TS4962 3W Filter-free Class D Audio Power Amplifier PRELIMINARY DATA ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Operating from Vcc=2.4V to 5.5V Standby mode active low Output power: 3W into 4Ω and 1.75W into 8Ω with 10% THD+N max and 5V power supply. Output power: 2.3W @5V or 0.75W @ 3.0V into 4Ω with 1% THD+N max. Output power: 1.4W @5V or 0.45W @ 3.0V into 8Ω with 1% THD+N max. Adjustable gain via external resistors Low current consumption 2mA @ 3V Efficiency: 88% typ. Signal to noise ratio: 85dB typ. PSRR: 63dB typ. @217Hz with 6dB gain PWM base frequency: 250kHz Low pop & click noise Thermal shutdown protection Available in flip-chip 9 x 300um in lead free* Pin Connections (top view) TS4962EIJT IN+ GND OUT- 1/A1 2/A2 3/A3 VDD VDD GND 4/B1 5/B2 6/B3 IN- STBY OUT+ 8/C2 9/C3 7/C1 IN+: positive differential input IN-: negative differential input VDD: analog power supply GND: power supply ground STBY: standby pin (active low) OUT+: positive differential output OUT-: negative differential output Description Block Diagram The TS4962 is a differential class-D B.T.L. power amplifier. Able to drive up to 2.3W into a 4Ω load and 1.4W into a 8Ω load at 5V. It achieves outstanding efficiency (88%typ.) compared to classical AB-class audio amps. B1 B2 Vcc 300k C2 Stdby Gain of the device can be controlled via two external gain setting resistors. POP & CLICK reduction circuitry provides low on/off switch noise while allowing the device to start within 5ms.A standby function (active low) allows to lower the current consumption to 10nA typ. C1 InIn+ A1 Internal Bias Out+ 150k C3 Output PWM + H Bridge A3 150k Out- Oscillator Applications ■ ■ ■ GND A2 B3 Cellular Phone PDA Notebook PC Order Codes Part Number TS4962IJT TS4962EIJT TS4962EKIJT February 2005 Temperature Range Package -40, +85°C -40, +85°C Flip-Chip Lead -Free Flip-Chip Lead Free + Back Coating -40, +85°C Revision 2 Packaging Tape & Reel Marking A62 A62 A62 1/22 This product preview information shows the electrical and mechanical performances of a finalized product. However, details could still be modified. TS4962 Absolute Maximum Ratings 1 Absolute Maximum Ratings Table 1. Key parameters and their absolute maximum ratings Symbol VCC Parameter Supply voltage 1 2 Value Unit 6 V Toper Input Voltage Operating Free Air Temperature Range GND to VCC -40 to + 85 °C Tstg Storage Temperature -65 to +150 °C 150 °C Vi Tj Rthja Pd Maximum Junction Temperature Thermal Resistance Junction to Ambient Power Dissipation 3 ESD Human Body Model ESD Machine Model Latch-up Latch-up Immunity VSTB 200 V °C/W 4 Internally Limited 2 200 200 Standby pin voltage maximum voltage 5 Lead Temperature (soldering, 10sec) kV V mA GND to VCC V 260 °C Value Unit 2.4 to 5.5 V 0.5 to VCC-0.8 V 1.4 ≤ VSTB ≤ VCC V 1) All voltages values are measured with respect to the ground pin. 2) The magnitude of input signal must never exceed VCC + 0.3V / GND - 0.3V 3) Device is protected in case of over temperature by a thermal shutdown active @ 150°C. 4) Exceeding the power derating curves during a long period, involves abnormal operating condition. 5) The magnitude of standby signal must never exceed VCC + 0.3V / GND - 0.3V Table 2. Operating Conditions Symbol VCC VIC VSTB RL Rthja Parameter Supply Voltage1 Common Mode Input Voltage Standby Voltage Input : Device ON Device OFF Range2 3 Load Resistor ≥4 Ω Thermal Resistance Junction to Ambient 5 90 °C/W 1) For VCC from 2.4V to 2.5V, the operating temperature range is reduced to 0°C≤ Tamb ≤70°C 2) For VCC from 2.4V to 2.5V, the common mode input range must be set at VCC/2. 