STMICROELECTRONICS TSH340ILT

TSH340
320MHz Single Supply Video Buffer with Low In/Out Rail
■
■
■
■
■
■
■
■
■
■
■
Bandwidth: 320MHz
Single supply operation down to 3V
Low input & output rail
Very low harmonic distortion
Slew rate: 780V/µs
Voltage input noise: 7nV/√Hz
Specified for 150Ω and 100Ω loads
Internal gain of 6dB
Compatible with the PCB layout of a single
op-amp
Tested on 5V power supply
Data min. and max. are tested during
production
Pin Connections (top view)
OUT 1
5 +VCC
GND 2
IN 3
4 NC
SOT23-5
Description
NC 1
8 NC
The TSH340 is a single supply video buffer
featuring an internal gain of 6dB and a large
bandwidth of 320MHz for only 9.8mA of quiescent
current.
NC 2
7 +Vcc
IN 3
6 OUT
An advantage of this circuit is its input and output
negative rail feature, which is very close to GND in
single supply. This rail is tested and guaranteed
during production at 60mV maximum from GND
on a 150Ω load. This allows a good output swing
which fits perfectly when driving a video signal on
a 75Ω video line. Chapter 5 of this datasheet
gives technical support when using the TSH340
as a driver for video DAC output on a video line. In
particular, this chapter focuses on applying a
video signal DC shift to avoid any clamping of the
synchronization tip.
5 NC
GND 4
SO8
Applications
■
■
■
■
High-end video systems
High Definition TV (HDTV)
Broadcast and graphic video
Multimedia products
The TSH340 is available in tiny SOT23-5 and
SO8 plastic packages.
Order Codes
Part Number
Temperature Range
TSH340ILT
TSH340ID
TSH340IDT
-40°C to +85°C
April 2005
Package
Packaging
Marking
SOT23-5
Tape & Reel
Tube
Tape & Reel
K306
TSH340I
TSH340I
SO-8
Revision 2
1/13
TSH340
Absolute Maximum Ratings
1 Absolute Maximum Ratings
Table 1. Key parameters and their absolute maximum ratings
Symbol
VCC
Vin
Parameter
Supply voltage
1
2
Value
Unit
6
V
Input Voltage Range
Operating Free Air Temperature Range
-0.2 to +3
V
Toper
-40 to +85
°C
Tstd
Storage Temperature
-65 to +150
°C
150
°C
80
75
°C/W
250
175
°C/W
500
715
2
1.5
200
mW
Tj
Rthjc
Rthja
Pmax.
ESD
Maximum Junction Temperature
Thermal Resistance Junction to Case
SOT23-5
SO8
Thermal Resistance Junction to Ambient Area
SOT23-5
SO8
Maximum Power Dissipation (@Ta=25°C) for Tj=150°C
SOT23-5
SO8
CDM: Charged Device Model
HBM: Human Body Model
MM: Machine Model
1)
All voltage values, except differential voltage, are with respect to network terminal.
2)
The magnitude of input and output voltage must never exceed VCC +0.3V.
kV
kV
V
Table 2. Operating conditions
Symbol
1)
Parameter
VCC
Power Supply Voltage
Vicm
Common Mode Input Voltage
Tested in full production at 0V/5V single power supply
2/13
Value
Unit
1
3 to 5.5
-0.4 to 3
V
V
Electrical Characteristics
TSH340
2 Electrical Characteristics
Table 3. VCC = +5V, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Test Condition
Min.
Typ.
Max.
