SN75ALS085 LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER SLLS054B – APRIL 1989 – REVISED MAY 1995 D D D D D D D D D DW OR NT PACKAGE (TOP VIEW) Meets or Exceeds the Requirements of IOS 8802.3:1989 and ANSI/IEEE Std 802.3-1988 Interdevice Loop-Back Paths for System Testing Squelch Function Implemented on the Receiver Inputs Drivers Will Drive a Balanced 78-Ω Load Transformer Coupling Not Required in System Power-Up/Power-Down Protection (Glitch Free) Isolated Ground Pins for Reduced Noise Coupling Fault-Condition Protection Built into the Device Driver Inputs Are Level-Shifted ECL Compatible TXI1 TXEN1 LOOP1 GND RXEN1 RXO1 RXO2 RXEN2 GND LOOP2 TXEN2 TXI2 1 24 2 23 3 22 4 21 5 20 6 19 7 18 8 17 9 16 10 15 11 14 12 13 TXO1 TXO1 VCC RXI1 RXI1 GND GND RXI2 RXI2 VCC TXO2 TXO2 description The SN75ALS085 is a monolithic, high-speed, advanced low-power Schottky, dual-channel driver/receiver device designed for use in the AUI of ANSI/IEEE Std 802.3-1988. The two drivers on the device drive a 78-Ω balanced, terminated twisted-pair transmission line up to a maximum length of 50 meters. In the off (idle) state, the drivers maintain minimal differential output voltage on the twisted-pair line and, at the same time, remain within the required output common-mode range. With the driver enable (TXEN) high, upon receiving the first falling edge into the driver input, the differential outputs will rise to full-amplitude output levels within 25 ns. The output amplitude is maintained for the remainder of the packet. After the last positive packet edge is transmitted into the driver, the driver will maintain a minimum of 70% full differential output for a minimum of 200 ns, then decay to a minimum level for the reset (idle) condition within 8 µs. Disabling the driver by taking the driver enable low will also force the output into the idle condition after the normal 8-µs timeout. While operating, the drivers are able to withstand a set of fault conditions and not suffer damage due to the faults being applied. The drivers power up in the idle state to ensure that no activity is placed on the twisted-pair cable that could be interpreted as network traffic. The line receiver squelch function interfaces to a differential twisted-pair line terminated external to the device. The receiver squelch circuit allows differential receive signals to pass through as long as the input amplitude and pulse duration are greater than the minimum squelch threshold. This ensures a good signal-to-noise ratio while the data path is active and prevents system noise from causing false data transitions during line shutdown and line-idle conditions. The RXO outputs default to a high level and the RXEN outputs default to a low level while the squelch function is blocking the data path through the receiver (idle). The line receiver squelch will become active within 50 ns when the input squelch threshold is exceeded. RXEN will be driven high when the squelch circuit is allowing data to pass through the receiver. The receiver squelch circuit can also withstand a set of fault conditions while operating without causing permanent damage to the device. