TI SN75ALS085NT

SN75ALS085
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER
SLLS054B – APRIL 1989 – REVISED MAY 1995
D
D
D
D
D
D
D
D
D
DW OR NT PACKAGE
(TOP VIEW)
Meets or Exceeds the Requirements of IOS
8802.3:1989 and ANSI/IEEE Std 802.3-1988
Interdevice Loop-Back Paths for System
Testing
Squelch Function Implemented on the
Receiver Inputs
Drivers Will Drive a Balanced 78-Ω Load
Transformer Coupling Not Required in
System
Power-Up/Power-Down Protection (Glitch
Free)
Isolated Ground Pins for Reduced Noise
Coupling
Fault-Condition Protection Built into the
Device
Driver Inputs Are Level-Shifted ECL
Compatible
TXI1
TXEN1
LOOP1
GND
RXEN1
RXO1
RXO2
RXEN2
GND
LOOP2
TXEN2
TXI2
1
24
2
23
3
22
4
21
5
20
6
19
7
18
8
17
9
16
10
15
11
14
12
13
TXO1
TXO1
VCC
RXI1
RXI1
GND
GND
RXI2
RXI2
VCC
TXO2
TXO2
description
The SN75ALS085 is a monolithic, high-speed, advanced low-power Schottky, dual-channel driver/receiver
device designed for use in the AUI of ANSI/IEEE Std 802.3-1988. The two drivers on the device drive a 78-Ω
balanced, terminated twisted-pair transmission line up to a maximum length of 50 meters. In the off (idle) state,
the drivers maintain minimal differential output voltage on the twisted-pair line and, at the same time, remain
within the required output common-mode range.
With the driver enable (TXEN) high, upon receiving the first falling edge into the driver input, the differential
outputs will rise to full-amplitude output levels within 25 ns. The output amplitude is maintained for the remainder
of the packet. After the last positive packet edge is transmitted into the driver, the driver will maintain a minimum
of 70% full differential output for a minimum of 200 ns, then decay to a minimum level for the reset (idle) condition
within 8 µs. Disabling the driver by taking the driver enable low will also force the output into the idle condition
after the normal 8-µs timeout. While operating, the drivers are able to withstand a set of fault conditions and not
suffer damage due to the faults being applied. The drivers power up in the idle state to ensure that no activity
is placed on the twisted-pair cable that could be interpreted as network traffic.
The line receiver squelch function interfaces to a differential twisted-pair line terminated external to the device.
The receiver squelch circuit allows differential receive signals to pass through as long as the input amplitude
and pulse duration are greater than the minimum squelch threshold. This ensures a good signal-to-noise ratio
while the data path is active and prevents system noise from causing false data transitions during line shutdown
and line-idle conditions. The RXO outputs default to a high level and the RXEN outputs default to a low level
while the squelch function is blocking the data path through the receiver (idle). The line receiver squelch will
become active within 50 ns when the input squelch threshold is exceeded. RXEN will be driven high when the
squelch circuit is allowing data to pass through the receiver. The receiver squelch circuit can also withstand a
set of fault conditions while operating without causing permanent damage to the device.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  1995, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SN75ALS085
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER
SLLS054B – APRIL 1989 – REVISED MAY 1995
description (continued)
The purpose of the loop functions is to provide a means by which system data path verification can be done
to isolate faulty interfaces and assist in network diagnosis. The LOOP pins are TTL compatible and must be
held high for normal operation. When LOOP1 is taken low, the output of driver 1 (TXO1) immediately goes into
the idle state. Also, the input to receiver 1 is ignored and a path from TXI1 to RXO1 is established. When LOOP1
is taken back high, driver 1 and receiver 1 revert back to their normal operation. When LOOP2 is taken low, a
similar data path is established between TXI1 and RXO2. TXEN1 must be high for the loop functions to operate
and TXEN1 can be used to gate the loop function if desired. During loop operation, the respective receiver
enable output (RXEN) will reflect the status of TXEN1.
