TSH340 320MHz Single Supply Video Buffer with Low In/Out Rail ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Bandwidth: 320MHz Single supply operation down to 3V Low input & output rail Very low harmonic distortion Slew rate: 780V/µs Voltage input noise: 7nV/√Hz Specified for 150Ω and 100Ω loads Internal gain of 6dB Compatible with the PCB layout of a single op-amp Tested on 5V power supply Data min. and max. are tested during production Pin Connections (top view) OUT 1 5 +VCC GND 2 IN 3 4 NC SOT23-5 Description NC 1 8 NC The TSH340 is a single supply video buffer featuring an internal gain of 6dB and a large bandwidth of 320MHz for only 9.8mA of quiescent current. NC 2 7 +Vcc IN 3 6 OUT An advantage of this circuit is its input and output negative rail feature, which is very close to GND in single supply. This rail is tested and guaranteed during production at 60mV maximum from GND on a 150Ω load. This allows a good output swing which fits perfectly when driving a video signal on a 75Ω video line. Chapter 5 of this datasheet gives technical support when using the TSH340 as a driver for video DAC output on a video line. In particular, this chapter focuses on applying a video signal DC shift to avoid any clamping of the synchronization tip. 5 NC GND 4 SO8 Applications ■ ■ ■ ■ High-end video systems High Definition TV (HDTV) Broadcast and graphic video Multimedia products The TSH340 is available in tiny SOT23-5 and SO8 plastic packages. Order Codes Part Number Temperature Range TSH340ILT TSH340ID TSH340IDT -40°C to +85°C April 2005 Package Packaging Marking SOT23-5 Tape & Reel Tube Tape & Reel K306 TSH340I TSH340I SO-8 Revision 2 1/13 TSH340 Absolute Maximum Ratings 1 Absolute Maximum Ratings Table 1. Key parameters and their absolute maximum ratings Symbol VCC Vin Parameter Supply voltage 1 2 Value Unit 6 V Input Voltage Range Operating Free Air Temperature Range -0.2 to +3 V Toper -40 to +85 °C Tstd Storage Temperature -65 to +150 °C 150 °C 80 75 °C/W 250 175 °C/W 500 715 2 1.5 200 mW Tj Rthjc Rthja Pmax. ESD Maximum Junction Temperature Thermal Resistance Junction to Case SOT23-5 SO8 Thermal Resistance Junction to Ambient Area SOT23-5 SO8 Maximum Power Dissipation (@Ta=25°C) for Tj=150°C SOT23-5 SO8 CDM: Charged Device Model HBM: Human Body Model MM: Machine Model 1) All voltage values, except differential voltage, are with respect to network terminal. 2) The magnitude of input and output voltage must never exceed VCC +0.3V. kV kV V Table 2. Operating conditions Symbol 1) Parameter VCC Power Supply Voltage Vicm Common Mode Input Voltage Tested in full production at 0V/5V single power supply 2/13 Value Unit 1 3 to 5.5 -0.4 to 3 V V Electrical Characteristics TSH340 2 Electrical Characteristics Table 3. VCC = +5V, Tamb = 25°C (unless otherwise specified) Symbol Parameter Test Condition Min. Typ. Max. -5 +30 Unit DC Performance VOS Iib PSR ICC Output Offset Voltage1 no Load, Tamb -30 -40°C < Tamb < +85°C Input Bias Current -6.8 Tamb, Vicm=0.6V 6 -40°C < Tamb < +85°C Power Supply Rejection Ratio 7.2 ∆Vcc=200mVp-p, F=1MHz -90 20 log (∆Vcc/∆Vout) Total Supply Current 16 no Load, Vin=100mV 1.95 mV µA dB 9.8 12.8 mA 2 2.05 V/V G DC Voltage Gain RL = 150Ω Rin Input Resistance Tamb 8 MΩ Cin Input Capacitance Tamb 3.2 pF Dynamic Performance and Output Characteristics Bw FPBW SR -3dB Bandwidth Small Signal Vout=20mVp Vicm=0.6V, RL = 150Ω Gain Flatness @ 0.1dB Small Signal Vout=20mVp Vicm=0.6V, RL = 150Ω Full Power Bandwidth Vicm=0.6V, VOUT = 2Vp-p, RL = 150Ω Slew Rate Vicm=0.6V, VOUT = 2Vp-p, RL = 150Ω 190 320 MHz 63 130 200 MHz 780 V/µs VOH High Level Output Voltage RL = 150Ω VOL Low Level Output Voltage RL = 150Ω 40 Output Short Circuit Current (Isource) Tamb 100 -40°C < Tamb < +85°C 90 IOUT Output Current Vout=2Vp, Tamb 3.7 45 3.9 V 60 mV mA 87 mA Noise and Distortion eN Equivalent Input Noise Voltage F = 100kHz 7 nV/√Hz iN Equivalent Input Noise Current F = 100kHz 1.5 pA/√Hz 2nd Harmonic Distortion VOUT = 2Vp-p, RL = 150Ω F= 10MHz, -85 dBc VOUT = 1Vp-p, RL = 150Ω F= 10MHz, -75 dBc HD2 HD3 1) 3rd Harmonic Distortion Output Offset Voltage is determined from the following expression: VOUT =G.VIN+VOS 3/13 TSH340 Electrical Characteristics Figure 1. Frequency response Figure 4. Frequency response on capa-load 20 16 14 Frequency Response (dB) 12 10 8 6 Gain (dB) 4 2 0 -2 -4 -6 -8 -10 Vcc=5V Load=100 or 150Ω SO8 and SOT23-5 -12 -14 -16 1M 10 0 C=22pF Riso=22Ω C=47pF Riso=15Ω -10 -20 1M 100M 10M 100M Frequency (Hz) Frequency (Hz) Figure 2. Gain flatness - SOT23-5 Figure 5. Gain flatness - SO8 7,0 7,0 Load=150Ω 6,8 6,6 6,6 6,4 6,4 6,2 6,0 5,8 Load=100Ω 5,6 Load=150Ω 6,8 Gain (dB) Gain (dB) C=0 Riso=0 Vcc=5V Load=Riso + C//1kΩ (to ground) 10M C=1pF Riso=0 C=10pF Riso=22Ω 6,2 6,0 5,8 Load=100Ω 5,6 5,4 5,4 5,2 5,2 Vcc=5V 5,0 1M 10M Vcc=5V 5,0 1M 100M 10M 100M Frequency (Hz) Frequency (Hz) Figure 3. Total input noise vs. frequency Figure 6. Positive and negative slew rate 3,0 2,5 Output Response (V) Input Noise (nV/VHz) non-inverting input in short-circuit Vcc=5V 100 Vcc=5V Load=100Ω or 150Ω 2,0 SR+ 1,5 1,0 0,5 SR- 10 100 1k 10k 100k Frequency (Hz) 4/13 1M 10M 0,0 -5ns -4ns -3ns -2ns -1ns 0s Time (ns) 1ns 2ns 3ns 4ns 5ns Electrical Characteristics TSH340 Figure 7. Distortion on 100Ω load Figure 10. Distortion on 150Ω load -30 -30 -35 -35 -40 -45 -55 -60 -65 -70 -75 HD2 (10MHz) -80 -50 HD2 & HD3 (dBc) HD2 & HD3 (dBc) -45 HD3 (30MHz) -50 HD3 (30MHz) -40 HD2 (30MHz) -55 -60 HD2 (30MHz) -65 HD3 (10MHz) -70 -75 -80 -85 -85 -90 HD3 (10MHz) -95 -90 Vcc=5V Load=100Ω Vcc=5V Load=150Ω HD2 (10MHz) -95 -100 -100 0 1 2 3 0 4 1 2 3 4 Output Amplitude (Vp-p) Output Amplitude (Vp-p) Figure 8. Output lower rail vs. frequency Figure 11. Output voltage swing vs. Vcc 500 5 Vcc=5V Load=100Ω or 150Ω 4 Vout max (Vp-p) Vol (mV) 400 300 200 2 1 100 0 10k 3 100k 1M 10M 0 3,00 100M F=30MHz Load=100Ω or 150Ω 3,25 3,50 Frequency (Hz) 3,75 4,00 4,25 4,50 4,75 5,00 Vcc (V) Figure 9. Output voltage swing vs. frequency Figure 12. Quiescent current vs. vcc 5 20 no load 4 3 Icc (mA) Vout max. (Vp-p) 15 2 10 5 1 Vcc=5V Load=100Ω or Load=150Ω 0 1M 10M Frequency (Hz) 0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 Vcc (V) 5/13 TSH340 Electrical Characteristics Figure 13. Isource Figure 16. Reverse isolation vs. frequency 0 0 -10 +5V -20 VOH without load -20 Isource -40 V +3V -50 -40 Gain (dB) Isource (mA) -30 0V -60 -70 -60 -80 -90 -80 -100 Small Signal Vcc=5V Load=100Ω -110 -120 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 -100 1M 5,0 10M 100M 1G Frequency (Hz) V (V) Figure 14. Bandwidth vs. temperature Figure 17. Voltage gain vs. temperature 2,05 500 2,04 450 2,03 400 Gain (dB) Bw (MHz) 2,02 350 300 250 2,01 2,00 1,99 1,98 200 1,97 Vcc=5V Load=150Ω 150 100 -40 Output: short-circuit Vcc=5V 1,96 -20 0 20 40 60 1,95 -40 80 -20 0 20 40 60 80 60 80 Temperature (°C) Temperature (°C) Figure 15. Output offset vs. temperature Figure 18. Ibias vs. temperature 7,0 0 6,5 6,0 -1 IBIAS (µA) Vos (mV) 5,5 -2 -3 5,0 4,5 4,0 -4 3,5 Vcc=5V Load=150Ω -5 -40 -20 0 20 40 Temperature (°C) 6/13 60 80 3,0 -40 Vcc=5V Load=150Ω -20 0 20 40 Temperature (°C) Electrical Characteristics TSH340 Figure 19. Supply current vs. temperature 12 ICC (mA) 11 10 9 8 7 -40 Vcc=5V no Load -20 0 20 40 60 80 Temperature (°C) Figure 20. Output lower rail vs. temperature 0,10 VOL (V) 0,08 Vcc=5V Load=150Ω 0,06 0,04 0,02 0,00 -40 -20 0 20 40 60 80 Temperature (°C) Figure 21. Output higher rail