STMICROELECTRONICS TS4962IQT

TS4962
2.8W filter-free mono class D audio power amplifier
Features
■
Operating from VCC=2.4V to 5.5V
■
Standby mode active low
■
Output power: 2.8W into 4Ω and 1.7W into 8Ω
with 10% THD+N max and 5V power supply
■
Output power: 2.2W @5V or 0.7W @ 3.0V into
4Ω with 1% THD+N max.
■
Output power: 1.4W @5V or 0.5W @ 3.0V into
8Ω with 1% THD+N max.
■
Adjustable gain via external resistors
■
Low current consumption 2mA @ 3V
■
Efficiency: 88% typ.
■
Signal to noise ratio: 85dB typ.
■
PSRR: 63dB typ. @217Hz with 6dB gain
■
PWM base frequency: 280kHz
■
Low pop & click noise
■
Thermal shutdown protection
■
Available in DFN8 3X3 mm package
DFN8 3x3 mm
TS4962IQT - Pinout
Description
The TS4962 is a differential class-D BTL power
amplifier. It is able to drive up to 2.2W into a 4Ω
load and 1.4W into a 8Ω load at 5V. It achieves
outstanding efficiency (88% typ.) compared to
standard AB-class audio amps.
The gain of the device can be controlled via two
external gain-setting resistors. Pop & click
reduction circuitry provides low on/off switch noise
while allowing the device to start within 5ms. A
standby function (active low) allows the reduction
of current consumption to 10nA typ.
January 2007
Applications
■
Cellular phone
■
PDA
■
Notebook PC
Rev 7
1/46
www.st.com
1
Contents
TS4962
Contents
1
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 6
2
Application component information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4
3.1
Electrical characteristics tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2
Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1
Differential configuration principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2
Gain in typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3
Common mode feedback loop limitations . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4
Low frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5
Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6
Wake-up time (tWU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.7
Shutdown time (tSTBY) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.8
Consumption in standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.9
Single-ended input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.10
Output filter considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.11
Several examples with summed inputs . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Example 1: Dual differential inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Example 2: One differential input plus one single ended input . . . . . . . . . . . . . . . 38
5
Demo board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6
Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7
DFN8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2/46
List of tables
TS4962
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
2/46
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Dissipation ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Component information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Electrical characteristics at VCC = +5V, with GND = 0V, Vicm = 2.5V, and Tamb = 25°C
(unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Electrical characteristics at VCC = +4.2V with GND = 0V, Vicm = 2.1V, and Tamb = 25°C
(unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Electrical characteristics at VCC = +3.6V with GND = 0V, Vicm = 1.8V, Tamb = 25°C
(unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Electrical characteristics at VCC = +3.0V with GND = 0V, Vicm = 1.5V, Tamb = 25°C
(unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Electrical characteristics at VCC = +2.5V with GND = 0V, Vicm = 1.25V, Tamb = 25°C
(unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Electrical characteristics at VCC +2.4V with GND = 0V, Vicm = 1.2V, Tamb = 25°C
(unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
List of figures
TS4962
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
2/46
Typical application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Schematic used for test measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Schematic used for PSSR measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Current consumption vs. power supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Current consumption vs. standby voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Output offset voltage vs. common mode input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Efficiency vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Efficiency vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Efficiency vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Efficiency vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Output power vs. power supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Output power vs. power supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
PSRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
PSRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
PSRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
PSRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
PSRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
PSRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
PSRR vs. common mode input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
CMRR vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
CMRR vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
CMRR vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
CMRR vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
CMRR vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
CMRR vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
CMRR vs. common mode input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
THD+N vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
THD+N vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
THD+N vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
THD+N vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
THD+N vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
THD+N vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
THD+N vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
THD+N vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Gain vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Gain vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
TS4962
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
List of figures
Gain vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Gain vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Gain vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Gain vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Gain vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Startup & shutdown time VCC = 5V, G = 6dB, Cin= 1µF (5ms/div) . . . . . . . . . . . . . . . . . . . 30
Startup & shutdown time VCC = 3V, G = 6dB, Cin= 1µF (5ms/div) . . . . . . . . . . . . . . . . . . . 30
Startup & shutdown time VCC = 5V, G = 6dB, Cin= 100nF (5ms/div) . . . . . . . . . . . . . . . . . 30
Startup & shutdown time VCC = 3V, G = 6dB, Cin= 100nF (5ms/div) . . . . . . . . . . . . . . . . . 31
Startup & shutdown time VCC = 5V, G = 6dB, No Cin (5ms/div) . . . . . . . . . . . . . . . . . . . . . 31
Startup & shutdown time VCC = 3V, G = 6dB, No Cin (5ms/div) . . . . . . . . . . . . . . . . . . . . . 31
Single-ended input typical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Typical application schematic with multiple single-ended inputs . . . . . . . . . . . . . . . . . . . . 35
Method for shorting pertubations to ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Typical application schematic with dual differential inputs . . . . . . . . . . . . . . . . . . . . . . . . . 37
Typical application schematic with one differential input plus one single-ended input . . . . 38
Schematic diagram of mono class D demoboard for the TS4962 DFN package . . . . . . . . 39
Top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Bottom layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Top layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Recommended footprint for TS4962 DFN package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
DFN8 3x3 exposed pad package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3/46
Absolute maximum ratings and operating conditions
1
TS4962
Absolute maximum ratings and operating conditions
Table 1.
Absolute maximum ratings
Symbol
Parameter
Supply voltage(1), (2)
VCC
Vi
Input voltage
(3)
Value
Unit
6
V
GND to VCC
V
Toper
Operating free air temperature range
-40 to + 85
°C
Tstg
Storage temperature
-65 to +150
°C
Maximum junction temperature
150
°C
Thermal resistance junction to ambient
DFN8 package
120
°C/W
Tj
Rthja
Pd
Internally limited(4)
Power dissipation
ESD
Human body model
ESD
Latch-up
2
kV
Machine model
200
V
Latch-up immunity
200
mA
GND to VCC
V
260
°C
Standby pin voltage maximum voltage (5)
VSTBY
Lead temperature (soldering, 10sec)
1. Caution: This device is not protected in the event of abnormal operating conditions such as, for example,
short-circuiting between any one output pin and ground, between any one output pin and VCC, and
between individual output pins.
2. All voltage values are measured with respect to the ground pin.
3. The magnitude of the input signal must never exceed VCC + 0.3V / GND - 0.3V.
4. Exceeding the power derating curves during a long period will provoke abnormal operation.
5. The magnitude of the standby signal must never exceed VCC + 0.3V / GND - 0.3V.
Table 2.
6/46
Dissipation ratings
Package
Derating factor
Power rating @25°C
Power rating @ 85°C
DFN8
20 mW / °C
2.5 W
1.3 W
TS4962
Absolute maximum ratings and operating conditions
Table 3.
Operating conditions
Symbol
VCC
VIC
VSTBY
RL
Rthja
Parameter
Supply voltage(1)
Common mode input voltage range
(2)
Standby voltage input: (3)
Device ON
Device OFF
Value
Unit
2.4 to 5.5
V
0.5 to VCC-0.8
V
1.4 ≤ VSTBY ≤ VCC
GND ≤ VSTBY ≤ 0.4 (4)
V
Load resistor
≥4
Ω
Thermal resistance junction to ambient
DFN8 package(5)
50
°C/W
1. For VCC between 2.4V and 2.5V, the operating temperature range is reduced to 0°C ≤Tamb
≤70°C.
2. For VCC between 2.4V and 2.5V, the common mode input range must be set at VCC/2.
3. Without any signal on VSTBY, the device will be in standby.
4. Minimum current consumption is obtained when VSTBY = GND.
5.
When mounted on a 4-layer PCB.
7/46
Application component information
2
TS4962
Application component information
Table 4.
Component information
Component
Functional description
CS
Bypass supply capacitor. Install as close as possible to the TS4962 to
minimize high-frequency ripple. A 100nF ceramic capacitor should be added
to enhance the power supply filtering at high frequency.
