TSH341 300MHz Single Supply Video Amplifier with Low In/Out Rail ■ ■ ■ ■ ■ ■ ■ ■ ■ Pin Connections (top view) Bandwidth: 300MHz Single supply operation down to 3V Low input & output rail Very low harmonic distortion Slew rate: 400V/µs Voltage Input noise: 7nV/√Hz Specified for 150Ω load and 100Ω load Tested on 5V power supply Data min. and max. are tested during production (Table 3) OUT 1 5 +VCC -VCC 2 +- +IN 3 4 -IN SOT23-5 Description The TSH341 is a single supply operational amplifier featuring a large bandwidth of 300MHz at unity gain for only 9.8mA of quiescent current. An advantage of this circuit is its low input and output rail feature which is very close to GND in single supply. This rail is tested and guaranteed during production at 60mV (max.) from GND on a 150Ω load. This allows a good output swing which fits perfectly when driving a video signal on a 75Ω video line. Chapter 5 gives technical support when using the TSH341 as a driver for video DAC output on a video line. In particular, this chapter focuses on applying a video signal DC shift to avoid any clamping of the synchronization tip. The TSH341 is available in the tiny SOT23-5 and SO8 plastic packages. 8 NC NC 1 -IN 2 _ 7 +VCC +IN 3 + 6 OUT 5 NC -VCC 4 SO8 Applications ■ ■ ■ ■ High-end video systems High Definition TV (HDTV) Broadcast video Multimedia products Order Codes Part Number Temperature Range TSH341ILT TSH341ID TSH341IDT -40°C to +85°C March 2005 Package Packaging Marking SOT23-5 Tape & Reel Tube Tape & Reel K307 H341I H341I SO-8 Revision 2 1/13 TSH341 Absolute Maximum Ratings 1 Absolute Maximum Ratings Table 1. Key parameters and their absolute maximum ratings Symbol VCC Vid Vin Parameter Supply voltage 1 Differential Input Voltage 2 3 Value Unit 6 V +/-0.5 V -0.2 to +3 V °C Toper Input Voltage Range Operating Free Air Temperature Range -40 to +85 Tstd Storage Temperature -65 to +150 °C 150 °C 80 28 °C/W 250 175 °C/W 500 715 mW 2 1.5 200 kV Tj Rthjc Rthja Pmax. ESD Maximum Junction Temperature Thermal Resistance Junction to Case SOT23-5 SO8 Thermal Resistance Junction to Ambient Area SOT23-5 SO8 Maximum Power Dissipation (@Ta=25°C) for Tj=150°C SOT23-5 SO8 CDM: Charged Device Model HBM: Human Body Model MM: Machine Model Output Short Circuit kV V 4 1) All voltage values, except differential voltage are with respect to network terminal. 2) Differential voltage are non-inverting input terminal with respect to the inverting input terminal. 3) The magnitude of input and output voltage must never exceed VCC +0.3V. 4) An output current limitation protects the circuit from transient currents. Short-circuits can cause excessive heating. Destructive dissipation can result from short circuit on amplifiers. Table 2. Operating conditions Symbol 1) Parameter VCC Power Supply Voltage Vicm Common Mode Input Voltage Tested in full production at 0V/5V single power supply 2/13 Value Unit 1 3 to 5.5 -0.4 to 3 V V Electrical