TS419 TS421 360mW MONO AMPLIFIER WITH STANDBY MODE ■ OPERATING FROM Vcc=2V to 5.5V ■ STANDBY MODE ACTIVE HIGH (TS419) or LOW (TS421) ■ OUTPUT POWER into 16Ω: 367mW @ 5V with 10% THD+N max or 295mW @5V and 110mW @3.3V with 1% THD+N max. ■ LOW CURRENT CONSUMPTION: 2.5mA max ■ High Signal-to-Noise ratio: 95dB(A) at 5V ■ PSRR: 56dB typ. at 1kHz, 46dB at 217Hz ■ SHORT CIRCUIT LIMITATION ■ ON/OFF click reduction circuitry ■ Available in SO8, MiniSO8 & DFN 3x3 PIN CONNECTIONS (top view) TS419IDT: SO8 TS419IST, TS419-xIST: MiniSO8 Standby 1 8 VOUT2 Bypass 2 7 GND VIN+ 3 6 VCC VIN- 4 5 VOUT1 DESCRIPTION The TS419/TS421 is a monaural audio power amplifier driving in BTL mode a 16 or 32Ω earpiece or receiver speaker. The main advantage of this configuration is to get rid of bulky ouput capacitors. Capable of descending to low voltages, it delivers up to 220mW per channel (into 16Ω loads) of continuous average power with 0.2% THD+N in the audio bandwidth from a 5V power supply. An externally controlled standby mode reduces the supply current to 10nA (typ.). The TS419/ TS421 can be configured by external gain-setting resistors or used in a fixed gain version. TS419IQT, TS419-xIQT: DFN8 GND 1 8 Vcc VOUT 2 2 7 VOUT 1 STANDBY 3 6 VIN- BYPASS 4 5 VIN+ TS421IDT: SO8 TS421IST, TS421-xIST: MiniSO8 APPLICATIONS ■ 16/32 ohms earpiece or receiver speaker driver ■ Mobile and cordless phones (analog / digital) ■ PDAs & computers ■ Portable appliances ORDER CODE Part Number Temp. Range: I TS419 TS421 TS419 TS419-2 TS419-4 -40, +85°C TS419-8 TS421 TS421-2 TS421-4 TS421-8 Package D S • • • tba tba tba • tba tba tba Gain Marking external external external x2/6dB x4/12dB x8/18dB external x2/6dB x4/12dB x8/18dB TS419I TS421I K19A K19B K19C K19D K21A K21B K21C K21D Q • tba tba tba • tba tba tba TS421IQT, TS421-xIQT: DFN8 GND 1 8 Vcc VOUT 2 2 7 VOUT 1 STANDBY 3 6 VIN- BYPASS 4 5 VIN+ MiniSO & DFN only available in Tape & Reel with T suffix. SO is available in Tube (D) and in Tape & Reel (DT) June 2003 1/32 TS419-TS421 ABSOLUTE MAXIMUM RATINGS Symbol VCC Vi Tstg Tj Rthja Pd Parameter Supply voltage 1) Value Unit 6 V -0.3V to VCC +0.3V V -65 to +150 °C Maximum Junction Temperature 150 °C Thermal Resistance Junction to Ambient SO8 MiniSO8 DFN8 175 215 70 Power Dissipation 2) SO8 MiniSO8 DFN8 0.71 0.58 1.79 Input Voltage Storage Temperature Human Body Model (pin to pin): TS4193), TS421 ESD Machine Model - 220pF - 240pF (pin to pin) Latch-up Latch-up Immunity (All pins) Lead Temperature (soldering, 10sec) ESD Output Short-Circuit to Vcc or GND °C/W W 1.5 kV 100 200 250 V mA °C continous 4) 1. All voltage values are measured with respect to the ground pin. 2. Pd has been calculated with Tamb = 25°C, Tjunction = 150°C. 3. TS419 stands 1.5KV on all pins except standby pin which stands 1KV. 4. Attention must be paid to continous power dissipation (VDD x 300mA). Exposure of the IC to a short circuit for an extended time period is dramatically reducing product life expectancy. OPERATING CONDITIONS Symbol Parameter VCC Supply Voltage RL Load Resistor Toper CL Operating Free Air Temperature Range Load Capacitor RL = 16 to 100Ω RL > 100Ω VICM Common Mode Input Voltage Range VSTB Standby Voltage Input TS421 ACTIVE / TS419 in STANDBY TS421 in STANDBY / TS419 ACTIVE RTHJA Thermal Resistance Junction to Ambient SO8 MiniSO8 DFN8 2) Value Unit 2 to 5.5 V ≥ 16 Ω -40 to + 85 °C 400 100 pF GND to VCC-1V V 1.5 ≤ VSTB ≤ VCC V GND ≤ VSTB ≤ 0.4 1) 150 190 41 ≥ 0.12 Wake-up time from standby to active mode (Cb = 1µF) 3) 1. The minimum current consumption (ISTANDBY) is guaranteed at VCC (TS419) or GND (TS421) for the whole temperature range. Twu 2. When mounted on a 4-layer PCB 3. For more details on T WU , please refer to application note section on Wake-up time page 28. 2/32 °C/W s TS419-TS421 FIXED GAIN VERSION SPECIFIC ELECTRICAL CHARACTERISTICS VCC from +5V to +2V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol RIN G Parameter Min. Typ. Input Resistance 20 Gain value for Gain TS419/TS421-2 6dB Gain value for Gain TS419/TS421-4 12dB Gain value for Gain TS419/TS421-8 18dB Max. Unit kΩ dB APPLICATION COMPONENTS INFORMATION Components Functional Description RIN Inverting input resistor which sets the closed loop gain in conjunction with RFEED. This resistor also forms a high pass filter with CIN (fcl = 1 / (2 x Pi x RIN x CIN)). Not needed in fixed gain versions. CIN Input coupling capacitor which blocks the DC voltage at the amplifier’s input terminal RFEED Feedback resistor which sets the closed loop gain in conjunction