Rev. 1.0, Apr. 2012 M393B5273EB0 M393B5270EB0 M393B1K70EB0 M393B1K73EB0 240pin Registered DIMM based on 2Gb E-die 1.35V 78FBGA with Lead-Free & Halogen-Free (RoHS compliant) datasheet SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE. Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind. This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or otherwise. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply. For updates or additional information about Samsung products, contact your nearest Samsung office. All brand names, trademarks and registered trademarks belong to their respective owners. ⓒ 2012 Samsung Electronics Co., Ltd. All rights reserved. -1- Registered DIMM Rev. 1.0 datasheet DDR3L SDRAM Revision History Revision No. 1.0 History - First SPEC Release -2- Draft Date Remark Editor Apr. 2012 - J.Y.Lee Registered DIMM datasheet Rev. 1.0 DDR3L SDRAM Table Of Contents 240pin Registered DIMM based on 2Gb E-die 1. DDR3L Registered DIMM Ordering Information ........................................................................................................... 5 2. Key Features................................................................................................................................................................. 5 3. Address Configuration .................................................................................................................................................. 5 4. Registered DIMM Pin Configurations (Front side/Back side)........................................................................................ 6 5. Pin Description ............................................................................................................................................................. 7 6. ON DIMM Thermal Sensor ........................................................................................................................................... 7 7. Input/Output Functional Description.............................................................................................................................. 8 8. Pinout Comparison Based On Module Type................................................................................................................. 9 9. Registering Clock Driver Specification .......................................................................................................................... 10 9.1 Timing & Capacitance values .................................................................................................................................. 10 9.2 Clock driver Characteristics ..................................................................................................................................... 10 10. Function Block Diagram: ............................................................................................................................................. 11 10.1 4GB, 512Mx72 Module (Populated as 2 ranks of x8 DDR3 SDRAMs) ................................................................. 11 10.2 4GB, 512Mx72 Module (Populated as 1 rank of x4 DDR3 SDRAMs) ................................................................... 12 10.3 8GB, 1Gx72 Module (Populated as 2 ranks of x4 DDR3 SDRAMs) ..................................................................... 13 10.4 8GB, 1Gx72 Module (Populated as 4 ranks of x8 DDR3 SDRAMs) .................................................................... 15 11. Absolute Maximum Ratings ........................................................................................................................................ 17 11.1 Absolute Maximum DC Ratings............................................................................................................................. 17 11.2 DRAM Component Operating Temperature Range .............................................................................................. 17 12. AC & DC Operating Conditions................................................................................................................................... 17 12.1 Recommended DC Operating Conditions ............................................................................................................. 17 13. AC & DC Input Measurement Levels .......................................................................................................................... 18 13.1 AC & DC Logic Input Levels for Single-ended Signals .......................................................................................... 18 13.2 VREF Tolerances.................................................................................................................................................... 20 13.3 AC and DC Logic Input Levels for Differential Signals .......................................................................................... 21 13.3.1. Differential Signals Definition ......................................................................................................................... 21 13.3.2. Differential Swing Requirement for Clock (CK - CK) and Strobe (DQS - DQS) ............................................. 21 13.3.3. Single-ended Requirements for Differential Signals ...................................................................................... 23 13.3.4. Differential Input Cross Point Voltage ............................................................................................................ 24 13.4 Slew Rate Definition for Single Ended Input Signals ............................................................................................. 25 13.5 Slew rate definition for Differential Input Signals ................................................................................................... 25 14. AC & DC Output Measurement Levels ....................................................................................................................... 25 14.1 Single Ended AC and DC Output Levels ............................................................................................................... 25 14.2 Differential AC and DC Output Levels ................................................................................................................... 25 14.3 Single-ended Output Slew Rate ............................................................................................................................ 26 14.4 Differential Output Slew Rate ................................................................................................................................ 27 15. IDD specification definition.......................................................................................................................................... 28 16. IDD SPEC Table ......................................................................................................................................................... 30 17. Input/Output Capacitance ........................................................................................................................................... 32 18. Electrical Characteristics and AC timing ..................................................................................................................... 33 18.1 Refresh Parameters by Device Density................................................................................................................. 33 18.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin ................................................................ 33 18.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin ................................................................ 33 18.3.1. Speed Bin Table Notes .................................................................................................................................. 36 19. Timing Parameters by Speed Grade .......................................................................................................................... 37 19.1 Jitter Notes ............................................................................................................................................................ 40 19.2 Timing Parameter Notes........................................................................................................................................ 41 20. Physical Dimensions................................................................................................................................................... 42 20.1 256Mbx8 based 512Mx72 Module (2 Ranks) - M393B5273EB0 .......................................................................... 42 20.1.1. x72 DIMM, populated as two physical ranks of x8 DDR3 SDRAMs .............................................................. 42 20.2 512Mbx4 based 512Mx72 Module (1 Rank) - M393B5270EB0 ............................................................................ 43 -3- Registered DIMM datasheet Rev. 1.0 DDR3L SDRAM 20.2.1. x72 DIMM, populated as one physical rank of x4 DDR3 SDRAMs................................................................ 43 20.3 512Mbx4 based 1Gx72 Module (2 Ranks) - M393B1K70EB0 .............................................................................. 44 20.3.1. x72 DIMM, populated as two physical ranks of x4 DDR3 SDRAMs .............................................................. 44 20.4 256Mbx8 based 1Gx72 Module (4 Ranks) - M393B1K73EB0 .............................................................................. 45 20.4.1. x72 DIMM, populated as four physical ranks of x8 DDR3 SDRAMs .............................................................. 45 -4- Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM 1. DDR3L Registered DIMM Ordering Information Part Number2 Density Organization Component Composition1 Number of Rank Height M393B5273EB0-YH9/K0 4GB 512Mx72 256Mx8(K4B2G0846E-BY##)*18 2 30mm M393B5270EB0-YH9/K0 4GB 512Mx72 512Mx4(K4B2G0446E-BY##)*18 1 30mm M393B1K70EB0-YH9/K0 8GB 1Gx72 512Mx4(K4B2G0446E-BY##)*36 2 30mm M393B1K73EB0-YH9 8GB 1Gx72 256Mx8(K4B2G0846E-BY##)*36 4 30mm NOTE : 1. "##" - H9/K0 2. H9(1333Mbps 9-9-9) / K0(1600Mbps 11-11-11) - DDR3L-1600(11-11-11) is backward compatible to DDR3L-1333(9-9-9), DDR3L-1066(7-7-7) - DDR3L-1333(9-9-9) is backward compatible to DDR3L-1066(7-7-7) 2. Key Features Speed DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 6-6-6 7-7-7 9-9-9 11-11-11 2.5 1.875 1.5 1.25 ns tCK(min) • • • • • • • • • • • • • • Unit CAS Latency 6 7 9 11 nCK tRCD(min) 15 13.125 13.5 13.75 ns tRP(min) 15 13.125 13.5 13.75 ns tRAS(min) 37.5 37.5 36 35 ns tRC(min) 52.5 50.625 49.5 48.75 ns JEDEC standard 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V) Power Supply VDDQ = 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V) 400MHz fCK for 800Mb/sec/pin, 533MHz fCK for 1066Mb/sec/pin, 667MHz fCK for 1333Mb/sec/pin, 800MHz fCK for 1600Mb/sec/pin 8 independent internal bank Programmable CAS Latency: 6,7,8,9,10,11 Programmable Additive Latency(Posted CAS) : 0, CL - 2, or CL - 1 clock Programmable CAS Write Latency(CWL) = 5(DDR3-800), 6(DDR3-1066), 7(DDR3-1333) and 8(DDR3-1600) 8-bit pre-fetch Burst Length: 8 (Interleave without any limit, sequential with starting address “000” only), 4 with tCCD = 4 which does not allow seamless read or write [either On the fly using A12 or MRS] Bi-directional Differential Data Strobe Internal(self) calibration : Internal self calibration through ZQ pin (RZQ : 240 ohm ± 1%) On Die Termination using ODT pin Average Refresh Period 7.8us at lower then TCASE 85°C, 3.9us at 85°C < TCASE ≤ 95°C Asynchronous Reset 3. Address Configuration Organization Row Address Column Address Bank Address Auto Precharge 512Mx4(2Gb) based Module A0-A14 A0-A9, A11 BA0-BA2 A10/AP 256Mx8(2Gb) based Module A0-A14 A0-A9 BA0-BA2 A10/AP -5- Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM 4. Registered DIMM Pin Configurations (Front side/Back side) Pin Front Pin Back Pin Front Pin Back Pin Front Pin 1 VREFDQ 121 VSS 42 DQS8 162 NC,DQS17 ,TDQS17 82 DQ33 202 Back VSS DM4,DQS13 ,TDQS13 NC,DQS13 ,TDQS13 2 VSS 122 DQ4 43 DQS8 163 VSS 83 VSS 203 3 DQ0 123 DQ5 44 VSS 164 CB6,NC 84 DQS4 204 4 DQ1 124 VSS 45 CB2,NC 165 CB7,NC 85 DQS4 205 VSS 46 CB3,NC 166 VSS 86 VSS 206 DQ38 47 VSS 167 NC(TEST) 87 DQ34 207 DQ39 48 VTT, NC 168 RESET 88 DQ35 208 VSS 89 VSS 209 DQ44 DM0,DQS9 ,TDQS9 NC,DQS9 ,TDQS9 5 VSS 125 6 DQS0 126 7 DQS0 127 VSS 8 VSS 128 DQ6 9 DQ2 129 DQ7 50 KEY 49 VTT, NC 169 CKE1, NC 90 DQ40 210 DQ45 CKE0 170 VDD 91 DQ41 211 VSS 10 DQ3 130 VSS 11 VSS 131 DQ12 51 VDD 171 NC 92 VSS 212 12 DQ8 132 DQ13 52 BA2 172 A14 93 DQS5 213 13 DQ9 133 VSS 53 Err_Out/NC 173 VDD 94 DQS5 214 VSS 54 VDD 174 A12/BC 95 VSS 215 DQ46 55 A11 175 A9 96 DQ42 216 DQ47 DM1,DQS10 ,TDQS10 NC,DQS10 ,TDQS10 DM5,DQS14 ,TDQS14 NC,DQS14 ,TDQS14 14 VSS 134 15 DQS1 135 16 DQS1 136 VSS 56 A7 176 VDD 97 DQ43 217 VSS 17 VSS 137 DQ14 57 VDD 177 A8 98 VSS 218 DQ52 18 DQ10 138 DQ15 58 A5 178 A6 99 DQ48 219 DQ53 19 DQ11 139 VSS 59 A4 179 VDD 100 DQ49 220 VSS DM6,DQS15 ,TDQS15 NC,DQS15 ,TDQS15 20 VSS 140 DQ20 60 VDD 180 A3 101 VSS 221 21 DQ16 141 DQ21 61 A2 181 A1 102 DQS6 222 22 DQ17 142 VSS 62 VDD 182 VDD 103 DQS6 223 VSS 23 VSS 143 104 VSS 224 DQ54 24 DQS2 144 DM2,DQS11 ,TDQS11 NC,DQS11 ,TDQS11 63 NC, CK1 183 VDD 64 NC, CK1 184 CK0 105 DQ50 225 DQ55 65 VDD 185 CK0 106 DQ51 226 VSS 25 DQS2 145 VSS 26 VSS 146 DQ22 66 VDD 186 VDD 107 VSS 227 DQ60 27 DQ18 147 DQ23 67 VREFCA 187 EVENT,NC 108 DQ56 228 DQ61 28 DQ19 148 VSS 68 NC/Par_In 188 A0 109 DQ57 229 VSS DM7/DQS16 TDQS16 DM7,DQS16 ,TDQS16 29 VSS 149 DQ28 69 VDD 189 VDD 110 VSS 230 30 DQ24 150 DQ29 70 A10/AP 190 BA1 111 DQS7 231 31 DQ25 151 VSS 71 BA0 191 VDD 112 DQS7 232 VSS 72 VDD 192 RAS 113 VSS 233 DQ62 73 WE 193 S0 114 DQ58 234 DQ63 DM3,DQS12 ,TDQS12 NC,DQS12 ,TDQS12 32 VSS 152 33 DQS3 153 34 DQS3 154 VSS 74 CAS 194 VDD 115 DQ59 235 VSS 35 VSS 155 DQ30 75 VDD 195 ODT0 116 VSS 236 VDDSPD 36 DQ26 156 DQ31 76 S1,NC 196 A13 117 SA0 237 SA1 37 DQ27 157 VSS 77 ODT1,NC 197 VDD 118 SCL 238 SDA 38 VSS 158 CB4,NC 78 VDD 198 S3,NC 119 SA2 239 VSS 39 CB0,NC 159 CB5,NC 79 S2,NC 199 VSS 120 VTT 240 VTT 40 CB1,NC 160 VSS 80 VSS 200 DQ36 161 DM8,DQS17 TDQS17,NC 81 DQ32 201 DQ37 41 VSS NOTE : NC = No internal Connection SAMSUNG ELECTRONICS CO., Ltd. reserves the right to change products and specifications without notice. -6- Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM 5. Pin Description Pin Name Description Number Pin Name Description Number CK0 Clock Input, positive line 1 ODT[1:0] On Die Termination Inputs 2 CK0 Clock Input, negative line 1 DQ[63:0] Data Input/Output 64 CKE[1:0] Clock Enables 2 CB[7:0] Data check bits Input/Output 8 RAS Row Address Strobe 1 DQS[8:0] Data strobes 9 CAS Column Address Strobe 1 DQS[8:0] Data strobes, negative line 9 Data Masks/ Data strobes, Termination data strobes 9 Data strobes, negative line, Termination data strobes 9 Reserved for Future Use 2 WE Write Enable 1 DM[8:0]/ DQS[17:9] TDQS[17:9] S[3:0] Chip Selects 4 DQS[17:9] TDQS[17:9] 2\14 RFU A[9:0],A11, A[15:13] Address Inputs A10/AP Address Input/Autoprecharge 1 EVENT Reserved for optional hardware temperature sensing 1 A12/BC Address Input/Burst chop 1 TEST Memory bus test toll (Not Connected and Not Usable on DIMMs) 1 BA[2:0] SDRAM Bank Addresses 3 RESET Register and SDRAM control pin 1 SCL Serial Presence Detect (SPD) Clock Input 1 VDD Power Supply 22 SDA SPD Data Input/Output 1 VSS Ground 59 SA[2:0] SPD Address Inputs 3 VREFDQ Reference Voltage for DQ 1 Par_In Parity bit for the Address and Control bus 1 VREFCA Reference Voltage for CA 1 Err_Out Parity error found on the Address and Control bus 1 VTT Termination Voltage 4 SPD Power 1 VDDSPD Total 240 NOTE : *The VDD and VDDQ pins are tied common to a single power-plane on these designs. 6. ON DIMM Thermal Sensor SCL SDA EVENT WP/EVENT R1 0Ω R2 0Ω SA0 SA1 SA2 SA0 SA1 SA2 NOTE : 1. All Samsung RDIMM support Thermal sensor on DIMM 2. When the SPD and the thermal sensor are placed on the module, R1 is placed but R2 is not. When only the SPD is placed on the module, R2 is placed but R1 is not. [ Table 1 ] Temperature Sensor Characteristics Temperature Sensor Accuracy Grade Range 75 < Ta < 95 - +/- 0.5 +/- 1.0 B 40 < Ta < 125 - +/- 1.0 +/- 2.0 -20 < Ta < 125 - +/- 2.0 +/- 3.0 Min. Resolution Typ. 0.25 -7- Max. Units NOTE - °C - °C /LSB - - datasheet Registered DIMM Rev. 1.0 DDR3L SDRAM 7. Input/Output Functional Description Symbol Type Polarity CK0 Input Positive Edge Function CK0 Input Negative Negative line of the differential pair of system clock inputs that drives the input to the on-DIMM Clock Driver. Edge CKE[1:0] Input CKE HIGH activates, and CKE LOW deactivates internal clock signals, and device input buffers Active High and output drivers of the SDRAMs. Taking CKE LOW provides PRECHARGE POWER-DOWN and SELF REFRESH operation (all banks idle), or ACTIVE POWER DOWN (row ACTIVE in any bank) S[3:0] Input Enables the associated SDRAM command decoder when low and disables decoder when high. When decoder is disabled, new commands are ignored and previous operations continue. These input signals also disable all outputs (except CKE and ODT) of the register(s) on the DIMM when both Active Low inputs are high. When both S[1:0] are high, all register outputs (except CKE, ODT and Chip select) remain in the previous state. For modules supporting 4 ranks, S[3:2] operate similarly to S[1:0] for a second set of register outputs. ODT[1:0] Input Active High On-Die Termination control signals RAS, CAS, WE Input Active Low VREFDQ Supply Reference voltage for DQ0-DQ63 and CB0-CB7 VREFCA Supply Reference voltage for A0-A15, BA0-BA2, RAS, CAS, WE, S0, S1, CKE0, CKE1, Par_In, ODT0 and ODT1. BA[2:0] Input Selects which SDRAM bank of eight is activated. BA0 - BA2 define to which bank an Active, Read, Write or Precharge command is being applied. Bank address also determines mode register is to be accessed during an MRS cycle. A[15:13, 12/BC,11, 10/AP,9:0] Input Provided the row address for Active commands and the column address and Auto Precharge bit for Read/ Write commands to select one location out of the memory array in the respective bank. A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by BA. A12 is also utilized for BL 4/8 identification for "BL on the fly" during CAS command. The address inputs also provide the op-code during Mode Register Set commands. DQ[63:0], CB[7:0] I/O Positive line of the differential pair of system clock inputs that drives input to the on-DIMM Clock Driver. When sampled at the positive rising edge of the clock, CAS, RAS, and WE define the operation to be executed by the SDRAM. Data and Check Bit Input/Output pins Active High Masks write data when high, issued concurrently with input data. VDD, VSS Supply Power and ground for the DDR SDRAM input buffers and core logic. VTT Supply Termination Voltage for Address/Command/Control/Clock nets. DM[8:0] DQS[17:0] I/O DQS[17:0] I/O Positive Edge Positive line of the differential data strobe for input and output data. Negative Edge Negative line of the differential data strobe for input and output data. TDQS/TDQS is applicable for X8 DRAMs only. When enabled via Mode Register A11=1 in MR1, DRAM will enable the same termination resistance function on TDQS/TDQS that is applied to DQS/DQS. When disabled via mode register A11=0 in MR1, DM/TDQS will provide the data mask function and TDQS is not used. X4/X16 DRAMs must disable the TDQS function via mode register A11=0 in MR1 TDQS[17:9], TDQS[17:9] OUT SA[2:0] IN These signals are tied at the system planar to either VSS or VDDSPD to configure the serial SPD EEPROM address range. SDA I/O This bidirectional pin is used to transfer data into or out of the SPD EEPROM. A resistor must be connected from the SDA bus line to VDDSPD on the system planar to act as a pull-up. SCL IN This signal is used to clock data into and out of the SPD EEPROM. A resistor may be connected from the SCL bus time to VDDSPD on the system planar to act as a pull-up. EVENT OUT (open drain) VDDSPD Supply Serial EEPROM positive power supply wired to a separate power pin at the connector which supports from 3.0 Volt to 3.6 Volt (nominal 3.3V) operation. RESET IN The RESET pin is connected to the RESET pin on the register and to the RESET pin on the DRAM. When low, all register outputs will be driven low and the Clock Driver clocks to the DRAMs and register(s) will be set to low level (the Clock Driver will remain synchronized with the input clock) Par_In IN Parity bit for the Address and Control bus. ("1" : Odd, "0" : Even) Err_Out OUT (open drain) TEST Active Low This signal indicates that a thermal event has been detected in the thermal sensing device.The system should guarantee the electrical level requirement is met for the EVENT pin on TS/SPD part. Parity error detected on the Address and Control bus. A resistor may be connected from Err_Out bus line to VDD on the system planar to act as a pull up. Used by memory bus analysis tools (unused (NC) on memory DIMMs) -8- datasheet Registered DIMM Rev. 1.0 DDR3L SDRAM 8. Pinout Comparison Based On Module Type Pin RDIMM UDIMM Signal NOTE Signal 48, 49 VTT Additional connection for Termination Voltage for Address/Command/Control/Clock nets. NC Not used on UDIMMs 120, 240 VTT Termination Voltage for Address/Command/Control/Clock nets. VTT Termination Voltage for Address/Command/Control/Clock nets. 53 Err_Out Connected to the register on all RDIMMs NC Not used on UDIMMs NC NC Not used on UDIMMs 63 NC CK1 64 NC CK1 Used for 2 rank UDIMMs, not used on single-rank UDIMMs, but terminated 68 Par_In Connected to the register on all RDIMMs NC Not used on RDIMMs 76 S1 Connected to the register on all RDIMMs S1 Used for dual-rank UDIMMs, not connected on single-rank UDIMMs 77 ODT1, NC ODT1,NC Used for dual-rank UDIMMs, not connected on single-rank UDIMMs 79 S2, NC Connected to the register on quad-rank RDIMMs, not connected on single or dual rank RDIMMs NC Not used on UDIMMs 167 NC TEST input used only on bus analysis probes NC TEST input used only on bus analysis probes 169 CKE1 171 A15 172 A14 196 A13 198 S3, NC 39, 40, 45, 46, 158, 159, 164, 165 CBn 125, 134, 143, 152, 161, 203, 212, 221, 230 DQSn, TDQSn Connected to DQS on x4 SDRAMs, TDQS on x8 SDRAMs on RDIMMs; (n = 9...17) DMn 126, 135, 144, 153, 162, 204, 213, 222, 231 DQSn, TDQSn Connected to DQS on x4 DRAMs, TDQS on x8 SDRAMs on RDIMMs; (n=9...17) NC Not used on UDIMMs 187 EVENT NC Connected to optional thermal sensing component. NC on Modules without a thermal sensing component. NC Not used on UDIMMs Not used on RDIMMs Connected to the register on dual- and quadrank RDIMMs; NC on single-rank RDIMMs Connected to the register on dual- and quadrank RDIMMs; NC on single-rank RDIMMs CKE1, NC A15, NC Connected to the register on all RDIMMs Connected to the register on quad-rank RDIMMs, not connected on single-or dual-rank RDIMMs Used on all RDIMMs; (n = 0...7) -9- Used for dual-rank UDIMMs, not connected on single-rank UDIMMs A13 Depending on device density, may not be connected to SDRAMs on UDIMMs. However, these signals are terminated on UDIMMs. A15 not routed on some RCs NC Not used on UDIMMs A14 NC, CBn NOTE : NC = No internal Connection NOTE Used on x72 UDIMMs, (n = 0...7); not used on x64 UDIMMs Connected to DM on x8 DRAMs, UDM or LDM on x16 DRAMs on UDIMMs; (n = 0...8) Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM 9. Registering Clock Driver Specification 9.1 Timing & Capacitance values Symbol Parameter fclock Input Clock Frequency tCH/tCL Pulse duration, CK, CK HIGH or LOW Conditions application frequency TC = TBD VDD = 1.35V(1.28V~1.45V) & 1.5V(1.425~1.575V) Units Min Max 300 670 MHz 0.4 - tCK 8 - tCK tACT Inputs active