Freescale Semiconductor Data Sheet: Technical Data KE02 Sub-Family Document Number MKE02P64M20SF0 Rev 3, 07/2013 MKE02P64M20SF0 Supports the following: MKE02Z16VLC2(R), MKE02Z32VLC2(R), MKE02Z64VLC2(R), MKE02Z16VLD2(R), MKE02Z32VLD2(R), MKE02Z64VLD2(R), MKE02Z32VLH2(R), MKE02Z64VLH2(R), MKE02Z32VQH2(R), and MKE02Z64VQH2(R) Key features • Operating characteristics – Voltage range: 2.7 to 5.5 V – Flash write voltage range: 2.7 to 5.5 V – Temperature range (ambient): -40 to 105°C • Performance – Up to 20 MHz ARM® Cortex-M0+ core – Single cycle 32-bit x 32-bit multiplier – Single cycle I/O access port • Memories and memory interfaces – Up to 64 KB flash – Up to 256 B EEPROM – Up to 4 KB RAM • Clocks – Oscillator (OSC) - loop-controlled Pierce oscillator, crystal or ceramic resonator range of 31.25 kHz to 39.0625 kHz or 4 MHz to 20 MHz – Internal clock source (ICS) - internal FLL with internal or external reference, precision trimming of internal reference allowing 1% deviation across temperature range of 0 °C to 70 °C and 1.5% deviation across temperature range of -40 °C to 105 °C, up to 20 MHz – Internal 1 kHz low-power oscillator (LPO) • System peripherals – Power management module (PMC) with three power modes: Run, Wait, Stop – Low-voltage detection (LVD) with reset or interrupt, selectable trip points – Watchdog with independent clock source (WDOG) – Programmable cyclic redundancy check module (CRC) – Serial wire debug interface (SWD) – Bit manipulation engine (BME) • Security and integrity modules – 64-bit unique identification (ID) number per chip • Human-machine interface – Up to 57 general-purpose input/output (GPIO) – Two 8-bit keyboard interrupt modules (KBI) – Interrupt (IRQ) • Analog modules – One 16-channel 12-bit SAR ADC, operation in Stop mode, optional hardware trigger (ADC) – Two analog comparators containing a 6-bit DAC and programmable reference input (ACMP) • Timers – One 6-channel FlexTimer/PWM (FTM) – Two 2-channel FlexTimer/PWM (FTM) – One 2-channel periodic interrupt timer (PIT) – One real-time clock (RTC) Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. © 2013 Freescale Semiconductor, Inc. • Communication interfaces – Two SPI modules (SPI) – Three UART modules (UART) – One I2C module (I2C) • Package options – 64-pin QFP/LQFP – 44-pin LQFP – 32-pin LQFP KE02 Sub-Family Data Sheet, Rev3, 07/2013. 2 Freescale Semiconductor, Inc. Table of Contents 1 Ordering parts...........................................................................4 1.1 Determining valid orderable parts......................................4 2 Part identification......................................................................4 5.2.2 FTM module timing...............................................17 5.3 Thermal specifications.......................................................18 5.3.1 Thermal characteristics.........................................18 2.1 Description.........................................................................4 6 Peripheral operating requirements and behaviors....................19 2.2 Format...............................................................................4 6.1 Core modules....................................................................19 2.3 Fields.................................................................................4 6.1.1 SWD electricals ....................................................19 2.4 Example............................................................................5 6.2 External oscillator (OSC) and ICS characteristics.............20 3 Parameter classification............................................................5 6.3 NVM specifications............................................................22 4 Ratings......................................................................................6 6.4 Analog...............................................................................23 4.1 Thermal handling ratings...................................................6 6.4.1 ADC characteristics...............................................24 4.2 Moisture handling ratings..................................................6 6.4.2 Analog comparator (ACMP) electricals.................26 4.3 ESD handling ratings.........................................................6 4.4 Voltage and current operating ratings...............................6 6.5 Communication interfaces.................................................27 6.5.1 SPI switching specifications..................................27 5 General.....................................................................................7 7 Dimensions...............................................................................30 5.1 Nonswitching electrical specifications...............................7 7.1 Obtaining package dimensions.........................................30 5.1.1 DC characteristics.................................................7 5.1.2 Supply current characteristics...............................14 8.1 Signal multiplexing and pin assignments...........................31 5.1.3 EMC performance.................................................15 8.2 Device pin assignment......................................................33 5.2 Switching specifications.....................................................16 9 Revision history.........................................................................34 5.2.1 8 Pinout........................................................................................31 Control timing........................................................16 KE02 Sub-Family Data Sheet, Rev3, 07/2013. Freescale Semiconductor, Inc. 3 Ordering parts 1 Ordering parts 1.1 Determining valid orderable parts Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: KE02Z. 2 Part identification 2.