STMICROELECTRONICS TSH343_07

TSH343
280MHz single-supply triple video buffer
Features
■
Bandwidth: 280MHz
■
5V single-supply operation
■
Internal input DC level shifter
■
No input capacitor required
■
6dB internal gain for a matching between 3
channels
■
Very low harmonic distortion
■
Slew rate: 780V/μs
■
Specified for 150Ω and 100Ω loads
■
Min. and max. data tested during production
Pin1 identification
Top View
IN1 1
6dB
8 OUT1
IN2 2
6dB
7 OUT2
IN3 3
6dB
6 OUT3
Applications
■
High-end video systems
■
High definition TV (HDTV)
■
Broadcast and graphic video
■
Multimedia products
DC Shifter
5 GND
+Vcc 4
SO8
Description
The TSH343 is a triple single-supply video buffer
featuring an internal gain of 6dB and a large
280MHz bandwidth.
The TSH343 is available in the compact SO8
plastic package for optimum space-saving.
The main advantage of this circuit is that its input
DC level shifter allows for video signals on 75Ω
video lines without damage to the synchronization
tip of the video signal, while using a single 5V
power supply with no input capacitor. The DC
level shifter is internally fixed and optimized to
keep the output video signals between low and
high output rails in the best position for the
greatest linearity.
This datasheet provides information on using the
TSH343 as a Y-Pb-Pr driver for video DAC output
on a video line. See the TSH344 datasheet for RG-B signals.
March 2007
Rev 4
1/17
www.st.com
17
TSH343
Contents
1
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3
2
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1
Using the TSH343 to drive Y-Pb-Pr video components . . . . . . . . . . . . . . 10
3.2
PSRR and improvement of power supply noise rejection . . . . . . . . . . . . 12
3.3
Delay between channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2/17
TSH343
1
Absolute maximum ratings and operating conditions
Absolute maximum ratings and operating conditions
Table 1.
Absolute maximum ratings (AMR)
Symbol
VCC
Vin
Parameter
Supply voltage (1)
Input voltage range
(2)
Value
Unit
6
V
0 to +1.4
V
Toper
Operating free air temperature range
-40 to +85
°C
Tstg
Storage temperature
-65 to +150
°C
Maximum junction temperature
150
°C
Rthjc
SO8 thermal resistance junction to case
28
°C/W
Rthja
SO8 thermal resistance junction to ambient area
157
°C/W
Pmax
Maximum power dissipation (@Tamb=25°C) for Tj=150°C
800
mW
ESD
CDM: charged device model
HBM: human body model
MM: machine model
2
1.5
200
kV
kV
V
Value
Unit
3 to 5.5(1)
V
Tj
1. All voltage values, except differential voltage, are with respect to network terminal.
2. The magnitude of input and output voltages must never exceed VCC +0.3V.
Table 2.
Operating conditions
Symbol
VCC
Parameter
Power supply voltage
1. Tested in full production at 0V/5V single power supply.
3/17
Electrical characteristics
TSH343
2
Electrical characteristics
Table 3.