Function Tables
RECEIVER – LOOP = H
OUTPUTS
RXI
VID = 1315 mV to –175 mV,
VID = –275 mV to –1315 mV,
VID = 318 mV to 1315 mV,
VID = 318 mV to 1315 mV,
PREVIOUS RXEN
RXEN
RXO
tw < 25 ns
L
L
H
tw > 50 ns
tw < 142 ns
tw > 187 ns
X
H
L
H
H
H
X
L
H
H = high level, L = low level, X = don’t care
DRIVER – LOOP = H
TXI
TXEN
PREVIOUS TXO
OUTPUT TXO
L
L
Idle
Idle
H
L
Idle
Idle
↓
H
Idle
L
L
H
Active
L
H < 260 µs
H
Active
H
H > 8 µs
H
Active
Idle
L
L > 8 µs
Active
Idle
H < 260 ns
L > 8 µs
Active
Idle
H < 260 ns
L < 260 ns
Active
H
H > 8 µs
L < 260 ns
Active
Idle
L
L < 260 ns
Active
L
H = VI ≥ VT max, L = VI ≤ VT min
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN75ALS085
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER
SLLS054B – APRIL 1989 – REVISED MAY 1995
Function Tables (continued)
LOOP
INPUTS
OUTPUTS
LOOP1
LOOP2
TXI1
TXEN1
RXI1
RXI2
RXO1
RXO2
RXEN1
RXEN2
TXO1
L
L
L
H
X
X
L
L
H
H
Idle
L
L
H
H
X
X
H
H
H
H
Idle
L
L
X
L
X
X
H
H
L
L
Idle
L
H
L
H
X
Normal
L
Normal
H
Normal
Idle
L
H
H
H
X
Normal
H
Normal
H
Normal
Idle
L
H
X
L
X
Normal
H
Normal
L
Normal
Idle
H
L
L
H
Normal
X
Normal
L
Normal
H
Idle
H
L
H
H
Normal
X
Normal
H
Normal
H
Idle
H
L
X
L
Normal
X
Normal
H
Normal
L
Idle
H
H
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal
H = high level, L = low level, X = don’t care
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SN75ALS085
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER
SLLS054B – APRIL 1989 – REVISED MAY 1995
logic diagram (positive logic)
RX11
RX11
20
21
+
–
225 mV
Noise
Filter
5
6
LOOP1
TXI1
TXEN1
LOOP2
3
1
24
23
ECL/TTL
2
250 ns
4 µS
X1
TXI2
TXEN2
4
RXO1
TXO1
TXO1
1
1
10
7
RXI2
RXI2
RXEN1
150 ns
17
16
+
–
225 mV
12
11
150 ns
Noise
Filter
8
14
13
ECL/TTL
250 ns
4 µS
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
X1
1
1
RXO2
RXEN2
TXO2
TXO2
SN75ALS085
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER
SLLS054B – APRIL 1989 – REVISED MAY 1995
schematics of inputs and outputs
RXI AND RXI INPUTS
LOOP AND TXEN INPUTS
VCC
VCC
20 kΩ
4 kΩ
4 kΩ
4 kΩ
RXI
RXI
4 kΩ
ESD
ESD
3 kΩ
4 kΩ
LOOP
and
TXEN
ESD
+
1 kΩ
–
TXI INPUTS
VCC
RXO AND RXEN OUTPUTS
VCC
200 Ω
50 Ω
TXI
ESD
50 kΩ
RXO
and
RXEN
5 kΩ
ESD
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SN75ALS085
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER
SLLS054B – APRIL 1989 – REVISED MAY 1995
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V
TXI and LOOP input voltage, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V
TXO and TXO output voltage, VO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 V
RXI and RXI input voltage, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 V
RXO and RXEN output voltage, VO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating free-air temperature range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65 °C to 150 °C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
NOTE 1: Voltage values are with respect to network ground terminal.
