STMICROELECTRONICS TS4962EIJT

TS4962
3W Filter-free Class D Audio Power Amplifier
PRELIMINARY DATA
■
■
■
■
■
■
■
■
■
■
■
■
■
■
Operating from Vcc=2.4V to 5.5V
Standby mode active low
Output power: 3W into 4Ω and 1.75W into 8Ω
with 10% THD+N max and 5V power supply.
Output power: 2.3W @5V or 0.75W @ 3.0V
into 4Ω with 1% THD+N max.
Output power: 1.4W @5V or 0.45W @ 3.0V
into 8Ω with 1% THD+N max.
Adjustable gain via external resistors
Low current consumption 2mA @ 3V
Efficiency: 88% typ.
Signal to noise ratio: 85dB typ.
PSRR: 63dB typ. @217Hz with 6dB gain
PWM base frequency: 250kHz
Low pop & click noise
Thermal shutdown protection
Available in flip-chip 9 x 300um in lead free*
Pin Connections (top view)
TS4962EIJT
IN+
GND
OUT-
1/A1
2/A2
3/A3
VDD
VDD
GND
4/B1
5/B2
6/B3
IN-
STBY
OUT+
8/C2
9/C3
7/C1
IN+: positive differential input
IN-: negative differential input
VDD: analog power supply
GND: power supply ground
STBY: standby pin (active low)
OUT+: positive differential output
OUT-: negative differential output
Description
Block Diagram
The TS4962 is a differential class-D B.T.L. power
amplifier. Able to drive up to 2.3W into a 4Ω load
and 1.4W into a 8Ω load at 5V. It achieves
outstanding efficiency (88%typ.) compared to
classical AB-class audio amps.
B1
B2
Vcc
300k
C2 Stdby
Gain of the device can be controlled via two
external gain setting resistors. POP & CLICK
reduction circuitry provides low on/off switch noise
while allowing the device to start within 5ms.A
standby function (active low) allows to lower the
current consumption to 10nA typ.
C1
InIn+
A1
Internal
Bias
Out+
150k
C3
Output
PWM
+
H
Bridge
A3
150k
Out-
Oscillator
Applications
■
■
■
GND
A2
B3
Cellular Phone
PDA
Notebook PC
Order Codes
Part Number
TS4962IJT
TS4962EIJT
TS4962EKIJT
February 2005
Temperature Range
Package
-40, +85°C
-40, +85°C
Flip-Chip
Lead -Free Flip-Chip
Lead Free + Back
Coating
-40, +85°C
Revision 2
Packaging
Tape & Reel
Marking
A62
A62
A62
1/22
This product preview information shows the electrical and mechanical performances of a finalized product. However, details could still be modified.
TS4962
Absolute Maximum Ratings
1 Absolute Maximum Ratings
Table 1. Key parameters and their absolute maximum ratings
Symbol
VCC
Parameter
Supply voltage
1
2
Value
Unit
6
V
Toper
Input Voltage
Operating Free Air Temperature Range
GND to VCC
-40 to + 85
°C
Tstg
Storage Temperature
-65 to +150
°C
150
°C
Vi
Tj
Rthja
Pd
Maximum Junction Temperature
Thermal Resistance Junction to Ambient
Power Dissipation
3
ESD
Human Body Model
ESD
Machine Model
Latch-up Latch-up Immunity
VSTB
200
V
°C/W
4
Internally Limited
2
200
200
Standby pin voltage maximum voltage 5
Lead Temperature (soldering, 10sec)
kV
V
mA
GND to VCC
V
260
°C
Value
Unit
2.4 to 5.5
V
0.5 to VCC-0.8
V
1.4 ≤ VSTB ≤ VCC
V
1) All voltages values are measured with respect to the ground pin.
2) The magnitude of input signal must never exceed VCC + 0.3V / GND - 0.3V
3) Device is protected in case of over temperature by a thermal shutdown active @ 150°C.
4) Exceeding the power derating curves during a long period, involves abnormal operating condition.
5) The magnitude of standby signal must never exceed VCC + 0.3V / GND - 0.3V
Table 2. Operating Conditions
Symbol
VCC
VIC
VSTB
RL
Rthja
Parameter
Supply Voltage1
Common Mode Input Voltage
Standby Voltage Input :
Device ON
Device OFF
Range2
3
Load Resistor
≥4
Ω
Thermal Resistance Junction to Ambient 5
90
°C/W
1) For VCC from 2.4V to 2.5V, the operating temperature range is reduced to 0°C≤ Tamb ≤70°C
2) For VCC from 2.4V to 2.5V, the common mode input range must be set at VCC/2.
3) Without any signal on VSTB , the device will be in standby
4) Minimum current consumption shall be obtained when VSTB = GND.
5) With heat sink surface = 125mm2.
2/22
GND ≤ VSTB ≤ 0.4 4
Application Component Information
TS4962
2 Application Component Information
Component
Functional Description
Cs
Bypass supply capacitor. To install as close as possible of the TS4962 to minimize high frequency ripple. A 100nF ceramic capacitor should be add to enhance the power supply filtering in high frequency.
Rin
Input resistor to program the TS4962 differential gain (Gain = 300kΩ/Rin with Rin in kΩ)
Input
Capacitor
Typical application
Vcc
B1
Vcc
Cs
1u
B2
Vcc
In+
300k
C2 Stdby
GND
GND
Rin
+
C1
Differential
Input
A1
-
Internal
Bias
GND
Out+
150k
C3
Output
-
InIn+ +
H
PWM
Bridge
SPEAKER
Rin
Input
capacitors
are optional
In-
A3
150k
Out-
Oscillator
TS4962
GND
A2
B3
GND
GND
Vcc
B1
Vcc
In+
C2 Stdby
GND
GND
+
Rin
C1
Differential
Input
In-
InIn+
-
A1
Internal
Bias
4 Ohms LC Output Filter
GND
Out+
150k
C3
15µH
Output
PWM
+
H
1µF
Bridge
Rin
Input
capacitors
are optional
GND
Cs
1u
B2
Vcc
300k
Figure 1.
