STMICROELECTRONICS TS486

TS486
TS487
100mW STEREO HEADPHONE AMPLIFIER WITH STANDBY
MODE
■ OPERATING FROM Vcc=2V to 5.5V
■ STANDBY MODE ACTIVE LOW (TS486) or
HIGH (TS487)
■ OUTPUT POWER: 102mW @5V, 38mW
@3.3V into 16Ω with 0.1% THD+N max (1kHz)
■ LOW CURRENT CONSUMPTION: 2.5mA max
■ High Signal-to-Noise ratio: 103dB(A) at 5V
■ High Crosstalk immunity: 83dB (F=1kHz)
■ PSRR: 58 dB (F=1kHz), inputs grounded
■ ON/OFF click reduction circuitry
■ Unity-Gain Stable
■ SHORT CIRCUIT LIMITATION
■ Available in SO8, MiniSO8 & DFN 3x3mm
PIN CONNECTIONS (top view)
TS486IDT: SO8, TS486IST, TS486-1IST,
TS486-2IST, TS486-4IST: MiniSO8
OUT (1)
1
8
VCC
VIN (1)
2
7
OUT (2)
BYPASS
3
6
GND
4
5
VIN (2)
SHUTDOWN
DESCRIPTION
The TS486/7 is a dual audio power amplifier capable of driving, in single-ended mode, either a 16 or
a 32Ω stereo headset.
Capable of descending to low voltages, it delivers
up to 90mW per channel (into 16Ω loads) of continuous average power with 0.3% THD+N in the
audio bandwitdth from a 5V power supply.
An externally-controlled standby mode reduces
the supply current to 10nA (typ.). The unity gain
stable TS486/7 can be configured by external
gain-setting resistors or used in a fixed gain version.
TS486-IQT, TS486-1IQT, TS486-2IQT, TS486-4IQT:
DFN8
1
8
Vcc
VIN (1)
2
7
OUT (2)
BYPASS
3
6
VIN (2)
GND
4
5
SHUTDOWN
OUT
(1)
TS487IDT: SO8, TS487IST, TS487-1IST,
TS487-2IST, TS487-4IST: MiniSO8
APPLICATIONS
■ Headphone Amplifier
■ Mobile phone, PDA, computer motherboard
■ High end TV, portable audio player
ORDER CODE
Part
Temperature Package
Number
Range: I
D S Q
TS486
TS487
TS486
TS486-1
TS486-2
TS486-4
TS487
TS487-1
TS487-2
TS487-4
•
•
-40, +85°C
•
tba
tba
tba
•
tba
tba
tba
•
tba
tba
tba
•
tba
tba
tba
Gain
OUT (1)
1
8
VCC
VIN (1)
2
7
OUT (2)
BYPASS
3
6
GND
4
5
VIN (2)
SHUTDOWN
Marking
external TS486I
external TS487I
external K86A
x1/0dB
K86B
x2/6dB
K86C
x4/12dB K86D
external K87A
x1/0dB
K87B
x2/6dB
K87C
x4/12dB K87D
TS487-IQT,
TS487-1IQT, TS487-2IQT, TS487-4IQT: DFN8
OUT (1)
1
8
Vcc
VIN (1)
2
7
OUT (2)
BYPASS
3
6
VIN (2)
GND
4
5
SHUTDOWN
MiniSO & DFN only available in Tape & Reel with T suffix,
SO is available in Tube (D) and in Tape & Reel (DT)
June 2003
1/31
TS486-TS487
ABSOLUTE MAXIMUM RATINGS
Symbol
VCC
Vi
Tstg
Tj
Rthja
Pd
Parameter
Supply voltage
1)
Value
Unit
6
V
-0.3v to VCC +0.3v
V
-65 to +150
°C
Maximum Junction Temperature
150
°C
Thermal Resistance Junction to Ambient
SO8
MiniSO8
DFN8
175
215
70
Power Dissipation 2)
SO8
MiniSO8
DFN8
0.71
0.58
1.79
Input Voltage
Storage Temperature
Human Body Model (pin to pin): TS486, TS4873)
ESD
Machine Model - 220pF - 240pF (pin to pin)
Latch-up Latch-up Immunity (All pins)
Lead Temperature (soldering, 10sec)
ESD
Output Short-Circuit to Vcc or GND
°C/W
W
1.5
kV
100
200
250
V
mA
°C
continous 4)
1. All voltage values are measured with respect to the ground pin.
2. Pd has been calculated with Tamb = 25°C, Tjunction = 150°C.
3. TS487 stands 1.5KV on all pins except standby pin which stands 1KV.
4. Attention must be paid to continous power dissipation (VDD x 300mA). Exposure of the IC to a short circuit for an extended time period is
dramatically reducing product life expectancy.
OPERATING CONDITIONS
Symbol
VCC
Supply Voltage
RL
Load Resistor
Toper
CL
VSTB
1.
2.
Parameter
Operating Free Air Temperature Range
Load Capacitor
RL = 16 to 100Ω
RL > 100Ω
Standby Voltage Input
TS486 ACTIVE / TS487 in STANDBY
TS486 in STANDBY / TS487 ACTIVE
Value
Unit
2 to 5.5
V
≥ 16
Ω
-40 to + 85
°C
400
100
pF
1.5 ≤ VSTB ≤ VCC
GND ≤ VSTB ≤ 0.4 1)
Thermal Resistance Junction to Ambient
SO8
150
RTHJA
MiniSO8
190
41
DFN82)
The minimum current consumption (ISTANDBY) is guaranteed at GND (TS486) or VCC (TS487) for the whole temperature range.
When mounted on a 4-layer PCB.
2/31
V
°C/W
TS486-TS487
FIXED GAIN VERSION SPECIFIC ELECTRICAL CHARACTERISTICS
VCC from +5V to +2V, GND = 0V, Tamb = 25°C (unless otherwise specified)
Symbol
RIN 1,2
Parameter
Min.
Input Resistance 1)
20
Gain value for Gain TS486/TS487-1
G
1.
Typ.
Max.
Unit
kΩ
0dB
Gain value for Gain TS486/TS487-2
6dB
Gain value for Gain TS486/TS487-4
12dB
dB
See figure 30 to establish the value of Cin vs. -3dB cut off frequency.
APPLICATION COMPONENTS INFORMATION
Components
Functional Description
RIN1,2
Inverting input resistor which sets the closed loop gain in conjunction with RFEED. This resistor also
forms a high pass filter with CIN (fc = 1 / (2 x Pi x RIN x CIN)) . Not needed in fixed gain versions.
CIN1,2
Input coupling capacitor which blocks the DC voltage at the amplifier’s input terminal.
RFEED1,2
Feedback resistor which sets the closed loop gain in conjunction with RIN.
AV= Closed Loop Gain= -RFEED/RIN. Not needed in fixed gain versions.
CS
Supply Bypass capacitor which provides power supply filtering.
CB
Bypass capacitor which provides half supply filtering.
COUT1,2
Output coupling capacitor which blocks the DC voltage at the load input terminal.
This capacitor also forms a high pass filter with RL (fc = 1 / (2 x Pi x RL x COUT )).
TYPICAL APPLICATION SCHEMATICS
3/31
TS486-TS487
ELECTRICAL CHARACTERISTICS
VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise specified)
Symbol
Typ.
Max.