DISSIPATION RATING TABLE
PACKAGE
TA ≤ 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
DW
1350 mW
10.8 mW/°C
864 mW
NT
1250 mW
10.0 mW/°C
800 mW
recommended operating conditions
Supply voltage, VCC
Common-mode voltage at RXI inputs, VIC
Differential voltage between RXI inputs, VID
High-level input voltage, LOOP and TXEN, VIH
MIN
NOM
MAX
UNIT
4.75
5
5.25
V
1
4.2
V
±318
±1315
2
Low-level input voltage, LOOP and TXEN, VIL
mV
V
0.8
V
High-level output current, RXO and RXEN, IOH
– 0.4
mA
Low-level output voltage, RXO and RXEN, IOL
16
mA
Setup time, driver mode, TXEN high before TXI↓, tsu1 (see Figure 7)
10
ns
Setup time, loop mode, LOOP low before TXEN↑, tsu2 (see Figure 9)
15
ns
Setup time, loop mode, TXEN high before TXI↓, tsu3 (see Figure 9)
10
ns
Hold time, loop mode, TXEN high after TXI↑, th1 (see Figure 8)
10
ns
Hold time, loop mode, LOOP low after TXEN↓, th2 (see Figure 8)
15
Operating free-air temperature, TA
6
0
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
ns
70
°C
SN75ALS085
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER
SLLS054B – APRIL 1989 – REVISED MAY 1995
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted)
PARAMETER
VIK
TEST CONDITIONS
Clamp voltage at all inputs
TA = 0°C
V(TO)
( )
MIN
II = – 18 mA
Driver input (TXI) threshold voltage
TA = 25°C
TA = 70°C
VOD
Driver output (TXO) common-mode voltage
Driver output (TXO) differential voltage
3.752
3.389
3.998
VCC = 5.25 V
VCC = 4.75 V
3.577
4.244
3.213
3.797
VCC = 5 V
VCC = 5.25 V
3.400
4.043
3.588
4.289
VCC = 4.75 V
VCC = 5 V
3.239
3.849
3.426
4.095
VCC = 5.25 V
3.614
4.341
– 275
Idle
LOOP1 at 2 V,
See Figure 1
Active
TXEN at 2 V,
LOOP2 at 2 V,
See Figure 1
Active
1
4.2
LOOP1 at 2 V,
TXI at 3.2 V,
1
4.2
TXEN at 2 V,
LOOP2 at 2 V,
See Figure 1
LOOP1 at 2 V,
TXI at 4.4 V,
1
4.2
Idle
TXEN at 0.8 V,
LOOP2 at 2 V,
LOOP1 at 2 V,
See Figure 1
Active
TXEN at 2 V,
LOOP2 at 2 V,
See Figure 1
LOOP1 at 2 V,
TXI at 3.2 V,
– 600
1315
Active
TXEN at 2 V,
LOOP2 at 2 V,
See Figure 1
LOOP1 at 2 V,
TXI at 4.4 V,
600
1315
High-level output voltage
RXO, RXEN
Low-level output voltage
RXO, RXEN
IIH
High-level input current
TXEN, LOOP
TXI
RXI, RXI
TXEN, LOOP
Low level input current
Low-level
V
3.202
TXEN at 0.8 V,
LOOP2 at 2 V,
VOH
VOL
IIL
UNIT
– 1.5
VCC = 4.75 V
VCC = 5 V
Receiver differential input threshold voltage
VOC
MAX
TXI
RXI, RXI
IOD
Driver differential output current
Idle
IOS
Short-circuit output current†
RXO, RXEN
ICC
Supply current
IOH = – 0.4 mA
IOL = 16 mA
2.4
V
mV
V
mV
V
0.5
V
20
400
VIC = 1 V to 4.2 V
µA
1000
– 200
VI = 3.1 V
VI = 0.3 V
VID = 0.5 V,
TXEN at 0.8 V,
LOOP2 at 2 V,
V
± 40
VI = 2 V
VI = 4.5 V
VID = – 0.5 V,
VI = 0.8 V
V
100
4
VIC = 1 V to 4.2 V
RXI at 3 V,
LOOP2 at 2 V,