Characteristics TSH341 2 Electrical Characteristics Table 3. VCC = +5V, Tamb = 25°C (unless otherwise specified) Symbol Parameter Test Condition Min. Typ. Max. -15 -3 15 Unit DC Performance Vio ∆Vio Iib AVD CMR SVR PSR Input Offset Voltage Tamb, Vicm=0.6V -40°C < Tamb < +85°C -5 Vio drift vs. Temperature -40°C < Tamb < +85°C -30 Input Bias Current Tamb, Vicm=0.6V 6 -40°C < Tamb < +85°C mV µV/°C 16 7.2 µA Open Loop Gain ∆VOUT=2V, RL=150Ω 70 100 Common Mode Rejection Ratio ∆Vicm = 2V -60 -85 20 log (∆Vicm/∆Vio) -40°C < Tamb < +85°C Supply Voltage Rejection Ratio ∆Vcc=4V to 5V, Vicm=0.6V 20 log (∆Vcc/∆Vio) -40°C < Tamb < +85°C -84 Power Supply Rejection Ratio 20 log (∆Vcc/∆Vout) ∆Vcc=200mVp-p, F=1MHz -77 dB 8.2 MΩ RIN Input Resistance CIN Input Capacitance ICC Total Supply Current dB dB -83 -60 -85 dB 3.5 No Load, Vicm=0.6V 9.8 pF 12.7 mA Dynamic Performance and Output Characteristics -3dB Bandwidth Bw Gain Flatness @ 0.1dB FPBW SR Small Signal VOUT=20mVp Vicm=0.6V, RL=150Ω Gain=+1 Gain=+2 Small Signal VOUT=20mVp Gain=+2, Vicm=0.6V, RL=150Ω Full Power Bandwidth Vicm=2V, VOUT = 2Vp-p, Gain=1, RL = 150Ω Slew Rate VOUT=2Vp-p, RL=150Ω, Gain=+2, VOH High Level Output Voltage RL = 150Ω VOL Low Level Output Voltage RL = 150Ω Output Short Circuit Current Tamb IOUT 90 -40°C < Tamb < +85°C 300 150 MHz 65 70 3.7 100 MHz 400 V/µs 3.9 40 70 100 90 V 60 mV mA Noise and Distortion eN Equivalent Input Noise Voltage F = 100kHz 7 nV/√Hz iN Equivalent Input Noise Current (+) F = 100kHz 1.5 pA/√Hz 2nd Harmonic Distortion VOUT= 2Vp-p, RL = 150Ω Gain=+2, F= 10MHz, -57 dBc 3rd Harmonic Distortion VOUT= 2Vp-p, RL = 150Ω Gain=+2, F= 10MHz, -63 dBc HD2 HD3 3/13 TSH341 Electrical Characteristics Figure 1. Frequency response Figure 4. Frequency response on capa-load 20 16 14 Gain=+4 C=47pF Riso=10Ω 12 Frequency Response (dB) 10 8 6 Gain=+2 Gain (dB) 4 2 0 -2 Gain=+1 -4 -6 -8 -10 -12 -14 Vcc=5V Load=100Ω or 150Ω SO8 and SOT23-5 -16 1M 10M C=10pF Riso=0 10 0 C=22pF Riso=10Ω -10 Vcc=5V Gain=+2 Load=Riso + C//1kΩ (to ground) -20 1M 100M 10M Figure 2. Gain flatness - SOT23-5L Figure 5. Gain flatness - SO8 6,4 6,4 Load=150Ω 6,0 5,8 5,8 5,6 5,4 Load=100Ω 5,2 Load=150Ω 6,2 6,0 Gain (dB) Gain (dB) 6,2 5,6 5,4 Load=100Ω 5,2 5,0 5,0 4,6 100M Frequency (Hz) Frequency (Hz) 4,8 C=0 or 10pF Riso=0 4,8 Vcc=5V Gain=+2 4,6 1M 10M Vcc=5V 1M 100M 10M 100M Frequency (Hz) Frequency (Hz) Figure 3. Total input noise vs. frequency Figure 6. Positive and negative slew rate 3,0 2,5 Output Response (V) Input Noise (nV/VHz) non-inverting input in short-circuit Vcc=5V 100 Vcc=5V G=+2 Load=100Ω or 150Ω SR+ 2,0 1,5 SR- 1,0 0,5 10 100 1k 10k 100k Frequency (Hz) 4/13 1M 10M 0,0 -5ns -4ns -3ns -2ns -1ns 0s Time 1ns 2ns 3ns 4ns 5ns Electrical Characteristics TSH341 Figure 7. Distortion on 100Ω load Figure 10. Distortion on 150Ω load -20 -10 -25 -15 HD2 (30MHz) -30 -20 -25 HD3 (30MHz) -40 HD2 & HD3 (dBc) HD2 & HD3 (dBc) -35 -45 -50 -55 -60 