TA2145AFG TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic TA2145AFG 3 V Stereo Headphone Amplifier (3 V USE) The TA2145AFG is developed for play-back stereo headphone equipments (3 V USE). It is built in dual preamplifiers, dual OCL power amplifiers, motor governor, DC volume control and preamplifier on/off switch etc. Features • Built-in preamplifier Input coupling condenser-less Weight: 0.32 g (typ.) Built-in input capacitor for reducing buzz noise Low noise: Vni = 1.2 µVrms (typ.) Preamplifier on/off switch. • Built-in power amplifier OCL (Output condenser-less) Voltage gain: GV = 31 dB (typ.) • Built-in motor governor (Current proportion type) • Built-in DC volume control function • Built-in bass boost function ATT = 82dB (Ta = 25°C, typ.) • Low supply current (VCC = 3 V, f = 1 kHz, PRE OUT = 100 mVrms, Ta = 25°C, typ.) • Quiescent supply current PRE + PW: ICCQ = 8.5 mA GVN: ICC = 2.5 mA • 0.1 mW × 2 ch output ICC1 = 9.8 mA (RL = 32 Ω) ICC2 = 10.5 mA (RL = 16 Ω) • 0.5 mW × 2 ch output ICC3 = 14.0 mA (RL = 32 Ω) ICC4 = 16.5 mA (RL = 16 Ω) • Operating supply voltage range (Ta = 25°C) VCC (opr) = 1.8~3.6 V GVN VCC (opr) = 2.1~3.6 V (Motor voltage = 1.8 V) 1 2006-04-19 TA2145AFG Block Diagram M PRE: OFF 24 VREF 23 INB 22 NFB 21 PRE OUTB 20 PW INB 19 RF IN RIPPLE FILTER 18 PRE SW 17 VCC 16 GVN VCC 15 Rt 14 GVN CTL GVN OUT 13 PRE SW PREB VOL. VREF VOL. PW B 1 PRE GND 2 INA 3 PW A PW C VOL. CONTROL PREA NFA 4 PRE OUTA 5 PW INA 6 VCTL 7 OUTB 8 OUTA 9 10 OUTC PW INC 11 PW GND 12 GVN GND OUTA RL BST SW VREF BST: OFF 2 OUTC RL OUTB 2006-04-19 TA2145AFG Terminal Explanation (Terminal Voltage: Typical terminal voltage at no signal with test circuit, VCC = 3 V, Ta = 25°C) Terminal No. Function Internal Circuit Terminal Voltage (v) The GND, except for power drive stage and motor governer stage. ⎯ 0 Name 1 PRE GND 2 INA RF Input of preamplifier 23 INB 3 NFA 22 NFB 4 PRE OUTA 21 PRE OUTB 7 OUTB 8 OUTA 9 OUTC 5 PW INA 3 2 NF of preamplifier 500 Ω 1.2 500 Ω 1.2 VREF Output of preamplifier VCC 4 1.2 Output of power amplifier 5 10 kΩ RF Input of power amplifier 20 VREF 1.2 PW INB VCC 6 VCTL VREF The terminal of DC volume control ⎯ 6 3 2006-04-19 TA2145AFG Terminal No. Function Terminal Voltage (v) Internal Circuit Name 20 kΩ VREF 10 10 PW INC Input of center amplifier 1.2 30 kΩ 2 kΩ VREF 11 PW GND GND for power drive stage ⎯ 0 12 GVN GND GND for motor governor stage ⎯ 0 13 GVN OUT Motor terminal M 16 15 14 ⎯ 13 14 GVN CTL The terminal of motor speed control ⎯ 15 Rt The terminal of amateur compensation resistor ⎯ 16 GVN VCC VCC for motor governor stage 3 17 VCC VCC for preamplifier stage and power amplifier stage. ⎯ 3 18 Muting switch of preamplifier 18 PRE SW Preamp. on: “L” level/open Preamp. off: “H” level ⎯ Refer to application note 4 2006-04-19 TA2145AFG Terminal No. 19 Function Terminal Voltage (v) Internal Circuit Name RF IN Ripple filter of power supply 19 2.5 24 Reference voltage 24 VREF Preamplifier and power amplifier operate on this reference. 