TS486 TS487 100mW STEREO HEADPHONE AMPLIFIER WITH STANDBY MODE ■ OPERATING FROM Vcc=2V to 5.5V ■ STANDBY MODE ACTIVE LOW (TS486) or HIGH (TS487) ■ OUTPUT POWER: 102mW @5V, 38mW @3.3V into 16Ω with 0.1% THD+N max (1kHz) ■ LOW CURRENT CONSUMPTION: 2.5mA max ■ High Signal-to-Noise ratio: 103dB(A) at 5V ■ High Crosstalk immunity: 83dB (F=1kHz) ■ PSRR: 58 dB (F=1kHz), inputs grounded ■ ON/OFF click reduction circuitry ■ Unity-Gain Stable ■ SHORT CIRCUIT LIMITATION ■ Available in SO8, MiniSO8 & DFN 3x3mm PIN CONNECTIONS (top view) TS486IDT: SO8, TS486IST, TS486-1IST, TS486-2IST, TS486-4IST: MiniSO8 OUT (1) 1 8 VCC VIN (1) 2 7 OUT (2) BYPASS 3 6 GND 4 5 VIN (2) SHUTDOWN DESCRIPTION The TS486/7 is a dual audio power amplifier capable of driving, in single-ended mode, either a 16 or a 32Ω stereo headset. Capable of descending to low voltages, it delivers up to 90mW per channel (into 16Ω loads) of continuous average power with 0.3% THD+N in the audio bandwitdth from a 5V power supply. An externally-controlled standby mode reduces the supply current to 10nA (typ.). The unity gain stable TS486/7 can be configured by external gain-setting resistors or used in a fixed gain version. TS486-IQT, TS486-1IQT, TS486-2IQT, TS486-4IQT: DFN8 1 8 Vcc VIN (1) 2 7 OUT (2) BYPASS 3 6 VIN (2) GND 4 5 SHUTDOWN OUT (1) TS487IDT: SO8, TS487IST, TS487-1IST, TS487-2IST, TS487-4IST: MiniSO8 APPLICATIONS ■ Headphone Amplifier ■ Mobile phone, PDA, computer motherboard ■ High end TV, portable audio player ORDER CODE Part Temperature Package Number Range: I D S Q TS486 TS487 TS486 TS486-1 TS486-2 TS486-4 TS487 TS487-1 TS487-2 TS487-4 • • -40, +85°C • tba tba tba • tba tba tba • tba tba tba • tba tba tba Gain OUT (1) 1 8 VCC VIN (1) 2 7 OUT (2) BYPASS 3 6 GND 4 5 VIN (2) SHUTDOWN Marking external TS486I external TS487I external K86A x1/0dB K86B x2/6dB K86C x4/12dB K86D external K87A x1/0dB K87B x2/6dB K87C x4/12dB K87D TS487-IQT, TS487-1IQT, TS487-2IQT, TS487-4IQT: DFN8 OUT (1) 1 8 Vcc VIN (1) 2 7 OUT (2) BYPASS 3 6 VIN (2) GND 4 5 SHUTDOWN MiniSO & DFN only available in Tape & Reel with T suffix, SO is available in Tube (D) and in Tape & Reel (DT) June 2003 1/31 TS486-TS487 ABSOLUTE MAXIMUM RATINGS Symbol VCC Vi Tstg Tj Rthja Pd Parameter Supply voltage 1) Value Unit 6 V -0.3v to VCC +0.3v V -65 to +150 °C Maximum Junction Temperature 150 °C Thermal Resistance Junction to Ambient SO8 MiniSO8 DFN8 175 215 70 Power Dissipation 2) SO8 MiniSO8 DFN8 0.71 0.58 1.79 Input Voltage Storage Temperature Human Body Model (pin to pin): TS486, TS4873) ESD Machine Model - 220pF - 240pF (pin to pin) Latch-up Latch-up Immunity (All pins) Lead Temperature (soldering, 10sec) ESD Output Short-Circuit to Vcc or GND °C/W W 1.5 kV 100 200 250 V mA °C continous 4) 1. All voltage values are measured with respect to the ground pin. 2. Pd has been calculated with Tamb = 25°C, Tjunction = 150°C. 3. TS487 stands 1.5KV on all pins except standby pin which stands 1KV. 4. Attention must be paid to continous power dissipation (VDD x 300mA). Exposure of the IC to a short circuit for an extended time period is dramatically reducing product life expectancy. OPERATING CONDITIONS Symbol VCC Supply Voltage RL Load Resistor Toper CL VSTB 1. 2. Parameter Operating Free Air Temperature Range Load Capacitor RL = 16 to 100Ω RL > 100Ω Standby Voltage Input TS486 ACTIVE / TS487 in STANDBY TS486 in STANDBY / TS487 ACTIVE Value Unit 2 to 5.5 V ≥ 16 Ω -40 to + 85 °C 400 100 pF 1.5 ≤ VSTB ≤ VCC GND ≤ VSTB ≤ 0.4 1) Thermal Resistance Junction to Ambient SO8 150 RTHJA MiniSO8 190 41 DFN82) The minimum current consumption (ISTANDBY) is guaranteed at GND (TS486) or VCC (TS487) for the whole temperature range. When mounted on a 4-layer PCB. 2/31 V °C/W TS486-TS487 FIXED GAIN VERSION SPECIFIC ELECTRICAL CHARACTERISTICS VCC from +5V to +2V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol RIN 1,2 Parameter Min. Input Resistance 1) 20 Gain value for Gain TS486/TS487-1 G 1. Typ. Max. Unit kΩ 0dB Gain value for Gain TS486/TS487-2 6dB Gain value for Gain TS486/TS487-4 12dB dB See figure 30 to establish the value of Cin vs. -3dB cut off frequency. APPLICATION COMPONENTS INFORMATION Components Functional Description RIN1,2 Inverting input resistor which sets the closed loop gain in conjunction with RFEED. This resistor also forms a high pass filter with CIN (fc = 1 / (2 x Pi x RIN x CIN)) . Not needed in fixed gain versions. CIN1,2 Input coupling capacitor which blocks the DC voltage at the amplifier’s input terminal. RFEED1,2 Feedback