VCC = +5V single supply, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
400
600
670
Unit
DC performance
VDC
Input DC shift
(see Figure 16 for the behaviour in
temperature)
RL = 150Ω, Tamb
mV
-40°C < Tamb < +85°C
530
Tamb , input to GND
18.2
-40°C < Tamb < +85°C
20.7
35
μA
Iib
Input bias current
Rin
Input resistance
Tamb
4
GΩ
Cin
Input capacitance
Tamb
1
pF
ICC
Supply current per buffer
no load, input to GND
14.4
-40°C < Tamb < +85°C
14.9
Power supply rejection ratio(1)
20 log (ΔVout/ΔVCC)
F = 1MHz
-45
DC voltage gain
RL = 150Ω, Vin = 1V
DG
Variation of the DC voltage gain
between inputs of 0.3V and 1V
MG1
MG0.3
PSRR
G
18
mA
1.92
dB
1.99
2.05
V/V
Input step from 0.3V to 1V
0.26
0.8
%
Gain matching between 3 channels
Input = 1V
0.5
2
%
Gain matching between 3 channels
Input = 0.3V
0.5
2
%
Dynamic performance and output characteristics
-3dB bandwidth
Small signal Vout = 20mVp
RL = 150Ω
Gain flatness @ 0.1dB
Small signal Vout = 20mVp
RL = 150Ω
Full power bandwidth
Vout = 2Vp-p, VICM = 0.5V,
RL = 150Ω
Delay between each channel(2)
0 to 30MHz
SR
Slew rate (3)
Input step from 0V to 1V,
RL = 150Ω
VOH
High level output voltage
Vin DC = +1.5V, RL = 150Ω
VOL
Low level output voltage
RL = 150Ω
Bw
FPBW
D
Output current
IOUT
-40°C < Tamb < +85°C
Output short-circuit current (Isource)
4/17
Vout = 2V, Tamb
160
280
MHz
65
130
200
MHz
0.5
ns
500
780
V/μs
3.7
3.9
V
40
mV
45
90
mA
82
100
mA
TSH343
Table 3.
Electrical characteristics
VCC = +5V single supply, Tamb = 25°C (unless otherwise specified) (continued)
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
Noise and distortion
F = 100kHz, RIN = 50Ω
29
nV/√Hz
10kHz to 30MHz
10kHz to 100MHz
158
290
μVrms
2nd harmonic distortion
Vout = 2Vp-p, RL = 150Ω
F= 10MHz
F= 30MHz
-58
-45
dBc
3rd harmonic distortion
Vout = 2Vp-p, RL = 150Ω
F= 10MHz
F= 30MHz
-72
-50
dBc
eN
Total input voltage noise
HD2
HD3
1. See Figure 28 and Figure 29.
2. See Figure 30 and Figure 31.
3. Non-tested value, guaranteed by design.
5/17
Electrical characteristics
Frequency response
Figure 2.
10
6,20
8
6,15
6
6,10
4
6,05
Gain (dB)
Gain (dB)
Figure 1.
TSH343
2
0
-2
-4
Gain flatness
6,00
5,95
5,90
5,85
-6
5,80
Vcc=5V
Load=150Ω
-8
-10
1M
Vcc=5V
Load=150Ω
5,75
10M
100M
5,70
1M
1G
10M
Frequency (Hz)
Figure 3.
Cross-talk vs. frequency (amp1)
Figure 4.
0
-10
1G
Cross-talk vs. frequency (amp2)
0
Small Signal
Vcc=5V
Load=150Ω
-10
-20
-30
-30
-40
-40
Gain (dB)
Gain (dB)
-20
100M
Frequency (Hz)
-50
1/2
-60
-70
Small Signal
Vcc=5V
Load=150Ω
-50
2/1
-60
2/3
-70
-80
1/3
-80
-90
-90
-100
1M
10M
-100
1M
100M
10M
Frequency (Hz)
Figure 5.
100M
Frequency (Hz)
Cross-talk vs. frequency (amp3)
Figure 6.
Input noise vs. frequency
0
-20
Small Signal
Vcc=5V
Load=150Ω
Vcc=5V
input in short-circuit
Input Noise (nV/VHz)
-10
-30
Gain (dB)
-40
-50
3/1
-60
3/2
-70
100
NA
-80
-90
-100
1M
10M
Frequency (Hz)
6/17
100M
10
10
100
1k
10k
100k
Frequency (Hz)
1M
10M
TSH343
Electrical characteristics
Figure 7.
Distortion on 150Ω load - 10MHz
Figure 8.