Thanks to common mode feedback, these input capacitors are optional. However, we can add then to
form with Rin a 1st order high pass filter with -3dB cut-off frequency = 1/(2*π*Rin*Cin)
A3
150k
Out-
Load
15µH
Oscillator
GND
TS4962
A2
B3
30µH
GND
0.5µF
30µH
8 Ohms LC Output Filter
3/22
TS4962
Electrical Characteristics
3 Electrical Characteristics
Table 3. VCC = +5V, GND = 0V, VICM = 2.5V, Tamb = 25°C (unless otherwise specified)
Symbol
ICC
ISTANDBY
Voo
Po
Parameter
Min.
Supply Current
No input signal, no load
Standby Current 1
No input signal, VSTBY = GND
Output Offset Voltage
No input signal, RL = 8Ω
Output Power, G=6dB
THD = 1% Max, f = 1kHz, RL = 4Ω
THD = 10% Max, f = 1kHz, RL = 4Ω
THD = 1% Max, f = 1kHz, RL = 8Ω
THD = 10% Max, f = 1kHz, RL = 8Ω
Typ.
Max.
Unit
2.3
3.3
mA
10
1000
nA
3
25
mV
2.3
3
1.4
1.75
W
THD + N
Total Harmonic Distortion + Noise
Po = 900 mWRMS, G = 6dB, 20Hz < f < 20kHz,
RL = 8Ω + 15µH, BW < 30kHz
Po = 1WRMS, G = 6dB, f = 1kHz,
RL = 8Ω + 15µH, BW < 30kHz
0.4
Efficiency
Efficiency
Po = 2 WRMS, RL = 4Ω + ≥ 15µH
Po =1.2 WRMS, RL = 8Ω+ ≥ 15µH
78
88
%
63
dB
57
dB
273 k Ω 300k Ω 327k Ω
------------------ ------------------ -----------------R
R
R
in
in
in
V/V
PSRR
CMRR
Gain
RSTDBY
FPWM
SNR
TWU
TSTB
VN
1
Power Supply Rejection Ratio with inputs grounded 2
f = 217Hz, RL = 8Ω, G=6dB, Vripple = 200mVpp
Common Mode Rejection Ratio,
f = 217Hz, RL = 8Ω, G = 6dB, ∆Vic = 200mVpp
Gain value (Rin in kΩ)
%
Internal Resistance From Standby to GND
273
300
327
kΩ
Pulse Width Modulator Base Frequency
Signal to Noise ratio (A Weighting), Po = 1.2W, RL = 8Ω
180
250
320
kHz
85
5
10
dB
ms
5
10
ms
Wake-up time
Standby time
Output Voltage Noise f = 20Hz to 20kHz, G = 6dB
Unweighted RL = 4Ω
A weighted RL = 4Ω
Unweighted RL = 8Ω
A weighted RL = 8Ω
Unweighted RL = 4Ω + 15µH
A weighted RL = 4Ω + 15µH
Unweighted RL = 4Ω + 30µH
A weighted RL = 4Ω + 30µH
Unweighted RL = 8Ω + 30µH
A weighted RL = 8Ω + 30µH
Unweighted RL = 4Ω + Filter
A weighted RL = 4Ω + Filter
Unweighted RL = 4Ω + Filter
A weighted RL = 4Ω + Filter
85
60
86
62
83
60
88
64
78
57
87
65
82
59
90
66
1)
Standby mode is active when Vstdby is tied to GND.
2)
Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz.
4/22
µVRMS
Electrical Characteristics
TS4962
Table 4. VCC = +4.2V, GND = 0V, VICM = 2.1V, Tamb = 25°C (unless otherwise specified) 1
Symbol
Typ.
Max.
Unit
Supply Current
No input signal, no load
2.1
3
mA
Standby Current 2
No input signal, VSTBY = GND
10
1000
nA
Voo
Output Offset Voltage
No input signal, RL = 8Ω
3
25
mV
Po
Output Power, G=6dB
THD = 1% Max, f = 1kHz, RL = 4Ω
THD = 10% Max, f = 1kHz, RL = 4Ω
THD = 1% Max, f = 1kHz, RL = 8Ω
THD = 10% Max, f = 1kHz, RL = 8Ω
ICC
ISTANDBY
THD + N
Min.
1.6
2
0.95
1.2
Total Harmonic Distortion + Noise
Po = 600 mWRMS, G = 6dB, 20Hz < f < 20kHz,
RL = 8Ω + 15µH, BW < 30kHz
Po = 700mWRMS, G = 6dB, f = 1kHz,
RL = 8Ω + 15µH, BW < 30kHz
PSRR
Power Supply Rejection Ratio with inputs grounded 3
f = 217Hz, RL = 8Ω, G=6dB, Vripple = 200mVpp
63
CMRR
Common Mode Rejection Ratio
f = 217Hz, RL = 8Ω, G = 6dB, ∆Vic = 200mVpp
Gain value (Rin in kΩ)
%
0.35
78
88
Gain
W
1
Efficiency
Po = 1.45 WRMS, RL = 4Ω + ≥ 15µH
Po = 0.9 WRMS, RL = 8Ω+ ≥ 15µH
Efficiency
%
dB
57
dB
300 k Ω 327k Ω
273k Ω ----------------- ----------------------------------R
R
R
in
in
in
V/V
Internal Resistance From Standby to GND
273
300
327
kΩ
FPWM
Pulse Width Modulator Base Frequency
180
250
320
kHz
SNR
TWU
Signal to Noise ratio (A Weighting), Po = 0.9W, RL = 8Ω
85
Wake-up time
5
10
ms
TSTB
Standby time
5
10
ms
Output Voltage Noise f = 20Hz to 20kHz, G = 6dB
Unweighted RL = 4Ω
A weighted RL = 4Ω
Unweighted RL = 8Ω
A weighted RL = 8Ω
Unweighted RL = 4Ω + 15µH
A weighted RL = 4Ω + 15µH
Unweighted RL = 4Ω + 30µH
A weighted RL = 4Ω + 30µH
Unweighted RL = 8Ω + 30µH
A weighted RL = 8Ω + 30µH
Unweighted RL = 4Ω + Filter
A weighted RL = 4Ω + Filter
Unweighted RL = 4Ω + Filter
A weighted RL = 4Ω + Filter
85
60
86
62
83
60
88
64
78
57
87
65
82
59
90
66
RSTDBY
VN
1)
Parameter
dB
µVRMS
All electrical values are guaranted with correlation measurements at 2.5V and 5V.