time4 before RESET is taken HIGH DCKE0/1 = LOW and DCS0/1 = HIGH tSU Setup time Input valid before CK/CK 100 - ps tH Hold time Input to remain Valid after CK/ CK 175 - ps Propagation delay, single-bit switching CK/CK to output 0.65 1.0 ns 0.5 - 0.25 - - 0.5 - 0.25 tPDM tDIS tEN output disable time(1/2-Clock pre-launch) output disable time(3/4-Clock pre-launch) output enable time(1/2-Clock pre-launch) output enable time(3/4-Clock pre-launch) CK/CK to output float CK/CK to output driving CIN(DATA) Data Input Capacitance 1.5 2.5 CIN(CLOCK) Data Input Capacitance 2 3 CIN(RST) Reset Input Capacitance - 3 Notes tCK tCK pF 9.2 Clock driver Characteristics Symbol Parameter Conditions TC = TBD VDD = 1.35V(1.28V~1.45V) & 1.5V(1.425~1.575V) Min Max Units tjit (cc) Cycle-to-cycle period jitter 0 40 ps tSTAB Stabilization time - 6 us tfdyn Dynamic phase offset -50 50 ps tCKsk 50 ps tjit(per) Yn Clock Period jitter Clock Output skew -40 40 ps tjit(hper) Half period jitter -50 50 ps Output Inversion enabled -100 200 OUtput Inversion disabled -100 300 Output Inversion enabled -100 200 OUtput Inversion disabled -100 300 -80 80 tQsk1 Qn Output to clock tolerance (Standard 1/2 -Clock Pre-Launch) tQsk1 Output clock tolerance (3/4 Clock Pre-Launch) tdynoff Maximum re-driven dynamic clock off-set - 10 - ps ps ps Notes Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM 10. Function Block Diagram: DQS DQS TDQS TDQS DQ[7:0] ZQ D14 DQS DQS TDQS TDQS DQ[7:0] ZQ D15 DQS DQS TDQS TDQS DQ[7:0] ZQ D16 CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] D5 D6 D7 Vtt S0* D9 RS0A-> CS0 : SDRAMs D[3:0], D8 RS0B-> CS0 : SDRAMs D[7:4] RS1A-> CS1 : SDRAMs D[12:9], D17 RS1B-> CS1 : SDRAMs D[16:13] S1* S[3:2] NC BA[N:0] RBA[N:0]A -> BA[N:0] : SDRAMs D[3:0], D[12:8], D17 RBA[N:0]B -> BA[N:0] : SDRAMs D[7:4], D[16:13] RA[N:0]A -> A[N:0] : SDRAMs D[3:0], D[12:8], D17 RA[N:0]B -> A[N:0] : SDRAMs D[7:4, D[16:13] A[N:0] Vtt RAS CAS VDDSPD Serial PD VDD D0 - D17 VTT VREFCA D0 - D17 VREFDQ D0 - D17 VSS D0 - D17 1:2 R E G I S T E R WE Thermal sensor with SPD SCL EVENT PCK1B PCK1B RCKE1B RODT1B DQS DQS TDQS TDQS DQ[7:0] ZQ CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS7 DQS7 DM7/DQS16 DQS16 DQ[63:56] RS1B RS0B RRASB RCASB RWEB PCK0B PCK0B RCKE0B RODT0B A[N:0]B /BA[N:0]B RS1A PCK1A PCK1A RCKE1A RODT1A DQS DQS TDQS TDQS DQ[7:0] ZQ D13 CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] D0 DQS DQS TDQS TDQS DQ[7:0] ZQ DQS6 DQS6 DM6/DQS15 DQS15 DQ[55:48] DQS DQS TDQS TDQS DQ[7:0] ZQ CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS DQS TDQS TDQS DQ[7:0] ZQ D10 DQS DQS TDQS TDQS DQ[7:0] ZQ CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS0 DQS0 DM0/DQS9 DQS9 DQ[7:0] D1 DQS DQS TDQS TDQS DQ[7:0] ZQ DQS5 DQS5 DM5/DQS14 DQS14 DQ[47:40] D4 CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS DQS TDQS TDQS DQ[7:0] ZQ D11 DQS DQS TDQS TDQS DQ[7:0] ZQ CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS1 DQS1 DM1/DQS10 DQS10 DQ[15:8] D2 DQS DQS TDQS TDQS DQ[7:0] ZQ D12 DQS4 DQS4 DM4/DQS13 DQS13 DQ[39:32] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS DQS TDQS TDQS DQ[7:0] ZQ CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS2 DQS2 DM2/DQS11 DQS11 DQ[23:16] D3 DQS DQS TDQS TDQS DQ[7:0] ZQ CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS DQS TDQS TDQS DQ[7:0] ZQ D17 CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS3 DQS3 DM3/DQS12 DQS12 DQ[31:24] D8 DQS DQS TDQS TDQS DQ[7:0] ZQ CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS DQS TDQS TDQS DQ[7:0] ZQ CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS8 DQS8 DM8/DQS17 DQS17 CB[7:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] RS0A RRASA RCASA RWEA PCK0A PCK0A RCKE0A RODT0A A[N:0]A /BA[N:0]A 10.1 4GB, 512Mx72 Module (Populated as 2 ranks of x8 DDR3 SDRAMs) CKE0 EVENT A0 SDA A1 CKE1 A2 ODT0 SA0 SA1 SA2 ODT1 NOTE : 1. Unless otherwise noted, resistor values are 15Ω ± 5%. 2. RS0 and RS1 alternate between the back and front sides of the DIMM. 3. ZQ resistors are 240Ω ± 1% . For all other resistor values refer to the appropriate wiring diagram. 4. See the wiring diagrams for all resistors associated with the command, address and control bus. RRASA -> RAS : SDRAMs D[3:0], D[12:8], D17 RRASB -> RAS : SDRAMs D[7:4], D[16:13] RCASA -> CAS : SDRAMs D[3:0], D[12:8], D17 RCASB -> CAS : SDRAMs D[7:4], D[16:13] RWEA -> WE : SDRAMs D[3:0], D[12:8], D17 RWEB -> WE : SDRAMs D[7:4], D[16:13] RCKE0A -> CKE0 : SDRAMs D[3:0], D8 RCKE0B -> CKE0 : SDRAMs D[7:4] RCKE1A -> CKE1 : SDRAMs D[12:9], D17 RCKE1B -> CKE1 : SDRAMs D[16:13] RODT0A -> ODT0 : SDRAMs D[3:0], D8 RODT0B -> ODT0 : SDRAMs D[7:4] RODT1A -> ODT1 : SDRAMs D[12:9], D17 RODT1A -> ODT1 : SDRAMs D[16:13] CK0 PCK0A -> CK : SDRAMs D[3:0], D8 PCK0B -> CK : SDRAMs D[7:4] PCK1A -> CK : SDRAMs D[12:9], D17 PCK1B -> CK : SDRAMs D[16:13] CK0 PCK0A -> CK : SDRAMs D[3:0], D8 PCK0B -> CK : SDRAMs D[7:4] PCK1A -> CK : SDRAMs D[12:9], D17 PCK1B -> CK : SDRAMs D[16:13] CK1 120Ω CK1 QERR PAR_IN RESET** Err_out RST RST** : SDRAMs D[17:0] - 11 - Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] D0 ZQ D9 SDA A1 A2 SA0 SA1 SA2 D7 D15 ZQ D16 RS0A-> CS0 : SDRAMs D[3:0], D[12:8], D17 RS0B-> CS0 : SDRAMs D[7:4], D[16:13] S1* S[3:2] NC BA[N:0] VDDSPD Serial PD RBA[N:0]A -> BA[N:0] : SDRAMs D[3:0], D[12:8], D17 RBA[N:0]B -> BA[N:0] : SDRAMs D[7:4], D[16:13] RA[N:0]A -> A[N:0] : SDRAMs D[3:0], D[12:8], D17 RA[N:0]B -> A[N:0] : SDRAMs D[7:4], D[16:13] VDD D0 - D17 VTT 1:2 R E G I S T E R WE CKE0 ODT0 VREFCA D0 - D17 VREFDQ D0 - D17 VSS D0 - D17 CK0 NOTE : 1. Unless otherwise noted, resistor values are 15Ω ± 5%. 2. See the wiring diagrams for all resistors associated with the command, address and control bus. 3. ZQ resistors are 240Ω ± 1% . For all other resistor values refer to the appropriate wiring diagram. - 12 - 120Ω CK0 CK1 RRASA -> RAS : SDRAMs D[3:0], D[12:8], D17 RRASB -> RAS : SDRAMs D[7:4], D[16:13] RCASA -> CAS : SDRAMs D[3:0], D[12:8], D17 RCASB -> CAS : SDRAMs D[7:4], D[16:13] RWEA -> WE : SDRAMs D[3:0], D[12:8], D17 RWEB -> WE : SDRAMs D[7:4], D[16:13] RCKE0A -> CKE0 : SDRAMs D[3:0], D[12:8], D17 RCKE0B -> CKE0 : SDRAMs D[7:4], D[16:13] RODT0A -> ODT0 : SDRAMs D[3:0], D[12:8], D17 RODT0B -> ODT0 : SDRAMs D[7:4], D[16:13] PCK0A -> CK : SDRAMs D[3:0], D[12:8], D17 PCK0B -> CK : SDRAMs D[7:4], D[16:13] PCK0A -> CK : SDRAMs D[3:0], D[12:8], D17 PCK0B -> CK : SDRAMs D[7:4], D[16:13] 120Ω CK1 PAR_IN RESET** Err_out RST RST** : SDRAMs D[17:0] VSS ZQ Vtt S0* VSS CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] D14 VSS DQS DQS DM DQ[3:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS16 DQS16 VSS DQ[63:60] ZQ CAS EVENT A0 DQS DQS DM DQ[3:0] ZQ VSS D6 RAS SCL DQS15 DQS15 VSS DQ[55:52] ZQ Vtt EVENT DQS DQS DM DQ[3:0] D13 CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] D5 A[N:0] Thermal sensor with SPD DQS14 DQS14 VSS DQ[47:44] ZQ ZQ CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] D10 VSS DQS DQS DM DQ[3:0] VSS DQS7 DQS7 VSS DQ[59:56] ZQ DQS DQS DM DQ[3:0] VSS D11 DQS13 DQS13 VSS DQ[39:36] VSS DQS DQS DM DQ[3:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS6 DQS6 VSS DQ[51:48] ZQ D4 CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS DQS DM DQ[3:0] D12 ZQ CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS9 DQS9 VSS DQ[7:4] ZQ VSS CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] D1 VSS DQS DQS DM DQ[3:0] DQS DQS DM DQ[3:0] VSS DQS10 DQS10 VSS DQ[15:12] ZQ DQS5 DQS5 VSS DQ[43:40] VSS CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] D2 DQS DQS DM DQ[3:0] VSS DQS DQS DM DQ[3:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS11 DQS11 VSS DQ[23:20] ZQ CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS DQS DM DQ[3:0] D3 DQS4 DQS4 VSS DQ[35:32] ZQ CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS0 DQS0 VSS DQ[3:0] DQS DQS DM DQ[3:0] D17 CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS DQS DM DQ[3:0] DQS12 DQS12 VSS DQ[31:28] ZQ ZQ CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS1 DQS1 VSS DQ[11:8] VSS DQS DQS DM DQ[3:0] VSS DQS8 DQS2 VSS DQ[19:16] DQS DQS DM DQ[3:0] VSS DQS DQS DM DQ[3:0] D8 DQS17 DQS17 VSS CB[7:4] VSS DQS3 DQS3 VSS DQ[27:24] ZQ VSS DQS DQS DM DQ[3:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS8 DQS8 VSS CB[3:0] RS0B RRASB RCASB RWEB PCK0B PCK0B RCKE0B RODT0B A[N:0]B /BA[N:0]B RS0A RRASA RCASA RWEA PCK0A PCK0A RCKE0A RODT0A A[N:0]A /BA[N:0]A 10.2 4GB, 512Mx72 Module (Populated as 1 rank of x4 DDR3 SDRAMs) DQS11 DQS11 VSS DQ[23:20] DQS DQS DM DQ[3:0] DQS10 DQS10 VSS DQ[15:12] DQS DQS DM DQ[3:0] DQS0 DQS0 VSS DQ[3:0] DQS DQS DM DQ[3:0] D11 D10 D0 CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] D12 CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] D17 DQS DQS DM DQ[3:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS DQS DM DQ[3:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS12 DQS12 VSS DQ[31:28] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS DQS DM DQ[3:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS17 DQS17 VSS CB[7:4] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS DQS DM DQ[3:0] DQS DQS DM DQ[3:0] DQS DQS DM DQ[3:0] DQS DQS DM DQ[3:0] D17B D12B D11B D10B D0B DQS2 DQS2 VSS DQ[19:16] DQS DQS DM DQ[3:0] DQS1 DQS1 VSS DQ[11:8] DQS DQS DM DQ[3:0] DQS9 DQS9 VSS DQ[7:4] DQS DQS DM DQ[3:0] Vtt Vtt - 13 D2 D1 D9 CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] D3 CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] D8 CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS DQS DM DQ[3:0] DQS DQS DM DQ[3:0] DQS DQS DM DQ[3:0] DQS DQS DM DQ[3:0] DQS DQS DM DQ[3:0] PCK1A PCK1A RCKE1A RODT1A RS1A RS0A RRASA RCASA RWEA PCK0A PCK0A RCKE0A RODT0A A[N:0]A /BA[N:0]A datasheet CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS DQS DM DQ[3:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS3 DQS3 VSS DQ[27:24] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS DQS DM DQ[3:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS8 DQS8 VSS CB[3:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] PCK1A PCK1A RCKE1A RODT1A RS1A RS0A RRASA RCASA RWEA PCK0A PCK0A RCKE0A RODT0A A[N:0]A /BA[N:0]A Registered DIMM Rev. 1.0 DDR3L SDRAM 10.3 8GB, 1Gx72 Module (Populated as 2 ranks of x4 DDR3 SDRAMs) D8B D3B D2B D1B D9B datasheet D6B CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS DQS DM DQ[3:0] D7 D7B DQS DQS DM DQ[3:0] DQS16 DQS16 VSS DQ[63:60] DQS DQS DM DQ[3:0] Vtt PCK1B PCK1B RCKE1B RODT1B RS1B CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS15 DQS15 VSS DQ[55:52] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS DQS DM DQ[3:0] D13B D14 DQS DQS DM DQ[3:0] D14B CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS DQS DM DQ[3:0] D6 RS0B RRASB RCASB RWEB PCK0B PCK0B RCKE0B RODT0B A[N:0]B /BA[N:0]B PCK1B PCK1B RCKE1B RODT1B CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] D5B DQS DQS DM DQ[3:0] D13 D15 DQS DQS DM DQ[3:0] D15B CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS DQS DM DQ[3:0] D5 DQS14 DQS14 VSS DQ[47:44] DQS DQS DM DQ[3:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS7 DQS7 VSS DQ[59:56] DQS DQS DM DQ[3:0] DQS DQS DM DQ[3:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS DQS DM DQ[3:0] D4B DQS13 DQS13 VSS CB[39:36] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS6 DQS6 VSS DQ[51:48] D4 DDR3L SDRAM CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS DQS DM DQ[3:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS5 DQS5 VSS DQ[43:40] DQS DQS DM DQ[3:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS DQS DM DQ[3:0] RS1B RS0B RRASB RCASB RWEB PCK0B PCK0B RCKE0B RODT0B A[N:0]B /BA[N:0]B Registered DIMM DQS4 DQS4 VSS CB[35:32] Rev. 1.0 D16 D16B Vtt Integrated Thermal sensor in SPD S0 RS0A -> CS0 : SDRAMs D[3:0], D[12:8], D17 RS0B -> CS0 : SDRAMs D[7:4]B, D[16:13] B S1 RS1A -> CS1 : SDRAMs D[3:0]B, D[12:8]B, D17B RS1B -> CS1 : SDRAMs D[7:4], D[16:13] BA[N:0] RBA[N:0]A -> BA[N:0]: SDRAMs D[3:0], D[12:8], D17,D[3:0]B, D[12:8]B, D17B RBA[N:0]B -> BA[N:0]: SDRAMs D[7:4], D[16:13], D[7:4]B, D[16:13]B A[N:0] RA[N:0]A -> A[N:0]: SDRAMs D[3:0], D[12:8], D17, D[3:0]B, D[12:8]B, D17B RA[N:0]B -> A[N:0]: SDRAMs D[7:4], D[16:13], D[7:4], D[16:13]B RAS RRASA -> RAS: SDRAMs D[3:0], D[12:8],D17, D[3:0]B, D[12:8]B, D17B RRASB -> RAS: SDRAMs D[7:4], D[16:13], D[7:4]B, D[16:13]B SCL EVENT EVENT A0 SDA A1 A2 RCASA -> CAS: SDRAMs D[3:0], D[12:8], D17, D[3:0]B, D[12:8]B, D17B RCASB -> CAS: SDRAMs D[7:4], D[16:13], D[7:4]B, D[16:13]B CAS SA0 SA1 SA2 1:2 R E G I S T E R WE Serial PD w/ integrated Thermal sensor CKE0 CKE1 VDDSPD Serial PD ODT0 VDD D0 - D35 ODT1 CK0 VTT VREFCA D0 - D35 VREFDQ D0 - D35 VSS D0 - D35 RWEA -> WE: SDRAMs D[3:0], D[12:8], D17, D[3:0]B, D[12:8]B, D17B RWEB -> WE: SDRAMs D[7:4], D[16:13], D[7:4]B, D[16:13]B RCKE0A -> CKE0: SDRAMs D[3:0], D[12:8], D17 RCKE0B -> CKE0: SDRAMs D[7:4]B, D[16:13]B RCKE1A -> CKE1: SDRAMs D[3:0], D[12:8]B, D17B RCKE1B -> CKE1: SDRAMs D[7:4], D[16:13] RODT0A -> ODT0: SDRAMs D[3:0], D[12:8], D17 RODT0B -> ODT0: SDRAMs D[7:4]B, D[16:13]B RODT1A -> ODT1: SDRAMs D[3:0]B, D[12:8]B, D17B RODT1B -> ODT1: SDRAMs D[7:4], D[16:13] PCK0A -> CK: SDRAMs D[3:0], D[12:8], D17 PCK0B -> CK: SDRAMs D[7:4]B, D[16:13]B PCK1A -> CK: SDRAMs D[3:0]B, D[12:8]B, D17B PCK1B -> CK: SDRAMs D[7:4], D[16:13] PCK0A -> CK: SDRAMs D[3:0], D[12:8], D17 PCK0B -> CK: SDRAMs D[7:4]B, D[16:13]B CK0 CK1 CK1 PCK1A -> CK: SDRAMs D[3:0]B, D[12:8]B, D17B PCK1B -> CK: SDRAMs D[7:4], D[16:13] 120Ω PAR_IN RESET NOTE: 1. See wiring diagrams for resistor values. 