TXI at 4.5 V,
TXEN at 2 V,
Outputs open
mA
1000
LOOP1 at 2 V,
See Figure 2
VO at 0 V,
RXI at 2 V
10
– 40
±4
mA
– 150
mA
225
mA
† Not more than one output should be shorted at a time, and the duration of the test should not exceed 1 second.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
SN75ALS085
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER
SLLS054B – APRIL 1989 – REVISED MAY 1995
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
TEST CONDITIONS†
PARAMETER
Driver fault condition current
Receiver fault condition current
MAX
Current measured in short
150
TXO at 0 V,
TXO is open,
Current measured at TXO
150
TXO is open,
TXO at 0,
Current measured at TXO
150
TXO at 0 V,
TXO at 0 V,
Current measured at TXO and TXO
150
TXO at 16 V,
TXO is open,
Current measured at TXO
150
TXO is open,
TXO at 16 V,
Current measured at TXO
150
TXO at 16 V,
TXO at 16 V,
Current measured at TXO and TXO
150
RXI shorted to RXI,
Current measured in short
RXI at 0 V,
RXI is open,
Current measured at RXI
3
RXI is open,
RXI at 0 V,
Current measured at RXI
3
RXI at 0 V,
Current measured at RXI and RXI
RXI at 16 V,
RXI at open,
Current measured at RXI
10
RXI at open,
RXI at 16 V,
Current measured at RXI
10
RXI at 16 V,
RXI at 16 V,
Current measured at RXI and RXI
10
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
UNIT
mA
10
RXI at 0 V,
† Fault conditions should be measured on only one channel at a time.
8
MIN
TXO shorted to TXO,
3
mA
SN75ALS085
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER
SLLS054B – APRIL 1989 – REVISED MAY 1995
switching characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted)
driver
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
TEST CONDITIONS
MIN
MAX
UNIT
tPLH
Propagation delay time,
low-to-high level output
TXI
TXO, TXO
TXEN at 2 V,
See Figure 3
15
ns
tPHL
Propagation delay time,
high-to-low level output
TXI
TXO, TXO
TXEN at 2 V,
See Figure 3
15
ns
tPIL
Propagation delay time,
idle-to-low level output
TXI
TXO, TXO
TXEN at 2 V,
See Figure 4
25
ns
tPIL
Propagation delay time,
idle-to-low level output
TXEN
TXO, TXO
TXI at 3.2 V,
See Figure 5
25
ns
tw
Output pulse duration from lowto-high level to 70% output level
TXO, TXO
TXEN at 2 V,
See Figure 6
8000
ns
VOD(U)
Driver output differential
undershoot voltage
TXI
TXO, TXO
TXEN at 2 V,
See Figure 6
– 100
mV
tsk
Driver caused signal skew
tPLH – tPHL
TXI
TXO, TXO
TXEN at 2 V,
See Figure 3
±3
ns
Rise time, TXO, TXO
TXEN at 2 V,
See Figure 3
1
5
ns
Fall time, TXO, TXO
TXEN at 2 V,
See Figure 3
1
5
ns
MIN
MAX
tr
tf
260
receiver
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
TEST CONDITIONS
UNIT
tPLH
Propagation delay time,
low-to-high level output
RXI, RXI
RXO