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 2.2 Format Part numbers for this device have the following format: Q KE## A FFF R T PP CC N 2.3 Fields This table lists the possible values for each field in the part number (not all combinations are valid): Field Description Values Q Qualification status KE## Kinetis family • KE02 A Key attribute • Z = M0+ core FFF Program flash memory size R Silicon revision • M = Fully qualified, general market flow • P = Prequalification • 16 = 16 KB • 32 = 32 KB • 64 = 64 KB • (Blank) = Main • A = Revision after main Table continues on the next page... KE02 Sub-Family Data Sheet, Rev3, 07/2013. 4 Freescale Semiconductor, Inc. Parameter classification Field Description T Temperature range (°C) PP Package identifier CC Maximum CPU frequency (MHz) N Packaging type Values • V = –40 to 105 • • • • LC = 32 LQFP (7 mm x 7 mm) LD = 44 LQFP (10 mm x 10 mm) QH = 64 QFP (14 mm x 14 mm) LH = 64 LQFP (10 mm x 10 mm) • 2 = 20 MHz • R = Tape and reel • (Blank) = Trays 2.4 Example This is an example part number: MKE02Z64VQH2 3 Parameter classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate: Table 1. Parameter classifications P Those parameters are guaranteed during production testing on each individual device. C Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. T Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. D Those parameters are derived mainly from simulations. NOTE The classification is shown in the column labeled “C” in the parameter tables where appropriate. KE02 Sub-Family Data Sheet, Rev3, 07/2013. Freescale Semiconductor, Inc. 5 Ratings 4 Ratings 4.1 Thermal handling ratings Symbol Description Min. Max. Unit Notes TSTG Storage temperature –55 150 °C 1 TSDR Solder temperature, lead-free — 260 °C 2 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.2 Moisture handling ratings Symbol MSL Description Moisture sensitivity level Min. Max. Unit Notes — 3 — 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.3 ESD handling ratings Symbol Description Min. Max. Unit Notes 1 VHBM Electrostatic discharge voltage, human body model –6000 +6000 V VCDM Electrostatic discharge voltage, charged-device model –500 +500 V Latch-up current at ambient temperature of 105°C –100 +100 mA ILAT 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 4.4 Voltage and current operating ratings Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in the following table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document. KE02 Sub-Family Data Sheet, Rev3, 07/2013. 6 Freescale Semiconductor, Inc. General This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either VSS or VDD) or the programmable pullup resistor associated with the pin is enabled. Table 2. Voltage and current operating ratings Symbol Description Min. Max. Unit VDD Supply voltage –0.3 6.0 V IDD Maximum current into VDD — 120 mA VDIO Digital input voltage (except RESET, EXTAL, and XTAL) –0.3 VDD + 0.3 V VAIO Analog1, –0.3 VDD + 0.3 V –25 25 mA VDD – 0.3 VDD + 0.3 V ID VDDA RESET, EXTAL, and XTAL input voltage Instantaneous maximum current single pin limit (applies to all port pins) Analog supply voltage 1. Analog pins are defined as pins that do not have an associated general-purpose I/O port function. 5 General 5.1 Nonswitching electrical specifications 5.1.1 DC characteristics This section includes information about power supply requirements and I/O pin characteristics. Table 3. DC characteristics Symbol C — — VOH P Descriptions Operating voltage Output high voltage P C Typical1 Max Unit 2.7 — 5.5 V All I/O pins, standard- 5 V, Iload = – drive strength 5 mA VDD – 0.8 — — V 3 V, Iload = – 2.5 mA VDD – 0.8 — — V 5 V, Iload = – 20 mA VDD – 0.8 — — V 3 V, Iload = – 10 mA VDD – 0.8 — — V C High current drive pins, high-drive strength — Min Table continues on the next page... KE02 Sub-Family Data Sheet, Rev3, 07/2013. Freescale Semiconductor, Inc. 7 Nonswitching electrical specifications Table 3. DC characteristics (continued) Symbol C IOHT D VOL P Min Typical1 Max Unit 5V — — –100 mA 3V — — –60 — — 0.8 V 3 V, Iload = 2.5 mA — — 0.8 V 5 V, Iload =20 mA — — 0.8 V 3 V, Iload = 10 mA — — 0.8 V — — 100 mA Descriptions Output high current Output low voltage Max total IOH for all ports All I/O pins, standard- 5 V, Iload = 5 drive strength mA C P High current drive pins, high-drive strength2 C IOLT D Output low current Max total IOL for all ports 5V 3V — — 60 VIH P Input high voltage All digital inputs VDD>4.5 V 0.70 × VDD — — VDD>2.7 V 0.75 × VDD — — Input low voltage All digital inputs VDD>4.5 V — — 0.30 × VDD VDD>2.7 V — — 0.35 × VDD VIL P V V Vhys C Input hysteresis All digital inputs — 0.06 × VDD — — mV |IIn| P Input leakage current All input only pins (per pin) VIN = VDD or VSS — 0.1 1 µA |IOZ| C Hi-Z (offstate) leakage current All input/output (per pin) VIN = VDD or VSS — 0.1 1 µA |IOZTOT| C Total leakage All input only and I/O VIN = VDD or combined for VSS all inputs and Hi-Z pins — — 2 µA RPU P Pullup resistors All digital inputs, when enabled — 30.0 — 50.0 kΩ IIC D DC injection current3, 4, 5 Single pin limit VIN < VSS, VIN > VDD -0.2 — 2 mA -5 — 25 Total MCU limit, includes sum of all stressed pins CIn C Input capacitance, all pins — — — 7 pF VRAM C RAM retention voltage — 2.0 — — V 1. 