2. ZQ pins of each SDRAM are connected to individual RZQ resistors (240 +/-1%)ohms... - 14 - ERR_OUT RST RST : SDRAMs D[17:0], D[17:0]B Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM DQS DQS TDQS TDQS DQ[7:0] ZQ DQS DQS TDQS TDQS DQ[7:0] ZQ U12 U21 DQS DQS TDQS TDQS DQ[7:0] ZQ U11 Vtt - 15 - U20 PCK2 PCK2 WCKE1 VDD CS3 CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] DQS DQS TDQS TDQS DQ[7:0] ZQ U32 CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] U22 U33 DQS DQS TDQS TDQS DQ[7:0] ZQ U31 CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] DQS DQS TDQS TDQS DQ[7:0] ZQ PCK2 PCK2 WCKE0 VDD CS2 CS1 PCK0 PCK0 WCKE1 VDD DQS DQS TDQS TDQS DQ[7:0] ZQ U13 DQS DQS TDQS TDQS DQ[7:0] ZQ DQS DQS TDQS TDQS DQ[7:0] ZQ U30 CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] U2 CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] DQS DQS TDQS TDQS DQ[7:0] ZQ CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] DQS0 DQS0 DM0/TDQS9 TDQS9 DQ[7:0] U3 DQS DQS TDQS TDQS DQ[7:0] ZQ U23 CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] DQS DQS TDQS TDQS DQ[7:0] ZQ DQS DQS TDQS TDQS DQ[7:0] ZQ U14 CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] DQS1 DQS1 DM1/TDQS10 TDQS10 DQ[15:8] U4 DQS DQS TDQS TDQS DQ[7:0] ZQ U24 CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] DQS DQS TDQS TDQS DQ[7:0] ZQ CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] DQS2 DQS2 DM2/TDQS11 TDQS11 DQ[23:16] U5 DQS DQS TDQS TDQS DQ[7:0] ZQ U15 CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] DQS DQS TDQS TDQS DQ[7:0] ZQ DQS DQS TDQS TDQS DQ[7:0] ZQ CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] DQS3 DQS3 DM3/TDQS12 TDQS12 DQ[31:24] U6 CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] DQS DQS TDQS TDQS DQ[7:0] ZQ CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] DQS8 DQS8 DM8/TDQS17 TDQS17 CB[7:0] CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] CS0 WRAS WCAS WWE PCK0 PCK0 WCKE0 WODT0 WA[N:0] WBA[N:0] 10.4 8GB, 1Gx72 Module (Populated as 4 ranks of x8 DDR3 SDRAMs) DQS DQS TDQS TDQS DQ[7:0] ZQ U29 Rev. 1.0 CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] DQS DQS TDQS TDQS DQ[7:0] ZQ U10 U19 DQS DQS TDQS TDQS DQ[7:0] ZQ DQS DQS TDQS TDQS DQ[7:0] ZQ PCK3 PCK3 ECKE1 VDD CS3 CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] CS2 PCK3 PCK3 ECKE0 EODT1 CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] DQS DQS TDQS TDQS DQ[7:0] ZQ U26 U35 CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] DQS DQS TDQS TDQS DQ[7:0] ZQ U18 DQS DQS TDQS TDQS DQ[70] ZQ U34 DQS DQS TDQS TDQS DQ[7:0] ZQ U27 U36 CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] DQS7 DQS7 DM7/TDQS16 TDQS16 DQ[63:56] DQS DQS TDQS TDQS DQ[7:0] ZQ U9 CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] DQS DQS TDQS TDQS DQ[7:0] ZQ U17 DQS DQS TDQS TDQS DQ[7:0] ZQ U25 CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] DQS6 DQS6 DM6/TDQS15 TDQS15 DQ[55:48] DQS DQS TDQS TDQS DQ[7:0] ZQ U8 DQS DQS TDQS TDQS DQ[7:0] ZQ CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] DQS DQS TDQS TDQS DQ[7:0] ZQ U16 CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] DQS5 DQS5 DM5/TDQS14 TDQS14 DQ[47:40] DQS DQS TDQS TDQS DQ[7:0] ZQ U7 DDR3L SDRAM CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] CS1 CS0 ERAS ECAS EWE PCK1 PCK1 ECKE0 EODT0 EA[N:0] EBA[N:0] CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] DQS DQS TDQS TDQS DQ[7:0] ZQ CS RAS CAS WE CK CK CKE ODT A[N:0] BA[N:0] DQS4 DQS4 DM4/TDQS13 TDQS13 DQ[39:32] PCK1 PCK1 ECKE1 VDD datasheet Registered DIMM DQS DQS TDQS TDQS DQ[7:0] ZQ U28 U37 Vtt S0 S1 Thermal sensor with SPD S2 S3 SCL EVENT EVENT A0 SDA A1 A2 SA0 SA1 SA2 VDDSPD Serial PD VDD D0 - D35 VTT CS0-> CS0 : SDRAMs U[10:2] CS1-> CS1 : SDRAMs U[19:11] CS2-> CS2 : SDRAMs U[28:20] CS3-> CS3 : SDRAMs U[37:29] WBA[N:0] -> BA[N:0]: SDRAMs U[6:2], U[15:11], U[24:20], U[33:29] EBA[N:0] -> BA[N:0]: SDRAMs U[10:7], U[19:16], U[28:25], U[37:34] BA[N:0] A[N:0] WA[N:0] -> A[N:0]: SDRAMs U[6:2], U[15:11], U[24:20], U[33:29] EA[N:0] -> A[N:0]: SDRAMs U[10:7], U[19:16], U[28:25], U[37:34] RAS WRAS -> RAS: SDRAMs U[6:2], U[15:11], U[24:20], U[33:29] ERAS -> RAS: SDRAMs U[10:7], U[19:16], U[28:25], U[37:34] CAS 1:2 R E G I S T E R WE CKE0 VREFCA D0 - D35 VREFDQ D0 - D35 VSS D0 - D35 CKE1 ODT0 ODT1 CK0 NOTE : 1. Unless otherwise noted, resistor values are 15Ω ± 5%. 2. See the wiring diagrams for all resistors associated with the command, address and control bus. 3. ZQ resistors are 240Ω ± 1% . For all other resistor values refer to the appropriate wiring diagram. 120Ω ± 5% PAR_IN RESET WWE -> WE: SDRAMs U[6:2], U[15:11], U[24:20], U[33:29] EWE -> WE: SDRAMs U[10:7], U[19:16], U[28:25], U[37:34] WCKE0 -> CKE0: SDRAMs U[6:2], U[24:20] ECKE0 -> CKE0: SDRAMs U[10:7], U[28:25] WCKE1 -> CKE1: SDRAMs U[15:11], U[33:29] ECKE1 -> CKE1: SDRAMs U[19:16], U[37:34] WODT0 -> ODT0: SDRAMs U[6:2] EODT0 -> ODT0: SDRAMs U[10:7] WODT1 -> ODT1: SDRAMs U[24:20] EODT1 -> ODT1: SDRAMs U[28:25] PCK0 -> CK: SDRAMs U[6:2], U[15:11] PCK1 -> CK: SDRAMs U[10:7], U[28:25] PCK2 -> CK: SDRAMs U[24:20], U[33:29] PCK3 -> CK: SDRAMs U[19:16], U[37:34] PCK0 -> CK: SDRAMs U[6:2], U[15:11] PCK1 -> CK: SDRAMs U[10:7], U[28:25] PCK2 -> CK: SDRAMs U[24:20], U[33:29] PCK3 -> CK: SDRAMs U[19:16], U[37:34] CK0 CK1 CK1 WCAS -> CAS: SDRAMs U[6:2], U[15:11], U[24:20], U[33:29] ECAS -> CAS: SDRAMs U[10:7], U[19:16], U[28:25], U[37:34] Err_out RST RST : SDRAMs U[37:2] - 16 - Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM 11. Absolute Maximum Ratings 11.1 Absolute Maximum DC Ratings Symbol Parameter Rating Units NOTE VDD Voltage on VDD pin relative to VSS -0.4 V ~ 1.80 V V 1,3 VDDQ Voltage on VDDQ pin relative to VSS -0.4 V ~ 1.80 V V 1,3 VIN, VOUT Voltage on any pin relative to VSS -0.4 V ~ 1.80 V V 1 TSTG Storage Temperature -55 to +100 °C 1, 2 NOTE : 1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard. 3. VDD and VDDQ must be within 300mV of each other at all times;and VREF must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV. 11.2 DRAM Component Operating Temperature Range Symbol Parameter rating Unit NOTE TOPER Operating Temperature Range 0 to 95 °C 1, 2, 3 NOTE : 1. Operating Temperature TOPER is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the JEDEC document JESD51-2. 2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0-85°C under all operating conditions 3. Some applications require operation of the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply: a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us. b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b), in this case IDD6 current can be increased around 10~20% than normal Temperature range. 12. AC & DC Operating Conditions 12.1 Recommended DC Operating Conditions Symbol VDD VDDQ Parameter Supply Voltage Supply Voltage for Output Operation Voltage Rating Min. Typ. 1.35V 1.283 1.35 1.5V 1.425 1.5 1.35V 1.283 1.35 1.5V 1.425 1.5 NOTE: 1. Under all conditions VDDQ must be less than or equal to VDD. 2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together. 3. VDD & VDDQ rating are determinied by operation voltage. - 17 - Units NOTE 1.45 V 1, 2, 3 1.575 V 1, 2, 3 1.45 V 1, 2, 3 1.575 V 1, 2, 3 Max. Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM 13. AC & DC Input Measurement Levels 13.1 AC & DC Logic Input Levels for Single-ended Signals [ Table 2 ] Single Ended AC and DC input levels for Command and Address Symbol Parameter DDR3-800/1066/1333/1600 Min. Max. Unit NOTE 1.35V VIH.CA(DC90) DC input logic high VREF + 90 VDD mV 1,5a) VIL.CA(DC90) DC input logic low VSS VREF - 90 mV 1,6a) VIH.CA(AC160) AC input logic high VREF + 160 Note 2 mV 1,2 VIL.CA(AC160) AC input logic low Note 2 VREF - 160 mV 1,2 VIH.CA(AC135) AC input logic high VREF+135 Note 2 mV 1,2 VIL.CA(AC135) AC input logic lowM Note 2 VREF-135 mV 1,2 0.49*VDD 0.51*VDD V 3,4 VREFCA(DC) Reference Voltage for ADD, CMD inputs 1.5V VIH.CA(DC100) DC input logic high VREF + 100 VDD mV 1,5b) VIL.CA(DC100) DC input logic low VSS VREF - 100 mV 1,6b) VIH.CA(AC175) AC input logic high VREF + 175 Note 2 mV 1,2,7 VIL.CA(AC175) AC input logic low Note 2 VREF - 175 mV 1,2,8 VIH.CA(AC150) AC input logic high VREF+150 Note 2 mV 1,2,7 VIL.CA(AC150) AC input logic low Note 2 VREF-150 mV 1,2,8 0.49*VDD 0.51*VDD V 3,4 VREFCA(DC) Reference Voltage for ADD, CMD inputs NOTE : 1. For input only pins except RESET, VREF = VREFCA(DC) 2. See "Overshoot and Undershoot specifications" section. 3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV) 4. For reference : approx. VDD/2 ± 15mV 5. VIH(dc) is used as a simplified symbol for VIH.CA(a) 1.35V : DC90, b) 1.5V : DC100) 6. VIL(dc) is used as a simplified symbol for VIL.CA(a) 1.35V : DC90, b) 1.5V : DC100) 7. VIH(ac) is used as a simplified symbol for VIH.CA(AC175) and VIH.CA(AC150); VIH.CA(AC175) value is used when VREF + 175mV is referenced and VIH.CA(AC150) value is used when VREF + 150mV is referenced. 8. VIL(ac) is used as a simplified symbol for VIL.CA(AC175) and VIL.CA(AC150); VIL.CA(AC175) value is used when VREF - 175mV is referenced and VIL.CA(AC150) value is used when VREF - 150mV is referenced. - 18 - Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM [ Table 3 ] Single Ended AC and DC input levels for DQ and DM Symbol Parameter DDR3-800/1066 Min. DDR3-1333/1600 Max. Min. Max. Unit NOTE 1.35V VIH.DQ(DC90) DC input logic high VREF + 90 VDD VREF + 90 VDD mV 1,5a) VSS VREF - 90 VSS VREF - 90 mV 1,6a) VIH.DQ(AC160) AC input logic high VREF + 160 Note 2 - - mV 1,2 VIL.DQ(AC160) AC input logic low Note 2 VREF - 160 - - mV 1,2 VIH.DQ(AC135) AC input logic high VREF + 135 Note 2 VREF + 135 Note 2 mV 1,2 VIL.DQ(AC135) AC input logic low Note 2 VREF - 135 Note 2 VREF - 135 mV 1,2 0.49*VDD 0.51*VDD 0.49*VDD 0.51*VDD V 3,4 VIL.DQ(DC90) VREFDQ(DC) DC input logic low Reference Voltage for DQ, DM inputs 1.5V VIH.DQ(DC100) DC input logic high VREF + 100 VDD VREF + 100 VDD mV 1,5b) VIL.DQ(DC100) DC input logic low VSS VREF - 100 VSS VREF - 100 mV 1,6b) VIH.DQ(AC175) AC input logic high VREF + 175 NOTE 2 - - mV 1,2,7 VIL.DQ(AC175) AC input logic low NOTE 2 VREF - 175 - - mV 1,2,8 VIH.DQ(AC150) AC input logic high VREF + 150 NOTE 2 VREF + 150 NOTE 2 mV 1,2,7 VIL.DQ(AC150) AC input logic low NOTE 2 VREF - 150 NOTE 2 VREF - 150 mV 1,2,8 0.49*VDD 0.51*VDD 0.49*VDD 0.51*VDD V 3,4 VREFDQ(DC) Reference Voltage for DQ, DM inputs NOTE : 1. For input only pins except RESET, VREF = VREFDQ(DC) 2. See ’Overshoot/Undershoot Specification’ on page 18. 