5 1.2 10 kΩ 1.3 kΩ 4.7 kΩ 4 kΩ VCC 2006-04-19 TA2145AFG Application Note • VCC and GND This IC has two VCC terminals and three GND terminals. Pattern layout should be designed carefully to reduce the common impedance. • VCC VCC (pin 17) ---------------- Preamplifier stage and power amplifier stage. GVN VCC (pin 16)--------- Motor governor stage. • GND PRE GND (pin 1) ----------- Preamplifier stage, and power amplifier stage except for the power drive stage. PW GND (pin 11)----------- Power drive stage of power amplifier. GVN GND (pin 12)--------- Motor governor stage. • VREF It is necessary to stabilize the VREF circuit, because the internal circuit operate on this reference. • RF IN • Preamplifier As this terminal is an input terminal of the ripple filter, it cannot supply a power supply to other ICs etc. Input signal should be applied to VREF standard, otherwise pop noise become bigger when VCC is turned on and off. • Power amplifier It is necessary to insert the coupling capacitor through the PW IN terminal. In case that DC current or DC voltage is applied to the PW IN terminal, the internal circuit has unbalance and the power amplifier doesn’t operate normally. • Operating supply voltage range of motor governor stage As for the minimum of operating supply voltage range, the motor voltage is 1.8 V. In case that it is more than 1.8 V, the low voltage performance becomes bad. PRE SW sensitivity (Ta = 25°C) PRE SW V18 (V) 4 Terminal DC voltage • 3.6 V “H” PRE AMP: OFF 3 3.0 V 2 1.8 V 1.5 V 1.2 V 1 0.5 V 0 1.5 2.0 2.5 Supply voltage 3.0 VCC 3.5 4.0 (V) 6 2006-04-19 TA2145AFG Absolute Maximum Ratings (Ta = 25°C) Characteristic Symbol Rating Unit VCC 4 V Supply voltage Power dissipation PD (Note 1) 400 (Note 2) 925 mW Output current (PW AMP.) IO (PW) 200 mA Output current (GVN) IO (GVN) 700 mA Operating temperature Topr −25~75 °C Storage temperature Tstg −55~150 °C Note 1: IC only: Derated above Ta = 25°C in the proportion 3.2 mW/°C Note 2: IC + PCB (TOSHIBA typical PCB): Derated above Ta = 25°C in the proportion7.4 mW/°C 7 2006-04-19 TA2145AFG Electrical Characteristics (Unless otherwise specified, VCC = 3 V, Ta = 25°C, f = 1 kHz, SW2: a, SW5: OPEN Preamplifier: Rg = 2.2 kΩ, RL = 10 kΩ, SW1: ON, SW3: b, SW4: b Power amplifier: Rg = 600 Ω, RL = 16 Ω, Vol.: max, SW1: OPEN, SW3: a, SW4: a Motor