2. 3. 4. Typical values are measured at 25 °C. Characterized, not tested. Only PTB4, PTB5, PTD0, PTD1, PTE0, PTE1, PTH0, and PTH1 support ultra high current output. All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to VSS and VDD. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the large value. 5. Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current conditions. If the positive injection current (VIn > VDD) is higher than IDD, the injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure that external VDD load will shunt current higher than maximum injection current when the MCU is not consuming power, such as no system clock is present, or clock rate is very low (which would reduce overall power consumption). KE02 Sub-Family Data Sheet, Rev3, 07/2013. 8 Freescale Semiconductor, Inc. Nonswitching electrical specifications Table 4. LVD and POR specification Symbol C Description Min Typ Max Unit VPOR D POR re-arm voltage1 1.5 1.75 2.0 V VLVDH C Falling low-voltage detect threshold—high range (LVDV = 1)2 4.2 4.3 4.4 V VLVW1H C Level 1 falling (LVWV = 00) 4.3 4.4 4.5 V VLVW2H C Level 2 falling (LVWV = 01) 4.5 4.5 4.6 V VLVW3H C Level 3 falling (LVWV = 10) 4.6 4.6 4.7 V VLVW4H C Level 4 falling (LVWV = 11) 4.7 4.7 4.8 V VHYSH C High range low-voltage detect/warning hysteresis — 100 — mV VLVDL C Falling low-voltage detect threshold—low range (LVDV = 0) 2.56 2.61 2.66 V VLVW1L C Level 1 falling (LVWV = 00) 2.62 2.7 2.78 V VLVW2L C Level 2 falling (LVWV = 01) 2.72 2.8 2.88 V VLVW3L C Falling lowvoltage warning threshold— low range Level 3 falling (LVWV = 10) 2.82 2.9 2.98 V VLVW4L C Level 4 falling (LVWV = 11) 2.92 3.0 3.08 V VHYSDL C Low range low-voltage detect hysteresis — 40 — mV VHYSWL C Low range low-voltage warning hysteresis — 80 — mV VBG P Buffered bandgap output 3 1.14 1.16 1.18 V Falling lowvoltage warning threshold— high range 1. Maximum is highest voltage that POR is guaranteed. 2. Rising thresholds are falling threshold + hysteresis. 3. voltage Factory trimmed at VDD = 5.0 V, Temp = 25 °C KE02 Sub-Family Data Sheet, Rev3, 07/2013. Freescale Semiconductor, Inc. 9 Nonswitching electrical specifications Typical IOH Vs. VDD-VOH (standard drive strength) (VDD = 5 V) VDD-VOH(V) IOH(mA) Figure 1. Typical IOH Vs. VDD-VOH (standard drive strength) (VDD = 5 V) Typical IOH Vs. VDD-VOH (standard drive strength) (VDD = 3 V) VDD-VOH(V) IOH(mA) Figure 2. Typical IOH Vs. VDD-VOH (standard drive strength) (VDD = 3 V) KE02 Sub-Family Data Sheet, Rev3, 07/2013. 10 Freescale Semiconductor, Inc. Nonswitching electrical specifications Typical IOH Vs. VDD-VOH (high drive strength) (VDD = 5 V) VDD-VOH(V) IOH(mA) Figure 3. Typical IOH Vs. VDD-VOH (high drive strength) (VDD = 5 V) Typical IOH Vs. VDD-VOH (high drive strength) (VDD = 3 V) VDD-VOH(V) IOH(mA) Figure 4. Typical IOH Vs. VDD-VOH (high drive strength) (VDD = 3 V) KE02 Sub-Family Data Sheet, Rev3, 07/2013. Freescale Semiconductor, Inc. 11 Nonswitching electrical specifications Typical IOL Vs. VOL (standard drive strength) (VDD = 5 V) VOL(V) IOL(mA) Figure 5. Typical IOL Vs. VOL (standard drive strength) (VDD = 5 V) Typical IOL Vs. VOL (standard drive strength) (VDD = 3 V) VOL(V) IOL(mA) Figure 6. Typical IOL Vs. VOL (standard drive strength) (VDD = 3 V) KE02 Sub-Family Data Sheet, Rev3, 07/2013. 12 Freescale Semiconductor, Inc. Nonswitching electrical specifications Typical IOL Vs. VOL(high drive strength) (VDD = 5 V) VOL(V) IOL(mA) Figure 7. Typical IOL Vs. VOL (high drive strength) (VDD = 5 V) Typical IOL Vs. VOL(high drive strength) (VDD = 3 V) VOL(V) IOL(mA) Figure 8. Typical IOL Vs. VOL (high drive strength) (VDD = 3 V) KE02 Sub-Family Data Sheet, Rev3, 07/2013. Freescale Semiconductor, Inc. 13 Nonswitching electrical specifications 5.1.2 Supply current characteristics This section includes information about power supply current in various operating modes. Table 5. Supply current characteristics C Parameter Symbol Bus Freq VDD (V) Typical1 Max Unit Temp C Run supply current FEI mode, all modules clocks enabled; run from flash RIDD 20 MHz 5 6.7 — mA –40 to 105 °C 10 MHz 4.5 — 1 MHz 1.5 — 6.6 — mA –40 to 105 °C mA –40 to 105 °C mA –40 to 105 °C mA –40 to 105 °C µA –40 to 105 °C C C 20 MHz C 10 MHz 4.4 — 1 MHz 1.45 — 5.3 — 10 MHz 3.7 — 1 MHz 1.5 — 5.3 — C C Run supply current FEI mode, all modules clocks disabled; run from flash RIDD 20 MHz 3 5 C 20 MHz C 10 MHz 3.7 — 1 MHz 1.4 — P C Run supply current FBE mode, all modules clocks enabled; run from RAM RIDD 20 MHz 3 9 14.8 10 MHz 5 5.2 — 1 MHz 1.45 — 8.8 11.8 P 20 MHz C 10 MHz 5.1 — 1 MHz 1.4 — 8 12.3 4.4 — P C Run supply current FBE mode, all modules clocks disabled; run from RAM RIDD 20 MHz 1 MHz 1.35 — 7.8 9.2 10 MHz 4.2 — 1 MHz 1.3 — 5.5 — 10 MHz 3.5 — 1 MHz 1.4 — 5.4 — 10 MHz 3.4 — 1 MHz 1.4 — 20 MHz C C Wait mode current FEI mode, all modules clocks enabled WIDD C P 20 MHz 20 MHz SIDD P Stop mode supply current no clocks active (except 1 kHz LPO clock)2, 3 C ADC adder to Stop — ADLPC = 1 5 10 MHz P P 3 3 5 3 — 5 2 85 — 3 1.9 80 — 5 86 (64-, 44pin packages) — –40 to 105 °C µA –40 to 105 °C Table continues on the next page... KE02 Sub-Family Data Sheet, Rev3, 07/2013. 