STMICROELECTRONICS TS419

TS419
TS421
360mW MONO AMPLIFIER WITH STANDBY MODE
■ OPERATING FROM Vcc=2V to 5.5V
■ STANDBY MODE ACTIVE HIGH (TS419) or
LOW (TS421)
■ OUTPUT POWER into 16Ω: 367mW @ 5V
with 10% THD+N max or 295mW @5V and
110mW @3.3V with 1% THD+N max.
■ LOW CURRENT CONSUMPTION: 2.5mA max
■ High Signal-to-Noise ratio: 95dB(A) at 5V
■ PSRR: 56dB typ. at 1kHz, 46dB at 217Hz
■ SHORT CIRCUIT LIMITATION
■ ON/OFF click reduction circuitry
■ Available in SO8, MiniSO8 & DFN 3x3
PIN CONNECTIONS (top view)
TS419IDT: SO8
TS419IST, TS419-xIST: MiniSO8
Standby
1
8
VOUT2
Bypass
2
7
GND
VIN+
3
6
VCC
VIN-
4
5
VOUT1
DESCRIPTION
The TS419/TS421 is a monaural audio power amplifier driving in BTL mode a 16 or 32Ω earpiece or
receiver speaker. The main advantage of this configuration is to get rid of bulky ouput capacitors.
Capable of descending to low voltages, it delivers
up to 220mW per channel (into 16Ω loads) of continuous average power with 0.2% THD+N in the
audio bandwidth from a 5V power supply.
An externally controlled standby mode reduces
the supply current to 10nA (typ.). The TS419/
TS421 can be configured by external gain-setting
resistors or used in a fixed gain version.
TS419IQT, TS419-xIQT: DFN8
GND
1
8
Vcc
VOUT 2
2
7
VOUT 1
STANDBY
3
6
VIN-
BYPASS
4
5
VIN+
TS421IDT: SO8
TS421IST, TS421-xIST: MiniSO8
APPLICATIONS
■ 16/32 ohms earpiece or receiver speaker driver
■ Mobile and cordless phones (analog / digital)
■ PDAs & computers
■ Portable appliances
ORDER CODE
Part
Number
Temp.
Range:
I
TS419
TS421
TS419
TS419-2
TS419-4
-40, +85°C
TS419-8
TS421
TS421-2
TS421-4
TS421-8
Package
D
S
•
•
•
tba
tba
tba
•
tba
tba
tba
Gain
Marking
external
external
external
x2/6dB
x4/12dB
x8/18dB
external
x2/6dB
x4/12dB
x8/18dB
TS419I
TS421I
K19A
K19B
K19C
K19D
K21A
K21B
K21C
K21D
Q
•
tba
tba
tba
•
tba
tba
tba
TS421IQT, TS421-xIQT: DFN8
GND
1
8
Vcc
VOUT 2
2
7
VOUT 1
STANDBY
3
6
VIN-
BYPASS
4
5
VIN+
MiniSO & DFN only available in Tape & Reel with T suffix.
SO is available in Tube (D) and in Tape & Reel (DT)
June 2003
1/32
TS419-TS421
ABSOLUTE MAXIMUM RATINGS
Symbol
VCC
Vi
Tstg
Tj
Rthja
Pd
Parameter
Supply voltage
1)
Value
Unit
6
V
-0.3V to VCC +0.3V
V
-65 to +150
°C
Maximum Junction Temperature
150
°C
Thermal Resistance Junction to Ambient
SO8
MiniSO8
DFN8
175
215
70
Power Dissipation 2)
SO8
MiniSO8
DFN8
0.71
0.58
1.79
Input Voltage
Storage Temperature
Human Body Model (pin to pin): TS4193), TS421
ESD
Machine Model - 220pF - 240pF (pin to pin)
Latch-up Latch-up Immunity (All pins)
Lead Temperature (soldering, 10sec)
ESD
Output Short-Circuit to Vcc or GND
°C/W
W
1.5
kV
100
200
250
V
mA
°C
continous 4)
1. All voltage values are measured with respect to the ground pin.
2. Pd has been calculated with Tamb = 25°C, Tjunction = 150°C.
3. TS419 stands 1.5KV on all pins except standby pin which stands 1KV.
4. Attention must be paid to continous power dissipation (VDD x 300mA). Exposure of the IC to a short circuit for an extended time period is
dramatically reducing product life expectancy.
OPERATING CONDITIONS
Symbol
Parameter
VCC
Supply Voltage
RL
Load Resistor
Toper
CL
Operating Free Air Temperature Range
Load Capacitor
RL = 16 to 100Ω
RL > 100Ω
VICM
Common Mode Input Voltage Range
VSTB
Standby Voltage Input
TS421 ACTIVE / TS419 in STANDBY
TS421 in STANDBY / TS419 ACTIVE
RTHJA
Thermal Resistance Junction to Ambient
SO8
MiniSO8
DFN8 2)
Value
Unit
2 to 5.5
V
≥ 16
Ω
-40 to + 85
°C
400
100
pF
GND to VCC-1V
V
1.5 ≤ VSTB ≤ VCC
V
GND ≤ VSTB ≤ 0.4 1)
150
190
41
≥ 0.12
Wake-up time from standby to active mode (Cb = 1µF) 3)
1. The minimum current consumption (ISTANDBY) is guaranteed at VCC (TS419) or GND (TS421) for the whole temperature range.
Twu
2. When mounted on a 4-layer PCB
3. For more details on T WU , please refer to application note section on Wake-up time page 28.
2/32
°C/W
s
TS419-TS421
FIXED GAIN VERSION SPECIFIC ELECTRICAL CHARACTERISTICS
VCC from +5V to +2V, GND = 0V, Tamb = 25°C (unless otherwise specified)
Symbol
RIN
G
Parameter
Min.
Typ.
Input Resistance
20
Gain value for Gain TS419/TS421-2
6dB
Gain value for Gain TS419/TS421-4
12dB
Gain value for Gain TS419/TS421-8
18dB
Max.
Unit
kΩ
dB
APPLICATION COMPONENTS INFORMATION
Components
Functional Description
RIN
Inverting input resistor which sets the closed loop gain in conjunction with RFEED. This resistor also
forms a high pass filter with CIN (fcl = 1 / (2 x Pi x RIN x CIN)). Not needed in fixed gain versions.
CIN
Input coupling capacitor which blocks the DC voltage at the amplifier’s input terminal
RFEED
Feedback resistor which sets the closed loop gain in conjunction with RIN.
AV= Closed Loop Gain= 2xRFEED/RIN. Not needed in fixed gain versions.
CS
Supply Bypass capacitor which provides power supply filtering.
CB
Bypass capacitor which provides half supply filtering.
TYPICAL APPLICATION SCHEMATICS:
3/32
TS419-TS421
ELECTRICAL CHARACTERISTICS
VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise specified)
Symbol
Typ.
Max.
Unit
1.8
2.5
mA
Standby Current
No input signal, VSTANDBY=GND for TS421
No input signal, VSTANDBY=Vcc for TS419
10
1000
nA
Voo
Output Offset Voltage
No input signal, RL = 16 or 32Ω, Rfeed=20kΩ
5
25
mV
PO
Output Power
THD+N
THD+N
THD+N
THD+N
THD+N
THD+N
ICC
ISTANDBY
THD + N
PSRR
SNR
Parameter
Min.