2)
Standby mode is actived when Vstdby is tied to GND.
3)
Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz.
5/22
TS4962
Electrical Characteristics
Table 5. VCC = +3.6V, GND = 0V, VICM = 1.8V, Tamb = 25°C (unless otherwise specified) 1
Symbol
Typ.
Max.
Unit
Supply Current
No input signal, no load
2
2.8
mA
Standby Current 2
No input signal, VSTBY = GND
10
1000
nA
Voo
Output Offset Voltage
No input signal, RL = 8Ω
3
25
mV
Po
Output Power, G=6dB
THD = 1% Max, f = 1kHz, RL = 4Ω
THD = 10% Max, f = 1kHz, RL = 4Ω
THD = 1% Max, f = 1kHz, RL = 8Ω
THD = 10% Max, f = 1kHz, RL = 8Ω
ICC
ISTANDBY
THD + N
Efficiency
Parameter
Min.
1.15
1.51
0.7
0.9
Total Harmonic Distortion + Noise
Po = 500 mWRMS, G = 6dB, 20Hz < f < 20kHz,
RL = 8Ω + 15µH, BW < 30kHz
Po = 500mWRMS, G = 6dB, f = 1kHz,
RL = 8Ω + 15µH, BW < 30kHz
W
1
%
0.27
Efficiency
Po = 1 WRMS, RL = 4Ω + ≥ 15µH
Po = 0.65 WRMS, RL = 8Ω+ ≥ 15µH
78
88
%
PSRR
Power Supply Rejection Ratio with inputs grounded 3
f = 217Hz, RL = 8Ω, G=6dB, Vripple = 200mVpp
62
dB
CMRR
Common Mode Rejection Ratio
f = 217Hz, RL = 8Ω, G = 6dB, ∆Vic = 200mVpp
56
dB
300 k Ω 327k Ω
273k Ω ----------------- ----------------------------------R
R
R
in
in
in
V/V
Gain
Gain value (Rin in kΩ)
Internal Resistance From Standby to GND
273
300
327
kΩ
FPWM
Pulse Width Modulator Base Frequency
180
250
320
kHz
SNR
TWU
Signal to Noise ratio (A Weighting), Po = 0.6W, RL = 8Ω
83
Wake-up time
5
10
ms
TSTB
Standby time
5
10
ms
Output Voltage Noise f = 20Hz to 20kHz, G = 6dB
Unweighted RL = 4Ω
A weighted RL = 4Ω
Unweighted RL = 8Ω
A weighted RL = 8Ω
Unweighted RL = 4Ω + 15µH
A weighted RL = 4Ω + 15µH
Unweighted RL = 4Ω + 30µH
A weighted RL = 4Ω + 30µH
Unweighted RL = 8Ω + 30µH
A weighted RL = 8Ω + 30µH
Unweighted RL = 4Ω + Filter
A weighted RL = 4Ω + Filter
Unweighted RL = 4Ω + Filter
A weighted RL = 4Ω + Filter
83
57
83
61
81
58
87
62
77
56
85
63
80
57
85
61
RSTDBY
VN
1)
dB
All electrical values are guaranted with correlation measurements at 2.5V and 5V.
2)
Standby mode is actived when Vstdby is tied to GND.
3)
Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz.
6/22
µVRMS
Electrical Characteristics
TS4962
Table 6. VCC = +3.0V, GND = 0V, VICM = 1.5V, Tamb = 25°C (unless otherwise specified) 1
Symbol
Typ.
Max.
Unit
Supply Current
No input signal, no load
1.9
2.7
mA
Standby Current 2
No input signal, VSTBY = GND
10
1000
nA
Voo
Output Offset Voltage
No input signal, RL = 8Ω
3
25
mV
Po
Output Power, G=6dB
THD = 1% Max, f = 1kHz, RL = 4Ω
THD = 10% Max, f = 1kHz, RL = 4Ω
THD = 1% Max, f = 1kHz, RL = 8Ω
THD = 10% Max, f = 1kHz, RL = 8Ω
ICC
ISTANDBY
THD + N
Parameter
Min.