resistor which sets the closed loop gain in conjunction with RIN. AV= Closed Loop Gain= -RFEED/RIN. Not needed in fixed gain versions. CS Supply Bypass capacitor which provides power supply filtering. CB Bypass capacitor which provides half supply filtering. COUT1,2 Output coupling capacitor which blocks the DC voltage at the load input terminal. This capacitor also forms a high pass filter with RL (fc = 1 / (2 x Pi x RL x COUT )). TYPICAL APPLICATION SCHEMATICS 3/31 TS486-TS487 ELECTRICAL CHARACTERISTICS VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol Typ. Max. 1.8 2.5 Standby Current No input signal, VSTANDBY=GND for TS486, RL=32Ω No input signal, VSTANDBY=Vcc for TS487, RL=32Ω 10 1000 VIO Input Offset Voltage (VICM = VCC/2) 1 IIB Input Bias Current (VICM = VCC/2) 1) 90 PO Output Power THD+N THD+N THD+N THD+N ICC ISTANDBY THD + N Parameter Supply Current No input signal, no load = = = = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω 60 95 Total Harmonic Distortion + Noise (Av=-1) RL = 32Ω, Pout = 60mW, 20Hz ≤ F ≤ 20kHz RL = 16Ω, Pout = 90mW, 20Hz ≤ F ≤ 20kHz Unit mA nA mV 200 64 65 102 108 nA mW 0.3 0.3 % Power Supply Rejection Ratio, inputs grounded 2) (Av=-1), RL>=16Ω, CB=1µF, F = 1kHz, Vripple = 200mVpp 53 58 dB IO Max Output Current THD +N ≤ 1%, RL = 16Ω connected between out and VCC/2 106 115 mA VO Output Swing VOL : RL = 32Ω VOH : RL = 32Ω VOL : RL = 16Ω VOH : RL = 16Ω 4.45 PSRR SNR Crosstalk CI GBP SR Signal-to-Noise Ratio (A weighted, Av=-1) 2) (RL = 32Ω, THD +N < 0.4%, 20Hz ≤ F ≤ 20kHz) Channel Separation, RL = 32Ω, Av=-1 F = 1kHz F = 20Hz to 20kHz Channel Separation, RL = 16Ω, Av=-1 F = 1kHz F = 20Hz to 20kHz Input Capacitance 4.2 0.45 4.52 0.6 4.35 80 103 83 79 0.5 V 0.7 dB dB 80 72 1 pF Gain Bandwidth Product (RL = 32Ω) 1.1 MHz Slew Rate, Unity Gain Inverting (RL = 16Ω) 0.4 V/µs 1. Only for external gain version. 2. Guaranteed by design and evaluation. 4/31 Min. TS486-TS487 ELECTRICAL CHARACTERISTICS VCC = +3.3V, GND = 0V, Tamb = 25°C (unless otherwise specified) 1) Symbol Typ. Max. 1.8 2.5 Standby Current No input signal, VSTANDBY=GND for TS486, RL=32Ω No input signal, VSTANDBY=Vcc for TS487, RL=32Ω 10 1000 VIO Input Offset Voltage (VICM = VCC/2) 1 IIB Input Bias Current (VICM = VCC/2) 2) 90 PO Output Power THD+N THD+N THD+N THD+N ICC ISTANDBY THD + N Supply Current No input signal, no load = = = = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω 23 36 Total Harmonic Distortion + Noise (Av=-1) RL = 32Ω, Pout = 16mW, 20Hz ≤ F ≤ 20kHz RL = 16Ω, Pout = 35mW, 20Hz ≤ F ≤ 20kHz Unit mA nA mV 200 26 28 38 42 nA mW 0.3 0.3 % 53 58 dB IO Max Output Current THD +N ≤ 1%, RL = 16Ω connected between out and VCC/2 64 75 mA VO Output Swing VOL : RL = 32Ω VOH : RL = 32Ω VOL : RL = 16Ω VOH : RL = 16Ω SNR Crosstalk CI GBP SR 2. 3. Min. Power Supply Rejection Ratio, inputs grounded 3) (Av=-1), RL>=16Ω, CB=1µF, F = 1kHz, Vripple = 200mVpp PSRR 1. Parameter Signal-to-Noise Ratio (A weighted, Av=-1) 3) (RL = 32Ω, THD +N < 0.4%, 20Hz ≤ F ≤ 20kHz) Channel Separation, RL = 32Ω, Av=-1 F = 1kHz F = 20Hz to 20kHz Channel Separation, RL = 16Ω, Av=-1 F = 1kHz F = 20Hz to 20kHz Input Capacitance 2.68 0.3 3 0.45 2.85 80 98 2.85 80 76 0.38 V 0.52 dB dB 77 69 1 pF Gain Bandwidth Product (RL = 32Ω) 1.1 MHz Slew Rate, Unity Gain Inverting (RL = 16Ω) 0.4 V/µs All electrical values are guaranted with correlation measurements at 2V and 5V. Only for external gain version. Guaranteed by design and evaluation. 5/31 TS486-TS487 ELECTRICAL CHARACTERISTICS VCC = +2.5V, GND = 0V, Tamb = 25°C (unless otherwise specified)1) Symbol ICC ISTANDBY Supply Current No input signal, no load Standby Current No input signal, No input signal, VSTANDBY=GND for TS486, RL=32Ω VSTANDBY=Vcc for TS487, RL=32Ω Max. 1.7 2.5 10 1000 1 IIB Input Bias Current (VICM = VCC/2) 2) 90 PO Output Power THD+N THD+N THD+N THD+N = = = = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω 12.5 17.5 Total Harmonic Distortion + Noise (Av=-1) RL = 32Ω, Pout = 10mW, 20Hz ≤ F ≤ 20kHz RL = 16Ω, Pout = 16mW, 20Hz ≤ F ≤ 20kHz Unit mA nA mV 200 13 14 21 22 nA mW 0.3 0.3 % Power Supply Rejection Ratio, inputs grounded 3) (Av=-1), RL>=16Ω, CB=1µF, F = 1kHz, Vripple = 200mVpp 53 58 dB IO Max Output Current THD +N ≤ 1%, RL = 16Ω connected between out and VCC/2 45 56 mA VO Output Swing VOL : RL = 32Ω VOH : RL = 32Ω VOL : RL = 16Ω VOH : RL = 16Ω SNR Crosstalk CI GBP SR Signal-to-Noise Ratio (A weighted, Av=-1) 3) (RL = 32Ω, THD +N < 0.4%, 20Hz ≤ F ≤ 20kHz) Channel Separation, RL = 32Ω, Av=-1 F = 1kHz F = 20Hz to 20kHz Channel Separation, RL = 16Ω, Av=-1 F = 1kHz F = 20Hz to 20kHz Input Capacitance 1.97 0.25 2.25 0.35 2.15 80 95 2.14 80 76 0.32 V 0.45 dB dB 77 69 1 pF Gain Bandwidth Product (RL = 32Ω) 1.1 MHz Slew Rate, Unity Gain Inverting (RL = 16Ω) 0.4 V/µs All electrical values are guaranted with correlation measurements at 2V and 5V. Only for external gain version. Guaranteed by design and evaluation. 