Rin
Input resistor used to program the TS4962 differential gain (Gain = 300kΩ/Rin
with Rin in kΩ).
Because of common mode feedback these input capacitors are optional.
However, they can be added to form with Rin a 1st order high pass filter with
-3dB cut-off frequency = 1/(2*π*Rin*Cin).
Input capacitor
Figure 1.
Typical application schematics
Vcc
6
Vcc
Cs
1u
Vcc
In+
300k
1 Stdby
GND
Rin
GND
+
Differential
Input
4
InIn+
3
-
Rin
Input
capacitors
are optional
In-
Internal
Bias
GND
Out+
150k
5
Output
-
H
PWM
+
Bridge
SPEAKER
8
150k
Out-
Oscillator
GND
GND
7
GND
Vcc
6
Vcc
300k
1 Stdby
GND
GND
+
Differential
Input
In-
-
Rin
4
InIn+
3
Internal
Bias
4 Ohms LC Output Filter
GND
Out+
150k
5
15µH
Output
PWM
+
2µF
H
Bridge
Rin
Input
capacitors
are optional
GND
Cs
1u
Vcc
In+
GND
8
150k
Out-
2µF
15µH
Oscillator
GND
7
30µH
GND
1µF
GND
1µF
30µH
8 Ohms LC Output Filter
8/46
Load
TS4962
Electrical characteristics
3
Electrical characteristics
3.1
Electrical characteristics tables
Table 5.
Electrical characteristics at VCC = +5V,
with GND = 0V, Vicm = 2.5V, and Tamb = 25°C (unless otherwise specified)
Symbol
Typ.
Max.
Unit
Supply current
No input signal, no load
2.3
3.3
mA
Standby current (1)
No input signal, VSTBY = GND
10
1000
nA
Voo
Output offset voltage
No input signal, RL = 8Ω
3
25
mV
Pout
Output power, G=6dB
THD = 1% Max, f = 1kHz, RL = 4Ω
THD = 10% Max, f = 1kHz, RL = 4Ω
THD = 1% Max, f = 1kHz, RL = 8Ω
THD = 10% Max, f = 1kHz, RL = 8Ω
ICC
ISTBY
Parameter
Min.
2.2
2.8
1.4
1.7
W
Total harmonic distortion + noise
Pout = 850 mWRMS, G = 6dB, 20Hz < f < 20kHz
THD + N
RL = 8Ω + 15µH, BW < 30kHz
Pout = 1WRMS, G = 6dB, f = 1kHz
RL = 8Ω + 15µH, BW < 30kHz
0.4
Efficiency
Efficiency
Pout = 2 WRMS, RL = 4Ω + ≥ 15µH
Pout =1.2 WRMS, RL = 8Ω+ ≥ 15µH
78
88
%
2
%
PSRR
Power supply rejection ratio with inputs grounded (2)
f = 217Hz, RL = 8Ω, G=6dB, Vripple = 200mVpp
63
dB
CMRR
Common mode rejection ratio
f = 217Hz, RL = 8Ω, G = 6dB, ΔVic = 200mVpp
57
dB
Gain
Gain value (Rin in kΩ)
273k Ω
----------------R in
300k Ω
----------------R in
327k Ω
----------------R in
V/V
RSTBY
Internal resistance from standby to GND
273
300
327
kΩ
FPWM
Pulse width modulator base frequency
200
280
360
kHz
SNR
Signal to noise ratio (A weighting),
Pout = 1.2W, RL = 8Ω
85
tWU
Wake-up time
5
10
ms
tSTBY
Standby time
5
10
ms
dB
9/46
Electrical characteristics
Table 5.
Symbol
VN
TS4962
Electrical characteristics at VCC = +5V,
with GND = 0V, Vicm = 2.5V, and Tamb = 25°C (unless otherwise specified)
(continued)
Parameter
Min.
Typ.
Max.
Unit
Output voltage noise f = 20Hz to 20kHz, G = 6dB
Unweighted RL = 4Ω
A-weighted RL = 4Ω
85
60
Unweighted RL = 8Ω
A-weighted RL = 8Ω
86
62
Unweighted RL = 4Ω + 15µH
A-weighted RL = 4Ω + 15µH
83
60
Unweighted RL = 4Ω + 30µH
A-weighted RL = 4Ω + 30µH
88
64
Unweighted RL = 8Ω + 30µH
A-weighted RL = 8Ω + 30µH
78
57
Unweighted RL = 4Ω + Filter
A-weighted RL = 4Ω + Filter
Unweighted RL = 4Ω + Filter
A-weighted RL = 4Ω + Filter
87
65
82
59
μVRMS
1. Standby mode is active when VSTBY is tied to GND.
2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to
VCC @ f = 217Hz.
10/46
TS4962
Electrical characteristics
Table 6.
Electrical characteristics at VCC = +4.2V with GND = 0V, Vicm = 2.1V, and
Tamb = 25°C (unless otherwise specified)(1)
Symbol
Typ.
Max.
Unit
Supply current
No input signal, no load
2.1
3
mA
Standby current (2)
No input signal, VSTBY = GND
10
1000
nA
Voo
Output offset voltage
No input signal, RL = 8Ω
3
25
mV
Pout
Output power, G=6dB
THD = 1% Max, f = 1kHz, RL = 4Ω
THD = 10% Max, f = 1kHz, RL = 4Ω
THD = 1% Max, f = 1kHz, RL = 8Ω
THD = 10% Max, f = 1kHz, RL = 8Ω
ICC
ISTBY
Parameter
Min.
1.5
1.95
0.9
1.1
Total harmonic distortion + noise
Pout = 600 mWRMS, G = 6dB, 20Hz < f < 20kHz
THD + N
RL = 8Ω + 15µH, BW < 30kHz
Pout = 700mWRMS, G = 6dB, f = 1kHz
RL = 8Ω + 15µH, BW < 30kHz
0.35
Efficiency
Pout = 1.45 WRMS, RL = 4Ω + ≥ 15µH
Pout = 0.9 WRMS, RL = 8Ω+ ≥ 15µH
78
88
PSRR
Power supply rejection ratio with inputs grounded (3)
f = 217Hz, RL = 8Ω, G=6dB, Vripple = 200mVpp
63
CMRR
Common mode rejection ratio
f = 217Hz, RL = 8Ω, G = 6dB, ΔVic = 200mVpp
Efficiency
Gain
Gain value (Rin in kΩ)
W
2
%
%
dB
57
dB
273k Ω
----------------R in
300k Ω
----------------R in
327k Ω
----------------R in
V/V
RSTBY
Internal resistance from standby to GND
273
300
327
kΩ
FPWM
Pulse width modulator base frequency
200
280
360
kHz
SNR
Signal to noise ratio (A-weighting)
Pout = 0.8W, RL = 8Ω
85
tWU
Wake-up time
5
10
ms
tSTBY
Standby time
5
10
ms
dB
11/46
Electrical characteristics
Table 6.
Symbol
VN
TS4962
Electrical characteristics at VCC = +4.2V with GND = 0V, Vicm = 2.1V, and
Tamb = 25°C (unless otherwise specified)(1) (continued)
Parameter
Min.
Typ.
Max.
Unit
Output voltage noise f = 20Hz to 20kHz, G = 6dB
Unweighted RL = 4Ω
A-weighted RL = 4Ω
85
60
Unweighted RL = 8Ω
A-weighted RL = 8Ω
86
62
Unweighted RL = 4Ω + 15µH
A-weighted RL = 4Ω + 15µH
83
60
Unweighted RL = 4Ω + 30µH
A-weighted RL = 4Ω + 30µH
88
64
Unweighted RL = 8Ω + 30µH
A-weighted RL = 8Ω + 30µH
78
57
Unweighted RL = 4Ω + Filter
A-weighted RL = 4Ω + Filter
Unweighted RL = 4Ω + Filter
A-weighted RL = 4Ω + Filter
87
65
82
59
μVRMS
1. All electrical values are guaranteed with correlation measurements at 2.5V and 5V.
2. Standby mode is active when VSTBY is tied to GND.
3. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to
VCC @ f = 217Hz.
