TOSHIBA TA2120FNG

TA2120FNG
TOSHIBA Bipolar Linear Integrated Circuit SIlicon Monolithic
TA2120FNG
Low Consumption Current Stereo Headphone Power Amplifier for Portable CD (3V Use)
The TA2120FNG is a low consumption current stereo
headphone power amplifier developed for portable CD players
(3V). This IC has active bass boost, output limiter, input pin for
beep sound.
Features
•
Low consumption current: ICCQ = 1.9 mA (C-CUP) (typ.)
•
Two kinds of gain mode available: GV = 16dB or 8.5dB
•
Output power (VCC = 2.0 V, f = 1 kHz, THD = 10%, RL = 16 Ω)
ICCQ = 2.6 mA (OCL) (typ.)
Weight: 0.14 g (typ.)
Po = 8 mW (typ.)
•
Low noise: Vno = −98dBV (typ.)
•
Built-in the center amplifier ON/OFF function.
(Favorable for low dissipation current in the C-Couple output configuration)
•
Built-in active bass boost system
•
Built-in output limiter function
•
Input pin for beep sound
•
Excellent ripple rejection ratio
•
Built-in capacitor for reducing buzz noise
•
Built-in power mute
•
Built-in a power on/off switch
•
Operating supply voltage range (Ta = 25°C): VCC = 1.8~4.5 V
1
2006-04-19
TA2120FNG
Block Diagram
VCC
BIAS
BEEP
PW
MT
SW
SW
ON
ON
OFF
OFF
BST
SW
OFF
ON
VCC
24
23
22
21
BIAS
BST
BST
BIAS
OUT
SW
IN
BIAS
20
PW
SW
PW
SW
MT
SW
19
MT
TC
ON
OFF
18
17
16
GND
BEEP
IN
OUTB
15
ALC
BEEP
Beep
MT
SW
INB
INA
14
ATT
SW
ALC
OUTA
ATT
SW
13
ATT
SW
ADD B
BST
ADDA
PW
B
PWC
SW
BST
NF
ADD
OUT
1
RF
IN
2
PWC
SW
3
ALC
DET
VCC
4
PWR
OUTB OUTC OUTA
GND
5
6
7
8
9
RL
OCL
C-CUP
BIAS
BIAS
VCC
PW
A
PW
C
RL
MIX
ALC
ALC
IN
DET
OUT
10
11
12
ALC
SW
ON
OFF
VCC
2
2006-04-19
TA2120FNG
Terminal Explanation (Terminal voltage: Typical terminal voltage at no signal with test
circuit, VCC = 2.4 V, Ta = 25°C)
Terminal
No.
Function
Terminal
Voltage
(V)
Internal Circuit
Name
BIAS
BST NF
NF of BST amplifier
0.85
10 kΩ
1
BIAS
BST
24
12 kΩ
ADD
OUT
30 kΩ
24
BST OUT
Output of BST amplifier
(Terminal for filter)
0.85
1
2 kΩ
ADDA
BST
AMP
PWA
ADD OUT
Output of ADD amplifier
(Terminal for filter)
14
24 kΩ
2
BIAS
0.85
2
24 kΩ
PWB
ADDB
15
3
RF IN
Terminal for ripple filter
circuit
1.44
13 kΩ
5
BIAS
30 kΩ
3
21
BIAS voltage
22
BIAS IN
43 kΩ
22
Filter terminal for BIAS
circuit
0.85
21
0.85
3
2006-04-19
TA2120FNG
Terminal
No.
Function
Terminal
Voltage
(V)
Internal Circuit
Name
VCC
Center amplifier on/off
switchover
4
PWC SW
VCC:
5
C-CUP
Center amplifier
off (C-CUP)
OPEN: Center amplifier
on (OCL)
7
OUTC
5
VCC
6
OUTB
4
Output of center amplifier
(Common terminal for OCL
output configuration)
0.85
7
⎯
⎯
2.4
VCC
Output of power amplifier
8
⎯
OCL
0.85
PWA
ALC
OUTA
14
8
INA
27 kΩ
10
ATT
SW
15
INB
10
MIX OUT
Output of power amplifier
(Mixed)
9
PWR GND
GND of power amplifier
0.85
7.5 kΩ
16 kΩ
Input of power amplifier
BST
OUT
1.6 kΩ
14
1.6 kΩ
10 kΩ
6
0.85
⎯
4
0
2006-04-19
TA2120FNG
Terminal
No.