14 Freescale Semiconductor, Inc. Nonswitching electrical specifications Table 5. Supply current characteristics (continued) C Parameter Symbol Bus Freq VDD (V) ADLSMP = 1 C Typical1 Max Unit Temp µA –40 to 105 °C 42 (32-pin package) ADCO = 1 3 MODE = 10B ADICLK = 11B 82 (64-, 44pin packages) — 41 (32-pin package) C LVD adder to stop4 — C 1. 2. 3. 4. — 5 128 — 3 124 — Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value. RTC adder causes IDD to increase typically by less than 1 µA; RTC clock source is 1 kHz LPO clock. ACMP adder causes IDD to increase typically by less than 1 µA. LVD is periodically woken up from Stop by 5% duty cycle. The period is equal to or less than 2 ms. 5.1.3 EMC performance Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation play a significant role in EMC performance. The system designer must consult the following Freescale applications notes, available on freescale.com for advice and guidance specifically targeted at optimizing EMC performance. • AN2321: Designing for Board Level Electromagnetic Compatibility • AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers • AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers • AN2764: Improving the Transient Immunity Performance of Microcontroller-Based Applications • AN1259: System Design and Layout Techniques for Noise Reduction in MCUBased Systems KE02 Sub-Family Data Sheet, Rev3, 07/2013. Freescale Semiconductor, Inc. 15 Switching specifications 5.2 Switching specifications 5.2.1 Control timing Table 6. Control timing Symbol Min Typical1 Max Unit fBus DC — 20 MHz fLPO 0.67 1.0 1.25 KHz textrst 1.5 × — — ns — — ns Num C Rating 1 P Bus frequency (tcyc = 1/fBus) 2 P Internal low power oscillator frequency 3 D External reset pulse width 4 D Reset low drive trstdrv 5 D IRQ pulse width Asynchronous path2 tILIH 100 — — ns Synchronous path tIHIL 1.5 × tcyc — — ns Asynchronous path2 tILIH 100 — — ns Synchronous path tIHIL 1.5 × tcyc — — ns Port rise and fall time Normal drive strength (load = 50 pF) — tRise — 10.2 — ns tFall — 9.5 — ns Port rise and fall time high drive strength (load = 50 pF)3 — tRise — 5.4 — ns tFall — 4.6 — ns D 6 D Keyboard interrupt pulse width D 7 C C C C tcyc 34 × tcyc 1. Typical values are based on characterization data at VDD = 5.0 V, 25 °C unless otherwise stated. 2. This is the shortest pulse that is guaranteed to be recognized as a RESET pin request. 3. Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range -40 °C to 105 °C. textrst RESET_b pin Figure 9. Reset timing tIHIL KBIPx IRQ/KBIPx tILIH Figure 10. KBIPx timing KE02 Sub-Family Data Sheet, Rev3, 07/2013. 16 Freescale Semiconductor, Inc. Switching specifications 5.2.2 FTM module timing Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock. Table 7. FTM input timing No. C Function Symbol 1 D External clock frequency 2 D 3 Min Max Unit fTCLK 0 fBus/4 Hz External clock period tTCLK 4 — tcyc D External clock high time tclkh — tcyc 4 D External clock low time tclkl 1.5 — tcyc 5 D Input capture pulse width tICPW 1.5 — tcyc 1.5 tTCLK tclkh TCLK tclkl Figure 11. Timer external clock tICPW FTMCHn FTMCHn tICPW Figure 12. Timer input capture pulse KE02 Sub-Family Data Sheet, Rev3, 07/2013. Freescale Semiconductor, Inc. 17 Thermal specifications 5.3 Thermal specifications 5.3.1 Thermal characteristics This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is userdetermined rather than being controlled by the MCU design. To take PI/O into account in power calculations, determine the difference between actual pin voltage and VSS or VDD and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and VSS or VDD will be very small. Table 8. Thermal attributes Board type Symbol Single-layer (1S) RθJA Four-layer (2s2p) Description 64 LQFP 64 QFP 44 LQFP 32 LQFP Unit Notes Thermal resistance, junction to ambient (natural convection) 71 61 75 86 °C/W 1, 2 RθJA Thermal resistance, junction to ambient (natural convection) 53 47 53 57 °C/W 1, 3 Single-layer (1S) RθJMA Thermal resistance, junction to ambient (200 ft./min. air speed) 59 50 62 72 °C/W 1, 3 Four-layer (2s2p) RθJMA Thermal resistance, junction to ambient (200 ft./min. air speed) 46 41 47 51 °C/W 1, 3 — RθJB Thermal resistance, junction to board 35 32 34 33 °C/W 4 — RθJC Thermal resistance, junction to case 20 23 20 24 °C/W 5 — ΨJT Thermal characterization parameter, junction to package top outside center (natural convection) 5 8 5 6 °C/W 6 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. 2. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal. 3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal. 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. 5. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored. 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization. KE02 Sub-Family Data Sheet, Rev3, 07/2013. 18 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors The average chip-junction temperature (TJ) in °C can be obtained from: TJ = TA + (PD × θJA) Where: TA = Ambient temperature, °C θJA = Package thermal resistance, junction-to-ambient, °C/W PD = Pint + PI/O Pint = IDD × VDD, Watts - chip internal power PI/O = Power dissipation on input and output pins - user determined For most applications, PI/O << Pint and can be neglected. An approximate relationship between PD and TJ (if PI/O is neglected) is: PD = K ÷ (TJ + 273 °C) Solving the equations above for K gives: K = PD × (TA + 273 °C) + θJA × (PD)2 where K is a constant pertaining to the particular part. K can be determined by measuring PD (at equilibrium) for an known TA. Using this value of K, the values of PD and TJ can be obtained by solving the above equations iteratively for any value of TA. 6 Peripheral operating requirements and behaviors 6.1 Core modules 6.1.1 SWD electricals Table 9. SWD full voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 2.7 5.5 V 0 25 MHz 1/J1 — ns 20 — ns SWD_CLK frequency of operation • Serial wire debug J2 SWD_CLK cycle period J3 SWD_CLK clock pulse width Table continues on the next page... KE02 Sub-Family Data Sheet, Rev3, 07/2013. Freescale Semiconductor, Inc. 19 Peripheral operating requirements and behaviors Table 9. SWD full voltage range electricals (continued) Symbol Description Min. Max. Unit • Serial wire debug J4 SWD_CLK rise and fall times — 3 ns J9 SWD_DIO input data setup time to SWD_CLK rise 10 — ns J10 SWD_DIO input data hold time after SWD_CLK rise 0 — ns J11 SWD_CLK high to SWD_DIO data valid — 32 ns J12 SWD_CLK high to SWD_DIO high-Z 5 — ns J2 J3 J3 SWD_CLK (input) J4 J4 Figure 13. Serial wire clock input timing SWD_CLK J9 SWD_DIO J10 Input data valid J11 SWD_DIO Output data valid J12 SWD_DIO J11 SWD_DIO Output data valid Figure 14. Serial wire data timing KE02 Sub-Family Data Sheet, Rev3, 07/2013. 20 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6.2 External oscillator (OSC) and ICS characteristics Table 10. OSC and ICS specifications (temperature range = -40 to 105 °C ambient) Symbol Min Typical1 Max Unit Low range (RANGE = 0) flo 31.25 — 39.0625 kHz High range (RANGE = 1) FEE or FBE mode fhi 4 — 20 MHz C High range (RANGE = 1), high gain (HGO = 1), FBELP mode fhi 4 — 20 MHz C High range (RANGE = 1), low power (HGO = 0), FBELP mode fhi 4 — 20 MHz Num C 1 C C 2 D 3 D 4 5 Oscillator crystal or resonator Load capacitors Feedback resistor Low Frequency, Low-Power Mode — — — MΩ Low Frequency, High-Gain Mode — 10 — MΩ High Frequency, LowPower Mode — 1 — MΩ High Frequency, High-Gain Mode — 1 — MΩ — — — kΩ — 200 — kΩ — — — kΩ 4 MHz — 0 — kΩ 8 MHz — 0 — kΩ 16 MHz — 0 — kΩ — 1000 — ms — 800 — ms — 3 — ms — 1.5 — ms tIRST — 20 50 µs fextal 0.03125 — 5 MHz 0 — 20 MHz Low-Power Mode 4 D Series resistor High Frequency Mode4 D Series resistor High Frequency, High-Gain Mode D C C C C 7 T 8 D D Crystal start-up time low range = 31.25 kHz crystal; High range = 20 MHz crystal, 6 RF RS High-Gain Mode Low-Power Low range, low power RS tCSTL Low range, high power High range, low power tCSTH High range, high power Internal reference start-up time Square wave input clock frequency See Note3 C1, C2 Series resistor Low Frequency D D 6 Characteristic FEE or FBE mode2 FBELP mode 9 P Average target internal reference frequency trimmed fint_t — 31.25 — kHz 10 P DCO output frequency range - trimmed fdco_t 16 — 20 MHz 11 P Δfdco_t — — ±2.0 %fdco C C 12 C Total deviation of DCO output from trimmed frequency5 Over full voltage and temperature range ±1.5 Over fixed voltage and temperature range of 0 to 70 °C FLL acquisition time5, 7 ±1.0 tAcquire — — 2 ms Table continues on the next page... KE02 Sub-Family Data Sheet, Rev3, 07/2013. Freescale Semiconductor, Inc. 21 Peripheral operating requirements and behaviors Table 10. OSC and ICS specifications (temperature range = -40 to 105 °C ambient) (continued) Num C Characteristic Symbol Min Typical1 Max Unit 13 C Long term jitter of DCO output clock (averaged over 2 ms interval)8 CJitter — 0.02 0.2 %fdco 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value. 2. When ICS is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz. 3. See crystal or resonator manufacturer's recommendation. 4. Load capacitors (C1,C2), feedback resistor (RF) and series resistor (RS) are incorporated internally when RANGE = HGO = 0. 5. This parameter is characterized and not tested on each device. 6. Proper PC board layout procedures must be followed to achieve specifications. 7. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, DMX32 bit is changed, DRS bit is changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 8. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBus. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage for a given interval. OSC EXTAL XTAL RS RF Crystal or Resonator C1 C2 Figure 15. Typical crystal or resonator circuit 6.3 NVM specifications This section provides details about program/erase times and program/erase endurance for the flash and EEPROM memories. Table 11. Flash and EEPROM characteristics C Characteristic Symbol Min1 Typical2 Max3 Unit4 D Supply voltage for program/erase –40 °C to 105 °C Vprog/erase 2.7 — 5.5 V D Supply voltage for read operation VRead 2.7 — 5.5 V Table continues on the next page... KE02 Sub-Family Data Sheet, Rev3, 07/2013. 