6/31 Typ. Input Offset Voltage (VICM = VCC/2) PSRR 2. 3. Min. VIO THD + N 1. Parameter TS486-TS487 ELECTRICAL CHARACTERISTICS VCC = +2V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol Typ. Max. 1.7 2.5 Standby Current No input signal, VSTANDBY=GND for TS486, RL=32Ω No input signal, VSTANDBY=Vcc for TS487, RL=32Ω 10 1000 VIO Input Offset Voltage (VICM = VCC/2) 1 IIB Input Bias Current (VICM = VCC/2) 1) 90 PO Output Power THD+N THD+N THD+N THD+N ICC ISTANDBY THD + N Parameter Min. Supply Current No input signal, no load = = = = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 0.3% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω 7 9.5 Total Harmonic Distortion + Noise (Av=-1) RL = 32Ω, Pout = 6.5mW, 20Hz ≤ F ≤ 20kHz RL = 16Ω, Pout = 8mW, 20Hz ≤ F ≤ 20kHz Unit mA nA mV 200 8 9 12 13 nA mW 0.3 0.3 % Power Supply Rejection Ratio, inputs grounded 2) (Av=-1), RL>=16Ω, CB=1µF, F = 1kHz, Vripple = 200mVpp 52 57 dB IO Max Output Current THD +N ≤ 1%, RL = 16Ω connected between out and VCC/2 33 41 mA VO Output Swing VOL : RL = 32Ω VOH : RL = 32Ω VOL : RL = 16Ω VOH : RL = 16Ω PSRR SNR Crosstalk CI GBP SR Signal-to-Noise Ratio (A weighted, Av=-1) 2) (RL = 32Ω, THD +N < 0.4%, 20Hz ≤ F ≤ 20kHz) Channel Separation, RL = 32Ω, Av=-1 F = 1kHz F = 20Hz to 20kHz Channel Separation, RL = 16Ω, Av=-1 F = 1kHz F = 20Hz to 20kHz Input Capacitance 1.53 0.24 1.73 0.33 1.63 80 93 1.67 80 76 0.29 V 0.41 dB dB 77 69 1 pF Gain Bandwidth Product (RL = 32Ω) 1.1 MHz Slew Rate, Unity Gain Inverting (RL = 16Ω) 0.4 V/µs 1. Only for external gain version. 2. Guaranteed by design and evaluation. 7/31 TS486-TS487 Index of Graphs Description Figure Page 1 to 10 9 to 10 11 10 Current Consumption vs Standby Voltage 12 to 17 10 to 11 Output Power vs Power Supply Voltage 18 to19 11 to 12 Output Power vs Load Resistor 20 to 23 12 Power Dissipation vs Output Power 24 to 27 12 to 13 Power Derating vs Ambiant Temperature 28 13 Output Voltage Swing vs Supply Voltage 29 13 Low Frequency Cut Off vs Input Capacitor for fixed gain versions 30 13 THD + N vs Output Power 31 to 39 14 to 15 THD + N vs Frequency 40 to 42 15 Crosstalk vs Frequency 43 to 48 16 Signal to Noise Ratio vs Power Supply Voltage 49 to 50 17 PSRR vs Frequency 51 to 56 17 to 18 THD + N vs Output Power 57 to 65 19 to 20 THD + N vs Frequency 66 to 68 20 Crosstalk vs Frequency 69 to 72 21 Signal to Noise Ratio vs Power Supply Voltage 73 to 74 21 PSRR vs Frequency 75 to 79 22 THD + N vs Output Power 80 to 88 22 to 24 THD + N vs Frequency 89 to 91 24 Crosstalk vs Frequency 92 to 95 24 Signal to Noise Ratio vs Power Supply Voltage 96 to 97 25 PSRR vs Frequency 98 to 102 26 Common Curves Open Loop Gain and Phase vs Frequency Current Consumption vs Power Supply Voltage Curves With 0dB Gain Setting (Av=-1) Curves With 6dB Gain Setting (Av=-2) Curves With 12dB Gain Setting (Av=-4) 8/31 TS486-TS487 Fig. 1: Open Loop Gain and Phase vs Frequency Fig. 2: Open Loop Gain and Phase vs Frequency 180 60 100 Phase 80 20 60 0 40 100 Phase 80 20 60 0 40 20 -20 40 20 -20 0 -40 0.1 1 10 100 Frequency (kHz) 1000 0 -20 10000 -40 0.1 Fig. 3: Open Loop Gain and Phase vs Frequency 1 10 100 Frequency (kHz) 1000 -20 10000 Fig. 4: Open Loop Gain and Phase vs Frequency 180 Vcc = 2V ZL = 16Ω Tamb = 25°C 80 Gain 60 180 Vcc = 2V ZL = 16Ω+400pF Tamb = 25°C 80 160 Gain 140 60 100 Phase 80 20 60 0 40 20 80 20 60 40 20 -20 0 1 10 100 Frequency (kHz) 1000 0 -20 10000 -40 0.1 Fig. 5: Open Loop Gain and Phase vs Frequency 1 10 100 Frequency (kHz) 1000 -20 10000 Fig. 6: Open Loop Gain and Phase vs Frequency 180 Vcc = 5V ZL = 32Ω Tamb = 25°C 80 Gain 60 180 Vcc = 5V ZL = 32Ω+400pF Tamb = 25°C 80 160 Gain 140 60 Phase 80 60 0 40 20 -20 40 1 10 100 Frequency (kHz) 1000 -20 10000 140 20 100 Phase 80 60 0 40 20 -20 0 -40 0.1 160 120 Gain (dB) 20 100 Phase (Deg) Gain (dB) 120 40 140 100 Phase 0 40 -20 160 120 Gain (dB) 40 Phase (Deg) Gain (dB) 120 -40 0.1 140 120 Gain (dB) 40 Phase (Deg) Gain (dB) 120 160 Phase (Deg) 60 Gain 140 Phase (Deg) Gain 180 Vcc = 5V ZL = 16Ω+400pF Tamb = 25°C 80 160 Phase (Deg) Vcc = 5V ZL = 16Ω Tamb = 25°C 80 0 -40 0.1 1 