TOSHIBA TA2145AFG

TA2145AFG
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic
TA2145AFG
3 V Stereo Headphone Amplifier (3 V USE)
The TA2145AFG is developed for play-back stereo headphone
equipments (3 V USE).
It is built in dual preamplifiers, dual OCL power amplifiers,
motor governor, DC volume control and preamplifier on/off switch
etc.
Features
•
Built-in preamplifier
Input coupling condenser-less
Weight: 0.32 g (typ.)
Built-in input capacitor for reducing buzz noise
Low noise: Vni = 1.2 µVrms (typ.)
Preamplifier on/off switch.
•
Built-in power amplifier
OCL (Output condenser-less)
Voltage gain: GV = 31 dB (typ.)
•
Built-in motor governor (Current proportion type)
•
Built-in DC volume control function
•
Built-in bass boost function
ATT = 82dB (Ta = 25°C, typ.)
•
Low supply current (VCC = 3 V, f = 1 kHz, PRE OUT = 100 mVrms, Ta = 25°C, typ.)
•
Quiescent supply current
PRE + PW: ICCQ = 8.5 mA
GVN: ICC = 2.5 mA
•
0.1 mW × 2 ch output
ICC1 = 9.8 mA (RL = 32 Ω)
ICC2 = 10.5 mA (RL = 16 Ω)
•
0.5 mW × 2 ch output
ICC3 = 14.0 mA (RL = 32 Ω)
ICC4 = 16.5 mA (RL = 16 Ω)
•
Operating supply voltage range (Ta = 25°C)
VCC (opr) = 1.8~3.6 V
GVN VCC (opr) = 2.1~3.6 V (Motor voltage = 1.8 V)
1
2006-04-19
TA2145AFG
Block Diagram
M
PRE:
OFF
24
VREF
23
INB
22
NFB
21
PRE
OUTB
20
PW
INB
19
RF
IN
RIPPLE
FILTER
18
PRE
SW
17
VCC
16
GVN
VCC
15
Rt
14
GVN
CTL
GVN
OUT
13
PRE
SW
PREB
VOL.
VREF
VOL.
PW B
1
PRE
GND
2
INA
3
PW A
PW C
VOL.
CONTROL
PREA
NFA
4
PRE
OUTA
5
PW
INA
6
VCTL
7
OUTB
8
OUTA
9
10
OUTC PW
INC
11
PW
GND
12
GVN
GND
OUTA
RL
BST SW
VREF
BST: OFF
2
OUTC
RL
OUTB
2006-04-19
TA2145AFG
Terminal Explanation (Terminal Voltage: Typical terminal voltage at no signal with test
circuit, VCC = 3 V, Ta = 25°C)
Terminal
No.
Function
Internal Circuit
Terminal
Voltage
(v)
The GND, except for power drive
stage and motor governer stage.
⎯
0
Name
1
PRE GND
2
INA
RF
Input of preamplifier
23
INB
3
NFA
22
NFB
4
PRE OUTA
21
PRE OUTB
7
OUTB
8
OUTA
9
OUTC
5
PW INA
3
2
NF of preamplifier
500 Ω
1.2
500 Ω
1.2
VREF
Output of preamplifier
VCC
4
1.2
Output of power amplifier
5
10 kΩ
RF
Input of power amplifier
20
VREF
1.2
PW INB
VCC
6
VCTL
VREF
The terminal of DC volume control
⎯
6
3
2006-04-19
TA2145AFG
Terminal
No.
Function
Terminal
Voltage
(v)
Internal Circuit
Name
20 kΩ
VREF
10
10
PW INC
Input of center amplifier
1.2
30 kΩ
2 kΩ
VREF
11
PW GND
GND for power drive stage
⎯
0
12
GVN GND
GND for motor governor stage
⎯
0
13
GVN OUT
Motor terminal
M
16
15
14
⎯
13
14
GVN CTL
The terminal of motor speed control
⎯
15
Rt
The terminal of amateur
compensation resistor
⎯
16
GVN VCC
VCC for motor governor stage
3
17
VCC
VCC for preamplifier stage and
power amplifier stage.
⎯
3
18
Muting switch of preamplifier
18
PRE SW
Preamp. on: “L” level/open
Preamp. off: “H” level
⎯
Refer to application note
4
2006-04-19
TA2145AFG
Terminal
No.
19
Function
Terminal
Voltage
(v)
Internal Circuit
Name
RF IN
Ripple filter of power supply
19
2.5
24
Reference voltage
24
VREF
Preamplifier and power amplifier
operate on this reference.