with RIN. AV= Closed Loop Gain= 2xRFEED/RIN. Not needed in fixed gain versions. CS Supply Bypass capacitor which provides power supply filtering. CB Bypass capacitor which provides half supply filtering. TYPICAL APPLICATION SCHEMATICS: 3/32 TS419-TS421 ELECTRICAL CHARACTERISTICS VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol Typ. Max. Unit 1.8 2.5 mA Standby Current No input signal, VSTANDBY=GND for TS421 No input signal, VSTANDBY=Vcc for TS419 10 1000 nA Voo Output Offset Voltage No input signal, RL = 16 or 32Ω, Rfeed=20kΩ 5 25 mV PO Output Power THD+N THD+N THD+N THD+N THD+N THD+N ICC ISTANDBY THD + N PSRR SNR Parameter Min. Supply Current No input signal, no load = = = = = = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 10% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω 10% Max, F = 1kHz, RL = 16Ω 166 240 Total Harmonic Distortion + Noise (Av=2) RL = 32Ω, Pout = 150mW, 20Hz ≤ F ≤ 20kHz RL = 16Ω, Pout = 220mW, 20Hz ≤ F ≤ 20kHz 190 207 258 270 295 367 mW 0.15 0.2 % Power Supply Rejection Ratio (Av=2) 1) F = 1kHz, Vripple = 200mVpp, input grounded, Cb=1µF 50 56 dB Signal-to-Noise Ratio (Filter Type A, Av=2) 1) (RL = 32Ω, THD +N < 0.5%, 20Hz ≤ F ≤ 20kHz) 85 98 dB ΦM Phase Margin at Unity Gain RL = 16Ω, CL = 400pF 58 Degrees GM Gain Margin RL = 16Ω, CL = 400pF 18 dB GBP Gain Bandwidth Product RL = 16Ω 1.1 MHz Slew Rate RL = 16Ω 0.4 V/µS SR 1. Guaranteed by design and evaluation. 4/32 TS419-TS421 ELECTRICAL CHARACTERISTICS VCC = +3.3V, GND = 0V, Tamb = 25°C (unless otherwise specified) 1) Symbol Typ. Max. Unit 1.8 2.5 mA Standby Current No input signal, VSTANDBY=GND for TS421 No input signal, VSTANDBY=Vcc for TS419 10 1000 nA Voo Output Offset Voltage No input signal, RL = 16 or 32Ω, Rfeed=20kΩ 5 25 mV PO Output Power THD+N THD+N THD+N THD+N THD+N THD+N ICC ISTANDBY THD + N PSRR SNR Min. Supply Current No input signal, no load = = = = = = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 10% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω 10% Max, F = 1kHz, RL = 16Ω 65 91 Total Harmonic Distortion + Noise (Av=2) RL = 32Ω, Pout = 50mW, 20Hz ≤ F ≤ 20kHz RL = 16Ω, Pout = 70mW, 20Hz ≤ F ≤ 20kHz 75 81 102 104 113 143 mW 0.15 0.2 % Power Supply Rejection Ratio inputs grounded, F = 1kHz, Vripple = 200mVpp, Cb=1µF 50 56 dB Signal-to-Noise Ratio (Weighted A, Av=2) (RL = 32Ω, THD +N < 0.5%, 20Hz ≤ F ≤ 20kHz) 82 94 dB ΦM Phase Margin at Unity Gain RL = 16Ω, CL = 400pF 58 Degrees GM Gain Margin RL = 16Ω, CL = 400pF 18 dB GBP Gain Bandwidth Product RL = 16Ω 1.1 MHz Slew Rate RL = 16Ω 0.4 V/µS SR 1. Parameter All electrical values are guaranted with correlation measurements at 2V and 5V 5/32 TS419-TS421 ELECTRICAL CHARACTERISTICS VCC = +2.5V, GND = 0V, Tamb = 25°C (unless otherwise specified)1) Symbol ICC ISTANDBY Parameter Supply Current No input signal, no load Standby Current No input signal, No input signal, VSTANDBY=GND for TS421 VSTANDBY=Vcc for TS419 Voo Output Offset Voltage No input signal, RL = 16 or 32Ω, Rfeed=20kΩ PO Output Power THD+N THD+N THD+N THD+N THD+N THD+N THD + N PSRR SNR Min. = = = = = = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 10% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω 10% Max, F = 1kHz, RL = 16Ω 32 44 Total Harmonic Distortion + Noise (Av=2) RL = 32Ω, Pout = 30mW, 20Hz ≤ F ≤ 20kHz RL = 16Ω, Pout = 40mW, 20Hz ≤ F ≤ 20kHz Typ. Max. Unit 1.7 2.5 mA 10 1000 nA 5 25 mV 37 41 52 50 55 70 mW 0.15 0.2 % Power Supply Rejection Ratio (Av=2) inputs grounded, F = 1kHz, Vripple = 200mVpp, Cb=1µF 50 56 dB Signal-to-Noise Ratio (Weighted A, Av=2) (RL = 32Ω, THD +N < 0.5%, 20Hz ≤ F ≤ 20kHz) 80 91 dB ΦM Phase Margin at Unity Gain RL = 16Ω, CL = 400pF 58 Degrees GM Gain Margin RL = 16Ω, CL = 400pF 18 dB GBP Gain Bandwidth Product RL = 16Ω 1.1 MHz Slew Rate RL = 16Ω 0.4 V/µS SR 1. 6/32 All electrical values are guaranted with correlation measurements at 2V and 5V TS419-TS421 ELECTRICAL CHARACTERISTICS VCC = +2V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol Typ. Max. Unit 1.7 2.5 mA Standby Current No input signal, VSTANDBY=GND for TS421 No input signal, VSTANDBY=Vcc for TS419 10 1000 nA Voo Output Offset Voltage No input signal, RL = 16 or 32Ω, Rfeed=20kΩ 5 25 mV PO Output Power THD+N THD+N THD+N THD+N THD+N THD+N ICC ISTANDBY THD + N PSRR SNR Parameter Min. Supply Current No input signal, no load = = = = = = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 10% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω 10% Max, F = 1kHz, RL = 16Ω 19 24 Total Harmonic Distortion + Noise (Av=2) RL = 32Ω, Pout = 13mW, 20Hz ≤ F ≤ 20kHz RL = 16Ω, Pout = 20mW, 20Hz ≤ F ≤ 20kHz 20 23 30 26 30 40 mW 0.1 0.15 % Power Supply Rejection Ratio (Av=2) 1) inputs grounded, F = 1kHz, Vripple = 200mVpp, Cb=1µF 49 54 dB Signal-to-Noise Ratio (Weighted A, Av=2) 1) (RL = 32Ω, THD +N < 0.5%, 20Hz ≤ F ≤ 20kHz) 80 89 dB ΦM Phase Margin at Unity Gain RL = 16Ω, CL = 400pF 58 Degrees GM Gain Margin RL = 16Ω, CL = 400pF 20 dB GBP Gain Bandwidth Product RL = 16Ω 1.1 MHz Slew Rate RL = 16Ω 0.4 V/µS SR 1. Guaranteed by design and evaluation. 