10 100 Frequency (kHz) 1000 -20 10000 9/31 TS486-TS487 Fig. 7: Open Loop Gain and Phase vs Frequency Fig. 8: Open Loop Gain and Phase vs Frequency 180 60 Gain 140 60 100 Phase 20 80 60 0 40 100 Phase 20 80 60 0 40 20 -20 40 20 -20 0 -40 0.1 1 10 100 Frequency (kHz) 0 -20 10000 1000 -40 0.1 Fig. 9: Open Loop Gain and Phase vs Frequency 1 10 100 Frequency (kHz) -20 10000 1000 Fig. 10: Open Loop Gain and Phase vs Frequency 180 180 80 Vcc = 5V RL = 600Ω Tamb = 25°C Gain 60 80 160 140 Vcc = 2V RL = 600Ω Tamb = 25°C Gain 60 Phase 60 0 40 20 -20 Gain (dB) 20 80 Phase (Deg) Gain (dB) 100 40 1 10 100 1000 Frequency (kHz) 10000 140 100 20 80 Phase 60 0 40 20 -20 0 0 -40 0.1 160 120 120 40 140 120 Gain (dB) 40 Phase (Deg) Gain (dB) 120 160 -20 Fig. 11: Current Consumption vs Power Supply Voltage -40 0.1 1 10 100 Frequency (kHz) 1000 10000 -20 Fig. 12: Current Consumption vs Standby Voltage 2.0 2.0 Ta=85°C 1.5 Ta=-40°C 1.0 0.5 0.0 0 1 2 3 Power Supply Voltage (V) 10/31 Current Consumption (mA) Current Consumption (mA) No load Ta=25°C 4 Phase (Deg) Gain 180 Vcc = 2V ZL = 32Ω+400pF Tamb = 25°C 80 160 5 1.5 Ta=85°C Ta=25°C 1.0 Ta=-40°C 0.5 TS486 Vcc = 5V No load 0.0 0 1 2 3 Standby Voltage (V) 4 5 Phase (Deg) Vcc = 2V ZL = 32Ω Tamb = 25°C 80 TS486-TS487 Fig. 13: Current Consumption vs Standby Voltage Fig. 14: Current Consumption vs Standby Voltage 2.0 2.0 Current Consumption (mA) Current Consumption (mA) Ta=85°C 1.5 Ta=85°C Ta=25°C 1.0 Ta=-40°C 0.5 TS486 Vcc = 3.3V No load 0.0 0 1 2 1.5 Ta=25°C 1.0 Ta=-40°C 0.5 TS486 Vcc = 2V No load 0.0 3 0 1 Standby Voltage (V) Fig. 15: Current Consumption vs Standby Voltage Fig. 16: Current Consumption vs Standby Voltage 2.0 2.5 Ta=25°C Ta=25°C Current Consumption (mA) Current Consumption (mA) Ta=85°C 2.0 1.5 Ta=-40°C 1.0 0.5 0.0 TS487 Vcc = 5V No load 0 1 2 3 4 1.5 Ta=85°C 0.5 TS487 Vcc = 3.3V No load 0.0 5 Ta=-40°C 1.0 0 1 Standby Voltage (V) 200 Ta=85°C 1.5 150 Output power (mW) Current Consumption (mA) 175 Ta=25°C 1.0 Ta=-40°C 1 Standby Voltage (V) RL = 16Ω F = 1kHz BW < 125kHz Tamb = 25°C THD+N=1% 125 THD+N=10% 100 75 50 THD+N=0.1% TS487 Vcc = 2V No load 0 3 Fig. 18: Output Power vs Power Supply Voltage 2.0 0.5 2 Standby Voltage (V) Fig. 17: Current Consumption vs Standby Voltage 0.0 2 Standby Voltage (V) 25 2 0 2.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 11/31 TS486-TS487 Fig. 20: Output Power vs Load Resistor Fig. 19: Output Power vs Power Supply Voltage Vcc = 5V F = 1kHz BW < 125kHz Tamb = 25°C 180 THD+N=1% 75 THD+N=10% 50 25 THD+N=1% 160 Output power (mW) 100 Output power (mW) 200 RL = 32Ω F = 1kHz BW < 125kHz Tamb = 25°C THD+N=0.1% 140 120 100 THD+N=10% 80 60 40 THD+N=0.1% 20 0 2.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 0 5.5 Fig. 21: Output Power vs Load Resistor 8 16 24 32 40 48 Load Resistance ( ) 56 64 Fig. 22: Output Power vs Load Resistor 50 THD+N=1% 60 Output power (mW) Vcc = 3.3V F = 1kHz BW < 125kHz Tamb = 25°C 50 40 THD+N=10% 30 20 40 THD+N=1% 35 30 25 THD+N=10% 20 15 10 THD+N=0.1% 10 THD+N=0.1% 5 0 8 16 24 32 40 48 Load Resistance ( ) 56 0 64 Fig. 23: Output Power vs Load Resistor THD+N=1% 15 THD+N=10% 10 Power Dissipation (mW) Vcc = 2V F = 1kHz BW < 125kHz Tamb = 25°C 20 8 16 24 32 40 48 Load Resistance ( ) 56 Vcc=5V 80 F=1kHz THD+N<1% RL=16Ω 60 40 RL=32Ω 20 5 THD+N=0.1% 0 12/31 0 8 16 24 32 40 48 Load Resistance ( ) 56 64 Fig. 24: Power Dissipation vs Output Power 25 Output power (mW) Vcc = 2.5V F = 1kHz BW < 125kHz Tamb = 25°C 45 Output power (mW) 70 64 0 20 40 60 80 Output Power (mW) 100 TS486-TS487 Fig. 25: Power Dissipation vs Output Power Fig. 26: Power Dissipation vs Output Power Vcc=3.3V F=1kHz THD+N<1% Power Dissipation (mW) Power Dissipation (mW) 40 30 RL=16Ω 20 RL=32Ω 10 0 20 RL=16Ω 10 RL=32Ω 0 0 10 20 30 40 Vcc=2.5V F=1kHz THD+N<1% 0 5 10 15 20 Output Power (mW) Output Power (mW) Fig. 27: Power Dissipation vs Output Power Fig. 28: Power Derating vs Ambiant Temperature Power Dissipation (mW) 15 Vcc=2V F=1kHz THD+N<1% 10 RL=16Ω 5 RL=32Ω 0 0 2 4 6 8 10 12 Output Power (mW) Fig. 29: Output Voltage Swing vs Power Supply Voltage 5.0 4.5 Tamb=25°C Ω 4.0 VOH & VOL (V) Fig. 30: Low Frequency Cut Off vs Input Capacitor for fixed gain versions. 