3) Without any signal on VSTB , the device will be in standby 4) Minimum current consumption shall be obtained when VSTB = GND. 5) With heat sink surface = 125mm2. 2/22 GND ≤ VSTB ≤ 0.4 4 Application Component Information TS4962 2 Application Component Information Component Functional Description Cs Bypass supply capacitor. To install as close as possible of the TS4962 to minimize high frequency ripple. A 100nF ceramic capacitor should be add to enhance the power supply filtering in high frequency. Rin Input resistor to program the TS4962 differential gain (Gain = 300kΩ/Rin with Rin in kΩ) Input Capacitor Typical application Vcc B1 Vcc Cs 1u B2 Vcc In+ 300k C2 Stdby GND GND Rin + C1 Differential Input A1 - Internal Bias GND Out+ 150k C3 Output - InIn+ + H PWM Bridge SPEAKER Rin Input capacitors are optional In- A3 150k Out- Oscillator TS4962 GND A2 B3 GND GND Vcc B1 Vcc In+ C2 Stdby GND GND + Rin C1 Differential Input In- InIn+ - A1 Internal Bias 4 Ohms LC Output Filter GND Out+ 150k C3 15µH Output PWM + H 1µF Bridge Rin Input capacitors are optional GND Cs 1u B2 Vcc 300k Figure 1. Thanks to common mode feedback, these input capacitors are optional. However, we can add then to form with Rin a 1st order high pass filter with -3dB cut-off frequency = 1/(2*π*Rin*Cin) A3 150k Out- Load 15µH Oscillator GND TS4962 A2 B3 30µH GND 0.5µF 30µH 8 Ohms LC Output Filter 3/22 TS4962 Electrical Characteristics 3 Electrical Characteristics Table 3. VCC = +5V, GND = 0V, VICM = 2.5V, Tamb = 25°C (unless otherwise specified) Symbol ICC ISTANDBY Voo Po Parameter Min. Supply Current No input signal, no load Standby Current 1 No input signal, VSTBY = GND Output Offset Voltage No input signal, RL = 8Ω Output Power, G=6dB THD = 1% Max, f = 1kHz, RL = 4Ω THD = 10% Max, f = 1kHz, RL = 4Ω THD = 1% Max, f = 1kHz, RL = 8Ω THD = 10% Max, f = 1kHz, RL = 8Ω Typ. Max. Unit 2.3 3.3 mA 10 1000 nA 3 25 mV 2.3 3 1.4 1.75 W THD + N Total Harmonic Distortion + Noise Po = 900 mWRMS, G = 6dB, 20Hz < f < 20kHz, RL = 8Ω + 15µH, BW < 30kHz Po = 1WRMS, G = 6dB, f = 1kHz, RL = 8Ω + 15µH, BW < 30kHz 0.4 Efficiency Efficiency Po = 2 WRMS, RL = 4Ω + ≥ 15µH Po =1.2 WRMS, RL = 8Ω+ ≥ 15µH 78 88 % 63 dB 57 dB 273 k Ω 300k Ω 327k Ω ------------------ ------------------ -----------------R R R in in in V/V PSRR CMRR Gain RSTDBY FPWM SNR TWU TSTB VN 1 Power Supply Rejection Ratio with inputs grounded 2 f = 217Hz, RL = 8Ω, G=6dB, Vripple = 200mVpp Common Mode Rejection Ratio, f = 217Hz, RL = 8Ω, G = 6dB, ∆Vic = 200mVpp Gain value (Rin in kΩ) % Internal Resistance From Standby to GND 273 300 327 kΩ Pulse Width Modulator Base Frequency Signal to Noise ratio (A Weighting), Po = 1.2W, RL = 8Ω 180 250 320 kHz 85 5 10 dB ms 5 10 ms Wake-up time Standby time Output Voltage Noise f = 20Hz to 20kHz, G = 6dB Unweighted RL = 4Ω A weighted RL = 4Ω Unweighted RL = 8Ω A weighted RL = 8Ω Unweighted RL = 4Ω + 15µH A weighted RL = 4Ω + 15µH Unweighted RL = 4Ω + 30µH A weighted RL = 4Ω + 30µH Unweighted RL = 8Ω + 30µH A weighted RL = 8Ω + 30µH Unweighted RL = 4Ω + Filter A weighted RL = 4Ω + Filter Unweighted RL = 4Ω + Filter A weighted RL = 4Ω + Filter 85 60 86 62 83 60 88 64 78 57 87 65 82 59 90 66 1) Standby mode is active when Vstdby is tied to GND. 2) Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz. 4/22 µVRMS Electrical Characteristics TS4962 Table 4. VCC = +4.2V, GND = 0V, VICM = 2.1V, Tamb = 25°C (unless otherwise specified) 1 Symbol Typ. Max. Unit Supply Current No input signal, no load 2.1 3 mA Standby Current 2 No input signal, VSTBY = GND 10 1000 nA Voo Output Offset Voltage No input signal, RL = 8Ω 3 25 mV Po Output Power, G=6dB THD = 1% Max, f = 1kHz, RL = 4Ω THD = 