1.8
2.5
Standby Current
No input signal, VSTANDBY=GND for TS486, RL=32Ω
No input signal, VSTANDBY=Vcc for TS487, RL=32Ω
10
1000
VIO
Input Offset Voltage (VICM = VCC/2)
1
IIB
Input Bias Current (VICM = VCC/2) 1)
90
PO
Output Power
THD+N
THD+N
THD+N
THD+N
ICC
ISTANDBY
THD + N
Parameter
Supply Current
No input signal, no load
=
=
=
=
0.1% Max, F = 1kHz, RL = 32Ω
1% Max, F = 1kHz, RL = 32Ω
0.1% Max, F = 1kHz, RL = 16Ω
1% Max, F = 1kHz, RL = 16Ω
60
95
Total Harmonic Distortion + Noise (Av=-1)
RL = 32Ω, Pout = 60mW, 20Hz ≤ F ≤ 20kHz
RL = 16Ω, Pout = 90mW, 20Hz ≤ F ≤ 20kHz
Unit
mA
nA
mV
200
64
65
102
108
nA
mW
0.3
0.3
%
Power Supply Rejection Ratio, inputs grounded 2)
(Av=-1), RL>=16Ω, CB=1µF, F = 1kHz, Vripple = 200mVpp
53
58
dB
IO
Max Output Current
THD +N ≤ 1%, RL = 16Ω connected between out and VCC/2
106
115
mA
VO
Output Swing
VOL : RL = 32Ω
VOH : RL = 32Ω
VOL : RL = 16Ω
VOH : RL = 16Ω
4.45
PSRR
SNR
Crosstalk
CI
GBP
SR
Signal-to-Noise Ratio (A weighted, Av=-1) 2)
(RL = 32Ω, THD +N < 0.4%, 20Hz ≤ F ≤ 20kHz)
Channel Separation, RL = 32Ω, Av=-1
F = 1kHz
F = 20Hz to 20kHz
Channel Separation, RL = 16Ω, Av=-1
F = 1kHz
F = 20Hz to 20kHz
Input Capacitance
4.2
0.45
4.52
0.6
4.35
80
103
83
79
0.5
V
0.7
dB
dB
80
72
1
pF
Gain Bandwidth Product (RL = 32Ω)
1.1
MHz
Slew Rate, Unity Gain Inverting (RL = 16Ω)
0.4
V/µs
1. Only for external gain version.
2. Guaranteed by design and evaluation.
4/31
Min.
TS486-TS487
ELECTRICAL CHARACTERISTICS
VCC = +3.3V, GND = 0V, Tamb = 25°C (unless otherwise specified) 1)
Symbol
Typ.
Max.
1.8
2.5
Standby Current
No input signal, VSTANDBY=GND for TS486, RL=32Ω
No input signal, VSTANDBY=Vcc for TS487, RL=32Ω
10
1000
VIO
Input Offset Voltage (VICM = VCC/2)
1
IIB
Input Bias Current (VICM = VCC/2) 2)
90
PO
Output Power
THD+N
THD+N
THD+N
THD+N
ICC
ISTANDBY
THD + N
Supply Current
No input signal, no load
=
=
=
=
0.1% Max, F = 1kHz, RL = 32Ω
1% Max, F = 1kHz, RL = 32Ω
0.1% Max, F = 1kHz, RL = 16Ω
1% Max, F = 1kHz, RL = 16Ω
23
36
Total Harmonic Distortion + Noise (Av=-1)
RL = 32Ω, Pout = 16mW, 20Hz ≤ F ≤ 20kHz
RL = 16Ω, Pout = 35mW, 20Hz ≤ F ≤ 20kHz
Unit
mA
nA
mV
200
26
28
38
42
nA
mW
0.3
0.3
%
53
58
dB
IO
Max Output Current
THD +N ≤ 1%, RL = 16Ω connected between out and VCC/2
64
75
mA
VO
Output Swing
VOL : RL = 32Ω
VOH : RL = 32Ω
VOL : RL = 16Ω
VOH : RL = 16Ω
SNR
Crosstalk
CI
GBP
SR
2.
3.
Min.
Power Supply Rejection Ratio, inputs grounded 3)
(Av=-1), RL>=16Ω, CB=1µF, F = 1kHz, Vripple = 200mVpp
PSRR
1.
Parameter
Signal-to-Noise Ratio (A weighted, Av=-1) 3)
(RL = 32Ω, THD +N < 0.4%, 20Hz ≤ F ≤ 20kHz)
Channel Separation, RL = 32Ω, Av=-1
F = 1kHz
F = 20Hz to 20kHz
Channel Separation, RL = 16Ω, Av=-1
F = 1kHz
F = 20Hz to 20kHz
Input Capacitance
2.68
0.3
3
0.45
2.85
80
98
2.85
80
76
0.38
V
0.52
dB
dB
77
69
1
pF
Gain Bandwidth Product (RL = 32Ω)
1.1
MHz
Slew Rate, Unity Gain Inverting (RL = 16Ω)
0.4
V/µs
All electrical values are guaranted with correlation measurements at 2V and 5V.
Only for external gain version.
Guaranteed by design and evaluation.
5/31
TS486-TS487
ELECTRICAL CHARACTERISTICS
VCC = +2.5V, GND = 0V, Tamb = 25°C (unless otherwise specified)1)
Symbol
ICC
ISTANDBY
Supply Current
No input signal, no load
Standby Current
No input signal,
No input signal,
VSTANDBY=GND for TS486, RL=32Ω
VSTANDBY=Vcc for TS487, RL=32Ω
Max.
1.7
2.5
10
1000
1
IIB
Input Bias Current (VICM = VCC/2) 2)
90
PO
Output Power
THD+N
THD+N
THD+N
THD+N
=
=
=
=
0.1% Max, F = 1kHz, RL = 32Ω
1% Max, F = 1kHz, RL = 32Ω
0.1% Max, F = 1kHz, RL = 16Ω
1% Max, F = 1kHz, RL = 16Ω
12.5
17.5
Total Harmonic Distortion + Noise (Av=-1)
RL = 32Ω, Pout = 10mW, 20Hz ≤ F ≤ 20kHz
RL = 16Ω, Pout = 16mW, 20Hz ≤ F ≤ 20kHz
Unit
mA
nA
mV
200
13
14
21
22
nA
mW
0.3
0.3
%
Power Supply Rejection Ratio, inputs grounded 3)
(Av=-1), RL>=16Ω, CB=1µF, F = 1kHz, Vripple = 200mVpp
53
58
dB
IO
Max Output Current
THD +N ≤ 1%, RL = 16Ω connected between out and VCC/2
45
56
mA
VO
Output Swing
VOL : RL = 32Ω
VOH : RL = 32Ω
VOL : RL = 16Ω
VOH : RL = 16Ω
SNR
Crosstalk
CI
GBP
SR
Signal-to-Noise Ratio (A weighted, Av=-1) 3)
(RL = 32Ω, THD +N < 0.4%, 20Hz ≤ F ≤ 20kHz)
Channel Separation, RL = 32Ω, Av=-1
F = 1kHz
F = 20Hz to 20kHz
Channel Separation, RL = 16Ω, Av=-1
F = 1kHz
F = 20Hz to 20kHz
Input Capacitance
1.97
0.25
2.25
0.35
2.15
80
95
2.14
80
76
0.32
V
0.45
dB
dB
77
69
1
pF
Gain Bandwidth Product (RL = 32Ω)
1.1
MHz
Slew Rate, Unity Gain Inverting (RL = 16Ω)
0.4
V/µs
All electrical values are guaranted with correlation measurements at 2V and 5V.
Only for external gain version.
Guaranteed by design and evaluation.
6/31
Typ.
Input Offset Voltage (VICM = VCC/2)
PSRR
2.
3.
Min.
VIO
THD + N
1.
