TI LPV321DCKR

 SLOS433H − FEBRUARY 2004 − REVISED OCTOBER 2004
D
D
D
D
D
D
D
D
D
D
D
2.7-V and 5-V Performance
−40°C to 125°C Specification at 5 V
No Crossover Distortion
Gain Bandwith of 152 kHz
Low Supply Current
− LPV321 . . . 9 µA
− LPV358 . . . 15 µA
− LPV324 . . . 28 µA
Rail-to-Rail Output Swing at 100-kΩ Load
− VCC+ − 3.5 mV
− VCC− + 90 mV
VICR . . . −0.2 V to VCC+ − 0.8 V
Stable With Capacitive Load of 1000 pF
Applications
− Active Filters
− General-Purpose, Low-Voltage
Applications
− Low-Power and/or Portable Applications
Latch-Up Performance Exceeds 100 mA per
JESD 78, Class II
ESD Protection Exceeds JESD 22
− 2000-V Human-Body Model (A114-A)
− 200-V Machine Model (A115-A)
− 1000-V Charged-Device Model (C101)
LPV321 . . . DBV OR DCK PACKAGE
(TOP VIEW)
1
IN+
VCC−
IN−
5
VCC+
4
OUTPUT
2
3
LPV358 . . . D, DDU, OR DGK PACKAGE
(TOP VIEW)
1OUT
1IN−
1IN+
VCC−
1
8
2
7
3
6
4
5
VCC+
2OUT
2IN−
2IN+
LPV324 . . . D OR PW PACKAGE
(TOP VIEW)
1OUT
1IN−
1IN+
VCC+
2IN+
2IN−
2OUT
1
14
2
13
3
12
4
11
5
10
6
9
7
8
4OUT
4IN−
4IN+
VCC−
3IN+
3IN−
3OUT
description/ordering information
The LPV321/358/324 devices are low-power (9 µA per channel at 5 V) versions of the LMV321/358/324
operational amplifiers. These are additions to the LMV321/358/324 family of commodity operational amplifiers.
The LPV321/358/324 devices are the most cost-effective solutions for applications where low voltage,
low-power operation, space saving, and low price are needed. These devices have rail-to-rail output-swing
capability, and the input common-mode voltage range includes ground. They all exhibit excellent speed-power
ratios, achieving 152 kHz of bandwidth, with a supply current of only 9 µA typical.
The LPV321, LPV358, and LPV324 are characterized for operation from −40°C to 85°C. The LPV321I,
LPV358I, and LPV324I are characterized for operation from −40°C to 125°C.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2004, Texas Instruments Incorporated
!"#$ % &'!!($ #% )'*+&#$ ,#$(!,'&$% &!" $ %)(&&#$% )(! $.( $(!"% (/#% %$!'"($%
%$#,#!, 0#!!#$1- !,'&$ )!&(%%2 ,(% $ (&(%%#!+1 &+',(
$(%$2 #++ )#!#"($(!%-
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SLOS433H − FEBRUARY 2004 − REVISED OCTOBER 2004
description/ordering information (continued)
ORDERING INFORMATION
ORDERABLE
PART NUMBER
PACKAGE†
TA
SOT23-5 (DBV)
Single
SOT23-5 (DCK)
SOIC-8 (D)
−40°C
−40
C to 85
85°C
C
Dual
VSSOP-8 (DDU)
VSSOP-8 (DGK)
SOIC-14 (D)
Quad
TSSOP-14 (PW)
SOT23-5 (DBV)
Single
SOT23-5 (DCK)
SOIC-8 (D)
−40°C
−40
C to 125
125°C
C
Dual
VSSOP-8 (DDU)
VSSOP-8 (DGK)
SOIC-14 (D)
Quad
TSSOP-14 (PW)
Reel of 3000
LPV321DBVR
Reel of 250
LPV321DBVT
Reel of 3000
LPV321DCKR
Reel of 250
LPV321DCKT
Tube of 75
LPV358D
Reel of 2500
LPV358DR
Reel of 3000
LPV358DDUR
Reel of 2500
LPV358DGKR
Reel of 250
LPV358DGKT
Tube of 50
LPV324D
Reel of 2500
LPV324DR
Tube of 90
LPV324PW
Reel of 2000
LPV324PWR
Reel of 3000
LPV321IDBVR
Reel of 250
LPV321IDBVT
Reel of 3000
LPV321IDCKR
Reel of 250
LPV321IDCKT
Tube of 75
LPV358ID
Reel of 2500
LPV358IDR
Reel of 3000
LPV358IDDUR
Reel of 2500
LPV358IDGKR
Reel of 250
LPV358IDGKT
Tube of 50
LPV324ID
Reel of 2500
LPV324IDR
Tube of 90
LPV324IPW
Reel of 2000
LPV324IPWR
TOP-SIDE
MARKING