-30
-40
HD2 & HD3 (dBc)
-45
-50
-30
Vcc=5V
F=10MHz
input DC component = 0.65V
Load=150Ω
-35
-45
-55
HD2
-60
Vcc=5V
F=10MHz
input DC component = 0.65V
Load=100Ω
-40
HD2 & HD3 (dBc)
-35
Distortion on 100Ω load - 10MHz
-65
-70
-75
-80
-85
-50
-55
HD2
-60
-65
-70
-75
-80
-85
HD3
-90
HD3
-90
-95
-95
-100
0,0
0,5
1,0
1,5
2,0
2,5
3,0
3,5
-100
0,0
4,0
0,5
1,0
Output Amplitude (Vp-p)
Figure 9.
Distortion on 150Ω load - 30MHz
HD2 & HD3 (dBc)
-25
-30
-15
-25
-40
-45
HD2
-55
-60
HD3
-65
-30
3,5
4,0
-35
-40
-45
-55
-60
-75
-75
1,0
HD3
-65
-70
0,5
HD2
-50
-70
-80
0,0
3,0
Vcc=5V
F=30MHz
input DC component = 0.65V
Load=100Ω
-20
-35
-50
2,5
-10
Vcc=5V
F=30MHz
input DC component = 0.65V
Load=150Ω
HD2 & HD3 (dBc)
-20
2,0
Figure 10. Distortion on 100Ω load - 30MHz
-10
-15
1,5
Output Amplitude (Vp-p)
1,5
2,0
2,5
3,0
3,5
-80
0,0
4,0
0,5
1,0
Output Amplitude (Vp-p)
1,5
2,0
2,5
3,0
3,5
4,0
Output Amplitude (Vp-p)
Figure 11. Output DC shift vs. frequency
Figure 12. Slew rate
1,4
3,5
3,0
SR+
Output Response (V)
Gain (dB)
1,2
1,0
0,8
Vcc=5V
Load=150Ω
0,6
1M
2,5
2,0
1,5
SR-
1,0
Vcc=5V
Load=150Ω
0,5
10M
Frequency (Hz)
100M
0,0
-5
-4
-3
-2
-1
0
1
2
3
4
5
Time (ns)
7/17
Electrical characteristics
TSH343
Figure 13. Reverse isolation vs. frequency
Figure 14. Bandwidth vs. temperature
0
500
Vcc=5V
Load=100Ω
-10
450
-20
400
-30
Bw (MHz)
Gain (dB)
-40
-50
-60
350
300
250
-70
200
-80
150
-90
-100
1M
10M
100
-40
100M
Vcc=5V
Load=150Ω
-20
0
Frequency (Hz)
20
40
60
80
Temperature (°C)
Figure 15. Quiescent current vs. supply
Figure 16. Input DC shift vs. temperature
50
0,8
Vcc=5V
Input to ground, no load
45
0,7
40
0,6
DCshift (V)
Total Icc (mA)
35
30
25
20
0,5
0,4
15
10
0,3
5
0
0,0
0,5
1,0
1,5
2,0
2,5
3,0
3,5
4,0
4,5
0,2
-40
5,0
Vcc=5V
Load=150Ω
-20
0
Vcc (V)
20
40
60
80
Temperature (°C)
Figure 17. Isource vs. output voltage
Figure 18. Voltage gain vs. temperature
2,05
0
-10
2,04
+5V
VOH
-20
without load
2,03
-30
-40
2,02
V
-50
Gain (dB)
Isource (mA)
Isource
0V
-60
-70
-80
2,01
2,00
1,99
1,98
-90
1,97
-100
1,96
-110
-120
0,0
0,5
1,0
1,5
2,0
2,5
V (V)
8/17
3,0
3,5
4,0
4,5
5,0
1,95
-40
Vcc=5V
Load=150Ω
-20
0
20
40
Temperature (°C)
60
80
TSH343
Electrical characteristics
Figure 19. Ibias vs. temperature
Figure 20. Gain deviation vs. temperature
1,0
24
22
0,8
GD (%)
IBIAS (μA)
20
18
16
Gain deviation between
0.3V and 1V input voltages
Vcc=5V
Load=150Ω
0,6
0,4
14
0,2
12
Vcc=5V
Load=150Ω
10
-40
-20
0
20
40
60
0,0
-40
80
-20
0
Temperature (°C)
20
40
60
80
Temperature (°C)
Figure 21. Supply current vs. temperature
Figure 22. Output current vs. temperature
17
110
16
100
Isource (mA)
ICC (mA)
15
14
13
90
80
70
12
11
10
-40
60
Vcc=5V
no Load
-20
0
20
40
60
50
-40
80
Vcc=5V
Load=150Ω
-20
Temperature (°C)
0
20
40
60
80
Temperature (°C)
Figure 23. Output higher rail vs. temperature