10% Max, f = 1kHz, RL = 4Ω THD = 1% Max, f = 1kHz, RL = 8Ω THD = 10% Max, f = 1kHz, RL = 8Ω ICC ISTANDBY THD + N Min. 1.6 2 0.95 1.2 Total Harmonic Distortion + Noise Po = 600 mWRMS, G = 6dB, 20Hz < f < 20kHz, RL = 8Ω + 15µH, BW < 30kHz Po = 700mWRMS, G = 6dB, f = 1kHz, RL = 8Ω + 15µH, BW < 30kHz PSRR Power Supply Rejection Ratio with inputs grounded 3 f = 217Hz, RL = 8Ω, G=6dB, Vripple = 200mVpp 63 CMRR Common Mode Rejection Ratio f = 217Hz, RL = 8Ω, G = 6dB, ∆Vic = 200mVpp Gain value (Rin in kΩ) % 0.35 78 88 Gain W 1 Efficiency Po = 1.45 WRMS, RL = 4Ω + ≥ 15µH Po = 0.9 WRMS, RL = 8Ω+ ≥ 15µH Efficiency % dB 57 dB 300 k Ω 327k Ω 273k Ω ----------------- ----------------------------------R R R in in in V/V Internal Resistance From Standby to GND 273 300 327 kΩ FPWM Pulse Width Modulator Base Frequency 180 250 320 kHz SNR TWU Signal to Noise ratio (A Weighting), Po = 0.9W, RL = 8Ω 85 Wake-up time 5 10 ms TSTB Standby time 5 10 ms Output Voltage Noise f = 20Hz to 20kHz, G = 6dB Unweighted RL = 4Ω A weighted RL = 4Ω Unweighted RL = 8Ω A weighted RL = 8Ω Unweighted RL = 4Ω + 15µH A weighted RL = 4Ω + 15µH Unweighted RL = 4Ω + 30µH A weighted RL = 4Ω + 30µH Unweighted RL = 8Ω + 30µH A weighted RL = 8Ω + 30µH Unweighted RL = 4Ω + Filter A weighted RL = 4Ω + Filter Unweighted RL = 4Ω + Filter A weighted RL = 4Ω + Filter 85 60 86 62 83 60 88 64 78 57 87 65 82 59 90 66 RSTDBY VN 1) Parameter dB µVRMS All electrical values are guaranted with correlation measurements at 2.5V and 5V. 2) Standby mode is actived when Vstdby is tied to GND. 3) Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz. 5/22 TS4962 Electrical Characteristics Table 5. VCC = +3.6V, GND = 0V, VICM = 1.8V, Tamb = 25°C (unless otherwise specified) 1 Symbol Typ. Max. Unit Supply Current No input signal, no load 2 2.8 mA Standby Current 2 No input signal, VSTBY = GND 10 1000 nA Voo Output Offset Voltage No input signal, RL = 8Ω 3 25 mV Po Output Power, G=6dB THD = 1% Max, f = 1kHz, RL = 4Ω THD = 10% Max, f = 1kHz, RL = 4Ω THD = 1% Max, f = 1kHz, RL = 8Ω THD = 10% Max, f = 1kHz, RL = 8Ω ICC ISTANDBY THD + N Efficiency Parameter Min. 1.15 1.51 0.7 0.9 Total Harmonic Distortion + Noise Po = 500 mWRMS, G = 6dB, 20Hz < f < 20kHz, RL = 8Ω + 15µH, BW < 30kHz Po = 500mWRMS, G = 6dB, f = 1kHz, RL = 8Ω + 15µH, BW < 30kHz W 1 % 0.27 Efficiency Po = 1 WRMS, RL = 4Ω + ≥ 15µH Po = 0.65 WRMS, RL = 8Ω+ ≥ 15µH 78 88 % PSRR Power Supply Rejection Ratio with inputs grounded 3 f = 217Hz, RL = 8Ω, G=6dB, Vripple = 200mVpp 62 dB CMRR Common Mode Rejection Ratio f = 217Hz, RL = 8Ω, G = 6dB, ∆Vic = 200mVpp 56 dB 300 k Ω 327k Ω 273k Ω ----------------- ----------------------------------R R R in in in V/V Gain Gain value (Rin in kΩ) Internal Resistance From Standby to GND 273 300 327 kΩ FPWM Pulse Width Modulator Base Frequency 180 250 320 kHz SNR TWU Signal to Noise ratio (A Weighting), Po = 0.6W, RL = 8Ω 83 Wake-up time 5 10 ms TSTB Standby time 5 10 ms Output Voltage Noise f = 20Hz to 20kHz, G = 6dB Unweighted RL = 4Ω A weighted RL = 4Ω Unweighted RL = 8Ω A weighted RL = 8Ω Unweighted RL = 4Ω + 15µH A weighted RL = 4Ω + 15µH Unweighted RL = 4Ω + 30µH A weighted RL = 4Ω + 30µH Unweighted RL = 8Ω + 30µH A weighted RL = 8Ω + 30µH Unweighted RL = 4Ω + Filter A weighted RL = 4Ω + Filter Unweighted RL = 4Ω + Filter A weighted RL = 4Ω + Filter 83 57 83 61 81 58 87 62 77 56 85 63 80 57 85 61 RSTDBY VN 1) dB All electrical values are guaranted with correlation measurements at 2.5V and 5V. 2) Standby mode is actived when Vstdby is tied to GND. 3) Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz. 6/22 µVRMS Electrical Characteristics TS4962 Table 