PREVIEW
PREVIEW
PREVIEW
PREVIEW
PREVIEW
LPV324
PV324
PREVIEW
PREVIEW
PREVIEW
PREVIEW
PREVIEW
LPV324I
PV324I
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
symbol (each amplifier)
−
IN−
OUT
2
+
IN+
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLOS433H − FEBRUARY 2004 − REVISED OCTOBER 2004
LPV324 simplified schematic
VCC
VBIAS1
+
VCC
−
VBIAS2
+
Output
−
VCC VCC
VBIAS3
+
IN−
IN+
−
VBIAS4
+
−
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VCC+ − VCC− (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V
Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VCC
Input voltage range, VI (either input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC− to VCC+ − 1 V
Package thermal impedance, θJA (see Notes 3 and 4): 5-pin DBV package . . . . . . . . . . . . . . . . . . . 206°C/W
5-pin DCK package . . . . . . . . . . . . . . . . . . . 252°C/W
8-pin D package . . . . . . . . . . . . . . . . . . . . . . . 97°C/W
8-pin DDU package . . . . . . . . . . . . . . . . . . TBD°C/W
8-pin DGK package . . . . . . . . . . . . . . . . . . . 172°C/W
14-pin D package . . . . . . . . . . . . . . . . . . . . . . 86°C/W
14-pin PW package . . . . . . . . . . . . . . . . . . . 113°C/W
Maximum junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages and VCC specified for the measurement of IOS, are with respect to the network GND.
2. Differential voltages are at IN+ with respect to IN−.
3. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable
ambient temperature is PD = (TJ(max) − TA)/θJA. Selecting the maximum of 150°C can affect reliability.
4. The package thermal impedance is calculated in accordance with JESD 51-7.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SLOS433H − FEBRUARY 2004 − REVISED OCTOBER 2004
recommended operating conditions
MIN
VCC
TA
Supply voltage
Operating free-air temperature
MAX
2.7
5
LPV3xx
−40
85
LPV3xxI
−40
125
UNIT
V
°C
ESD protection
TEST CONDITIONS
Human-Body Model
Machine model
Charged-Device Model
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TYP
UNIT
2
kV
200
V
1
kV
SLOS433H − FEBRUARY 2004 − REVISED OCTOBER 2004
2.7-V electrical characteristics
TA = 25°C, VCC+ = 2.7 V, VCC− = 0 V, VIC = 1 V, VO = VCC+/2, and RL > 1 MΩ (unless otherwise
noted)
PARAMETER
VIO
Input offset voltage
αVIO
Average temperature
coefficient of
input offset voltage
IIB
IIO
TEST CONDITIONS
MIN
TYP†
MAX
1.2
7
UNIT
mV
mV/°C
4
Input bias current
1.7
50
nA
Input offset current
0.6
40
nA
CMRR
Common-mode
rejection ratio
0 ≤ VIC ≤ 1.7 V
50
70
dB
kSVR
Supply-voltage
rejection ratio
2.7 V ≤ VCC+ ≤ 5 V, VIC = 1 V, VO = 1 V
50
65
dB
VICR
Common-mode
input voltage range
CMRR ≥ 50 dB
0 to 1.7
−0.2 to 1.9
V
VO
Output swing
RL = 100 kΩ to 1.35 V
VCC+ − 0.100
VCC+ − 0.003
0.080
High level
Low level
LPV321§
ICC
Supply current
0.180
4
8
LPV358 (both amplifiers)§
8
16
LPV324 (all four amplifiers)
16
24
V
mA
SR
Slew rate‡
0.1
V/ms
GBW
Gain bandwidth product
CL = 22 pF (see Note 5)
205
kHz
Fm
Phase margin
CL = 22 pF (see Note 5)
71
deg
Gain margin
CL = 22 pF (see Note 5)
11
dB
Vn
Equivalent input
noise voltage
f = 1 kHz
178
nV/√Hz
In
Equivalent input
noise current
f = 1 kHz
0.5
pA/√Hz
† All typical values are at VCC = 2.7 V, TA = 25°C.