3.5 Ω 3.0 2.5 RL=32Ω 2.0 RL=16Ω 1.5 Ω 1.0 0.5 0.0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 13/31 TS486-TS487 Fig. 31: THD + N vs Output Power Fig. 32: THD + N vs Output Power 10 RL = 16Ω F = 20Hz Av = -1 1 Cb = 1µF BW < 22kHz Tamb = 25°C 0.1 RL = 32Ω F = 20Hz Av = -1 1 Cb = 1µF BW < 22kHz Tamb = 25°C THD + N (%) THD + N (%) 10 Vcc=2V Vcc=2.5V Vcc=2V 0.1 Vcc=2.5V 0.01 0.01 Vcc=3.3V 1 Vcc=5V Vcc=3.3V 10 Output Power (mW) 100 1 Fig. 33: THD + N vs Output Power 100 Fig. 34: THD + N vs Output Power 10 10 Vcc=2V Vcc=2.5V THD + N (%) RL = 600Ω, F = 20Hz Av = -1, Cb = 1µF BW < 22kHz Tamb = 25°C 1 THD + N (%) Vcc=5V 10 Output Power (mW) Vcc=3.3V 0.1 Vcc=5V RL = 16Ω F = 1kHz Av = -1 1 Cb = 1µF BW < 125kHz Tamb = 25°C 0.1 Vcc=2V Vcc=2.5V 0.01 0.01 1E-3 0.01 0.1 Output Voltage (Vrms) Fig. 35: THD + N vs Output Power Vcc=2V 1 Vcc=2.5V THD + N (%) THD + N (%) 100 10 RL = 32Ω F = 1kHz Av = -1 1 Cb = 1µF BW < 125kHz Tamb = 25°C 0.1 Vcc=2V Vcc=3.3V 0.1 Vcc=5V 0.01 0.01 Vcc=2.5V 14/31 Vcc=5V 10 Output Power (mW) Fig. 36: THD + N vs Output Power 10 1E-3 Vcc=3.3V 1 1 1 Vcc=3.3V Vcc=5V 10 Output Power (mW) 100 RL = 600Ω, F = 1kHz Av = -1, Cb = 1µF BW < 125kHz, Tamb = 25°C 1E-3 0.01 0.1 Output Voltage (Vrms) 1 TS486-TS487 Fig. 37: THD + N vs Output Power Fig. 38: THD + N vs Output Power 10 RL = 16Ω F = 20kHz Av = -1 Cb = 1µF BW < 125kHz 1 Tamb = 25°C THD + N (%) THD + N (%) 10 Vcc=2V Vcc=2.5V RL = 32Ω F = 20kHz Av = -1 Cb = 1µF BW < 125kHz 1 Tamb = 25°C Vcc=2V Vcc=2.5V 0.1 0.1 Vcc=3.3V 1 Vcc=5V Vcc=3.3V 10 Output Power (mW) 100 Fig. 39: THD + N vs Output Power 1 RL=16Ω Av=-1 Cb = 1µF Bw < 125kHz Tamb = 25°C Vcc=2V 1 THD + N (%) THD + N (%) Vcc=2.5V 0.1 100 Vcc=2V, Po=7.5mW 0.1 Vcc=5V, Po=85mW Vcc=3.3V RL = 600Ω, F = 20kHz Av = -1, Cb = 1µF BW < 125kHz, Tamb = 25°C 1E-3 0.01 Vcc=5V 0.1 Output Voltage (Vrms) 0.01 20 1 Fig. 41: THD + N vs Frequency 100 1000 Frequency (Hz) 10000 20k Fig. 42: THD + N vs Frequency RL=600Ω Av=-1 Cb = 1µF 0.1 Bw < 125kHz Tamb = 25°C RL=32Ω Av=-1 Cb = 1µF Bw < 125kHz 0.1 Tamb=25°C THD + N (%) THD + N (%) 10 Output Power (mW) Fig. 40: THD + N vs Frequency 10 0.01 Vcc=5V Vcc=2V, Po=6mW Vcc=5V, Vo=1.3Vrms Vcc=2V, Vo=0.5Vrms 0.01 Vcc=5V, Po=55mW 0.01 20 100 1000 Frequency (Hz) 10000 20k 1E-3 20 100 1000 Frequency (Hz) 10000 20k 15/31 TS486-TS487 Fig. 43: Crosstalk vs Frequency Fig. 44: Crosstalk vs Frequency 60 ChA to ChB ChB to ChA RL=16Ω Vcc=5V Pout=85mW Av=-1 Cb = 1µF Bw < 125kHz Tamb=25°C 40 20 0 ChB to ChA 80 20 100 1000 Frequency (Hz) Crosstalk (dB) Crosstalk (dB) 80 RL=16Ω Vcc=2V Pout=7.5mW Av=-1 Cb = 1µF Bw < 125kHz Tamb=25°C 40 20 0 10000 20k Fig. 45: Crosstalk vs Frequency ChA to ChB 60 20 100 1000 Frequency (Hz) 10000 20k Fig. 46: Crosstalk vs Frequency 80 80 RL=32Ω Vcc=5V Pout=55mW Av=-1 Cb = 1µF Bw < 125kHz Tamb=25°C 40 20 0 20 100 1000 Frequency (Hz) Crosstalk (dB) Crosstalk (dB) ChA to ChB ChB to ChA 60 ChB to ChA RL=32Ω Vcc=2V Pout=6mW Av=-1 Cb = 1µF Bw < 125kHz Tamb=25°C 40 20 0 10000 20k Fig. 47: Crosstalk vs Frequency ChA to ChB 60 20 100 1000 Frequency (Hz) 10000 20k Fig. 48: Crosstalk vs Frequency 80 80 Cb = 1µF Cb = 4.7µF 40 20 0 16/31 20 100 1000 Frequency (Hz) RL=16Ω Vcc=5V Pout=85mW Av=-1 ChB to ChA Bw < 125kHz Tamb=25°C 10000 20k Crosstalk (dB) Crosstalk (dB) Cb = 1µF 60 60 Cb = 4.7µF RL=32Ω Vcc=5V Pout=55mW Av=-1 ChB to ChA Bw < 125kHz Tamb=25°C 40 20 0 20 100 1000 Frequency (Hz) 10000 20k TS486-TS487 Fig. 49: Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz) 102 Av = -1 Cb = 1µF THD+N < 0.4% Tamb = 25°C 104 RL=600Ω Signal to Noise Ratio (dB) Signal to Noise Ratio (dB) 104 Fig. 50: Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A 100 98 96 RL=32Ω 94 RL=16Ω 92 90 2.0 2.5 3.0 102 100 98 RL=32Ω 96 94 RL=16Ω 92 3.5 4.0 4.5 90 2.0 5.0 2.5 Power Supply Voltage (V) 4.5 5.0 -30 -20 Vcc = 2V -40 Vripple = 200mVpp Av = -1 Input = grounded Vcc = 5V RL >= 16Ω Tamb = 25°C -10 PSRR (dB) -20 PSRR (dB) 4.0 0 Vripple = 200mVpp Av = -1 Input = grounded Cb = 1µF RL >= 16Ω Tamb = 25°C -10 -50 -60 -30 -40 Cb = 1µF -50 -60 Vcc = 5V, 3.3V & 2.5V 100 -70 1000 10000 Frequency (Hz) -80 100000 Fig. 53: PSRR vs Input Capacitor Cb = 2.2µF Cb = 4.7µF 100 1000 10000 Frequency (Hz) 100000 Fig. 54: PSRR vs Output Capacitor 0 0 -20 Cin = 1µF, 220nF -30 Vripple = 200mVpp Av = -1, Vcc = 5V Input = grounded Cb = 1µF, Rin = 20kΩ RL >= 16Ω Tamb = 25°C -10 -20 PSRR (dB) -10 PSRR (dB) 3.5 Fig. 52: PSRR vs Bypass Capacitor 0 -80 3.0 Power Supply Voltage (V) Fig. 51: PSRR vs Power Supply Voltage -70 RL=600Ω Av = -1 Cb = 1µF THD+N < 0.4% Tamb = 25°C -40 -50 Cout = 470µF -30 -40 -50 -60 -60 Vripple = 200mVpp Av = -1, Vcc = 5V Input = grounded Cb = 1µF, RL = 16Ω RL >= 16Ω Tamb = 25°C Cout = 220µF -70 Cin = 100nF -70 100 1000 10000 Frequency (Hz) 100000 -80 100 1000 10000 Frequency (Hz) 100000 17/31 TS486-TS487 Fig. 55: PSRR vs Output Capacitor Fig. 56: PSRR vs