TSH343 280MHz single-supply triple video buffer Features ■ Bandwidth: 280MHz ■ 5V single-supply operation ■ Internal input DC level shifter ■ No input capacitor required ■ 6dB internal gain for a matching between 3 channels ■ Very low harmonic distortion ■ Slew rate: 780V/μs ■ Specified for 150Ω and 100Ω loads ■ Min. and max. data tested during production Pin1 identification Top View IN1 1 6dB 8 OUT1 IN2 2 6dB 7 OUT2 IN3 3 6dB 6 OUT3 Applications ■ High-end video systems ■ High definition TV (HDTV) ■ Broadcast and graphic video ■ Multimedia products DC Shifter 5 GND +Vcc 4 SO8 Description The TSH343 is a triple single-supply video buffer featuring an internal gain of 6dB and a large 280MHz bandwidth. The TSH343 is available in the compact SO8 plastic package for optimum space-saving. The main advantage of this circuit is that its input DC level shifter allows for video signals on 75Ω video lines without damage to the synchronization tip of the video signal, while using a single 5V power supply with no input capacitor. The DC level shifter is internally fixed and optimized to keep the output video signals between low and high output rails in the best position for the greatest linearity. This datasheet provides information on using the TSH343 as a Y-Pb-Pr driver for video DAC output on a video line. See the TSH344 datasheet for RG-B signals. March 2007 Rev 4 1/17 www.st.com 17 TSH343 Contents 1 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3 2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1 Using the TSH343 to drive Y-Pb-Pr video components . . . . . . . . . . . . . . 10 3.2 PSRR and improvement of power supply noise rejection . . . . . . . . . . . . 12 3.3 Delay between channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2/17 TSH343 1 Absolute maximum ratings and operating conditions Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings (AMR) Symbol VCC Vin Parameter Supply voltage (1) Input voltage range (2) Value Unit 6 V 0 to +1.4 V Toper Operating free air temperature range -40 to +85 °C Tstg Storage temperature -65 to +150 °C Maximum junction temperature 150 °C Rthjc SO8 thermal resistance junction to case 28 °C/W Rthja SO8 thermal resistance junction to ambient area 157 °C/W Pmax Maximum power dissipation (@Tamb=25°C) for Tj=150°C 800 mW ESD CDM: charged device model HBM: human body model MM: machine model 2 1.5 200 kV kV V Value Unit 3 to 5.5(1) V Tj 1. All voltage values, except differential voltage, are with respect to network terminal. 2. The magnitude of input and output voltages must never exceed VCC +0.3V. Table 2. Operating conditions Symbol VCC Parameter Power supply voltage 1. Tested in full production at 0V/5V single power supply. 3/17 Electrical characteristics TSH343 2 Electrical characteristics Table 3. VCC = +5V single supply, Tamb = 25°C (unless otherwise specified) Symbol Parameter Test conditions Min. Typ. Max. 400 600 670 Unit DC performance VDC Input DC shift (see Figure 16 for the behaviour in temperature) RL = 150Ω, Tamb mV -40°C < Tamb < +85°C 530 Tamb , input to GND 18.2 -40°C < Tamb < +85°C 20.7 35 μA Iib Input bias current Rin Input resistance Tamb 4 GΩ Cin Input capacitance Tamb 1 pF ICC Supply current per buffer no load, input to GND 14.4 -40°C < Tamb < +85°C 14.9 Power supply rejection ratio(1) 20 log (ΔVout/ΔVCC) F = 1MHz -45 DC voltage gain RL = 150Ω, Vin = 1V DG Variation of the DC voltage gain between inputs of 0.3V and 1V MG1 MG0.3 PSRR G 18 mA 1.92 dB 1.99 2.05 V/V Input step from 0.3V to 1V 0.26 0.8 % Gain matching between 3 channels Input = 1V 0.5 2 % Gain matching between 3 channels