‡ Number specified is the slower of the positive and negative slew rates.
§ Product Preview
NOTE 5: Closed-loop gain = 18 dB, VIC = VCC+/2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SLOS433H − FEBRUARY 2004 − REVISED OCTOBER 2004
5-V electrical characteristics
TA = 25°C, VCC+ = 5 V, VCC− = 0 V, VIC = 2 V, VO = VCC+/2, and RL > 1 MΩ (unless otherwise noted)
PARAMETER
VIO
TEST CONDITIONS
Input offset voltage
TA
25°C
MIN
TYP†
MAX
1.5
7
−40°C to 85°C
10
−40°C to 125°C
11
UNIT
mV
αVIO
Average temperature
coefficient of
input offset voltage
IIB
Input bias current
CMRR
Common-mode
rejection ratio
0 ≤ VIC ≤ 4 V
25°C
50
71
dB
kSVR
Supply-voltage
rejection ratio
2.7 V ≤ VCC+ ≤ 5 V,
VIC = 1 V, VO = 1 V
25°C
50
65
dB
VICR
Common-mode
input voltage range
CMRR ≥ 50 dB
25°C
0 to 4
25°C
4
25°C
2
Input offset current
60
−40°C to 125°C
65
VO
Output swing
RL = 100 kΩ to 2.5 V
0.6
55
VCC+ − 0.100 VCC+ − 0.0035
VCC+ − 0.200
−40°C to 125°C
VCC+ − 0.225
0.090
−40°C to 85°C
IOS
Output short-circuit
current
Sinking, VO = 5 V
25°C
17
20
72
9
−40°C to 85°C
Supply current
15
AV§
Large-signal
voltage gain
RL = 100 kΩ
24
−40°C to 125°C
80
28
−40°C to 85°C
46
125
25°C
15
−40°C to 85°C
10
−40°C to 125°C
10
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
mA
42
−40°C to 125°C
100
SR¶
Slew rate
25°C
0.1
† All typical values are at VCC = 5 V, TA = 25°C.
‡ Product Preview
§ RL is connected to VCC−. The output voltage is 0.5 V ≤ VO ≤ 4.5 V.
¶ Number specified is the slower of the positive and negative slew rates. Connected as a voltage follower with 3-V step input.