Function
Terminal
Voltage
(V)
Internal Circuit
Name
11
ALC IN
Input terminal for ALC
detector circuit
11
20 kΩ
BIAS
0.85
20 kΩ
×4 ×7
BIAS
12
ALC DET
Smoothing for ALC
detection, ALC on/off
switchover
12
⎯
GND: ALC off
OPEN: ALC on
Power amplifier gain
switchover
13
ATT SW
OPEN/VCC:
ATT off (GV = 16dB)
5
⎯
20 kΩ
13
GND:
ATT on (GV = 8.5dB)
17
18
GND
GND of input stage in
power amplifier
BEEP IN
Input terminal for Beep
sound
It receive beep sound
from microcomputer.
And power amplifier
outputs this beep sound.
MT TC
Terminal of mute
smoothing
Smoothing for shock
noise at power muting
switch over
⎯
OUTB
18
5
0
OUTA
10 kΩ
17
10 kΩ
16
0
1.4
2006-04-19
TA2120FNG
Terminal
No.
Function
Internal Circuit
Name
Terminal
Voltage
(V)
VCC
5
MT SW
GND/OPEN: Mute off
47 kΩ
VCC: Mute on
10 kΩ
Power mute switchover
19
⎯
19
VCC
5
47 kΩ
Power on/off switchover
20
PW SW
20
⎯
VCC: Power on
GND/OPEN: Power off
5
Bst on/off switchover
23
BST SW
20 kΩ
BST on: OPEN/VCC
23
⎯
BST off: GND
6
2006-04-19
TA2120FNG
Application Note
1. Beep Sound
Beep sound signals from, for example, a micro controller can be received through the beep input pin 17. At
power mute mode, PWA and PWB are turned off. The current of the beep signal input to been via beep
amplifier is amplified at the output stage of PWA and PWB. The output from beep amplifier becomes the
constant voltage source. As a result, the beep sound is output to the headphone load.
If the input signal for beep (Pin 17) is not, this terminal should be fixed GND level.
VCC
PW SW
(20pin)
MT SW
(19pin)
OFF
OFF
ON
ON
OFF
OFF
BEEP IN
(17pin)
200 ms
100 ms
100 ms
2. Power Switch
As long as the power switch is not connect to VCC, the IC does not operate.
If external noise causes malfunctions, we recommend to connect a pull-down resistor externally (Sensitivity
of the power mute switch is high).
3. Center Amplifier (PWC)
Terminal for PWC output is common terminal for OCL output configuration.
PWC ON/OFF mode is controlled by PWC switch (Pin 4).
To reduce the consumption current, PWC should be turned off by this switch.
PWC SW
OPEN: OCL
VCC: C-Couple
4. Terminal of RF IN (3pin)
Adding Capacitor (Recommendation: 10 µF) to terminal of RF IN (Pin 3), the ripple rejection ratio is
improved by secondly ripple filter (In the C-Couple output configuration , this capacitor should be
connected.)
7
2006-04-19
TA2120FNG
5. Threshold Voltage of Each Switches
(1)
PW SW, BST SW, ATT SW
(2)
5
(V)
4.5 V
4.5 V
3
V19
(V)
4
H
Terminal voltage
V13, V20, V23
Terminal voltage
MT SW
5
2
1.6 V
1
4
3
H
2
1
0.8 V
0.6 V
0.3 V
L
0
0
1
2
3
Supply voltage
4
0
0
5
VCC (V)
1
L
2
3
Supply voltage
PW SW (V20)
5
MT SW (V19)
“H”
Operating
“H”
Mute ON
“L” Open
IC OFF
“L” Open
Mute OFF
ATT SW (V13)
4
VCC (V)
BST SW (V23)
“H” Open
ATT ON
BST ON
“L”
ATT OFF
BST OFF
6. Exterminal capaciter
These capacitors which are prevent oscillation of power amplifier and de-coupled at terminals of BIAS and
VCC need to be small temperature coefficient and excellent frequency characteristic.