3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV) 4. For reference : approx. VDD/2 ± 15mV 5. VIH(dc) is used as a simplified symbol for VIH.CA(a) 1.35V : DC90, b) 1.5V : DC100) 6. VIL(dc) is used as a simplified symbol for VIL.CA(a) 1.35V : DC90, b) 1.5V : DC100) 7. VIH(ac) is used as a simplified symbol for VIH.DQ(AC175), VIH.DQ(AC150) ; VIH.DQ(AC175) value is used when VREF + 175mV is referenced, VIH.DQ(AC150) value is used when VREF + 150mV is referenced. 8. VIL(ac) is used as a simplified symbol for VIL.DQ(AC175), VIL.DQ(AC150) ; VIL.DQ(AC175) value is used when VREF - 175mV is referenced, VIL.DQ(AC150) value is used when VREF - 150mV is referenced. - 19 - Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM 13.2 VREF Tolerances The dc-tolerance limits and ac-noise limits for the reference voltages VREFCA and VREFDQ are illustrate in Figure 1. It shows a valid reference voltage VREF(t) as a function of time. (VREF stands for VREFCA and VREFDQ likewise). VREF(DC) is the linear average of VREF(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirements of VREF. Furthermore VREF(t) may temporarily deviate from VREF(DC) by no more than ± 1% VDD. voltage VDD VSS time Figure 1. Illustration of VREF(DC) tolerance and VREF ac-noise limits The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VREF. "VREF" shall be understood as VREF(DC), as defined in Figure 1. This clarifies, that dc-variations of VREF affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for VREF(DC) deviations from the optimum position within the data-eye of the input signals. This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VREF ac-noise. Timing and voltage effects due to ac-noise on VREF up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings. - 20 - Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM 13.3 AC and DC Logic Input Levels for Differential Signals 13.3.1 Differential Signals Definition tDVAC Differential Input Voltage (i.e. DQS-DQS, CK-CK) VIH.DIFF.AC.MIN VIH.DIFF.MIN 0.0 half cycle VIL.DIFF.MAX VIL.DIFF.AC.MAX tDVAC time Figure 2. Definition of differential ac-swing and "time above ac level" tDVAC 13.3.2 Differential Swing Requirement for Clock (CK - CK) and Strobe (DQS - DQS) DDR3-800/1066/1333/1600 Symbol Parameter 1.35V 1.5V min max differential input high +0.18 differential input low NOTE 3 VIHdiff(AC) differential input high ac VILdiff(AC) differential input low ac VIHdiff VILdiff unit NOTE min max NOTE 3 +0.20 NOTE 3 V 1 -0.18 NOTE 3 -0.20 V 1 2 x (VIH(AC) - VREF) NOTE 3 2 x (VIH(AC) - VREF) NOTE 3 V 2 NOTE 3 2 x (VIL(AC) - VREF) NOTE 3 2 x (VIL(AC) - VREF) V 2 NOTE : 1. Used to define a differential signal slew-rate. 2. for CK - CK use VIH/VIL(AC) of ADD/CMD and VREFCA; for DQS - DQS use VIH/VIL(AC) of DQs and VREFDQ; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here. 3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "overshoot and Undersheet Specification" - 21 - Registered DIMM Rev. 1.0 datasheet DDR3L SDRAM [ Table 4 ] Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS (1.35V) Slew Rate [V/ns] tDVAC [ps] @ |VIH/Ldiff(AC)| = 320mV tDVAC [ps] @ |VIH/Ldiff(AC)| = 270mV min max min max > 4.0 TBD - TBD - 4.0 TBD - TBD - 3.0 TBD - TBD - 2.0 TBD - TBD - 1.8 TBD - TBD - 1.6 TBD - TBD - 1.4 TBD - TBD - 1.2 TBD - TBD - 1.0 TBD - TBD - < 1.0 TBD - TBD - [ Table 5 ] Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS (1.5V) Slew Rate [V/ns] tDVAC [ps] @ |VIH/Ldiff(AC)| = 350mV tDVAC [ps] @ |VIH/Ldiff(AC)| = 300mV min max min max > 4.0 75 - 175 - 4.0 57 - 170 - 3.0 50 - 167 - 2.0 38 - 163 - 1.8 34 - 162 - 1.6 29 - 161 - 1.4 22 - 159 - 1.2 13 - 155 - 1.0 0 - 150 - < 1.0 0 - 150 - - 22 - Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM 13.3.3 Single-ended Requirements for Differential Signals Each individual component of a differential signal (CK, DQS, CK, DQS) has also to comply with certain requirements for single-ended signals. CK and CK have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels ( VIH(AC) / VIL(AC) ) for ADD/CMD signals) in every half-cycle. DQS, DQS have to reach VSEHmin / VSELmax (approximately the ac-levels ( VIH(AC) / VIL(AC) ) for DQ signals) in every half-cycle proceeding and following a valid transition. Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g. if VIH150(AC)/VIL150(AC) is used for ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK and CK . VDD or VDDQ VSEH min VSEH VDD/2 or VDDQ/2 CK or DQS VSEL max VSEL VSS or VSSQ time Figure 3. Single-ended requirement for differential signals Note that while ADD/CMD and DQ signal requirements are with respect to VREF, the single-ended components of differential signals have a requirement with respect to VDD/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For singleended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common mode characteristics of these signals. [ Table 6 ] Single ended levels for CK, DQS, CK, DQS Symbol VSEH VSEL Parameter DDR3-800/1066/1333/1600 Unit NOTE NOTE 3 V 1, 2 (VDD/2)+0.175 NOTE 3 V 1, 2 NOTE 3 (VDD/2)-0.175 V 1, 2 NOTE 3 (VDD/2)-0.175 V 1, 2 Min Max Single-ended high-level for strobes (VDD/2)+0.175 Single-ended high-level for CK, CK Single-ended low-level for strobes Single-ended low-level for CK, CK NOTE : 1. For CK, CK use VIH/VIL(AC) of ADD/CMD; for strobes (DQS, DQS) use VIH/VIL(AC) of DQs. 2. VIH(AC)/VIL(AC) for DQs is based on VREFDQ; VIH(AC)/VIL(AC) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here 3. These values are not defined, however the single-ended signals CK, CK, DQS, DQS need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot Specification" - 23 - Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM 13.3.4 Differential Input Cross Point Voltage To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (CK, CK and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage VIX is measured from the actual cross point of true and complement signal to the mid level between of VDD and VSS. VDD CK, DQS VIX VDD/2 VIX VIX CK, DQS VSEH VSEL VSS Figure 4. VIX Definition [ Table 7 ] Cross point voltage for differential input signals (CK, DQS) : 1.35V Symbol DDR3L-800/1066/1333/1600 Parameter Min Max Unit NOTE 1 VIX Differential Input Cross Point Voltage relative to VDD/2 for CK,CK -150 150 mV VIX Differential Input Cross Point Voltage relative to VDD/2 for DQS,DQS -150 150 mV NOTE : 1. The relationbetween Vix Min/Max and VSEL/VSEH should satisfy following. (VDD/2) + Vix(Min) - VSEL ≥ 25mV VSEH - ((VDD/2) + Vix(Max)) ≥ 25mV [ Table 8 ] Cross point voltage for differential input signals (CK, DQS) : 1.5V Symbol DDR3-800/1066/1333/1600 Parameter VIX Differential Input Cross Point Voltage relative to VDD/2 for CK,CK VIX Differential Input Cross Point Voltage relative to VDD/2 for DQS,DQS Unit Min Max -150 150 mV -175 175 mV -150 150 mV NOTE 1 NOTE : 1. Extended range for VIX is only allowed for clock and if single-ended clock input signals CK and CK are monotonic, have a single-ended swing VSEL / VSEH of at least VDD/2 ±250 mV, and the differential slew rate of CK-CK is larger than 3 V/ ns. - 24 - Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM 13.4 Slew Rate Definition for Single Ended Input Signals See "Address / Command Setup, Hold and Derating" for single-ended slew rate definitions for address and command signals. See "Data Setup, Hold and Slew Rate Derating" for single-ended slew rate definitions for data signals. 13.5 Slew rate definition for Differential Input Signals Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in below. [ Table 9 ] Differential input slew rate definition Measured Description Differential input slew rate for rising edge (CK-CK and DQS-DQS) Differential input slew rate for falling edge (CK-CK and DQS-DQS) Defined by From To VILdiffmax VIHdiffmin VIHdiffmin VIHdiffmin - VILdiffmax Delta TRdiff VIHdiffmin - VILdiffmax VILdiffmax Delta TFdiff NOTE : The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds VIHdiffmin 0 VILdiffmax delta TRdiff delta TFdiff Figure 5. Differential input slew rate definition for DQS, DQS and CK, CK 14. AC & DC Output Measurement Levels 14.1 Single Ended AC and DC Output Levels [ Table 10 ] Single Ended AC and DC output levels Symbol Parameter DDR3-800/1066/1333/1600 Units VOH(DC) NOTE DC output high measurement level (for IV curve linearity) 0.8 x VDDQ V VOM(DC) DC output mid measurement level (for IV curve linearity) 0.5 x VDDQ V VOL(DC) DC output low measurement level (for IV curve linearity) 0.2 x VDDQ V VOH(AC) AC output high measurement level (for output SR) VTT + 0.1 x VDDQ V 1 VOL(AC) AC output low measurement level (for output SR) VTT - 0.1 x VDDQ V 1 NOTE : 1. The swing of +/-0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test load of 25Ω to VTT=VDDQ/2. 14.2 Differential AC and DC Output Levels [ Table 11 ] Differential AC and DC output levels Symbol Parameter DDR3-800/1066/1333/1600 Units NOTE VOHdiff(AC) AC differential output high measurement level (for output SR) +0.2 x VDDQ V 1 VOLdiff(AC) AC differential output low measurement level (for output SR) -0.2 x VDDQ V 1 NOTE : 1. The swing of +/-0.2xVDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test load of 25Ω to VTT=VDDQ/2 at each of the differential outputs. - 25 - Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM 14.3 Single-ended Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC) for single ended signals as shown in below. [ Table 12 ] Single ended Output slew rate definition Measured Description Single ended output slew rate for rising edge From To VOL(AC) VOH(AC) VOH(AC) Single ended output slew rate for falling edge Defined by VOH(AC)-VOL(AC) Delta TRse VOH(AC)-VOL(AC) VOL(AC) Delta TFse NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test. [ Table 13 ] Single ended output slew rate Parameter Symbol Single ended output slew rate SRQse DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Operation Voltage Min Max Min Max Min Max Min Max 1.35V 1.75 51) 1.75 51) 1.75 51) 1.75 51) V/ns 1.5V 2.5 5 2.5 5 2.5 5 2.5 5 V/ns Units Description : SR : Slew Rate Q : Query Output (like in DQ, which stands for Data-in, Query-Output) se : Single-ended Signals For Ron = RZQ/7 setting NOTE : 1) In two cased, a maximum slew rate of 6V/ns applies for a single DQ signal within a byte lane. - Case_1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low of low to high) while all remaining DQ signals in the same byte lane are static (i.e they stay at either high or low). - Case_2 is defined for a single DQ signals in the same byte lane are switching into the opposite direction (i.e. from low to high or high to low respectively). For the remaining DQ signal switching into the opposite direction, the regular maximum limit of 5 V/ns applies. VOHdiff(AC) VTT VOLdiff(AC) delta TFdiff delta TRdiff Figure 6. Single-ended output slew rate definition - 26 - Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM 14.4 Differential Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and VOHdiff(AC) for differential signals as shown in below. [ Table 14 ] Differential Output slew rate definition Measured Description Differential output slew rate for rising edge To VOLdiff(AC) VOHdiff(AC) VOHdiff(AC) Differential output slew rate for falling edge Defined by From VOHdiff(AC)-VOLdiff(AC) Delta TRdiff VOHdiff(AC)-VOLdiff(AC) VOLdiff(AC) Delta TFdiff NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test. [ Table 15 ] Differential Output slew rate Parameter Differential output slew rate Symbol SRQdiff DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Operation Voltage Min Max Min Max Min Max Min Max 1.35V 3.5 12 3.5 12 3.5 12 3.5 12 V/ns 1.5V 5 10 5 10 5 10 5 10 V/ns Description : SR : Slew Rate Q : Query Output (like in DQ, which stands for Data-in, Query-Output) diff : Differential Signals For Ron = RZQ/7 setting VOHdiff(AC) VTT VOLdiff(AC) delta TFdiff delta TRdiff Figure 7. Differential output slew rate definition - 27 - Units Registered DIMM datasheet Rev. 1.0 DDR3L SDRAM 15. IDD specification definition Symbol Description IDD0 Operating One Bank Active-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between ACT and PRE; Command, Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern IDD1 Operating One Bank Active-Read-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between ACT, RD and PRE; Command, Address, Bank Address Inputs, Data IO: partially toggling ; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern IDD2N Precharge Standby Current CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern IDD2P0 Precharge Power-Down Current Slow Exit CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exit3) IDD2P1 Precharge Power-Down Current Fast Exit CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exit3) IDD2Q Precharge Quiet Standby Current CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0 IDD3N Active Standby Current CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern IDD3P Active Power-Down Current CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0 IDD4R Operating Burst Read Current CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between RD; Command, Address, Bank Address Inputs: partially toggling ; Data IO: seamless read data burst with different data between one burst and the next one ; DM:stable at 0; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern IDD4W Operating Burst Write Current CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between WR; Command, Address, Bank Address Inputs: partially toggling ; Data IO: seamless write data burst with different data between one burst and the next one ; DM: stable at 0; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at HIGH; Pattern Details: Refer to Component Datasheet for detail pattern IDD5B Burst Refresh Current CKE: High; External clock: On; tCK, CL, nRFC: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between REF; Command, Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING;DM:stable at 0; Bank Activity: REF command every nRFC ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern IDD6 Self Refresh Current: Normal Temperature Range TCASE: 0 - 85°C; Auto Self-Refresh (ASR): Disabled4); Self-Refresh Temperature Range (SRT): Normal5); CKE: Low; External clock: Off; CK and CK: LOW; CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0; Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: FLOATING IDD6ET Self-Refresh Current: Extended Temperature Range (optional)6) TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Disabled4); Self-Refresh Temperature Range (SRT): Extended5); CKE: Low; External clock: Off; CK and CK: LOW; CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: FLOATING IDD7 Operating Bank Interleave Read Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: CL-1; CS: High between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling ; Data IO: read data bursts with different data between one burst and the next one ; DM:stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern IDD8 RESET Low Current RESET : Low; External clock : off; CK and CK : LOW; CKE : FLOATING ; CS, Command, Address, Bank Address, Data IO : FLOATING ; ODT Signal : FLOATING - 28 - Registered DIMM datasheet Rev. 1.0 DDR3L SDRAM NOTE : 1) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B 2) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B 3) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit 4) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature 5) Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range 6) Refer to DRAM supplier data sheet and/or DIMM SPD to determine if optional features or requirements are supported by DDR3 SDRAM device 7) IDD current measure method and detail patterns are described on DDR3 component datasheet 8) VDD and VDDQ are merged on module PCB. 9) DIMM IDD SPEC is measured with Qoff condition (IDDQ values are not considered) - 29 - Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM 16. IDD SPEC Table M393B5273EB0 : 4GB(512Mx72) Module DDR3-1333 Symbol DDR3-1600 9-9-9 1.35V 11-11-11 1.5V 1.35V Unit NOTE 1.5V IDD0 1016 1129 1102 1242 mA 1 IDD1 1108 1219 1192 1332 mA 1 IDD2P0(slow exit) 720 796 770 846 mA IDD2P1(fast exit) 738 814 788 846 mA IDD2N 852 938 928 1014 mA IDD2Q 872 918 958 994 mA mA IDD3P 774 850 860 900 IDD3N 960 1090 1080 1184 mA IDD4R 1286 1444 1444 1602 mA 1 IDD4W 1386 1544 1489 1702 mA 1 IDD5B 2202 2260 2286 2354 mA 1 IDD6 210 246 210 246 mA IDD7 1871 1984 2019 2187 mA IDD8 210 246 210 246 mA 1 NOTE : 1. DIMM IDD SPEC is calculated with considering de-actived rank(IDLE) is IDD2N. M393B5270EB0 : 4GB(512Mx72) Module DDR3-1333 Symbol DDR3-1600 9-9-9 11-11-11 Unit 1.35V 1.5V 1.35V 1.5V IDD0 1160 1300 1246 1440 mA IDD1 1342 1480 1426 1620 mA IDD2P0(slow exit) 720 796 770 846 mA IDD2P1(fast exit) 738 814 788 864 mA IDD2N 852 938 928 1014 mA IDD2Q 872 918 958 994 mA IDD3P 774 850 860 900 mA IDD3N 960 1090 1080 1184 mA IDD4R 1520 1750 1750 1980 mA IDD4W 1710 1940 1840 2170 mA IDD5B 3552 3592 3654 3704 mA IDD6 210 246 210 246 mA IDD7 2780 2920 3000 3240 mA IDD8 210 246 210 246 mA - 30 - NOTE Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM M393B1K70EB0 : 8GB(1Gx72) Module DDR3-1333 Symbol DDR3-1600 9-9-9 11-11-11 Unit NOTE 1764 mA 1 1944 mA 1 950 1062 mA 1048 986 1098 mA 1.35V 1.5V 1.35V 1.5V IDD0 1412 1588 1534 IDD1 1594 1768 1714 IDD2P0(slow exit) 900 1012 IDD2P1(fast exit) 936 IDD2N 1104 1226 1216 1338 mA IDD2Q 1124 1206 1246 1318 mA IDD3P 1008 1120 1130 1170 mA IDD3N 1320 1540 1530 1688 mA IDD4R 1772 2038 2038 2304 mA IDD4W 1962 2228 2128 2494 mA 1 1 IDD5B 3804 3880 3942 4028 mA 1 IDD6 390 462 390 462 mA IDD7 3032 3208 3288 3564 mA IDD8 390 462 390 462 mA 1 NOTE : 1. DIMM IDD SPEC is calculated with considering de-actived rank(IDLE) is IDD2N. M393B1K73EB0 : 8GB(1Gx72) Module DDR3-1333 Symbol 9-9-9 Unit NOTE 1417 mA 1 1507 mA 1 900 1012 mA 936 1048 mA 1.35V 1.5V IDD0 1268 IDD1 1360 IDD2P0(slow exit) IDD2P1(fast exit) IDD2N 1104 1226 mA IDD2Q 1124 1206 mA IDD3P 1008 1120 mA IDD3N 1320 1540 mA IDD4R 1538 1732 mA IDD4W 1638 1832 mA 1 IDD5B 2454 2548 mA 1 IDD6 390 462 mA IDD7 2123 2272 mA IDD8 390 462 mA NOTE : 1. DIMM IDD SPEC is calculated with considering de-actived rank(IDLE) is IDD2N. - 31 - 1 1 Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM 17. Input/Output Capacitance [ Table 16 ] Input/Output Capacitance Parameter Symbol DDR3-800 Min DDR3-1066 Max DDR3-1333 DDR3-1600 Min Max Min Max Min Max Units NOTE 1.35V Input/output capacitance (DQ, DM, DQS, DQS, TDQS, TDQS) CIO 1.4 2.5 1.4 2.5 1.4 2.3 1.4 2.2 pF 1,2,3 Input capacitance (CK and CK) CCK 0.8 1.6 0.8 1.6 0.8 1.4 0.8 1.4 pF 2,3 CDCK 0 0.15 0 0.15 0 0.15 0 0.15 pF 2,3,4 CI 0.75 1.3 0.75 1.3 0.75 1.3 0.75 1.2 pF 2,3,6 CDDQS 0 0.2 0 0.2 0 0.15 0 0.15 pF 2,3,5 CDI_CTRL -0.5 0.3 -0.5 0.3 -0.4 0.2 -0.4 0.2 pF 2,3,7,8 CDI_ADD_CMD -0.5 0.5 -0.5 0.5 -0.4 0.4 -0.4 0.4 pF 2,3,9,10 Input/output capacitance delta (DQ, DM, DQS, DQS, TDQS, TDQS) CDIO -0.5 0.3 -0.5 0.3 -0.5 0.3 -0.5 0.3 pF 2,3,11 Input/output capacitance of ZQ pin CZQ - 3 - 3 - 3 - 3 pF 2,3,12 Input capacitance delta (CK and CK) Input capacitance (All other input-only pins) Input/Output capacitance delta (DQS and DQS) Input capacitance delta (All control input-only pins) Input capacitance delta (all ADD and CMD input-only pins) 1.5V Input/output capacitance (DQ, DM, DQS, DQS, TDQS, TDQS) CIO 1.4 3.0 1.4 2.7 1.4 2.5 1.4 2.3 pF 1,2,3 Input capacitance (CK and CK) CCK 0.8 1.6 0.8 1.6 0.8 1.4 0.8 1.4 pF 2,3 CDCK 0 0.15 0 0.15 0 0.15 0 0.15 pF 2,3,4 CI 0.75 1.4 0.75 1.35 0.75 1.3 0.75 1.3 pF 2,3,6 CDDQS 0 0.2 0 0.2 0 0.15 0 0.15 pF 2,3,5 CDI_CTRL -0.5 0.3 -0.5 0.3 -0.4 0.2 -0.4 0.2 pF 2,3,7,8 CDI_ADD_CMD -0.5 0.5 -0.5 0.5 -0.4 0.4 -0.4 0.4 pF 2,3,9,10 Input/output capacitance delta (DQ, DM, DQS, DQS, TDQS, TDQS) CDIO -0.5 0.3 -0.5 0.3 -0.5 0.3 -0.5 0.3 pF 2,3,11 Input/output capacitance of ZQ pin CZQ - 3 - 3 - 3 - 3 pF 2,3,12 Input capacitance delta (CK and CK) Input capacitance (All other input-only pins) Input capacitance delta (DQS and DQS) Input capacitance delta (All control input-only pins) Input capacitance delta (all ADD and CMD input-only pins) NOTE : This parameter is Component Input/Output Capacitance so that is different from Module level Capacitance. 1. Although the DM, TDQS and TDQS pins have different functions, the loading matches DQ and DQS 2. This parameter is not subject to production test. It is verified by design and characterization. The capacitance is measured according to JEP147("PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK ANALYZER( VNA)") with VDD, VDDQ, VSS, VSSQ applied and all other pins floating (except the pin under test, CKE, RESET and ODT as necessary). VDD=VDDQ=1.5V or 1.35V, VBIAS=VDD/2 and ondie termination off. 3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here 4. Absolute value of CCK-CCK 5. Absolute value of CIO(DQS)-CIO(DQS) 6. CI applies to ODT, CS, CKE, A0-A15, BA0-BA2, RAS, CAS, WE. 7. CDI_CTRL applies to ODT, CS and CKE 8. CDI_CTRL=CI(CTRL)-0.5*(CI(CLK)+CI(CLK)) 9. CDI_ADD_CMD applies to A0-A15, BA0-BA2, RAS, CAS and WE 10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK)) 11. CDIO=CIO(DQ,DM) - 0.5*(CIO(DQS)+CIO(DQS)) 12. Maximum external load capacitance on ZQ pin: 5pF - 32 - Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM 18. Electrical Characteristics and AC timing [0 °C<TCASE ≤95 °C, VDDQ = 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V); VDD = 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V)] 18.1 Refresh Parameters by Device Density Parameter Symbol 1Gb 2Gb 4Gb 8Gb Units tRFC All Bank Refresh to active/refresh cmd time Average periodic refresh interval tREFI 110 160 260 350 ns 0 °C ≤ TCASE ≤ 85°C 7.8 7.8 7.8 7.8 μs 85 °C < TCASE ≤ 95°C 3.9 3.9 3.9 3.9 μs NOTE 1 NOTE : 1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or requirements referred to in this material. 18.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin Speed DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Bin (CL - tRCD - tRP) 6-6-6 7-7-7 9-9-9 11-11-11 Parameter min min min min CL 6 7 9 11 tCK tRCD 15 13.13 13.5 13.75 ns tRP 15 13.13 13.5 13.75 ns tRAS 37.5 37.5 36 35 ns tRC 52.5 50.63 49.5 48.75 ns tRRD 10 7.5 6.0 6.0 ns tFAW 40 37.5 30 30 ns Units NOTE 18.