0.75
1
0.5
0.6
Total Harmonic Distortion + Noise
Po = 350 mWRMS, G = 6dB, 20Hz < f < 20kHz,
RL = 8Ω + 15µH, BW < 30kHz
Po = 350mWRMS, G = 6dB, f = 1kHz,
RL = 8Ω + 15µH, BW < 30kHz
1
78
88
PSRR
Power Supply Rejection Ratio with inputs grounded 3
f = 217Hz, RL = 8Ω, G=6dB, Vripple = 200mVpp
60
CMRR
Common Mode Rejection Ratio, f = 217Hz, RL = 8Ω, G = 6dB, ∆Vic
= 200mVpp
Gain
RSTDBY
FPWM
SNR
TWU
TSTB
VN
Gain value (Rin in kΩ)
%
0.21
Efficiency
Po = 0.7 WRMS, RL = 4Ω + ≥ 15µH
Po = 0.45 WRMS, RL = 8Ω+ ≥ 15µH
Efficiency
W
%
dB
54
dB
273k Ω 300 k Ω 327k Ω
------------------ ------------------ -----------------R
R
R
in
in
in
V/V
Internal Resistance From Standby to GND
273
300
327
kΩ
Pulse Width Modulator Base Frequency
Signal to Noise ratio (A Weighting), Po = 0.4W, RL = 8Ω
180
250
320
kHz
82
dB
Wake-up time
5
10
ms
Standby time
Output Voltage Noise f = 20Hz to 20kHz, G = 6dB
Unweighted RL = 4Ω
A weighted RL = 4Ω
Unweighted RL = 8Ω
A weighted RL = 8Ω
Unweighted RL = 4Ω + 15µH
A weighted RL = 4Ω + 15µH
Unweighted RL = 4Ω + 30µH
A weighted RL = 4Ω + 30µH
Unweighted RL = 8Ω + 30µH
A weighted RL = 8Ω + 30µH
Unweighted RL = 4Ω + Filter
A weighted RL = 4Ω + Filter
Unweighted RL = 4Ω + Filter
A weighted RL = 4Ω + Filter
5
10
ms
83
57
83
61
81
58
87
62
77
56
85
63
80
57
85
61
µVRMS
1) All electrical values are guaranted with correlation measurements at 2.5V and 5V.
2) Standby mode is actived when Vstdby is tied to GND.
3)
Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz.
7/22
TS4962
Electrical Characteristics
Table 7. VCC = +2.5V, GND = 0V, VICM = 1.25V, Tamb = 25°C (unless otherwise specified)
Symbol
Typ.
Max.
Unit
Supply Current
No input signal, no load
1.7
2.4
mA
Standby Current 1
No input signal, VSTBY = GND
10
1000
nA
Voo
Output Offset Voltage
No input signal, RL = 8Ω
3
25
mV
Po
Output Power, G=6dB
THD = 1% Max, f = 1kHz, RL = 4Ω
THD = 10% Max, f = 1kHz, RL = 4Ω
THD = 1% Max, f = 1kHz, RL = 8Ω
THD = 10% Max, f = 1kHz, RL = 8Ω
ICC
ISTANDBY
Parameter
THD + N
Total Harmonic Distortion + Noise
Po = 200 mWRMS, G = 6dB, 20Hz < f < 20kHz,
RL = 8Ω + 15µH, BW < 30kHz
Po = 200mWRMS, G = 6dB, f = 1kHz,
RL = 8Ω + 15µH, BW < 30kHz
Efficiency
Efficiency
Po = 0.47 WRMS, RL = 4Ω + ≥ 15µH
Po = 0.3 WRMS, RL = 8Ω+ ≥ 15µH
Min.
0.52
0.71
0.33
0.42
W
1
%
0.19
78
88
%
PSRR
Power Supply Rejection Ratio with inputs grounded 2
f = 217Hz, RL = 8Ω, G=6dB, Vripple = 200mVpp
60
dB
CMRR
Common Mode Rejection Ratio
f = 217Hz, RL = 8Ω, G = 6dB, ∆Vic = 200mVpp
54
dB
300 k Ω 327k Ω
273k Ω ----------------- ----------------------------------R
R
R
in
in
in
V/V
Gain
Gain value (Rin in kΩ)
Internal Resistance From Standby to GND
273
300
327
kΩ
FPWM
Pulse Width Modulator Base Frequency
180
250
320
kHz
SNR
TWU
Signal to Noise ratio (A Weighting), Po = 0.4W, RL = 8Ω
80
Wake-up time
5
10
ms
TSTB
Standby time
5
10
ms
Output Voltage Noise f = 20Hz to 20kHz, G = 6dB
Unweighted RL = 4Ω
A weighted RL = 4Ω
Unweighted RL = 8Ω
A weighted RL = 8Ω
Unweighted RL = 4Ω + 15µH
A weighted RL = 4Ω + 15µH
Unweighted RL = 4Ω + 30µH
A weighted RL = 4Ω + 30µH
Unweighted RL = 8Ω + 30µH
A weighted RL = 8Ω + 30µH
Unweighted RL = 4Ω + Filter
A weighted RL = 4Ω + Filter
Unweighted RL = 4Ω + Filter
A weighted RL = 4Ω + Filter
85
60
86
62
76
56
82
60
67
53
78
57
74
54
78
59
RSTDBY
VN
dB
1)
Standby mode is actived when Vstdby is tied to GND.
2)
Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz.