22 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 11. Flash and EEPROM characteristics (continued) 1. 2. 3. 4. C Characteristic Symbol Min1 Typical2 Max3 Unit4 D NVM Bus frequency fNVMBUS 1 — 25 MHz D NVM Operating frequency fNVMOP 0.8 1 1.05 MHz D Erase Verify All Blocks tVFYALL — — 17338 tcyc D Erase Verify Flash Block tRD1BLK — — 16913 tcyc D Erase Verify EEPROM Block tRD1BLK — — 810 tcyc D Erase Verify Flash Section tRD1SEC — — 484 tcyc D Erase Verify EEPROM Section tDRD1SEC — — 555 tcyc D Read Once tRDONCE — — 450 tcyc D Program Flash (2 word) tPGM2 0.12 0.12 0.29 ms D Program Flash (4 word) tPGM4 0.20 0.21 0.46 ms D Program Once tPGMONCE 0.20 0.21 0.21 ms D Program EEPROM (1 Byte) tDPGM1 0.10 0.10 0.27 ms D Program EEPROM (2 Byte) tDPGM2 0.17 0.18 0.43 ms D Program EEPROM (3 Byte) tDPGM3 0.25 0.26 0.60 ms D Program EEPROM (4 Byte) tDPGM4 0.32 0.33 0.77 ms D Erase All Blocks tERSALL 96.01 100.78 101.49 ms D Erase Flash Block tERSBLK 95.98 100.75 101.44 ms D Erase Flash Sector tERSPG 19.10 20.05 20.08 ms D Erase EEPROM Sector tDERSPG 4.81 5.05 20.57 ms D Unsecure Flash tUNSECU 96.01 100.78 101.48 ms D Verify Backdoor Access Key tVFYKEY — — 464 tcyc D Set User Margin Level tMLOADU — — 407 tcyc C FLASH Program/erase endurance TL to TH = -40 °C to 105 °C nFLPE 10 k 100 k — Cycles C EEPROM Program/erase endurance TL to TH = -40 °C to 105 °C nFLPE 50 k 500 k — Cycles C Data retention at an average junction temperature of TJavg = 85°C after up to 10,000 program/erase cycles tD_ret 15 100 — years Minimum times are based on maximum fNVMOP and maximum fNVMBUS Typical times are based on typical fNVMOP and maximum fNVMBUS Maximum times are based on typical fNVMOP and typical fNVMBUS plus aging tcyc = 1 / fNVMBUS Program and erase operations do not require any special power sources other than the normal VDD supply. For more detailed information about program/erase operations, see the Flash Memory Module section in the reference manual. KE02 Sub-Family Data Sheet, Rev3, 07/2013. Freescale Semiconductor, Inc. 23 Peripheral operating requirements and behaviors 6.4 Analog 6.4.1 ADC characteristics Table 12. 5 V 12-bit ADC operating conditions Characteri stic Conditions Symb Min Typ1 Max Unit Comment Supply voltage Absolute VDDA 2.7 — 5.5 V — Delta to VDD (VDD-VDDAD) ΔVDDA -100 0 +100 mV )1 ΔVSSA -100 0 +100 mV Input voltage VADIN VREFL — VREFH V Input capacitance CADIN — 4.5 5.5 pF Input resistance RADIN — 3 5 kΩ — RAS — — 2 kΩ External to MCU — — 5 — — 5 — — 10 — — 10 0.4 — 8.0 MHz — 0.4 — 4.0 Ground voltage Analog source resistance Delta to VSS (VSS-VSSA • • 12-bit mode fADCK > 4 MHz fADCK < 4 MHz • • 10-bit mode fADCK > 4 MHz fADCK < 4 MHz 8-bit mode (all valid fADCK) ADC conversion clock frequency High speed (ADLPC=0) Low power (ADLPC=1) fADCK 1. Typical values assume VDDA = 5.0 V, Temp = 25°C, fADCK=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 1. DC potential difference. KE02 Sub-Family Data Sheet, Rev3, 07/2013. 24 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT z ADIN SIMPLIFIED CHANNEL SELECT CIRCUIT Pad leakage due to input protection ZAS R AS ADC SAR ENGINE R ADIN v ADIN C AS v AS R ADIN INPUT PIN R ADIN INPUT PIN R ADIN INPUT PIN C ADIN Figure 16. ADC input impedance equivalency diagram Table 13. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) Characteristic Conditions Supply current C Symb Min Typ1 Max Unit T IDDA — 133 — µA T IDDA — 218 — µA T IDDA — 327 — µA T IDDAD — 582 990 µA ADLPC = 1 ADLSMP = 1 ADCO = 1 Supply current ADLPC = 1 ADLSMP = 0 ADCO = 1 Supply current ADLPC = 0 ADLSMP = 1 ADCO = 1 Supply current ADLPC = 0 ADLSMP = 0 ADCO = 1 Supply current Stop, reset, module off T IDDA — 0.011 1 µA ADC asynchronous clock source High speed (ADLPC = 0) P fADACK 2 3.3 5 MHz Table continues on the next page... KE02 Sub-Family Data Sheet, Rev3, 07/2013. Freescale Semiconductor, Inc. 25 Peripheral operating requirements and behaviors Table 13. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued) Characteristic Conditions C Symb Low power (ADLPC = 1) Conversion time (including sample time) Short sample (ADLSMP = 0) Sample time Short sample (ADLSMP = 0) T tADC Long sample (ADLSMP = 1) T tADS Long sample (ADLSMP = 1) Total unadjusted Error Typ1 Max 1.25 2 3.3 — 20 — — 40 — — 3.5 — — 23.5 — 12-bit mode T — ±5.0 — 10-bit mode P — ±1.5 ±2.0 8-bit mode P — ±0.7 ±1.0 12-bit mode T — ±1.0 — 10-bit mode P — ±0.25 ±0.5 mode3 P — ±0.15 ±0.25 Integral Non-Linearity 12-bit mode T — ±1.0 — 10-bit mode T — ±0.3 ±0.5 — ±0.15 ±0.25 — ±2.0 — Differential NonLiniarity 8-bit ETUE Min DNL INL Unit ADCK cycles ADCK cycles LSB LSB2 LSB2 8-bit mode T 12-bit mode C 10-bit mode P — ±0.25 ±1.0 8-bit mode P — ±0.65 ±1.0 12-bit mode T — ±2.5 — 10-bit mode T — ±0.5 ±1.0 8-bit mode T — ±0.5 ±1.0 Quantization error ≤12 bit modes D EQ — — ±0.5 LSB2 Input leakage error7 all modes D EIL Temp sensor slope -40 °C–25 °C D m mV/°C Zero-scale error Full-scale error6 EZS EFS 25 °C–125 °C Temp sensor voltage 25 °C D VTEMP25 IIn * RAS LSB2 LSB2 mV — 3.266 — — 3.638 — — 1.396 — V 1. Typical values assume VDDA = 5.0 V, Temp = 25 °C, fADCK=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2. 