Parameter
TS486-TS487
ELECTRICAL CHARACTERISTICS
VCC = +2V, GND = 0V, Tamb = 25°C (unless otherwise specified)
Symbol
Typ.
Max.
1.7
2.5
Standby Current
No input signal, VSTANDBY=GND for TS486, RL=32Ω
No input signal, VSTANDBY=Vcc for TS487, RL=32Ω
10
1000
VIO
Input Offset Voltage (VICM = VCC/2)
1
IIB
Input Bias Current (VICM = VCC/2) 1)
90
PO
Output Power
THD+N
THD+N
THD+N
THD+N
ICC
ISTANDBY
THD + N
Parameter
Min.
Supply Current
No input signal, no load
=
=
=
=
0.1% Max, F = 1kHz, RL = 32Ω
1% Max, F = 1kHz, RL = 32Ω
0.3% Max, F = 1kHz, RL = 16Ω
1% Max, F = 1kHz, RL = 16Ω
7
9.5
Total Harmonic Distortion + Noise (Av=-1)
RL = 32Ω, Pout = 6.5mW, 20Hz ≤ F ≤ 20kHz
RL = 16Ω, Pout = 8mW, 20Hz ≤ F ≤ 20kHz
Unit
mA
nA
mV
200
8
9
12
13
nA
mW
0.3
0.3
%
Power Supply Rejection Ratio, inputs grounded 2)
(Av=-1), RL>=16Ω, CB=1µF, F = 1kHz, Vripple = 200mVpp
52
57
dB
IO
Max Output Current
THD +N ≤ 1%, RL = 16Ω connected between out and VCC/2
33
41
mA
VO
Output Swing
VOL : RL = 32Ω
VOH : RL = 32Ω
VOL : RL = 16Ω
VOH : RL = 16Ω
PSRR
SNR
Crosstalk
CI
GBP
SR
Signal-to-Noise Ratio (A weighted, Av=-1) 2)
(RL = 32Ω, THD +N < 0.4%, 20Hz ≤ F ≤ 20kHz)
Channel Separation, RL = 32Ω, Av=-1
F = 1kHz
F = 20Hz to 20kHz
Channel Separation, RL = 16Ω, Av=-1
F = 1kHz
F = 20Hz to 20kHz
Input Capacitance
1.53
0.24
1.73
0.33
1.63
80
93
1.67
80
76
0.29
V
0.41
dB
dB
77
69
1
pF
Gain Bandwidth Product (RL = 32Ω)
1.1
MHz
Slew Rate, Unity Gain Inverting (RL = 16Ω)
0.4
V/µs
1. Only for external gain version.
2. Guaranteed by design and evaluation.
7/31
TS486-TS487
Index of Graphs
Description
Figure
Page
1 to 10
9 to 10
11
10
Current Consumption vs Standby Voltage
12 to 17
10 to 11
Output Power vs Power Supply Voltage
18 to19
11 to 12
Output Power vs Load Resistor
20 to 23
12
Power Dissipation vs Output Power
24 to 27
12 to 13
Power Derating vs Ambiant Temperature
28
13
Output Voltage Swing vs Supply Voltage
29
13
Low Frequency Cut Off vs Input Capacitor for fixed gain versions
30
13
THD + N vs Output Power
31 to 39
14 to 15
THD + N vs Frequency
40 to 42
15
Crosstalk vs Frequency
43 to 48
16
Signal to Noise Ratio vs Power Supply Voltage
49 to 50
17
PSRR vs Frequency
51 to 56
17 to 18
THD + N vs Output Power
57 to 65
19 to 20
THD + N vs Frequency
66 to 68
20
Crosstalk vs Frequency
69 to 72
21
Signal to Noise Ratio vs Power Supply Voltage
73 to 74
21
PSRR vs Frequency
75 to 79
22
THD + N vs Output Power
80 to 88
22 to 24
THD + N vs Frequency
89 to 91
24
Crosstalk vs Frequency
92 to 95
24
Signal to Noise Ratio vs Power Supply Voltage
96 to 97
25
PSRR vs Frequency
98 to 102
26
Common Curves
Open Loop Gain and Phase vs Frequency
Current Consumption vs Power Supply Voltage
Curves With 0dB Gain Setting (Av=-1)
Curves With 6dB Gain Setting (Av=-2)
Curves With 12dB Gain Setting (Av=-4)
8/31
TS486-TS487
Fig. 1: Open Loop Gain and Phase vs
Frequency
Fig. 2: Open Loop Gain and Phase vs
Frequency
180
60
100
Phase
80
20
60
0
40
100
Phase
80
20
60
0
40
20
-20
40
20
-20
0
-40
0.1
1
10
100
Frequency (kHz)
1000
0
-20
10000
-40
0.1
Fig. 3: Open Loop Gain and Phase vs
Frequency
1
10
100
Frequency (kHz)
1000
-20
10000
Fig. 4: Open Loop Gain and Phase vs
Frequency
180
Vcc = 2V
ZL = 16Ω
Tamb = 25°C
80
Gain
60
180
Vcc = 2V
ZL = 16Ω+400pF
Tamb = 25°C
80
160
Gain
140
60
100
Phase
80
20
60
0
40
20
80
20
60
40
20
-20
0
1
10
100
Frequency (kHz)
1000
0
-20
10000
-40
0.1
Fig. 5: Open Loop Gain and Phase vs
Frequency
1
10
100
Frequency (kHz)
1000
-20
10000
Fig. 6: Open Loop Gain and Phase vs
Frequency
180
Vcc = 5V
ZL = 32Ω
Tamb = 25°C
80
Gain
60
180
Vcc = 5V
ZL = 32Ω+400pF
Tamb = 25°C
80
160
Gain
140
60
Phase
80
60
0
40
20
-20
40
1
10
100
Frequency (kHz)
1000
-20
10000
140
20
100
Phase
80
60
0
40
20
-20
0
-40
0.1
160
120
Gain (dB)
20
100
Phase (Deg)
Gain (dB)
120
40
140
100
Phase
0
40
-20
160
120
Gain (dB)
40
Phase (Deg)
Gain (dB)
120
-40
0.1
140
120
Gain (dB)
40
Phase (Deg)
Gain (dB)
120
160
Phase (Deg)
60
Gain
140
Phase (Deg)
Gain
180
Vcc = 5V
ZL = 16Ω+400pF
Tamb = 25°C
80
160
Phase (Deg)
Vcc = 5V
ZL = 16Ω
Tamb = 25°C
80
0
-40
0.1
1
10
100
Frequency (kHz)
1000
-20
10000
9/31
TS486-TS487