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 1995, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SN75ALS085 LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER SLLS054B – APRIL 1989 – REVISED MAY 1995 description (continued) The purpose of the loop functions is to provide a means by which system data path verification can be done to isolate faulty interfaces and assist in network diagnosis. The LOOP pins are TTL compatible and must be held high for normal operation. When LOOP1 is taken low, the output of driver 1 (TXO1) immediately goes into the idle state. Also, the input to receiver 1 is ignored and a path from TXI1 to RXO1 is established. When LOOP1 is taken back high, driver 1 and receiver 1 revert back to their normal operation. When LOOP2 is taken low, a similar data path is established between TXI1 and RXO2. TXEN1 must be high for the loop functions to operate and TXEN1 can be used to gate the loop function if desired. During loop operation, the respective receiver enable output (RXEN) will reflect the status of TXEN1. Function Tables RECEIVER – LOOP = H OUTPUTS RXI VID = 1315 mV to –175 mV, VID = –275 mV to –1315 mV, VID = 318 mV to 1315 mV, VID = 318 mV to 1315 mV, PREVIOUS RXEN RXEN RXO tw < 25 ns L L H tw > 50 ns tw < 142 ns tw > 187 ns X H L H H H X L H H = high level, L = low level, X = don’t care DRIVER – LOOP = H TXI TXEN PREVIOUS TXO OUTPUT TXO L L Idle Idle H L Idle Idle ↓ H Idle L L H Active L H < 260 µs H Active H H > 8 µs H Active Idle L L > 8 µs Active Idle H < 260 ns L > 8 µs Active Idle H < 260 ns L < 260 ns Active H H > 8 µs L < 260 ns Active Idle L L < 260 ns Active L H = VI ≥ VT max, L = VI ≤ VT min 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN75ALS085 LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER SLLS054B – APRIL 1989 – REVISED MAY 1995 Function Tables (continued) LOOP INPUTS OUTPUTS LOOP1 LOOP2 TXI1 TXEN1 RXI1 RXI2 RXO1 RXO2 RXEN1 RXEN2 TXO1 L L L H X X L L H H Idle L L H H X X H H H H Idle L L X L X X H H L L Idle L H L H X Normal L Normal H Normal Idle L H H H X Normal H Normal H Normal Idle L H X L X Normal H Normal L Normal Idle H L L H Normal X Normal L Normal H Idle H L H H Normal X Normal H Normal H Idle H L X L Normal X Normal H Normal L Idle H H Normal Normal Normal Normal Normal Normal Normal Normal Normal H = high level, L = low level, X = don’t care POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 SN75ALS085 LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER SLLS054B – APRIL 1989 – REVISED MAY 1995 logic diagram (positive logic) RX11 RX11 20 21 + – 225 mV Noise Filter 5 6 LOOP1 TXI1 TXEN1 LOOP2 3 1 24 23 ECL/TTL 2 250 ns 4 µS X1 TXI2 TXEN2 4 RXO1 TXO1 TXO1 1 1 10 7 RXI2 RXI2 RXEN1 150 ns 17 16 + – 225 mV 12 11 150 ns Noise Filter 8 14 13 ECL/TTL 250 ns 4 µS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 X1 1 1 RXO2 RXEN2 TXO2 TXO2 SN75ALS085 LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER SLLS054B – APRIL 1989 – REVISED MAY 1995 schematics of inputs and outputs RXI AND RXI INPUTS LOOP AND TXEN INPUTS VCC VCC 20 kΩ 4 kΩ 4 kΩ 4 kΩ RXI RXI 4 kΩ ESD ESD 3 kΩ 4 kΩ LOOP and TXEN ESD + 1 kΩ – TXI INPUTS VCC RXO AND RXEN OUTPUTS VCC 200 Ω 50 Ω TXI ESD 50 kΩ RXO and RXEN 5 kΩ ESD POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 SN75ALS085 LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER SLLS054B – APRIL 1989 – REVISED MAY 1995 absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V TXI and LOOP input voltage, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V TXO and TXO output voltage, VO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 V RXI and RXI input voltage, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 V RXO and RXEN output voltage, VO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65 °C to 150 °C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C NOTE 1: Voltage values are with respect to network ground terminal. DISSIPATION RATING TABLE PACKAGE TA ≤ 25°C POWER RATING