8/22
µVRMS
Electrical Characteristics
TS4962
Table 8. VCC = +2.4V1, GND = 0V, VICM = 1.2V, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Unit
Supply Current
No input signal, no load
1.7
mA
Standby Current 2
No input signal, VSTBY = GND
10
nA
Voo
Output Offset Voltage
No input signal, RL = 8Ω
3
mV
Po
Output Power, G=6dB
THD = 1% Max, f = 1kHz, RL = 4Ω
THD = 10% Max, f = 1kHz, RL = 4Ω
THD = 1% Max, f = 1kHz, RL = 8Ω
THD = 10% Max, f = 1kHz, RL = 8Ω
ICC
ISTANDBY
THD + N
Total Harmonic Distortion + Noise
Po = 200 mWRMS, G = 6dB, 20Hz < f < 20kHz,
RL = 8Ω + 15µH, BW < 30kHz
Efficiency
Efficiency
Po = 0.38 WRMS, RL = 4Ω + ≥ 15µH
Po = 0.25 WRMS, RL = 8Ω+ ≥ 15µH
CMRR
Gain
RSTDBY
0.48
0.65
0.3
0.38
1
%
77
86
%
54
dB
300 k Ω 327k Ω
273k Ω ----------------- ----------------------------------R
R
R
in
in
in
V/V
Common Mode Rejection Ratio
f = 217Hz, RL = 8Ω, G = 6dB, ∆Vic = 200mVpp
Gain value (Rin in kΩ)
Internal Resistance From Standby to GND
W
273
300
327
kΩ
FPWM
Pulse Width Modulator Base Frequency
250
kHz
SNR
Signal to Noise ratio (A Weighting), Po = 0.25W, RL = 8Ω
80
dB
TWU
Wake-up time
5
ms
TSTB
Standby time
5
ms
Output Voltage Noise f = 20Hz to 20kHz, G = 6dB
Unweighted RL = 4Ω
A weighted RL = 4Ω
Unweighted RL = 8Ω
A weighted RL = 8Ω
Unweighted RL = 4Ω + 15µH
A weighted RL = 4Ω + 15µH
Unweighted RL = 4Ω + 30µH
A weighted RL = 4Ω + 30µH
Unweighted RL = 8Ω + 30µH
A weighted RL = 8Ω + 30µH
Unweighted RL = 4Ω + Filter
A weighted RL = 4Ω + Filter
Unweighted RL = 4Ω + Filter
A weighted RL = 4Ω + Filter
85
60
86
62
76
56
82
60
67
53
78
57
74
54
78
59
VN
1)
Parameters guaranteed by evaluation and design, not by test.
2)
Standby mode is actived when Vstdby is tied to GND.
µVRMS
9/22
TS4962
Electrical Characteristics
Note: In the graphs that follow, the following abbreviations are used:
RL + 15µH or 30µH = pure resistor+ very low series resistance inductor
Filter = LC output filter (1µF+30µH for 4Ω and 0.5µF+60µH for 8Ω)
All measurements done with Cs1=1µF and Cs2=100nF except for PSRR where Cs1 is removed
Figure 2.
Test diagram for measurements
Vcc
1uF
100nF
Cs2
Cs1 +
Cin
GND
GND
Rin
Out+
In+
15uH or 30uH
150k
Rin
5th order
or
TS4962
Cin
4 or 8 Ohms
RL
filter
LC Filter
In-
50kHz low pass
Out-
150k
GND
Audio Measurement
Bandwidth < 30kHz
Figure 3.
Test diagram for PSRR measurements
100nF
Cs2
20Hz to 20kHz
Vcc
GND
4.7uF
GND
Rin
Out+
In+
15uH or 30uH
150k
TS4962
4.7uF
Rin
4 or 8 Ohms
or
5th order
RL
LC Filter
InOut-
150k
GND
GND
5th order
50kHz low pass
filter
10/22
Reference
RMS Selective Measurement
Bandwidth=1% of Fmeas
50kHz low pass
filter
Electrical Characteristics
Figure 4.
TS4962
Current consumption vs power
supply voltage
Figure 7.
2.5
Output offset voltage vs common
mode input voltage
10
G = 6dB
Tamb = 25°C
2.0
8
Voo (mV)
Current Consumption (mA)
No load
Tamb=25°C
1.5
1.0
0.5
0.0
6
Vcc=5V
Vcc=3.6V
4
2
0
1
2
3
4
Vcc=2.5V
0
0.0
5
0.5
1.0
Power Supply Voltage (V)
Figure 5.
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
Common Mode Input Voltage (V)
Current consumption vs standby
voltage
2.5
Figure 8.
Efficiency vs output power
100
80
1.5
1.0
0.5
0.0
1
2
3
4
400
60
300
40
Power
Dissipation
200
Vcc=5V
RL=4Ω + ≥ 15µH
100
F=1kHz
THD+N≤1%
0
1.0
1.5
2.0
2.3
Output Power (W)
20
Vcc = 5V
No load
Tamb=25°C
0
500
0
0.0
5
0.5
Standby Voltage (V)
Figure 6.
Current consumption vs standby
voltage
Figure 9.
Efficiency vs output power
100
2.0
Power Dissipation (mW)
2.0
Efficiency (%)
Current Consumption (mA)
600
Efficiency
200
1.0
0.5
0.0
0.0
Vcc = 3V
No load
Tamb=25°C
0.5
1.0
1.5
2.0
Standby Voltage (V)
2.5
3.0
60
100
Power
Dissipation