7/32 TS419-TS421 Index of Graphs Description Figure Page 1 to 12 9 to 10 13 11 Current Consumption vs Standby Voltage 14 to 19 11 to 12 Output Power vs Power Supply Voltage 20 to 23 12 Output Power vs Load Resistor 24 to 27 12 to 13 Power Dissipation vs Output Power 28 to 31 13 to 14 Power Derating vs Ambiant Temperature 32 14 Output Voltage Swing vs Supply Voltage 33 14 Low Frequency Cut Off vs Input Capacitor 34 14 THD + N vs Output Power 35 to 43 15 to 16 THD + N vs Frequency 44 to 46 16 Signal to Noise Ratio vs Power Supply Voltage 47 to 48 17 Noise Floor 49 to 50 17 PSRR vs Frequency 51 to 55 17 to 18 THD + N vs Output Power 56 to 64 19 to 20 THD + N vs Frequency 65 to 67 20 Signal to Noise Ratio vs Power Supply Voltage 68 to 69 21 Noise Floor 70 to 71 21 PSRR vs Frequency 72 to 76 21 to 22 THD + N vs Output Power 77 to 85 23 to 24 THD + N vs Frequency 86 to 88 24 Signal to Noise Ratio vs Power Supply Voltage 89 to 90 25 Noise Floor 91 to 92 25 PSRR vs Frequency 93 to 97 25 to 26 Common Curves Open Loop Gain and Phase vs Frequency Current Consumption vs Power Supply Voltage Curves With 6dB Gain Setting (Av=2) Curves With 12dB Gain Setting (Av=4) Curves With 18dB Gain Setting (Av=8) Note : All measurements made with Rin=20kΩ, Cb=1µF, and Cin=10µF unless otherwise specified. 8/32 TS419-TS421 Fig. 1: Open Loop Gain and Phase vs Frequency Fig. 2: Open Loop Gain and Phase vs Frequency 180 Gain 60 100 Phase 80 20 60 0 40 100 Phase 80 20 60 0 40 20 -20 40 20 -20 0 -40 0.1 1 10 100 Frequency (kHz) 1000 0 -20 10000 -40 0.1 Fig. 3: Open Loop Gain and Phase vs Frequency 1 10 100 Frequency (kHz) 1000 -20 10000 Fig. 4: Open Loop Gain and Phase vs Frequency 180 Vcc = 5V ZL = 8Ω+400pF Tamb = 25°C 80 Gain 60 180 Vcc = 2V ZL = 8Ω+400pF Tamb = 25°C 80 160 140 Gain 60 100 Phase 80 20 60 0 40 20 80 20 60 40 20 -20 0 1 10 100 Frequency (kHz) 1000 0 -20 10000 -40 0.1 Fig. 5: Open Loop Gain and Phase vs Frequency 1 10 100 Frequency (kHz) 1000 -20 10000 Fig. 6: Open Loop Gain and Phase vs Frequency 180 Vcc = 5V RL = 16Ω Tamb = 25°C 80 Gain 60 180 Vcc = 2V RL = 16Ω Tamb = 25°C 80 160 140 Gain 60 Phase 80 20 60 0 40 20 -20 40 1 10 100 Frequency (kHz) 1000 -20 10000 140 100 Phase 80 20 60 0 40 20 -20 0 -40 0.1 160 120 Gain (dB) 100 Phase (Deg) Gain (dB) 120 40 140 100 Phase 0 40 -20 160 120 Gain (dB) 40 Phase (Deg) Gain (dB) 120 -40 0.1 140 120 Gain (dB) 40 Phase (Deg) Gain (dB) 120 160 Phase (Deg) 60 140 Phase (Deg) Gain 180 Vcc = 2V RL = 8Ω Tamb = 25°C 80 160 Phase (Deg) Vcc = 5V RL = 8Ω Tamb = 25°C 80 0 -40 0.1 1 10 100 Frequency (kHz) 1000 -20 10000 9/32 TS419-TS421 Fig. 7: Open Loop Gain and Phase vs Frequency Fig. 8: Open Loop Gain and Phase vs Frequency 180 Gain 60 100 Phase 80 20 60 0 40 100 Phase 80 20 60 0 40 20 -20 40 20 -20 0 -40 0.1 1 10 100 Frequency (kHz) 1000 0 -20 10000 -40 0.1 Fig. 9: Open Loop Gain and Phase vs Frequency 1 10 100 Frequency (kHz) 1000 -20 10000 Fig. 10: Open Loop Gain and Phase vs Frequency 180 Vcc = 5V RL = 32Ω Tamb = 25°C 80 Gain 60 180 Vcc = 2V RL = 32Ω Tamb = 25°C 80 160 Gain 140 60 100 80 Phase 60 0 40 20 80 60 20 40 20 -20 0 -40 0.1 1 10 100 Frequency (kHz) 1000 0 -20 10000 -40 0.1 Fig. 11: Open Loop Gain and Phase vs Frequency 1 10 100 Frequency (kHz) 1000 -20 10000 Fig. 12: Open Loop Gain and Phase vs Frequency 180 Vcc = 5V ZL = 32Ω+400pF Tamb = 25°C 80 Gain 60 180 Vcc = 2V ZL = 32Ω+400pF Tamb = 25°C 80 160 Gain 140 60 80 Phase 60 0 40 20 -20 40 10/32 1 10 100 Frequency (kHz) 1000 -20 10000 140 20 100 80 Phase 60 0 40 20 -20 0 -40 0.1 160 120 Gain (dB) 20 100 Phase (Deg) Gain (dB) 120 40 140 100 Phase 0 40 -20 160 120 Gain (dB) 40 Phase (Deg) Gain (dB) 120 20 140 120 Gain (dB) 40 Phase (Deg) Gain (dB) 120 160 Phase (Deg) 60 140 0 -40 0.1 1 10 100 Frequency (kHz) 1000 -20 10000 Phase (Deg) Gain 180 Vcc = 2V ZL = 16Ω+400pF Tamb = 25°C 80 160 Phase (Deg) Vcc = 5V ZL = 16Ω+400pF Tamb = 25°C 80 TS419-TS421 Fig. 13: Current Consumption vs Power Supply Voltage Fig. 14: Current Consumption vs Standby Voltage 2.0 2.0 Ta=85°C Current Consumption (mA) Current