6. VCC = +3.0V, GND = 0V, VICM = 1.5V, Tamb = 25°C (unless otherwise specified) 1 Symbol Typ. Max. Unit Supply Current No input signal, no load 1.9 2.7 mA Standby Current 2 No input signal, VSTBY = GND 10 1000 nA Voo Output Offset Voltage No input signal, RL = 8Ω 3 25 mV Po Output Power, G=6dB THD = 1% Max, f = 1kHz, RL = 4Ω THD = 10% Max, f = 1kHz, RL = 4Ω THD = 1% Max, f = 1kHz, RL = 8Ω THD = 10% Max, f = 1kHz, RL = 8Ω ICC ISTANDBY THD + N Parameter Min. 0.75 1 0.5 0.6 Total Harmonic Distortion + Noise Po = 350 mWRMS, G = 6dB, 20Hz < f < 20kHz, RL = 8Ω + 15µH, BW < 30kHz Po = 350mWRMS, G = 6dB, f = 1kHz, RL = 8Ω + 15µH, BW < 30kHz 1 78 88 PSRR Power Supply Rejection Ratio with inputs grounded 3 f = 217Hz, RL = 8Ω, G=6dB, Vripple = 200mVpp 60 CMRR Common Mode Rejection Ratio, f = 217Hz, RL = 8Ω, G = 6dB, ∆Vic = 200mVpp Gain RSTDBY FPWM SNR TWU TSTB VN Gain value (Rin in kΩ) % 0.21 Efficiency Po = 0.7 WRMS, RL = 4Ω + ≥ 15µH Po = 0.45 WRMS, RL = 8Ω+ ≥ 15µH Efficiency W % dB 54 dB 273k Ω 300 k Ω 327k Ω ------------------ ------------------ -----------------R R R in in in V/V Internal Resistance From Standby to GND 273 300 327 kΩ Pulse Width Modulator Base Frequency Signal to Noise ratio (A Weighting), Po = 0.4W, RL = 8Ω 180 250 320 kHz 82 dB Wake-up time 5 10 ms Standby time Output Voltage Noise f = 20Hz to 20kHz, G = 6dB Unweighted RL = 4Ω A weighted RL = 4Ω Unweighted RL = 8Ω A weighted RL = 8Ω Unweighted RL = 4Ω + 15µH A weighted RL = 4Ω + 15µH Unweighted RL = 4Ω + 30µH A weighted RL = 4Ω + 30µH Unweighted RL = 8Ω + 30µH A weighted RL = 8Ω + 30µH Unweighted RL = 4Ω + Filter A weighted RL = 4Ω + Filter Unweighted RL = 4Ω + Filter A weighted RL = 4Ω + Filter 5 10 ms 83 57 83 61 81 58 87 62 77 56 85 63 80 57 85 61 µVRMS 1) All electrical values are guaranted with correlation measurements at 2.5V and 5V. 2) Standby mode is actived when Vstdby is tied to GND. 3) Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz. 7/22 TS4962 Electrical Characteristics Table 7. VCC = +2.5V, GND = 0V, VICM = 1.25V, Tamb = 25°C (unless otherwise specified) Symbol Typ. Max. Unit Supply Current No input signal, no load 1.7 2.4 mA Standby Current 1 No input signal, VSTBY = GND 10 1000 nA Voo Output Offset Voltage No input signal, RL = 8Ω 3 25 mV Po Output Power, G=6dB THD = 1% Max, f = 1kHz, RL = 4Ω THD = 10% Max, f = 1kHz, RL = 4Ω THD = 1% Max, f = 1kHz, RL = 8Ω THD = 10% Max, f = 1kHz, RL = 8Ω ICC ISTANDBY Parameter THD + N Total Harmonic Distortion + Noise Po = 200 mWRMS, G = 6dB, 20Hz < f < 20kHz, RL = 8Ω + 15µH, BW < 30kHz Po = 200mWRMS, G = 6dB, f = 1kHz, RL = 8Ω + 15µH, BW < 30kHz Efficiency Efficiency Po = 0.47 WRMS, RL = 4Ω + ≥ 15µH Po = 0.3 WRMS, RL = 8Ω+ ≥ 15µH Min. 0.52 0.71 0.33 0.42 W 1 % 0.19 78 88 % PSRR Power Supply Rejection Ratio with inputs grounded 2 f = 217Hz, RL = 8Ω, G=6dB, Vripple = 200mVpp 60 dB CMRR Common Mode Rejection Ratio f = 217Hz, RL = 8Ω, G = 6dB, ∆Vic = 200mVpp 54 dB 300 k Ω 327k Ω 273k Ω ----------------- ----------------------------------R R R in in in V/V Gain Gain value (Rin in kΩ) Internal Resistance From Standby to GND 273 300 327 kΩ FPWM Pulse Width Modulator Base Frequency 180 250 320 kHz SNR TWU Signal to Noise ratio (A Weighting), Po = 0.4W, RL = 8Ω 80 Wake-up time 5 10 ms TSTB Standby time 5 10 ms Output Voltage Noise f = 20Hz to 20kHz, G = 6dB Unweighted RL = 4Ω A weighted RL = 4Ω Unweighted RL = 8Ω A weighted RL = 8Ω Unweighted RL = 4Ω + 15µH A weighted RL = 4Ω + 15µH Unweighted RL = 4Ω + 30µH A weighted RL = 4Ω + 30µH Unweighted RL = 8Ω + 30µH A weighted RL = 8Ω + 30µH Unweighted RL = 4Ω + Filter A weighted RL = 4Ω + Filter Unweighted RL = 4Ω + Filter