
7
9.5
8
9
11.5
13
mW
Total Harmonic Distortion + Noise (Av=-1) (1)
THD + N
PSRR
IO
VO
SNR
RL = 32Ω, Pout = 6.5mW, 20Hz ≤F ≤20kHz
RL = 16Ω, Pout = 8mW, 20Hz ≤F ≤20kHz
Power Supply Rejection Ratio (Av=1), inputs floating
GBP
SR
Max Output Current
THD +N < 1%, RL = 16Ω connected between out and VCC/2
Output Swing
VOL: R L = 32Ω
VOH: R L = 32Ω
VOL: R L = 16Ω
VOH: R L = 16Ω
33
1.53
0.24
1.73
0.33
1.63
88
101
1.67
RL = 32Ω, THD +N < 0.2%, 20Hz ≤F ≤20kHz
mA
41.5
Signal-to-Noise Ratio (Filter Type A, Av=-1)
100
80
0.295
V
0.41
dB
dB
100
80
Input Capacitance
1
pF
Gain Bandwidth Product (R L = 32Ω)
1.2
2
MHz
Slew Rate, Unity Gain Inverting (R L = 16Ω)
0.42
0.65
V/µs
1. Fig. 68 to 79 show dispersion of these parameters.
6/26
dB
75
F = 100Hz, Vripple = 100mVpp
Channel Separation, R L = 32Ω
F = 1kHz
F = 20Hz to 20kHz
Crosstalk
Channel Separation, R L = 16Ω
F = 1kHz
F = 20Hz to 20kHz
CI
%
0.02
0.025
Electrical Characteristics
Table 7.
Components description
Components
Functional Description
Rin
Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This
resistor also forms a high pass filter with Cin (fc = 1 / (2 x Pi x Rin x Cin))
Cin
Input coupling capacitor which blocks the DC voltage at the amplifier input terminal
Rfeed
Feed back resistor which sets the closed loop gain in conjunction with Rin
Cs
Supply Bypass capacitor which provides power supply filtering
Cb
Bypass capacitor which provides half supply filtering
Cout
Output coupling capacitor which blocks the DC voltage at the load input terminal
This capacitor also forms a high pass filter with RL (fc = 1 / (2 x Pi x RL x Cout))
Rpol
These 2 resistors form a voltage divider which provide a DC biasing voltage (Vcc/2) for
the 2 amplifiers.
Av
7/26
TS482
Closed loop gain = -Rfeed / Rin
Electrical Characteristics
Table 8.
TS482
Index of graphics
Description
Figure
Page
Open loop gain and phase vs. frequency response
Figure 1 to10
Page 9 to10
Phase and Gain Margin vs. Power Supply Voltage
Figure 11 to 20
Page 10 to12
Output power vs. power supply voltage
Figure 21 to 23
Page 12
Output power vs. load resistance
Figure 24 to 27
Page 12 to13
Power dissipation vs. output power
Figure 28 to 31
Page 13 to14
Power derating vs. ambient temperature
Figure 32
Page 14
Current consumption vs. power supply voltage
Figure 33
Page 14
Power supply rejection ratio vs. frequency
Figure 34
Page 14
THD + N vs. output power
Figure 35 to 49
Page 14 to17
THD + N vs. frequency
Figure 50 to 54
Page 17
Signal to noise ratio
Figure 55 to 58
Page 18
Equivalent input noise voltage vs. frequency
Figure 59
Page 18
Output voltage swing vs. power supply
Figure 60
Page 18
Figure 61 to 65
Page 19
Lower cut off frequency vs. output capacitor
Figure 66
Page 19
Lower cut off frequency vs. input capacitor
Figure 67
Page 20
Figure 68 to 79
Page 20 to22
Crosstalk vs. frequency
Typical distribution of TDH + N
8/26
Electrical Characteristics
60
60
0
Gain (dB)
80
20
1
Figure 3.
10
100
Frequency (kHz)
1000
10000
Phase
80
60
40
20
-20
0
-40
0.1
-20
Open loop gain and phase vs.
frequency response
1
Figure 4.