12/46
TS4962
Electrical characteristics
Table 7.
Electrical characteristics at VCC = +3.6V
with GND = 0V, Vicm = 1.8V, Tamb = 25°C (unless otherwise specified)(1)
Symbol
Typ.
Max.
Unit
Supply current
No input signal, no load
2
2.8
mA
Standby current (2)
No input signal, VSTBY = GND
10
1000
nA
Voo
Output offset voltage
No input signal, RL = 8Ω
3
25
mV
Pout
Output power, G=6dB
THD = 1% Max, f = 1kHz, RL = 4Ω
THD = 10% Max, f = 1kHz, RL = 4Ω
THD = 1% Max, f = 1kHz, RL = 8Ω
THD = 10% Max, f = 1kHz, RL = 8Ω
ICC
ISTBY
Parameter
Min.
1.1
1.4
0.7
0.85
W
Total harmonic distortion + noise
Pout = 450 mWRMS, G = 6dB, 20Hz < f < 20kHz
THD + N
RL = 8Ω + 15µH, BW < 30kHz
Pout = 500mWRMS, G = 6dB, f = 1kHz
RL = 8Ω + 15µH, BW < 30kHz
0.1
Efficiency
Pout = 1 WRMS, RL = 4Ω + ≥ 15µH
Pout = 0.65 WRMS, RL = 8Ω+ ≥ 15µH
78
88
%
Efficiency
2
%
PSRR
Power supply rejection ratio with inputs grounded (3)
f = 217Hz, RL = 8Ω, G=6dB, Vripple = 200mVpp
62
dB
CMRR
Common mode rejection ratio
f = 217Hz, RL = 8Ω, G = 6dB, ΔVic = 200mVpp
56
dB
Gain
Gain value (Rin in kΩ)
273k Ω
----------------R in
300k Ω
----------------R in
327k Ω
----------------R in
V/V
RSTBY
Internal resistance from standby to GND
273
300
327
kΩ
FPWM
Pulse width modulator base frequency
200
280
360
kHz
SNR
Signal to noise ratio (A-weighting)
Pout = 0.6W, RL = 8Ω
83
tWU
Wake-up time
5
10
ms
tSTBY
Standby time
5
10
ms
dB
13/46
Electrical characteristics
Table 7.
Symbol
VN
TS4962
Electrical characteristics at VCC = +3.6V
with GND = 0V, Vicm = 1.8V, Tamb = 25°C (unless otherwise specified)(1)
(continued)
Parameter
Min.
Typ.
Max.
Unit
Output voltage noise f = 20Hz to 20kHz, G = 6dB
Unweighted RL = 4Ω
A-weighted RL = 4Ω
83
57
Unweighted RL = 8Ω
A-weighted RL = 8Ω
83
61
Unweighted RL = 4Ω + 15µH
A-weighted RL = 4Ω + 15µH
81
58
Unweighted RL = 4Ω + 30µH
A-weighted RL = 4Ω + 30µH
87
62
Unweighted RL = 8Ω + 30µH
A-weighted RL = 8Ω + 30µH
77
56
Unweighted RL = 4Ω + Filter
A-weighted RL = 4Ω + Filter
Unweighted RL = 4Ω + Filter
A-weighted RL = 4Ω + Filter
85
63
80
57
μVRMS
1. All electrical values are guaranteed with correlation measurements at 2.5V and 5V.
2. Standby mode is actived when VSTBY is tied to GND.
3. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to
VCC @ f = 217Hz.
14/46
TS4962
Electrical characteristics
Table 8.
Electrical characteristics at VCC = +3.0V
with GND = 0V, Vicm = 1.5V, Tamb = 25°C (unless otherwise specified)(1)
Symbol
Typ.
Max.
Unit
Supply current
No input signal, no load
1.9
2.7
mA
Standby current (2)
No input signal, VSTBY = GND
10
1000
nA
Voo
Output offset voltage
No input signal, RL = 8Ω
3
25
mV
Pout
Output power, G=6dB
THD = 1% Max, f = 1kHz, RL = 4Ω
THD = 10% Max, f = 1kHz, RL = 4Ω
THD = 1% Max, f = 1kHz, RL = 8Ω
THD = 10% Max, f = 1kHz, RL = 8Ω
ICC
ISTBY
Parameter
Min.
0.7
1
0.5
0.6
Total harmonic distortion + noise
Pout = 300 mWRMS, G = 6dB, 20Hz < f < 20kHz
THD + N
RL = 8Ω + 15µH, BW < 30kHz
Pout = 350mWRMS, G = 6dB, f = 1kHz
RL = 8Ω + 15µH, BW < 30kHz
0.1
Efficiency
Efficiency Pout = 0.7 WRMS, RL = 4Ω + ≥ 15µH
Pout = 0.45 WRMS, RL = 8Ω+ ≥ 15µH
78
88
PSRR
Power supply rejection ratio with inputs grounded (3)
f = 217Hz, RL = 8Ω, G=6dB, Vripple = 200mVpp
CMRR
Common mode rejection ratio
f = 217Hz, RL = 8Ω, G = 6dB, ΔVic = 200mVpp
Gain
Gain value (Rin in kΩ)
W
2
%
%
dB
60
54
dB
273k Ω
----------------R in
300k Ω
----------------R in
327k Ω
----------------R in
V/V
RSTBY
Internal resistance from standby to GND
273
300
327
kΩ
FPWM
Pulse width modulator base frequency
200
280
360
kHz
SNR
Signal to noise ratio (A-weighting)
Pout = 0.4W, RL = 8Ω
82
tWU
Wake-up time
5
10
ms
tSTBY
Standby time
5
10
ms
dB
15/46
Electrical characteristics
Table 8.
Symbol
VN
TS4962
Electrical characteristics at VCC = +3.0V
with GND = 0V, Vicm = 1.5V, Tamb = 25°C (unless otherwise specified)(1)
(continued)
Parameter
Min.
Typ.
Max.
Unit
Output voltage noise f = 20Hz to 20kHz, G = 6dB
Unweighted RL = 4Ω
A-weighted RL = 4Ω
83
57
Unweighted RL = 8Ω
A-weighted RL = 8Ω
83
61
Unweighted RL = 4Ω + 15µH
A-weighted RL = 4Ω + 15µH
81
58
Unweighted RL = 4Ω + 30µH
A-weighted RL = 4Ω + 30µH
87
62
Unweighted RL = 8Ω + 30µH
A-weighted RL = 8Ω + 30µH
77
56
Unweighted RL = 4Ω + Filter
A-weighted RL = 4Ω + Filter
Unweighted RL = 4Ω + Filter
A-weighted RL = 4Ω + Filter
85
63
80
57
μVRMS
1. All electrical values are guaranteed with correlation measurements at 2.5V and 5V.
2. Standby mode is active when VSTBY is tied to GND.
3. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to
VCC @ f = 217Hz.
16/46
TS4962
Electrical characteristics
Table 9.
Electrical characteristics at VCC = +2.5V
with GND = 0V, Vicm = 1.25V, Tamb = 25°C (unless otherwise specified)
Symbol
Typ.
Max.
Unit
Supply current
No input signal, no load
1.7
2.4
mA
Standby current (1)
No input signal, VSTBY = GND
10
1000
nA
Voo
Output offset voltage
No input signal, RL = 8Ω
3
25
mV
Pout
Output power, G=6dB
THD = 1% Max, f = 1kHz, RL = 4Ω
THD = 10% Max, f = 1kHz, RL = 4Ω
THD = 1% Max, f = 1kHz, RL = 8Ω
THD = 10% Max, f = 1kHz, RL = 8Ω
ICC
ISTBY
Parameter
Min.