Figure 24. Gain matching vs. temperature
1,0
4,2
4,1
0,8
GM (%)
VOH (V)
4,0
3,9
3,8
Gain matching between 3 channels
Vcc=5V
Load=150Ω
Vin=0.3V and 1V
0,6
0,4
3,7
0,2
3,6
3,5
-40
Vcc=5V
Load=150Ω
-20
0
20
40
Temperature (°C)
60
80
0,0
-40
-20
0
20
40
60
80
Temperature (°C)
9/17
Application information
TSH343
3
Application information
3.1
Using the TSH343 to drive Y-Pb-Pr video components
Figure 25. Shapes of video signals coming from DACs
White (100 IRE)
54ns
(4t)
27ns
(2t)
27ns
(2t)
590ns
(44t)
300mV
700mV
Black (30 IRE)
300mV
GND
1.030V
14.8µs (1100t): 1920*1080i
24.3µs (1800t): 1280*720i
590ns
(44t)
10mV
Synchronization tip
•Fclock=74.25MHz
•t=1/Fclock=13.5ns
0.330V
(0 IRE) 0.030V
time
Amplitude
1Vp-p
Frequency
30MHz
Figure 26. TSH343 in single supply for any DAC output
video
outputs
DAC
DAC
DAC
+5V
Y,G(+synchro)
Pb,B
75Ω
Cable
LPF
TSH343
75Ω
LPF
SO8
Pr,R
75Ω
LPF
Cable
Cable
HDTV
video
outputs
DAC
DAC
DAC
+5V
R
G
75Ω
TSH344
75Ω
LPF
SO8
B
Cable
LPF
75Ω
LPF
Cable
Cable
Digital synchro
1. See the TSH344 datasheet on st.com for more information. It is possible to drive RGB signals with the
TSH344.
10/17
TSH343
Application information
Figure 27. Detailed view of one TSH343 channel
STB
+5V
600mV
DC
DAC
+
75Ω
1/3 TSH343
(gain=2)
470nH
TV
video line
140Ω
75Ω
68pF
-5V
68pF
0V
5Volt
5Volt
5Volt
3,22V
1,61V
1,01V
1,22V
(10mV+600mV)*gain
610mV
10mV
0Volt
0Volt
0Volt
Because of the shape of the signal shown in Figure 25, we use a very low output rail triple
high-speed buffer. The TSH343 supplied in 5V single power supply, features a low output rail
of 40mV on 150-ohm load. The TSH343 is used to drive high definition video signals up to
30MHz on 75-ohm video lines. It is dedicated to driving YPbPr signals where the
synchronization tip—close to zero volt—is included in the Y signal.
Figure 27 shows a solution used on the STMicroelectronics reference design of STi7100 or
STi7200 where the DAC output is loaded by 140Ω and the bottom of the synchronization tip
is set at 10mV. Using the TSH343, an internal input DC value of 600mV is added to the
video signal in order to shift the bottom from 10mV to 610mV. The shift is not based on the
average of the signal, but is an analog summation of a DC component to the video signal.
Therefore, no input capacitors are required which provides a real advantage in terms of cost
and board space.
The internal gain of 2 obtained makes it possible to remove two resistors on the BOM. To
avoid any perturbation on matching from the DACs output impedance along a large band of
30MHz in HD, a discrete reconstruction filtering is implemented after the driver. This filter is
matched on 75-ohms. Note that the TSH343 cannot be AC output coupled (it cannot sink an
output current, therefore it is not possible to implement an output series capacitor).