8
2006-04-19
TA2120FNG
Absolute Maximum Ratings (Ta = 25°C)
Characteristics
Symbol
Rating
Unit
Supply voltage
VCC
4.5
V
Output Current
Io (peak)
100
mA
Power dissipation
PD (Note)
550
mW
Operating temperature
Topr
−25~75
°C
Storage temperature
Tstg
−55~150
°C
Note: Derated above 25°C in the proportion of 4.4 mW/°C.
Electrical Characteristics
(Unless otherwise specified: VCC = 2.4 V, Rg = 600 Ω, RL = 16 Ω, f = 1 kHz, Ta = 25°C, SW1: a,
SW2: a, SW3: OPEN, SW4: a, SW5: a, SW6: OPEN, SW7: ON, SW8: ON)
Characteristics
Quiescent supply current
Consumption supply current
Symbol
Test
Circuit
ICC1
⎯
ICC2
Min
Typ.
Max
IC OFF (C-Couple)
SW1: b, SW2: b, SW3: ON
⎯
0.1
5
⎯
IC OFF (OCL)
SW1: b, SW2: b
⎯
0.1
5
ICC3
⎯
MUTE ON (C-Couple)
SW2: b, SW3: ON
⎯
1
2
ICC4
⎯
MUTE ON (OCL)
SW2: b
⎯
1.7
3
ICC5
⎯
No signal (C-Couple)
SW3: ON
⎯
1.9
3.5
ICC6
⎯
No signal (OCL)
⎯
2.6
4.5
⎯
Po = 0.5 mW + 0.5 mW (C-CUP),
SW3: ON
⎯
6.6
⎯
Po = 0.5 mW + 0.5 mW (OCL)
⎯
12.1
⎯
ICC7
Power amplifier stage
ICC8
Test Condition
Unit
µA
mA
mA
Voltage gain (1)
GV1
⎯
Vo = −22dBV, SW6: GND
5.5
8.5
10.5
dB
Voltage gain (2)
GV2
⎯
Vo = −22dBV
14
16
18
dB
Pomax
⎯
THD = 10%, VCC = 2.0 V
5
8
⎯
mW
Total harmonic distortion
THD
⎯
Vo = −12.2dBV
⎯
0.1
0.5
%
Output noise voltage
Vno
⎯
Rg = 600 Ω, Filter: IHF- A, SW5: b
⎯
−98
−92
dBV
Crosstalk
CT
⎯
Vo = −12.2dBV
24
40
⎯
dB
Output power
RR
⎯
VCC = 1.8V, fr = 100 Hz, Vr = −20dBV
69
75
⎯
dB
Mute attenuation
MUTE
⎯
Vo = −12.2dBv, SW2: b
80
90
⎯
dB
Beep voltage
VBEEP
⎯
V Beep IN = 0dBV, SW2: b
−56
−51
−46
dBV
Bst
⎯
Vo = −30dBV, f = 100 Hz,
SW7: ON → OPEN
9
11.5
14
dB
VALC
⎯
Vin = −20dBV, SW8: OPEN
−41.5
−39.5
−37.5
dBV
Ripple rejection ratio
Boost gain
Output limiter level
9
2006-04-19
TA2120FNG
Test Circuit
(b)
(a)
SW1
SW2
1 µF
(b)
10 kΩ
600 Ω
600 Ω
IS1588
10 kΩ
1 µF
(a)
22 µF
10 µF
0.22 µF
SW7
VCC
10 kΩ
VCC
BIAS
1 µF
Rg = 600 Ω
Rg = 600 Ω
(a)
(a)
SW5b (b) (b) SW5a
SW6
24
23
22
21
20
19
18
17
16
15
14
13
BST
OUT
BST
SW
BIAS
IN
BIAS
PW
SW
MT
SW
MT
TC
BEEP
IN
GND
INB
INA
ATT
SW
TA2120FNG
MIX
OUT
ALC
IN
ALC
DET
1
2
3
4
5
6
7
8
9
10
11
12
0.1 µF
4.7 kΩ 0.1 µF *
220 µF
(a) (a)
(b) (b)
16 Ω
VCC
220 µF
BIAS
16 Ω
BIAS
SW3
2.2 µF
PWR
GND
1 µF*
OUTA
16 Ω
OUTC
16 Ω
OUTB
4.7 kΩ 0.1 µF *
VCC
22 µF
PW-C
SW
10 µF
RF
IN
0.1 µF
ADD
OUT
2.2 µF
BST
NF
SW8
*: Monolithic ceramic capacitor
10
2006-04-19
TA2120FNG
Application Circuit 1 (C-Couple mode)