10
100
Frequency (kHz)
1000
10000
Vcc = 5V
RL = 16Ω
Tamb = 25°C
Gain
60
180
80
160
140
Gain
60
Vcc = 2V
RL = 16Ω
Tamb = 25°C
80
60
0
Gain (dB)
Phase
Phase (Deg)
Gain (dB)
20
100
40
20
20
80
60
40
20
-20
0
0
-40
0.1
1
Figure 5.
10
100
Frequency (kHz)
1000
10000
-40
0.1
-20
Open loop gain and phase vs.
frequency response
1
Figure 6.
10
100
Frequency (kHz)
1000
10000
Vcc = 5V
RL = 32Ω
Tamb = 25°C
Gain
60
180
80
160
140
Vcc = 2V
RL = 32Ω
Tamb = 25°C
Gain
60
80
60
0
40
20
-20
Gain (dB)
Phase
Phase (Deg)
Gain (dB)
20
100
40
9/26
1
10
100
Frequency (kHz)
1000
10000
-20
140
20
100
Phase
80
60
0
40
20
-20
0
0
-40
0.1
160
120
120
40
-20
Open loop gain and phase vs.
frequency response
180
80
140
100
Phase
0
40
-20
160
120
120
40
-20
Open loop gain and phase vs.
frequency response
180
80
140
100
20
0
-40
0.1
160
120
0
40
-20
Vcc = 2V
RL = 8Ω
Tamb = 25°C
40
Phase (Deg)
Gain (dB)
60
140
100
Phase
180
Gain
160
120
40
20
80
180
Vcc = 5V
RL = 8Ω
Tamb = 25°C
Gain
Open loop gain and phase vs.
frequency response
Phase (Deg)
80
Figure 2.
Phase (Deg)
Open loop gain and phase vs.
frequency response
-40
0.1
1
10
100
Frequency (kHz)
1000
10000
-20
Phase (Deg)
Figure 1.
TS482
Electrical Characteristics
Open loop gain and phase vs.
frequency response
Figure 8.
Open loop gain and phase vs.
frequency response
180
180
Gain
60
Vcc = 5V
RL = 600Ω
Tamb = 25°C
80
160
140
Vcc = 2V
RL = 600Ω
Tamb = 25°C
Gain
60
Phase
60
0
Gain (dB)
20
80
Phase (Deg)
Gain (dB)
100
40
100
20
80
Phase
60
0
40
20
-20
40
20
-20
0
0
-40
0.1
1
Figure 9.
10
100
1000
Frequency (kHz)
10000
-40
0.1
-20
Open loop gain and phase vs.
frequency response
1
10
100
Frequency (kHz)
1000
10000
Gain
60
Vcc = 5V
RL = 5kΩ
Tamb = 25°C
180
80
160
140
Vcc = 2V
RL = 5kΩ
Tamb = 25°C
Gain
60
120
20
80
Phase
60
0
40
40
20
80
Phase
60
0
40
20
-20
0
-40
0.1
1
Figure 11.
10
100
1000
Frequency (kHz)
10000
-20
0
-40
0.1
10
100
Frequency (kHz)
1000
10000
-20
50
RL=8Ω
Tamb=25°C
RL=8Ω
Tamb=25°C
40
Gain Margin (dB)
40
Phase Margin (Deg)
1
Phase margin vs. power supply voltage Figure 12. Phase margin vs. power supply voltage
50
30
CL= 0 to 500pF
20
10
0
2.0
10/26
140
100
20
-20
160
120
Gain (dB)
100
Phase (Deg)
Gain (dB)
40
-20
Figure 10. Open loop gain and phase vs.
frequency response
180
80
140
120
120
40
160
Phase (Deg)
80
Phase (Deg)
Figure 7.