1 LSB = (VREFH - VREFL)/2N 3. Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes 4. VADIN = VDDA 5. IIn = leakage current (refer to DC characteristics) KE02 Sub-Family Data Sheet, Rev3, 07/2013. 26 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6.4.2 Analog comparator (ACMP) electricals Table 14. Comparator electrical specifications C Characteristic Symbol Min Typical Max Unit D Supply voltage VDDA 2.7 — 5.5 V T Supply current (Operation mode) IDDA — 10 20 µA D Analog input voltage VAIN VSS - 0.3 — VDDA V P Analog input offset voltage VAIO — — 40 mV C Analog comparator hysteresis (HYST=0) VH — 15 20 mV C Analog comparator hysteresis (HYST=1) VH — 20 30 mV T Supply current (Off mode) IDDAOFF — 60 — nA C Propagation Delay tD — 0.4 1 µs 6.5 Communication interfaces 6.5.1 SPI switching specifications The serial peripheral interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's reference manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20% VDD and 70% VDD, unless noted, and 100 pF load on all SPI pins. All timing assumes slew rate control is disabled and high-drive strength is enabled for SPI output pins. Table 15. SPI master mode timing Nu m. Symbol Description Min. Max. Unit Comment 1 fop fBus/2048 fBus/2 Hz fBus is the bus clock 2 tSPSCK 2 x tBus 2048 x tBus ns tBus = 1/fBus 3 tLead Enable lead time 1/2 — tSPSCK — 4 tLag Enable lag time 1/2 — tSPSCK — 5 tWSPSCK 6 tSU Data setup time (inputs) tBus – 30 1024 x tBus ns — 15 — ns — 7 tHI Data hold time (inputs) 0 — ns — 8 tv Data valid (after SPSCK edge) — 25 ns — 9 tHO Data hold time (outputs) 0 — ns — 10 tRI Rise time input — tBus – 25 ns — Frequency of operation SPSCK period Clock (SPSCK) high or low time Table continues on the next page... KE02 Sub-Family Data Sheet, Rev3, 07/2013. Freescale Semiconductor, Inc. 27 Peripheral operating requirements and behaviors Table 15. SPI master mode timing (continued) Nu m. 11 Symbol Description tFI Fall time input tRO Rise time output tFO Fall time output Min. Max. Unit Comment — 25 ns — SS1 (OUTPUT) 3 2 SPSCK (CPOL = 0) (OUTPUT) 10 11 10 11 4 5 5 SPSCK (CPOL = 1) (OUTPUT) 6 7 MISO (INPUT) MSB IN2 BIT 6 . . . 1 LSB IN 8 MOSI (OUTPUT) MSB OUT2 9 BIT 6 . . . 1 LSB OUT 1. If configured as an output. 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 17. SPI master mode timing (CPHA=0) SS1 (OUTPUT) 2 SPSCK (CPOL = 0) (OUTPUT) SPSCK (CPOL = 1) (OUTPUT) 3 5 6 MISO (INPUT) 5 10 11 10 11 4 7 MSB IN2 8 MOSI 2 (OUTPUT)PORT DATA MASTER MSB OUT BIT 6 . . . 1 LSB IN 9 BIT 6 . . . 1 MASTER LSB OUT PORT DATA 1.If configured as output 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 18. SPI master mode timing (CPHA=1) KE02 Sub-Family Data Sheet, Rev3, 07/2013. 28 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 16. SPI slave mode timing Nu m. Symbol Description 1 fop 2 tSPSCK 3 tLead Enable lead time 4 tLag Enable lag time 5 tWSPSCK 6 tSU 7 Min. Max. Unit Comment 0 fBus/4 Hz fBus is the bus clock as defined in . 4 x tBus — ns tBus = 1/fBus 1 — tBus — Frequency of operation SPSCK period 1 — tBus — tBus - 30 — ns — Data setup time (inputs) 15 — ns — tHI Data hold time (inputs) 25 — ns — 8 ta Slave access time — tBus ns Time to data active from high-impedance state 9 tdis Slave MISO disable time — tBus ns Hold time to highimpedance state 10 tv Data valid (after SPSCK edge) — 25 ns — 11 tHO Data hold time (outputs) 0 — ns — 12 tRI Rise time input — tBus - 25 ns — tFI Fall time input tRO Rise time output — 25 ns — tFO Fall time output 13 Clock (SPSCK) high or low time SS (INPUT) 2 SPSCK (CPOL = 0) (INPUT) 5 3 SPSCK (CPOL = 1) (INPUT) 13 4 12 13 9 8 MISO (OUTPUT) 5 12 10 see note 6 MOSI (INPUT) SLAVE MSB BIT 6 . . . 1 11 11 SLAVE LSB OUT SEE NOTE 7 MSB IN BIT 6 . . . 1 LSB IN NOTE: Not defined Figure 19. SPI slave mode timing (CPHA = 0) KE02 Sub-Family Data Sheet, Rev3, 07/2013. Freescale Semiconductor, Inc. 29 Dimensions SS (INPUT) 4 2 3 SPSCK (CPOL = 0) (INPUT) 5 SPSCK (CPOL = 1) (INPUT) 5 see note 8 MOSI (INPUT) 13 12 13 9 11 10 MISO (OUTPUT) 12 SLAVE MSB OUT 6 BIT 6 . . . 1 SLAVE LSB OUT 7 MSB IN LSB IN BIT 6 . . . 1 NOTE: Not defined Figure 20. SPI slave mode timing (CPHA=1) 7 Dimensions 7.1 Obtaining package dimensions Package dimensions are provided in package drawings. To find a package drawing, go to freescale.com and perform a keyword search for the drawing’s document number: If you want the drawing for this package Then use this document number 32-pin LQFP 98ASH70029A 44-pin LQFP 98ASS23225W 64-pin QFP 98ASB42844B 64-pin LQFP 98ASS23234W KE02 Sub-Family Data Sheet, Rev3, 07/2013. 