Consumption (mA) No load 1.5 Ta=25°C Ta=-40°C 1.0 0.5 0.0 0 1 2 3 4 1.5 Ta=85°C Ta=25°C 1.0 Ta=-40°C 0.5 TS419 Vcc = 5V No load 0.0 5 0 1 Power Supply Voltage (V) 2 3 4 5 Standby Voltage (V) Fig. 15: Current Consumption vs Standby Voltage Fig. 16: Current Consumption vs Standby Voltage 2.0 2.0 Current Consumption (mA) Current Consumption (mA) Ta=85°C 1.5 Ta=85°C Ta=25°C 1.0 Ta=-40°C 0.5 TS419 Vcc = 3.3V No load 0.0 0 1 2 1.5 Ta=25°C 1.0 TS419 Vcc = 2V No load 0.0 3 Ta=-40°C 0.5 0 1 Standby Voltage (V) Fig. 17: Current Consumption vs Standby Voltage Fig. 18: Current Consumption vs Standby Voltage 2.0 2.5 Ta=25°C Ta=25°C Current Consumption (mA) Current Consumption (mA) Ta=85°C 2.0 1.5 Ta=-40°C 1.0 0.5 0.0 2 Standby Voltage (V) TS421 Vcc = 5V No load 0 1 2 3 Standby Voltage (V) 4 5 1.5 Ta=85°C Ta=-40°C 1.0 0.5 TS421 Vcc = 3.3V No load 0.0 0 1 2 3 Standby Voltage (V) 11/32 TS419-TS421 Fig. 19: Current Consumption vs Standby Voltage Fig. 20: Output Power vs Power Supply Voltage 2.0 550 RL = 8Ω F = 1kHz BW < 125kHz Tamb = 25°C 500 450 1.5 Output power (mW) Current Consumption (mA) Ta=85°C Ta=25°C 1.0 Ta=-40°C 0.5 TS421 Vcc = 2V No load 0.0 0 1 400 THD+N=1% 350 THD+N=10% 300 250 200 150 THD+N=0.1% 100 50 0 2.0 2 2.5 3.0 3.5 4.0 Vcc (V) Standby Voltage (V) Fig. 21: Output Power vs Power Supply Voltage 350 RL = 32Ω F = 1kHz BW < 125kHz Tamb = 25°C 300 THD+N=1% 300 250 Output power (mW) Output power (mW) 400 RL = 16Ω F = 1kHz BW < 125kHz Tamb = 25°C THD+N=10% 250 200 150 100 5.0 5.5 Fig. 22: Output Power vs Power Supply Voltage 500 450 4.5 THD+N=1% 200 THD+N=10% 150 100 THD+N=0.1% THD+N=0.1% 50 50 0 2.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 0 2.0 5.5 Fig. 23: Output Power vs Power Supply Voltage 3.5 4.0 Vcc (V) 4.5 5.0 5.5 500 RL = 64Ω F = 1kHz BW < 125kHz Tamb = 25°C 450 THD+N=1% THD+N=10% 400 Output power (mW) Output power (mW) 3.0 Fig. 24: Output Power vs Load Resistor 200 150 2.5 THD+N=10% 100 50 350 THD+N=1% 300 250 200 150 THD+N=0.1% 100 THD+N=0.1% Vcc = 5V F = 1kHz BW < 125kHz Tamb = 25°C 50 0 2.0 12/32 0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 8 16 24 32 40 48 Load Resistance ( ) 56 64 TS419-TS421 Fig. 25: Output Power vs Load Resistor Fig. 26: Output Power vs Load Resistor 100 200 Output power (mW) 150 THD+N=1% 100 50 Vcc = 2.5V F = 1kHz BW < 125kHz Tamb = 25°C 90 THD+N=1% 80 Output power (mW) Vcc = 3.3V F = 1kHz BW < 125kHz Tamb = 25°C THD+N=10% THD+N=0.1% 70 THD+N=10% 60 50 40 30 20 THD+N=0.1% 10 0 0 8 16 24 32 40 48 Load Resistance ( ) 56 64 Fig. 27: Output Power vs Load Resistor 16 24 32 40 48 Load Resistance ( ) THD+N=10% THD+N=1% 35 30 25 20 15 THD+N=0.1% 10 Power Dissipation (mW) Vcc = 2V F = 1kHz BW < 125kHz Tamb = 25°C 40 Vcc=5V F=1kHz THD+N<1% 500 RL=8Ω 400 300 RL=16Ω 200 100 RL=32Ω 5 0 8 16 24 32 40 48 Load Resistance ( ) 56 64 0 300 140 Vcc=3.3V F=1kHz 250 THD+N<1% 120 RL=8Ω 200 150 100 RL=16Ω 50 60 90 120 Output Power (mW) 150 200 250 Output Power (mW) 300 350 Vcc=2.5V F=1kHz THD+N<1% RL=8Ω 100 80 RL=16Ω 60 40 RL=32Ω 0 30 100 20 RL=32Ω 0 50 Fig. 30: Power Dissipation vs Output Power Power Dissipation (mW) Power Dissipation (mW) Fig. 29: Power Dissipation vs Output Power 0 64 600 45 0 56 Fig. 28: Power Dissipation vs Output Power 50 Output power (mW) 8 150 0 10 20 30 40 50 60 Output Power (mW) 13/32 TS419-TS421 Fig. 31: Power Dissipation vs Output Power Fig. 32: Power Derating Curves Power Dissipation (mW) 100 Vcc=2V F=1kHz 80 THD+N<1% RL=8Ω 60 40 RL=16Ω 20 RL=32Ω 0 0 5 10 15 20 25 Output Power (mW) 30 35 Fig. 33: Output Voltage Swing For One Amp. vs Power Supply Voltage VOH & VOL for Vs1 and Vs2 (V) 5.0 4.5 Tamb=25°C Amps. in BTL Ω 4.0 3.5 Ω 3.0 2.5 RL=8Ω 2.0 RL=16Ω 1.5 RL=32Ω Ω 1.0 0.5 0.0 2.0 14/32 Fig. 34: Low Frequency Cut Off vs Input Capacitor for fixed gain versions 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 TS419-TS421 Fig. 35: THD + N vs Output Power Fig. 36: THD + N vs Output Power 10 10 RL = 16Ω F = 20Hz Av = 2 1 Cb = 1µF BW < 22kHz Tamb = 25°C THD + N (%) THD + N (%) RL = 8Ω F = 20Hz 1 Av = 2 Cb = 1µF BW < 22kHz Tamb = 25°C 0.1 Vcc=2V Vcc=2.5V 0.1 0.01 Vcc=2V Vcc=2.5V 0.01 Vcc=3.3V Vcc=3.3V Vcc=5V 1E-3 1 1E-3 10 100 Output Power (mW) Fig. 37: THD + N vs Output Power 10 100 Output Power (mW) Fig. 38: THD + N vs Output Power 10 10 THD + N (%) RL = 32Ω F = 20Hz Av = 2 1 Cb = 1µF Vcc=2V BW < 22kHz Tamb = 25°C Vcc=2.5V 0.1 THD + N (%) 1 Vcc=5V RL = 8Ω F = 1kHz Av = 2 1 Cb = 1µF BW < 125kHz Tamb = 25°C 0.1 Vcc=2V Vcc=2.5V 0.01 Vcc=3.3V 1E-3 1 0.01 Vcc=5V 10 Output Power (mW) 100 Fig. 39: THD + N vs Output Power