TS482
30
CL=0 to 500pF
20
10
2.5
3.0
3.5
4.0
Power Supply Voltage (V)
4.5
5.0
0
2.0
2.5
3.0
3.5
4.0
Power Supply Voltage (V)
4.5
5.0
Electrical Characteristics
TS482
Figure 13. Phase margin vs. power supply voltage Figure 14. Gain margin vs. power supply voltage
50
50
RL=16Ω
Tamb=25°C
40
30
Gain Margin (dB)
Phase Margin (Deg)
40
CL= 0 to 500pF
20
10
30
20
CL=0 to 500pF
10
RL=16Ω
Tamb=25°C
0
2.0
2.5
3.0
3.5
4.0
Power Supply Voltage (V)
4.5
0
2.0
5.0
2.5
3.0
3.5
4.0
Power Supply Voltage (V)
4.5
5.0
Figure 15. Phase margin vs. power supply voltage Figure 16. Gain margin vs. power supply voltage
50
50
RL=32Ω
Tamb=25°C
40
CL= 0 to 500pF
Gain Margin (dB)
Phase Margin (Deg)
40
30
20
10
30
20
CL=0 to 500pF
10
RL=32Ω
Tamb=25°C
0
2.0
2.5
3.0
3.5
4.0
Power Supply Voltage (V)
4.5
0
2.0
5.0
2.5
3.0
3.5
4.0
Power Supply Voltage (V)
4.5
5.0
Figure 17. Phase margin vs. power supply voltage Figure 18. Gain margin vs. power supply voltage
70
20
CL=0pF
50
CL=0pF
CL=500pF
40
30
20
10
CL=100pF
CL=200pF
10
CL=500pF
RL=600Ω
Tamb=25°C
0
2.0
11/26
Gain Margin (dB)
Phase Margin (Deg)
60
2.5
RL=600Ω
Tamb=25°C
3.0
3.5
4.0
Power Supply Voltage (V)
4.5
5.0
0
2.0
2.5
3.0
3.5
4.0
Power Supply Voltage (V)
4.5
5.0
Electrical Characteristics
Figure 19.
TS482
Phase margin vs. power supply voltage Figure 20. Gain margin vs. power supply voltage
70
20
CL=0pF
50
CL=0pF
40
CL=300pF
Gain Margin (dB)
Phase Margin (Deg)
60
CL=500pF
30
20
10
CL=200pF
10
CL=500pF
RL=5kΩ
Tamb=25°C
RL=5kΩ
Tamb=25°C
0
2.0
2.5
Figure 21.
3.0
3.5
4.0
Power Supply Voltage (V)
4.5
0
2.0
5.0
2.5
Output power vs. power supply voltage Figure 22.
3.0
3.5
4.0
Power Supply Voltage (V)
4.5
5.0
Output power vs. power supply voltage
200
250
Av = -1
RL = 8Ω
F = 1kHz
BW < 125kHz
Tamb = 25°C
200
175
Av = -1
RL = 16Ω
F = 1kHz
BW < 125kHz
Tamb = 25°C
175
THD+N=1%
150
150
Output power (mW)
225
Output power (mW)
CL=100pF
THD+N=10%
125
100
75
50
125
THD+N=1%
THD+N=10%
100
75
50
THD+N=0.1%
THD+N=0.1%
25
25
0
2.0
Figure 23.