0.5
0.65
0.33
0.41
W
Total harmonic distortion + noise
Pout = 180 mWRMS, G = 6dB, 20Hz < f < 20kHz
THD + N
RL = 8Ω + 15µH, BW < 30kHz
Pout = 200mWRMS, G = 6dB, f = 1kHz
RL = 8Ω + 15µH, BW < 30kHz
0.05
Efficiency
Pout = 0.47 WRMS, RL = 4Ω + ≥ 15µH
Pout = 0.3 WRMS, RL = 8Ω+ ≥ 15µH
78
88
%
Efficiency
1
%
PSRR
Power supply rejection ratio with inputs grounded (2)
f = 217Hz, RL = 8Ω, G=6dB, Vripple = 200mVpp
60
dB
CMRR
Common mode rejection ratio
f = 217Hz, RL = 8Ω, G = 6dB, ΔVic = 200mVpp
54
dB
Gain
Gain value (Rin in kΩ)
273k Ω
----------------R in
300k Ω
----------------R in
327k Ω
----------------R in
V/V
RSTBY
Internal resistance from standby to GND
273
300
327
kΩ
FPWM
Pulse width modulator base frequency
200
280
360
kHz
SNR
Signal to noise ratio (A-weighting)
Pout = 0.3W, RL = 8Ω
80
tWU
Wake-up time
5
10
ms
tSTBY
Standby time
5
10
ms
dB
17/46
Electrical characteristics
Table 9.
Symbol
VN
TS4962
Electrical characteristics at VCC = +2.5V
with GND = 0V, Vicm = 1.25V, Tamb = 25°C (unless otherwise specified)
(continued)
Parameter
Min.
Typ.
Max.
Unit
Output voltage noise f = 20Hz to 20kHz, G = 6dB
Unweighted RL = 4Ω
A-weighted RL = 4Ω
85
60
Unweighted RL = 8Ω
A-weighted RL = 8Ω
86
62
Unweighted RL = 4Ω + 15µH
A-weighted RL = 4Ω + 15µH
76
56
Unweighted RL = 4Ω + 30µH
A-weighted RL = 4Ω + 30µH
82
60
Unweighted RL = 8Ω + 30µH
A-weighted RL = 8Ω + 30µH
67
53
Unweighted RL = 4Ω + Filter
A-weighted RL = 4Ω + Filter
Unweighted RL = 4Ω + Filter
A-weighted RL = 4Ω + Filter
78
57
74
54
μVRMS
1. Standby mode is active when VSTBY is tied to GND.
2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to
VCC @ f = 217Hz.
18/46
TS4962
Electrical characteristics
Table 10.
Electrical characteristics at VCC +2.4V
with GND = 0V, Vicm = 1.2V, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Unit
Supply current
No input signal, no load
1.7
mA
Standby current (1)
No input signal, VSTBY = GND
10
nA
Voo
Output offset voltage
No input signal, RL = 8Ω
3
mV
Pout
Output power, G=6dB
THD = 1% Max, f = 1kHz, RL = 4Ω
THD = 10% Max, f = 1kHz, RL = 4Ω
THD = 1% Max, f = 1kHz, RL = 8Ω
THD = 10% Max, f = 1kHz, RL = 8Ω
ICC
ISTBY
THD + N
Total harmonic distortion + noise
Pout = 150 mWRMS, G = 6dB, 20Hz < f < 20kHz
RL = 8Ω + 15µH, BW < 30kHz
Efficiency
Efficiency
Pout = 0.38 WRMS, RL = 4Ω + ≥ 15µH
Pout = 0.25 WRMS, RL = 8Ω+ ≥ 15µH
CMRR
Gain
0.42
0.61
0.3
0.38
Common mode rejection ratio
f = 217Hz, RL = 8Ω, G = 6dB, ΔVic = 200mVpp
Gain value (Rin in kΩ)
W
1
%
77
86
%
54
dB
273k Ω
----------------R
in
300k Ω
----------------R in
327k Ω
----------------R in
V/V
273
300
327
kΩ
RSTBY
Internal resistance from standby to GND
FPWM
Pulse width modulator base frequency
280
kHz
SNR
Signal to noise ratio (A-weighting)
Pout = 0.25W, RL = 8Ω
80
dB
tWU
Wake-up time
5
ms
tSTBY
Standby time
5
ms
19/46
Electrical characteristics
Table 10.
TS4962
Electrical characteristics at VCC +2.4V
with GND = 0V, Vicm = 1.2V, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
VN
Output voltage noise f = 20Hz to 20kHz, G = 6dB
Typ.
Unweighted RL = 4Ω
A-weighted RL = 4Ω
85
60
Unweighted RL = 8Ω
A-weighted RL = 8Ω
86
62
Unweighted RL = 4Ω + 15µH
A-weighted RL = 4Ω + 15µH
76
56
Unweighted RL = 4Ω + 30µH
A-weighted RL = 4Ω + 30µH
82
60
Unweighted RL = 8Ω + 30µH
A-weighted RL = 8Ω + 30µH
67
53
Unweighted RL = 4Ω + Filter
A-weighted RL = 4Ω + Filter
Unweighted RL = 4Ω + Filter
A-weighted RL = 4Ω + Filter
78
57
74
54
1. Standby mode is active when VSTBY is tied to GND.
20/46
Min.
Max.
Unit
μVRMS
TS4962
3.2
Electrical characteristics
Electrical characteristics curves
The graphs shown in this section use the following abbreviations:
●
RL + 15μH or 30μH = pure resistor+ very low series resistance inductor
●
Filter = LC output filter (1µF+30µH for 4Ω and 0.5µF+60µH for 8Ω)
All measurements are done with CS1=1µF and CS2=100nF (see Figure 2), except for the
PSRR where CS1 is removed (see Figure 3).
Figure 2.
Schematic used for test measurements
Vcc
1uF
100nF
Cs2
Cs1 +
Cin
GND
GND
Rin
Out+
In+
15uH or 30uH
150k
TS4962
Cin
Rin
or
4 or 8 Ohms
5th order
RL
50kHz low pass
filter
LC Filter
InOut-
150k
GND
Audio Measurement
Bandwidth < 30kHz
Figure 3.
Schematic used for PSSR measurements
100nF
Cs2
20Hz to 20kHz
Vcc
GND
4.7uF
GND
Rin
Out+
In+
15uH or 30uH
150k
or
TS4962
4.7uF
Rin
4 or 8 Ohms
5th order
RL
LC Filter
In-
50kHz low pass
filter
Out-
150k
GND
GND
5th order
50kHz low pass
Reference
RMS Selective Measurement
Bandwidth=1% of Fmeas
filter
21/46
Electrical characteristics
Figure 4.
TS4962
Current consumption vs. power
supply voltage
Figure 5.
2.5
2.5
Current Consumption (mA)
Current Consumption (mA)
No load
Tamb=25°C
2.0
1.5
1.0
0.5
0.0
2.0
1.5
1.0
0.5
0.0
0
Current consumption vs. standby
voltage
1
2
3
4
5
Vcc = 5V
No load
Tamb=25°C
0
1
2
Figure 6.
Current consumption vs. standby
voltage
Figure 7.
2.0
4
5
Output offset voltage vs. common
mode input voltage
10
G = 6dB
Tamb = 25°C
8
1.5
Voo (mV)
Current Consumption (mA)
3
Standby Voltage (V)
Power Supply Voltage (V)
1.0
0.5
0.0
0.0
1.0
1.5
2.0
2.5
Vcc=5V
Vcc=3.6V
4
2
Vcc = 3V
No load
Tamb=25°C
0.5
6
Vcc=2.5V
0
0.0
3.0
0.5
1.0
Figure 8.
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
Common Mode Input Voltage (V)
Standby Voltage (V)
Efficiency vs. output power
Figure 9.