governor: Im = 100 mA, SW1: OPEN, SW3: b, SW4: b) Symbol Test circuit ICCQ1 ⎯ ICCQ2 Open loop voltage gain Characteristic Min Typ. Max Pre off, Vin = 0, Vol.: min, SW4: b, SW5: ON ⎯ 7.5 13 ⎯ Vin = 0, Vol.: min, SW4: b ⎯ 8.5 14.5 GVO ⎯ Vo = −10dBV, SW2: b ⎯ 86 ⎯ Closed loop voltage gain GVC ⎯ Vo = −10dBV Maximum output voltage Vom ⎯ THD = 1% Total harmonic distortion THD1 ⎯ Vni Cross talk Ripple rejection ratio Preamplifier muting attenuation Power amp. Pre amp. Quiescent supply current Unit mA dB ⎯ 35 ⎯ dB 550 720 ⎯ mVrms Vo = −10dBV ⎯ 0.02 0.3 % ⎯ Rg = 2.2 kΩ, SW1: OPEN BPF = 20 Hz~20 kHz, NAB (GV = 35dB, f = 1 kHz) ⎯ 1.2 2.4 µVrms CT1 ⎯ Vo = −10dBV ⎯ 70 ⎯ dB RR1 ⎯ fr = 100 Hz, Vr = −20dBV ⎯ 48 ⎯ dB ATT1 ⎯ Vo = −10dBV, SW5: OPEN → ON ⎯ 80 ⎯ dB Preamplifier on voltage V18 (ON) ⎯ 0 ⎯ 0.5 V Preamplifier off voltage Equivalent input noise voltage VCC = 1.8 V V18 (OFF) ⎯ 1.5 ⎯ 1.8 V Voltage gain GV ⎯ Vo = −10dBV 29 31 33 dB Channel balance CB ⎯ Vo = −10dBV −1.5 0 +1.5 dB Output power 1 Po1 ⎯ RL = 16 Ω, THD = 10% 17 28 ⎯ mW Output power 2 Po2 ⎯ RL = 32 Ω, THD = 10% ⎯ 20 ⎯ mW THD2 ⎯ Po = 1m W ⎯ 0.5 ⎯ % Output noise voltage Vno ⎯ Rg = 600 Ω, SW3: b BPF = 20 Hz~20 kHz ⎯ 270 400 µVrms Ripple rejection ratio RR2 ⎯ fr = 100 Hz, Vr = −20dBV ⎯ 52 ⎯ dB Cross talk CT2 ⎯ Vo = −10dBV ⎯ 32 ⎯ dB Dc volume maximum attenuation ATT2 ⎯ Vo = −10dBV, SW4: a→b (Vol.: max → min) ⎯ 82 ⎯ dB ICC ⎯ Im = 0 ⎯ 2.5 3.5 mA Saturation voltage VCE (sat) ⎯ Im = 200 mA ⎯ ⎯ 0.5 V Reference voltage ∆VREF ⎯ Im = 100 mA 0.76 0.81 0.86 V Reference voltage fluctuation 1 ∆VREF1 ⎯ VCC = 2.1~3.6 V ⎯ 0.25 ⎯ %/V Reference voltage fluctuation 2 ∆VREF2 ⎯ Im = 25~250 mA ⎯ 0.003 ⎯ %/mA Reference voltage fluctuation 3 ∆VREF3 ⎯ Ta = −25~75°C ⎯ 0.005 ⎯ %/°C K ⎯ 34.5 37.5 40.5 Current ratio fluctuation 1 ∆K1 ⎯ VCC = 2.1~3.6 V ⎯ 0.25 ⎯ %/V Current ratio fluctuation 2 ∆K2 ⎯ Im = 25~250 mA ⎯ 0.08 ⎯ %/mA Current ratio fluctuation 3 ∆K3 ⎯ Ta = −25~75°C ⎯ 0.005 ⎯ %/°C Total harmonic distortion Supply current Motor governor Test condition Current ratio ⎯ 8 2006-04-19 TA2145AFG Test Circuit Rg = 600 Ω (a) SW3b (b) 600 Ω 1 µF 24 23 VREF INB SW5 100 µF 470 Ω 470 kΩ 470 kΩ 22 21 NFB PRE OUTB 180 Ω 5Ω 1 µF 3.6 kΩ 5 kΩ 20 19 18 17 16 15 14 13 PW INB RF IN PRE SW PW VCC GVN VCC Rt GVN CTL GVN OUT PW INC 10 PW GND 11 GVN GND 12 TA2145AFG PRE GND 1 INA 2 NFA 3 PRE OUTA 4 PW INA 5 VCTL 6 OUTB OUTA OUTC 7 8 9 470 kΩ 470 kΩ PW OUTA 22 µF 470 Ω SW4 (a) (b) 8200 pF 220 µF (b) (a) 18 kΩ SW2a PRE OUTA RL PW OUTC VREF 1 µF RL 1 µF 2.2 kΩ 2.2 kΩ 47 µF 10 kΩ PRE SW1a INA VREF SW2b 220 µF (b) (a) 18 kΩ 22 µF 8200 pF 1000 pF 1000 pF 22 µF Rg = 600 Ω Rg = 600 Ω PRE INB SW1b VCC 47 µF VREF PRE OUTB 10 kΩ 1 µF