Input = 0.3V 0.5 2 % Dynamic performance and output characteristics -3dB bandwidth Small signal Vout = 20mVp RL = 150Ω Gain flatness @ 0.1dB Small signal Vout = 20mVp RL = 150Ω Full power bandwidth Vout = 2Vp-p, VICM = 0.5V, RL = 150Ω Delay between each channel(2) 0 to 30MHz SR Slew rate (3) Input step from 0V to 1V, RL = 150Ω VOH High level output voltage Vin DC = +1.5V, RL = 150Ω VOL Low level output voltage RL = 150Ω Bw FPBW D Output current IOUT -40°C < Tamb < +85°C Output short-circuit current (Isource) 4/17 Vout = 2V, Tamb 160 280 MHz 65 130 200 MHz 0.5 ns 500 780 V/μs 3.7 3.9 V 40 mV 45 90 mA 82 100 mA TSH343 Table 3. Electrical characteristics VCC = +5V single supply, Tamb = 25°C (unless otherwise specified) (continued) Symbol Parameter Test conditions Min. Typ. Max. Unit Noise and distortion F = 100kHz, RIN = 50Ω 29 nV/√Hz 10kHz to 30MHz 10kHz to 100MHz 158 290 μVrms 2nd harmonic distortion Vout = 2Vp-p, RL = 150Ω F= 10MHz F= 30MHz -58 -45 dBc 3rd harmonic distortion Vout = 2Vp-p, RL = 150Ω F= 10MHz F= 30MHz -72 -50 dBc eN Total input voltage noise HD2 HD3 1. See Figure 28 and Figure 29. 2. See Figure 30 and Figure 31. 3. Non-tested value, guaranteed by design. 5/17 Electrical characteristics Frequency response Figure 2. 10 6,20 8 6,15 6 6,10 4 6,05 Gain (dB) Gain (dB) Figure 1. TSH343 2 0 -2 -4 Gain flatness 6,00 5,95 5,90 5,85 -6 5,80 Vcc=5V Load=150Ω -8 -10 1M Vcc=5V Load=150Ω 5,75 10M 100M 5,70 1M 1G 10M Frequency (Hz) Figure 3. Cross-talk vs. frequency (amp1) Figure 4. 0 -10 1G Cross-talk vs. frequency (amp2) 0 Small Signal Vcc=5V Load=150Ω -10 -20 -30 -30 -40 -40 Gain (dB) Gain (dB) -20 100M Frequency (Hz) -50 1/2 -60 -70 Small Signal Vcc=5V Load=150Ω -50 2/1 -60 2/3 -70 -80 1/3 -80 -90 -90 -100 1M 10M -100 1M 100M 10M Frequency (Hz) Figure 5. 100M Frequency (Hz) Cross-talk vs. frequency (amp3) Figure 6. Input noise vs. frequency 0 -20 Small Signal Vcc=5V Load=150Ω Vcc=5V input in short-circuit Input Noise (nV/VHz) -10 -30 Gain (dB) -40 -50 3/1 -60 3/2 -70 100 NA -80 -90 -100 1M 10M Frequency (Hz) 6/17 100M 10 10 100 1k 10k 100k Frequency (Hz) 1M 10M TSH343 Electrical characteristics Figure 7. Distortion on 150Ω load - 10MHz Figure 8. -30 -40 HD2 & HD3 (dBc) -45 -50 -30 Vcc=5V F=10MHz input DC component = 0.65V Load=150Ω -35 -45 -55 HD2 -60 Vcc=5V F=10MHz input DC component = 0.65V Load=100Ω -40 HD2 & HD3 (dBc) -35 Distortion on 100Ω load - 10MHz -65 -70 -75 -80 -85 -50 -55 HD2 -60 -65 -70 -75 -80 -85 HD3 -90 HD3 -90 -95 -95 -100 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 -100 0,0 4,0 0,5 1,0 Output Amplitude (Vp-p) Figure 9. Distortion on 150Ω load - 30MHz HD2 & HD3 (dBc) -25 -30 -15 -25 -40 -45 HD2 -55 -60 HD3 -65 -30 3,5 4,0 -35 -40 -45 -55 -60 -75 -75 1,0 HD3 -65 -70 0,5 HD2 -50 -70 -80 0,0 3,0 Vcc=5V F=30MHz input DC component = 0.65V Load=100Ω -20 -35 -50 2,5 -10 Vcc=5V F=30MHz input DC component = 0.65V Load=150Ω HD2 & HD3 (dBc) -20 2,0 Figure 10. Distortion on 100Ω load - 30MHz -10 -15 1,5 Output Amplitude (Vp-p) 1,5 2,0 2,5 3,0 3,5 -80 0,0 4,0 0,5 1,0 Output Amplitude (Vp-p) 1,5 2,0 2,5 3,0 3,5 4,0 Output Amplitude (Vp-p) Figure 11. Output DC shift vs. frequency Figure 12. Slew rate 1,4 3,5 3,0 SR+ Output Response (V) Gain (dB) 1,2 1,0 0,8 Vcc=5V Load=150Ω 0,6 1M 2,5 2,0 1,5 SR- 1,0 Vcc=5V Load=150Ω 0,5 10M Frequency (Hz) 100M 0,0 -5 -4 -3 -2 -1 0 1 2 3 4 5 Time (ns) 7/17 Electrical characteristics TSH343 Figure 13. Reverse isolation vs. frequency Figure 14. Bandwidth vs. temperature 0 500 Vcc=5V Load=100Ω -10 450 -20 400 -30 Bw (MHz) Gain (dB) -40 -50 -60 350 300 250 -70 200 -80 150 -90 -100 1M 10M 100 -40 100M