Vcc=5V 10 100 Output Power (mW) Fig. 40: THD + N vs Output Power 10 RL = 16Ω F = 1kHz Av = 2 1 Cb = 1µF BW < 125kHz Tamb = 25°C 0.1 THD + N (%) 10 THD + N (%) Vcc=3.3V 1 Vcc=2V Vcc=2.5V RL = 32Ω F = 1kHz Av = 2 1 Cb = 1µF BW < 125kHz Tamb = 25°C 0.1 Vcc=2V Vcc=2.5V 0.01 0.01 Vcc=3.3V 1 10 Output Power (mW) Vcc=5V 100 Vcc=3.3V 1E-3 1 Vcc=5V 10 Output Power (mW) 100 15/32 TS419-TS421 Fig. 41: THD + N vs Output Power Fig. 42: THD + N vs Output Power 10 RL = 8Ω F = 20kHz Av = 2 Cb = 1µF BW < 125kHz Tamb = 25°C THD + N (%) THD + N (%) 10 Vcc=2V 1 Vcc=2.5V RL = 16Ω F = 20kHz Av = 2 Cb = 1µF BW < 125kHz 1 Tamb = 25°C Vcc=2V Vcc=2.5V 0.1 Vcc=3.3V 0.1 1 Vcc=3.3V Vcc=5V 10 100 Output Power (mW) 1 Fig. 43: THD + N vs Output Power Vcc=2V RL=8Ω Av=2 Cb = 1µF Bw < 125kHz 0.1 Tamb = 25°C THD + N (%) THD + N (%) 10 100 Output Power (mW) Fig. 44: THD + N vs Frequency 10 RL = 32Ω F = 20kHz Av = 2 Cb = 1µF BW < 125kHz 1 Tamb = 25°C Vcc=5V Vcc=2.5V Vcc=2V, Po=28mW 0.01 0.1 Vcc=3.3V 1 10 Output Power (mW) 20 100 Fig. 45: THD + N vs Frequency 100 1000 Frequency (Hz) 10000 20k Fig. 46: THD + N vs Frequency Vcc=2V, Po=20mW THD + N (%) THD + N (%) RL=16Ω Av=2 Cb = 1µF Bw < 125kHz 0.1 Tamb = 25°C Vcc=5V, Po=300mW Vcc=5V Vcc=5V, Po=220mW RL=32Ω Av=2 Cb = 1µF Bw < 125kHz 0.1 Tamb=25°C Vcc=2V, Po=13mW Vcc=5V, Po=150mW 0.01 0.01 20 16/32 100 1000 Frequency (Hz) 10000 20k 20 100 1000 Frequency (Hz) 10000 20k TS419-TS421 Fig. 47: Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz) Fig. 48: Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A 95 105 Av = 2 Cb = 1µF THD+N < 0.5% Tamb = 25°C Signal to Noise Ratio (dB) Signal to Noise Ratio (dB) 100 RL=32Ω 90 85 RL=8Ω 80 RL=16Ω 75 70 2.0 2.5 3.0 3.5 4.0 4.5 Av = 2 Cb = 1µF 100 THD+N < 0.5% Tamb = 25°C 95 90 RL=8Ω RL=16Ω 85 80 2.0 5.0 2.5 Power Supply Voltage (V) Standby=OFF 20 10 Standby=ON 100 20 RL>=16Ω Vcc=5V Av=2 Cb = 1µF Input Grounded Bw < 125kHz Tamb=25°C 1000 Frequency (Hz) Noise Floor ( VRms) Noise Floor ( VRms) 4.0 4.5 5.0 30 RL>=16Ω Vcc=2V Av=2 Cb = 1µF Input Grounded Bw < 125kHz Tamb=25°C Standby=OFF 20 10 Standby=ON 0 10000 20k Fig. 51: PSRR vs Input Capacitor 100 20 1000 Frequency (Hz) 10000 20k Fig. 52: PSRR vs Power Supply Voltage 0 0 -20 Cin = 1µF, 220nF -30 Vripple = 200mVpp Av = 2, Vcc = 5V Input = grounded Cb = 1µF, Rin = 20kΩ RL >= 16Ω Tamb = 25°C -10 -20 PSRR (dB) -10 PSRR (dB) 3.5 Fig. 50: Noise Floor 30 -40 -50 -30 Vripple = 100mVrms Rfeed = 20kΩ Input = floating Cb = 1µF RL >= 16Ω Tamb = 25°C -40 Vcc = 2V -50 -60 -60 -70 Vcc = 5V, 3.3V & 2.5V Cin = 100nF -70 3.0 Power Supply Voltage (V) Fig. 49: Noise Floor 0 RL=32Ω -80 100 1000 10000 Frequency (Hz) 100000 100 1000 10000 Frequency (Hz) 100000 17/32 TS419-TS421 Fig. 53: PSRR vs Bypass Capacitor Fig. 54: PSRR vs Bypass Capacitor 0 0 Vripple = 200mVpp Av = 2 Input = Grounded Cb = Cin = 1µF RL >= 16Ω Tamb = 25°C PSRR (dB) -20 -30 -40 -10 -20 PSRR (dB) -10 Vcc = 2V -50 -30 -40 -60 Vcc = 5V, 3.3V & 2.5V 100 Vcc = 5V, 3.3V & 2.5V 1000 10000 Frequency (Hz) 100000 Fig. 55: PSRR vs Bypass Capacitor 0 -10 PSRR (dB) -20 -30 Vripple = 200mVpp Av = 2 Input = Grounded Cb = 10µF Cin = 1µF RL >= 16Ω Tamb = 25°C -40 Vcc = 2V -50 -60 Vcc = 5V, 3.3V & 2.5V -70 18/32 Vcc = 2V -50 -60 -70 Vripple = 200mVpp Av = 2 Input = Grounded Cb = 4.7µF Cin = 1µF RL >= 16Ω Tamb = 25°C 100 1000 10000 Frequency (Hz) 100000 -70 100 1000 10000 Frequency (Hz) 100000 TS419-TS421 Fig. 56: THD + N vs Output Power Fig. 57: THD + N vs Output Power 10 RL = 8Ω F = 20Hz Av = 4 1 Cb = 1µF BW < 22kHz Tamb = 25°C RL = 16Ω F = 20Hz Av = 4 1 Cb = 1µF BW < 22kHz Tamb = 25°C THD + N (%) THD + N (%) 10 Vcc=2V 0.1 Vcc=2.5V Vcc=2V Vcc=2.5V 0.1 0.01 0.01 Vcc=3.3V Vcc=3.3V 1 1E-3 10 100 Output Power (mW) Fig. 58: THD + N vs Output Power 1 10 100 Output Power (mW) Fig. 59: THD + N vs Output Power 10 10 THD + N (%) RL = 32Ω F = 20Hz Av = 4 1 Cb = 1µF Vcc=2V BW < 22kHz Tamb = 25°C Vcc=2.5V 0.1 THD + N (%) Vcc=5V Vcc=5V RL = 8Ω F = 1kHz Av = 4 1 Cb = 1µF BW < 125kHz Tamb = 25°C Vcc=2V Vcc=2.5V 0.1 0.01 Vcc=3.3V 1E-3 1 0.01 Vcc=5V 10 Output Power (mW) 100 Fig. 60: THD + N vs Output Power Vcc=5V 10 100 Output Power (mW) Fig. 61: THD + N vs Output Power 10 RL = 16Ω F = 1kHz Av = 4 1 Cb = 1µF BW < 125kHz Tamb = 25°C THD + N (%) 10 THD + N (%) Vcc=3.3V 1 Vcc=2V Vcc=2.5V 0.1 RL = 32Ω F = 1kHz Av = 4 1 Cb = 1µF BW < 125kHz Tamb = 25°C 0.1 Vcc=2V Vcc=2.5V 0.01 0.01 Vcc=3.3V 1 Vcc=3.3V Vcc=5V 10 100 Output Power (mW) 1E-3 1 Vcc=5V 10 Output Power (mW) 100 19/32 TS419-TS421 Fig. 62: THD + N vs Output Power Fig. 63: THD + N vs Output Power 10 RL = 8Ω