100
Efficiency vs. output power
100
200
600
400
60
300
40
Power
Dissipation
20
0
0.0
22/46
0.5
200
Vcc=5V
RL=4Ω + ≥ 15μH
F=1kHz
THD+N≤1%
1.0
1.5
Output Power (W)
2.0
100
0
2.2
80
150
Efficiency (%)
500
60
100
40
Power
Dissipation
Vcc=3V
RL=4Ω + ≥ 15μH
F=1kHz
THD+N≤1%
20
0
0.0
0.1
0.2
0.3
0.4
Output Power (W)
0.5
0.6
50
0
0.7
Power Dissipation (mW)
Efficiency
Efficiency
Power Dissipation (mW)
Efficiency (%)
80
TS4962
Electrical characteristics
Figure 10. Efficiency vs. output power
Figure 11. Efficiency vs. output power
100
100
75
100
60
40
Power
Dissipation
50
Vcc=5V
RL=8Ω + ≥ 15μH
F=1kHz
THD+N≤1%
20
0
0.0
0.2
0.4
0.6
0.8
Output Power (W)
1.0
80
Efficiency
0.2
0.3
Output Power (W)
0
0.5
0.4
RL = 8Ω + ≥ 15μH
F = 1kHz
BW < 30kHz
Tamb = 25°C
THD+N=10%
Output power (W)
Output power (W)
2.0
RL = 4Ω + ≥ 15μH
F = 1kHz
BW < 30kHz
Tamb = 25°C
0.1
25
Vcc=3V
RL=8Ω + ≥ 15μH
F=1kHz
THD+N≤1%
Figure 13. Output power vs. power supply
voltage
3.5
2.5
Power
Dissipation
0
0.0
Figure 12. Output power vs. power supply
voltage
3.0
40
20
0
1.4
1.2
50
60
Power Dissipation (mW)
Efficiency (%)
Efficiency
Efficiency (%)
80
Power Dissipation (mW)
150
2.0
1.5
THD+N=1%
1.0
1.5
THD+N=10%
1.0
0.5
THD+N=1%
0.5
0.0
0.0
2.5
3.0
3.5
4.0
Vcc (V)
4.5
5.0
5.5
Figure 14. PSRR vs. frequency
3.5
4.0
Vcc (V)
4.5
5.0
5.5
0
Vripple = 200mVpp
Inputs = Grounded
G = 6dB, Cin = 4.7μF
RL = 4Ω + 15μH
ΔR/R≤0.1%
Tamb = 25°C
-20
-30
-20
-40
Vcc=5V, 3.6V, 2.5V
-50
-30
-40
Vcc=5V, 3.6V, 2.5V
-50
-60
-60
-70
-70
20
100
Vripple = 200mVpp
Inputs = Grounded
G = 6dB, Cin = 4.7μF
RL = 4Ω + 30μH
ΔR/R≤0.1%
Tamb = 25°C
-10
PSRR (dB)
-10
PSRR (dB)
3.0
Figure 15. PSRR vs. frequency
0
-80
2.5
1000
Frequency (Hz)
10000 20k
-80
20
100
1000
Frequency (Hz)
10000 20k
23/46
Electrical characteristics
TS4962
Figure 16. PSRR vs. frequency
Figure 17. PSRR vs. frequency
0
0
Vripple = 200mVpp
Inputs = Grounded
G = 6dB, Cin = 4.7μF
RL = 4Ω + Filter
ΔR/R≤0.1%
Tamb = 25°C
PSRR (dB)
-20
-30
-20
-40
Vcc=5V, 3.6V, 2.5V
-50
-40
Vcc=5V, 3.6V, 2.5V
-50
-60
-70
-70
20
100
1000
Frequency (Hz)
-80
10000 20k
Figure 18. PSRR vs. frequency
100
1000
Frequency (Hz)
10000 20k
0
Vripple = 200mVpp
Inputs = Grounded
G = 6dB, Cin = 4.7μF
RL = 8Ω + 30μH
ΔR/R≤0.1%
Tamb = 25°C
-20
-30
-20
-40
Vcc=5V, 3.6V, 2.5V
-50
-30
-40
Vcc=5V, 3.6V, 2.5V
-50
-60
-60
-70
-70
20
100
Vripple = 200mVpp
Inputs = Grounded
G = 6dB, Cin = 4.7μF
RL = 8Ω + Filter
ΔR/R≤0.1%
Tamb = 25°C
-10
PSRR (dB)
-10
-80
20
Figure 19. PSRR vs. frequency
0
PSRR (dB)
-30
-60
-80
Vripple = 200mVpp
Inputs = Grounded
G = 6dB, Cin = 4.7μF
RL = 8Ω + 15μH
ΔR/R≤0.1%
Tamb = 25°C
-10
PSRR (dB)
-10
1000
Frequency (Hz)
-80
10000 20k
20
100
1000
Frequency (Hz)
10000 20k
Figure 20. PSRR vs. common mode input voltage Figure 21. CMRR vs. frequency
0
-10
Vcc=2.5V
-20
-30
CMRR (dB)
PSRR(dB)
-20
0
Vripple = 200mVpp
F = 217Hz, G = 6dB
RL ≥ 4Ω + ≥ 15μH
Tamb = 25°C
Vcc=3.6V
-40
-50
RL=4Ω + 15μH
G=6dB
ΔVicm=200mVpp
ΔR/R≤0.1%
Cin=4.7μF
Tamb = 25°C
Vcc=5V, 3.6V, 2.5V
-40
-60
-60
-70
-80
0.0
Vcc=5V
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
Common Mode Input Voltage (V)
24/46
4.5
5.0
20
100
1000
Frequency (Hz)
10000 20k
TS4962
Electrical characteristics
Figure 22. CMRR vs. frequency
Figure 23. CMRR vs. frequency
0
0
CMRR (dB)
-20
-20
Vcc=5V, 3.6V, 2.5V
-40
-60
100
20
1000
Frequency (Hz)
10000 20k
Figure 24. CMRR vs. frequency
10000 20k
0
RL=8Ω + 15μH
G=6dB
ΔVicm=200mVpp
ΔR/R≤0.1%
Cin=4.7μF
Tamb = 25°C
RL=8Ω + 30μH
G=6dB
ΔVicm=200mVpp
ΔR/R≤0.1%
Cin=4.7μF
Tamb = 25°C
-20
Vcc=5V, 3.6V, 2.5V
-40
-60
Vcc=5V, 3.6V, 2.5V
-40
-60
20
100
1000
Frequency (Hz)
10000 20k
Figure 26. CMRR vs. frequency
100
20
1000
Frequency (Hz)
10000 20k
Figure 27. CMRR vs. common mode input
voltage
-20
0
RL=8Ω + Filter
G=6dB
ΔVicm=200mVpp
ΔR/R≤0.1%
Cin=4.7μF
Tamb = 25°C
-30
CMRR(dB)
-20
1000
Frequency (Hz)
Figure 25. CMRR vs. frequency
CMRR (dB)
-20
100
20
0
CMRR (dB)
Vcc=5V, 3.6V, 2.5V
-40
-60
CMRR (dB)
RL=4Ω + Filter
G=6dB
ΔVicm=200mVpp
ΔR/R≤0.1%
Cin=4.7μF
Tamb = 25°C
CMRR (dB)
RL=4Ω + 30μH
G=6dB
ΔVicm=200mVpp
ΔR/R≤0.1%
Cin=4.7μF
Tamb = 25°C
Vcc=5V, 3.6V, 2.5V
-40
-40
ΔVicm = 200mVpp
F = 217Hz
G = 6dB
RL ≥ 4Ω + ≥ 15μH
Tamb = 25°C
Vcc=2.5V
-50
Vcc=3.6V
-60
-60
Vcc=5V
20
100
1000
Frequency (Hz)
10000 20k
-70
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
Common Mode Input Voltage (V)
25/46
Electrical characteristics
TS4962
Figure 28. THD+N vs. output power
Figure 29. THD+N vs. output power
10
Vcc=3.6V
Vcc=2.5V
1
THD + N (%)
THD + N (%)
1
10
Vcc=5V
RL = 4Ω + 15μH
F = 100Hz
G = 6dB
BW < 30kHz
Tamb = 25°C
0.1
0.01
0.1
Output Power (W)
1
3
Figure 30. THD+N vs. output power
0.01
1E-3
Vcc=5V
Vcc=3.6V
Vcc=2.5V
1
THD + N (%)
THD + N (%)
0.01
0.1
Output Power (W)
1
3
RL = 8Ω + 30μH or Filter
F = 100Hz
G = 6dB
BW < 30kHz
Tamb = 25°C
Vcc=5V
Vcc=3.6V
Vcc=2.5V
0.1
0.01
1E-3
0.01
0.1
Output Power (W)
1
2
Figure 32. THD+N vs. output power
0.01
1E-3
0.01
0.1
Output Power (W)
1
2
Figure 33. THD+N vs. output power
10
10
RL = 4Ω + 15μH
F = 1kHz
G = 6dB
BW < 30kHz
Tamb = 25°C
Vcc=5V
Vcc=3.6V
THD + N (%)
THD + N (%)
Vcc=2.5V
10
RL = 8Ω + 15μH
F = 100Hz
G = 6dB
BW < 30kHz
Tamb = 25°C
0.1
Vcc=2.5V
0.1
1E-3
26/46
Vcc=3.6V
Figure 31. THD+N vs. output power
10
1
Vcc=5V
0.1