11/17
Application information
3.2
TSH343
PSRR and improvement of power supply noise rejection
Figure 28. Circuit for power supply bypassing
S
R
+5V
T-bias
L
CLF
AGILENT
4395A
CHF
50Ω
TSH343
A
75Ω
Figure 29 shows how the power supply noise rejection evolves versus frequency depending
on how carefully the power supply decoupling is achieved.
Figure 29. Power supply noise rejection
0
-10
PSRR
PSRR (dB)
-20
-30
L= Ferrite FBMJ4516HM900
CHF=100nF
CLF=10uF
-40
-50
-60
-70
L=2uH
CHF=100nF
CLF=10uF
-80
100k
1M
10M
100M
Frequency (Hz)
Criteria for choosing the ferrite:
12/17
●
In DC, the resistance (R) of the ferrite must be as low as possible to keep +5V power
supply on the chip.
●
In AC, along a 30MHz bandwidth (HD spectrum), the equivalent impedance (Z=R+jX)
must be as high as possible to optimize rejection of the noise generated by the power
supply.
TSH343
Delay between channels
Figure 30. Measurement of the delay between each channel
5V
75Ω
600mV
+
+6dB
75Ω Cable
V1
75Ω
Vin
75Ω
600mV
+
+6dB
75Ω Cable
V2
75Ω
75Ω
75Ω
600mV
+
+6dB
75Ω Cable
V3
75Ω
The delay between each video component is an important aspect in high definition video
systems. To properly drive the three video components without any relative delay, the
TSH343 dice layout has a very symmetrical geometry. The effect is direct on the
synchronization of each channel, as shown in Figure 31. There is no delay between
channels when the same Vin signal is applied on the three inputs. Note that the delay
between the inputs and the outputs is 4ns.
3 Output responses (V1, V2, V3)
Figure 31. Relative delay between each channel
Vcc=5V
Load=150Ω
Input (Vin)
3.3
Application information
-4ns -2ns
0s
2ns
4ns
6ns
8ns 10ns 12ns 14ns 16ns 18ns 20ns
Time
13/17
Package mechanical data
4
TSH343
Package mechanical data
In order to meet environmental requirements, STMicroelectronics offers these devices in
ECOPACK® packages. These packages have a lead-free second level interconnect. The
category of second level interconnect is marked on the package and on the inner box label,
in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics
trademark. ECOPACK specifications are available at: www.st.com.
14/17
TSH343
Package mechanical data
Figure 32. SO-8 package
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Inches
Max.
Min.
Typ.
1.75
0.069
A1
0.10
A2
1.25
b
0.28
0.48
0.011
0.019
c
0.17
0.23
0.007
0.010
D
4.80
4.90
5.00
0.189
0.193
0.197
E
5.80
6.00
6.20
0.228
0.236
0.244
E1
3.80
3.90
4.00
0.150
0.154
0.157
e
0.25
Max.
0.004
0.010
0.049
1.27
0.050
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
k
1°
8°
1°
8°
ccc
0.10
0.004
15/17
Ordering information
5
TSH343
Ordering information
Table 4.
Order codes
Part number
TSH343ID
TSH343IDT
6
Package
-40°C to +85°C
SO-8
Packing
Marking
Tube
TSH343I
Tape & reel
TSH343I
Revision history
Table 5.
16/17
Temperature range
Document revision history
Date
Revision
Changes
1-Dec-2005
1
First release of datasheet.
2-Jan-2006
2
Capa-load option paragraph deleted on page 11.
10-Jul-2006
3
Application information.
7-Mar-2007
4
Max limit for input DC shift reduced from 800mV to 670mV.
Updated Section 3.2: PSRR and improvement of power supply noise
rejection on page 12.
TSH343
Revision history
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2007 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
17/17