5
1.2
10 kΩ
1.3 kΩ 4.7 kΩ
4 kΩ
VCC
2006-04-19
TA2145AFG
Application Note
•
VCC and GND
This IC has two VCC terminals and three GND terminals. Pattern layout should be designed carefully to
reduce the common impedance.
• VCC
VCC (pin 17) ---------------- Preamplifier stage and power amplifier stage.
GVN VCC (pin 16)--------- Motor governor stage.
• GND
PRE GND (pin 1) ----------- Preamplifier stage, and power amplifier stage except for the power drive stage.
PW GND (pin 11)----------- Power drive stage of power amplifier.
GVN GND (pin 12)--------- Motor governor stage.
•
VREF
It is necessary to stabilize the VREF circuit, because the internal circuit operate on this reference.
•
RF IN
•
Preamplifier
As this terminal is an input terminal of the ripple filter, it cannot supply a power supply to other ICs etc.
Input signal should be applied to VREF standard, otherwise pop noise become bigger when VCC is turned on
and off.
•
Power amplifier
It is necessary to insert the coupling capacitor through the PW IN terminal. In case that DC current or DC
voltage is applied to the PW IN terminal, the internal circuit has unbalance and the power amplifier doesn’t
operate normally.
•
Operating supply voltage range of motor governor stage
As for the minimum of operating supply voltage range, the motor voltage is 1.8 V.
In case that it is more than 1.8 V, the low voltage performance becomes bad.
PRE SW sensitivity (Ta = 25°C)
PRE SW
V18
(V)
4
Terminal DC voltage
•
3.6 V
“H”
PRE AMP: OFF
3
3.0 V
2
1.8 V
1.5 V
1.2 V
1
0.5 V
0
1.5
2.0
2.5
Supply voltage
3.0
VCC
3.5
4.0
(V)
6
2006-04-19
TA2145AFG
Absolute Maximum Ratings (Ta = 25°C)
Characteristic
Symbol
Rating
Unit
VCC
4
V
Supply voltage
Power dissipation
PD
(Note 1)
400
(Note 2)
925
mW
Output current (PW AMP.)
IO (PW)
200
mA
Output current (GVN)
IO (GVN)
700
mA
Operating temperature
Topr
−25~75
°C
Storage temperature
Tstg
−55~150
°C
Note 1: IC only: Derated above Ta = 25°C in the proportion 3.2 mW/°C
Note 2: IC + PCB (TOSHIBA typical PCB): Derated above Ta = 25°C in the proportion7.4 mW/°C
7
2006-04-19
TA2145AFG
Electrical Characteristics
(Unless otherwise specified, VCC = 3 V, Ta = 25°C, f = 1 kHz, SW2: a, SW5: OPEN
Preamplifier:
Rg = 2.2 kΩ, RL = 10 kΩ, SW1: ON, SW3: b, SW4: b
Power amplifier: Rg = 600 Ω, RL = 16 Ω, Vol.: max, SW1: OPEN, SW3: a, SW4: a
Motor governor: Im = 100 mA, SW1: OPEN, SW3: b, SW4: b)
Symbol
Test
circuit
ICCQ1
⎯
ICCQ2
Open loop voltage gain
Characteristic
Min
Typ.
Max
Pre off, Vin = 0, Vol.: min,
SW4: b, SW5: ON
⎯
7.5
13
⎯
Vin = 0, Vol.: min, SW4: b
⎯
8.5
14.5
GVO
⎯
Vo = −10dBV, SW2: b
⎯
86
⎯
Closed loop voltage gain
GVC
⎯
Vo = −10dBV
Maximum output voltage
Vom
⎯
THD = 1%
Total harmonic distortion
THD1
⎯
Vni
Cross talk
Ripple rejection ratio
Preamplifier muting
attenuation
Power amp.
Pre amp.