DERATING FACTOR ABOVE TA = 25°C TA = 70°C POWER RATING DW 1350 mW 10.8 mW/°C 864 mW NT 1250 mW 10.0 mW/°C 800 mW recommended operating conditions Supply voltage, VCC Common-mode voltage at RXI inputs, VIC Differential voltage between RXI inputs, VID High-level input voltage, LOOP and TXEN, VIH MIN NOM MAX UNIT 4.75 5 5.25 V 1 4.2 V ±318 ±1315 2 Low-level input voltage, LOOP and TXEN, VIL mV V 0.8 V High-level output current, RXO and RXEN, IOH – 0.4 mA Low-level output voltage, RXO and RXEN, IOL 16 mA Setup time, driver mode, TXEN high before TXI↓, tsu1 (see Figure 7) 10 ns Setup time, loop mode, LOOP low before TXEN↑, tsu2 (see Figure 9) 15 ns Setup time, loop mode, TXEN high before TXI↓, tsu3 (see Figure 9) 10 ns Hold time, loop mode, TXEN high after TXI↑, th1 (see Figure 8) 10 ns Hold time, loop mode, LOOP low after TXEN↓, th2 (see Figure 8) 15 Operating free-air temperature, TA 6 0 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 ns 70 °C SN75ALS085 LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER SLLS054B – APRIL 1989 – REVISED MAY 1995 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VIK TEST CONDITIONS Clamp voltage at all inputs TA = 0°C V(TO) ( ) MIN II = – 18 mA Driver input (TXI) threshold voltage TA = 25°C TA = 70°C VOD Driver output (TXO) common-mode voltage Driver output (TXO) differential voltage 3.752 3.389 3.998 VCC = 5.25 V VCC = 4.75 V 3.577 4.244 3.213 3.797 VCC = 5 V VCC = 5.25 V 3.400 4.043 3.588 4.289 VCC = 4.75 V VCC = 5 V 3.239 3.849 3.426 4.095 VCC = 5.25 V 3.614 4.341 – 275 Idle LOOP1 at 2 V, See Figure 1 Active TXEN at 2 V, LOOP2 at 2 V, See Figure 1 Active 1 4.2 LOOP1 at 2 V, TXI at 3.2 V, 1 4.2 TXEN at 2 V, LOOP2 at 2 V, See Figure 1 LOOP1 at 2 V, TXI at 4.4 V, 1 4.2 Idle TXEN at 0.8 V, LOOP2 at 2 V, LOOP1 at 2 V, See Figure 1 Active TXEN at 2 V, LOOP2 at 2 V, See Figure 1 LOOP1 at 2 V, TXI at 3.2 V, – 600 1315 Active TXEN at 2 V, LOOP2 at 2 V, See Figure 1 LOOP1 at 2 V, TXI at 4.4 V, 600 1315 High-level output voltage RXO, RXEN Low-level output voltage RXO, RXEN IIH High-level input current TXEN, LOOP TXI RXI, RXI TXEN, LOOP Low level input current Low-level V 3.202 TXEN at 0.8 V, LOOP2 at 2 V, VOH VOL IIL UNIT – 1.5 VCC = 4.75 V VCC = 5 V Receiver differential input threshold voltage VOC MAX TXI RXI, RXI IOD Driver differential output current Idle IOS Short-circuit output current† RXO, RXEN ICC Supply current IOH = – 0.4 mA IOL = 16 mA 2.4 V mV V mV V 0.5 V 20 400 VIC = 1 V to 4.2 V µA 1000 – 200 VI = 3.1 V VI = 0.3 V VID = 0.5 V, TXEN at 0.8 V, LOOP2 at 2 V, V ± 40 VI = 2 V VI = 4.5 V VID = – 0.5 V, VI = 0.8 V V 100 4 VIC = 1 V to 4.2 V RXI at 3 V, LOOP2 at 2 V, TXI at 4.5 V, TXEN at 2 V, Outputs open mA 1000 LOOP1 at 2 V, See Figure 2 VO at 0 V, RXI at 2 V 10 – 40 ±4 mA – 150 mA 225 mA † Not more than one output should be shorted at a time, and the duration of the test should not exceed 1 second. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 SN75ALS085 LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER SLLS054B – APRIL 1989 – REVISED MAY 1995 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) TEST CONDITIONS† PARAMETER Driver fault condition current Receiver fault condition current MAX Current measured in short 150 TXO at 0 V, TXO is open, Current measured at TXO 150 TXO is open, TXO at 0, Current measured at TXO 150 TXO at 0 V, TXO at 0 V, Current measured at TXO and TXO 150 TXO at 16 V, TXO is open, Current measured at TXO 150 TXO is open, TXO at 16 V, Current measured at TXO 150 TXO at 16 V, TXO at 16 V, Current measured at TXO and TXO 150 