Power Supply Voltage 0 0 PSRR (dB) -20 Cout = 470µF -30 Vripple = 200mVpp Av = -1, Vcc = 5V Input = grounded Cb = 1µF, RL = 32Ω RL >= 16Ω Tamb = 25°C -10 -20 PSRR (dB) -10 -40 -50 -60 18/31 -50 -70 -80 100 1000 10000 Frequency (Hz) Vcc = 2V -40 -60 Cout = 100µF -70 -80 -30 Vripple = 200mVpp Av = -1 Input = floating Cb = 1µF RL >= 16Ω Tamb = 25°C 100000 Vcc = 5V, 3.3V & 2.5V 100 1000 10000 Frequency (Hz) 100000 TS486-TS487 Fig. 57: THD + N vs Output Power Fig. 58: THD + N vs Output Power 10 RL = 16Ω F = 20Hz Av = -2 1 Cb = 1µF BW < 22kHz Tamb = 25°C 0.1 RL = 32Ω F = 20Hz Av = -2 1 Cb = 1µF BW < 22kHz Tamb = 25°C THD + N (%) THD + N (%) 10 Vcc=2V Vcc=2.5V Vcc=2V 0.1 Vcc=2.5V 0.01 Vcc=3.3V 1 0.01 Vcc=5V 10 Output Power (mW) 100 Fig. 59: THD + N vs Output Power 100 10 RL = 600Ω, F = 20Hz Av = -2, Cb = 1µF BW < 22kHz Tamb = 25°C Vcc=2V Vcc=2.5V THD + N (%) THD + N (%) Vcc=5V 10 Output Power (mW) Fig. 60: THD + N vs Output Power 10 1 Vcc=3.3V 1 Vcc=3.3V 0.1 Vcc=5V RL = 16Ω F = 1kHz Av = -2 1 Cb = 1µF BW < 125kHz Tamb = 25°C 0.1 Vcc=2V Vcc=2.5V 0.01 0.01 1E-3 0.01 0.1 Output Voltage (Vrms) Fig. 61: THD + N vs Output Power Vcc=5V 10 Output Power (mW) 100 Fig. 62: THD + N vs Output Power 10 10 RL = 32Ω F = 1kHz Av = -2 1 Cb = 1µF BW < 125kHz Tamb = 25°C Vcc=2V 1 Vcc=2.5V THD + N (%) THD + N (%) Vcc=3.3V 1 1 Vcc=2V 0.1 Vcc=2.5V 0.01 Vcc=5V 0.01 Vcc=3.3V 1 Vcc=3.3V 0.1 Vcc=5V 10 Output Power (mW) 100 RL = 600Ω, F = 1kHz Av = -2, Cb = 1µF BW < 125kHz, Tamb = 25°C 1E-3 0.01 0.1 Output Voltage (Vrms) 1 19/31 TS486-TS487 Fig. 63: THD + N vs Output Power Fig. 64: THD + N vs Output Power 10 RL = 16Ω F = 20kHz Av = -2 Cb = 1µF BW < 125kHz 1 Tamb = 25°C THD + N (%) THD + N (%) 10 Vcc=2V Vcc=2.5V RL = 32Ω F = 20kHz Av = -2 Cb = 1µF BW < 125kHz 1 Tamb = 25°C Vcc=2V 0.1 0.1 Vcc=3.3V 1 10 Output Power (mW) 100 Fig. 65: THD + N vs Output Power 1 RL=16Ω Av=-2 Cb = 1µF Bw < 125kHz Tamb = 25°C Vcc=2V 1 THD + N (%) THD + N (%) Vcc=2.5V 0.1 100 Vcc=2V, Po=7.5mW 0.1 Vcc=3.3V RL = 600Ω, F = 20kHz Av = -2, Cb = 1µF BW < 125kHz, Tamb = 25°C 1E-3 0.01 Vcc=5V 0.1 Output Voltage (Vrms) Vcc=5V, Po=85mW 0.01 20 1 Fig. 67: THD + N vs Frequency 100 1000 Frequency (Hz) 10000 20k Fig. 68: THD + N vs Frequency RL=32Ω Av=-2 Cb = 1µF Bw < 125kHz 0.1 Tamb=25°C THD + N (%) THD + N (%) Vcc=5V 10 Output Power (mW) Fig. 66: THD + N vs Frequency 10 0.01 Vcc=3.3V Vcc=2.5V Vcc=5V Vcc=2V, Po=6mW RL=600Ω Av=-2 Cb = 1µF 0.1 Bw < 125kHz Tamb = 25°C Vcc=5V, Vo=1.3Vrms Vcc=2V, Vo=0.5Vrms 0.01 0.01 Vcc=5V, Po=55mW 20 20/31 100 1000 Frequency (Hz) 10000 20k 1E-3 20 100 1000 Frequency (Hz) 10000 20k TS486-TS487 Fig. 70: Crosstalk vs Frequency Fig. 69: Crosstalk vs Frequency ChB to ChA 60 ChA to ChB RL=16Ω Vcc=5V Pout=85mW Av=-2 Cb = 1µF Bw < 125kHz Tamb=25°C 40 20 0 20 ChB to ChA 80 Crosstalk (dB) Crosstalk (dB) 80 100 RL=16Ω Vcc=2V Pout=7.5mW Av=-2 Cb = 1µF Bw < 125kHz Tamb=25°C 40 20 0 10000 20k 1000 Frequency (Hz) ChA to ChB 60 100 20 1000 Frequency (Hz) 10000 20k Fig. 72: Crosstalk vs Frequency Fig. 71: Crosstalk vs Frequency 80 80 Crosstalk (dB) Crosstalk (dB) 60 ChB to ChA RL=32Ω Vcc=5V Pout=55mW Av=-2 Cb = 1µF Bw < 125kHz Tamb=25°C 40 20 0 20 100 100 96 102 94 92 RL=32Ω 90 88 RL=16Ω 86 84 82 2.0 100 20 1000 Frequency (Hz) 10000 20k 104 RL=600Ω Av = -2 Cb = 1µF THD+N < 0.4% Tamb = 25°C RL=32Ω Vcc=2V Pout=6mW Av=-2 Cb = 1µF Bw < 125kHz Tamb=25°C Fig. 74: Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A Signal to Noise Ratio (dB) 98 0 10000 20k 1000 Frequency (Hz) ChB to ChA 40 20 Fig. 73: Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz) Signal to Noise Ratio (dB) ChA to ChB ChA to ChB 60 100 98 Av = -2 Cb = 1µF THD+N < 0.4% Tamb = 25°C RL=600Ω 96 94 RL=32Ω 92 90 88 RL=16Ω 86 84 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 82 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Power Supply Voltage (V) 21/31 TS486-TS487 Fig. 75: PSRR vs Power Supply Voltage Fig. 76: PSRR vs Bypass Capacitor 0 0 Vripple = 200mVpp Av = -2 Input = grounded Cb = 1µF RL >= 16Ω Tamb = 25°C PSRR (dB) -20 -30 -20 Vcc = 2V -40 Vripple = 200mVpp Av = -2 Input = grounded Vcc = 5V RL >= 16Ω Tamb = 25°C -10 PSRR (dB) -10 -50 -30 -40 Cb = 1µF -50 -60 -60 Vcc = 5V, 3.3V & 2.5V -70 100 Cb = 4.7µF 1000 10000 Frequency (Hz) -70 100000 Fig. 77: PSRR vs Input Capacitor Cin = 1µF, 220nF -30 Vripple = 200mVpp Av = -2, Vcc = 5V Input = grounded Cb = 1µF, Rin = 20kΩ RL >= 16Ω Tamb = 25°C Vripple = 200mVpp Av = -2, Vcc = 5V Input = grounded Cb = 1µF, RL = 16Ω RL >= 16Ω Tamb = 25°C -10 -20 PSRR (dB) PSRR (dB) -20 -40 -50 Cout = 470µF -30 -40 -50 Cin = 100nF -60 100 Cout = 220µF -60 1000 10000 Frequency (Hz) 100000 Fig. 79: PSRR vs Output Capacitor -70 100 1000 10000 Frequency (Hz) 100000 Fig. 80: THD + N vs Output Power 10 0 Cout = 470µF -30 THD + N (%) Vripple = 200mVpp Av = -2, Vcc = 5V Input = grounded Cb = 1µF, RL = 32Ω RL >= 16Ω Tamb = 25°C -10 PSRR (dB) 100000 0 -10 -20 1000 10000 Frequency (Hz) Fig. 78: PSRR vs Output Capacitor 0 -70 Cb = 2.2µF 100 -40 RL = 16Ω F = 20Hz Av = -4 Cb = 1µF 1 BW < 22kHz Tamb = 25°C Vcc=2V Vcc=2.5V 0.1 -50 Cout = 100µF -60 Vcc=3.3V -70 22/31 0.01 100 1000 10000 Frequency (Hz) 100000 1 Vcc=5V 10 Output Power (mW) 100 TS486-TS487 Fig. 81: THD + N vs Output Power Fig. 82: THD + N vs Output Power 10 10 1 THD + N (%) THD + N (%) RL = 32Ω F = 20Hz Av = -4 Cb = 1µF 1 BW < 22kHz Tamb = 25°C Vcc=2V 0.1 0.01 Vcc=2.5V Vcc=5V 10 Output Power (mW) Vcc=2.5V Vcc=3.3V 0.1 Vcc=5V 1E-3 0.01 100 Fig. 83: THD + N vs Output Power 0.1 Output Voltage (Vrms) 1 Fig. 84: THD + N vs Output Power 10 10 RL = 16Ω F = 1kHz Av = -4 Cb = 1µF 1 BW < 125kHz Tamb = 25°C RL = 32Ω F = 1kHz Av = -4 Cb = 1µF 1 BW < 125kHz Tamb = 25°C THD + N (%) THD + N (%) Vcc=2V 0.01 Vcc=3.3V 1 RL = 600Ω, F = 20Hz Av = -4, Cb = 1µF BW < 22kHz Tamb = 25°C Vcc=2V Vcc=2.5V 0.1 Vcc=2V 0.1 Vcc=2.5V Vcc=3.3V 0.01 1 Vcc=5V Vcc=3.3V 10 Output Power (mW) 100 Fig. 85: THD + N vs Output Power 0.01 1 100 Fig. 86: THD + N vs Output Power 10 10 RL = 16Ω F = 20kHz Av = -4 Cb = 1µF BW < 125kHz Tamb = 25°C Vcc=2V 1 THD + N (%) Vcc=2.5V THD + N (%) Vcc=5V 10 Output Power (mW) Vcc=3.3V 0.1 Vcc=2V 1 Vcc=2.5V 0.01 RL = 600Ω, F = 1kHz Av = -4, Cb = 1µF BW < 125kHz, Tamb = 25°C 1E-3 0.01 Vcc=5V 0.1 Output Voltage (Vrms) Vcc=3.3V 1 0.1 1 Vcc=5V 10 Output Power (mW) 100 23/31 TS486-TS487 Fig. 87: THD + N vs Output Power Fig. 88: THD + N vs Output Power 10 RL = 32Ω F = 20kHz Av = -4 Cb = 1µF BW < 125kHz Tamb = 25°C 1 Vcc=2V 1 Vcc=2.5V THD + N (%) THD + N (%) 10 Vcc=2V 0.1 Vcc=2.5V 0.01 0.1 Vcc=3.3V 1 Vcc=5V 10 Output Power (mW) 1E-3 0.01 100 Fig. 89: THD + N vs Frequency Vcc=5V 0.1 Output Voltage (Vrms) 1 Fig. 90: THD + N vs Frequency THD + N (%) RL=16Ω Av=-4 Cb = 1µF Bw < 125kHz Tamb = 25°C THD + N (%) Vcc=3.3V RL = 600Ω, F = 20kHz Av = -4, Cb = 1µF BW < 125kHz, Tamb = 25°C Vcc=2V, Po=7.5mW 0.1 RL=32Ω Av=-4 Cb = 1µF Bw < 125kHz Tamb=25°C 0.1 Vcc=2V, Po=6mW Vcc=5V, Po=85mW Vcc=5V, Po=55mW 0.01 20 100 1000 Frequency (Hz) 10000 20k 100 1000 Frequency (Hz) 80 RL=600Ω Av=-4 Cb = 1µF 0.1 Bw < 125kHz Tamb = 25°C ChB to ChA 60 Vcc=2V, Vo=0.5Vrms 0.01 ChA to ChB RL=16Ω Vcc=5V Pout=85mW Av=-4 Cb = 1µF Bw < 125kHz Tamb=25°C 40 20 Vcc=5V, Vo=1.3Vrms 1E-3 24/31 20 100 10000 20k Fig. 92: Crosstalk vs Frequency Crosstalk (dB) THD + N (%) Fig. 91: THD + N vs Frequency 20 1000 Frequency (Hz) 10000 20k 0 20 100 1000 Frequency (Hz) 10000 20k TS486-TS487 Fig. 94: Crosstalk vs Frequency Fig. 93: Crosstalk vs Frequency 80 ChB to ChA 80 ChA to ChB RL=16Ω Vcc=2V Pout=7.5mW Av=-4 Cb = 1µF Bw < 125kHz Tamb=25°C 40 20 0 Crosstalk (dB) Crosstalk (dB) 60 20 100 1000 Frequency (Hz) ChA to ChB 60 ChB to ChA RL=32Ω Vcc=5V Pout=55mW Av=-4 Cb = 1µF Bw < 125kHz Tamb=25°C 40 20 0 10000 20k 20 100 Fig. 96: Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz) Fig. 95: Crosstalk vs Frequency 100 80 Av = -4 Cb = 1µF 96 THD+N < 0.4% Tamb = 25°C 94 Crosstalk (dB) 60 Signal to Noise Ratio (dB) 98 ChA to ChB ChB to ChA RL=32Ω Vcc=2V Pout=6mW Av=-4 Cb = 1µF Bw < 125kHz Tamb=25°C 40 20 0 20 100 1000 Frequency (Hz) RL=32Ω 86 84 RL=16Ω 80 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Power Supply Voltage (V) Fig. 98: PSRR vs Power Supply Voltage RL=600Ω Vripple = 200mVpp Av = -4 Input = grounded Cb = 1µF RL >= 16Ω Tamb = 25°C PSRR (dB) -10 92 90 88 RL=32Ω 86 80 2.0 88 0 Av = -4 Cb = 1µF 96 THD+N < 0.4% Tamb = 25°C 94 98 -20 -30 Vcc = 2V -40 RL=16Ω 82 90 10000 20k 100 84 RL=600Ω 92 82 Fig. 97: Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A Signal to Noise Ratio (dB) 10000 20k 1000 Frequency (Hz) -50 Vcc = 5V, 3.3V & 2.5V 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 -60 100 1000 10000 Frequency (Hz) 100000 25/31 TS486-TS487 Fig. 99: PSRR vs Input Capacitor Fig. 100: PSRR vs Bypass Capacitor 0 0 Cin = 1µF, 220nF -20 Vripple = 200mVpp Av = -4 Input = grounded Vcc = 5V RL >= 16Ω Tamb = 25°C -10 -20 PSRR (dB) PSRR (dB) -10 Vripple = 200mVpp Av = -4, Vcc = 5V Input = grounded Cb = 1µF, Rin = 20kΩ RL >= 16Ω Tamb = 25°C -30 -30 -40 Cb = 1µF -40 -50 -50 Cin = 100nF -60 100 -60 1000 10000 Frequency (Hz) Fig. 101: PSRR vs Output