2.5
3.0
3.5
4.0
Vcc (V)
4.5
5.0
0
2.0
5.5
2.5
3.0
3.5
4.0
Vcc (V)
4.5
5.0
5.5
Output power vs. power supply voltage Figure 24. Output power vs. load resistance
200
75
Av = -1
Vcc = 5V
F = 1kHz
BW < 125kHz
Tamb = 25°C
180
THD+N=1%
THD+N=10%
50
25
THD+N=1%
160
Output power (mW)
Output power (mW)
100
Av = -1
RL = 32Ω
F = 1kHz
BW < 125kHz
Tamb = 25°C
THD+N=0.1%
140
120
100
THD+N=10%
80
60
40
THD+N=0.1%
20
0
2.0
12/26
2.5
3.0
3.5
4.0
Vcc (V)
4.5
5.0
5.5
0
8
16
24
32
40
48
Load Resistance ( )
56
64
Electrical Characteristics
TS482
Figure 25. Output power vs. load resistance
Figure 26. Output power vs. load resistance
50
THD+N=1%
60
Output power (mW)
Av = -1
Vcc = 3.3V
F = 1kHz
BW < 125kHz
Tamb = 25°C
50
40
THD+N=10%
30
20
0
40
30
25
THD+N=10%
20
15
THD+N=0.1%
5
8
16
24
32
40
48
Load Resistance (ohm)
56
0
64
Figure 27. Output power vs. load resistance
20
THD+N=1%
15
THD+N=10%
10
Power Dissipation (mW)
Av = -1
Vcc = 2V
F = 1kHz
BW < 125kHz
Tamb = 25°C
8
16
24
32
40
48
Load Resistance (ohm)
56
64
Figure 28. Power dissipation vs. output power
25
Output power (mW)
THD+N=1%
35
10
THD+N=0.1%
10
Av = -1
Vcc = 2.6V
F = 1kHz
BW < 125kHz
Tamb = 25°C
45
Output power (mW)
70
160 Vcc=5V
F=1kHz
140 THD+N<1%
RL=8Ω
120
100
80
60
RL=16Ω
40
5
20
THD+N=0.1%
0
0
8
16
24
32
40
48
Load Resistance (ohm)
56
64
RL=32Ω
0
20
40
60
80
100
120
140
Output Power (mW)
Figure 29. Power dissipation vs. output power Figure 30. Power dissipation vs. output power
Vcc=3.3V
60 F=1kHz
THD+N<1%
RL=8Ω
50
40
30
RL=16Ω
20
20
RL=16Ω
10
RL=32Ω
0
0
10
20
30
40
Output Power (mW)
13/26
RL=8Ω
30
RL=32Ω
10
0
Vcc=2.6V
F=1kHz
THD+N<1%
40
Power Dissipation (mW)
Power Dissipation (mW)
70
50
60
0
5
10
15
20
Output Power (mW)
25
30
Electrical Characteristics
TS482
Figure 31. Power dissipation vs. output power Figure 32. Power derating vs. ambient
temperature
25
Power Dissipation (mW)
Vcc=2V
F=1kHz
20 THD+N<1%
RL=8Ω
15
10
RL=16Ω
5
RL=32Ω
0
0
2
4
6
8
10
12
14
Output Power (mW)
Figure 33. Current consumption vs. power
supply voltage
Figure 34. Power supply rejection ratio vs.
frequency
6
80
4
Ta=85°C
Ta=-40°C
3
Ta=25°C
Vcc=3.3V
60
20
1
0
1
2
3
Power Supply Voltage (V)
4
0
20
5
Figure 35. THD + N vs. output power
Vcc=2.6V & 2V
Vripple=100mVpp
Vpin3,5=Vcc/2 (forced bias)
RL >= 8Ω
0db=70mVrms
Tamb=25°C
40
2
0
100
1000
10000
Frequency (Hz)
100000