VIC = 1 V to 4.2 V, See Figure 10
15
ns
tPHL
Propagation delay time,
high-to-low level output
RXI, RXI
RXO
VIC = 1 V to 4.2 V, See Figure 10
15
ns
tPLH
Start-up delay time,
low-to-high level output
RXI, RXI
RXEN
VIC = 1 V to 4.2 V, VID = – 500 mV,
See Figure 12
55
ns
tPHL
Shutdown delay time,
high-to-low level output
RXI, RXI
RXEN
VIC = 1 V to 4.2 V, VID = 500 mV,
See Figure 12
181
ns
tsk
Receiver caused signal
skew (tPLH – tPHL)
RXI, RXI
RXO
VIC = 1 V to 4.2 V, VID = 500 mV,
See Figure 10
±3
ns
tw
Pulse duration at RXI and RXI
(to not activate squelch)
VIC = 1 V to 4.2 V, VID = – 175 mV,
See Figure 11
tw
Pulse duration at RXI and RXI
(to activate squelch)
VIC = 1 V to 4.2 V, VID = – 275 mV,
See Figure 11
tr1
Rise time, RXO
VIC = 1 V to 4.2 V, VID = ± 500 mV,
See Figure 10
tr2
Rise time, RXEN
tf1
142
25
ns
50
ns
1
8
ns
VIC = 1 V to 4.2 V, VID = ± 500 mV,
See Figure 12
1
8
ns
Fall time, RXO
VIC = 1 V to 4.2 V, VID = ± 500 mV,
See Figure 10
1
8
ns
tf2
Fall time, RXEN
VIC = 2.5 V,
See Figure 12
1
8
ns
tv
RXO valid after RXEN high
See Figure 10
– 10
15
ns
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
VID = ± 500 V,
9
SN75ALS085
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER
SLLS054B – APRIL 1989 – REVISED MAY 1995
switching characteristics over recommended ranges of supply voltage and operating free-air
temperature
loop
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
tPLH
Propagation delay time,
low-to-high level output
TXI
RXO
LOOP at 0.8 V,
See Figure 13
TXEN at 2 V,
tPHL
Propagation delay time,
high-to-low level output
TXI
RXO
LOOP at 0.8 V,
See Figure 13
TXEN at 2 V,
tPLH
Propagation delay time,
low-to-high level output
TXEN
RXEN
LOOP at 0.8 V,
tPHL
Propagation delay time,
high-to-low level output
TXEN
RXEN
LOOP at 0.8 V,
TEST CONDITIONS
TXO
39 Ω
VOD
TXI
39 Ω
TXO
VOC
VTXO
Figure 1. Driver Test Circuit
TXO
IOD
TXI
TXO
Figure 2. Driver Test Circuit
10
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MAX
UNIT
30
ns
30
ns
See Figure 14
50
ns
See Figure 14
50
ns
PARAMETER MEASUREMENT INFORMATION
VTXO
MIN
SN75ALS085
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER
SLLS054B – APRIL 1989 – REVISED MAY 1995
PARAMETER MEASUREMENT INFORMATION
TXO
39 Ω
25 pF
VOD
3 kΩ
0.01 µF
TXI
39 Ω
TXO
3 kΩ
25 pF
TEST CIRCUIT
4.5 V
TXI
50%
50%
3V
tPHL
tPLH
TXO
0V
VOD +
90%
90%
10%
10%
tr
0V
VOD –
tf
VOLTAGE WAVEFORMS
TRANSFORMER SPECIFICATIONS
Turns Ratio
Magnetizing Inductance
Winding Resistance
Rise Time 10% to 90%
Interwinding Capacitance
Leakage Inductance
Inductive Q
1:1
26 to 30 µH
0.6 Ω Max
5 ns Max
25 pF
0.25 µH Max
1250 Min
Figure 3. Test Circuit and Voltage Waveforms
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
SN75ALS085