-5
+30
Unit
DC Performance
VOS
Iib
PSR
ICC
Output Offset Voltage1
no Load, Tamb
-30
-40°C < Tamb < +85°C
Input Bias Current
-6.8
Tamb, Vicm=0.6V
6
-40°C < Tamb < +85°C
Power Supply Rejection Ratio
7.2
∆Vcc=200mVp-p, F=1MHz
-90
20 log (∆Vcc/∆Vout)
Total Supply Current
16
no Load, Vin=100mV
1.95
mV
µA
dB
9.8
12.8
mA
2
2.05
V/V
G
DC Voltage Gain
RL = 150Ω
Rin
Input Resistance
Tamb
8
MΩ
Cin
Input Capacitance
Tamb
3.2
pF
Dynamic Performance and Output Characteristics
Bw
FPBW
SR
-3dB Bandwidth
Small Signal Vout=20mVp
Vicm=0.6V, RL = 150Ω
Gain Flatness @ 0.1dB
Small Signal Vout=20mVp
Vicm=0.6V, RL = 150Ω
Full Power Bandwidth
Vicm=0.6V, VOUT = 2Vp-p,
RL = 150Ω
Slew Rate
Vicm=0.6V, VOUT = 2Vp-p,
RL = 150Ω
190
320
MHz
63
130
200
MHz
780
V/µs
VOH
High Level Output Voltage
RL = 150Ω
VOL
Low Level Output Voltage
RL = 150Ω
40
Output Short Circuit Current (Isource)
Tamb
100
-40°C < Tamb < +85°C
90
IOUT
Output Current
Vout=2Vp, Tamb
3.7
45
3.9
V
60
mV
mA
87
mA
Noise and Distortion
eN
Equivalent Input Noise Voltage
F = 100kHz
7
nV/√Hz
iN
Equivalent Input Noise Current
F = 100kHz
1.5
pA/√Hz
2nd Harmonic Distortion
VOUT = 2Vp-p, RL = 150Ω
F= 10MHz,
-85
dBc
VOUT = 1Vp-p, RL = 150Ω
F= 10MHz,
-75
dBc
HD2
HD3
1)
3rd Harmonic Distortion
Output Offset Voltage is determined from the following expression: VOUT =G.VIN+VOS
3/13
TSH340
Electrical Characteristics
Figure 1. Frequency response
Figure 4. Frequency response on capa-load
20
16
14
Frequency Response (dB)
12
10
8
6
Gain (dB)
4
2
0
-2
-4
-6
-8
-10
Vcc=5V
Load=100 or 150Ω
SO8 and SOT23-5
-12
-14
-16
1M
10
0
C=22pF
Riso=22Ω
C=47pF
Riso=15Ω
-10
-20
1M
100M
10M
100M
Frequency (Hz)
Frequency (Hz)
Figure 2. Gain flatness - SOT23-5
Figure 5. Gain flatness - SO8
7,0
7,0
Load=150Ω
6,8
6,6
6,6
6,4
6,4
6,2
6,0
5,8
Load=100Ω
5,6
Load=150Ω
6,8
Gain (dB)
Gain (dB)
C=0
Riso=0
Vcc=5V
Load=Riso + C//1kΩ (to ground)
10M
C=1pF
Riso=0
C=10pF
Riso=22Ω
6,2
6,0
5,8
Load=100Ω
5,6
5,4
5,4
5,2
5,2
Vcc=5V
5,0
1M
10M
Vcc=5V
5,0
1M
100M
10M
100M
Frequency (Hz)
Frequency (Hz)
Figure 3. Total input noise vs. frequency
Figure 6. Positive and negative slew rate
3,0
2,5
Output Response (V)
Input Noise (nV/VHz)
non-inverting input in short-circuit
Vcc=5V
100
Vcc=5V
Load=100Ω or 150Ω
2,0
SR+
1,5
1,0
0,5
SR-
10
100
1k
10k
100k
Frequency (Hz)
4/13
1M
10M
0,0
-5ns
-4ns
-3ns
-2ns
-1ns
0s
Time (ns)
1ns
2ns
3ns
4ns
5ns
Electrical Characteristics
TSH340
Figure 7. Distortion on 100Ω load
Figure 10. Distortion on 150Ω load
-30
-30
-35
-35
-40
-45
-55
-60
-65
-70
-75
HD2
(10MHz)
-80
-50
HD2 & HD3 (dBc)
HD2 & HD3 (dBc)
-45
HD3
(30MHz)
-50
HD3
(30MHz)
-40
HD2
(30MHz)
-55
-60
HD2
(30MHz)
-65
HD3
(10MHz)
-70
-75
-80
-85
-85
-90
HD3
(10MHz)
-95
-90
Vcc=5V
Load=100Ω
Vcc=5V
Load=150Ω
HD2
(10MHz)
-95
-100
-100
0
1
2
3
0
4
1
2
3
4