0.01
1E-3
1
RL = 4Ω + 30μH or Filter
F = 100Hz
G = 6dB
BW < 30kHz
Tamb = 25°C
1
RL = 4Ω + 30μH or Filter
F = 1kHz
G = 6dB
BW < 30kHz
Tamb = 25°C
Vcc=5V
Vcc=3.6V
Vcc=2.5V
0.1
0.01
0.1
Output Power (W)
1
3
1E-3
0.01
0.1
Output Power (W)
1
3
TS4962
Electrical characteristics
Figure 34. THD+N vs. output power
Figure 35. THD+N vs. output power
1
10
RL = 8Ω + 15μH
F = 1kHz
G = 6dB
BW < 30kHz
Tamb = 25°C
Vcc=3.6V
Vcc=2.5V
1E-3
0.01
0.1
Output Power (W)
1
1E-3
2
Figure 36. THD+N vs. frequency
0.01
0.1
Output Power (W)
1
THD + N (%)
Po=1.4W
RL=4Ω + 30μH or Filter
G=6dB
Bw < 30kHz
Vcc=5V
Tamb = 25°C
50
100
1000
Frequency (Hz)
10000 20k
0.01
Po=1.4W
50
100
1000
Frequency (Hz)
10000 20k
Figure 39. THD+N vs. frequency
10
10
RL=4Ω + 15μH
G=6dB
Bw < 30kHz
Vcc=3.6V
Tamb = 25°C
RL=4Ω + 30μH or Filter
G=6dB
Bw < 30kHz
Vcc=3.6V
Tamb = 25°C
1
Po=0.85W
THD + N (%)
THD + N (%)
2
Po=0.7W
Figure 38. THD+N vs. frequency
0.1
Po=0.85W
0.1
Po=0.42W
0.01
1
0.1
Po=0.7W
1
Vcc=2.5V
10
RL=4Ω + 15μH
G=6dB
Bw < 30kHz
Vcc=5V
Tamb = 25°C
0.1
0.01
Vcc=3.6V
Figure 37. THD+N vs. frequency
10
THD + N (%)
1
Vcc=5V
0.1
0.1
1
RL = 8Ω + 30μH or Filter
F = 1kHz
G = 6dB
BW < 30kHz
Tamb = 25°C
Vcc=5V
THD + N (%)
THD + N (%)
10
50
100
1000
Frequency (Hz)
Po=0.42W
10000 20k
0.01
50
100
1000
Frequency (Hz)
10000 20k
27/46
Electrical characteristics
TS4962
Figure 40. THD+N vs. frequency
Figure 41. THD+N vs. frequency
10
1
Po=0.35W
THD + N (%)
THD + N (%)
1
10
RL=4Ω + 15μH
G=6dB
Bw < 30kHz
Vcc=2.5V
Tamb = 25°C
0.1
RL=4Ω + 30μH or Filter
G=6dB
Bw < 30kHz
Vcc=2.5V
Tamb = 25°C
Po=0.35W
0.1
Po=0.17W
0.01
50
100
1000
Frequency (Hz)
Po=0.17W
10000 20k
Figure 42. THD+N vs. frequency
0.01
1000
Frequency (Hz)
Po=0.85W
1
0.1
RL=8Ω + 30μH or Filter
G=6dB
Bw < 30kHz
Vcc=5V
Tamb = 25°C
50
100
1000
Frequency (Hz)
Po=0.42W
10000 20k
Figure 44. THD+N vs. frequency
0.01
100
1000
Frequency (Hz)
RL=8Ω + 30μH or Filter
G=6dB
Bw < 30kHz
Vcc=3.6V
Tamb = 25°C
Po=0.45W
1
0.1
Po=0.45W
0.1
Po=0.22W
0.01
28/46
10000 20k
10
RL=8Ω + 15μH
G=6dB
Bw < 30kHz
Vcc=3.6V
Tamb = 25°C
THD + N (%)
THD + N (%)
50
Figure 45. THD+N vs. frequency
10
1
Po=0.85W
0.1
Po=0.42W
0.01
10000 20k
10
RL=8Ω + 15μH
G=6dB
Bw < 30kHz
Vcc=5V
Tamb = 25°C
THD + N (%)
THD + N (%)
100
Figure 43. THD+N vs. frequency
10
1
50
50
100
1000
Frequency (Hz)
10000 20k
Po=0.22W
0.01
50
100
1000
Frequency (Hz)
10000 20k
TS4962
Electrical characteristics
Figure 46. THD+N vs. frequency
Figure 47. THD+N vs. frequency
10
10
RL=8Ω + 15μH
G=6dB
Bw < 30kHz
Vcc=2.5V
Tamb = 25°C
1
Po=0.18W
THD + N (%)
THD + N (%)
1
Po=0.1W
0.1
0.01
50
100
1000
Frequency (Hz)
10000 20k
0.01
6
6
Vcc=5V, 3.6V, 2.5V
RL=4Ω + 15μH
G=6dB
Vin=500mVpp
Cin=1μF
Tamb = 25°C
20
100
10000 20k
Figure 50. Gain vs. frequency
20
6
Differential Gain (dB)
6
0
Vcc=5V, 3.6V, 2.5V
RL=4Ω + Filter
G=6dB
Vin=500mVpp
Cin=1μF
Tamb = 25°C
100
1000
Frequency (Hz)
100
1000
Frequency (Hz)
10000 20k
Vcc=5V, 3.6V, 2.5V
4
10000 20k
RL=8Ω + 15μH
G=6dB
Vin=500mVpp
Cin=1μF
Tamb = 25°C
2
0
20
10000 20k
Figure 51. Gain vs. frequency
8
2
1000
Frequency (Hz)
RL=4Ω + 30μH
G=6dB
Vin=500mVpp
Cin=1μF
Tamb = 25°C
2
8
4
100
Vcc=5V, 3.6V, 2.5V
4
0
1000
Frequency (Hz)
50
Figure 49. Gain vs. frequency
8
0
Differential Gain (dB)
Po=0.1W
8
2
Po=0.18W
0.1
Differential Gain (dB)
Differential Gain (dB)
Figure 48. Gain vs. frequency
4
RL=8Ω + 30μH or Filter
G=6dB
Bw < 30kHz
Vcc=2.5V
Tamb = 25°C
20
100
1000
Frequency (Hz)
10000 20k
29/46
Electrical characteristics
TS4962
Figure 53. Gain vs. frequency
8
8
6
6
Differential Gain (dB)
Differential Gain (dB)
Figure 52. Gain vs. frequency
Vcc=5V, 3.6V, 2.5V
4
RL=8Ω + 30μH
G=6dB
Vin=500mVpp
Cin=1μF
Tamb = 25°C
2
0
Vcc=5V, 3.6V, 2.5V
4
0
20
100
1000
Frequency (Hz)
10000 20k
Figure 54. Gain vs. frequency
RL=8Ω + Filter
G=6dB
Vin=500mVpp
Cin=1μF
Tamb = 25°C
2
20
100
1000
Frequency (Hz)
10000 20k
Figure 55. Startup & shutdown time
VCC = 5V, G = 6dB, Cin= 1µF (5ms/div)
8
Differential Gain (dB)
Vo1
6
Vo2
Vcc=5V, 3.6V, 2.5V
4
Standby
RL=No Load
G=6dB
Vin=500mVpp
Cin=1μF
Tamb = 25°C
2
0
20
100
Vo1-Vo2
1000
Frequency (Hz)
10000 20k
Figure 56. Startup & shutdown time
Figure 57. Startup & shutdown time
VCC = 3V, G = 6dB, Cin= 1µF (5ms/div)
VCC = 5V, G = 6dB, Cin= 100nF (5ms/div)
Vo1
Vo1
Vo2
Vo2
Standby
Standby
Vo1-Vo2
30/46
Vo1-Vo2
TS4962
Electrical characteristics
Figure 58. Startup & shutdown time
Figure 59. Startup & shutdown time
VCC = 3V, G = 6dB, Cin= 100nF (5ms/div)
VCC = 5V, G = 6dB, No Cin (5ms/div)
Vo1
Vo1
Vo2
Vo2
Standby
Standby
Vo1-Vo2
Vo1-Vo2
Figure 60. Startup & shutdown time
VCC = 3V, G = 6dB, No Cin (5ms/div)
Vo1
Vo2
Standby
Vo1-Vo2
31/46
Application information
TS4962
4
Application information
4.1
Differential configuration principle
The TS4962 is a monolithic fully-differential input/output class D power amplifier. The
TS4962 also includes a common-mode feedback loop that controls the output bias value to
average it at VCC/2 for any DC common mode input voltage. This allows the device to
always have a maximum output voltage swing, and by consequence, maximize the output
power. Moreover, as the load is connected differentially compared to a single-ended
topology, the output is four times higher for the same power supply voltage.