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER
SLLS054B – APRIL 1989 – REVISED MAY 1995
PARAMETER MEASUREMENT INFORMATION
TXO
39 Ω
25 pF
0.01 µF
TXI
VOD
3 kΩ
†
39 Ω
TXO
3 kΩ
25 pF
† See Figure 3
TEST CIRCUIT
4.5 V
50%
TXI
3V
tPIL
IDLE
TXO
90%
VOD –
VOLTAGE WAVEFORMS
NOTE: Input tr ≤ 5 ns; tf ≤ 5 ns
Figure 4. Test Circuit and Voltage Waveforms
TXEN
TXO
39 Ω
25 pF
0.01 µF
TXI
TXO
VOD
3 kΩ
†
39 Ω
3 kΩ
25 pF
† See Figure 3
TEST CIRCUIT
2V
TXEN
50%
0.8 V
tPIL
Idle
TXO
90%
VOD –
VOLTAGE WAVEFORMS
Figure 5. Test Circuit and Voltage Waveforms
12
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN75ALS085
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER
SLLS054B – APRIL 1989 – REVISED MAY 1995
PARAMETER MEASUREMENT INFORMATION
TXO
39 Ω
25 pF
TXI
†
3 kΩ
0.01 µF
39 Ω
TXO
VOD
3 kΩ
25 pF
† See Figure 3
TEST CIRCUIT
TXO
VOH
70%
50%
VOD(U)
VOL
tw
VOLTAGE WAVEFORMS
Figure 6. Test Circuit and Voltage Waveforms
2V
TXEN
50%
0.8 V
tsu1
4.5 V
50%
TXI
3V
NOTE: Input tr ≤ 5 ns; tf ≤ 5 ns
Figure 7
TXI
4.5 V
50%
3V
th1
2V
TXEN
50%
0.8 V
th2
2V
LOOP
50%
0.8 V
NOTE: Input tr ≤ 5 ns; tf ≤ 5 ns
Figure 8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
SN75ALS085
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER
SLLS054B – APRIL 1989 – REVISED MAY 1995
PARAMETER MEASUREMENT INFORMATION
2V
50%
LOOP
0.8 V
tsu2
2V
TXEN
50%
0.8 V
tsu3
4.5 V
50%
TXI
3V
NOTE: Input tr ≤ 5 ns; tf ≤ 5 ns
Figure 9
RXEN
6 kΩ
20 pF
RXI
RXO
RXI
6 kΩ
20 pF
TEST CIRCUIT
1V
0V
–1 V
RXI
RXEN
VOH
90%
VIL
tPLH
tv
tf1
tr1
1.3 V
RXO
tPHL
1.3 V
90%
10%
90%
10%
VOLTAGE WAVEFORMS
NOTE: Input tr ≤ 5 ns; tf ≤ 5 ns
Figure 10. Test Circuit and Voltage Waveforms
14
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1.3 V
VOH
VOL
SN75ALS085
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER
SLLS054B – APRIL 1989 – REVISED MAY 1995
PARAMETER MEASUREMENT INFORMATION
RXEN
6 kΩ
20 pF
RXI
RXO
RXI
TEST CIRCUIT
0V
– 40 mV
– 40 mV
RXI
VIO
tw
VOH
RXEN
VOL
VOLTAGE WAVEFORMS
NOTE: Input tr ≤ 5 ns; tf ≤ 5 ns
Figure 11. Test Circuit and Voltage Waveforms
RXEN
6 kΩ
20 pF
RXI
RXO
RXI
TEST CIRCUIT
1V
RXI
0
– 40 mV
–1 V
tPLH
RXEN
10%
tPHL
90%
90%
tr2
VOH
10%
VOL
tf2
VOLTAGE WAVEFORMS
NOTE: Input tr ≤ 5 ns; tf ≤ 5 ns
Figure 12. Test Circuit and Voltage Waveforms
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
SN75ALS085
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER
SLLS054B – APRIL 1989 – REVISED MAY 1995
PARAMETER MEASUREMENT INFORMATION
4.5 V
50%
TXI
50%
3V
tPLH
tPHL
VOH
1.3 V
RXO
1.3 V
VOL
NOTE: Input tr ≤ 5 ns; tf ≤ 5 ns
Figure 13
2V
TXEN
50%
50%
0.8 V
tPLH
tPHL
VOH
RXEN
1.3 V
1.3 V
VOL
NOTE: Input tr ≤ 5 ns; tf ≤ 5 ns
Figure 14
16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1998, Texas Instruments Incorporated