Capacitor 100 Cout = 470µF -20 Vripple = 200mVpp Av = -4, Vcc = 5V Input = grounded Cb = 1µF, RL = 16Ω RL >= 16Ω Tamb = 25°C -10 PSRR (dB) PSRR (dB) 100000 0 -10 -30 Cout = 470µF -20 Vripple = 200mVpp Av = -4, Vcc = 5V Input = grounded Cb = 1µF, RL = 32Ω RL >= 16Ω Tamb = 25°C -30 -40 -40 -50 -50 26/31 Cb = 2.2µF 1000 10000 Frequency (Hz) Fig. 102: PSRR vs Output Capacitor 0 -60 Cb = 4.7µF 100000 Cout = 220µF Cout = 100µF -60 100 1000 10000 Frequency (Hz) 100000 100 1000 10000 Frequency (Hz) 100000 TS486-TS487 APPLICATION NOTE: TS486/487 GENERAL DESCRIPTION GaindB = 20 Log(RFEED/R IN) TS486/487 is a family of dual audio amplifiers able to drive 16Ω or 32Ω headsets. Working in the 2V to 5.5V supply voltage range, they deliver 100mW at 5V and 12mW at 2V in a 16Ω load. An internal output current limitation, offers protection against short-circuits at the output over a limited time period. Fixed gain versions TS486-n and TS487-n including RIN and RFEED are proposed to reduce external parts. Fixed gain versions of the TS486 and TS487 including the feedback resistor and the input resistors are also proposed to reduce the number of external parts. The TS486 and TS487 exhibit a low quiescent current of typically 1.8mA, allowing usage in portable applications. The standby mode is selected using the SHUTDOWN input. For TS486 (respectively TS487), the device is in sleep mode when PIN 5 is connected at GND (resp. VCC). GAIN SETTING LOW FREQUENCY ROLL-OFF WITH INPUT CAPACITORS The low roll-off frequency of the headphone amplifiers depends on the input capacitors CIN1 and CIN2 and the input resistors RIN1 and RIN2. The CIN capacitor in series with the input resistor RIN of the amplifier is equivalent to a first order high pass filter. Assuming that Fmin is the lowest frequency to be amplified (with a 3dB attenuation), the minimum value of CIN is: CIN > 1 / (2*π*Fmin*RIN ) The following curve gives directly the low frequency roll-off versus the input capacitor CIN The gain of each inverter amplifier of the TS486 and TS487 is set by the resistors RIN and RFEED. GainLINEAR = -(R FEED/RIN) 27/31 TS486-TS487 and for various values of the input resistor RIN . frequency versus the output capacitor COUT in µF and for the two typical 16Ω and 32Ω impedances: 1000 Low roll-off frequency (Hz) Low roll−off frequency (Hz) 1000 Rin = 1kΩ Rin = 10kΩ 100 10 Rin = 100kΩ Rin = 20kΩ and fixed gain versions 1 0.01 0.1 1 100 RL = 16Ω 10 RL = 32Ω 10 1 10 Cin (µF) 100 1000 10000 COUT ( F) The input resistance of the fixed gain version is typically 20kΩ. The following curve shows the limits of the roll off frequency depending on the min. and max. values of Rin: Ω Ω DECOUPLING CAPACITOR CB The internal bias voltage at Vcc/2 is decoupled with the external capacitor CB. The TS486 and TS487 have a specified Power Supply Rejection Ratio parameter with CB = 1µF. A higher value of CB improves the PSRR, for example, a 4.7µF improves the PSRR by 15dB at 200Hz (please, refer to fig. 76 "PSRR vs Bypass Capacitor"). POP PRECAUTIONS Ω LOW FREQUENCY ROLL OFF WITH OUTPUT CAPACITORS The DC voltage on the outputs of the TS486/487 is blocked by the output capacitors COUT1 and COUT2 . Each output capacitor COUT in series with the resistance of the load RL is equivalent to a first order high pass filter. Assuming that Fmin is the lowest frequency to be amplified (with a 3dB attenuation), the minimum value of COUT is: COUT > 1 / (2*π*Fmin*RL) The following curve gives directly the low roll-off 28/31 Generally headphones are connected using a connector as a jack. To prevent a pop in the headphones when plugged in the jack, a resistor should be connected in parallel with each headphone output. This allows the capacitors Cout to be charged even when no headphone is plugged. A resistor of 1 kΩ is high enough to be a negligible load, and low enough to charge the capacitors Cout in less than one second. TS486-TS487 PACKAGE MECHANICAL DATA SO-8 MECHANICAL DATA DIM. mm. MIN. TYP inch MAX. MIN. TYP. MAX. A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.04 0.010 A2 1.10 1.65 0.043 0.065 B 0.33 0.51 0.013 0.020 C 0.19 0.25 0.007 0.010 D 4.80 5.00 0.189 0.197 E 3.80 4.00 0.150 0.157 e 1.27 0.050 H 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k ddd 8˚ (max.) 0.1 0.04 0016023/C 29/31 TS486-TS487 PACKAGE MECHANICAL DATA 30/31 TS486-TS487 PACKAGE MECHANICAL DATA Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics © 2003 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom http://www.st.com 31/31