The advantages of a full-differential amplifier are:
●
High PSRR (power supply rejection ratio).
●
High common mode noise rejection.
●
Virtually zero pop without additional circuitry, giving a faster start-up time compared to
conventional single-ended input amplifiers.
●
Easier interfacing with differential output audio DAC.
●
No input coupling capacitors required because of common mode feedback loop.
The main disadvantage is:
●
4.2
As the differential function is directly linked to external resistor mismatching, paying
particular attention to this mismatching is mandatory in order to obtain the best
performance from the amplifier.
Gain in typical application schematic
Typical differential applications are shown in Figure 1 on page 8.
In the flat region of the frequency-response curve (no input coupling capacitor effect), the
differential gain is expressed by the relation:
+
AV
diff
-
300
– Out- = -------------------------------------= Out
+
R in
In – In
with Rin expressed in kΩ.
Due to the tolerance of the internal 150kΩ feedback resistor, the differential gain is in the
range (no tolerance on Rin):
273
---------- ≤ A V ≤ 327
---------diff
R in
R in
32/46
TS4962
4.3
Application information
Common mode feedback loop limitations
As explained previously, the common mode feedback loop allows the output DC bias voltage
to be averaged at VCC/2 for any DC common mode bias input voltage.
However, due to Vicm limitation in the input stage (see Table 3: Operating conditions on
page 7), the common mode feedback loop can play its role only within a defined range. This
range depends upon the values of VCC and Rin (AVdiff). To have a good estimation of the
Vicm value, we can apply this formula (no tolerance on Rin):
V CC × R in + 2 × V IC × 150kΩ
V icm = -----------------------------------------------------------------------------2 × ( R in + 150kΩ)
(V)
with
+
-
In + In
V IC = --------------------2
(V)
and the result of the calculation must be in the range:
0.5V ≤ V icm ≤ V CC – 0.8V
Due to the +/-9% tolerance on the 150kΩ resistor, it’s also important to check Vicm in these
conditions:
V CC × R in + 2 × V IC × 163.5kΩ
V CC × R in + 2 × V IC × 136.5kΩ
----------------------------------------------------------------------------------- ≤ V icm ≤ ---------------------------------------------------------------------------------2 × ( R in + 136.5kΩ)
2 × ( R in + 163.5kΩ)
If the result of Vicm calculation is not in the previous range, input coupling capacitors must
be used (with VCC between 2.4V and 2.5V, input coupling capacitors are mandatory).
For example:
With VCC=3V, Rin=150k and VIC=2.5V, we typically find Vicm=2V, which is lower than
3V-0.8V=2.2V. With 136.5kΩ we find 1.97V and with 163.5kΩ we have 2.02V. So, no input
coupling capacitors are required.
4.4
Low frequency response
If a low frequency bandwidth limitation is requested, it is possible to use input coupling
capacitors.
In the low frequency region, Cin (input coupling capacitor) starts to have an effect. Cin forms,
with Rin, a first order high-pass filter with a -3dB cut-off frequency:
1
F CL = -------------------------------------2π × R in × C in
(Hz)
So, for a desired cut-off frequency we can calculate Cin,
1
C in = ---------------------------------------2π × R in × F CL
(F)
with Rin in Ω and FCL in Hz.
33/46
Application information
4.5
TS4962
Decoupling of the circuit
A power supply capacitor, referred to as CS, is needed to correctly bypass the TS4962.
The TS4962 has a typical switching frequency at 250kHz and output fall and rise time about
5ns. Due to these very fast transients, careful decoupling is mandatory.
A 1µF ceramic capacitor is enough, but it must be located very close to the TS4962 in order
to avoid any extra parasitic inductance being created by an overly long track wire. In relation
with dI/dt, this parasitic inductance introduces an overvoltage that decreases the global
efficiency and, if it is too high, may cause a breakdown of the device.
In addition, even if a ceramic capacitor has an adequate high frequency ESR value, its
current capability is also important. A 0603 size is a good compromise, particularly when a
4Ω load is used.
Another important parameter is the rated voltage of the capacitor. A 1µF/6.3V capacitor
used at 5V loses about 50% of its value. In fact, with a 5V power supply voltage, the
decoupling value is about 0.5µF instead of 1µF. As CS has particular influence on the
THD+N in the medium-high frequency region, this capacitor variation becomes decisive. In
addition, less decoupling means higher overshoots, which can be problematic if they reach
the power supply AMR value (6V).
4.6
Wake-up time (tWU)
When the standby is released to set the device ON, there is a wait of about 5ms. The
TS4962 has an internal digital delay that mutes the outputs and releases them after this
time in order to avoid any pop noise.
4.7
Shutdown time (tSTBY)
When the standby command is set, the time required to put the two output stages into high
impedance and to put the internal circuitry in standby mode is about 5ms. This time is used
to decrease the gain and avoid any pop noise during the shutdown phase.
4.8
Consumption in standby mode
Between the standby pin and GND there is an internal 300kΩ resistor. This resistor forces
the TS4962 to be in standby mode when the standby input pin is left floating.
However, this resistor also introduces additional power consumption if the standby pin
voltage is not 0V.
For example, with a 0.4V standby voltage pin, Table 3: Operating conditions on page 7
shows that you must add 0.4V/300kΩ=1.3µA in typical (0.4V/273kΩ=1.46µA in maximum) to
the standby current specified in Table 5 on page 9.
34/46
TS4962
Single-ended input configuration
It's possible to use the TS4962 in a single-ended input configuration. However, input
coupling capacitors are needed in this configuration. The schematics in Figure 61 show a
single-ended input typical application.
Figure 61. Single-ended input typical application
Vcc
6
Cs
1u
Vcc
Ve
1 Stdby
Cin
300k
Standby
Rin
GND
4
InIn+
3
Internal
Bias
GND
Out+
150k
5
Output
-
H
PWM
+
Bridge
SPEAKER
Rin
Cin
8
150k
Out-
Oscillator
GND
GND
7
GND
All formulas are identical except for the gain with Rin in kΩ:
AV
sin gle
Ve
= --------------------------------------- = 300
+
R in
Out – Out
And, due to the internal resistor tolerance we have:
327
273
---------- ≤ A V
≤ ---------sin gle
R in
R in
In the event that multiple single-ended inputs are summed, it is important that the
impedance on both TS4962 inputs (In- and In+) are equal.