PW INB PW OUTB 10 kΩ (a) Rg = 600 Ω SW3a 600 Ω PW IN A (b) VREF 9 2006-04-19 TA2145AFG Characteristic Curves (Unless otherwise specified, VCC = 3 V, Ta = 25°C, f = 1 kHz, Preamplifier: Rg = 2.2 kΩ, RL = 10 kΩ Power amplifier: Rg = 600 Ω, RL = 16 Ω, Vol. = max Motor governor: Im = 100 mA) ICCQ, ICC – VCC VO (DC) – VCC 2.5 (V) ICCQ2 (PW only, Vol.: min) 4 ICC (GVN: Im = 0) 1.5 2.0 2.5 3.0 Supply voltage PRE 3.5 1.5 VREF, PW OUT, PRE OUT 1.0 0.5 0 0 4.0 1.5 2.0 2.5 3.0 Supply voltage GVO, GVC – f PRE 3.5 4.0 VCC (V) CT – f 40 Vo = −10dBV Vo = −10dBV 80 CT (dB) GVO Cross talk 60 40 0 10 100 1k Frequency PRE 10 k 80 10 100 k 1k Frequency PRE Vom – VCC 10 k 100 k 1000 10000 f (Hz) THD – Vo THD = 1% 500 200 100 0 100 f (Hz) (%) (mVrms) 1000 60 70 GVC 20 50 1.5 2.0 2.5 Supply voltage 3.0 3.5 10 THD (dB) (dB) Open loop voltage GVO Closed loop voltage GVC 2.0 VCC (V) 100 Vom Output DC voltage ICCQ1 (PRE + PW, Vol.: min) 8 0 0 Maximum output voltage VO (DC) 12 3 Total harmonic distortion Quiescent supply current ICCQ (mA) (mA) Supply current ICC 16 1 f = 10 kHz 3 VCC (V) f = 1 kHz 0.03 0.01 1 4.0 f = 100 Hz 0.1 10 100 Output voltage 10 Vo (mVrms) 2006-04-19 TA2145AFG PRE Vni – VCC PRE 20 RR – VCC 10 (dB) RR 10 Vr = −20dBV 30 5 Ripple rejection ratio Equivalent input noise Vni (µVrms) fr = 100 Hz 20 2 1 0.5 0 1.5 2.0 2.5 Supply voltage PW 3.0 3.5 40 50 60 70 80 0 4.0 1.5 2.0 VCC (V) 2.5 Supply voltage GV – f PW 3.0 3.5 4.0 VCC (V) CT – f 60 Vo = −10dBV Vo = −10dBV 0 CT (dB) Cross talk 40 BST = ON Voltage GV (dB) 50 BST = OFF 10 BST = ON 20 30 BST = OFF 40 30 50 20 20 100 1k Frequency PW 10 k 60 20 100 k Frequency Po – VCC PW 10 k 100 k f (Hz) THD – Po 30 THD (mW) Total harmonic distortion Po RL = 16 Ω 32 Ω 10 1.5 VCC = 3 V RL = 16 Ω (%) THD = 10% Output power 1k f (Hz) 100 2 0 100 2.0 2.5 Supply voltage 3.0 3.5 10 3 f = 10 kHz 1 100 Hz 1 kHz 0.2 0.2 4.0 VCC (V) 1 10 100 Output power Po (mW) 11 2006-04-19 TA2145AFG PW PW Vo – Vol. Resistance (Pin@−GND) = Volume resistance −10 0dB = −10dBV −30 Output noise voltage Vo (mW) Ratio Vno (µVrms) Volume Output voltage Vno – Vol. 500 10 −50 −70 −90 0 0.2 0.4 0.6 0.8 Volume 300 Ratio Volume resistance 100 50 30 10 0 1 Resistance (Pin@−GND) = 0.2 0.4 Volume ratio RR – Vol. Reference voltage fluctuation ∆VREF Current ratio fluctuation ∆K (dB) Volume resistance 0dB = −10dBV, Vr = −20dBV RR Ripple rejection ratio (mV) Resistance (Pin@−GND) 60 70 0.2 0.4 0.6 0.8 1 2.5 ∆VREF 0.0 ∆K −2.5 −5.0 −7.5 1.5 2.0 2.5 ∆VREF, ∆K – Im 3.0 VCC (V) ICCQ, ICC – Ta (mA) (mA) 16 ∆VREF 0 ∆K −5 50 100 12 ICCQ ICC 5 Quiescent Supply current Supply current (mV) ∆VREF ∆K Reference voltage fluctuation current ratio