A weighted RL = 4Ω + Filter 85 60 86 62 76 56 82 60 67 53 78 57 74 54 78 59 RSTDBY VN dB 1) Standby mode is actived when Vstdby is tied to GND. 2) Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz. 8/22 µVRMS Electrical Characteristics TS4962 Table 8. VCC = +2.4V1, GND = 0V, VICM = 1.2V, Tamb = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit Supply Current No input signal, no load 1.7 mA Standby Current 2 No input signal, VSTBY = GND 10 nA Voo Output Offset Voltage No input signal, RL = 8Ω 3 mV Po Output Power, G=6dB THD = 1% Max, f = 1kHz, RL = 4Ω THD = 10% Max, f = 1kHz, RL = 4Ω THD = 1% Max, f = 1kHz, RL = 8Ω THD = 10% Max, f = 1kHz, RL = 8Ω ICC ISTANDBY THD + N Total Harmonic Distortion + Noise Po = 200 mWRMS, G = 6dB, 20Hz < f < 20kHz, RL = 8Ω + 15µH, BW < 30kHz Efficiency Efficiency Po = 0.38 WRMS, RL = 4Ω + ≥ 15µH Po = 0.25 WRMS, RL = 8Ω+ ≥ 15µH CMRR Gain RSTDBY 0.48 0.65 0.3 0.38 1 % 77 86 % 54 dB 300 k Ω 327k Ω 273k Ω ----------------- ----------------------------------R R R in in in V/V Common Mode Rejection Ratio f = 217Hz, RL = 8Ω, G = 6dB, ∆Vic = 200mVpp Gain value (Rin in kΩ) Internal Resistance From Standby to GND W 273 300 327 kΩ FPWM Pulse Width Modulator Base Frequency 250 kHz SNR Signal to Noise ratio (A Weighting), Po = 0.25W, RL = 8Ω 80 dB TWU Wake-up time 5 ms TSTB Standby time 5 ms Output Voltage Noise f = 20Hz to 20kHz, G = 6dB Unweighted RL = 4Ω A weighted RL = 4Ω Unweighted RL = 8Ω A weighted RL = 8Ω Unweighted RL = 4Ω + 15µH A weighted RL = 4Ω + 15µH Unweighted RL = 4Ω + 30µH A weighted RL = 4Ω + 30µH Unweighted RL = 8Ω + 30µH A weighted RL = 8Ω + 30µH Unweighted RL = 4Ω + Filter A weighted RL = 4Ω + Filter Unweighted RL = 4Ω + Filter A weighted RL = 4Ω + Filter 85 60 86 62 76 56 82 60 67 53 78 57 74 54 78 59 VN 1) Parameters guaranteed by evaluation and design, not by test. 2) Standby mode is actived when Vstdby is tied to GND. µVRMS 9/22 TS4962 Electrical Characteristics Note: In the graphs that follow, the following abbreviations are used: RL + 15µH or 30µH = pure resistor+ very low series resistance inductor Filter = LC output filter (1µF+30µH for 4Ω and 0.5µF+60µH for 8Ω) All measurements done with Cs1=1µF and Cs2=100nF except for PSRR where Cs1 is removed Figure 2. Test diagram for measurements Vcc 1uF 100nF Cs2 Cs1 + Cin GND GND Rin Out+ In+ 15uH or 30uH 150k Rin 5th order or TS4962 Cin 4 or 8 Ohms RL filter LC Filter In- 50kHz low pass Out- 150k GND Audio Measurement Bandwidth < 30kHz Figure 3. Test diagram for PSRR measurements 100nF Cs2 20Hz to 20kHz Vcc GND 4.7uF GND Rin Out+ In+ 15uH or 30uH 150k TS4962 4.7uF Rin 4 or 8 Ohms or 5th order RL LC Filter InOut- 150k GND GND 5th order 50kHz low pass filter 10/22 Reference RMS Selective Measurement Bandwidth=1% of Fmeas 50kHz low pass filter Electrical Characteristics Figure 4. TS4962 Current consumption vs power supply voltage Figure 7. 2.5 Output offset voltage vs common mode input voltage 10 G = 6dB Tamb = 25°C 2.0 8 Voo (mV) Current Consumption (mA) No load Tamb=25°C 1.5 1.0 0.5 0.0 6 Vcc=5V Vcc=3.6V 4 2 0 1 2 3 4 Vcc=2.5V 0 0.0 5 0.5 1.0 Power Supply Voltage (V) Figure 5. 