Figure 62. Typical application schematic with multiple single-ended inputs
Vcc
Vek
6
Standby
Cink
Rink
1 Stdby
GND
Ve1
Cin1
Rin1
4
3
GND
Ceq
GND
Cs
1u
Vcc
300k
4.9
Application information
Internal
Bias
Out+
150k
GND
5
Output
-
InIn+ +
PWM
H
Bridge
SPEAKER
Req
8
150k
Out-
Oscillator
GND
7
GND
35/46
Application information
TS4962
We have the following equations:
+
300
300
Out – Out = V e1 × ------------- + …+ V ek × ------------R ink
R in1
(V)
k
C eq =
C
in i
Σ
j=1
C in i
1
= ------------------------------------------------------2× π× R
× F
ini
CL i
(F)
1
R eq = ------------------k
1
∑ --------Rini
j =1
In general, for mixed situations (single-ended and differential inputs) it is best to use the
same rule, that is, to equalize impedance on both TS4962 inputs.
4.10
Output filter considerations
The TS4962 is designed to operate without an output filter. However, due to very sharp
transients on the TS4962 output, EMI radiated emissions may cause some standard
compliance issues.
These EMI standard compliance issues can appear if the distance between the TS4962
outputs and the loudspeaker terminal is long (typically more than 50mm, or 100mm in both
directions, to the speaker terminals). As the PCB layout and internal equipment device are
different for each configuration, it is difficult to provide a one-size-fits-all solution.
However, to decrease the probability of EMI issues, there are several simple rules to follow:
36/46
●
Reduce, as much as possible, the distance between the TS4962 output pins and the
speaker terminals.
●
Use ground planes for “shielding” sensitive wires.
●
Place, as close as possible to the TS4962 and in series with each output, a ferrite bead
with a rated current at minimum 2.5A and impedance greater than 50Ω at frequencies
above 30MHz. If, after testing, these ferrite beads are not necessary, replace them by a
short-circuit.
●
Allow enough footprint to place, if necessary, a capacitor to short perturbations to
ground (see Figure 63).
TS4962
Application information
Figure 63. Method for shorting pertubations to ground
Ferrite chip bead
To speaker
From TS4962 output
about 100pF
Gnd
In the case where the distance between the TS4962 output and the speaker terminals is
high, it's possible to have low frequency EMI issues due to the fact that the typical operating
frequency is 250kHz. In this configuration, we recommend using an output filter (as
represented in Figure 1: Typical application schematics on page 8). It should be placed as
close as possible to the device.
4.11
Several examples with summed inputs
Example 1: Dual differential inputs
Figure 64. Typical application schematic with dual differential inputs
Vcc
6
Standby
Cs
1u
Vcc
1 Stdby
300k
R2
E2+
R1
4
E1+
E1-
3
Internal
Bias
Out+
150k
GND
5
Output
-
InIn+ +
H
PWM
Bridge
SPEAKER
R1
8
150k
E2R2
Out-
Oscillator
GND
7
GND
With (Ri in kΩ):
+
-
+
-
Out – Out = 300
A V = --------------------------------------1
+
R1
E1 – E1
Out – Out- = 300
A V = --------------------------------------2
+
R2
E2 – E2
V CC × R 1 × R 2 + 300 × ( V IC1 × R 2 + V IC2 × R 1 )
0.5V ≤ -------------------------------------------------------------------------------------------------------------------------------- ≤ V CC – 0.8V
300 × ( R 1 + R 2 ) + 2 × R 1 × R 2
+
-
+
-
E1 + E1
E2 + E2
V IC = -----------------------and V IC = -----------------------1
2
2
2
37/46
Application information
TS4962
Example 2: One differential input plus one single ended input
Figure 65. Typical application schematic with one differential input plus one singleended input
Vcc
6
Standby
Cs
1u
Vcc
1 Stdby
300k
R2
E2+
C1
R1
E1+
E2-
4
3
Internal
Bias
Out+
150k
Output
-
InIn+ +
H
Bridge
PWM
SPEAKER
R2
8
150k
GND C1
R1
Out-
Oscillator
GND
7
GND
With (Ri in kΩ) :
+
-
+
-
Out – Out
300
A V = ------------------------------- = ---------1
+
R1
E1
300
Out – Out
A V = ------------------------------- = ---------2
+
R2
E2 – E2
1
C 1 = -------------------------------------2π × R 1 × F CL
38/46
GND
5
(F)
TS4962
Demo board
A demo board for the TS4962 is available. For more information about this demo board,
refer to the Application Note AN2406.
Figure 66. Schematic diagram of mono class D demoboard for the TS4962 DFN
package
Vcc
Cn4
Vcc
1
2
3
Cn2
Cn6
C3
1uF
Gnd
GND
GND
U1
6
Vcc
1 Stdby
C1
100nF
Cn1
1
2
3
Negative input
Positive Input
Input
300k
5
Demo board
R1
4
InIn+
150k
GND
R2
100nF
C2
150k
3
Internal
Bias
Out+
150k
5
Cn5
Output
PWM
+
Positive Output
H
Negative Output
Bridge
Speaker
8
150k
Out-
Oscillator
GND
TS4962DFN
7
Cn3
GND
Figure 67. Top view
39/46
Demo board
Figure 68. Bottom layer
Figure 69. Top layer
40/46
TS4962
TS4962
6
Recommended footprint
Recommended footprint
Figure 70. Recommended footprint for TS4962 DFN package
1.8mm
0.8mm
0.35mm
2.2mm
0.65mm
1.4mm
41/46
DFN8 package information
7
TS4962
DFN8 package information
In order to meet environmental requirements, STMicroelectronics offers these devices in
ECOPACK® packages. These packages have a lead-free second level interconnect. The
category of second level interconnect is marked on the package and on the inner box label,
in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics
trademark. ECOPACK specifications are available at: www.st.com.
42/46
TS4962
DFN8 package information
Figure 71. DFN8 3x3 exposed pad package
Dimensions
Ref.
Millimeters
Min.
Typ.
Max.
Min.
Typ.
Max.
0.50
0.60
0.65
19.70
23.62
25.60
A1
0.02
0.05
0.79
1.97
A2
0.40
A3
0.15
0.22
A
15.75
5.90
8.67
b
0.25
0.30
0.35
9.85
11.81
13.78
D
2.85
3.00
3.15
112.20
118.10
124.00
D2
1.60
1.70
1.80
63.00
66.93
70.87
E
2.85
3.00
3.15
112.20
118.10
124.00
E2
1.10
1.20
1.30
43.30
47.25
51.18
e
L
Note:
Mils
0.65
0.50
0.55
25.60
0.60
19.70
21.65
23.62
DFN8 exposed pad (e2 x d2) is connected to pin number 7.
For enhanced thermal performance, the exposed pad must be soldered to a copper area on
the PCB, acting as heatsink. This copper area can be electrically connected to pin7 or left
floating.
43/46
Ordering information
8
TS4962
Ordering information
Table 11.
Order codes
Part number
TS4962IQT
44/46
Temperature
range
Package
Packaging
Marking
-40° C, +85°C
DFN8
Tape & reel
K962
TS4962
9
Revision history
Revision history
Table 12.
Document revision history
Date
Revision
Changes
31-May-2006
5
Modified package information. Now includes only standard DFN8
package.
16-Oct-2006
6
Added curves in Section 3: Electrical characteristics. Added
evaluation board information in Section 5: Demo board.
Added recommended footprint.
10-Jan-2007
7
Added paragraph about rated voltage of capacitor in Section 4.5:
Decoupling of the circuit.
45/46
TS4962
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2007 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
46/46