fluctuation 4.0 5.0 Supply voltage 10 −10 0 3.5 7.5 Volume ratio GVN 1 ∆VREF, ∆K – VCC GVN 50 80 0 0.8 Volume ratio 40 Volume ratio = 0.6 150 Motor current Im 200 250 ICCQ1 (PRE + PW, Vol. = min) 8 ICCQ2 (PW only, Vol. = min) 4 ICC (GVN: Im = 0) 0 −20 300 (mA) 0 20 Ambient temperature 12 40 Ta 60 80 (°C) 2006-04-19 TA2145AFG PRE GV, Vom – Ta 40 GV 0.5 0 20 40 Ambient temperature PRE GV 680 32 640 80 (°C) 20 40 PW Ta 60 Vo = −10dBV 600 80 (°C) GV, Po – Ta 35 50 GV: Vo = −10dBV (mW) 0.01 40 30 Output Power GV Po GV (dB) 0.1 30 Voltage THD Total harmonic distortion 0 Ambient temperature THD – Ta Po 20 25 −20 0 20 40 Ambient temperature PW Ta 60 80 (mV) Reference voltage fluctuation ∆VREF ∆K Current ratio fluctuation THD 2 1 0.5 0.2 0 20 Ambient temperature 40 Ta 60 20 80 (°C) Ta 60 10 80 (°C) 6 4 2 ∆K 0 ∆VREF −2 −4 −6 −20 0 20 Ambient temperature 13 40 ∆VREF, ∆K – Ta GVN THD – Ta 5 −20 0 Ambient temperature Po = 1 mW 0.1 −20 (°C) 10 (%) −20 Po: THD = 10% 0.001 Total harmonic distortion 720 34 (%) 1 Ta 60 Vom 36 30 −20 Vom 1 0 760 (dB) VREF, PW OUT, PRE OUT Voltage gain Output voltage VO (DC) (V) Vom: THD = 1% 38 (mVrms) 800 GV: Vo = −10dBV Maximum output voltage VO (DC) – Ta 1.5 40 Ta 60 80 (°C) 2006-04-19 TA2145AFG Application Circuit 8200 pF 1 µF M PRE OFF 100 µF 18 kΩ 47 µF 470 Ω 470 kΩ 22 µF 180 Ω 1 µF 3.6 kΩ 470 kΩ 24 23 22 VREF INB NFB 5 kΩ 21 PRE OUTB 20 PW INB 19 RF IN 18 PRE SW 17 PW VCC 16 GVN VCC OUTA 8 OUTC 9 15 Rt 14 GVN CTL 13 GVN OUT PW GND 11 GVN GND 12 TA2145AFG PW INA 5 470 kΩ 18 kΩ 22 µF 470 Ω VCTL 6 1 µF 8200 pF OUTB 7 VREF 12 kΩ PW INC 10 0.1 µF 0.1 µF 2 PRE OUTA 3 4 470 kΩ NFA 0.1 µF 33 kΩ INA 33 kΩ PRE GND 1 10 kΩ 1000 pF 1000 pF PRE INA PRE INB 22 µF 0.1 µF VCC OUTC BST SW BST: OFF 14 OUTA RL RL OUTB 2006-04-19 TA2145AFG Package Dimensions Weight: 0.32 g (typ.) 15 2006-04-19 TA2145AFG RESTRICTIONS ON PRODUCT USE 060116EBA • The information contained herein is subject to change without notice. 021023_D • TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc. 021023_A • The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer’s own risk. 021023_B • The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q • The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. 021023_C • The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E About solderability, following conditions were confirmed • Solderability (1) Use of Sn-37Pb solder Bath · solder bath temperature = 230°C · dipping time = 5 seconds · the number of times = once · use of R-type flux (2) Use of Sn-3.0Ag-0.5Cu solder Bath · solder bath temperature = 245°C · dipping time = 5 seconds · the number of times = once · use of R-type flux 16 2006-04-19