vs. temperature 4,50 VOH (V) 4,25 4,00 3,75 Vcc=5V Load=150Ω 3,50 -40 -20 0 20 40 60 80 Temperature (°C) 7/13 TSH340 Evaluation Boards 3 Evaluation Boards An evaluation board kit optimized for high-speed operational amplifiers is available (order code: KITHSEVAL/STDL). The kit includes the following evaluation boards, as well as a CD-ROM containing datasheets, articles, application notes and a user manual: z SOT23_SINGLE_HF BOARD: Board for the evaluation of a single high-speed op-amp in SOT23-5 package. z SO8_SINGLE_HF: Board for the evaluation of a single high-speed op-amp in SO8 package. z SO8_DUAL_HF: Board for the evaluation of a dual high-speed op-amp in SO8 package. z SO8_S_MULTI: Board for the evaluation of a single high-speed op-amp in SO8 package in inverting and non-inverting configuration, dual and signle supply. z SO14_TRIPLE: Board for the evaluation of a triple high-speed op-amp in SO14 package with video application considerations. Board material: z 2 layers z FR4 (εr=4.6) z epoxy 1.6mm z copper thickness: 35µm Figure 22: Evaluation kit for high speed op-amps 8/13 Power Supply Considerations TSH340 4 Power Supply Considerations Correct power supply bypassing is very important for optimizing performance in high-frequency ranges. Bypass capacitors should be placed as close as possible to the IC pins to improve high-frequency bypassing. A capacitor greater than 10µF is necessary to minimize the distortion. For better quality bypassing, a capacitor of 10nF is added using the same implementation conditions. Bypass capacitors must be incorporated for both the negative and the positive supply. On the SO8_SINGLE_HF board, these capacitors are C8 and C6. Figure 23: Circuit for power supply bypassing +VCC 10microF + 10nF +VCC TSH340 GND 9/13 TSH340 Using the TSH340 to Drive Video Signals 5 Using the TSH340 to Drive Video Signals Figure 24. Implementation of the video driver on output video DACs Volt 2.250V Video Signal Volt 250mV Video Signal time +5V 75Ω 6dB LPF 125mV time Reconstruction Filtering Video DAC 1.125V 75Ω Cable 1Vpp 75Ω 1Vpp 2Vpp VOL(100MHz) = 180mV (Figure 8) To drive the video signal properly, the output of the driver must be at least equal to 250mV (assuming VOS and VOL variations). z 1st solution: Set the video DAC 0-IRE output level to 125mV. White Level 100 IRE Image Content Black Level 30 IRE 1Vp-p 300mV 0 IRE 125mV 0V Synchronization Tip z 2nd solution: Implementation of a DC component in the input of the driver. Volt Video Signal 2.250V Volt 250mV +5V 33uF Video DAC Reconstruction Filtering LPF 1Vpp 6dB Video Signal time 10/13 125mV time 75Ω 75Ω Cable 1Vpp 75Ω 1k 2Vpp DC component =125mV 1.125V Package Mechanical Data TSH340 6 Package Mechanical Data 6.1 SO-8 package SO-8 MECHANICAL DATA DIM. mm. MIN. TYP inch MAX. MIN. TYP. MAX. A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.04 0.010 A2 1.10 1.65 0.043 0.065 B 0.33 0.51 0.013 0.020 C 0.19 0.25 0.007 0.010 D 4.80 5.00 0.189 0.197 E 3.80 4.00 0.150 0.157 e 1.27 0.050 H 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k ddd 8˚ (max.) 0.1 0.04 0016023/C 11/13 TSH340 Package Mechanical Data 6.2 SOT23-5L (5-pin) package SOT23-5L MECHANICAL DATA mm. mils DIM. MIN. MAX. MIN. TYP. MAX. A 0.90 1.45 35.4 57.1 A1 0.00 0.15 0.0 5.9 A2 0.90 1.30 35.4 51.2 b 0.35 0.50 13.7 19.7 C 0.09 0.20 3.5 7.8 D 2.80 3.00 110.2 118.1 E 2.60 3.00 102.3 118.1 E1 1.50 1.75 59.0 68.8 e 0 .95 37.4 e1 1.9 74.8 L 12/13 TYP 0.35 0.55 13.7 21.6 TSH340 7 Revision History Date Revision Description of Changes 01 Jan. 2005 1 First release corresponding to Preliminary Data version of datasheet. 23 Mar. 2005 2 Datasheet of mature, full-specification product. Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 13/13