Fig. 7: Open Loop Gain and Phase vs
Frequency
Fig. 8: Open Loop Gain and Phase vs
Frequency
180
60
Gain
140
60
100
Phase
20
80
60
0
40
100
Phase
20
80
60
0
40
20
-20
40
20
-20
0
-40
0.1
1
10
100
Frequency (kHz)
0
-20
10000
1000
-40
0.1
Fig. 9: Open Loop Gain and Phase vs
Frequency
1
10
100
Frequency (kHz)
-20
10000
1000
Fig. 10: Open Loop Gain and Phase vs
Frequency
180
180
80
Vcc = 5V
RL = 600Ω
Tamb = 25°C
Gain
60
80
160
140
Vcc = 2V
RL = 600Ω
Tamb = 25°C
Gain
60
Phase
60
0
40
20
-20
Gain (dB)
20
80
Phase (Deg)
Gain (dB)
100
40
1
10
100
1000
Frequency (kHz)
10000
140
100
20
80
Phase
60
0
40
20
-20
0
0
-40
0.1
160
120
120
40
140
120
Gain (dB)
40
Phase (Deg)
Gain (dB)
120
160
-20
Fig. 11: Current Consumption vs Power Supply
Voltage
-40
0.1
1
10
100
Frequency (kHz)
1000
10000
-20
Fig. 12: Current Consumption vs Standby
Voltage
2.0
2.0
Ta=85°C
1.5
Ta=-40°C
1.0
0.5
0.0
0
1
2
3
Power Supply Voltage (V)
10/31
Current Consumption (mA)
Current Consumption (mA)
No load
Ta=25°C
4
Phase (Deg)
Gain
180
Vcc = 2V
ZL = 32Ω+400pF
Tamb = 25°C
80
160
5
1.5
Ta=85°C
Ta=25°C
1.0
Ta=-40°C
0.5
TS486
Vcc = 5V
No load
0.0
0
1
2
3
Standby Voltage (V)
4
5
Phase (Deg)
Vcc = 2V
ZL = 32Ω
Tamb = 25°C
80
TS486-TS487
Fig. 13: Current Consumption vs Standby
Voltage
Fig. 14: Current Consumption vs Standby
Voltage
2.0
2.0
Current Consumption (mA)
Current Consumption (mA)
Ta=85°C
1.5
Ta=85°C
Ta=25°C
1.0
Ta=-40°C
0.5
TS486
Vcc = 3.3V
No load
0.0
0
1
2
1.5
Ta=25°C
1.0
Ta=-40°C
0.5
TS486
Vcc = 2V
No load
0.0
3
0
1
Standby Voltage (V)
Fig. 15: Current Consumption vs Standby
Voltage
Fig. 16: Current Consumption vs Standby
Voltage
2.0
2.5
Ta=25°C
Ta=25°C
Current Consumption (mA)
Current Consumption (mA)
Ta=85°C
2.0
1.5
Ta=-40°C
1.0
0.5
0.0
TS487
Vcc = 5V
No load
0
1
2
3
4
1.5
Ta=85°C
0.5
TS487
Vcc = 3.3V
No load
0.0
5
Ta=-40°C
1.0
0
1
Standby Voltage (V)
200
Ta=85°C
1.5
150
Output power (mW)
Current Consumption (mA)
175
Ta=25°C
1.0
Ta=-40°C
1
Standby Voltage (V)
RL = 16Ω
F = 1kHz
BW < 125kHz
Tamb = 25°C
THD+N=1%
125
THD+N=10%
100
75
50
THD+N=0.1%
TS487
Vcc = 2V
No load
0
3
Fig. 18: Output Power vs Power Supply
Voltage
2.0
0.5
2
Standby Voltage (V)
Fig. 17: Current Consumption vs Standby
Voltage
0.0
2
Standby Voltage (V)
25
2
0
2.0
2.5
3.0
3.5
4.0
Vcc (V)
4.5
5.0
5.5
11/31
TS486-TS487
Fig. 20: Output Power vs Load Resistor
Fig. 19: Output Power vs Power Supply
Voltage
Vcc = 5V
F = 1kHz
BW < 125kHz
Tamb = 25°C
180
THD+N=1%
75
THD+N=10%
50
25
THD+N=1%
160
Output power (mW)
100
Output power (mW)
200
RL = 32Ω
F = 1kHz
BW < 125kHz
Tamb = 25°C
THD+N=0.1%
140
120
100
THD+N=10%
80
60
40
THD+N=0.1%
20
0
2.0
2.5
3.0
3.5
4.0
Vcc (V)
4.5
5.0
0
5.5
Fig. 21: Output Power vs Load Resistor
8
16
24
32
40
48
Load Resistance ( )
56
64
Fig. 22: Output Power vs Load Resistor
50
THD+N=1%
60
Output power (mW)
Vcc = 3.3V
F = 1kHz
BW < 125kHz
Tamb = 25°C
50
40
THD+N=10%
30
20
40
THD+N=1%
35
30
25
THD+N=10%
20
15
10
THD+N=0.1%
10
THD+N=0.1%
5
0
8
16
24
32
40
48
Load Resistance ( )
56
0
64
Fig. 23: Output Power vs Load Resistor
THD+N=1%
15
THD+N=10%
10
Power Dissipation (mW)
Vcc = 2V
F = 1kHz
BW < 125kHz
Tamb = 25°C
20
8
16
24
32
40
48
Load Resistance ( )
56
Vcc=5V
80 F=1kHz
THD+N<1%
RL=16Ω
60
40
RL=32Ω
20
5
THD+N=0.1%
0
12/31
0
8
16
24
32
40
48
Load Resistance ( )
56
64
Fig. 24: Power Dissipation vs Output Power
25
Output power (mW)
Vcc = 2.5V
F = 1kHz
BW < 125kHz
Tamb = 25°C
45
Output power (mW)
70
64
0
20
40
60
80
Output Power (mW)
100
TS486-TS487
Fig. 25: Power Dissipation vs Output Power
Fig. 26: Power Dissipation vs Output Power
Vcc=3.3V
F=1kHz
THD+N<1%
Power Dissipation (mW)
Power Dissipation (mW)
40
30
RL=16Ω
20
RL=32Ω
10
0
20
RL=16Ω
10
RL=32Ω
0
0
10
20
30
40
Vcc=2.5V
F=1kHz
THD+N<1%
0
5
10
15
20
Output Power (mW)
Output Power (mW)
Fig. 27: Power Dissipation vs Output Power
Fig. 28: Power Derating vs Ambiant
Temperature
Power Dissipation (mW)
15
Vcc=2V
F=1kHz
THD+N<1%
10
RL=16Ω
5
RL=32Ω
0
0
2
4
6
8
10
12
Output Power (mW)
Fig. 29: Output Voltage Swing vs Power Supply
Voltage
5.0
4.5
Tamb=25°C
Ω
4.0
VOH & VOL (V)
Fig. 30: Low Frequency Cut Off vs Input
Capacitor for fixed gain versions.