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Common Mode Input Voltage (V) Current consumption vs standby voltage 2.5 Figure 8. Efficiency vs output power 100 80 1.5 1.0 0.5 0.0 1 2 3 4 400 60 300 40 Power Dissipation 200 Vcc=5V RL=4Ω + ≥ 15µH 100 F=1kHz THD+N≤1% 0 1.0 1.5 2.0 2.3 Output Power (W) 20 Vcc = 5V No load Tamb=25°C 0 500 0 0.0 5 0.5 Standby Voltage (V) Figure 6. Current consumption vs standby voltage Figure 9. Efficiency vs output power 100 2.0 Power Dissipation (mW) 2.0 Efficiency (%) Current Consumption (mA) 600 Efficiency 200 1.0 0.5 0.0 0.0 Vcc = 3V No load Tamb=25°C 0.5 1.0 1.5 2.0 Standby Voltage (V) 2.5 3.0 60 100 Power Dissipation 40 20 0 0.0 0.1 Vcc=3V 50 RL=4Ω + ≥ 15µH F=1kHz THD+N≤1% 0 0.2 0.3 0.4 0.5 0.6 0.7 Output Power (W) Power Dissipation (mW) 150 Efficiency (%) Current Consumption (mA) Efficiency 80 1.5 11/22 TS4962 Electrical Characteristics Figure 10. Efficiency vs output power Figure 13. Output power vs power supply voltage 100 2.0 150 Efficiency (%) Efficiency 100 60 40 Power Dissipation 50 Vcc=5V RL=8Ω + ≥ 15µH F=1kHz THD+N≤1% 20 0 0.0 0.2 0.4 0.6 0.8 Output Power (W) 1.0 1.2 RL = 8Ω + ≥ 15µH F = 1kHz BW < 30kHz 1.5 Tamb = 25°C Output power (W) Power Dissipation (mW) 80 THD+N=10% 1.0 0.5 0 1.4 0.0 THD+N=1% 2.5 100 75 50 60 40 0.1 25 Vcc=3V RL=8Ω + ≥ 15µH F=1kHz THD+N≤1% 0.2 0.3 Output Power (W) Figure 12. Output power vs power supply voltage -30 5.5 -40 Vcc=5V, 3.6V, 2.5V -50 -60 -80 20 100 1000 Frequency (Hz) 10000 20k Figure 15. PSRR vs frequency 0 3.5 RL = 4Ω + ≥ 15µH F = 1kHz 3.0 BW < 30kHz Tamb = 25°C 2.5 Vripple = 200mVpp Inputs = Grounded G = 6dB, Cin = 4.7µF RL = 4Ω + 30µH ∆R/R≤0.1% Tamb = 25°C -10 THD+N=10% -20 PSRR (dB) Output power (W) 5.0 -70 0 0.5 0.4 4.5 Vripple = 200mVpp Inputs = Grounded G = 6dB, Cin = 4.7µF RL = 4Ω + 15µH ∆R/R≤0.1% Tamb = 25°C -20 PSRR (dB) Efficiency (%) Efficiency Power Dissipation (mW) 80 0 0.0 4.0 Vcc (V) 0 -10 Power Dissipation 3.5 Figure 14. PSRR vs frequency Figure 11. Efficiency vs output power 20 3.0 2.0 1.5 THD+N=1% -30 -40 Vcc=5V, 3.6V, 2.5V -50 1.0 -60 0.5 0.0 12/22 -70 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 -80 20 100 1000 Frequency (Hz) 10000 20k Electrical Characteristics TS4962 Figure 16. PSRR vs frequency Figure 19. PSRR vs frequency 0 0 Vripple = 200mVpp Inputs = Grounded G = 6dB, Cin = 4.7µF RL = 4Ω + Filter ∆R/R≤0.1% Tamb = 25°C PSRR (dB) -20 -30 -20 -40 Vcc=5V, 3.6V, 2.5V -50 -30 -40 -60 -70 -70 20 100 1000 Frequency (Hz) -80 10000 20k Figure 17. PSRR vs frequency 20 -30 -20 -40 Vcc=5V, 3.6V, 2.5V -50 Vripple = 200mVpp F = 217Hz, G = 6dB RL ≥ 4Ω + ≥ 15µH Tamb = 25°C -10 PSRR(dB) -20 Vcc=2.5V -30 Vcc=3.6V -40 -50 -60 -60 -70 -70 Vcc=5V 20 100 1000 Frequency (Hz) -80 0.0 10000 20k 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Common Mode Input Voltage (V) Figure 18. PSRR vs frequency Figure 21. CMRR vs frequency 0 0 Vripple = 200mVpp Inputs = Grounded G = 6dB, Cin = 4.7µF RL = 8Ω + 30µH ∆R/R≤0.1% Tamb = 25°C -20 -30 -20 CMRR (dB) -10 PSRR (dB) 10000 20k 1000 Frequency (Hz) 0 Vripple = 200mVpp Inputs = Grounded G = 6dB, Cin = 4.7µF RL = 8Ω + 15µH ∆R/R≤0.1% Tamb = 25°C -10 -80 100 Figure 20. PSRR vs frequency Common Mode Input Voltage 0 PSRR (dB) Vcc=5V, 3.6V, 2.5V -50 -60 -80 Vripple = 200mVpp Inputs = Grounded G = 6dB, Cin = 4.7µF ∆R/R≤0.1% RL = 8Ω + Filter Tamb = 25°C -10 PSRR (dB) -10 -40 -40 Vcc=5V, 3.6V, 2.5V -50 RL=4Ω + 15µH G=6dB ∆Vicm=200mVpp ∆R/R≤0.1% Cin=4.7µF Tamb = 25°C Vcc=5V, 3.6V, 2.5V -60 -60 -70 -80 20 100 1000 Frequency (Hz) 10000 20k 20 100 1000 Frequency (Hz) 10000 20k 13/22 TS4962 Electrical Characteristics Figure 22. CMRR vs frequency Figure 25. CMRR vs frequency 0 0 RL=4Ω + 30µH G=6dB ∆Vicm=200mVpp ∆R/R≤0.1% Cin=4.7µF Tamb = 25°C -20 CMRR (dB) CMRR (dB) -20 -40 Vcc=5V, 3.6V, 2.5V -60 100 1000 Frequency (Hz) Vcc=5V, 3.6V, 2.5V 10000 20k Figure 23. CMRR vs frequency 100 20 1000 Frequency (Hz) 10000 20k Figure 26. CMRR vs frequency 0 0 RL=4Ω + Filter G=6dB ∆Vicm=200mVpp ∆R/R≤0.1% Cin=4.7µF Tamb = 25°C RL=8Ω + Filter G=6dB ∆Vicm=200mVpp ∆R/R≤0.1% Cin=4.7µF Tamb = 25°C -20 CMRR (dB) CMRR (dB) -20 -40 -40 Vcc=5V, 3.6V, 2.5V -60 Vcc=5V, 3.6V, 