Figure 36. THD + N vs. output power
10
10
RL = 8Ω
F = 20Hz
Av = -1
BW < 125kHz
1 Tamb = 25°C
RL = 16Ω
F = 20Hz
Av = -1
BW < 125kHz
Tamb = 25°C
1
THD + N (%)
THD + N (%)
Vcc=5V
100
PSRR (dB)
Current Consumption (mA)
No load
5
Vcc=2V
Vcc=2.6V
Vcc=2V
0.1
Vcc=2.6V
0.1
0.01
Vcc=3.3V
Vcc=5V
Vcc=3.3V
0.01
14/26
1
10
Output Power (mW)
100
1E-3
1
Vcc=5V
10
Output Power (mW)
100
Electrical Characteristics
TS482
Figure 37. THD + N vs. output power
Figure 38. THD + N vs. output power
10
10
Vcc=2V
0.1
Vcc=2.6V
Vcc=3.3V
Vcc=2.6V
Vcc=3.3V
0.1
Vcc=5V
1
1E-3
Vcc=5V
10
Output Power (mW)
100
Figure 39. THD + N vs. output power
0.01
0.1
Output Voltage (Vrms)
1
Figure 40. THD + N vs. output power
10
10
RL = 5kΩ
F = 20Hz
1 Av = -1
BW < 125kHz
Tamb = 25°C
Vcc=2V
Vcc=2.6V
THD + N (%)
THD + N (%)
Vcc=2V
0.01
0.01
1E-3
RL = 600Ω
F = 20Hz
1 Av = -1
BW < 125kHz
Tamb = 25°C
THD + N (%)
THD + N (%)
RL = 32Ω
F = 20Hz
Av = -1
1 BW < 125kHz
Tamb = 25°C
Vcc=3.3V
0.1
Vcc=5V
RL = 8Ω
F = 1kHz
Av = -1
BW < 125kHz
1 Tamb = 25°C
Vcc=2V
Vcc=2.6V
0.1
0.01
Vcc=3.3V
Vcc=5V
1E-3
0.01
0.1
Output Voltage (Vrms)
0.01
1
Figure 41. THD + N vs. output power
THD + N (%)
THD + N (%)
Vcc=2V
Vcc=2.6V
0.01
15/26
RL = 32Ω
F = 1kHz
Av = -1
1 BW < 125kHz
Tamb = 25°C
Vcc=2V
0.1
Vcc=2.6V
0.01
Vcc=3.3V
1E-3
100
10
RL = 16Ω
F = 1kHz
Av = -1
BW < 125kHz
Tamb = 25°C
0.1
10
Output Power (mW)
Figure 42. THD + N vs. output power
10
1
1
1
Vcc=5V
10
Output Power (mW)
Vcc=3.3V
100
1E-3
1
Vcc=5V
10
Output Power (mW)
100
Electrical Characteristics
TS482
Figure 43. THD + N vs. output power
Figure 44. THD + N vs. output power
10
10
RL = 5kΩ
F = 1kHz
Av = -1
1
BW < 125kHz
Tamb = 25°C
Vcc=2V
Vcc=2.6V
THD + N (%)
THD + N (%)
RL = 600Ω
F = 1kHz
Av = -1
1
BW < 125kHz
Tamb = 25°C
Vcc=3.3V
0.1
Vcc=5V
Vcc=3.3V
Vcc=5V
0.01
1E-3
0.01
0.1
Output Voltage (Vrms)
1E-3
0.01
1
Figure 45. THD + N vs. output power
Vcc=2V
Vcc=2.6V
RL = 16Ω
F = 20kHz
Av = -1
BW < 125kHz
Tamb = 25°C
1
THD + N (%)
THD + N (%)
1
10
RL = 8Ω
F = 20kHz
Av = -1
BW < 125kHz
1 Tamb = 25°C
Vcc=2V
Vcc=2.6V
0.1
0.1
Vcc=3.3V
1
Vcc=5V
10
Output Power (mW)
Vcc=3.3V
0.01
100
Figure 47. THD + N vs. output power
THD + N (%)
Vcc=2V
Vcc=2.6V
0.01
Vcc=3.3V
1
Vcc=5V
10
Output Power (mW)
100
10
RL = 32Ω
F = 20kHz
Av = -1
BW < 125kHz
1 Tamb = 25°C
0.1
1
Figure 48. THD + N vs. output power
10
THD + N (%)
0.1