HD2 (10MHz) -65 -70 -75 -30 HD2 (30MHz) HD3 (30MHz) -35 -40 -45 -50 -55 HD3 (10MHz) -60 -65 -80 HD3 (10MHz) -85 -70 Vcc=5V Load=100Ω -90 Vcc=5V Load=150Ω HD2 (10MHz) -75 -80 0 1 2 3 4 0 1 Output Amplitude (Vp-p) 2 3 4 Output Amplitude (Vp-p) Figure 8. Output lower rail vs. frequency Figure 11. Output voltage swing vs. Vcc 500 5 Vcc=5V Load=100Ω or 150Ω 4 Vout max (Vp-p) VOL (mV) 400 300 200 100 3 2 1 F=30MHz Load=100Ω or 150Ω 0 10k 100k 1M 10M 0 3,00 100M 3,25 3,50 3,75 Frequency (Hz) 4,00 4,25 4,50 4,75 5,00 Vcc (V) Figure 9. Output voltage swing vs. frequency Figure 12. Quiescent current vs. Vcc 20 5 no load 15 3 Icc (mA) Vout max. (Vp-p) 4 2 10 5 1 Vcc=5V Gain=+2 Load=100Ω or Load=150Ω 0 1M 10M Frequency (Hz) 0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 Vcc (V) 5/13 TSH341 Electrical Characteristics Figure 13. Isource Figure 16. Reverse isolation vs. frequency 0 0 -10 +5V -20 VOH without load -20 Isource -40 V +3V -50 -40 Gain (dB) Isource (mA) -30 0V -60 -70 -60 -80 -90 -80 -100 Small Signal Vcc=5V Load=100Ω -110 -120 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 -100 1M 5,0 10M V (V) 100M 1G Frequency (Hz) Figure 14. Bandwidth vs. temperature Figure 17. Ibias vs. temperature 11,0 300 10,5 250 IBIAS (µA) Bw (MHz) 10,0 200 9,5 9,0 150 Vcc=5V Gain=+1 Load=150Ω 100 -40 8,5 -20 0 20 40 60 8,0 -40 80 Vcc=5V Load=150Ω -20 0 20 40 60 80 Temperature (°C) Temperature (°C) Figure 15. Input offset vs. temperature Figure 18. Supply current vs. temperature 12 0 11 ICC (mA) Vio (mV) -1 -2 10 9 -3 8 -4 Vcc=5V Load=150Ω -5 -40 -20 0 20 40 Temperature (°C) 6/13 60 80 7 -40 Vcc=5V no Load -20 0 20 40 Temperature (°C) 60 80 Electrical Characteristics TSH341 Figure 19. Output lower rail vs. temperature Figure 21. Output higher rail vs. temperature 4,50 0,10 Vcc=5V Gain=+2 Load=150Ω 4,25 0,06 VOH (V) VOL (V) 0,08 4,00 0,04 3,75 0,02 0,00 -40 Vcc=5V Gain=+2 Load=150Ω -20 0 20 40 60 3,50 -40 80 -20 0 20 40 60 80 60 80 Temperature (°C) Temperature (°C) Figure 20. SVR vs. temperature Figure 22. CMR vs. temperature 86,0 88 85,8 85,6 86 85,2 CMR (dB) SVR (dB) 85,4 85,0 84,8 84 84,6 82 84,4 84,2 84,0 -40 Vcc=5V Vcc=5V -20 0 20 40 Temperature (°C) 60 80 80 -40 -20 0 20 40 Temperature (°C) 7/13 TSH341 Evaluation Boards 3 Evaluation Boards An evaluation board kit optimized for high speed operational amplifiers is available (order code: KITHSEVAL/STDL). The kit includes the following evaluation boards, as well as a CD-ROM containing datasheets, articles, application notes and a user manual: z SOT23_SINGLE_HF BOARD: Board for the evaluation of a single high-speed op-amp in SOT23-5 package. z SO8_SINGLE_HF: Board for the evaluation of a single high-speed op-amp in SO8 package. z SO8_DUAL_HF: Board for the evaluation of a dual high-speed op-amp in SO8 package. z SO8_S_MULTI: Board for the evaluation of a single high-speed op-amp in SO8 package in inverting and non-inverting configuration, dual