2.5V -60 20 100 1000 Frequency (Hz) 10000 20k Figure 24. CMRR vs frequency 100 20 1000 Frequency (Hz) 10000 20k Figure 27. CMRR vs frequency Common Mode Input Voltage 0 -20 RL=8Ω + 15µH G=6dB ∆Vicm=200mVpp ∆R/R≤0.1% Cin=4.7µF Tamb = 25°C -30 CMRR(dB) CMRR (dB) -40 -60 20 -20 RL=8Ω + 30µH G=6dB ∆Vicm=200mVpp ∆R/R≤0.1% Cin=4.7µF Tamb = 25°C -40 Vcc=5V, 3.6V, 2.5V -40 ∆Vicm = 200mVpp F = 217Hz G = 6dB RL ≥ 4Ω + ≥ 15µH Tamb = 25°C Vcc=2.5V -50 Vcc=3.6V -60 -60 Vcc=5V 20 100 1000 Frequency (Hz) 10000 20k -70 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Common Mode Input Voltage (V) 14/22 4.5 5.0 Electrical Characteristics TS4962 Figure 28. THD+N vs output power Figure 31. THD+N vs output power 10 RL = 4Ω + 15µH F = 100Hz G = 6dB BW < 30kHz Tamb = 25°C Vcc=3.6V Vcc=2.5V 1 0.1 Vcc=5V Vcc=3.6V Vcc=2.5V 1 0.1 1E-3 0.01 0.1 Output Power (W) 1 1E-3 3 Figure 29. THD+N vs output power 0.01 0.1 Output Power (W) 1 2 Figure 32. THD+N vs output power 10 10 RL = 4Ω + 30µH or Filter F = 100Hz G = 6dB BW < 30kHz Tamb = 25°C RL = 4Ω + 15µH F = 1kHz G = 6dB BW < 30kHz Tamb = 25°C Vcc=5V Vcc=3.6V Vcc=2.5V THD + N (%) THD + N (%) RL = 8Ω + 30µH or Filter F = 100Hz G = 6dB BW < 30kHz Tamb = 25°C Vcc=5V THD + N (%) THD + N (%) 10 1 Vcc=5V Vcc=3.6V Vcc=2.5V 1 0.1 1E-3 0.01 0.1 Output Power (W) 1 3 Figure 30. THD+N vs output power 0.01 0.1 Output Power (W) 1 3 1 3 Figure 33. THD+N vs output power 10 10 RL = 8Ω + 15µH F = 100Hz G = 6dB BW < 30kHz Tamb = 25°C RL = 4Ω + 30µH or Filter F = 1kHz G = 6dB BW < 30kHz Tamb = 25°C Vcc=5V Vcc=3.6V THD + N (%) THD + N (%) 0.1 1E-3 Vcc=2.5V 1 Vcc=5V Vcc=3.6V Vcc=2.5V 1 0.1 1E-3 0.01 0.1 Output Power (W) 1 2 0.1 1E-3 0.01 0.1 Output Power (W) 15/22 TS4962 Electrical Characteristics Figure 34. THD+N vs output power Figure 37. THD+N vs frequency 10 RL = 8Ω + 15µH F = 1kHz G = 6dB BW < 30kHz Tamb = 25°C RL=4Ω + 30µH or Filter G=6dB Bw < 30kHz Vcc=5V Tamb = 25°C Vcc=5V Vcc=3.6V THD + N (%) THD + N (%) 10 Vcc=2.5V 1 1 Po=0.75W 0.1 0.1 1E-3 0.01 0.1 Output Power (W) 1 50 2 100 1000 Frequency (Hz) 10000 20k Figure 38. THD+N vs frequency Figure 35. THD+N vs output power 10 10 RL = 8Ω + 30µH or Filter F = 1kHz G = 6dB BW < 30kHz Tamb = 25°C RL=4Ω + 15µH G=6dB Bw < 30kHz Vcc=3.6V Tamb = 25°C Vcc=5V Vcc=3.6V THD + N (%) THD + N (%) Po=1.5W Vcc=2.5V 1 Po=0.9W 1 Po=0.45W 0.1 0.1 1E-3 0.01 0.1 Output Power (W) 1 50 2 Figure 36. THD+N vs frequency 1000 Frequency (Hz) 10000 20k Figure 39. THD+N vs frequency 10 10 RL=4Ω + 15µH G=6dB Bw < 30kHz Vcc=5V Tamb = 25°C RL=4Ω + 30µH or Filter G=6dB Bw < 30kHz Vcc=3.6V Tamb = 25°C Po=1.5W THD + N (%) THD + N (%) 100 1 Po=0.9W 1 Po=0.45W Po=0.75W 0.1 50 16/22 0.1 100 1000 Frequency (Hz) 10000 20k 50 100 1000 Frequency (Hz) 10000 20k Electrical Characteristics TS4962 Figure 40. THD+N vs frequency Figure 43. THD+N vs frequency 10 RL=4Ω + 15µH G=6dB Bw < 30kHz Vcc=2.5V Tamb = 25°C RL=8Ω + 30µH or Filter G=6dB Bw < 30kHz Vcc=5V Tamb = 25°C Po=0.4W THD + N (%) THD + N (%) 10 1 Po=0.9W 1 Po=0.2W 0.1 1000 Frequency (Hz) 200 10000 20k Figure 41. THD+N vs frequency 50 100 1000 Frequency (Hz) 10000 20k Figure 44. THD+N vs frequency 10 10 RL=4Ω + 30µH or Filter G=6dB Bw < 30kHz Vcc=2.5V Tamb = 25°C RL=8Ω + 15µH G=6dB Bw < 30kHz Vcc=3.6V Tamb = 25°C Po=0.4W THD + N (%) THD + N (%) Po=0.45W 0.1 1 Po=0.5W 1 Po=0.2W 0.1 0.1 50 100 1000 Frequency (Hz) 10000 20k 50 100 1000 Frequency (Hz) 10000 20k Figure 45. THD+N vs frequency Figure 42. THD+N vs frequency 10 10 RL=8Ω + 15µH G=6dB Bw < 30kHz Vcc=5V Tamb = 25°C Po=0.9W THD + N (%) THD + N (%) Po=0.25W 1 0.1 100 1000 Frequency (Hz) Po=0.5W 1 0.1 Po=0.45W 50 RL=8Ω + 30µH or Filter G=6dB Bw < 30kHz