F = 20kHz Av = 4 Cb = 1µF BW < 125kHz Tamb = 25°C 1 THD + N (%) THD + N (%) 10 Vcc=2V Vcc=2.5V Vcc=3.3V 1 RL = 16Ω F = 20kHz Av = 4 Cb = 1µF BW < 125kHz Tamb = 25°C 1 Vcc=3.3V 0.1 Fig. 64: THD + N vs Output Power 1 0.1 THD + N (%) Vcc=2V Vcc=2.5V RL=8Ω Av=4 Cb = 1µF Bw < 125kHz Tamb = 25°C Vcc=2V, Po=28mW 0.1 Vcc=3.3V 1 10 Output Power (mW) Vcc=5V Vcc=5V, Po=300mW 0.01 20 100 Fig. 66: THD + N vs Frequency 100 1000 Frequency (Hz) 10000 20k Fig. 67: THD + N vs Frequency THD + N (%) Vcc=2V, Po=20mW THD + N (%) RL=16Ω Av=4 Cb = 1µF Bw < 125kHz 0.1 Tamb = 25°C Vcc=5V 10 100 Output Power (mW) Fig. 65: THD + N vs Frequency 10 THD + N (%) Vcc=2.5V Vcc=5V 10 100 Output Power (mW) RL = 32Ω F = 20kHz Av = 4 Cb = 1µF BW < 125kHz 1 Tamb = 25°C Vcc=2V RL=32Ω Av=4 Cb = 1µF Bw < 125kHz 0.1 Tamb=25°C Vcc=2V, Po=13mW Vcc=5V, Po=150mW 0.01 0.01 Vcc=5V, Po=220mW 20 20/32 100 1000 Frequency (Hz) 10000 20k 20 100 1000 Frequency (Hz) 10000 20k TS419-TS421 Fig. 68: Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz) Fig. 69: Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A 100 Av = 4 Cb = 1µF THD+N < 0.5% 85 Tamb = 25°C RL=32Ω Signal to Noise Ratio (dB) Signal to Noise Ratio (dB) 90 80 RL=8Ω 75 RL=16Ω 70 2.0 2.5 3.0 3.5 4.0 4.5 Av = 4 Cb = 1µF 95 THD+N < 0.5% Tamb = 25°C 90 RL=8Ω 85 RL=16Ω 80 75 2.0 5.0 2.5 Power Supply Voltage (V) 10 Noise Floor ( VRms) Noise Floor ( VRms) RL>=16Ω Vcc=5V Av=4 Cb = 1µF Input Grounded Bw < 125kHz Tamb=25°C Standby=OFF 20 Standby=ON 100 20 1000 Frequency (Hz) 4.5 5.0 20 10 RL>=16Ω Vcc=2V Av=4 Cb = 1µF Input Grounded Bw < 125kHz Tamb=25°C Standby=ON 100 20 1000 Frequency (Hz) 10000 20k Fig. 73: PSRR vs Input Capacitor 0 0 Vripple = 100mVrms Rfeed = 40kΩ Input = floating Cb = 1µF RL >= 16Ω Tamb = 25°C -10 PSRR (dB) PSRR (dB) Standby=OFF 30 0 10000 20k Fig. 72: PSRR vs Power Supply Voltage -30 4.0 40 30 -20 3.5 Fig. 71: Noise Floor 40 -10 3.0 Power Supply Voltage (V) Fig. 70: Noise Floor 0 RL=32Ω -40 Vcc = 2V -50 Cin = 1µF, 220nF -20 Vripple = 200mVpp Av = 4, Vcc = 5V Input = grounded Cb = 1µF, Rin = 20kΩ RL >= 16Ω Tamb = 25°C -30 -40 -60 -50 -70 Vcc = 5V, 3.3V & 2.5V -80 100 1000 10000 Frequency (Hz) Cin = 100nF 100000 -60 100 1000 10000 Frequency (Hz) 100000 21/32 TS419-TS421 Fig. 74: PSRR vs Bypass Capacitor Fig. 75: PSRR vs Bypass Capacitor 0 0 Vripple = 200mVpp Av = 4 Input = Grounded Cb = Cin = 1µF RL >= 16Ω Tamb = 25°C PSRR (dB) -20 -30 -10 -20 PSRR (dB) -10 Vcc = 2V -40 -50 -60 -60 Vcc = 5V, 3.3V & 2.5V 1000 10000 Frequency (Hz) 100000 Fig. 76: PSRR vs Bypass Capacitor 0 PSRR (dB) -20 -30 Vripple = 200mVpp Av = 4 Input = Grounded Cb = 10µF Cin = 1µF RL >= 16Ω Tamb = 25°C Vcc = 2V -40 -50 -60 Vcc = 5V, 3.3V & 2.5V 100 22/32 Vcc = 2V -40 -50 100 -10 -30 Vripple = 200mVpp Av = 4 Input = Grounded Cb = 4.7µF Cin = 1µF RL >= 16Ω Tamb = 25°C 1000 10000 Frequency (Hz) 100000 Vcc = 5V, 3.3V & 2.5V 100 1000 10000 Frequency (Hz) 100000 TS419-TS421 Fig. 77: THD + N vs Output Power Fig. 78: THD + N vs Output Power 10 RL = 8Ω F = 20Hz Av = 8 1 Cb = 1µF BW < 22kHz Tamb = 25°C 0.1 THD + N (%) THD + N (%) 10 Vcc=2V Vcc=2.5V Vcc=3.3V 0.01 1 Vcc=3.3V 1 Vcc=5V 10 100 Output Power (mW) Fig. 80: THD + N vs Output Power 10 RL = 32Ω F = 20Hz Av = 8 Cb = 1µF 1 BW < 22kHz Tamb = 25°C RL = 8Ω F = 1kHz Av = 8 Cb = 1µF 1 BW < 125kHz Tamb = 25°C THD + N (%) THD + N (%) 0.1 10 100 Output Power (mW) 10 Vcc=2V Vcc=2V Vcc=2.5V 0.1 0.1 Vcc=2.5V Vcc=3.3V 1 Vcc=3.3V Vcc=5V 10 Output Power (mW) Fig. 81: THD + N vs Output Power 0.01 100 1 Vcc=5V 10 100 Output Power (mW) Fig. 82: THD + N vs Output Power 10 RL = 16Ω F = 1kHz Av = 8 Cb = 1µF 1 BW < 125kHz Tamb = 25°C THD + N (%) 10 THD + N (%) Vcc=2V Vcc=2.5V 0.01 Vcc=5V Fig. 79: THD + N vs Output Power 0.01 RL = 16Ω F = 20Hz Av = 8 1 Cb = 1µF BW < 22kHz Tamb = 25°C Vcc=2V Vcc=2.5V RL = 32Ω F = 1kHz Av = 8 1 Cb = 1µF BW < 125kHz Tamb = 25°C Vcc=2V Vcc=2.5V 0.1 0.1 Vcc=3.3V 0.01 1 0.01 Vcc=3.3V Vcc=5V 10 100 Output Power (mW) 1 Vcc=5V 10 Output Power (mW) 100 23/32 TS419-TS421 Fig. 83: THD + N vs Output Power Fig. 84: THD + N vs Output Power 10 10 THD + N (%) THD + N (%) RL = 8Ω, F = 20kHz Av = 8, Cb = 1µF BW < 125kHz, Tamb = 25°C Vcc=2V Vcc=2.5V 1 Vcc=3.3V 1 RL = 16Ω F = 20kHz Av = 8 Cb = 1µF BW < 125kHz Tamb = 25°C Vcc=2V Vcc=2.5V 1 Vcc=5V Vcc=3.3V 10 100 Output Power (mW) 1 Fig. 85: THD + N vs Output Power Vcc=5V 10 100 Output Power (mW) Fig. 86: THD + N vs Frequency RL = 32Ω F = 20kHz Av = 8 Cb = 1µF BW < 125kHz Tamb = 25°C Vcc=2V THD + N (%) THD + N (%) 10 1 Vcc=2.5V Vcc=3.3V 0.1 1 10 Output Power (mW) 0.1 Vcc=5V, Po=300mW 20 100 100 