RXI shorted to RXI, Current measured in short RXI at 0 V, RXI is open, Current measured at RXI 3 RXI is open, RXI at 0 V, Current measured at RXI 3 RXI at 0 V, Current measured at RXI and RXI RXI at 16 V, RXI at open, Current measured at RXI 10 RXI at open, RXI at 16 V, Current measured at RXI 10 RXI at 16 V, RXI at 16 V, Current measured at RXI and RXI 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 UNIT mA 10 RXI at 0 V, † Fault conditions should be measured on only one channel at a time. 8 MIN TXO shorted to TXO, 3 mA SN75ALS085 LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER SLLS054B – APRIL 1989 – REVISED MAY 1995 switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) driver PARAMETER FROM (INPUT) TO (OUTPUT) TEST CONDITIONS MIN MAX UNIT tPLH Propagation delay time, low-to-high level output TXI TXO, TXO TXEN at 2 V, See Figure 3 15 ns tPHL Propagation delay time, high-to-low level output TXI TXO, TXO TXEN at 2 V, See Figure 3 15 ns tPIL Propagation delay time, idle-to-low level output TXI TXO, TXO TXEN at 2 V, See Figure 4 25 ns tPIL Propagation delay time, idle-to-low level output TXEN TXO, TXO TXI at 3.2 V, See Figure 5 25 ns tw Output pulse duration from lowto-high level to 70% output level TXO, TXO TXEN at 2 V, See Figure 6 8000 ns VOD(U) Driver output differential undershoot voltage TXI TXO, TXO TXEN at 2 V, See Figure 6 – 100 mV tsk Driver caused signal skew tPLH – tPHL TXI TXO, TXO TXEN at 2 V, See Figure 3 ±3 ns Rise time, TXO, TXO TXEN at 2 V, See Figure 3 1 5 ns Fall time, TXO, TXO TXEN at 2 V, See Figure 3 1 5 ns MIN MAX tr tf 260 receiver PARAMETER FROM (INPUT) TO (OUTPUT) TEST CONDITIONS UNIT tPLH Propagation delay time, low-to-high level output RXI, RXI RXO VIC = 1 V to 4.2 V, See Figure 10 15 ns tPHL Propagation delay time, high-to-low level output RXI, RXI RXO VIC = 1 V to 4.2 V, See Figure 10 15 ns tPLH Start-up delay time, low-to-high level output RXI, RXI RXEN VIC = 1 V to 4.2 V, VID = – 500 mV, See Figure 12 55 ns tPHL Shutdown delay time, high-to-low level output RXI, RXI RXEN VIC = 1 V to 4.2 V, VID = 500 mV, See Figure 12 181 ns tsk Receiver caused signal skew (tPLH – tPHL) RXI, RXI RXO VIC = 1 V to 4.2 V, VID = 500 mV, See Figure 10 ±3 ns tw Pulse duration at RXI and RXI (to not activate squelch) VIC = 1 V to 4.2 V, VID = – 175 mV, See Figure 11 tw Pulse duration at RXI and RXI (to activate squelch) VIC = 1 V to 4.2 V, VID = – 275 mV, See Figure 11 tr1 Rise time, RXO VIC = 1 V to 4.2 V, VID = ± 500 mV, See Figure 10 tr2 Rise time, RXEN tf1 142 25 ns 50 ns 1 8 ns VIC = 1 V to 4.2 V, VID = ± 500 mV, See Figure 12 1 8 ns Fall time, RXO VIC = 1 V to 4.2 V, VID = ± 500 mV, See Figure 10 1 8 ns tf2 Fall time, RXEN VIC = 2.5 V, See Figure 12 1 8 ns tv RXO valid after RXEN high See Figure 10 – 10 15 ns POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VID = ± 500 V, 9 SN75ALS085 LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER SLLS054B – APRIL 1989 – REVISED MAY 1995 switching characteristics over recommended ranges of supply voltage and operating free-air temperature loop PARAMETER FROM (INPUT) TO (OUTPUT) tPLH Propagation delay time, low-to-high level output TXI RXO LOOP at 0.8 V, See Figure 13 TXEN at 2 V, tPHL Propagation delay time, high-to-low level output TXI RXO LOOP at 0.8 V, See Figure 13 TXEN at 2 V, tPLH Propagation delay time, low-to-high level output TXEN RXEN LOOP at 0.8 V, tPHL Propagation delay time, high-to-low level output TXEN RXEN LOOP at 0.8 V, TEST CONDITIONS TXO 39 Ω VOD TXI 39 Ω TXO VOC VTXO Figure 1. Driver Test Circuit TXO IOD