1 µF
1 µF
OFF ATT
SW
100 kΩ
0.1 µF
ON
PW
MT
SW
SW
OFF
OFF
10 µF
ON
1 µF
0.1 µF
BEEP
VCC
Vol: 10 kΩ
10 µF
0.22 µF
ON
VCC
OFF
ON
100 kΩ
BIAS
DAC
OUT
BST
SW
24
23
22
21
20
19
18
17
16
15
14
13
BST
OUT
BST
SW
BIAS
IN
BIAS
PW
SW
MT
SW
MT
TC
BEEP
IN
GND
INB
INA
ATT
SW
TA2120FNG
ALC
IN
ALC
DET
4
5
6
7
8
9
10
11
12
C-CUP
VCC
VCC
RL
ALC
SW ON
22 µF
MIX
OUT
220 µF
PWR
GND
0.1 µF *
OUTA
4.7 Ω
BIAS
OUTC
0.1 µF *
BIAS
OUTB
4.7 Ω
3
VCC
220 µF
2
PW-C
SW
1 µF
1
10 µF
RF
IN
0.1 µF
ADD
OUT
2.2 µF
BST
NF
OFF
RL
*: Monolithic ceramic capacitor
PWR AMP GAIN
ATT ON: GV = 8.5dB
ATT OFF: GV = 16dB
11
2006-04-19
TA2120FNG
Application Circuit 2 (OCL mode)
1 µF
1 µF
OFF ATT
SW
100 kΩ
0.1 µF
ON
PW
MT
SW
SW
OFF
OFF
10 µF
ON
1 µF
0.1 µF
BEEP
VCC
Vol: 10 kΩ
10 µF
0.22 µF
ON
VCC
OFF
ON
100 kΩ
BIAS
DAC
OUT
BST
SW
24
23
22
21
20
19
18
17
16
15
14
13
BST
OUT
BST
SW
BIAS
IN
BIAS
PW
SW
MT
SW
MT
TC
BEEP
IN
GND
INB
INA
ATT
SW
TA2120FNG
BIAS
MIX
OUT
ALC
IN
ALC
DET
4
5
6
7
8
9
10
11
12
OCL
VCC
RL
RL
0.1 µF ALC
SW ON
22 µF
PWR
GND
0.1 µF *
OUTA
4.7 Ω
BIAS
OUTC
1 µF *
3
OUTB
0.1 µF *
2
VCC
4.7 Ω
1
PW-C
SW
1 µF
RF
IN
0.1 µF
ADD
OUT
2.2 µF
BST
NF
OFF
*: Monolithic ceramic capacitor
PWR AMP GAIN
ATT ON: GV = 8.5dB
ATT OFF: GV = 16dB
12
2006-04-19
TA2120FNG
Characteristics (Unless otherwise specified: VCC = 2.4 V, RL = 16 Ω, Rg = 600 Ω, f = 1 kHz,
Ta = 25°C, OCL, ATT OFF)
ICC – VCC
ICC – Po
C-CUP
(mA)
100
ICC
4
Consumption supply current
Quiescent supply current
ICC
(mA)
5
3
ICC (BST ON)
2
ICC3
1
ICC5 (MUTE ON)
VCC = 2.4 V
50 f = 1 kHz
RL = 16 Ω
30
A/Bch IN
10
5
3
1
0.5
0.03
0
1.5
2.5
3.5
C-CUP
0.1
0.3
1
3
10
4.5
Output power Po (mW)
Supply voltage
VCC
(V)
ICC – VCC
IC – P o
OCL
(mA)
100
ICC
4
ICC (BST ON)
Consumption supply current
Quiescent supply current
ICC
(mA)
5
3
ICC6
2
ICC4 (MUST ON)
1
50 f = 1 kHz
RL = 16 Ω
30
A/Bch IN
10
5
3
1
0.5
0.03
0
1.5
2.5
3.5
OCL
VCC = 2.4 V
0.1
0.3
1
3
10
4.5
Output power Po (mW)
Supply voltage
VCC
(V)
VDC – VCC (BIAS, OUTA/B/C) OCL
Po – VCC
50
(mW)
2.0
Output power
1.5
Output DC voltage
OCL
100
30
Po
VDC (V)
2.5
1.0
10
5
3
0.5
THD = 10%
A/Bch IN
1
0
1.5
2.5
Supply voltage
3.5
VCC
4.5
1.5
(V)
2.5
Supply voltage
13
3.5
VCC
4.5
(V)
2006-04-19
TA2120FNG
THD – Po
CT – f
OCL
VCC = 2.4 V
Vo = −20dBV
10 RL = 16 Ω
0
A/Bch IN
CT (dB)
5
3
1
10 kHz
0.5
0.3
−10
−20
−30
−40
1 kHz
−50
0.1
100 Hz
0.05
0.1
0.3
1
3
10
30