3.5
Ω
3.0
2.5
RL=32Ω
2.0
RL=16Ω
1.5
Ω
1.0
0.5
0.0
2.0
2.5
3.0
3.5
4.0
Power Supply Voltage (V)
4.5
5.0
13/31
TS486-TS487
Fig. 31: THD + N vs Output Power
Fig. 32: THD + N vs Output Power
10
RL = 16Ω
F = 20Hz
Av = -1
1 Cb = 1µF
BW < 22kHz
Tamb = 25°C
0.1
RL = 32Ω
F = 20Hz
Av = -1
1 Cb = 1µF
BW < 22kHz
Tamb = 25°C
THD + N (%)
THD + N (%)
10
Vcc=2V
Vcc=2.5V
Vcc=2V
0.1
Vcc=2.5V
0.01
0.01
Vcc=3.3V
1
Vcc=5V
Vcc=3.3V
10
Output Power (mW)
100
1
Fig. 33: THD + N vs Output Power
100
Fig. 34: THD + N vs Output Power
10
10
Vcc=2V
Vcc=2.5V
THD + N (%)
RL = 600Ω, F = 20Hz
Av = -1, Cb = 1µF
BW < 22kHz
Tamb = 25°C
1
THD + N (%)
Vcc=5V
10
Output Power (mW)
Vcc=3.3V
0.1
Vcc=5V
RL = 16Ω
F = 1kHz
Av = -1
1 Cb = 1µF
BW < 125kHz
Tamb = 25°C
0.1
Vcc=2V
Vcc=2.5V
0.01
0.01
1E-3
0.01
0.1
Output Voltage (Vrms)
Fig. 35: THD + N vs Output Power
Vcc=2V
1
Vcc=2.5V
THD + N (%)
THD + N (%)
100
10
RL = 32Ω
F = 1kHz
Av = -1
1
Cb = 1µF
BW < 125kHz
Tamb = 25°C
0.1
Vcc=2V
Vcc=3.3V
0.1
Vcc=5V
0.01
0.01
Vcc=2.5V
14/31
Vcc=5V
10
Output Power (mW)
Fig. 36: THD + N vs Output Power
10
1E-3
Vcc=3.3V
1
1
1
Vcc=3.3V
Vcc=5V
10
Output Power (mW)
100
RL = 600Ω, F = 1kHz
Av = -1, Cb = 1µF
BW < 125kHz, Tamb = 25°C
1E-3
0.01
0.1
Output Voltage (Vrms)
1
TS486-TS487
Fig. 37: THD + N vs Output Power
Fig. 38: THD + N vs Output Power
10
RL = 16Ω
F = 20kHz
Av = -1
Cb = 1µF
BW < 125kHz
1 Tamb = 25°C
THD + N (%)
THD + N (%)
10
Vcc=2V
Vcc=2.5V
RL = 32Ω
F = 20kHz
Av = -1
Cb = 1µF
BW < 125kHz
1 Tamb = 25°C
Vcc=2V
Vcc=2.5V
0.1
0.1
Vcc=3.3V
1
Vcc=5V
Vcc=3.3V
10
Output Power (mW)
100
Fig. 39: THD + N vs Output Power
1
RL=16Ω
Av=-1
Cb = 1µF
Bw < 125kHz
Tamb = 25°C
Vcc=2V
1
THD + N (%)
THD + N (%)
Vcc=2.5V
0.1
100
Vcc=2V, Po=7.5mW
0.1
Vcc=5V, Po=85mW
Vcc=3.3V
RL = 600Ω, F = 20kHz
Av = -1, Cb = 1µF
BW < 125kHz, Tamb = 25°C
1E-3
0.01
Vcc=5V
0.1
Output Voltage (Vrms)
0.01
20
1
Fig. 41: THD + N vs Frequency
100
1000
Frequency (Hz)
10000 20k
Fig. 42: THD + N vs Frequency
RL=600Ω
Av=-1
Cb = 1µF
0.1 Bw < 125kHz
Tamb = 25°C
RL=32Ω
Av=-1
Cb = 1µF
Bw < 125kHz
0.1 Tamb=25°C
THD + N (%)
THD + N (%)
10
Output Power (mW)
Fig. 40: THD + N vs Frequency
10
0.01
Vcc=5V
Vcc=2V, Po=6mW
Vcc=5V, Vo=1.3Vrms
Vcc=2V, Vo=0.5Vrms
0.01
Vcc=5V, Po=55mW
0.01
20
100
1000
Frequency (Hz)
10000 20k
1E-3
20
100
1000
Frequency (Hz)
10000 20k
15/31
TS486-TS487
Fig. 43: Crosstalk vs Frequency
Fig. 44: Crosstalk vs Frequency
60
ChA to ChB
ChB to ChA
RL=16Ω
Vcc=5V
Pout=85mW
Av=-1
Cb = 1µF
Bw < 125kHz
Tamb=25°C
40
20
0
ChB to ChA
80
20
100
1000
Frequency (Hz)
Crosstalk (dB)
Crosstalk (dB)
80
RL=16Ω
Vcc=2V
Pout=7.5mW
Av=-1
Cb = 1µF
Bw < 125kHz
Tamb=25°C
40
20
0
10000 20k
Fig. 45: Crosstalk vs Frequency
ChA to ChB
60
20
100
1000
Frequency (Hz)
10000 20k
Fig. 46: Crosstalk vs Frequency
80
80
RL=32Ω
Vcc=5V
Pout=55mW
Av=-1
Cb = 1µF
Bw < 125kHz
Tamb=25°C
40
20
0
20
100
1000
Frequency (Hz)
Crosstalk (dB)
Crosstalk (dB)
ChA to ChB
ChB to ChA
60
ChB to ChA
RL=32Ω
Vcc=2V
Pout=6mW
Av=-1
Cb = 1µF
Bw < 125kHz
Tamb=25°C
40
20
0
10000 20k
Fig. 47: Crosstalk vs Frequency
ChA to ChB
60
20
100
1000
Frequency (Hz)
10000 20k
Fig. 48: Crosstalk vs Frequency
80
80
Cb = 1µF
Cb = 4.7µF
40
20
0
16/31
20
100
1000
Frequency (Hz)
RL=16Ω
Vcc=5V
Pout=85mW
Av=-1
ChB to ChA
Bw < 125kHz
Tamb=25°C
10000 20k
Crosstalk (dB)
Crosstalk (dB)
Cb = 1µF
60
60
Cb = 4.7µF
RL=32Ω
Vcc=5V
Pout=55mW
Av=-1
ChB to ChA
Bw < 125kHz
Tamb=25°C
40
20
0
20
100
1000
Frequency (Hz)
10000 20k
TS486-TS487
Fig. 49: Signal to Noise Ratio vs Power Supply
Voltage with Unweighted Filter (20Hz to 20kHz)
102
Av = -1
Cb = 1µF
THD+N < 0.4%
Tamb = 25°C
104
RL=600Ω
Signal to Noise Ratio (dB)
Signal to Noise Ratio (dB)
104
Fig. 50: Signal to Noise Ratio vs Power Supply
Voltage with Weighted Filter Type A
100
98
96
RL=32Ω
94
RL=16Ω
92
90
2.0
2.5
3.0
102
100
98
RL=32Ω
96
94
RL=16Ω
92
3.5
4.0
4.5
90
2.0
5.0
2.5
Power Supply Voltage (V)
4.5
5.0
-30
-20
Vcc = 2V
-40
Vripple = 200mVpp
Av = -1
Input = grounded
Vcc = 5V
RL >= 16Ω
Tamb = 25°C
-10
PSRR (dB)
-20
PSRR (dB)
4.0
0
Vripple = 200mVpp
Av = -1
Input = grounded
Cb = 1µF
RL >= 16Ω
Tamb = 25°C
-10
-50
-60
-30
-40
Cb = 1µF
-50
-60
Vcc = 5V, 3.3V & 2.5V
100
-70
1000
10000
Frequency (Hz)
-80
100000
Fig. 53: PSRR vs Input Capacitor
Cb = 2.2µF
Cb = 4.7µF
100
1000
10000
Frequency (Hz)
100000
Fig. 54: PSRR vs Output Capacitor
0
0
-20
Cin = 1µF, 220nF
-30
Vripple = 200mVpp
Av = -1, Vcc = 5V
Input = grounded
Cb = 1µF, Rin = 20kΩ
RL >= 16Ω
Tamb = 25°C
-10
-20
PSRR (dB)
-10
PSRR (dB)
3.5
Fig. 52: PSRR vs Bypass Capacitor
0
-80
3.0
Power Supply Voltage (V)
Fig. 51: PSRR vs Power Supply Voltage
-70
RL=600Ω
Av = -1
Cb = 1µF
THD+N < 0.4%
Tamb = 25°C
-40
-50
Cout = 470µF
-30
-40
-50
-60
-60