Output Voltage (Vrms)
Figure 46. THD + N vs. output power
10
16/26
Vcc=2.6V
0.1
0.01
0.01
Vcc=2V
Vcc=2V
Vcc=2.6V
Vcc=3.3V
0.1
Vcc=5V
0.01
Vcc=5V
10
Output Power (mW)
RL = 600Ω
F = 20kHz
Av = -1
1 BW < 125kHz
Tamb = 25°C
100
0.01
0.1
Output Voltage (Vrms)
1
Electrical Characteristics
TS482
Figure 49. THD + N vs. output power
Figure 50. THD + N vs. frequency
0.1
RL = 5kΩ
F = 20kHz
Av = -1
1 BW < 125kHz
Tamb = 25°C
Vcc=2V
Vcc=2V, Po=10mW
Vcc=2.6V, Po=20mW
Vcc=3.3V, Po=40mW
Vcc=5V, Po=100mW
Vcc=2.6V
THD + N (%)
THD + N (%)
10
Vcc=3.3V
Vcc=5V
0.1
RL=8Ω
Av=-1
Bw < 125kHz
Tamb=25°C
0.01
0.01
0.01
0.1
Output Voltage (Vrms)
1
Figure 51. THD + N vs. frequency
20
100
1000
Frequency (Hz)
10000 20k
Figure 52. THD + N vs. frequency
0.1
0.1
RL=16Ω
Av=-1
Bw < 125kHz
Tamb=25°C
Vcc=2V, Po=6.5mW
Vcc=2.6V, Po=12mW
THD + N (%)
THD + N (%)
Vcc=2V, Po=8mW
Vcc=2.6V, Po=18mW
Vcc=3.3V, Po=35mW
Vcc=5V, Po=90mW
RL=32Ω
Av=-1
Bw < 125kHz
Tamb=25°C
Vcc=3.3V, Po=16mW
Vcc=5V, Po=60mW
0.01
0.01
20
100
1000
Frequency (Hz)
10000 20k
Figure 53. THD + N vs. frequency
20
RL=5kΩ
Av=-1
Bw < 125kHz
Tamb=25°C
THD + N (%)
Vcc=5V, Vo=1.4Vrms
THD + N (%)
10000 20k
0.1
RL=600Ω
Av=-1
Bw < 125kHz
Tamb=25°C
17/26
1000
Frequency (Hz)
Figure 54. THD + N vs. frequency
0.1
Vcc=3.3V, Vo=1Vrms
0.01
Vcc=2.6V, Vo=0.75Vrms
Vcc=2V, Vo=0.55Vrms
1E-3
100
20
100
1000
Frequency (Hz)
10000 20k
Vcc=5V, Vo=1.4Vrms
Vcc=3.3V, Vo=1Vrms
Vcc=2.6V, Vo=0.75Vrms
0.01
Vcc=2V, Vo=0.55Vrms
1E-3
20
100
1000
Frequency (Hz)
10000 20k
Electrical Characteristics
TS482
Figure 55. Signal to noise ratio vs. power
Figure 56. Signal to noise ratio vs. power
supply with unweighted filter (20Hz
supply with unweighted filter (20Hz
to 20kHz)
to 20kHz)
110
110
104
102
RL=32Ω
100
98
96
RL=8Ω
94
RL=16Ω
92
90
2.0
2.5
Av = -1
THD+N < 0.2%
Tamb = 25°C
108
Signal to Noise Ratio (dB)
Signal to Noise Ratio (dB)
Av = -1
108 THD+N < 0.2%
106 Tamb = 25°C
3.0
106
104
102
RL=600Ω
100
98
RL=5kΩ
96
94
92
3.5
4.0
4.5
90
2.0
5.0
2.5
3.0
Figure 57. Signal to noise ratio vs. power
supply with A weighted filter
Signal to Noise Ratio (dB)
Signal to Noise Ratio (dB)
110
RL=32Ω
105
100
5.0
RL=8Ω
RL=16Ω
95
2.5
3.0
3.5
4.0
4.5
Av = -1
THD+N < 0.2%
Tamb = 25°C
115
110
105
RL=600Ω
RL=5kΩ
100
95
90
2.0
5.0
2.5
3.0
3.5
4.0
4.5
5.0
Power Supply (V)
Power Supply (V)
Figure 59. Equivalent input noise voltage vs.