1000 Frequency (Hz) 10000 20k Fig. 88: THD + N vs Frequency Vcc=2V, Po=20mW THD + N (%) THD + N (%) Vcc=2V, Po=28mW Vcc=5V Fig. 87: THD + N vs Frequency RL=16Ω Av=8 Cb = 1µF Bw < 125kHz 0.1 Tamb = 25°C RL=8Ω Av=8 Cb = 1µF Bw < 125kHz Tamb = 25°C RL=32Ω Av=8 Cb = 1µF Bw < 125kHz 0.1 Tamb=25°C Vcc=2V, Po=13mW Vcc=5V, Po=150mW 0.01 0.01 Vcc=5V, Po=220mW 20 24/32 100 1000 Frequency (Hz) 10000 20k 20 100 1000 Frequency (Hz) 10000 20k TS419-TS421 Fig. 89: Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz) Fig. 90: Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A 95 Av = 8 Cb = 1µF 85 THD+N < 0.5% Tamb = 25°C 80 RL=32Ω Signal to Noise Ratio (dB) Signal to Noise Ratio (dB) 90 75 RL=8Ω 70 RL=16Ω 65 60 2.0 2.5 3.0 3.5 4.0 4.5 Av = 8 Cb = 1µF 90 THD+N < 0.5% Tamb = 25°C 85 80 RL=8Ω RL=16Ω 75 70 2.0 5.0 2.5 3.0 Power Supply Voltage (V) 40 30 20 Noise Floor ( VRms) Noise Floor ( VRms) RL>=16Ω Vcc=5V Av=8 Cb = 1µF Input Grounded Bw < 125kHz Tamb=25°C 10 100 20 Standby=OFF 50 RL>=16Ω Vcc=2V Av=8 Cb = 1µF Input Grounded Bw < 125kHz Tamb=25°C 40 30 20 10 Standby=ON 1000 Frequency (Hz) 0 10000 20k Fig. 93: PSRR vs Power Supply Voltage Standby=ON 100 20 1000 Frequency (Hz) 10000 20k Fig. 94: PSRR vs Input Capacitor 0 0 Vripple = 100mVrms Rfeed = 80kΩ Input = floating Cb = 1µF RL >= 16Ω Tamb = 25°C -40 -10 Cin = 1µF, 220nF PSRR (dB) PSRR (dB) 5.0 60 Standby=OFF 50 -30 4.5 70 60 -20 4.0 Fig. 92: Noise Floor 70 -10 3.5 Power Supply Voltage (V) Fig. 91: Noise Floor 0 RL=32Ω Vcc = 2V -20 Vripple = 200mVpp Av = 8, Vcc = 5V Input = grounded Cb = 1µF, Rin = 20kΩ RL >= 16Ω Tamb = 25°C -30 -50 -40 -60 -70 -50 Vcc = 5V, 3.3V & 2.5V 100 1000 10000 Frequency (Hz) 100000 Cin = 100nF 100 1000 10000 Frequency (Hz) 100000 25/32 TS419-TS421 Fig. 95: PSRR vs Bypass Capacitor Fig. 96: PSRR vs Bypass Capacitor 0 0 Vripple = 200mVpp Av = 8 Input = Grounded Cb = Cin = 1µF RL >= 16Ω Tamb = 25°C -20 -10 PSRR (dB) PSRR (dB) -10 -30 Vcc = 2V -20 -30 Vripple = 200mVpp Av = 8 Input = Grounded Cb = 4.7µF Cin = 1µF RL >= 16Ω Tamb = 25°C Vcc = 2V -40 -40 -50 -50 Vcc = 5V, 3.3V & 2.5V 100 Vcc = 5V, 3.3V & 2.5V 1000 10000 Frequency (Hz) 100000 Fig. 97: PSRR vs Bypass Capacitor 0 PSRR (dB) -10 -20 -30 Vripple = 200mVpp Av = 8 Input = Grounded Cb = 10µF Cin = 1µF RL >= 16Ω Tamb = 25°C Vcc = 2V -40 -50 Vcc = 5V, 3.3V & 2.5V -60 26/32 100 1000 10000 Frequency (Hz) 100000 -60 100 1000 10000 Frequency (Hz) 100000 TS419-TS421 APPLICATION INFORMATION ■ BTL Configuration Principle The TS419 & TS420 are monolithic power amplifiers with a BTL output type. BTL (Bridge Tied Load) means that each end of the load is connected to two single-ended output amplifiers. Thus, we have: Single ended output 1 = Vout1 = Vout (V) Single ended output 2 = Vout2 = -Vout (V) And Vout1 - Vout2 = 2Vout (V) In the high frequency region, you can limit the bandwidth by adding a capacitor (Cfeed) in parallel with Rfeed. It forms a low-pass filter with a -3dB cut off frequency . 1 FCH = (Hz) 2π Rfeed Cfeed ■ Power dissipation and efficiency Hypothesis: • Load voltage and current are sinusoidal (Vout and Iout) • Supply voltage is a pure DC source (Vcc) The output power is : Pout = (2 VoutRMS )2 (W) RL Regarding the load we have: VOUT = VPEAK sin ωt (V) For the same power supply voltage, the output power in BTL configuration is four times higher than the output power in single ended configuration. and ■ Gain In Typical Application Schematic and (cf. page 3 of TS419-TS421 datasheet) In the flat region (no CIN effect), the output voltage of the first stage is: Rfeed Vout1 = − Vin (V) Rin For the second stage : Vout2 = -Vout1 (V) The differential output voltage is Rfeed Vout2 − Vout1 = 2 Vin (V) Rin The differential gain named gain (Gv) for more convenient usage is : Vout2 − Vout1 Rfeed Gv = =2 Vin Rin Remark : Vout2 is in phase with Vin and Vout1 is phased 180° with Vin. This means that the positive terminal of the loudspeaker should be connected to Vout2 and the negative to Vout1. ■ Low and high frequency response In the low frequency region, CIN starts to have an effect. CIN forms with R IN a high-pass filter with a -3dB cut off frequency . FCL 1 = 2πRinCin (Hz) VOUT ( A) RL IOUT = POUT = 2 VPEAK (W) 2 RL Then, the average current delivered by the supply voltage is: Icc AVG = 2 VPEAK ( A) π RL The power delivered by the supply voltage is: Psupply = Vcc IccAVG (W) Then, the power dissipated by the amplifier is: Pdiss = Psupply - Pout (W) Pdiss = 2 2 Vcc π RL POUT − POUT (W ) and the maximum value is obtained when: ∂Pdiss =0 ∂POUT and its value is: Pdiss max = 2 Vcc 2 π2RL (W) Remark : This maximum value is only dependent upon power supply voltage and load values. 