−60
10
100
30
100
Output power Po (mW)
BST OFF
−40
Frequency
10k
30k
ALC OFF
−40
6
−50
4
V
VO
o
ALC ON
−50
−40
−30
BEEP
fr = 100 Hz
(dBV)
−60
BST OFF
−80
−90
Supply voltage
3.5
VCC
0
0
OCL
−60
−70
−80
−90
2.5
−10
−50
ATT OFF
1.5
−20
−40
Beep output voltage
(dB)
PR
−60
OCL
Vr = −20dBV
−70
−70
2
ALC ON
THD
Vin (dBV)
RR – VCC
−50
10
8
−70
−80
100k
12
ALC OFF
f (Hz)
−30
−40
f (Hz)
14
−60
3k
100k
(%)
−30
1k
30k
THD
(dBV)
−30
Output voltage
BST ON
−20
VO
(dBV)
VO
−20
300
10k
−10
Vin = −46dBV
100
3k
0
VCC = 2.4 V
30
1k
Vo, THD – Vin
OCL
ATT OFF
Output voltage
300
Frequency
Vo – f
−10
Ripple rejection ratio
OCL
10
Cross talk
Total harmonic distortion
THD
(%)
20
−100
−16
4.5
(V)
fBEEP = 400 Hz
Rectangle wave
−14
−12
−10
−8
Beep input voltage
14
−6
BEEP VIN
−4
−2
0
(dBV)
2006-04-19
TA2120FNG
ICC – Ta
VDC – Ta
2.5
VDC (V)
5
1.5
3
Output DC voltage
ICC (mA)
ICC6
ICC4
1
0
−50
2.0
0
Ambient temperature
50
Ta
1.0
0.5
0
−50
100
(°C)
0
Ambient temperature
15
50
Ta
100
(°C)
2006-04-19
TA2120FNG
Package Dimensions
Weight: 0.14 g (typ.)
16
2006-04-19
TA2120FNG
RESTRICTIONS ON PRODUCT USE
060116EBA
• The information contained herein is subject to change without notice. 021023_D
• TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability
Handbook” etc. 021023_A
• The TOSHIBA products listed in this document are intended for usage in general electronics applications
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,
medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this
document shall be made at the customer’s own risk. 021023_B
• The products described in this document shall not be used or embedded to any downstream products of which
manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
• The information contained herein is presented only as a guide for the applications of our products. No
responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of
TOSHIBA or others. 021023_C
• The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E
About solderability, following conditions were confirmed
• Solderability
(1) Use of Sn-37Pb solder Bath
· solder bath temperature = 230°C
· dipping time = 5 seconds
· the number of times = once
· use of R-type flux
(2) Use of Sn-3.0Ag-0.5Cu solder Bath
· solder bath temperature = 245°C
· dipping time = 5 seconds
· the number of times = once
· use of R-type flux
17
2006-04-19