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin DDR3 SDRAM Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin. [ Table 17 ] DDR3-800 Speed Bins Speed DDR3-800 CL-nRCD-nRP Parameter Internal read command to first data ACT to internal read or write delay time 6-6-6 Units Symbol min max tAA 15 20 ns tRCD 15 - ns PRE command period tRP 15 - ns ACT to ACT or REF command period tRC 52.5 - ns tRAS 37.5 9*tREFI ns tCK(AVG) 2.5 3.3 ns ACT to PRE command period CL = 6 / CWL = 5 Supported CL Settings 6 nCK Supported CWL Settings 5 nCK - 33 - NOTE 1,2,3 Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM [ Table 18 ] DDR3-1066 Speed Bins Speed DDR3-1066 CL-nRCD-nRP 7-7-7 Parameter Internal read command to first data ACT to internal read or write delay time PRE command period ACT to ACT or REF command period CL = 7 CL = 8 Symbol min max tAA 13.125 20 ns tRCD 13.125 - ns tRP 13.125 - ns NOTE tRC 50.625 - ns tRAS 37.5 9*tREFI ns CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3,5 CWL = 6 tCK(AVG) ns 1,2,3,4 CWL = 5 tCK(AVG) CWL = 6 tCK(AVG) CWL = 5 tCK(AVG) CWL = 6 tCK(AVG) ACT to PRE command period CL = 6 Units Reserved Reserved 1.875 <2.5 Reserved 1.875 <2.5 Supported CL Settings Supported CWL Settings ns 4 ns 1,2,3,4,8 ns 4 ns 1,2,3 6,7,8 nCK 5,6 nCK [ Table 19 ] DDR3-1333 Speed Bins Speed DDR3-1333 CL-nRCD-nRP 9 -9 - 9 Parameter Internal read command to first data ACT to internal read or write delay time PRE command period ACT to ACT or REF command period ACT to PRE command period CL = 6 CL = 7 CL = 8 CL = 9 CL = 10 Units Symbol min max tAA 13.5 (13.125)8 20 ns (13.125)8 - ns tRP 13.5 (13.125)8 - ns tRC (49.125)8 tRCD 13.5 49.5 NOTE - ns 9*tREFI ns 3.3 ns 1,2,3,6 ns 1,2,3,4,6 Reserved ns 4 Reserved ns 4 ns 1,2,3,4,6 ns 1,2,3,4 tRAS 36 CWL = 5 tCK(AVG) 2.5 CWL = 6 tCK(AVG) Reserved CWL = 7 tCK(AVG) CWL = 5 tCK(AVG) CWL = 6 tCK(AVG) CWL = 7 tCK(AVG) CWL = 5 tCK(AVG) CWL = 6 tCK(AVG) 1.875 <2.5 Reserved Reserved 1.875 <2.5 ns 4 ns 1,2,3,6 CWL = 7 tCK(AVG) Reserved ns 1,2,3,4 CWL = 5,6 tCK(AVG) Reserved ns 4 ns 1,2,3,4,8 ns 4 ns 1,2,3 CWL = 7 tCK(AVG) CWL = 5,6 tCK(AVG) CWL = 7 tCK(AVG) 1.5 <1.875 Reserved 1.5 Supported CL Settings Supported CWL Settings - 34 - <1.875 6,7,8,9,10 nCK 5,6,7 nCK Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM [ Table 20 ] DDR3-1600 Speed Bins Speed DDR3-1600 CL-nRCD-nRP 11-11-11 Parameter Units NOTE Symbol min max tAA 13.75 (13.125)8 20 ns tRCD 13.75 (13.125)8 - ns PRE command period tRP 13.75 (13.125)8 - ns ACT to ACT or REF command period tRC 48.75 (48.125)8 - ns tRAS 35 9*tREFI ns CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3,7 CWL = 6 tCK(AVG) Reserved ns 1,2,3,4,7 CWL = 7, 8 tCK(AVG) Reserved ns 4 CWL = 5 tCK(AVG) Reserved ns 4 CWL = 6 tCK(AVG) ns 1,2,3,4,7 CWL = 7 tCK(AVG) Reserved ns 1,2,3,4,7 CWL = 8 tCK(AVG) Reserved ns 4 CWL = 5 tCK(AVG) Reserved ns 4 CWL = 6 tCK(AVG) ns 1,2,3,7 CWL = 7 tCK(AVG) Reserved ns 1,2,3,4,7 Intermal read command to first data ACT to internal read or write delay time ACT to PRE command period CL = 6 CL = 7 CL = 8 CL = 9 CL = 10 CL = 11 1.875 <2.5 1.875 <2.5 CWL = 8 tCK(AVG) Reserved ns 1,2,3,4 CWL = 5,6 tCK(AVG) Reserved ns 4 CWL = 7 tCK(AVG) ns 1,2,3,4,7 CWL = 8 tCK(AVG) ns 1,2,3,4 CWL = 5,6 tCK(AVG) CWL = 7 tCK(AVG) 1.5 <1.875 Reserved Reserved 1.5 <1.875 ns 4 ns 1,2,3,7 CWL = 8 tCK(AVG) Reserved ns 1,2,3,4 CWL = 5,6,7 tCK(AVG) Reserved ns 4 CWL = 8 tCK(AVG) ns 1,2,3,8 1.25 Supported CL Settings Supported CWL Settings - 35 - <1.5 6,7,8,9,10,11 nCK 5,6,7,8 nCK Registered DIMM datasheet Rev. 1.0 DDR3L SDRAM 18.3.1 Speed Bin Table Notes Absolute Specification [TOPER; VDDQ = VDD = 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V)]; NOTE : 1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting. 2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next "SupportedCL". 3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED. 4. "Reserved" settings are not allowed. User must program a different value. 5. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/ Characterization. 6. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/ Characterization. 7. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/ Characterization. 8. For devices supporting optional downshift to CL=7 and CL=9, tAA/tRCD/tRP min must be 13.125 ns or lower. SPD settings must be programmed to match. For example, DDR3-1333(CL9) devices supporting downshift to DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600(CL11) devices supporting downshift to DDR3-1333(CL9) or DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte16), tRCDmin (Byte 18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23) also should be programmed accordingly. For example, 49.125ns (tRASmin + tRPmin=36ns+13.125ns) for DDR3-1333(CL9) and 48.125ns (tRASmin+tRPmin=35ns+13.125ns) for DDR3-1600(CL11). - 36 - Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM 19. Timing Parameters by Speed Grade [ Table 21 ] Timing Parameters by Speed Bin (Cont.) Speed Parameter DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Symbol MIN MAX MIN MAX MIN MAX MIN MAX tCK(DLL_OF F) 8 - 8 - 8 - 8 - Units NOTE ns 6 Clock Timing Minimum Clock Cycle Time (DLL off mode) Average Clock Period tCK(avg) See Speed Bins Table Clock Period tCK(abs) tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max + tJIT(per)min tJIT(per)max tJIT(per)min tJIT(per)max tJIT(per)min tJIT(per)max tJIT(per)min tJIT(per)max Average high pulse width tCH(avg) Average low pulse width Clock Period Jitter Clock Period Jitter during DLL locking period Cycle to Cycle Period Jitter ps ps 0.47 0.53 0.47 0.53 0.47 0.53 0.47 0.53 tCK(avg) tCL(avg) 0.47 0.53 0.47 0.53 0.47 0.53 0.47 0.53 tCK(avg) tJIT(per) -100 100 -90 90 -80 80 -70 70 ps tJIT(per, lck) -90 90 -80 80 -70 70 -60 60 ps tJIT(cc) 200 180 160 140 Cycle to Cycle Period Jitter during DLL locking period tJIT(cc, lck) 180 160 140 120 Cumulative error across 2 cycles tERR(2per) - 147 147 - 132 132 - 118 118 -103 103 ps Cumulative error across 3 cycles tERR(3per) - 175 175 - 157 157 - 140 140 -122 122 ps Cumulative error across 4 cycles tERR(4per) - 194 194 - 175 175 - 155 155 -136 136 ps Cumulative error across 5 cycles tERR(5per) - 209 209 - 188 188 - 168 168 -147 147 ps Cumulative error across 6 cycles tERR(6per) - 222 222 - 200 200 - 177 177 -155 155 ps Cumulative error across 7 cycles tERR(7per) - 232 232 - 209 209 - 186 186 -163 163 ps Cumulative error across 8 cycles tERR(8per) - 241 241 - 217 217 - 193 193 -169 169 ps Cumulative error across 9 cycles tERR(9per) - 249 249 - 224 224 - 200 200 -175 175 ps Cumulative error across 10 cycles tERR(10per) - 257 257 - 231 231 - 205 205 -180 180 ps Cumulative error across 11 cycles tERR(11per) - 263 263 - 237 237 - 210 210 -184 184 ps Cumulative error across 12 cycles tERR(12per) - 269 269 - 242 242 - 215 215 -188 188 ps Cumulative error across n = 13, 14 ... 49, 50 cycles ps ps tERR(nper)min = (1 + 0.68ln(n))*tJIT(per)min tERR(nper)max = (1 + 0.68ln(n))*tJIT(per)max tERR(nper) ps 24 Absolute clock HIGH pulse width tCH(abs) 0.43 - 0.43 - 0.43 - 0.43 - tCK(avg) 25 Absolute clock Low pulse width tCL(abs) 0.43 - 0.43 - 0.43 - 0.43 - tCK(avg) 26 tDQSQ - 200 - 150 - 125 - 100 ps 13 tQH 0.38 - 0.38 - 0.38 - 0.38 - tCK(avg) 13, g DQ low-impedance time from CK, CK tLZ(DQ) -800 400 -600 300 -500 250 -450 225 ps 13,14, f DQ high-impedance time from CK, CK tHZ(DQ) - 400 - 300 - 250 - 225 ps 13,14, f - - - - ps d, 17 45 - 25 - ps Data Timing DQS,DQS to DQ skew, per group, per access DQ output hold time from DQS, DQS 1.35V Data setup time to DQS, DQS referenced to VIH(AC)VIL(AC) levels tDS(base) AC160 90 - 40 - tDS(base) AC135 140 - 90 - 1.5V tDS(base) AC175 75 - 25 - - - - - ps tDS(base) AC150 125 - 75 - 30 - 10 - ps - 55 - ps d, 17 d, 17 1.35V Data hold time from DQS, DQS referenced to VIH(DC)VIL(DC) levels DQ and DM Input pulse width for each input tDH(base) DC90 160 - 110 - 75 1.5V tDH(base) DC100 150 - 100 - 65 - 45 - ps d, 17 tDIPW 600 - 490 - 400 - 360 - ps 28 - 37 - Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM [ Table 21] Timing Parameters by Speed Bin (Cont.) Speed Parameter DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Units NOTE Symbol MIN MAX MIN MAX MIN MAX MIN MAX DQS, DQS differential READ Preamble tRPRE 0.9 Note 19 0.9 Note 19 0.9 Note 19 0.9 Note 19 tCK(avg) 13, 19, g DQS, DQS differential READ Postamble tRPST 0.3 Note 11 0.3 Note 11 0.3 Note 11 0.3 Note 11 tCK(avg) 11, 13, b DQS, DQS differential output high time tQSH 0.38 - 0.38 - 0.4 - 0.4 - tCK(avg) 13, g DQS, DQS differential output low time tQSL 0.38 - 0.38 - 0.4 - 0.4 - tCK(avg) 13, g DQS, DQS differential WRITE Preamble tWPRE 0.9 - 0.9 - 0.9 - 0.9 - tCK(avg) DQS, DQS differential WRITE Postamble Data Strobe Timing tWPST 0.3 - 0.3 - 0.3 - 0.3 - tCK(avg) DQS, DQS rising edge output access time from rising CK, CK tDQSCK -400 400 -300 300 -255 255 -225 225 ps 13,f DQS, DQS low-impedance time (Referenced from RL1) tLZ(DQS) -800 400 -600 300 -500 250 -450 225 ps 13,14,f DQS, DQS high-impedance time (Referenced from RL+BL/2) tHZ(DQS) - 400 - 300 - 250 - 225 ps 12,13,14 DQS, DQS differential input low pulse width tDQSL 0.45 0.55 0.45 0.55 0.45 0.55 0.45 0.55 tCK(avg) 29, 31 DQS, DQS differential input high pulse width tDQSH 0.45 0.55 0.45 0.55 0.45 0.55 0.45 0.55 tCK(avg) 30, 31 DQS, DQS rising edge to CK, CK rising edge tDQSS -0.25 0.25 -0.25 0.25 -0.25 0.25 -0.27 0.27 tCK(avg) c DQS,DQS falling edge setup time to CK, CK rising edge tDSS 0.2 - 0.2 - 0.2 - 0.18 - tCK(avg) c, 32 DQS,DQS falling edge hold time to CK, CK rising edge tDSH 0.2 - 0.2 - 0.2 - 0.18 - tCK(avg) c, 32 tDLLK 512 - 512 - 512 - 512 - nCK tRTP max (4nCK,7.5ns) - max (4nCK,7.5ns) - max (4nCK,7.5ns) - max (4nCK,7.5ns) - e tWTR max (4nCK,7.5ns) - max (4nCK,7.5ns) - max (4nCK,7.5ns) - max (4nCK,7.5ns) - e,18 Command and Address Timing DLL locking time internal READ Command to PRECHARGE Command delay Delay from start of internal write transaction to internal read command WRITE recovery time tWR 15 - 15 - 15 - 15 - ns Mode Register Set command cycle time tMRD 4 - 4 - 4 - 4 - nCK Mode Register Set command update delay tMOD max (12nCK,15ns) - max (12nCK,15ns) - max (12nCK,15ns) - max (12nCK,15ns) - tCCD 4 - 4 - 4 - 4 - - 1 - CAS to CAS command delay Auto precharge write recovery + precharge time Multi-Purpose Register Recovery Time ACTIVE to PRECHARGE command period tDAL(min) tMPRR WR + roundup (tRP / tCK(AVG)) 1 tRAS - 1 - 1 - - max (4nCK,6ns) nCK nCK See “Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin” max (4nCK,7.5ns) e - max (4nCK,6ns) - nCK 22 ns e ACTIVE to ACTIVE command period for 1KB page size tRRD max (4nCK,10ns) ACTIVE to ACTIVE command period for 2KB page size tRRD max (4nCK,10ns) - max (4nCK,10ns) - max (4nCK,7.5ns) - max (4nCK,7.5ns) - Four activate window for 1KB page size tFAW 40 - 37.5 - 30 - 30 - ns e Four activate window for 2KB page size tFAW 50 - 50 - 45 - 40 - ns e e e 1.35V Command and Address setup time to CK, CK referenced to VIH(AC) / VIL(AC) levels tIS(base) AC160 215 - 140 - 80 - 60 - ps b,16 tIS(base) AC135 365 - 290 - 205 - 185 - ps b,16,27 65 - 45 - ps b,16 190 - 170 - ps b,16,27 - 130 - ps b,16 120 - ps b,16 28 1.5V tIS(base) AC175 200 - 125 - tIS(base) AC150 350 - 275 - 1.35V Command and Address hold time from CK, CK referenced to VIH(DC) / VIL(DC) levels tIH(base) DC90 285 - 210 - 150 1.5V tIH(base) DC100 275 tIPW 900 - 780 - 620 - 560 - ps Power-up and RESET calibration time tZQinitI 512 - 512 - 512 - 512 - nCK Normal operation Full calibration time tZQoper 256 - 256 - 256 - 256 - nCK tZQCS 64 - 64 - 64 - 64 - nCK Control & Address Input pulse width for each input 200 140 Calibration Timing Normal operation short calibration time - 38 - 23 Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM [ Table 21 ] Timing Parameters by Speed Bin Speed Parameter DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Symbol MIN MAX MIN MAX MIN MAX MIN MAX tXPR max(5nCK, tRFC + 10ns) - max(5nCK, tRFC + 10ns) - max(5nCK, tRFC + 10ns) - max(5nCK, tRFC + 10ns) - Exit Self Refresh to commands not requiring a locked DLL tXS max(5nCK,t RFC + 10ns) - max(5nCK,t RFC + 10ns) - max(5nCK,t RFC + 10ns) - max(5nCK,t RFC + 10ns) - Exit Self Refresh to commands requiring a locked DLL Units NOTE Reset Timing Exit Reset from CKE HIGH to a valid command Self Refresh Timing tXSDLL tDLLK(min) - tDLLK(min) - tDLLK(min) - tDLLK(min) - Minimum CKE low width for Self refresh entry to exit timing tCKESR tCKE(min) + 1tCK - tCKE(min) + 1tCK - tCKE(min) + 1tCK - tCKE(min) + 1tCK - Valid Clock Requirement after Self Refresh Entry (SRE) or Power-Down Entry (PDE) tCKSRE max(5nCK, 10ns) - max(5nCK, 10ns) - max(5nCK, 10ns) - max(5nCK, 10ns) - Valid Clock Requirement before Self Refresh Exit (SRX) or Power-Down Exit (PDX) or Reset Exit tCKSRX max(5nCK, 10ns) - max(5nCK, 10ns) - max(5nCK, 10ns) - max(5nCK, 10ns) - tXP max (3nCK, 7.5ns) - max (3nCK, 7.5ns) - max (3nCK,6ns) - max (3nCK,6ns) - tXPDLL max (10nCK, 24ns) - max (10nCK, 24ns) - max (10nCK, 24ns) - max (10nCK, 24ns) - tCKE max (3nCK, 7.5ns) - max (3nCK, 5.625ns) - max (3nCK, 5.625ns) - max (3nCK,5ns) - nCK Power Down Timing Exit Power Down with DLL on to any valid command;Exit Precharge Power Down with DLL frozen to commands not requiring a locked DLL Exit Precharge Power Down with DLL frozen to commands requiring a locked DLL CKE minimum pulse width Command pass