Vcc=5V Load=150Ω -20 0 Frequency (Hz) 20 40 60 80 Temperature (°C) Figure 15. Quiescent current vs. supply Figure 16. Input DC shift vs. temperature 50 0,8 Vcc=5V Input to ground, no load 45 0,7 40 0,6 DCshift (V) Total Icc (mA) 35 30 25 20 0,5 0,4 15 10 0,3 5 0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 0,2 -40 5,0 Vcc=5V Load=150Ω -20 0 Vcc (V) 20 40 60 80 Temperature (°C) Figure 17. Isource vs. output voltage Figure 18. Voltage gain vs. temperature 2,05 0 -10 2,04 +5V VOH -20 without load 2,03 -30 -40 2,02 V -50 Gain (dB) Isource (mA) Isource 0V -60 -70 -80 2,01 2,00 1,99 1,98 -90 1,97 -100 1,96 -110 -120 0,0 0,5 1,0 1,5 2,0 2,5 V (V) 8/17 3,0 3,5 4,0 4,5 5,0 1,95 -40 Vcc=5V Load=150Ω -20 0 20 40 Temperature (°C) 60 80 TSH343 Electrical characteristics Figure 19. Ibias vs. temperature Figure 20. Gain deviation vs. temperature 1,0 24 22 0,8 GD (%) IBIAS (μA) 20 18 16 Gain deviation between 0.3V and 1V input voltages Vcc=5V Load=150Ω 0,6 0,4 14 0,2 12 Vcc=5V Load=150Ω 10 -40 -20 0 20 40 60 0,0 -40 80 -20 0 Temperature (°C) 20 40 60 80 Temperature (°C) Figure 21. Supply current vs. temperature Figure 22. Output current vs. temperature 17 110 16 100 Isource (mA) ICC (mA) 15 14 13 90 80 70 12 11 10 -40 60 Vcc=5V no Load -20 0 20 40 60 50 -40 80 Vcc=5V Load=150Ω -20 Temperature (°C) 0 20 40 60 80 Temperature (°C) Figure 23. Output higher rail vs. temperature Figure 24. Gain matching vs. temperature 1,0 4,2 4,1 0,8 GM (%) VOH (V) 4,0 3,9 3,8 Gain matching between 3 channels Vcc=5V Load=150Ω Vin=0.3V and 1V 0,6 0,4 3,7 0,2 3,6 3,5 -40 Vcc=5V Load=150Ω -20 0 20 40 Temperature (°C) 60 80 0,0 -40 -20 0 20 40 60 80 Temperature (°C) 9/17 Application information TSH343 3 Application information 3.1 Using the TSH343 to drive Y-Pb-Pr video components Figure 25. Shapes of video signals coming from DACs White (100 IRE) 54ns (4t) 27ns (2t) 27ns (2t) 590ns (44t) 300mV 700mV Black (30 IRE) 300mV GND 1.030V 14.8µs (1100t): 1920*1080i 24.3µs (1800t): 1280*720i 590ns (44t) 10mV Synchronization tip •Fclock=74.25MHz •t=1/Fclock=13.5ns 0.330V (0 IRE) 0.030V time Amplitude 1Vp-p Frequency 30MHz Figure 26. TSH343 in single supply for any DAC output video outputs DAC DAC DAC +5V Y,G(+synchro) Pb,B 75Ω Cable LPF TSH343 75Ω LPF SO8 Pr,R 75Ω LPF Cable Cable HDTV video outputs DAC DAC DAC +5V R G 75Ω TSH344 75Ω LPF SO8 B Cable LPF 75Ω LPF Cable Cable Digital synchro 1. See the TSH344 datasheet on st.com for more information. It is possible to drive RGB signals with the TSH344. 10/17 TSH343 Application information Figure 27. Detailed view of one TSH343 channel STB +5V 600mV DC DAC + 75Ω 1/3 TSH343 (gain=2) 470nH TV video line 140Ω 75Ω 68pF -5V 68pF 0V 5Volt 5Volt 5Volt 3,22V 1,61V 1,01V 1,22V (10mV+600mV)*gain 610mV 10mV 0Volt 0Volt 0Volt Because of the shape of the signal shown in Figure 25, we use a very low output rail triple high-speed buffer. The TSH343 supplied in 5V single power supply, features a low output rail of 40mV on 150-ohm load. The TSH343 is used to drive high definition video signals up to 30MHz on 75-ohm video lines. It is dedicated to driving YPbPr signals where the synchronization tip—close to zero volt—is included in the Y signal. Figure 27 shows a solution used on the STMicroelectronics reference design of STi7100 or STi7200 where the DAC output is loaded by 140Ω and the bottom of the synchronization tip is set at 10mV. Using the TSH343, an internal input DC value of 600mV is added to the video signal in order to shift the bottom from 10mV to 610mV. The shift is not based on the average of the signal, but is an analog summation of a DC component to the