Quiescent supply current
Unit
mA
dB
⎯
35
⎯
dB
550
720
⎯
mVrms
Vo = −10dBV
⎯
0.02
0.3
%
⎯
Rg = 2.2 kΩ, SW1: OPEN
BPF = 20 Hz~20 kHz,
NAB (GV = 35dB, f = 1 kHz)
⎯
1.2
2.4
µVrms
CT1
⎯
Vo = −10dBV
⎯
70
⎯
dB
RR1
⎯
fr = 100 Hz, Vr = −20dBV
⎯
48
⎯
dB
ATT1
⎯
Vo = −10dBV, SW5: OPEN → ON
⎯
80
⎯
dB
Preamplifier on voltage
V18 (ON)
⎯
0
⎯
0.5
V
Preamplifier off voltage
Equivalent input noise
voltage
VCC = 1.8 V
V18 (OFF)
⎯
1.5
⎯
1.8
V
Voltage gain
GV
⎯
Vo = −10dBV
29
31
33
dB
Channel balance
CB
⎯
Vo = −10dBV
−1.5
0
+1.5
dB
Output power 1
Po1
⎯
RL = 16 Ω, THD = 10%
17
28
⎯
mW
Output power 2
Po2
⎯
RL = 32 Ω, THD = 10%
⎯
20
⎯
mW
THD2
⎯
Po = 1m W
⎯
0.5
⎯
%
Output noise voltage
Vno
⎯
Rg = 600 Ω, SW3: b
BPF = 20 Hz~20 kHz
⎯
270
400
µVrms
Ripple rejection ratio
RR2
⎯
fr = 100 Hz, Vr = −20dBV
⎯
52
⎯
dB
Cross talk
CT2
⎯
Vo = −10dBV
⎯
32
⎯
dB
Dc volume maximum
attenuation
ATT2
⎯
Vo = −10dBV, SW4: a→b
(Vol.: max → min)
⎯
82
⎯
dB
ICC
⎯
Im = 0
⎯
2.5
3.5
mA
Saturation voltage
VCE (sat)
⎯
Im = 200 mA
⎯
⎯
0.5
V
Reference voltage
∆VREF
⎯
Im = 100 mA
0.76
0.81
0.86
V
Reference voltage
fluctuation 1
∆VREF1
⎯
VCC = 2.1~3.6 V
⎯
0.25
⎯
%/V
Reference voltage
fluctuation 2
∆VREF2
⎯
Im = 25~250 mA
⎯
0.003
⎯
%/mA
Reference voltage
fluctuation 3
∆VREF3
⎯
Ta = −25~75°C
⎯
0.005
⎯
%/°C
K
⎯
34.5
37.5
40.5
Current ratio fluctuation 1
∆K1
⎯
VCC = 2.1~3.6 V
⎯
0.25
⎯
%/V
Current ratio fluctuation 2
∆K2
⎯
Im = 25~250 mA
⎯
0.08
⎯
%/mA
Current ratio fluctuation 3
∆K3
⎯
Ta = −25~75°C
⎯
0.005
⎯
%/°C
Total harmonic distortion
Supply current
Motor governor
Test condition
Current ratio
⎯
8
2006-04-19
TA2145AFG
Test Circuit
Rg = 600 Ω
(a)
SW3b
(b)
600 Ω
1 µF
24
23
VREF
INB
SW5
100 µF
470 Ω
470 kΩ
470 kΩ
22
21
NFB
PRE
OUTB
180 Ω
5Ω
1 µF 3.6 kΩ 5 kΩ
20
19
18
17
16
15
14
13
PW
INB
RF IN
PRE
SW
PW
VCC
GVN
VCC
Rt
GVN
CTL
GVN
OUT
PW
INC
10
PW
GND
11
GVN
GND
12
TA2145AFG
PRE
GND
1
INA
2
NFA
3
PRE
OUTA
4
PW
INA
5
VCTL
6
OUTB OUTA OUTC
7
8
9
470 kΩ
470 kΩ
PW OUTA
22 µF 470 Ω
SW4
(a) (b)
8200 pF
220 µF (b) (a) 18 kΩ
SW2a
PRE OUTA
RL
PW OUTC
VREF
1 µF
RL
1 µF
2.2 kΩ
2.2 kΩ
47 µF
10 kΩ
PRE SW1a
INA
VREF
SW2b
220 µF (b) (a) 18 kΩ
22 µF
8200 pF
1000 pF 1000 pF
22 µF
Rg = 600 Ω Rg = 600 Ω
PRE INB
SW1b
VCC
47 µF
VREF
PRE OUTB
10 kΩ
1 µF
PW INB
PW OUTB