Vripple = 200mVpp
Av = -1, Vcc = 5V
Input = grounded
Cb = 1µF, RL = 16Ω
RL >= 16Ω
Tamb = 25°C
Cout = 220µF
-70
Cin = 100nF
-70
100
1000
10000
Frequency (Hz)
100000
-80
100
1000
10000
Frequency (Hz)
100000
17/31
TS486-TS487
Fig. 55: PSRR vs Output Capacitor
Fig. 56: PSRR vs Power Supply Voltage
0
0
PSRR (dB)
-20
Cout = 470µF
-30
Vripple = 200mVpp
Av = -1, Vcc = 5V
Input = grounded
Cb = 1µF, RL = 32Ω
RL >= 16Ω
Tamb = 25°C
-10
-20
PSRR (dB)
-10
-40
-50
-60
18/31
-50
-70
-80
100
1000
10000
Frequency (Hz)
Vcc = 2V
-40
-60
Cout = 100µF
-70
-80
-30
Vripple = 200mVpp
Av = -1
Input = floating
Cb = 1µF
RL >= 16Ω
Tamb = 25°C
100000
Vcc = 5V, 3.3V & 2.5V
100
1000
10000
Frequency (Hz)
100000
TS486-TS487
Fig. 57: THD + N vs Output Power
Fig. 58: THD + N vs Output Power
10
RL = 16Ω
F = 20Hz
Av = -2
1 Cb = 1µF
BW < 22kHz
Tamb = 25°C
0.1
RL = 32Ω
F = 20Hz
Av = -2
1 Cb = 1µF
BW < 22kHz
Tamb = 25°C
THD + N (%)
THD + N (%)
10
Vcc=2V
Vcc=2.5V
Vcc=2V
0.1
Vcc=2.5V
0.01
Vcc=3.3V
1
0.01
Vcc=5V
10
Output Power (mW)
100
Fig. 59: THD + N vs Output Power
100
10
RL = 600Ω, F = 20Hz
Av = -2, Cb = 1µF
BW < 22kHz
Tamb = 25°C
Vcc=2V
Vcc=2.5V
THD + N (%)
THD + N (%)
Vcc=5V
10
Output Power (mW)
Fig. 60: THD + N vs Output Power
10
1
Vcc=3.3V
1
Vcc=3.3V
0.1
Vcc=5V
RL = 16Ω
F = 1kHz
Av = -2
1 Cb = 1µF
BW < 125kHz
Tamb = 25°C
0.1
Vcc=2V
Vcc=2.5V
0.01
0.01
1E-3
0.01
0.1
Output Voltage (Vrms)
Fig. 61: THD + N vs Output Power
Vcc=5V
10
Output Power (mW)
100
Fig. 62: THD + N vs Output Power
10
10
RL = 32Ω
F = 1kHz
Av = -2
1 Cb = 1µF
BW < 125kHz
Tamb = 25°C
Vcc=2V
1
Vcc=2.5V
THD + N (%)
THD + N (%)
Vcc=3.3V
1
1
Vcc=2V
0.1
Vcc=2.5V
0.01
Vcc=5V
0.01
Vcc=3.3V
1
Vcc=3.3V
0.1
Vcc=5V
10
Output Power (mW)
100
RL = 600Ω, F = 1kHz
Av = -2, Cb = 1µF
BW < 125kHz, Tamb = 25°C
1E-3
0.01
0.1
Output Voltage (Vrms)
1
19/31
TS486-TS487
Fig. 63: THD + N vs Output Power
Fig. 64: THD + N vs Output Power
10
RL = 16Ω
F = 20kHz
Av = -2
Cb = 1µF
BW < 125kHz
1 Tamb = 25°C
THD + N (%)
THD + N (%)
10
Vcc=2V
Vcc=2.5V
RL = 32Ω
F = 20kHz
Av = -2
Cb = 1µF
BW < 125kHz
1 Tamb = 25°C
Vcc=2V
0.1
0.1
Vcc=3.3V
1
10
Output Power (mW)
100
Fig. 65: THD + N vs Output Power
1
RL=16Ω
Av=-2
Cb = 1µF
Bw < 125kHz
Tamb = 25°C
Vcc=2V
1
THD + N (%)
THD + N (%)
Vcc=2.5V
0.1
100
Vcc=2V, Po=7.5mW
0.1
Vcc=3.3V
RL = 600Ω, F = 20kHz
Av = -2, Cb = 1µF
BW < 125kHz, Tamb = 25°C
1E-3
0.01
Vcc=5V
0.1
Output Voltage (Vrms)
Vcc=5V, Po=85mW
0.01
20
1
Fig. 67: THD + N vs Frequency
100
1000
Frequency (Hz)
10000 20k
Fig. 68: THD + N vs Frequency
RL=32Ω
Av=-2
Cb = 1µF
Bw < 125kHz
0.1 Tamb=25°C
THD + N (%)
THD + N (%)
Vcc=5V
10
Output Power (mW)
Fig. 66: THD + N vs Frequency
10
0.01
Vcc=3.3V
Vcc=2.5V
Vcc=5V
Vcc=2V, Po=6mW
RL=600Ω
Av=-2
Cb = 1µF
0.1 Bw < 125kHz
Tamb = 25°C
Vcc=5V, Vo=1.3Vrms
Vcc=2V, Vo=0.5Vrms
0.01
0.01
Vcc=5V, Po=55mW
20
20/31
100
1000
Frequency (Hz)
10000 20k
1E-3
20
100
1000
Frequency (Hz)
10000 20k
TS486-TS487
Fig. 70: Crosstalk vs Frequency
Fig. 69: Crosstalk vs Frequency
ChB to ChA
60
ChA to ChB
RL=16Ω
Vcc=5V
Pout=85mW
Av=-2
Cb = 1µF
Bw < 125kHz
Tamb=25°C
40
20
0
20
ChB to ChA
80
Crosstalk (dB)
Crosstalk (dB)
80
100
RL=16Ω
Vcc=2V
Pout=7.5mW
Av=-2
Cb = 1µF
Bw < 125kHz
Tamb=25°C
40
20
0
10000 20k
1000
Frequency (Hz)
ChA to ChB
60
100
20
1000
Frequency (Hz)
10000 20k
Fig. 72: Crosstalk vs Frequency
Fig. 71: Crosstalk vs Frequency
80
80
Crosstalk (dB)
Crosstalk (dB)
60
ChB to ChA
RL=32Ω
Vcc=5V
Pout=55mW
Av=-2
Cb = 1µF
Bw < 125kHz
Tamb=25°C
40
20
0
20
100
100
96
102
94
92
RL=32Ω
90
88
RL=16Ω
86
84
82
2.0
100
20
1000
Frequency (Hz)
10000 20k
104
RL=600Ω
Av = -2
Cb = 1µF
THD+N < 0.4%
Tamb = 25°C
RL=32Ω
Vcc=2V
Pout=6mW
Av=-2
Cb = 1µF
Bw < 125kHz
Tamb=25°C
Fig. 74: Signal to Noise Ratio vs Power Supply
Voltage with Weighted Filter Type A
Signal to Noise Ratio (dB)
98
0
10000 20k
1000
Frequency (Hz)
ChB to ChA
40
20
Fig. 73: Signal to Noise Ratio vs Power Supply
Voltage with Unweighted Filter (20Hz to 20kHz)
Signal to Noise Ratio (dB)
ChA to ChB
ChA to ChB
60
100
98
Av = -2
Cb = 1µF
THD+N < 0.4%
Tamb = 25°C
RL=600Ω
96
94
RL=32Ω
92
90
88
RL=16Ω
86
84
2.5
3.0
3.5
4.0
Power Supply Voltage (V)
4.5
5.0
82
2.0
2.5
3.0
3.5
4.0
4.5
5.0
Power Supply Voltage (V)
21/31
TS486-TS487
Fig. 75: PSRR vs Power Supply Voltage
Fig. 76: PSRR vs Bypass Capacitor
0
0
Vripple = 200mVpp
Av = -2
Input = grounded
Cb = 1µF
RL >= 16Ω
Tamb = 25°C
PSRR (dB)
-20
-30
-20
Vcc = 2V
-40
Vripple = 200mVpp
Av = -2
Input = grounded
Vcc = 5V
RL >= 16Ω
Tamb = 25°C
-10
PSRR (dB)
-10
-50
-30
-40
Cb = 1µF
-50
-60
-60
Vcc = 5V, 3.3V & 2.5V
-70
100
Cb = 4.7µF
1000
10000
Frequency (Hz)
-70
100000
Fig. 77: PSRR vs Input Capacitor
Cin = 1µF, 220nF
-30
Vripple = 200mVpp
Av = -2, Vcc = 5V
Input = grounded