Supply Current
No input signal, no load
=
=
=
=
=
=
0.1% Max, F = 1kHz, RL = 32Ω
1% Max, F = 1kHz, RL = 32Ω
10% Max, F = 1kHz, RL = 32Ω
0.1% Max, F = 1kHz, RL = 16Ω
1% Max, F = 1kHz, RL = 16Ω
10% Max, F = 1kHz, RL = 16Ω
166
240
Total Harmonic Distortion + Noise (Av=2)
RL = 32Ω, Pout = 150mW, 20Hz ≤ F ≤ 20kHz
RL = 16Ω, Pout = 220mW, 20Hz ≤ F ≤ 20kHz
190
207
258
270
295
367
mW
0.15
0.2
%
Power Supply Rejection Ratio (Av=2) 1)
F = 1kHz, Vripple = 200mVpp, input grounded, Cb=1µF
50
56
dB
Signal-to-Noise Ratio (Filter Type A, Av=2) 1)
(RL = 32Ω, THD +N < 0.5%, 20Hz ≤ F ≤ 20kHz)
85
98
dB
ΦM
Phase Margin at Unity Gain
RL = 16Ω, CL = 400pF
58
Degrees
GM
Gain Margin
RL = 16Ω, CL = 400pF
18
dB
GBP
Gain Bandwidth Product
RL = 16Ω
1.1
MHz
Slew Rate
RL = 16Ω
0.4
V/µS
SR
1. Guaranteed by design and evaluation.
4/32
TS419-TS421
ELECTRICAL CHARACTERISTICS
VCC = +3.3V, GND = 0V, Tamb = 25°C (unless otherwise specified) 1)
Symbol
Typ.
Max.
Unit
1.8
2.5
mA
Standby Current
No input signal, VSTANDBY=GND for TS421
No input signal, VSTANDBY=Vcc for TS419
10
1000
nA
Voo
Output Offset Voltage
No input signal, RL = 16 or 32Ω, Rfeed=20kΩ
5
25
mV
PO
Output Power
THD+N
THD+N
THD+N
THD+N
THD+N
THD+N
ICC
ISTANDBY
THD + N
PSRR
SNR
Min.
Supply Current
No input signal, no load
=
=
=
=
=
=
0.1% Max, F = 1kHz, RL = 32Ω
1% Max, F = 1kHz, RL = 32Ω
10% Max, F = 1kHz, RL = 32Ω
0.1% Max, F = 1kHz, RL = 16Ω
1% Max, F = 1kHz, RL = 16Ω
10% Max, F = 1kHz, RL = 16Ω
65
91
Total Harmonic Distortion + Noise (Av=2)
RL = 32Ω, Pout = 50mW, 20Hz ≤ F ≤ 20kHz
RL = 16Ω, Pout = 70mW, 20Hz ≤ F ≤ 20kHz
75
81
102
104
113
143
mW
0.15
0.2
%
Power Supply Rejection Ratio
inputs grounded, F = 1kHz, Vripple = 200mVpp, Cb=1µF
50
56
dB
Signal-to-Noise Ratio (Weighted A, Av=2)
(RL = 32Ω, THD +N < 0.5%, 20Hz ≤ F ≤ 20kHz)
82
94
dB
ΦM
Phase Margin at Unity Gain
RL = 16Ω, CL = 400pF
58
Degrees
GM
Gain Margin
RL = 16Ω, CL = 400pF
18
dB
GBP
Gain Bandwidth Product
RL = 16Ω
1.1
MHz
Slew Rate
RL = 16Ω
0.4
V/µS
SR
1.
Parameter
All electrical values are guaranted with correlation measurements at 2V and 5V
5/32
TS419-TS421
ELECTRICAL CHARACTERISTICS
VCC = +2.5V, GND = 0V, Tamb = 25°C (unless otherwise specified)1)
Symbol
ICC
ISTANDBY
Parameter
Supply Current
No input signal, no load
Standby Current
No input signal,
No input signal,
VSTANDBY=GND for TS421
VSTANDBY=Vcc for TS419
Voo
Output Offset Voltage
No input signal, RL = 16 or 32Ω, Rfeed=20kΩ
PO
Output Power
THD+N
THD+N
THD+N
THD+N
THD+N
THD+N
THD + N
PSRR
SNR
Min.
=
=
=
=
=
=
0.1% Max, F = 1kHz, RL = 32Ω
1% Max, F = 1kHz, RL = 32Ω
10% Max, F = 1kHz, RL = 32Ω
0.1% Max, F = 1kHz, RL = 16Ω
1% Max, F = 1kHz, RL = 16Ω
10% Max, F = 1kHz, RL = 16Ω
32
44
Total Harmonic Distortion + Noise (Av=2)
RL = 32Ω, Pout = 30mW, 20Hz ≤ F ≤ 20kHz
RL = 16Ω, Pout = 40mW, 20Hz ≤ F ≤ 20kHz
Typ.
Max.
Unit
1.7
2.5
mA
10
1000
nA
5
25
mV
37
41
52
50
55
70
mW
0.15
0.2
%
Power Supply Rejection Ratio (Av=2)
inputs grounded, F = 1kHz, Vripple = 200mVpp, Cb=1µF
50
56
dB
Signal-to-Noise Ratio (Weighted A, Av=2)
(RL = 32Ω, THD +N < 0.5%, 20Hz ≤ F ≤ 20kHz)
80
91
dB
ΦM
Phase Margin at Unity Gain
RL = 16Ω, CL = 400pF
58
Degrees
GM
Gain Margin
RL = 16Ω, CL = 400pF
18
dB
GBP
Gain Bandwidth Product
RL = 16Ω
1.1
MHz
Slew Rate
RL = 16Ω
0.4
V/µS
SR
1.
6/32
All electrical values are guaranted with correlation measurements at 2V and 5V
TS419-TS421
ELECTRICAL CHARACTERISTICS
VCC = +2V, GND = 0V, Tamb = 25°C (unless otherwise specified)
Symbol
Typ.
Max.
Unit
1.7
2.5
mA
Standby Current
No input signal, VSTANDBY=GND for TS421
No input signal, VSTANDBY=Vcc for TS419
10
1000
nA
Voo
Output Offset Voltage
No input signal, RL = 16 or 32Ω, Rfeed=20kΩ
5
25
mV
PO
Output Power
THD+N
THD+N
THD+N
THD+N
THD+N
THD+N
ICC
ISTANDBY
THD + N
PSRR
SNR
Parameter
Min.