disable delay 2 tCPDED 1 - 1 - 1 - 1 - nCK tPD tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCK(avg) 15 Timing of ACT command to Power Down entry tACTPDEN 1 - 1 - 1 - 1 - nCK 20 Timing of PRE command to Power Down entry tPRPDEN 1 - 1 - 1 - 1 - nCK 20 Timing of RD/RDA command to Power Down entry tRDPDEN RL + 4 +1 - RL + 4 +1 - RL + 4 +1 - RL + 4 +1 - Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) tWRPDEN WL + 4 +(tWR/ tCK(avg)) - WL + 4 +(tWR/ tCK(avg)) - WL + 4 +(tWR/ tCK(avg)) - WL + 4 +(tWR/ tCK(avg)) - nCK 9 tWRAPDEN WL + 4 +WR +1 - WL + 4 +WR +1 - WL + 4 +WR +1 - WL + 4 +WR +1 - nCK 10 tWRPDEN WL + 2 +(tWR/ tCK(avg)) - WL + 2 +(tWR/ tCK(avg)) - WL + 2 +(tWR/ tCK(avg)) - WL + 2 +(tWR/ tCK(avg)) - nCK 9 tWRAPDEN WL +2 +WR +1 - WL +2 +WR +1 - WL +2 +WR +1 - WL +2 +WR +1 - nCK 10 Power Down Entry to Exit Timing Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of REF command to Power Down entry tREFPDEN 1 - 1 - 1 - 1 - Timing of MRS command to Power Down entry tMRSPDEN tMOD(min) - tMOD(min) - tMOD(min) - tMOD(min) - 20,21 ODT high time without write command or with write command and BC4 ODTH4 4 - 4 - 4 - 4 - nCK ODT high time with Write command and BL8 ODTH8 6 - 6 - 6 - 6 - nCK Asynchronous RTT turn-on delay (Power-Down with DLL frozen) tAONPD 2 8.5 2 8.5 2 8.5 2 8.5 ns Asynchronous RTT turn-off delay (Power-Down with DLL frozen) tAOFPD 2 8.5 2 8.5 2 8.5 2 8.5 ns RTT turn-on tAON -400 400 -300 300 -250 250 -225 225 ps 7,f RTT_NOM and RTT_WR turn-off time from ODTLoff reference tAOF 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 tCK(avg) 8,f RTT dynamic change skew tADC 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 tCK(avg) f tWLMRD 40 - 40 - 40 - 40 - tCK(avg) 3 tWLDQSEN 25 - 25 - 25 - 25 - tCK(avg) 3 Write leveling setup time from rising CK, CK crossing to rising DQS, DQS crossing tWLS 325 - 245 - 195 - 165 - ps Write leveling hold time from rising DQS, DQS crossing to rising CK, CK crossing tWLH 325 - 245 - 195 - 165 - ps Write leveling output delay tWLO 0 9 0 9 0 9 0 7.5 ns Write leveling output error tWLOE 0 2 0 2 0 2 0 2 ns ODT Timing Write Leveling Timing First DQS/DQS rising edge after write leveling mode is programmed DQS/DQS delay after write leveling mode is programmed - 39 - Registered DIMM datasheet Rev. 1.0 DDR3L SDRAM 19.1 Jitter Notes Specific Note a Unit ’tCK(avg)’ represents the actual tCK(avg) of the input clock under operation. Unit ’nCK’ represents one clock cycle of the input clock, counting the actual clock edges.ex) tMRD = 4 [nCK] means; if one Mode Register Set command is registered at Tm, another Mode Register Set command may be registered at Tm+4, even if (Tm+4 - Tm) is 4 x tCK(avg) + tERR(4per),min. Specific Note b These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to its respective clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is present or not. Specific Note c These parameters are measured from a data strobe signal (DQS, DQS) crossing to its respective clock signal (CK, CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not. Specific Note d These parameters are measured from a data signal (DM, DQ0, DQ1, etc.) transition edge to its respective data strobe signal (DQS, DQS) crossing. Specific Note e For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] = RU{ tPARAM [ns] / tCK(avg) [ns] }, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK(avg)}, which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR3-800 6-6-6, of which tRP = 15ns, the device will support tnRP = RU{tRP / tCK(avg)} = 6, as long as the input clock jitter specifications are met, i.e. Precharge command at Tm and Active command at Tm+6 is valid even if (Tm+6 - Tm) is less than 15ns due to input clock jitter. Specific Note f When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper),act of the input clock, where 2 <= m <= 12. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = - 172 ps and tERR(mper),act,max = + 193 ps, then tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = - 400 ps - 193 ps = - 593 ps and tDQSCK,max(derated) = tDQSCK,max - tERR(mper),act,min = 400 ps + 172 ps = + 572 ps. Similarly, tLZ(DQ) for DDR3-800 derates to tLZ(DQ),min(derated) = - 800 ps - 193 ps = - 993 ps and tLZ(DQ),max(derated) = 400 ps + 172 ps = + 572 ps. (Caution on the min/max usage!) Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where 2 <= n <= 12, and tERR(mper),act,max is the maximum measured value of tERR(nper) where 2 <= n <= 12. Specific Note g When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has tCK(avg),act = 2500 ps, tJIT(per),act,min = - 72 ps and tJIT(per),act,max = + 93 ps, then tRPRE,min(derated) = tRPRE,min + tJIT(per),act,min = 0.9 x tCK(avg),act + tJIT(per),act,min = 0.9 x 2500 ps - 72 ps = + 2178 ps. Similarly, tQH,min(derated) = tQH,min + tJIT(per),act,min = 0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500 ps - 72 ps = + 878 ps. (Caution on the min/ max usage!) - 40 - Registered DIMM datasheet Rev. 1.0 DDR3L SDRAM 19.2 Timing Parameter Notes 1. Actual value dependant upon measurement level definitions which are TBD. 2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands. 3. The max values are system dependent. 4. WR as programmed in mode register 5. Value must be rounded-up to next higher integer value 6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI. 7. For definition of RTT turn-on time tAON see "Device Operation & Timing Diagram Datasheet" 8. For definition of RTT turn-off time tAOF see "Device Operation & Timing Diagram Datasheet". 9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer. 10. WR in clock cycles as programmed in MR0 11. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. See "Device Operation & Timing Diagram Datasheet. 12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated by TBD 13. Value is only valid for RON34 14. Single ended signal parameter. Refer to chapter 8 and chapter 9 for definition and measurement method. 15. tREFI depends on TOPER 16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate, Note for DQ and DM signals, VREF(DC) = VREFDQ(DC). For input only pins except RESET, VREF(DC)=VREFCA(DC). See "Address/Command Setup, Hold and Derating" on component datasheet. 17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS differential slew rate. Note for DQ and DM signals, VREF(DC)= VREFDQ(DC). For input only pins except RESET, VREF(DC)=VREFCA(DC). See "Data Setup, Hold and Slew Rate Derating" on component datasheet. 18. Start of internal write transaction is defined as follows ; For BL8 (fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL. For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL 19. The maximum read preamble is bound by tLZDQS(min) on the left side and tDQSCK(max) on the right side. See "Device Operation & Timing Diagram Datasheet" 20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down IDD spec will not be applied until finishing those operations. 21. Although CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time such as tXPDLL(min) is also required. See "Device Operation & Timing Diagram Datasheet". 22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function. 23. One ZQCS command can effectively correct a minimum of 0.5 % (ZQCorrection) of RON and RTT impedance error within 64 nCK for all speed bins assuming the maximum sensitivities specified in the ’Output Driver Voltage and Temperature Sensitivity’ and ’ODT Voltage and Temperature Sensitivity’ tables. The appropriate interval between ZQCS commands can be determined from these tables and other application specific parameters. One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is subject to in the application, is illustrated. The interval could be defined by the following formula: ZQCorrection (TSens x Tdriftrate) + (VSens x Vdriftrate) where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities. For example, if TSens = 1.5% /°C, VSens = 0.15% / mV, Tdriftrate = 1°C / sec and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calculated as: 0.5 (1.5 x 1) + (0.15 x 15) = 0.133 ~ ~ 128ms 24. n = from 13 cycles to 50 cycles. This row defines 38 parameters. 25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge. 26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge. 27. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional 100 ps of derating to accommodate for the lower alternate threshold of 150 mV and another 25 ps to account for the earlier reference point [(175 mv - 150 mV) / 1 V/ns]. 28. Pulse width of a input signal is defined as the width between the first crossing of VREF(DC) and the consecutive crossing of VREF(DC) 29. tDQSL describes the instantaneous differential input low pulse width on DQS-DQS, as measured from one falling edge to the next consecutive rising edge. 30. tDQSH describes the instantaneous differential input high pulse width on DQS-DQS, as measured from one rising edge to the next consecutive falling edge. 31. tDQSH, act + tDQSL, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application. 32. tDSH, act + tDSS, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application. - 41 - Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM 20. Physical Dimensions 20.1 256Mbx8 based 512Mx72 Module (2 Ranks) - M393B5273EB0 Units : Millimeters C 128.95 18.92 32.40 18.93 9.74 Max 4.0 2.30 2.50 54.675 A 1.0 max B 1.27 ± 0.10 71.00 2.50 ± 0.20 5.00 0.80 ± 0.05 3.80 0.2 ± 0.15 1.00 R 1.50±0.10 10.9 0. 50 47.00 2.50 17.30 Register 30.00 ± 0.15 10.9 9.50 9.76 (2X)3.00 133.35 ± 0.15 Detail A Detail B Detail C 20.1.1 x72 DIMM, populated as two physical ranks of x8 DDR3 SDRAMs Register 2x 2.10 ± 0.15 Address, Command and Control lines The used device is 256M x8 DDR3L SDRAM, FBGA. DDR3 SDRAM Part NO : K4B2G0846E-BY** * NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified. - 42 - 0.4 Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM 20.2 512Mbx4 based 512Mx72 Module (1 Rank) - M393B5270EB0 Units : Millimeters C 128.95 18.92 32.40 18.93 9.74 Max 4.0 2.30 2.50 54.675 A 1.0 max B 1.27 ± 0.10 71.00 2.50 ± 0.20 5.00 0.80 ± 0.05 3.80 0.2 ± 0.15 1.00 R 1.50±0.10 10.9 0. 50 47.00 2.50 17.30 Register 30.00 ± 0.15 10.9 9.50 9.76 (2X)3.00 133.35 ± 0.15 Detail A Detail B Detail C 20.2.1 x72 DIMM, populated as one physical rank of x4 DDR3 SDRAMs Register 2x 2.10 ± 0.15 Address, Command and Control lines The used device is 512M x4 DDR3L SDRAM, FBGA. DDR3 SDRAM Part NO : K4B2G0446E-BY** * NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified. - 43 - 0.4 Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM 20.3 512Mbx4 based 1Gx72 Module (2 Ranks) - M393B1K70EB0 Units : Millimeters 133.35 ± 0.15 18.92 32.40 18.93 9.74 Max 4.0 A B 1.27 ± 0.10 71.00 2.50 ± 0.20 47.00 5.00 0.80 ± 0.05 3.80 0.2 ± 0.15 1.00 1.50±0.10 10.9 R 2.50 1.0 max 0. 50 54.675 2.30 2.50 17.30 Register 30.00 ± 0.15 10.9 9.50 9.76 (2X)3.00 C 128.95 Detail A Detail B Detail C VTT VTT VTT VTT 20.3.1 x72 DIMM, populated as two physical ranks of x4 DDR3 SDRAMs VTT VTT Register VTT VTT Address, Command and Control lines The used device is 512M x4 DDR3L SDRAM, FBGA. DDR3 SDRAM Part NO : K4B2G0446E-BY** * NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified. - 44 - 2x 2.10 ± 0.15 0.4 Rev. 1.0 datasheet Registered DIMM DDR3L SDRAM 20.4 256Mbx8 based 1Gx72 Module (4 Ranks) - M393B1K73EB0 Units : Millimeters C 128.95 18.92 32.40 18.93 9.74 Max 4.0 2.30 2.50 54.675 A B 47.00 1.0 max 1.27 ± 0.10 2.50 ± 0.20 71.00 0.80 ± 0.05 3.80 0.2 ± 0.15 1.00 R 1.50±0.10 10.9 0. 50 5.00 2.50 17.30 Register 30.00 ± 0.15 10.9 9.50 9.76 (2X)3.00 133.35 ± 0.15 Detail A Detail B Detail C VTT VTT VTT VTT 20.4.1 x72 DIMM, populated as four physical ranks of x8 DDR3 SDRAMs VTT VTT Register VTT VTT Address, Command and Control lines The used device is 256M x8 DDR3L SDRAM, FBGA. DDR3 SDRAM Part NO : K4B2G0846E-BY** * NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified. - 45 - 2x 2.10 ± 0.15 0.4