Cb = 1µF, Rin = 20kΩ
RL >= 16Ω
Tamb = 25°C
Vripple = 200mVpp
Av = -2, Vcc = 5V
Input = grounded
Cb = 1µF, RL = 16Ω
RL >= 16Ω
Tamb = 25°C
-10
-20
PSRR (dB)
PSRR (dB)
-20
-40
-50
Cout = 470µF
-30
-40
-50
Cin = 100nF
-60
100
Cout = 220µF
-60
1000
10000
Frequency (Hz)
100000
Fig. 79: PSRR vs Output Capacitor
-70
100
1000
10000
Frequency (Hz)
100000
Fig. 80: THD + N vs Output Power
10
0
Cout = 470µF
-30
THD + N (%)
Vripple = 200mVpp
Av = -2, Vcc = 5V
Input = grounded
Cb = 1µF, RL = 32Ω
RL >= 16Ω
Tamb = 25°C
-10
PSRR (dB)
100000
0
-10
-20
1000
10000
Frequency (Hz)
Fig. 78: PSRR vs Output Capacitor
0
-70
Cb = 2.2µF
100
-40
RL = 16Ω
F = 20Hz
Av = -4
Cb = 1µF
1
BW < 22kHz
Tamb = 25°C
Vcc=2V
Vcc=2.5V
0.1
-50
Cout = 100µF
-60
Vcc=3.3V
-70
22/31
0.01
100
1000
10000
Frequency (Hz)
100000
1
Vcc=5V
10
Output Power (mW)
100
TS486-TS487
Fig. 81: THD + N vs Output Power
Fig. 82: THD + N vs Output Power
10
10
1
THD + N (%)
THD + N (%)
RL = 32Ω
F = 20Hz
Av = -4
Cb = 1µF
1 BW < 22kHz
Tamb = 25°C
Vcc=2V
0.1
0.01
Vcc=2.5V
Vcc=5V
10
Output Power (mW)
Vcc=2.5V
Vcc=3.3V
0.1
Vcc=5V
1E-3
0.01
100
Fig. 83: THD + N vs Output Power
0.1
Output Voltage (Vrms)
1
Fig. 84: THD + N vs Output Power
10
10
RL = 16Ω
F = 1kHz
Av = -4
Cb = 1µF
1 BW < 125kHz
Tamb = 25°C
RL = 32Ω
F = 1kHz
Av = -4
Cb = 1µF
1 BW < 125kHz
Tamb = 25°C
THD + N (%)
THD + N (%)
Vcc=2V
0.01
Vcc=3.3V
1
RL = 600Ω, F = 20Hz
Av = -4, Cb = 1µF
BW < 22kHz
Tamb = 25°C
Vcc=2V
Vcc=2.5V
0.1
Vcc=2V
0.1
Vcc=2.5V
Vcc=3.3V
0.01
1
Vcc=5V
Vcc=3.3V
10
Output Power (mW)
100
Fig. 85: THD + N vs Output Power
0.01
1
100
Fig. 86: THD + N vs Output Power
10
10
RL = 16Ω
F = 20kHz
Av = -4
Cb = 1µF
BW < 125kHz
Tamb = 25°C
Vcc=2V
1
THD + N (%)
Vcc=2.5V
THD + N (%)
Vcc=5V
10
Output Power (mW)
Vcc=3.3V
0.1
Vcc=2V
1
Vcc=2.5V
0.01
RL = 600Ω, F = 1kHz
Av = -4, Cb = 1µF
BW < 125kHz, Tamb = 25°C
1E-3
0.01
Vcc=5V
0.1
Output Voltage (Vrms)
Vcc=3.3V
1
0.1
1
Vcc=5V
10
Output Power (mW)
100
23/31
TS486-TS487
Fig. 87: THD + N vs Output Power
Fig. 88: THD + N vs Output Power
10
RL = 32Ω
F = 20kHz
Av = -4
Cb = 1µF
BW < 125kHz
Tamb = 25°C
1
Vcc=2V
1
Vcc=2.5V
THD + N (%)
THD + N (%)
10
Vcc=2V
0.1
Vcc=2.5V
0.01
0.1
Vcc=3.3V
1
Vcc=5V
10
Output Power (mW)
1E-3
0.01
100
Fig. 89: THD + N vs Frequency
Vcc=5V
0.1
Output Voltage (Vrms)
1
Fig. 90: THD + N vs Frequency
THD + N (%)
RL=16Ω
Av=-4
Cb = 1µF
Bw < 125kHz
Tamb = 25°C
THD + N (%)
Vcc=3.3V
RL = 600Ω, F = 20kHz
Av = -4, Cb = 1µF
BW < 125kHz, Tamb = 25°C
Vcc=2V, Po=7.5mW
0.1
RL=32Ω
Av=-4
Cb = 1µF
Bw < 125kHz
Tamb=25°C
0.1
Vcc=2V, Po=6mW
Vcc=5V, Po=85mW
Vcc=5V, Po=55mW
0.01
20
100
1000
Frequency (Hz)
10000 20k
100
1000
Frequency (Hz)
80
RL=600Ω
Av=-4
Cb = 1µF
0.1 Bw < 125kHz
Tamb = 25°C
ChB to ChA
60
Vcc=2V, Vo=0.5Vrms
0.01
ChA to ChB
RL=16Ω
Vcc=5V
Pout=85mW
Av=-4
Cb = 1µF
Bw < 125kHz
Tamb=25°C
40
20
Vcc=5V, Vo=1.3Vrms
1E-3
24/31
20
100
10000 20k
Fig. 92: Crosstalk vs Frequency
Crosstalk (dB)
THD + N (%)
Fig. 91: THD + N vs Frequency
20
1000
Frequency (Hz)
10000 20k
0
20
100
1000
Frequency (Hz)
10000 20k
TS486-TS487
Fig. 94: Crosstalk vs Frequency
Fig. 93: Crosstalk vs Frequency
80
ChB to ChA
80
ChA to ChB
RL=16Ω
Vcc=2V
Pout=7.5mW
Av=-4
Cb = 1µF
Bw < 125kHz
Tamb=25°C
40
20
0
Crosstalk (dB)
Crosstalk (dB)
60
20
100
1000
Frequency (Hz)
ChA to ChB
60
ChB to ChA
RL=32Ω
Vcc=5V
Pout=55mW
Av=-4
Cb = 1µF
Bw < 125kHz
Tamb=25°C
40
20
0
10000 20k
20
100
Fig. 96: Signal to Noise Ratio vs Power Supply
Voltage with Unweighted Filter (20Hz to 20kHz)
Fig. 95: Crosstalk vs Frequency
100
80
Av = -4
Cb = 1µF
96 THD+N < 0.4%
Tamb = 25°C
94
Crosstalk (dB)
60
Signal to Noise Ratio (dB)
98
ChA to ChB
ChB to ChA
RL=32Ω
Vcc=2V
Pout=6mW
Av=-4
Cb = 1µF
Bw < 125kHz
Tamb=25°C
40
20
0
20
100
1000
Frequency (Hz)
RL=32Ω
86
84
RL=16Ω
80
2.0
2.5
3.0
3.5
4.0
4.5
5.0
Power Supply Voltage (V)
Fig. 98: PSRR vs Power Supply Voltage
RL=600Ω
Vripple = 200mVpp
Av = -4
Input = grounded
Cb = 1µF
RL >= 16Ω
Tamb = 25°C
PSRR (dB)
-10
92
90
88
RL=32Ω
86
80
2.0
88
0
Av = -4
Cb = 1µF
96 THD+N < 0.4%
Tamb = 25°C
94
98
-20
-30
Vcc = 2V
-40
RL=16Ω
82
90
10000 20k
100
84
RL=600Ω
92
82
Fig. 97: Signal to Noise Ratio vs Power Supply
Voltage with Weighted Filter Type A
Signal to Noise Ratio (dB)
10000 20k
1000
Frequency (Hz)
-50
Vcc = 5V, 3.3V & 2.5V
2.5
3.0
3.5
4.0
Power Supply Voltage (V)
4.5
5.0
-60
100
1000
10000
Frequency (Hz)
100000
25/31
TS486-TS487
Fig. 99: PSRR vs Input Capacitor
Fig. 100: PSRR vs Bypass Capacitor
0
0
Cin = 1µF, 220nF
-20
Vripple = 200mVpp
Av = -4
Input = grounded
Vcc = 5V
RL >= 16Ω
Tamb = 25°C
-10
-20
PSRR (dB)
PSRR (dB)
-10
Vripple = 200mVpp
Av = -4, Vcc = 5V
Input = grounded
Cb = 1µF, Rin = 20kΩ
RL >= 16Ω
Tamb = 25°C
-30
-30
-40
Cb = 1µF