Supply Current
No input signal, no load
=
=
=
=
=
=
0.1% Max, F = 1kHz, RL = 32Ω
1% Max, F = 1kHz, RL = 32Ω
10% Max, F = 1kHz, RL = 32Ω
0.1% Max, F = 1kHz, RL = 16Ω
1% Max, F = 1kHz, RL = 16Ω
10% Max, F = 1kHz, RL = 16Ω
19
24
Total Harmonic Distortion + Noise (Av=2)
RL = 32Ω, Pout = 13mW, 20Hz ≤ F ≤ 20kHz
RL = 16Ω, Pout = 20mW, 20Hz ≤ F ≤ 20kHz
20
23
30
26
30
40
mW
0.1
0.15
%
Power Supply Rejection Ratio (Av=2) 1)
inputs grounded, F = 1kHz, Vripple = 200mVpp, Cb=1µF
49
54
dB
Signal-to-Noise Ratio (Weighted A, Av=2) 1)
(RL = 32Ω, THD +N < 0.5%, 20Hz ≤ F ≤ 20kHz)
80
89
dB
ΦM
Phase Margin at Unity Gain
RL = 16Ω, CL = 400pF
58
Degrees
GM
Gain Margin
RL = 16Ω, CL = 400pF
20
dB
GBP
Gain Bandwidth Product
RL = 16Ω
1.1
MHz
Slew Rate
RL = 16Ω
0.4
V/µS
SR
1. Guaranteed by design and evaluation.
7/32
TS419-TS421
Index of Graphs
Description
Figure
Page
1 to 12
9 to 10
13
11
Current Consumption vs Standby Voltage
14 to 19
11 to 12
Output Power vs Power Supply Voltage
20 to 23
12
Output Power vs Load Resistor
24 to 27
12 to 13
Power Dissipation vs Output Power
28 to 31
13 to 14
Power Derating vs Ambiant Temperature
32
14
Output Voltage Swing vs Supply Voltage
33
14
Low Frequency Cut Off vs Input Capacitor
34
14
THD + N vs Output Power
35 to 43
15 to 16
THD + N vs Frequency
44 to 46
16
Signal to Noise Ratio vs Power Supply Voltage
47 to 48
17
Noise Floor
49 to 50
17
PSRR vs Frequency
51 to 55
17 to 18
THD + N vs Output Power
56 to 64
19 to 20
THD + N vs Frequency
65 to 67
20
Signal to Noise Ratio vs Power Supply Voltage
68 to 69
21
Noise Floor
70 to 71
21
PSRR vs Frequency
72 to 76
21 to 22
THD + N vs Output Power
77 to 85
23 to 24
THD + N vs Frequency
86 to 88
24
Signal to Noise Ratio vs Power Supply Voltage
89 to 90
25
Noise Floor
91 to 92
25
PSRR vs Frequency
93 to 97
25 to 26
Common Curves
Open Loop Gain and Phase vs Frequency
Current Consumption vs Power Supply Voltage
Curves With 6dB Gain Setting (Av=2)
Curves With 12dB Gain Setting (Av=4)
Curves With 18dB Gain Setting (Av=8)
Note : All measurements made with Rin=20kΩ, Cb=1µF, and Cin=10µF unless otherwise specified.
8/32
TS419-TS421
Fig. 1: Open Loop Gain and Phase vs
Frequency
Fig. 2: Open Loop Gain and Phase vs
Frequency
180
Gain
60
100
Phase
80
20
60
0
40
100
Phase
80
20
60
0
40
20
-20
40
20
-20
0
-40
0.1
1
10
100
Frequency (kHz)
1000
0
-20
10000
-40
0.1
Fig. 3: Open Loop Gain and Phase vs
Frequency
1
10
100
Frequency (kHz)
1000
-20
10000
Fig. 4: Open Loop Gain and Phase vs
Frequency
180
Vcc = 5V
ZL = 8Ω+400pF
Tamb = 25°C
80
Gain
60
180
Vcc = 2V
ZL = 8Ω+400pF
Tamb = 25°C
80
160
140
Gain
60
100
Phase
80
20
60
0
40
20
80
20
60
40
20
-20
0
1
10
100
Frequency (kHz)
1000
0
-20
10000
-40
0.1
Fig. 5: Open Loop Gain and Phase vs
Frequency
1
10
100
Frequency (kHz)
1000
-20
10000
Fig. 6: Open Loop Gain and Phase vs
Frequency
180
Vcc = 5V
RL = 16Ω
Tamb = 25°C
80
Gain
60
180
Vcc = 2V
RL = 16Ω
Tamb = 25°C
80
160
140
Gain
60
Phase
80
20
60
0
40
20
-20
40
1
10
100
Frequency (kHz)
1000
-20
10000
140
100
Phase
80
20
60
0
40
20
-20
0
-40
0.1
160
120
Gain (dB)
100
Phase (Deg)
Gain (dB)
120
40
140
100
Phase
0
40
-20
160
120
Gain (dB)
40
Phase (Deg)
Gain (dB)
120
-40
0.1
140
120
Gain (dB)
40
Phase (Deg)
Gain (dB)
120
160
Phase (Deg)
60
140
Phase (Deg)
Gain
180
Vcc = 2V
RL = 8Ω
Tamb = 25°C
80
160
Phase (Deg)
Vcc = 5V
RL = 8Ω
Tamb = 25°C
80
0
-40
0.1
1
10
100
Frequency (kHz)
1000
-20
10000
9/32
TS419-TS421
Fig. 7: Open Loop Gain and Phase vs
Frequency
Fig. 8: Open Loop Gain and Phase vs
Frequency
180
Gain
60
100
Phase
80
20
60
0
40
100
Phase
80
20
60
0
40
20
-20
40
20
-20
0
-40
0.1
1
10
100
Frequency (kHz)
1000
0
-20
10000
-40
0.1
Fig. 9: Open Loop Gain and Phase vs
Frequency
1
10
100
Frequency (kHz)
1000
-20
10000
Fig. 10: Open Loop Gain and Phase vs
Frequency
180
Vcc = 5V
RL = 32Ω
Tamb = 25°C
80
Gain
60
180
Vcc = 2V
RL = 32Ω
Tamb = 25°C
80
160
Gain
140
60
100
80
Phase
60
0
40
20
80
60
20
40
20
-20
0
-40
0.1
1
10
100
Frequency (kHz)
1000
0
-20
10000
-40
0.1
Fig. 11: Open Loop Gain and Phase vs
Frequency
1
10
100
Frequency (kHz)
1000
-20
10000
Fig. 12: Open Loop Gain and Phase vs
Frequency
180
Vcc = 5V
ZL = 32Ω+400pF
Tamb = 25°C
80
Gain
60
180
Vcc = 2V
ZL = 32Ω+400pF
Tamb = 25°C
80
160
Gain
140
60
80
Phase
60
0
40
20
-20
40
10/32
1
10
100
Frequency (kHz)