video signal. Therefore, no input capacitors are required which provides a real advantage in terms of cost and board space. The internal gain of 2 obtained makes it possible to remove two resistors on the BOM. To avoid any perturbation on matching from the DACs output impedance along a large band of 30MHz in HD, a discrete reconstruction filtering is implemented after the driver. This filter is matched on 75-ohms. Note that the TSH343 cannot be AC output coupled (it cannot sink an output current, therefore it is not possible to implement an output series capacitor). 11/17 Application information 3.2 TSH343 PSRR and improvement of power supply noise rejection Figure 28. Circuit for power supply bypassing S R +5V T-bias L CLF AGILENT 4395A CHF 50Ω TSH343 A 75Ω Figure 29 shows how the power supply noise rejection evolves versus frequency depending on how carefully the power supply decoupling is achieved. Figure 29. Power supply noise rejection 0 -10 PSRR PSRR (dB) -20 -30 L= Ferrite FBMJ4516HM900 CHF=100nF CLF=10uF -40 -50 -60 -70 L=2uH CHF=100nF CLF=10uF -80 100k 1M 10M 100M Frequency (Hz) Criteria for choosing the ferrite: 12/17 ● In DC, the resistance (R) of the ferrite must be as low as possible to keep +5V power supply on the chip. ● In AC, along a 30MHz bandwidth (HD spectrum), the equivalent impedance (Z=R+jX) must be as high as possible to optimize rejection of the noise generated by the power supply. TSH343 Delay between channels Figure 30. Measurement of the delay between each channel 5V 75Ω 600mV + +6dB 75Ω Cable V1 75Ω Vin 75Ω 600mV + +6dB 75Ω Cable V2 75Ω 75Ω 75Ω 600mV + +6dB 75Ω Cable V3 75Ω The delay between each video component is an important aspect in high definition video systems. To properly drive the three video components without any relative delay, the TSH343 dice layout has a very symmetrical geometry. The effect is direct on the synchronization of each channel, as shown in Figure 31. There is no delay between channels when the same Vin signal is applied on the three inputs. Note that the delay between the inputs and the outputs is 4ns. 3 Output responses (V1, V2, V3) Figure 31. Relative delay between each channel Vcc=5V Load=150Ω Input (Vin) 3.3 Application information -4ns -2ns 0s 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns 18ns 20ns Time 13/17 Package mechanical data 4 TSH343 Package mechanical data In order to meet environmental requirements, STMicroelectronics offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: www.st.com. 14/17 TSH343 Package mechanical data Figure 32. SO-8 package Dimensions Ref. Millimeters Min. Typ. A Inches Max. Min. Typ. 1.75 0.069 A1 0.10 A2 1.25 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.010 D 4.80 4.90 5.00 0.189 0.193 0.197 E 5.80 6.00 6.20 0.228 0.236 0.244 E1 3.80 3.90 4.00 0.150 0.154 0.157 e 0.25 Max. 0.004 0.010 0.049 1.27 0.050 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k 1° 8° 1° 8° ccc 0.10 0.004 15/17 Ordering information 5 TSH343 Ordering information Table 4. Order codes Part number TSH343ID TSH343IDT 6 Package -40°C to +85°C SO-8 Packing Marking Tube TSH343I Tape & reel TSH343I Revision history Table 5. 16/17 Temperature range Document revision history Date Revision Changes 1-Dec-2005 1 First release of datasheet. 2-Jan-2006 2 Capa-load option paragraph deleted on page 11. 10-Jul-2006 3 Application information. 7-Mar-2007 4 Max limit for input DC shift reduced from 800mV to 670mV. Updated Section 3.2: PSRR and improvement of power supply noise rejection on page 12. TSH343 Revision history Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 17/17