10 kΩ
(a) Rg = 600 Ω
SW3a
600 Ω
PW IN
A
(b)
VREF
9
2006-04-19
TA2145AFG
Characteristic Curves (Unless otherwise specified, VCC = 3 V, Ta = 25°C, f = 1 kHz,
Preamplifier:
Rg = 2.2 kΩ, RL = 10 kΩ
Power amplifier: Rg = 600 Ω, RL = 16 Ω, Vol. = max
Motor governor: Im = 100 mA)
ICCQ, ICC – VCC
VO (DC) – VCC
2.5
(V)
ICCQ2 (PW only, Vol.: min)
4
ICC (GVN: Im = 0)
1.5
2.0
2.5
3.0
Supply voltage
PRE
3.5
1.5
VREF, PW OUT, PRE OUT
1.0
0.5
0
0
4.0
1.5
2.0
2.5
3.0
Supply voltage
GVO, GVC – f
PRE
3.5
4.0
VCC (V)
CT – f
40
Vo = −10dBV
Vo = −10dBV
80
CT (dB)
GVO
Cross talk
60
40
0
10
100
1k
Frequency
PRE
10 k
80
10
100 k
1k
Frequency
PRE
Vom – VCC
10 k
100 k
1000
10000
f (Hz)
THD – Vo
THD = 1%
500
200
100
0
100
f (Hz)
(%)
(mVrms)
1000
60
70
GVC
20
50
1.5
2.0
2.5
Supply voltage
3.0
3.5
10
THD
(dB)
(dB)
Open loop voltage
GVO
Closed loop voltage GVC
2.0
VCC (V)
100
Vom
Output DC voltage
ICCQ1 (PRE + PW, Vol.: min)
8
0
0
Maximum output voltage
VO (DC)
12
3
Total harmonic distortion
Quiescent supply current ICCQ (mA)
(mA)
Supply current
ICC
16
1
f = 10 kHz
3
VCC (V)
f = 1 kHz
0.03
0.01
1
4.0
f = 100 Hz
0.1
10
100
Output voltage
10
Vo
(mVrms)
2006-04-19
TA2145AFG
PRE
Vni – VCC
PRE
20
RR – VCC
10
(dB)
RR
10
Vr = −20dBV
30
5
Ripple rejection ratio
Equivalent input noise
Vni
(µVrms)
fr = 100 Hz
20
2
1
0.5
0
1.5
2.0
2.5
Supply voltage
PW
3.0
3.5
40
50
60
70
80
0
4.0
1.5
2.0
VCC (V)
2.5
Supply voltage
GV – f
PW
3.0
3.5
4.0
VCC (V)
CT – f
60
Vo = −10dBV
Vo = −10dBV
0
CT (dB)
Cross talk
40
BST = ON
Voltage
GV (dB)
50
BST = OFF
10
BST = ON
20
30
BST = OFF
40
30
50
20
20
100
1k
Frequency
PW
10 k
60
20
100 k
Frequency
Po – VCC
PW
10 k
100 k
f (Hz)
THD – Po
30
THD
(mW)
Total harmonic distortion
Po
RL = 16 Ω
32 Ω
10
1.5
VCC = 3 V
RL = 16 Ω
(%)
THD = 10%
Output power
1k
f (Hz)
100
2
0
100
2.0
2.5
Supply voltage
3.0
3.5
10
3
f = 10 kHz
1
100 Hz
1 kHz
0.2
0.2
4.0
VCC (V)
1
10
100
Output power Po (mW)
11
2006-04-19
TA2145AFG
PW
PW
Vo – Vol.
Resistance (Pin@−GND)
=
Volume resistance
−10
0dB = −10dBV
−30
Output noise voltage
Vo
(mW)
Ratio
Vno (µVrms)
Volume
Output voltage
Vno – Vol.
500
10
−50
−70
−90
0
0.2
0.4
0.6
0.8
Volume
300 Ratio
Volume resistance
100
50
30
10
0
1
Resistance (Pin@−GND)
=
0.2
0.4
Volume ratio
RR – Vol.