1000
-20
10000
140
20
100
80
Phase
60
0
40
20
-20
0
-40
0.1
160
120
Gain (dB)
20
100
Phase (Deg)
Gain (dB)
120
40
140
100
Phase
0
40
-20
160
120
Gain (dB)
40
Phase (Deg)
Gain (dB)
120
20
140
120
Gain (dB)
40
Phase (Deg)
Gain (dB)
120
160
Phase (Deg)
60
140
0
-40
0.1
1
10
100
Frequency (kHz)
1000
-20
10000
Phase (Deg)
Gain
180
Vcc = 2V
ZL = 16Ω+400pF
Tamb = 25°C
80
160
Phase (Deg)
Vcc = 5V
ZL = 16Ω+400pF
Tamb = 25°C
80
TS419-TS421
Fig. 13: Current Consumption vs Power Supply
Voltage
Fig. 14: Current Consumption vs Standby
Voltage
2.0
2.0
Ta=85°C
Current Consumption (mA)
Current Consumption (mA)
No load
1.5
Ta=25°C
Ta=-40°C
1.0
0.5
0.0
0
1
2
3
4
1.5
Ta=85°C
Ta=25°C
1.0
Ta=-40°C
0.5
TS419
Vcc = 5V
No load
0.0
5
0
1
Power Supply Voltage (V)
2
3
4
5
Standby Voltage (V)
Fig. 15: Current Consumption vs Standby
Voltage
Fig. 16: Current Consumption vs Standby
Voltage
2.0
2.0
Current Consumption (mA)
Current Consumption (mA)
Ta=85°C
1.5
Ta=85°C
Ta=25°C
1.0
Ta=-40°C
0.5
TS419
Vcc = 3.3V
No load
0.0
0
1
2
1.5
Ta=25°C
1.0
TS419
Vcc = 2V
No load
0.0
3
Ta=-40°C
0.5
0
1
Standby Voltage (V)
Fig. 17: Current Consumption vs Standby
Voltage
Fig. 18: Current Consumption vs Standby
Voltage
2.0
2.5
Ta=25°C
Ta=25°C
Current Consumption (mA)
Current Consumption (mA)
Ta=85°C
2.0
1.5
Ta=-40°C
1.0
0.5
0.0
2
Standby Voltage (V)
TS421
Vcc = 5V
No load
0
1
2
3
Standby Voltage (V)
4
5
1.5
Ta=85°C
Ta=-40°C
1.0
0.5
TS421
Vcc = 3.3V
No load
0.0
0
1
2
3
Standby Voltage (V)
11/32
TS419-TS421
Fig. 19: Current Consumption vs Standby
Voltage
Fig. 20: Output Power vs Power Supply
Voltage
2.0
550
RL = 8Ω
F = 1kHz
BW < 125kHz
Tamb = 25°C
500
450
1.5
Output power (mW)
Current Consumption (mA)
Ta=85°C
Ta=25°C
1.0
Ta=-40°C
0.5
TS421
Vcc = 2V
No load
0.0
0
1
400
THD+N=1%
350
THD+N=10%
300
250
200
150
THD+N=0.1%
100
50
0
2.0
2
2.5
3.0
3.5
4.0
Vcc (V)
Standby Voltage (V)
Fig. 21: Output Power vs Power Supply
Voltage
350
RL = 32Ω
F = 1kHz
BW < 125kHz
Tamb = 25°C
300
THD+N=1%
300
250
Output power (mW)
Output power (mW)
400
RL = 16Ω
F = 1kHz
BW < 125kHz
Tamb = 25°C
THD+N=10%
250
200
150
100
5.0
5.5
Fig. 22: Output Power vs Power Supply
Voltage
500
450
4.5
THD+N=1%
200
THD+N=10%
150
100
THD+N=0.1%
THD+N=0.1%
50
50
0
2.0
2.5
3.0
3.5
4.0
Vcc (V)
4.5
5.0
0
2.0
5.5
Fig. 23: Output Power vs Power Supply
Voltage
3.5
4.0
Vcc (V)
4.5
5.0
5.5
500
RL = 64Ω
F = 1kHz
BW < 125kHz
Tamb = 25°C
450
THD+N=1%
THD+N=10%
400
Output power (mW)
Output power (mW)
3.0
Fig. 24: Output Power vs Load Resistor
200
150
2.5
THD+N=10%
100
50
350
THD+N=1%
300
250
200
150
THD+N=0.1%
100
THD+N=0.1%
Vcc = 5V
F = 1kHz
BW < 125kHz
Tamb = 25°C
50
0
2.0
12/32
0
2.5
3.0
3.5
4.0
Vcc (V)
4.5
5.0
5.5
8
16
24
32
40
48
Load Resistance ( )
56
64
TS419-TS421
Fig. 25: Output Power vs Load Resistor
Fig. 26: Output Power vs Load Resistor
100
200
Output power (mW)
150
THD+N=1%
100
50
Vcc = 2.5V
F = 1kHz
BW < 125kHz
Tamb = 25°C
90
THD+N=1%
80
Output power (mW)
Vcc = 3.3V
F = 1kHz
BW < 125kHz
Tamb = 25°C
THD+N=10%
THD+N=0.1%
70
THD+N=10%
60
50
40
30
20
THD+N=0.1%
10
0
0
8
16
24
32
40
48
Load Resistance ( )
56
64
Fig. 27: Output Power vs Load Resistor
16
24
32
40
48
Load Resistance ( )
THD+N=10%
THD+N=1%
35
30
25
20
15
THD+N=0.1%
10
Power Dissipation (mW)
Vcc = 2V
F = 1kHz
BW < 125kHz
Tamb = 25°C
40
Vcc=5V
F=1kHz
THD+N<1%
500
RL=8Ω
400
300
RL=16Ω
200
100
RL=32Ω
5
0
8
16
24
32
40
48
Load Resistance ( )
56
64
0
300
140
Vcc=3.3V
F=1kHz
250 THD+N<1%
120
RL=8Ω
200
150
100
RL=16Ω
50
60
90
120
Output Power (mW)
150
200
250
Output Power (mW)
300
350
Vcc=2.5V
F=1kHz
THD+N<1%
RL=8Ω
100
80
RL=16Ω
60
40
RL=32Ω
0
30
100
20
RL=32Ω
0
50
Fig. 30: Power Dissipation vs Output Power
Power Dissipation (mW)
Power Dissipation (mW)
Fig. 29: Power Dissipation vs Output Power
0
64
600
45
0
56
Fig. 28: Power Dissipation vs Output Power
50
Output power (mW)
8
150
0
10
20
30
40
50
60
Output Power (mW)
13/32
TS419-TS421
Fig. 31: Power Dissipation vs Output Power
Fig. 32: Power Derating Curves
Power Dissipation (mW)
100
Vcc=2V
F=1kHz
80 THD+N<1%
RL=8Ω
60
40
RL=16Ω
20
RL=32Ω
0
0
5
10
15
20
25
Output Power (mW)
30
35
Fig. 33: Output Voltage Swing For One Amp. vs
Power Supply Voltage
VOH & VOL for Vs1 and Vs2 (V)
5.0
4.5
Tamb=25°C
Amps. in BTL
Ω
4.0
3.5
Ω
3.0
2.5
RL=8Ω
2.0
RL=16Ω
1.5
RL=32Ω
Ω
1.0
0.5
0.0
2.0