40
20
0
0.0
0.1
Vcc=3V
50
RL=4Ω + ≥ 15µH
F=1kHz
THD+N≤1%
0
0.2
0.3
0.4
0.5
0.6
0.7
Output Power (W)
Power Dissipation (mW)
150
Efficiency (%)
Current Consumption (mA)
Efficiency
80
1.5
11/22
TS4962
Electrical Characteristics
Figure 10. Efficiency vs output power
Figure 13. Output power vs power supply
voltage
100
2.0
150
Efficiency (%)
Efficiency
100
60
40
Power
Dissipation
50
Vcc=5V
RL=8Ω + ≥ 15µH
F=1kHz
THD+N≤1%
20
0
0.0
0.2
0.4
0.6
0.8
Output Power (W)
1.0
1.2
RL = 8Ω + ≥ 15µH
F = 1kHz
BW < 30kHz
1.5 Tamb = 25°C
Output power (W)
Power Dissipation (mW)
80
THD+N=10%
1.0
0.5
0
1.4
0.0
THD+N=1%
2.5
100
75
50
60
40
0.1
25
Vcc=3V
RL=8Ω + ≥ 15µH
F=1kHz
THD+N≤1%
0.2
0.3
Output Power (W)
Figure 12. Output power vs power supply
voltage
-30
5.5
-40
Vcc=5V, 3.6V, 2.5V
-50
-60
-80
20
100
1000
Frequency (Hz)
10000 20k
Figure 15. PSRR vs frequency
0
3.5
RL = 4Ω + ≥ 15µH
F = 1kHz
3.0
BW < 30kHz
Tamb = 25°C
2.5
Vripple = 200mVpp
Inputs = Grounded
G = 6dB, Cin = 4.7µF
RL = 4Ω + 30µH
∆R/R≤0.1%
Tamb = 25°C
-10
THD+N=10%
-20
PSRR (dB)
Output power (W)
5.0
-70
0
0.5
0.4
4.5
Vripple = 200mVpp
Inputs = Grounded
G = 6dB, Cin = 4.7µF
RL = 4Ω + 15µH
∆R/R≤0.1%
Tamb = 25°C
-20
PSRR (dB)
Efficiency (%)
Efficiency
Power Dissipation (mW)
80
0
0.0
4.0
Vcc (V)
0
-10
Power
Dissipation
3.5
Figure 14. PSRR vs frequency
Figure 11. Efficiency vs output power
20
3.0
2.0
1.5
THD+N=1%
-30
-40
Vcc=5V, 3.6V, 2.5V
-50
1.0
-60
0.5
0.0
12/22
-70
2.5
3.0
3.5
4.0
Vcc (V)
4.5
5.0
5.5
-80
20
100
1000
Frequency (Hz)
10000 20k
Electrical Characteristics
TS4962
Figure 16. PSRR vs frequency
Figure 19. PSRR vs frequency
0
0
Vripple = 200mVpp
Inputs = Grounded
G = 6dB, Cin = 4.7µF
RL = 4Ω + Filter
∆R/R≤0.1%
Tamb = 25°C
PSRR (dB)
-20
-30
-20
-40
Vcc=5V, 3.6V, 2.5V
-50
-30
-40
-60
-70
-70
20
100
1000
Frequency (Hz)
-80
10000 20k
Figure 17. PSRR vs frequency
20
-30
-20
-40
Vcc=5V, 3.6V, 2.5V
-50
Vripple = 200mVpp
F = 217Hz, G = 6dB
RL ≥ 4Ω + ≥ 15µH
Tamb = 25°C
-10
PSRR(dB)
-20
Vcc=2.5V
-30
Vcc=3.6V
-40
-50
-60
-60
-70
-70
Vcc=5V
20
100
1000
Frequency (Hz)
-80
0.0
10000 20k
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
Common Mode Input Voltage (V)
Figure 18. PSRR vs frequency
Figure 21. CMRR vs frequency
0
0
Vripple = 200mVpp
Inputs = Grounded
G = 6dB, Cin = 4.7µF
RL = 8Ω + 30µH
∆R/R≤0.1%
Tamb = 25°C
-20
-30
-20
CMRR (dB)
-10
PSRR (dB)
10000 20k
1000
Frequency (Hz)
0
Vripple = 200mVpp
Inputs = Grounded
G = 6dB, Cin = 4.7µF
RL = 8Ω + 15µH
∆R/R≤0.1%
Tamb = 25°C
-10
-80
100
Figure 20. PSRR vs frequency Common Mode
Input Voltage
0
PSRR (dB)
Vcc=5V, 3.6V, 2.5V
-50
-60
-80
Vripple = 200mVpp
Inputs = Grounded
G = 6dB, Cin = 4.7µF
∆R/R≤0.1%
RL = 8Ω + Filter
Tamb = 25°C
-10
PSRR (dB)
-10
-40
-40
Vcc=5V, 3.6V, 2.5V
-50
RL=4Ω + 15µH
G=6dB
∆Vicm=200mVpp
∆R/R≤0.1%
Cin=4.7µF
Tamb = 25°C
Vcc=5V, 3.6V, 2.5V
-60
-60
-70
-80
20
100
1000
Frequency (Hz)
10000 20k
20
100
1000
Frequency (Hz)
10000 20k
13/22
TS4962
Electrical Characteristics
Figure 22. CMRR vs frequency
Figure 25. CMRR vs frequency
0
0
RL=4Ω + 30µH
G=6dB
∆Vicm=200mVpp
∆R/R≤0.1%
Cin=4.7µF
Tamb = 25°C
-20
CMRR (dB)
CMRR (dB)
-20
-40
Vcc=5V, 3.6V, 2.5V
-60
100
1000
Frequency (Hz)
Vcc=5V, 3.6V, 2.5V
10000 20k
Figure 23. CMRR vs frequency
100
20
1000
Frequency (Hz)
10000 20k
Figure 26. CMRR vs frequency
0
0
RL=4Ω + Filter
G=6dB
∆Vicm=200mVpp
∆R/R≤0.1%
Cin=4.7µF
Tamb = 25°C
RL=8Ω + Filter
G=6dB
∆Vicm=200mVpp
∆R/R≤0.1%
Cin=4.7µF
Tamb = 25°C
-20
CMRR (dB)
CMRR (dB)
-20
-40
-40
Vcc=5V, 3.6V, 2.5V
-60
Vcc=5V, 3.6V, 2.5V
-60
20
100
1000
Frequency (Hz)
10000 20k
Figure 24. CMRR vs frequency
100
20
1000
Frequency (Hz)
10000 20k