Output Amplitude (Vp-p)
Output Amplitude (Vp-p)
Figure 8. Output lower rail vs. frequency
Figure 11. Output voltage swing vs. Vcc
500
5
Vcc=5V
Load=100Ω or 150Ω
4
Vout max (Vp-p)
Vol (mV)
400
300
200
2
1
100
0
10k
3
100k
1M
10M
0
3,00
100M
F=30MHz
Load=100Ω or 150Ω
3,25
3,50
Frequency (Hz)
3,75
4,00
4,25
4,50
4,75
5,00
Vcc (V)
Figure 9. Output voltage swing vs. frequency
Figure 12. Quiescent current vs. vcc
5
20
no load
4
3
Icc (mA)
Vout max. (Vp-p)
15
2
10
5
1
Vcc=5V
Load=100Ω or Load=150Ω
0
1M
10M
Frequency (Hz)
0
1,5
2,0
2,5
3,0
3,5
4,0
4,5
5,0
Vcc (V)
5/13
TSH340
Electrical Characteristics
Figure 13. Isource
Figure 16. Reverse isolation vs. frequency
0
0
-10
+5V
-20
VOH
without load
-20
Isource
-40
V
+3V
-50
-40
Gain (dB)
Isource (mA)
-30
0V
-60
-70
-60
-80
-90
-80
-100
Small Signal
Vcc=5V
Load=100Ω
-110
-120
0,0
0,5
1,0
1,5
2,0
2,5
3,0
3,5
4,0
4,5
-100
1M
5,0
10M
100M
1G
Frequency (Hz)
V (V)
Figure 14. Bandwidth vs. temperature
Figure 17. Voltage gain vs. temperature
2,05
500
2,04
450
2,03
400
Gain (dB)
Bw (MHz)
2,02
350
300
250
2,01
2,00
1,99
1,98
200
1,97
Vcc=5V
Load=150Ω
150
100
-40
Output: short-circuit
Vcc=5V
1,96
-20
0
20
40
60
1,95
-40
80
-20
0
20
40
60
80
60
80
Temperature (°C)
Temperature (°C)
Figure 15. Output offset vs. temperature
Figure 18. Ibias vs. temperature
7,0
0
6,5
6,0
-1
IBIAS (µA)
Vos (mV)
5,5
-2
-3
5,0
4,5
4,0
-4
3,5
Vcc=5V
Load=150Ω
-5
-40
-20
0
20
40
Temperature (°C)
6/13
60
80
3,0
-40
Vcc=5V
Load=150Ω
-20
0
20
40
Temperature (°C)
Electrical Characteristics
TSH340
Figure 19. Supply current vs. temperature
12
ICC (mA)
11
10
9
8
7
-40
Vcc=5V
no Load
-20
0
20
40
60
80
Temperature (°C)
Figure 20. Output lower rail vs. temperature
0,10
VOL (V)
0,08
Vcc=5V
Load=150Ω
0,06
0,04
0,02
0,00
-40
-20
0
20
40
60
80
Temperature (°C)
Figure 21. Output higher rail vs. temperature
4,50
VOH (V)
4,25
4,00
3,75
Vcc=5V
Load=150Ω
3,50
-40
-20
0
20
40
60
80
Temperature (°C)
7/13
TSH340
Evaluation Boards
3 Evaluation Boards
An evaluation board kit optimized for high-speed operational amplifiers is available (order code:
KITHSEVAL/STDL). The kit includes the following evaluation boards, as well as a CD-ROM containing
datasheets, articles, application notes and a user manual:
z
SOT23_SINGLE_HF BOARD: Board for the evaluation of a single high-speed op-amp in SOT23-5
package.
z
SO8_SINGLE_HF: Board for the evaluation of a single high-speed op-amp in SO8 package.
z
SO8_DUAL_HF: Board for the evaluation of a dual high-speed op-amp in SO8 package.
z
SO8_S_MULTI: Board for the evaluation of a single high-speed op-amp in SO8 package in inverting
and non-inverting configuration, dual and signle supply.
z
SO14_TRIPLE: Board for the evaluation of a triple high-speed op-amp in SO14 package with video
application considerations.