14/32
Fig. 34: Low Frequency Cut Off vs Input
Capacitor for fixed gain versions
2.5
3.0
3.5
4.0
Power Supply Voltage (V)
4.5
5.0
TS419-TS421
Fig. 35: THD + N vs Output Power
Fig. 36: THD + N vs Output Power
10
10
RL = 16Ω
F = 20Hz
Av = 2
1
Cb = 1µF
BW < 22kHz
Tamb = 25°C
THD + N (%)
THD + N (%)
RL = 8Ω
F = 20Hz
1 Av = 2
Cb = 1µF
BW < 22kHz
Tamb = 25°C
0.1
Vcc=2V
Vcc=2.5V
0.1
0.01
Vcc=2V
Vcc=2.5V
0.01
Vcc=3.3V
Vcc=3.3V
Vcc=5V
1E-3
1
1E-3
10
100
Output Power (mW)
Fig. 37: THD + N vs Output Power
10
100
Output Power (mW)
Fig. 38: THD + N vs Output Power
10
10
THD + N (%)
RL = 32Ω
F = 20Hz
Av = 2
1
Cb = 1µF
Vcc=2V
BW < 22kHz
Tamb = 25°C Vcc=2.5V
0.1
THD + N (%)
1
Vcc=5V
RL = 8Ω
F = 1kHz
Av = 2
1 Cb = 1µF
BW < 125kHz
Tamb = 25°C
0.1
Vcc=2V
Vcc=2.5V
0.01
Vcc=3.3V
1E-3
1
0.01
Vcc=5V
10
Output Power (mW)
100
Fig. 39: THD + N vs Output Power
Vcc=5V
10
100
Output Power (mW)
Fig. 40: THD + N vs Output Power
10
RL = 16Ω
F = 1kHz
Av = 2
1 Cb = 1µF
BW < 125kHz
Tamb = 25°C
0.1
THD + N (%)
10
THD + N (%)
Vcc=3.3V
1
Vcc=2V
Vcc=2.5V
RL = 32Ω
F = 1kHz
Av = 2
1
Cb = 1µF
BW < 125kHz
Tamb = 25°C
0.1
Vcc=2V
Vcc=2.5V
0.01
0.01
Vcc=3.3V
1
10
Output Power (mW)
Vcc=5V
100
Vcc=3.3V
1E-3
1
Vcc=5V
10
Output Power (mW)
100
15/32
TS419-TS421
Fig. 41: THD + N vs Output Power
Fig. 42: THD + N vs Output Power
10
RL = 8Ω
F = 20kHz
Av = 2
Cb = 1µF
BW < 125kHz
Tamb = 25°C
THD + N (%)
THD + N (%)
10
Vcc=2V
1
Vcc=2.5V
RL = 16Ω
F = 20kHz
Av = 2
Cb = 1µF
BW < 125kHz
1 Tamb = 25°C
Vcc=2V
Vcc=2.5V
0.1
Vcc=3.3V
0.1
1
Vcc=3.3V
Vcc=5V
10
100
Output Power (mW)
1
Fig. 43: THD + N vs Output Power
Vcc=2V
RL=8Ω
Av=2
Cb = 1µF
Bw < 125kHz
0.1 Tamb = 25°C
THD + N (%)
THD + N (%)
10
100
Output Power (mW)
Fig. 44: THD + N vs Frequency
10
RL = 32Ω
F = 20kHz
Av = 2
Cb = 1µF
BW < 125kHz
1 Tamb = 25°C
Vcc=5V
Vcc=2.5V
Vcc=2V, Po=28mW
0.01
0.1
Vcc=3.3V
1
10
Output Power (mW)
20
100
Fig. 45: THD + N vs Frequency
100
1000
Frequency (Hz)
10000 20k
Fig. 46: THD + N vs Frequency
Vcc=2V, Po=20mW
THD + N (%)
THD + N (%)
RL=16Ω
Av=2
Cb = 1µF
Bw < 125kHz
0.1 Tamb = 25°C
Vcc=5V, Po=300mW
Vcc=5V
Vcc=5V, Po=220mW
RL=32Ω
Av=2
Cb = 1µF
Bw < 125kHz
0.1 Tamb=25°C
Vcc=2V, Po=13mW
Vcc=5V, Po=150mW
0.01
0.01
20
16/32
100
1000
Frequency (Hz)
10000 20k
20
100
1000
Frequency (Hz)
10000 20k
TS419-TS421
Fig. 47: Signal to Noise Ratio vs Power Supply
Voltage with Unweighted Filter (20Hz to 20kHz)
Fig. 48: Signal to Noise Ratio vs Power Supply
Voltage with Weighted Filter Type A
95
105
Av = 2
Cb = 1µF
THD+N < 0.5%
Tamb = 25°C
Signal to Noise Ratio (dB)
Signal to Noise Ratio (dB)
100
RL=32Ω
90
85
RL=8Ω
80
RL=16Ω
75
70
2.0
2.5
3.0
3.5
4.0
4.5
Av = 2
Cb = 1µF
100 THD+N < 0.5%
Tamb = 25°C
95
90
RL=8Ω
RL=16Ω
85
80
2.0
5.0
2.5
Power Supply Voltage (V)
Standby=OFF
20
10
Standby=ON
100
20
RL>=16Ω
Vcc=5V
Av=2
Cb = 1µF
Input Grounded
Bw < 125kHz
Tamb=25°C
1000
Frequency (Hz)
Noise Floor ( VRms)
Noise Floor ( VRms)
4.0
4.5
5.0
30
RL>=16Ω
Vcc=2V
Av=2
Cb = 1µF
Input Grounded
Bw < 125kHz
Tamb=25°C
Standby=OFF
20
10
Standby=ON
0
10000 20k
Fig. 51: PSRR vs Input Capacitor
100
20
1000
Frequency (Hz)
10000 20k
Fig. 52: PSRR vs Power Supply Voltage
0
0
-20
Cin = 1µF, 220nF
-30
Vripple = 200mVpp
Av = 2, Vcc = 5V
Input = grounded
Cb = 1µF, Rin = 20kΩ
RL >= 16Ω
Tamb = 25°C
-10
-20
PSRR (dB)
-10
PSRR (dB)
3.5
Fig. 50: Noise Floor
30
-40
-50
-30
Vripple = 100mVrms
Rfeed = 20kΩ
Input = floating
Cb = 1µF
RL >= 16Ω
Tamb = 25°C
-40
Vcc = 2V
-50
-60
-60
-70
Vcc = 5V, 3.3V & 2.5V
Cin = 100nF
-70
3.0
Power Supply Voltage (V)
Fig. 49: Noise Floor
0
RL=32Ω
-80
100
1000
10000
Frequency (Hz)
100000
100
1000
10000
Frequency (Hz)
100000
17/32
TS419-TS421
Fig. 53: PSRR vs Bypass Capacitor
Fig. 54: PSRR vs Bypass Capacitor
0
0
Vripple = 200mVpp
Av = 2
Input = Grounded
Cb = Cin = 1µF
RL >= 16Ω
Tamb = 25°C
PSRR (dB)
-20
-30
-40
-10
-20
PSRR (dB)
-10
Vcc = 2V
-50
-30
-40
-60
Vcc = 5V, 3.3V & 2.5V
100
Vcc = 5V, 3.3V & 2.5V
1000
10000
Frequency (Hz)
100000
Fig. 55: PSRR vs Bypass Capacitor
0
-10
PSRR (dB)
-20
-30
Vripple = 200mVpp
Av = 2
Input = Grounded
Cb = 10µF
Cin = 1µF
RL >= 16Ω
Tamb = 25°C
-40
Vcc = 2V
-50
-60
Vcc = 5V, 3.3V & 2.5V
-70
18/32
Vcc = 2V
-50
-60
-70
Vripple = 200mVpp
Av = 2
Input = Grounded
Cb = 4.7µF
Cin = 1µF
RL >= 16Ω
Tamb = 25°C
100
1000
10000
Frequency (Hz)
100000
-70
100
1000