TXI TXO Figure 2. Driver Test Circuit 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MAX UNIT 30 ns 30 ns See Figure 14 50 ns See Figure 14 50 ns PARAMETER MEASUREMENT INFORMATION VTXO MIN SN75ALS085 LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER SLLS054B – APRIL 1989 – REVISED MAY 1995 PARAMETER MEASUREMENT INFORMATION TXO 39 Ω 25 pF VOD 3 kΩ 0.01 µF TXI 39 Ω TXO 3 kΩ 25 pF TEST CIRCUIT 4.5 V TXI 50% 50% 3V tPHL tPLH TXO 0V VOD + 90% 90% 10% 10% tr 0V VOD – tf VOLTAGE WAVEFORMS TRANSFORMER SPECIFICATIONS Turns Ratio Magnetizing Inductance Winding Resistance Rise Time 10% to 90% Interwinding Capacitance Leakage Inductance Inductive Q 1:1 26 to 30 µH 0.6 Ω Max 5 ns Max 25 pF 0.25 µH Max 1250 Min Figure 3. Test Circuit and Voltage Waveforms POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 SN75ALS085 LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER SLLS054B – APRIL 1989 – REVISED MAY 1995 PARAMETER MEASUREMENT INFORMATION TXO 39 Ω 25 pF 0.01 µF TXI VOD 3 kΩ † 39 Ω TXO 3 kΩ 25 pF † See Figure 3 TEST CIRCUIT 4.5 V 50% TXI 3V tPIL IDLE TXO 90% VOD – VOLTAGE WAVEFORMS NOTE: Input tr ≤ 5 ns; tf ≤ 5 ns Figure 4. Test Circuit and Voltage Waveforms TXEN TXO 39 Ω 25 pF 0.01 µF TXI TXO VOD 3 kΩ † 39 Ω 3 kΩ 25 pF † See Figure 3 TEST CIRCUIT 2V TXEN 50% 0.8 V tPIL Idle TXO 90% VOD – VOLTAGE WAVEFORMS Figure 5. Test Circuit and Voltage Waveforms 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN75ALS085 LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER SLLS054B – APRIL 1989 – REVISED MAY 1995 PARAMETER MEASUREMENT INFORMATION TXO 39 Ω 25 pF TXI † 3 kΩ 0.01 µF 39 Ω TXO VOD 3 kΩ 25 pF † See Figure 3 TEST CIRCUIT TXO VOH 70% 50% VOD(U) VOL tw VOLTAGE WAVEFORMS Figure 6. Test Circuit and Voltage Waveforms 2V TXEN 50% 0.8 V tsu1 4.5 V 50% TXI 3V NOTE: Input tr ≤ 5 ns; tf ≤ 5 ns Figure 7 TXI 4.5 V 50% 3V th1 2V TXEN 50% 0.8 V th2 2V LOOP 50% 0.8 V NOTE: Input tr ≤ 5 ns; tf ≤ 5 ns Figure 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 SN75ALS085 LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER SLLS054B – APRIL 1989 – REVISED MAY 1995 PARAMETER MEASUREMENT INFORMATION 2V 50% LOOP 0.8 V tsu2 2V TXEN 50% 0.8 V tsu3 4.5 V 50% TXI 3V NOTE: Input tr ≤ 5 ns; tf ≤ 5 ns Figure 9 RXEN 6 kΩ 20 pF RXI RXO RXI 6 kΩ 20 pF TEST CIRCUIT 1V 0V –1 V RXI RXEN VOH 90% VIL tPLH tv tf1 tr1 1.3 V RXO tPHL 1.3 V 90% 10% 90% 10% VOLTAGE WAVEFORMS NOTE: Input tr ≤ 5 ns; tf ≤ 5 ns Figure 10. Test Circuit and Voltage Waveforms 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1.3 V VOH VOL SN75ALS085 LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER SLLS054B – APRIL 1989 – REVISED MAY 1995 PARAMETER MEASUREMENT INFORMATION RXEN 6 kΩ 20 pF RXI RXO RXI TEST CIRCUIT 0V – 40 mV – 40 mV RXI VIO tw VOH RXEN VOL VOLTAGE WAVEFORMS NOTE: Input tr ≤ 5 ns; tf ≤ 5 ns Figure 11. Test Circuit and Voltage Waveforms RXEN 6 kΩ 20 pF RXI RXO RXI TEST CIRCUIT 1V RXI 0 – 40 mV –1 V tPLH RXEN 10% tPHL 90% 90% tr2 VOH 10% VOL tf2 VOLTAGE WAVEFORMS NOTE: Input tr ≤ 5 ns; tf ≤ 5 ns Figure 12. Test Circuit and Voltage Waveforms POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 SN75ALS085 LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER SLLS054B – APRIL 1989 – REVISED MAY 1995 PARAMETER MEASUREMENT INFORMATION 4.5 V 50% TXI 50% 3V tPLH tPHL VOH 1.3 V RXO 1.3 V VOL NOTE: Input tr ≤ 5 ns; tf ≤ 5 ns Figure 13 2V TXEN 50% 50% 0.8 V tPLH tPHL VOH RXEN 1.3 V 1.3 V VOL NOTE: Input tr ≤ 5 ns; tf ≤ 5 ns Figure 14 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof. Copyright 1998, Texas Instruments Incorporated