Figure 27. CMRR vs frequency Common
Mode Input Voltage
0
-20
RL=8Ω + 15µH
G=6dB
∆Vicm=200mVpp
∆R/R≤0.1%
Cin=4.7µF
Tamb = 25°C
-30
CMRR(dB)
CMRR (dB)
-40
-60
20
-20
RL=8Ω + 30µH
G=6dB
∆Vicm=200mVpp
∆R/R≤0.1%
Cin=4.7µF
Tamb = 25°C
-40
Vcc=5V, 3.6V, 2.5V
-40
∆Vicm = 200mVpp
F = 217Hz
G = 6dB
RL ≥ 4Ω + ≥ 15µH
Tamb = 25°C
Vcc=2.5V
-50
Vcc=3.6V
-60
-60
Vcc=5V
20
100
1000
Frequency (Hz)
10000 20k
-70
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
Common Mode Input Voltage (V)
14/22
4.5
5.0
Electrical Characteristics
TS4962
Figure 28. THD+N vs output power
Figure 31. THD+N vs output power
10
RL = 4Ω + 15µH
F = 100Hz
G = 6dB
BW < 30kHz
Tamb = 25°C
Vcc=3.6V
Vcc=2.5V
1
0.1
Vcc=5V
Vcc=3.6V
Vcc=2.5V
1
0.1
1E-3
0.01
0.1
Output Power (W)
1
1E-3
3
Figure 29. THD+N vs output power
0.01
0.1
Output Power (W)
1
2
Figure 32. THD+N vs output power
10
10
RL = 4Ω + 30µH or Filter
F = 100Hz
G = 6dB
BW < 30kHz
Tamb = 25°C
RL = 4Ω + 15µH
F = 1kHz
G = 6dB
BW < 30kHz
Tamb = 25°C
Vcc=5V
Vcc=3.6V
Vcc=2.5V
THD + N (%)
THD + N (%)
RL = 8Ω + 30µH or Filter
F = 100Hz
G = 6dB
BW < 30kHz
Tamb = 25°C
Vcc=5V
THD + N (%)
THD + N (%)
10
1
Vcc=5V
Vcc=3.6V
Vcc=2.5V
1
0.1
1E-3
0.01
0.1
Output Power (W)
1
3
Figure 30. THD+N vs output power
0.01
0.1
Output Power (W)
1
3
1
3
Figure 33. THD+N vs output power
10
10
RL = 8Ω + 15µH
F = 100Hz
G = 6dB
BW < 30kHz
Tamb = 25°C
RL = 4Ω + 30µH or Filter
F = 1kHz
G = 6dB
BW < 30kHz
Tamb = 25°C
Vcc=5V
Vcc=3.6V
THD + N (%)
THD + N (%)
0.1
1E-3
Vcc=2.5V
1
Vcc=5V
Vcc=3.6V
Vcc=2.5V
1
0.1
1E-3
0.01
0.1
Output Power (W)
1
2
0.1
1E-3
0.01
0.1
Output Power (W)
15/22
TS4962
Electrical Characteristics
Figure 34. THD+N vs output power
Figure 37. THD+N vs frequency
10
RL = 8Ω + 15µH
F = 1kHz
G = 6dB
BW < 30kHz
Tamb = 25°C
RL=4Ω + 30µH or Filter
G=6dB
Bw < 30kHz
Vcc=5V
Tamb = 25°C
Vcc=5V
Vcc=3.6V
THD + N (%)
THD + N (%)
10
Vcc=2.5V
1
1
Po=0.75W
0.1
0.1
1E-3
0.01
0.1
Output Power (W)
1
50
2
100
1000
Frequency (Hz)
10000 20k
Figure 38. THD+N vs frequency
Figure 35. THD+N vs output power
10
10
RL = 8Ω + 30µH or Filter
F = 1kHz
G = 6dB
BW < 30kHz
Tamb = 25°C
RL=4Ω + 15µH
G=6dB
Bw < 30kHz
Vcc=3.6V
Tamb = 25°C
Vcc=5V
Vcc=3.6V
THD + N (%)
THD + N (%)
Po=1.5W
Vcc=2.5V
1
Po=0.9W
1
Po=0.45W
0.1
0.1
1E-3
0.01
0.1
Output Power (W)
1
50
2
Figure 36. THD+N vs frequency
1000
Frequency (Hz)
10000 20k
Figure 39. THD+N vs frequency
10
10
RL=4Ω + 15µH
G=6dB
Bw < 30kHz
Vcc=5V
Tamb = 25°C
RL=4Ω + 30µH or Filter
G=6dB
Bw < 30kHz
Vcc=3.6V
Tamb = 25°C
Po=1.5W
THD + N (%)
THD + N (%)
100
1
Po=0.9W
1
Po=0.45W
Po=0.75W
0.1
50
16/22
0.1
100
1000
Frequency (Hz)
10000 20k
50
100
1000
Frequency (Hz)
10000 20k
Electrical Characteristics
TS4962
Figure 40. THD+N vs frequency
Figure 43. THD+N vs frequency
10
RL=4Ω + 15µH
G=6dB
Bw < 30kHz
Vcc=2.5V
Tamb = 25°C
RL=8Ω + 30µH or Filter
G=6dB
Bw < 30kHz
Vcc=5V
Tamb = 25°C
Po=0.4W
THD + N (%)
THD + N (%)
10
1
Po=0.9W
1
Po=0.2W
0.1
1000
Frequency (Hz)
200
10000
20k
Figure 41. THD+N vs frequency
50
100
1000
Frequency (Hz)
10000 20k
Figure 44. THD+N vs frequency
10
10
RL=4Ω + 30µH or Filter
G=6dB
Bw < 30kHz
Vcc=2.5V
Tamb = 25°C
RL=8Ω + 15µH
G=6dB
Bw < 30kHz
Vcc=3.6V
Tamb = 25°C
Po=0.4W
THD + N (%)
THD + N (%)
Po=0.45W
0.1
1
Po=0.5W
1
Po=0.2W
0.1
0.1
50
100
1000
Frequency (Hz)
10000 20k
50
100
1000
Frequency (Hz)
10000 20k
Figure 45. THD+N vs frequency
Figure 42. THD+N vs frequency
10
10
RL=8Ω + 15µH
G=6dB
Bw < 30kHz
Vcc=5V
Tamb = 25°C
Po=0.9W
THD + N (%)
THD + N (%)
Po=0.25W
1
0.1
100
1000
Frequency (Hz)
Po=0.5W
1
0.1
Po=0.45W
50
RL=8Ω + 30µH or Filter
G=6dB
Bw < 30kHz
Vcc=3.6V
Tamb = 25°C
10000 20k
Po=0.25W
50
100
1000