10000
Frequency (Hz)
100000
TS419-TS421
Fig. 56: THD + N vs Output Power
Fig. 57: THD + N vs Output Power
10
RL = 8Ω
F = 20Hz
Av = 4
1 Cb = 1µF
BW < 22kHz
Tamb = 25°C
RL = 16Ω
F = 20Hz
Av = 4
1
Cb = 1µF
BW < 22kHz
Tamb = 25°C
THD + N (%)
THD + N (%)
10
Vcc=2V
0.1
Vcc=2.5V
Vcc=2V
Vcc=2.5V
0.1
0.01
0.01
Vcc=3.3V
Vcc=3.3V
1
1E-3
10
100
Output Power (mW)
Fig. 58: THD + N vs Output Power
1
10
100
Output Power (mW)
Fig. 59: THD + N vs Output Power
10
10
THD + N (%)
RL = 32Ω
F = 20Hz
Av = 4
1
Cb = 1µF
Vcc=2V
BW < 22kHz
Tamb = 25°C Vcc=2.5V
0.1
THD + N (%)
Vcc=5V
Vcc=5V
RL = 8Ω
F = 1kHz
Av = 4
1 Cb = 1µF
BW < 125kHz
Tamb = 25°C
Vcc=2V
Vcc=2.5V
0.1
0.01
Vcc=3.3V
1E-3
1
0.01
Vcc=5V
10
Output Power (mW)
100
Fig. 60: THD + N vs Output Power
Vcc=5V
10
100
Output Power (mW)
Fig. 61: THD + N vs Output Power
10
RL = 16Ω
F = 1kHz
Av = 4
1 Cb = 1µF
BW < 125kHz
Tamb = 25°C
THD + N (%)
10
THD + N (%)
Vcc=3.3V
1
Vcc=2V
Vcc=2.5V
0.1
RL = 32Ω
F = 1kHz
Av = 4
1
Cb = 1µF
BW < 125kHz
Tamb = 25°C
0.1
Vcc=2V
Vcc=2.5V
0.01
0.01
Vcc=3.3V
1
Vcc=3.3V
Vcc=5V
10
100
Output Power (mW)
1E-3
1
Vcc=5V
10
Output Power (mW)
100
19/32
TS419-TS421
Fig. 62: THD + N vs Output Power
Fig. 63: THD + N vs Output Power
10
RL = 8Ω
F = 20kHz
Av = 4
Cb = 1µF
BW < 125kHz
Tamb = 25°C
1
THD + N (%)
THD + N (%)
10
Vcc=2V
Vcc=2.5V
Vcc=3.3V
1
RL = 16Ω
F = 20kHz
Av = 4
Cb = 1µF
BW < 125kHz
Tamb = 25°C
1
Vcc=3.3V
0.1
Fig. 64: THD + N vs Output Power
1
0.1
THD + N (%)
Vcc=2V
Vcc=2.5V
RL=8Ω
Av=4
Cb = 1µF
Bw < 125kHz
Tamb = 25°C
Vcc=2V, Po=28mW
0.1
Vcc=3.3V
1
10
Output Power (mW)
Vcc=5V
Vcc=5V, Po=300mW
0.01
20
100
Fig. 66: THD + N vs Frequency
100
1000
Frequency (Hz)
10000 20k
Fig. 67: THD + N vs Frequency
THD + N (%)
Vcc=2V, Po=20mW
THD + N (%)
RL=16Ω
Av=4
Cb = 1µF
Bw < 125kHz
0.1 Tamb = 25°C
Vcc=5V
10
100
Output Power (mW)
Fig. 65: THD + N vs Frequency
10
THD + N (%)
Vcc=2.5V
Vcc=5V
10
100
Output Power (mW)
RL = 32Ω
F = 20kHz
Av = 4
Cb = 1µF
BW < 125kHz
1 Tamb = 25°C
Vcc=2V
RL=32Ω
Av=4
Cb = 1µF
Bw < 125kHz
0.1 Tamb=25°C
Vcc=2V, Po=13mW
Vcc=5V, Po=150mW
0.01
0.01
Vcc=5V, Po=220mW
20
20/32
100
1000
Frequency (Hz)
10000 20k
20
100
1000
Frequency (Hz)
10000 20k
TS419-TS421
Fig. 68: Signal to Noise Ratio vs Power Supply
Voltage with Unweighted Filter (20Hz to 20kHz)
Fig. 69: Signal to Noise Ratio vs Power Supply
Voltage with Weighted Filter Type A
100
Av = 4
Cb = 1µF
THD+N < 0.5%
85 Tamb = 25°C
RL=32Ω
Signal to Noise Ratio (dB)
Signal to Noise Ratio (dB)
90
80
RL=8Ω
75
RL=16Ω
70
2.0
2.5
3.0
3.5
4.0
4.5
Av = 4
Cb = 1µF
95 THD+N < 0.5%
Tamb = 25°C
90
RL=8Ω
85
RL=16Ω
80
75
2.0
5.0
2.5
Power Supply Voltage (V)
10
Noise Floor ( VRms)
Noise Floor ( VRms)
RL>=16Ω
Vcc=5V
Av=4
Cb = 1µF
Input Grounded
Bw < 125kHz
Tamb=25°C
Standby=OFF
20
Standby=ON
100
20
1000
Frequency (Hz)
4.5
5.0
20
10
RL>=16Ω
Vcc=2V
Av=4
Cb = 1µF
Input Grounded
Bw < 125kHz
Tamb=25°C
Standby=ON
100
20
1000
Frequency (Hz)
10000 20k
Fig. 73: PSRR vs Input Capacitor
0
0
Vripple = 100mVrms
Rfeed = 40kΩ
Input = floating
Cb = 1µF
RL >= 16Ω
Tamb = 25°C
-10
PSRR (dB)
PSRR (dB)
Standby=OFF
30
0
10000 20k
Fig. 72: PSRR vs Power Supply Voltage
-30
4.0
40
30
-20
3.5
Fig. 71: Noise Floor
40
-10
3.0
Power Supply Voltage (V)
Fig. 70: Noise Floor
0
RL=32Ω
-40
Vcc = 2V
-50
Cin = 1µF, 220nF
-20
Vripple = 200mVpp
Av = 4, Vcc = 5V
Input = grounded
Cb = 1µF, Rin = 20kΩ
RL >= 16Ω
Tamb = 25°C
-30
-40
-60
-50
-70
Vcc = 5V, 3.3V & 2.5V
-80
100
1000
10000
Frequency (Hz)
Cin = 100nF
100000
-60
100
1000
10000
Frequency (Hz)
100000
21/32
TS419-TS421
Fig. 74: PSRR vs Bypass Capacitor
Fig. 75: PSRR vs Bypass Capacitor
0
0
Vripple = 200mVpp
Av = 4
Input = Grounded
Cb = Cin = 1µF
RL >= 16Ω
Tamb = 25°C
PSRR (dB)
-20
-30
-10
-20
PSRR (dB)
-10
Vcc = 2V
-40
-50
-60
-60
Vcc = 5V, 3.3V & 2.5V
1000
10000
Frequency (Hz)
100000
Fig. 76: PSRR vs Bypass Capacitor
0
PSRR (dB)
-20
-30
Vripple = 200mVpp
Av = 4
Input = Grounded
Cb = 10µF
Cin = 1µF
RL >= 16Ω
Tamb = 25°C
Vcc = 2V
-40
-50
-60
Vcc = 5V, 3.3V & 2.5V
100
22/32
Vcc = 2V
-40
-50
100
-10
-30
Vripple = 200mVpp
Av = 4
Input = Grounded
Cb = 4.7µF
Cin = 1µF
RL >= 16Ω
Tamb = 25°C
1000
10000
Frequency (Hz)
100000
Vcc = 5V, 3.3V & 2.5V
100
1000
10000
Frequency (Hz)
100000
TS419-TS421
Fig. 77: THD + N vs Output Power
Fig. 78: THD + N vs Output Power
10
RL = 8Ω
F = 20Hz
Av = 8