27/32 TS419-TS421 The efficiency is the ratio between the output power and the power supply η= π VPEAK POUT = P sup ply 4 Vcc The maximum theoretical value is reached when Vpeak = Vcc, so π = 78.5% 4 ■ Decoupling of the circuit Two capacitors are needed to bypass properly the TS419/TS421. A power supply bypass capacitor CS and a bias voltage bypass capacitor C B. CS has particular influence on the THD+N in the high frequency region (above 7kHz) and an indirect influence on power supply disturbances. With 1µF, you can expect similar THD+N performances to those shown in the datasheet. In the high frequency region, if CS is lower than 1µF, it increases THD+N and disturbances on the power supply rail are less filtered. On the other hand, if CS is higher than 1µF, those disturbances on the power supply rail are more filtered. CB has an influence on THD+N at lower frequencies, but its function is critical to the final result of PSRR (with input grounded and in the lower frequency region). If CB is lower than 1µF, THD+N increases at lower frequencies and PSRR worsens. If CB is higher than 1µF, the benefit on THD+N at lower frequencies is small, but the benefit to PSRR is substantial. Note that CIN has a non-negligible effect on PSRR at lower frequencies. The lower the value of CIN, the higher the PSRR. ■ Wake-up Time: TWU When standby is released to put the device ON, the bypass capacitor CB will not be charged immediatly. As CB is directly linked to the bias of the amplifier, the bias will not work properly until the CB voltage is correct. The time to reach this voltage is called wake-up time or TWU and typically equal to: TWU=0.15xCB (s) with C B in µF. 28/32 Due to process tolerances, the range of the wake-up time is : 0.12xCb < TWU < 0.18xCB (s) with C B in µF Note : When the standby command is set, the time to put the device in shutdown mode is a few microseconds. ■ Pop performance Pop performance is intimately linked with the size of the input capacitor Cin and the bias voltage bypass capacitor CB. The size of CIN is dependent on the lower cut-off frequency and PSRR values requested. The size of CB is dependent on THD+N and PSRR values requested at lower frequencies. Moreover, CB determines the speed with which the amplifier turns ON. The slower the speed is, the softer the turn ON noise is. The charge time of CB is directly proportional to the internal generator resistance 150kΩ.. Then, the charge time constant for CB is τB = 150kΩxCB (s) As CB is directly connected to the non-inverting input (pin 2 & 3) and if we want to minimize, in amplitude and duration, the output spike on Vout1 (pin 5), CIN must be charged faster than CB. The equivalent charge time constant of CIN is: τIN = (Rin+Rfeed)xCIN (s) Thus we have the relation: τIN < τB (s) Proper respect of this relation allows to minimize the pop noise. Remark : Minimizing CIN and CB benefits both the pop phenomena, and the cost and size of the application. ■ Application : Differential inputs BTL power amplifier. The schematic on figure 98, shows how to design the TS419/21 to work in a differential input mode. The gain of the amplifier is: G VDIFF = 2 R2 R1 In order to reach optimal performances of the differential function, R1 and R2 should be matched at 1% max. TS419-TS421 Fig. 98 : Differential Input Amplifier Configuration Note : This formula is true only if: 1 FCB = (Hz ) 942000 × C B is ten times lower than FL. The following bill of material is an example of a differential amplifier with a gain of 2 and a -3dB lower cuttoff frequency of about 80Hz. Components : Designator Input capacitance C can be calculated by the following formula using the -3dB lower frequency required. (FL is the lower frequency required) Part Type R1 20k / 1% R2 20k / 1% C 100nF CB=CS 1µF U1 TS419/21 1 C≈ (F ) 2 π R1 FL 29/32 TS419-TS421 PACKAGE MECHANICAL DATA SO-8 MECHANICAL DATA DIM. mm. MIN. TYP inch MAX. MIN. TYP. MAX. A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.04 0.010 A2 1.10 1.65 0.043 0.065 B 0.33 0.51 0.013 0.020 C 0.19 0.25 0.007 0.010 D 4.80 5.00 0.189 0.197 E 3.80 4.00 0.150 0.157 e 1.27 0.050 H 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k ddd 8˚ (max.) 0.1 0.04 0016023/C 30/32 TS419-TS421 PACKAGE MECHANICAL DATA 31/32 TS419-TS421 PACKAGE MECHANICAL DATA Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics © 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States http://www.st.com 32/32