30 Freescale Semiconductor, Inc. Pinout 8 Pinout 8.1 Signal multiplexing and pin assignments The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin. Table 17. Pin availability by package pin-count Pin Number Lowest Priority <-- --> Highest 64-QFP/ LQFP 44-LQFP 32-LQFP Port Pin Alt 1 Alt 2 Alt 3 Alt 4 1 1 1 PTD11 KBI1_P1 FTM2_CH3 SPI1_MOSI — KBI1_P0 FTM2_CH2 SPI1_SCK — — — — 2 2 2 PTD01 3 — — PTH7 — 4 — — PTH6 — — — — 5 3 — PTE7 — FTM2_CLK — FTM1_CH1 6 4 — PTH2 — BUSOUT — FTM1_CH0 7 5 3 — — — — VDD 8 6 4 — — — VDDA VREFH2 9 7 5 — — — — VREFL 10 8 6 — — — VSSA VSS3 11 9 7 PTB7 — I2C0_SCL — EXTAL 12 10 8 PTB6 — I2C0_SDA — XTAL 13 11 — — — — — VSS 14 — — PTH11 — FTM2_CH1 — — — FTM2_CH0 — — 15 — — PTH01 16 — — PTE6 — — — — 17 — — PTE5 — — — — 9 PTB51 FTM2_CH5 SPI0_PCS0 ACMP1_OUT — FTM2_CH4 SPI0_MISO NMI ACMP1_IN2 18 12 19 13 10 PTB41 20 14 11 PTC3 FTM2_CH3 — — ADC0_SE11 21 15 12 PTC2 FTM2_CH2 — — ADC0_SE10 22 16 — PTD7 KBI1_P7 UART2_TX — — 23 17 — PTD6 KBI1_P6 UART2_RX — — 24 18 — PTD5 KBI1_P5 — — — 25 19 13 PTC1 — FTM2_CH1 — ADC0_SE9 26 20 14 PTC0 — FTM2_CH0 — ADC0_SE8 27 — — PTF7 — — — ADC0_SE15 Table continues on the next page... KE02 Sub-Family Data Sheet, Rev3, 07/2013. Freescale Semiconductor, Inc. 31 Pinout Table 17. Pin availability by package pin-count (continued) Pin Number Lowest Priority <-- --> Highest 64-QFP/ LQFP 44-LQFP 32-LQFP Port Pin Alt 1 Alt 2 Alt 3 Alt 4 28 — — PTF6 — — — ADC0_SE14 29 — — PTF5 — — — ADC0_SE13 30 — — PTF4 — — — ADC0_SE12 31 21 15 PTB3 KBI0_P7 SPI0_MOSI FTM0_CH1 ADC0_SE7 32 22 16 PTB2 KBI0_P6 SPI0_SCK FTM0_CH0 ADC0_SE6 33 23 17 PTB1 KBI0_P5 UART0_TX — ADC0_SE5 34 24 18 PTB0 KBI0_P4 UART0_RX — ADC0_SE4 35 — — PTF3 — — — — 36 — — PTF2 — — — — 37 25 19 PTA7 — FTM2_FLT2 ACMP1_IN1 ADC0_SE3 38 26 20 PTA6 — FTM2_FLT1 ACMP1_IN0 ADC0_SE2 39 — — PTE4 — — — — 40 27 — — — — — VSS 41 28 — — — — — VDD 42 — — PTF1 — — — — 43 — — PTF0 — — — — 44 29 — PTD4 KBI1_P4 — — — 45 30 21 PTD3 KBI1_P3 SPI1_PCS0 — — 46 31 22 PTD2 KBI1_P2 SPI1_MISO — — 23 PTA34 KBI0_P3 UART0_TX I2C0_SCL — KBI0_P2 UART0_RX I2C0_SDA — 47 32 48 33 24 PTA24 49 34 25 PTA1 KBI0_P1 FTM0_CH1 ACMP0_IN1 ADC0_SE1 50 35 26 PTA0 KBI0_P0 FTM0_CH0 ACMP0_IN0 ADC0_SE0 51 36 27 PTC7 — UART1_TX — — 52 37 28 PTC6 — UART1_RX — — 53 — — PTE3 — SPI0_PCS0 — — 54 38 — PTE2 — SPI0_MISO — — 55 — — PTG3 — — — — 56 — — PTG2 — — — — 57 — — PTG1 — — — — 58 — — PTG0 — — — — 59 39 — PTE11 — SPI0_MOSI — — — SPI0_SCK FTM1_CLK — 60 40 — PTE01 61 41 29 PTC5 — FTM1_CH1 — RTCO 62 42 30 PTC4 RTCO FTM1_CH0 ACMP0_IN2 SWD_CLK 63 43 31 PTA5 IRQ FTM0_CLK — RESET 64 44 32 PTA4 — ACMP0_OUT — SWD_DIO 1. This is a high-current drive pin when operated as output. KE02 Sub-Family Data Sheet, Rev3, 07/2013. 32 Freescale Semiconductor, Inc. Pinout 2. VREFH and VDDA are internally connected. 3. VSSA and VSS are internally connected. 4. This is a true open-drain pin when operated as output. Note When an alternative function is first enabled, it is possible to get a spurious edge to the module. User software must clear any associated flags before interrupts are enabled. Table 17 illustrates the priority if multiple modules are enabled. The highest priority module will have control over the pin. Selecting a higher priority pin function with a lower priority function already enabled can cause spurious edges to the lower priority module. Disable all modules that share a pin before enabling another module. PTE3 PTC6 PTC7 PTA0 PTA1 52 51 50 49 PTE2 PTG1 57 54 PTG0 58 53 PTE11 59 PTG2 PTE01 PTG3 PTC5 60 55 PTC4 62 61 56 PTA4 PTA5 64 63 8.2 Device pin assignment PTD1 1 1 48 PTA22 PTD0 1 2 47 PTA32 PTD2 PTH7 3 46 PTH6 4 45 PTD3 PTE7 5 44 PTD4 PTH2 VDD 6 43 PTF0 7 42 PTF1 8 41 VDD 9 40 VSS 10 39 PTE4 PTA6 VDDA/VREFH VREFL VSSA/VSS 32 29 PTF5 PTB2 28 31 27 PTF7 PTF6 30 26 PTC0 PTF4 25 PTC1 PTB3 24 PTB1 PTD5 33 23 16 22 PTB0 PTE6 PTD6 PTF3 34 PTD7 35 15 21 14 PTH01 PTC2 PTH11 19 PTF2 20 PTA7 36 PTB4 1 PTC3 37 13 17 12 VSS 18 38 PTE5 11 PTB5 1 PTB7 PTB6 Pins in bold are not available on less pi n-count packages. 1. High source/sink current pins 2. True open drain pins Figure 21. 64-pin QFP/LQFP packages KE02 Sub-Family Data Sheet, Rev3, 07/2013. Freescale Semiconductor, Inc. 33 PTC6 PTC7 PTA0 PTA1 36 35 34 PTE2 38 37 PTE01 PTE11 PTC5 41 39 PTC4 42 40 PTA4 PTA5 43 44 Revision history PTB0 23 PTB1 22 24 11 21 10 VSS PTB2 PTA7 PTB3 PTA6 PTB7 PTB6 20 26 25 PTC0 8 9 19 VSS 18 VDD 27 PTC1 28 7 PTD5 6 VREFL VSSA/VSS 17 PTD4 PTD6 29 16 5 PTD7 PTD3 VDD VDDA/VREFH 15 30 14 4 PTC2 PTH2 PTC3 3 31 PTA32 PTE7 13 PTA22 32 12 33 2 PTB4 1 1 PTD0 1 PTB5 1 PTD1 1 PTD2 Pins in bold are not available on less pi n-count packages. 1. High source/sink current pins 2. True open drain pins PTC6 PTA0 PTA1 26 25 PTC5 29 PTC7 PTC4 30 28 PTA5 31 27 PTA4 32 Figure 22. 44-pin LQFP package PTD1 1 1 24 PTA22 PTD0 1 2 23 PTA32 VDD VDDA/VREFH 3 22 PTD2 4 21 PTD3 13 14 15 16 PTB3 PTB2 PTB1 PTC0 17 PTC1 8 11 PTB0 PTB6 12 PTA7 18 PTC3 19 7 PTC2 6 PTB7 10 PTA6 PTB4 1 20 9 5 PTB5 1 VREFL VSSA/VSS 1. High source/sink current pins 2. True open drain pins Figure 23. 32-pin LQFP package 9 Revision history The following table provides a revision history for this document. KE02 Sub-Family Data Sheet, Rev3, 07/2013. 34 Freescale Semiconductor, Inc. Revision history Table 18. Revision history Rev. No. Date 3 07/2013 Substantial Changes Initial public release. KE02 Sub-Family Data Sheet, Rev3, 07/2013. Freescale Semiconductor, Inc. 35 How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale, the Freescale logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex-M0+ are the registered trademarks of ARM Limited. ©2013 Freescale Semiconductor, Inc. Document Number MKE02P64M20SF0 Revision 3, 07/2013