1 Cb = 1µF
BW < 22kHz
Tamb = 25°C
0.1
THD + N (%)
THD + N (%)
10
Vcc=2V
Vcc=2.5V
Vcc=3.3V
0.01
1
Vcc=3.3V
1
Vcc=5V
10
100
Output Power (mW)
Fig. 80: THD + N vs Output Power
10
RL = 32Ω
F = 20Hz
Av = 8
Cb = 1µF
1 BW < 22kHz
Tamb = 25°C
RL = 8Ω
F = 1kHz
Av = 8
Cb = 1µF
1 BW < 125kHz
Tamb = 25°C
THD + N (%)
THD + N (%)
0.1
10
100
Output Power (mW)
10
Vcc=2V
Vcc=2V
Vcc=2.5V
0.1
0.1
Vcc=2.5V
Vcc=3.3V
1
Vcc=3.3V
Vcc=5V
10
Output Power (mW)
Fig. 81: THD + N vs Output Power
0.01
100
1
Vcc=5V
10
100
Output Power (mW)
Fig. 82: THD + N vs Output Power
10
RL = 16Ω
F = 1kHz
Av = 8
Cb = 1µF
1 BW < 125kHz
Tamb = 25°C
THD + N (%)
10
THD + N (%)
Vcc=2V
Vcc=2.5V
0.01
Vcc=5V
Fig. 79: THD + N vs Output Power
0.01
RL = 16Ω
F = 20Hz
Av = 8
1 Cb = 1µF
BW < 22kHz
Tamb = 25°C
Vcc=2V
Vcc=2.5V
RL = 32Ω
F = 1kHz
Av = 8
1 Cb = 1µF
BW < 125kHz
Tamb = 25°C
Vcc=2V
Vcc=2.5V
0.1
0.1
Vcc=3.3V
0.01
1
0.01
Vcc=3.3V
Vcc=5V
10
100
Output Power (mW)
1
Vcc=5V
10
Output Power (mW)
100
23/32
TS419-TS421
Fig. 83: THD + N vs Output Power
Fig. 84: THD + N vs Output Power
10
10
THD + N (%)
THD + N (%)
RL = 8Ω, F = 20kHz
Av = 8, Cb = 1µF
BW < 125kHz, Tamb = 25°C
Vcc=2V
Vcc=2.5V
1
Vcc=3.3V
1
RL = 16Ω
F = 20kHz
Av = 8
Cb = 1µF
BW < 125kHz
Tamb = 25°C
Vcc=2V
Vcc=2.5V
1
Vcc=5V
Vcc=3.3V
10
100
Output Power (mW)
1
Fig. 85: THD + N vs Output Power
Vcc=5V
10
100
Output Power (mW)
Fig. 86: THD + N vs Frequency
RL = 32Ω
F = 20kHz
Av = 8
Cb = 1µF
BW < 125kHz
Tamb = 25°C
Vcc=2V
THD + N (%)
THD + N (%)
10
1
Vcc=2.5V
Vcc=3.3V
0.1
1
10
Output Power (mW)
0.1
Vcc=5V, Po=300mW
20
100
100
1000
Frequency (Hz)
10000 20k
Fig. 88: THD + N vs Frequency
Vcc=2V, Po=20mW
THD + N (%)
THD + N (%)
Vcc=2V, Po=28mW
Vcc=5V
Fig. 87: THD + N vs Frequency
RL=16Ω
Av=8
Cb = 1µF
Bw < 125kHz
0.1 Tamb = 25°C
RL=8Ω
Av=8
Cb = 1µF
Bw < 125kHz
Tamb = 25°C
RL=32Ω
Av=8
Cb = 1µF
Bw < 125kHz
0.1 Tamb=25°C
Vcc=2V, Po=13mW
Vcc=5V, Po=150mW
0.01
0.01
Vcc=5V, Po=220mW
20
24/32
100
1000
Frequency (Hz)
10000 20k
20
100
1000
Frequency (Hz)
10000 20k
TS419-TS421
Fig. 89: Signal to Noise Ratio vs Power Supply
Voltage with Unweighted Filter (20Hz to 20kHz)
Fig. 90: Signal to Noise Ratio vs Power Supply
Voltage with Weighted Filter Type A
95
Av = 8
Cb = 1µF
85
THD+N < 0.5%
Tamb = 25°C
80
RL=32Ω
Signal to Noise Ratio (dB)
Signal to Noise Ratio (dB)
90
75
RL=8Ω
70
RL=16Ω
65
60
2.0
2.5
3.0
3.5
4.0
4.5
Av = 8
Cb = 1µF
90 THD+N < 0.5%
Tamb = 25°C
85
80
RL=8Ω
RL=16Ω
75
70
2.0
5.0
2.5
3.0
Power Supply Voltage (V)
40
30
20
Noise Floor ( VRms)
Noise Floor ( VRms)
RL>=16Ω
Vcc=5V
Av=8
Cb = 1µF
Input Grounded
Bw < 125kHz
Tamb=25°C
10
100
20
Standby=OFF
50
RL>=16Ω
Vcc=2V
Av=8
Cb = 1µF
Input Grounded
Bw < 125kHz
Tamb=25°C
40
30
20
10
Standby=ON
1000
Frequency (Hz)
0
10000 20k
Fig. 93: PSRR vs Power Supply Voltage
Standby=ON
100
20
1000
Frequency (Hz)
10000 20k
Fig. 94: PSRR vs Input Capacitor
0
0
Vripple = 100mVrms
Rfeed = 80kΩ
Input = floating
Cb = 1µF
RL >= 16Ω
Tamb = 25°C
-40
-10
Cin = 1µF, 220nF
PSRR (dB)
PSRR (dB)
5.0
60
Standby=OFF
50
-30
4.5
70
60
-20
4.0
Fig. 92: Noise Floor
70
-10
3.5
Power Supply Voltage (V)
Fig. 91: Noise Floor
0
RL=32Ω
Vcc = 2V
-20
Vripple = 200mVpp
Av = 8, Vcc = 5V
Input = grounded
Cb = 1µF, Rin = 20kΩ
RL >= 16Ω
Tamb = 25°C
-30
-50
-40
-60
-70
-50
Vcc = 5V, 3.3V & 2.5V
100
1000
10000
Frequency (Hz)
100000
Cin = 100nF
100
1000
10000
Frequency (Hz)
100000
25/32
TS419-TS421
Fig. 95: PSRR vs Bypass Capacitor
Fig. 96: PSRR vs Bypass Capacitor
0
0
Vripple = 200mVpp
Av = 8
Input = Grounded
Cb = Cin = 1µF
RL >= 16Ω
Tamb = 25°C
-20
-10
PSRR (dB)
PSRR (dB)
-10
-30
Vcc = 2V
-20
-30
Vripple = 200mVpp
Av = 8
Input = Grounded
Cb = 4.7µF
Cin = 1µF
RL >= 16Ω
Tamb = 25°C
Vcc = 2V
-40
-40
-50
-50
Vcc = 5V, 3.3V & 2.5V
100
Vcc = 5V, 3.3V & 2.5V
1000
10000
Frequency (Hz)
100000
Fig. 97: PSRR vs Bypass Capacitor
0
PSRR (dB)
-10
-20
-30
Vripple = 200mVpp
Av = 8
Input = Grounded
Cb = 10µF
Cin = 1µF
RL >= 16Ω
Tamb = 25°C
Vcc = 2V
-40
-50
Vcc = 5V, 3.3V & 2.5V
-60
26/32
100
1000
10000
Frequency (Hz)
100000
-60
100
1000
10000
Frequency (Hz)
100000
TS419-TS421
APPLICATION INFORMATION
■ BTL Configuration Principle
The TS419 & TS420 are monolithic power
amplifiers with a BTL output type. BTL (Bridge
Tied Load) means that each end of the load is
connected to two single-ended output amplifiers.