and signle supply. z SO14_TRIPLE: Board for the evaluation of a triple high-speed op-amp in SO14 package with video application considerations. Board material: z 2 layers z FR4 (εr=4.6) z epoxy 1.6mm z copper thickness: 35µm Figure 23: Evaluation kit for high speed op-amps 8/13 Power Supply Considerations TSH341 4 Power Supply Considerations Correct power supply bypassing is very important for optimizing performance in high-frequency ranges. Bypass capacitors should be placed as close as possible to the IC pins to improve high-frequency bypassing. A capacitor greater than 10µF is necessary to minimize the distortion. For better quality bypassing, a capacitor of 10nF is added using the same implementation conditions. Bypass capacitors must be incorporated for both the negative and the positive supply. On the SO8_SINGLE_HF board, these capacitors are C8 and C6. Figure 24: Circuit for power supply bypassing +VCC 10microF + 10nF + +VCC TSH341 _ GND 9/13 TSH341 Using the TSH341 to Drive Video Signals 5 Using the TSH341 to Drive Video Signals Figure 25. Implementation of the video driver on output video DACs Volt Video Signal 2.250V Volt 250mV +5V Reconstruction Filtering Video DAC LPF Video Signal time 125mV time 75Ω + 75Ω Cable 1Vpp _ 1Vpp 1.125V 75Ω 2Vpp Rg Rfb VOL(50MHz) = 150mV (Figure 8) To drive the video signal properly, the output of the driver must be at least equal to 250mV (assuming Vio and VOL variations). z 1st solution: Set the video DAC 0-IRE output level to 125mV. White Level 100 IRE Image Content Black Level 30 IRE 1Vp-p 300mV 0 IRE 150mV 0V Synchronization Tip z 2nd solution: Implementation of a DC component in the input of the driver. Volt Video Signal 2.250V Volt 250mV 33uF Video DAC LPF 1Vpp DC component =125mV 10/13 Reconstruction Filtering 1k +5V Video Signal time 75Ω Cable 1Vpp _ 75Ω 2Vpp Rg 125mV time 75Ω + 1.125V Rfb Package Mechanical Data TSH341 6 Package Mechanical Data 6.1 SO-8 Package SO-8 MECHANICAL DATA DIM. mm. MIN. TYP inch MAX. MIN. TYP. MAX. A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.04 0.010 A2 1.10 1.65 0.043 0.065 B 0.33 0.51 0.013 0.020 C 0.19 0.25 0.007 0.010 D 4.80 5.00 0.189 0.197 E 3.80 4.00 0.150 0.157 e 1.27 0.050 H 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k ddd 8˚ (max.) 0.1 0.04 0016023/C 11/13 TSH341 Package Mechanical Data 6.2 SOT23-5L (5-pin) package SOT23-5L MECHANICAL DATA mm. mils DIM. MIN. MAX. MIN. TYP. MAX. A 0.90 1.45 35.4 57.1 A1 0.00 0.15 0.0 5.9 A2 0.90 1.30 35.4 51.2 b 0.35 0.50 13.7 19.7 C 0.09 0.20 3.5 7.8 D 2.80 3.00 110.2 118.1 E 2.60 3.00 102.3 118.1 E1 1.50 1.75 59.0 68.8 e 0 .95 37.4 e1 1.9 74.8 L 12/13 TYP 0.35 0.55 13.7 21.6 TSH341 7 Revision History Date Revision Description of Changes 01 Jan. 2005 1 First release corresponding to Preliminary Data version of datasheet. 23 Mar. 2005 2 Datasheet of mature, full-specification product Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 13/13