Vcc=3.6V Tamb = 25°C 10000 20k Po=0.25W 50 100 1000 Frequency (Hz) 10000 20k 17/22 TS4962 Electrical Characteristics Figure 46. THD+N vs frequency Figure 49. Gain vs frequency 8 RL=8Ω + 15µH G=6dB Bw < 30kHz Vcc=2.5V Tamb = 25°C THD + N (%) 1 Differential Gain (dB) 10 Po=0.2W 0.1 6 Vcc=5V, 3.6V, 2.5V 4 RL=4Ω + 30µH G=6dB Vin=500mVpp Cin=1µF Tamb = 25°C 2 Po=0.1W 0.01 0 50 100 1000 Frequency (Hz) 10000 20k Differential Gain (dB) RL=8Ω + 30µH or Filter G=6dB Bw < 30kHz Vcc=2.5V Tamb = 25°C 1 Po=0.2W 0.1 Vcc=5V, 3.6V, 2.5V 4 RL=4Ω + Filter G=6dB Vin=500mVpp Cin=1µF Tamb = 25°C 2 0 50 100 1000 Frequency (Hz) 10000 20k 8 6 6 Differential Gain (dB) Differential Gain (dB) 8 Vcc=5V, 3.6V, 2.5V 4 RL=4Ω + 15µH G=6dB Vin=500mVpp Cin=1µF Tamb = 25°C 2 20 100 100 1000 Frequency (Hz) 10000 20k Vcc=5V, 3.6V, 2.5V 4 10000 20k RL=8Ω + 15µH G=6dB Vin=500mVpp Cin=1µF Tamb = 25°C 2 0 1000 Frequency (Hz) 20 Figure 51. Gain vs frequency Figure 48. Gain vs frequency 18/22 10000 20k 6 Po=0.1W 0 1000 Frequency (Hz) 8 10 0.01 100 Figure 50. Gain vs frequency Figure 47. THD+N vs frequency THD + N (%) 20 20 100 1000 Frequency (Hz) 10000 20k Electrical Characteristics TS4962 Figure 52. Gain vs frequency Figure 55. Startup & shutdown time Vcc=5V, G=6dB, CIN=1µF (5ms/div) 8 Differential Gain (dB) Vo1 6 Vo2 Vcc=5V, 3.6V, 2.5V 4 Standby RL=8Ω + 30µH G=6dB Vin=500mVpp Cin=1µF Tamb = 25°C 2 0 20 100 Vo1-Vo2 1000 Frequency (Hz) 10000 20k Figure 56. Startup & shutdown time Vcc=3V, G=6dB, CIN=1µF (5ms/div) Figure 53. Gain vs frequency 8 Differential Gain (dB) Vo1 6 Vo2 Vcc=5V, 3.6V, 2.5V 4 Standby RL=8Ω + Filter G=6dB Vin=500mVpp Cin=1µF Tamb = 25°C 2 0 20 100 Vo1-Vo2 1000 Frequency (Hz) 10000 20k Figure 57. Startup & shutdown time Vcc=5V, G=6dB, CIN=100nF (5ms/div) Figure 54. Gain vs frequency 8 Differential Gain (dB) Vo1 6 Vo2 Vcc=5V, 3.6V, 2.5V 4 Standby RL=No Load G=6dB Vin=500mVpp Cin=1µF Tamb = 25°C 2 0 20 100 Vo1-Vo2 1000 Frequency (Hz) 10000 20k 19/22 TS4962 Electrical Characteristics Figure 58. Startup & shutdown time Vcc=3V, G=6dB, CIN=100nF (5ms/div) Vo1 Vo2 Standby Vo1-Vo2 Figure 59. Startup & shutdown time Vcc=5V, G=6dB, NoCIN (5ms/div) Vo1 Vo2 Standby Vo1-Vo2 Figure 60. Startup & shutdown time Vcc=3V, G=6dB, NoCIN (5ms/div) Vo1 Vo2 Standby Vo1-Vo2 20/22 Package Mechanical Data TS4962 4 Package Mechanical Data 4.1 Pin-out and markings for 9-bump flip-chip Figure 61. Pin-out for 9-bump flip-chip (top view) IN+ GND OUT- 1/A1 2/A2 3/A3 VDD VDD GND 4/B1 5/B2 6/B3 IN- STBY OUT+ 8/C2 9/C3 7/C1 ■ ■ Bumps are underneath Bump diameter = 300µm Figure 62. Marking for 9-bump flip-chip (top view) Marking: A62 E ■ ■ ■ ■ ■ A62 YWW ST Logo Part Number: A62 Three digits Datecode: YWW E symbol for lead-free only The dot is for marking pin A1 4.2 Mechanical data for 9-bump flip-chip 1.60 mm 1.60 mm 0.5mm ■ ■ ■ ■ ■ ■ ■ ■ ■ Die size: 1.6mm x 1.6mm ±30µm Die height (including bumps): 600µm Bump diameter: 315µm ±50µm Bump diameter before Reflew: 300µm ±10µm Bump height: 250µm ±40µm Die Height: 350µm ±20µm Pitch: 500µm ±50µm *Back Coating layer Height: 100µm ±10µm Coplanarity: 60µm max * Optional 0.5mm ∅ 0.25mm 100µm 600µm 21/22 TS4962 Revision History 5 Revision History Date Revision Description of Changes 01 Sept. 2004 0.1 First release corresponding to Target Specification version of datasheet. 01 Oct. 2004 0.2 Update Gain Values. 01 Nov. 2004 1 First published version corresponding to Preliminary Data version of datasheet. Specific content changes as follows: • 01 Jan. 2005 2 update Electrical Values + curves. Technical parameter updated (Output Power at 3W). Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 22/22