Thus, we have:
Single ended output 1 = Vout1 = Vout (V)
Single ended output 2 = Vout2 = -Vout (V)
And Vout1 - Vout2 = 2Vout (V)
In the high frequency region, you can limit the
bandwidth by adding a capacitor (Cfeed) in
parallel with Rfeed. It forms a low-pass filter with a
-3dB cut off frequency .
1
FCH =
(Hz)
2π Rfeed Cfeed
■ Power dissipation and efficiency
Hypothesis:
• Load voltage and current are sinusoidal (Vout
and Iout)
• Supply voltage is a pure DC source (Vcc)
The output power is :
Pout =
(2 VoutRMS )2
(W)
RL
Regarding the load we have:
VOUT = VPEAK sin ωt (V)
For the same power supply voltage, the output
power in BTL configuration is four times higher
than the output power in single ended
configuration.
and
■ Gain In Typical Application Schematic
and
(cf. page 3 of TS419-TS421 datasheet)
In the flat region (no CIN effect), the output voltage
of the first stage is:
Rfeed
Vout1 = − Vin
(V)
Rin
For the second stage : Vout2 = -Vout1 (V)
The differential output voltage is
Rfeed
Vout2 − Vout1 = 2 Vin
(V)
Rin
The differential gain named gain (Gv) for more
convenient usage is :
Vout2 − Vout1
Rfeed
Gv =
=2
Vin
Rin
Remark : Vout2 is in phase with Vin and Vout1 is
phased 180° with Vin. This means that the positive
terminal of the loudspeaker should be connected
to Vout2 and the negative to Vout1.
■ Low and high frequency response
In the low frequency region, CIN starts to have an
effect. CIN forms with R IN a high-pass filter with a
-3dB cut off frequency .
FCL
1
=
2πRinCin
(Hz)
VOUT
( A)
RL
IOUT =
POUT =
2
VPEAK
(W)
2 RL
Then, the average current delivered by the supply
voltage is:
Icc AVG = 2
VPEAK
( A)
π RL
The power delivered by the supply voltage is:
Psupply = Vcc IccAVG (W)
Then, the power dissipated by the amplifier is:
Pdiss = Psupply - Pout (W)
Pdiss =
2 2 Vcc
π RL
POUT − POUT (W )
and the maximum value is obtained when:
∂Pdiss
=0
∂POUT
and its value is:
Pdiss max =
2 Vcc 2
π2RL
(W)
Remark : This maximum value is only dependent
upon power supply voltage and load values.
27/32
TS419-TS421
The efficiency is the ratio between the output
power and the power supply
η=
π VPEAK
POUT
=
P sup ply
4 Vcc
The maximum theoretical value is reached when
Vpeak = Vcc, so
π
= 78.5%
4
■ Decoupling of the circuit
Two capacitors are needed to bypass properly the
TS419/TS421. A power supply bypass capacitor
CS and a bias voltage bypass capacitor C B.
CS has particular influence on the THD+N in the
high frequency region (above 7kHz) and an
indirect influence on power supply disturbances.
With 1µF, you can expect similar THD+N
performances to those shown in the datasheet.
In the high frequency region, if CS is lower than
1µF, it increases THD+N and disturbances on the
power supply rail are less filtered.
On the other hand, if CS is higher than 1µF, those
disturbances on the power supply rail are more
filtered.
CB has an influence on THD+N at lower
frequencies, but its function is critical to the final
result of PSRR (with input grounded and in the
lower frequency region).
If CB is lower than 1µF, THD+N increases at lower
frequencies and PSRR worsens.
If CB is higher than 1µF, the benefit on THD+N at
lower frequencies is small, but the benefit to PSRR
is substantial.
Note that CIN has a non-negligible effect on PSRR
at lower frequencies. The lower the value of CIN,
the higher the PSRR.
■ Wake-up Time: TWU
When standby is released to put the device ON,
the bypass capacitor CB will not be charged
immediatly. As CB is directly linked to the bias of
the amplifier, the bias will not work properly until
the CB voltage is correct. The time to reach this
voltage is called wake-up time or TWU and typically
equal to:
TWU=0.15xCB (s) with C B in µF.
28/32
Due to process tolerances, the range of the
wake-up time is :
0.12xCb < TWU < 0.18xCB (s) with C B in µF
Note : When the standby command is set, the time
to put the device in shutdown mode is a few
microseconds.
■ Pop performance
Pop performance is intimately linked with the size
of the input capacitor Cin and the bias voltage
bypass capacitor CB.
The size of CIN is dependent on the lower cut-off
frequency and PSRR values requested. The size
of CB is dependent on THD+N and PSRR values
requested at lower frequencies.
Moreover, CB determines the speed with which the
amplifier turns ON. The slower the speed is, the
softer the turn ON noise is.
The charge time of CB is directly proportional to
the internal generator resistance 150kΩ..
Then, the charge time constant for CB is
τB = 150kΩxCB (s)
As CB is directly connected to the non-inverting
input (pin 2 & 3) and if we want to minimize, in
amplitude and duration, the output spike on Vout1
(pin 5), CIN must be charged faster than CB. The
equivalent charge time constant of CIN is:
τIN = (Rin+Rfeed)xCIN (s)
Thus we have the relation:
τIN < τB (s)
Proper respect of this relation allows to minimize
the pop noise.
Remark : Minimizing CIN and CB benefits both the
pop phenomena, and the cost and size of the
application.
■ Application : Differential inputs BTL power
amplifier.
The schematic on figure 98, shows how to design
the TS419/21 to work in a differential input mode.
The gain of the amplifier is:
G VDIFF = 2
R2
R1
In order to reach optimal
performances of the differential function, R1 and
R2 should be matched at 1% max.
TS419-TS421
Fig. 98 : Differential Input Amplifier
Configuration
Note : This formula is true only if:
1
FCB =
(Hz )
942000 × C B
is ten times lower than FL.
The following bill of material is an example of a
differential amplifier with a gain of 2 and a -3dB
lower cuttoff frequency of about 80Hz.
Components :
Designator
Input capacitance C can be calculated by the
following formula using the -3dB lower frequency
required. (FL is the lower frequency required)
Part Type
R1
20k / 1%
R2
20k / 1%
C
100nF
CB=CS
1µF
U1
TS419/21
1
C≈
(F )
2 π R1 FL
29/32
TS419-TS421
PACKAGE MECHANICAL DATA
SO-8 MECHANICAL DATA
DIM.
mm.
MIN.
TYP
inch
MAX.
MIN.
TYP.
MAX.
A
1.35
1.75
0.053
0.069
A1
0.10
0.25
0.04
0.010
A2
1.10
1.65
0.043
0.065
B
0.33
0.51
0.013
0.020
C
0.19
0.25
0.007
0.010
D
4.80
5.00
0.189
0.197
E
3.80
4.00
0.150
0.157
e
1.27
0.050
H
5.80
6.20
0.228
0.244
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
k
ddd
8˚ (max.)
0.1
0.04
0016023/C
30/32
TS419-TS421
PACKAGE MECHANICAL DATA
31/32
TS419-TS421
PACKAGE MECHANICAL DATA
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
http://www.st.com
32/32