Board material:
z
2 layers
z
FR4 (εr=4.6)
z
epoxy 1.6mm
z
copper thickness: 35µm
Figure 22: Evaluation kit for high speed op-amps
8/13
Power Supply Considerations
TSH340
4 Power Supply Considerations
Correct power supply bypassing is very important for optimizing performance in high-frequency ranges.
Bypass capacitors should be placed as close as possible to the IC pins to improve high-frequency
bypassing. A capacitor greater than 10µF is necessary to minimize the distortion. For better quality
bypassing, a capacitor of 10nF is added using the same implementation conditions. Bypass capacitors
must be incorporated for both the negative and the positive supply. On the SO8_SINGLE_HF board,
these capacitors are C8 and C6.
Figure 23: Circuit for power supply bypassing
+VCC
10microF
+
10nF
+VCC
TSH340
GND
9/13
TSH340
Using the TSH340 to Drive Video Signals
5 Using the TSH340 to Drive Video Signals
Figure 24. Implementation of the video driver on output video DACs
Volt
2.250V
Video
Signal
Volt
250mV
Video
Signal
time
+5V
75Ω
6dB
LPF
125mV
time
Reconstruction
Filtering
Video
DAC
1.125V
75Ω Cable
1Vpp
75Ω
1Vpp
2Vpp
VOL(100MHz) = 180mV (Figure 8)
To drive the video signal properly, the output of the driver must be at least equal to 250mV
(assuming VOS and VOL variations).
z
1st solution:
Set the video DAC 0-IRE output level to 125mV.
White Level
100 IRE
Image Content
Black Level
30 IRE
1Vp-p
300mV
0 IRE
125mV
0V
Synchronization Tip
z
2nd solution:
Implementation of a DC component in the input of the driver.
Volt
Video
Signal
2.250V
Volt
250mV
+5V
33uF
Video
DAC
Reconstruction
Filtering
LPF
1Vpp
6dB
Video
Signal
time
10/13
125mV
time
75Ω
75Ω Cable
1Vpp
75Ω
1k
2Vpp
DC component
=125mV
1.125V
Package Mechanical Data
TSH340
6 Package Mechanical Data
6.1 SO-8 package
SO-8 MECHANICAL DATA
DIM.
mm.
MIN.
TYP
inch
MAX.
MIN.
TYP.
MAX.
A
1.35
1.75
0.053
0.069
A1
0.10
0.25
0.04
0.010
A2
1.10
1.65
0.043
0.065
B
0.33
0.51
0.013
0.020
C
0.19
0.25
0.007
0.010
D
4.80
5.00
0.189
0.197
E
3.80
4.00
0.150
0.157
e
1.27
0.050
H
5.80
6.20
0.228
0.244
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
k
ddd
8˚ (max.)
0.1
0.04
0016023/C
11/13
TSH340
Package Mechanical Data
6.2 SOT23-5L (5-pin) package
SOT23-5L MECHANICAL DATA
mm.
mils
DIM.
MIN.
MAX.
MIN.
TYP.
MAX.
A
0.90
1.45
35.4
57.1
A1
0.00
0.15
0.0
5.9
A2
0.90
1.30
35.4
51.2
b
0.35
0.50
13.7
19.7
C
0.09
0.20
3.5
7.8
D
2.80
3.00
110.2
118.1
E
2.60
3.00
102.3
118.1
E1
1.50
1.75
59.0
68.8
e
0 .95
37.4
e1
1.9
74.8
L
12/13
TYP
0.35
0.55
13.7
21.6
TSH340
7 Revision History
Date
Revision
Description of Changes
01 Jan. 2005
1
First release corresponding to Preliminary Data version of datasheet.
23 Mar. 2005
2
Datasheet of mature, full-specification product.
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
13/13