frequency
Figure 60. Output voltage swing vs. power
supply
25
5.0
Vcc=5V
Rs=100Ω
Tamb=25°C
4.5
Tamb=25°C
4.0
20
VOH & VOL (V)
Equivalent Input Noise Voltage (nv/ Hz)
4.5
120
Av = -1
THD+N < 0.2%
Tamb = 25°C
90
2.0
15
3.5
3.0
2.5
RL=32Ω
2.0
RL=16Ω
1.5
RL=8Ω
10
1.0
0.5
5
0.02
18/26
4.0
Figure 58. Signal to noise ratio vs. power
supply with A weighted filter
120
115
3.5
Power Supply (V)
Power Supply (V)
0.1
1
Frequency (kHz)
10
0.0
2.0
2.5
3.0
3.5
4.0
Power Supply Voltage (V)
4.5
5.0
Electrical Characteristics
TS482
Figure 61. Crosstalk vs. frequency
Figure 62. Crosstalk vs. frequency
100
100
80
ChB to ChA
ChA to ChB
60
RL=8Ω
Vcc=5V
Pout=100mW
Av=-1
Bw < 125kHz
Tamb=25°C
40
20
20
100
1000
Frequency (Hz)
Crosstalk (dB)
Crosstalk (dB)
80
ChA to ChB
60
RL=16Ω
Vcc=5V
Pout=90mW
Av=-1
Bw < 125kHz
Tamb=25°C
40
20
10000 20k
Figure 63. Crosstalk vs. frequency
ChB to ChA
20
100
1000
Frequency (Hz)
10000 20k
Figure 64. Crosstalk vs. frequency
120
100
100
60
RL=32Ω
Vcc=5V
Pout=60mW
Av=-1
Bw < 125kHz
Tamb=25°C
40
20
20
100
1000
Frequency (Hz)
60
RL=600Ω
Vcc=5V
Vout=1.4Vrms
Av=-1
Bw < 125kHz
Tamb=25°C
40
0
20
100
1000
Frequency (Hz)
10000 20k
1000
100
Crosstalk (dB)
ChB to ChA & ChA to Chb
Figure 66. Lower cut off frequency vs. output
capacitor
120
80
ChB to ChA & ChA to Chb
60
RL=5kΩ
Vcc=5V
Vout=1.5Vrms
Av=-1
Bw < 125kHz
Tamb=25°C
40
20
19/26
80
20
10000 20k
Figure 65. Crosstalk vs. frequency
0
Crosstalk (dB)
ChB to ChA & ChA to Chb
20
100
1000
Frequency (Hz)
10000 20k
-3dB Cut Off Frequency (Hz)
Crosstalk (dB)
80
RL=8Ω
100
RL=16Ω
RL=32Ω
10
1
200 400 600 800 1000 1200 1400 1600 1800 2000 2200
Output Capacitor Cout ( F)
Electrical Characteristics
TS482
Figure 67. Lower cut off frequency vs. input
capacitor
Figure 68. Typical distribution of TDH + N
40
1000
Vcc=5V
RL=16Ω
Av=-1
Pout=90mW
20Hz≤F≤20kHz
Tamb=25°C
32
Rin=10kΩ
100
Number of Units
-3dB Cut Off Frequency (Hz)
36
Rin=3.9kΩ
Rin=22kΩ
10
28
24
20
16
12
8
4
1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
0
2.2
0.012
0.018
0.024
Input Capacitor Cin ( F)
Figure 69. Best case distribution of THD + N
0.048
28
24
20
16
Vcc=5V
RL=16Ω
Av=-1
Pout=90mW
20Hz≤F≤20kHz
Tamb=25°C
36
32
Number of Units
Number of Units
32
12
28
24
20
16
12
8
8
4
4
0
0.012
0.018
0.024
0.030
0.036
0.042
0.048
0.012
0.018
0.024
Figure 71. Typical distribution of TDH + N
0.036
0.042
0.048
Figure 72. Best case distribution of THD + N
40
40
32
28
24
20
16
12
Vcc=2V
RL=16Ω
Av=-1
Pout=8mW
20Hz≤F≤20kHz
Tamb=25°C
36
32
Number of Units
Vcc=2V
RL=16Ω
Av=-1
Pout=8mW
20Hz≤F≤20kHz
Tamb=25°C
36
28
24
20
16
12
8
8
4
4
0
0.030
THD+N (%)
THD+N (%)
Number of Units
0.042
40
Vcc=5V
RL=16Ω
Av=-1
Pout=90mW
20Hz≤F≤20kHz
Tamb=25°C
36
0
0.012
0.018
0.024
0.030
0.036
THD+N (%)
20/26
0.036
Figure 70. Worst case distribution of THD + N
40
0
0.030
THD+N (%)
0.042
0.048
0.012
0.018
0.024