-40
-50
-50
Cin = 100nF
-60
100
-60
1000
10000
Frequency (Hz)
Fig. 101: PSRR vs Output Capacitor
100
Cout = 470µF
-20
Vripple = 200mVpp
Av = -4, Vcc = 5V
Input = grounded
Cb = 1µF, RL = 16Ω
RL >= 16Ω
Tamb = 25°C
-10
PSRR (dB)
PSRR (dB)
100000
0
-10
-30
Cout = 470µF
-20
Vripple = 200mVpp
Av = -4, Vcc = 5V
Input = grounded
Cb = 1µF, RL = 32Ω
RL >= 16Ω
Tamb = 25°C
-30
-40
-40
-50
-50
26/31
Cb = 2.2µF
1000
10000
Frequency (Hz)
Fig. 102: PSRR vs Output Capacitor
0
-60
Cb = 4.7µF
100000
Cout = 220µF
Cout = 100µF
-60
100
1000
10000
Frequency (Hz)
100000
100
1000
10000
Frequency (Hz)
100000
TS486-TS487
APPLICATION NOTE:
TS486/487 GENERAL DESCRIPTION
GaindB = 20 Log(RFEED/R IN)
TS486/487 is a family of dual audio amplifiers able
to drive 16Ω or 32Ω headsets. Working in the 2V to
5.5V supply voltage range, they deliver 100mW at
5V and 12mW at 2V in a 16Ω load. An internal
output current limitation, offers protection against
short-circuits at the output over a limited time
period.
Fixed gain versions TS486-n and TS487-n
including RIN and RFEED are proposed to reduce
external parts.
Fixed gain versions of the TS486 and TS487
including the feedback resistor and the input
resistors are also proposed to reduce the number
of external parts.
The TS486 and TS487 exhibit a low quiescent
current of typically 1.8mA, allowing usage in
portable applications.
The standby mode is selected using the
SHUTDOWN input. For TS486 (respectively
TS487), the device is in sleep mode when PIN 5 is
connected at GND (resp. VCC).
GAIN SETTING
LOW FREQUENCY ROLL-OFF WITH INPUT
CAPACITORS
The low roll-off frequency of the headphone
amplifiers depends on the input capacitors CIN1
and CIN2 and the input resistors RIN1 and RIN2.
The CIN capacitor in series with the input resistor
RIN of the amplifier is equivalent to a first order
high pass filter.
Assuming that Fmin is the lowest frequency to be
amplified (with a 3dB attenuation), the minimum
value of CIN is:
CIN > 1 / (2*π*Fmin*RIN )
The following curve gives directly the low
frequency roll-off versus the input capacitor CIN
The gain of each inverter amplifier of the TS486
and TS487 is set by the resistors RIN and RFEED.
GainLINEAR = -(R FEED/RIN)
27/31
TS486-TS487
and for various values of the input resistor RIN .
frequency versus the output capacitor COUT in µF
and for the two typical 16Ω and 32Ω impedances:
1000
Low roll-off frequency (Hz)
Low roll−off frequency (Hz)
1000
Rin = 1kΩ
Rin = 10kΩ
100
10
Rin = 100kΩ
Rin = 20kΩ and
fixed gain versions
1
0.01
0.1
1
100
RL = 16Ω
10
RL = 32Ω
10
1
10
Cin (µF)
100
1000
10000
COUT ( F)
The input resistance of the fixed gain version is
typically 20kΩ.
The following curve shows the limits of the roll off
frequency depending on the min. and max. values
of Rin:
Ω
Ω
DECOUPLING CAPACITOR CB
The internal bias voltage at Vcc/2 is decoupled
with the external capacitor CB.
The TS486 and TS487 have a specified Power
Supply Rejection Ratio parameter with CB = 1µF.
A higher value of CB improves the PSRR, for
example, a 4.7µF improves the PSRR by 15dB at
200Hz (please, refer to fig. 76 "PSRR vs Bypass
Capacitor").
POP PRECAUTIONS
Ω
LOW FREQUENCY ROLL OFF WITH OUTPUT
CAPACITORS
The DC voltage on the outputs of the TS486/487
is blocked by the output capacitors COUT1 and
COUT2 . Each output capacitor COUT in series with
the resistance of the load RL is equivalent to a first
order high pass filter.
Assuming that Fmin is the lowest frequency to be
amplified (with a 3dB attenuation), the minimum
value of COUT is:
COUT > 1 / (2*π*Fmin*RL)
The following curve gives directly the low roll-off
28/31
Generally headphones are connected using a
connector as a jack. To prevent a pop in the
headphones when plugged in the jack, a resistor
should be connected in parallel with each
headphone output. This allows the capacitors
Cout to be charged even when no headphone is
plugged.
A resistor of 1 kΩ is high enough to be a negligible
load, and low enough to charge the capacitors
Cout in less than one second.
TS486-TS487
PACKAGE MECHANICAL DATA
SO-8 MECHANICAL DATA
DIM.
mm.
MIN.
TYP
inch
MAX.
MIN.
TYP.
MAX.
A
1.35
1.75
0.053
0.069
A1
0.10
0.25
0.04
0.010
A2
1.10
1.65
0.043
0.065
B
0.33
0.51
0.013
0.020
C
0.19
0.25
0.007
0.010
D
4.80
5.00
0.189
0.197
E
3.80
4.00
0.150
0.157
e
1.27
0.050
H
5.80
6.20
0.228
0.244
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
k
ddd
8˚ (max.)
0.1
0.04
0016023/C
29/31
TS486-TS487
PACKAGE MECHANICAL DATA
30/31
TS486-TS487
PACKAGE MECHANICAL DATA
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
© 2003 STMicroelectronics - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom
http://www.st.com
31/31