Frequency (Hz)
10000 20k
17/22
TS4962
Electrical Characteristics
Figure 46. THD+N vs frequency
Figure 49. Gain vs frequency
8
RL=8Ω + 15µH
G=6dB
Bw < 30kHz
Vcc=2.5V
Tamb = 25°C
THD + N (%)
1
Differential Gain (dB)
10
Po=0.2W
0.1
6
Vcc=5V, 3.6V, 2.5V
4
RL=4Ω + 30µH
G=6dB
Vin=500mVpp
Cin=1µF
Tamb = 25°C
2
Po=0.1W
0.01
0
50
100
1000
Frequency (Hz)
10000 20k
Differential Gain (dB)
RL=8Ω + 30µH or Filter
G=6dB
Bw < 30kHz
Vcc=2.5V
Tamb = 25°C
1
Po=0.2W
0.1
Vcc=5V, 3.6V, 2.5V
4
RL=4Ω + Filter
G=6dB
Vin=500mVpp
Cin=1µF
Tamb = 25°C
2
0
50
100
1000
Frequency (Hz)
10000 20k
8
6
6
Differential Gain (dB)
Differential Gain (dB)
8
Vcc=5V, 3.6V, 2.5V
4
RL=4Ω + 15µH
G=6dB
Vin=500mVpp
Cin=1µF
Tamb = 25°C
2
20
100
100
1000
Frequency (Hz)
10000 20k
Vcc=5V, 3.6V, 2.5V
4
10000 20k
RL=8Ω + 15µH
G=6dB
Vin=500mVpp
Cin=1µF
Tamb = 25°C
2
0
1000
Frequency (Hz)
20
Figure 51. Gain vs frequency
Figure 48. Gain vs frequency
18/22
10000 20k
6
Po=0.1W
0
1000
Frequency (Hz)
8
10
0.01
100
Figure 50. Gain vs frequency
Figure 47. THD+N vs frequency
THD + N (%)
20
20
100
1000
Frequency (Hz)
10000 20k
Electrical Characteristics
TS4962
Figure 52. Gain vs frequency
Figure 55. Startup & shutdown time
Vcc=5V, G=6dB, CIN=1µF (5ms/div)
8
Differential Gain (dB)
Vo1
6
Vo2
Vcc=5V, 3.6V, 2.5V
4
Standby
RL=8Ω + 30µH
G=6dB
Vin=500mVpp
Cin=1µF
Tamb = 25°C
2
0
20
100
Vo1-Vo2
1000
Frequency (Hz)
10000 20k
Figure 56. Startup & shutdown time
Vcc=3V, G=6dB, CIN=1µF (5ms/div)
Figure 53. Gain vs frequency
8
Differential Gain (dB)
Vo1
6
Vo2
Vcc=5V, 3.6V, 2.5V
4
Standby
RL=8Ω + Filter
G=6dB
Vin=500mVpp
Cin=1µF
Tamb = 25°C
2
0
20
100
Vo1-Vo2
1000
Frequency (Hz)
10000 20k
Figure 57. Startup & shutdown time
Vcc=5V, G=6dB, CIN=100nF (5ms/div)
Figure 54. Gain vs frequency
8
Differential Gain (dB)
Vo1
6
Vo2
Vcc=5V, 3.6V, 2.5V
4
Standby
RL=No Load
G=6dB
Vin=500mVpp
Cin=1µF
Tamb = 25°C
2
0
20
100
Vo1-Vo2
1000
Frequency (Hz)
10000 20k
19/22
TS4962
Electrical Characteristics
Figure 58. Startup & shutdown time
Vcc=3V, G=6dB, CIN=100nF (5ms/div)
Vo1
Vo2
Standby
Vo1-Vo2
Figure 59. Startup & shutdown time
Vcc=5V, G=6dB, NoCIN (5ms/div)
Vo1
Vo2
Standby
Vo1-Vo2
Figure 60. Startup & shutdown time
Vcc=3V, G=6dB, NoCIN (5ms/div)
Vo1
Vo2
Standby
Vo1-Vo2
20/22
Package Mechanical Data
TS4962
4 Package Mechanical Data
4.1 Pin-out and markings for 9-bump flip-chip
Figure 61. Pin-out for 9-bump flip-chip (top view)
IN+
GND
OUT-
1/A1
2/A2
3/A3
VDD
VDD
GND
4/B1
5/B2
6/B3
IN-
STBY
OUT+
8/C2
9/C3
7/C1
■
■
Bumps are underneath
Bump diameter = 300µm
Figure 62. Marking for 9-bump flip-chip (top view)
Marking: A62
E
■
■
■
■
■
A62
YWW
ST Logo
Part Number: A62
Three digits Datecode: YWW
E symbol for lead-free only
The dot is for marking pin A1
4.2 Mechanical data for 9-bump flip-chip
1.60 mm
1.60 mm
0.5mm
■
■
■
■
■
■
■
■
■
Die size: 1.6mm x 1.6mm ±30µm
Die height (including bumps): 600µm
Bump diameter: 315µm ±50µm
Bump diameter before Reflew: 300µm ±10µm
Bump height: 250µm ±40µm
Die Height: 350µm ±20µm
Pitch: 500µm ±50µm
*Back Coating layer Height: 100µm ±10µm
Coplanarity: 60µm max
* Optional
0.5mm
∅ 0.25mm
100µm
600µm
21/22
TS4962
Revision History
5 Revision History
Date
Revision
Description of Changes
01 Sept. 2004
0.1
First release corresponding to Target Specification version of datasheet.
01 Oct. 2004
0.2
Update Gain Values.
01 Nov. 2004
1
First published version corresponding to Preliminary Data version of
datasheet. Specific content changes as follows:
•
01 Jan. 2005
2
update Electrical Values + curves.
Technical parameter updated (Output Power at 3W).
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
22/22