Reference voltage fluctuation ∆VREF
Current ratio fluctuation
∆K
(dB)
Volume resistance
0dB = −10dBV, Vr = −20dBV
RR
Ripple rejection ratio
(mV)
Resistance (Pin@−GND)
60
70
0.2
0.4
0.6
0.8
1
2.5
∆VREF
0.0
∆K
−2.5
−5.0
−7.5
1.5
2.0
2.5
∆VREF, ∆K – Im
3.0
VCC (V)
ICCQ, ICC – Ta
(mA)
(mA)
16
∆VREF
0
∆K
−5
50
100
12
ICCQ
ICC
5
Quiescent Supply current
Supply current
(mV)
∆VREF
∆K
Reference voltage fluctuation
current ratio fluctuation
4.0
5.0
Supply voltage
10
−10
0
3.5
7.5
Volume ratio
GVN
1
∆VREF, ∆K – VCC
GVN
50
80
0
0.8
Volume ratio
40
Volume ratio =
0.6
150
Motor current Im
200
250
ICCQ1 (PRE + PW, Vol. = min)
8
ICCQ2 (PW only, Vol. = min)
4
ICC (GVN: Im = 0)
0
−20
300
(mA)
0
20
Ambient temperature
12
40
Ta
60
80
(°C)
2006-04-19
TA2145AFG
PRE
GV, Vom – Ta
40
GV
0.5
0
20
40
Ambient temperature
PRE
GV
680
32
640
80
(°C)
20
40
PW
Ta
60
Vo = −10dBV
600
80
(°C)
GV, Po – Ta
35
50
GV: Vo = −10dBV
(mW)
0.01
40
30
Output Power
GV
Po
GV (dB)
0.1
30
Voltage
THD
Total harmonic distortion
0
Ambient temperature
THD – Ta
Po
20
25
−20
0
20
40
Ambient temperature
PW
Ta
60
80
(mV)
Reference voltage fluctuation ∆VREF
∆K
Current ratio fluctuation
THD
2
1
0.5
0.2
0
20
Ambient temperature
40
Ta
60
20
80
(°C)
Ta
60
10
80
(°C)
6
4
2
∆K
0
∆VREF
−2
−4
−6
−20
0
20
Ambient temperature
13
40
∆VREF, ∆K – Ta
GVN
THD – Ta
5
−20
0
Ambient temperature
Po = 1 mW
0.1
−20
(°C)
10
(%)
−20
Po: THD = 10%
0.001
Total harmonic distortion
720
34
(%)
1
Ta
60
Vom
36
30
−20
Vom
1
0
760
(dB)
VREF, PW OUT, PRE OUT
Voltage gain
Output voltage
VO (DC)
(V)
Vom: THD = 1%
38
(mVrms)
800
GV: Vo = −10dBV
Maximum output voltage
VO (DC) – Ta
1.5
40
Ta
60
80
(°C)
2006-04-19
TA2145AFG
Application Circuit
8200 pF 1 µF
M
PRE
OFF
100 µF
18 kΩ
47 µF
470 Ω
470 kΩ
22 µF
180 Ω
1 µF
3.6 kΩ
470 kΩ
24
23
22
VREF
INB
NFB
5 kΩ
21
PRE
OUTB
20
PW
INB
19
RF
IN
18
PRE
SW
17
PW
VCC
16
GVN
VCC
OUTA
8
OUTC
9
15
Rt
14
GVN
CTL
13
GVN
OUT
PW
GND
11
GVN
GND
12
TA2145AFG
PW
INA
5
470 kΩ 18 kΩ
22 µF 470 Ω
VCTL
6
1 µF
8200 pF
OUTB
7
VREF
12 kΩ
PW
INC
10
0.1 µF
0.1 µF
2
PRE
OUTA
3
4
470 kΩ
NFA
0.1 µF 33 kΩ
INA
33 kΩ
PRE
GND
1
10 kΩ
1000 pF 1000 pF
PRE INA
PRE INB
22 µF
0.1 µF
VCC
OUTC
BST SW BST: OFF
14
OUTA
RL
RL
OUTB
2006-04-19
TA2145AFG
Package Dimensions
Weight: 0.32 g (typ.)
15
2006-04-19
TA2145AFG
RESTRICTIONS ON PRODUCT USE
060116EBA
• The information contained herein is subject to change without notice. 021023_D
• TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability
Handbook” etc. 021023_A
• The TOSHIBA products listed in this document are intended for usage in general electronics applications
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,
medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this
document shall be made at the customer’s own risk. 021023_B
• The products described in this document shall not be used or embedded to any downstream products of which
manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
• The information contained herein is presented only as a guide for the applications of our products. No
responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of
TOSHIBA or others. 021023_C
• The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E
About solderability, following conditions were confirmed
• Solderability
(1) Use of Sn-37Pb solder Bath
· solder bath temperature = 230°C
· dipping time = 5 seconds
· the number of times = once
· use of R-type flux
(2) Use of Sn-3.0Ag-0.5Cu solder Bath
· solder bath temperature = 245°C
· dipping time = 5 seconds
· the number of times = once
· use of R-type flux
16
2006-04-19