0.030
0.036
THD+N (%)
0.042
0.048
Electrical Characteristics
TS482
Figure 73. Worst case distribution of THD + N
Figure 74. Typical distribution of TDH + N
40
20
Number of Units
32
28
24
20
16
12
16
14
12
10
8
6
8
4
4
2
0
0.012
0.018
0.024
0.030
0.036
0.042
Vcc=5V
RL=32Ω
Av=-1
Pout=60mW
20Hz≤F≤20kHz
Tamb=25°C
18
Number of Units
Vcc=2V
RL=16Ω
Av=-1
Pout=8mW
20Hz≤F≤20kHz
Tamb=25°C
36
0
0.012
0.048
0.018
0.024
THD+N (%)
Figure 75. Best case distribution of THD + N
14
12
10
8
6
18
16
Number of Units
Number of Units
16
14
12
0.048
8
6
4
2
2
0.018
0.024
0.030
0.036
0.042
Vcc=5V
RL=32Ω
Av=-1
Pout=60mW
20Hz≤F≤20kHz
Tamb=25°C
10
4
0
0.012
0
0.012
0.048
0.018
0.024
THD+N (%)
0.030
0.036
0.042
0.048
THD+N (%)
Figure 77. Typical distribution of TDH + N
Figure 78. Best case distribution of THD + N
40
40
32
28
24
20
16
12
32
28
24
20
16
12
8
8
4
4
0.012
0.018
0.024
0.030
0.036
THD+N (%)
0.042
0.048
Vcc=2V
RL=32Ω
Av=-1
Pout=6.5mW
20Hz≤F≤20kHz
Tamb=25°C
36
Number of Units
Vcc=2V
RL=32Ω
Av=-1
Pout=6.5mW
20Hz≤F≤20kHz
Tamb=25°C
36
Number of Units
0.042
20
Vcc=5V
RL=32Ω
Av=-1
Pout=60mW
20Hz≤F≤20kHz
Tamb=25°C
18
21/26
0.036
Figure 76. Worst case distribution of THD + N
20
0
0.030
THD+N (%)
0
0.012
0.018
0.024
0.030
0.036
THD+N (%)
0.042
0.048
Electrical Characteristics
TS482
Figure 79. Worst case distribution of THD + N
40
Vcc=2V
RL=32Ω
Av=-1
Pout=6.5mW
20Hz≤F≤20kHz
Tamb=25°C
36
Number of Units
32
28
24
20
16
12
8
4
0
0.012
0.018
0.024
0.030
0.036
THD+N (%)
22/26
0.042
0.048
Package Mechanical Data
3
TS482
Package Mechanical Data
In order to meet environmental requirements, ST offers these devices in ECOPACK® packages.
These packages have a Lead-free second level interconnect. The category of second level
interconnect is marked on the package and on the inner box label, in compliance with JEDEC
Standard JESD97. The maximum ratings related to soldering conditions are also marked on
the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at:
www.st.com.
3.1
SO-8 Package
SO-8 MECHANICAL DATA
DIM.
mm.
MIN.
TYP
inch
MAX.
MIN.
TYP.
0.053
MAX.
0.069
A
1.35
1.75
A1
0.10
0.25
0.04
0.010
A2
1.10
1.65
0.043
0.065
B
0.33
0.51
0.013
0.020
C
0.19
0.25
0.007
0.010
D
4.80
5.00
0.189
0.197
E
3.80
4.00
0.150
0.157
e
1.27
0.050
H
5.80
6.20
0.228
0.244
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
k
ddd
8˚ (max.)
0.1
0.04
0016023/C
23/26
Package Mechanical Data
3.2
24/26
MiniSO-8 Package
TS482
Package Mechanical Data
3.3
25/26
DFN8 Package
TS482
Revision history
4
TS482
Revision history
Date
Revision
June 2003
1
Initial release.
2
The following changes were made in this revision:
– Lead temperature for lead-free added see Table 1: Key parameters
and their absolute maximum ratings on page 2.
– Formatting changes throughout.
Nov. 2005
Changes
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
26/26