6
20
−40°C to 85°C
25°C
LPV324 (all four amplifiers)
12
40
25°C
ICC
mA
15
−40°C to 125°C
LPV358 (both amplifiers)‡
V
0.240
2
25°C
LPV321‡
0.180
nA
0.220
−40°C to 125°C
Sourcing, VO = 0 V
40
−40°C to 125°C
−40°C to 85°C
nA
V
50
25°C
Low
level
−0.2 to 4.2
−40°C to 85°C
25°C
High
level
50
−40°C to 85°C
25°C
IIO
mV/°C
V/mV
V/ms
SLOS433H − FEBRUARY 2004 − REVISED OCTOBER 2004
5-V electrical characteristics
TA = 25°C, VCC+ = 5 V, VCC− = 0 V, VIC = 2 V, VO = VCC+/2, and RL > 1 MΩ (unless otherwise noted)
(continued)
PARAMETER
GBW
Gain bandwidth product
CL = 22 pF (see Note 5)
Fm
Phase margin
CL = 22 pF (see Note 5)
25°C
Gain margin
CL = 22 pF (see Note 5)
25°C
12
dB
Equivalent input noise voltage
f = 1 kHz
25°C
146
nV/√Hz
In
Equivalent input noise current
f = 1 kHz
† All typical values are at VCC = 5 V, TA = 25°C.
NOTE 5: Closed-loop gain = 18 dB, VIC = VCC+/2
25°C
0.3
pA/√Hz
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MIN
TYP†
TA
25°C
Vn
TEST CONDITIONS
MAX
UNIT
237
kHz
74
deg
7
SLOS433H − FEBRUARY 2004 − REVISED OCTOBER 2004
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
(LPV324 − All Channels)
INPUT BIAS CURRENT
vs
TEMPERATURE
6
25
IB, IIB − Input Bias Current − nA
ICC − Supply Current − A
30
TA = 85C
TA = 40C
TA = 25C
20
15
10
5
1
2
3
4
5
VCC+ = 5 V
VIN = VCC+/2
4
3
2
1
0
−40
0
0
5
6
−20
0
VCC+ − Supply Voltage − V
SOURCING CURRENT
vs
OUTPUT VOLTAGE
80
100
1K
100
IO − Source Current − mA
IO − Source Current − mA
60
SOURCING CURRENT
vs
OUTPUT VOLTAGE
1K
VCC+ = 2.7 V
10
1
0.1
0.01
0.01
0.1
1
10
100
VCC+ = 5 V
10
1
0.1
0.01
0.001
0.001
Output Voltage Referenced to V+ − V
0.01
0.1
Figure 4
POST OFFICE BOX 655303
1
Output Voltage Referenced to V+ − V
Figure 3
8
40
Figure 2
Figure 1
0.001
0.001
20
TA − Temperature − C
• DALLAS, TEXAS 75265
10
SLOS433H − FEBRUARY 2004 − REVISED OCTOBER 2004
SINKING CURRENT
vs
OUTPUT VOLTAGE
SINKING CURRENT
vs
OUTPUT VOLTAGE
1K
1K
10
1
0.1
10
1
0.1
0.01
0.01
0.001
0.001
0.01
0.1
1
0.001
0.001
10
Figure 5
10
220
Rl Terminated to Opposing Supply Rail
RL = 10 kΩ
200
180
Negative Swing
RL = 100 kΩ
140
120
100
80
Positive Swing
RL = 10 kΩ
40
20
Input Voltage Noise − nV/Hz
Output Voltage From Supply Voltage − mV
1
INPUT VOLTAGE NOISE
vs
FREQUENCY
240
60
0.1
Figure 6
OUTPUT VOLTAGE SWING
vs
SUPPLY VOLTAGE
160
0.01
Output Voltage Referenced to GND − V
Output Voltage Referenced to GND − V
220
VCC+ = 5 V
100
VCC+ = 2.7 V
IO − Sink Current − mA
IO − Sink Current − mA
100
200
VCC+ = 2.7 V
180
160
VCC+ = 5 V
140
120
RL = 100 kΩ
0
2.5
3
3.5
4
4.5
5
5.5
100
10
100
VCC+ − Supply Voltage − V
Frequency − Hz
Figure 7
Figure 8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1K
9
SLOS433H − FEBRUARY 2004 − REVISED OCTOBER 2004
INPUT CURRENT NOISE
vs
FREQUENCY
CROSSTALK REJECTION
vs
FREQUENCY
140
0.40
130
VCC+ = 2.7 V
Crosstalk Rejection − dB
0.30
0.25
0.20
VCC+ = 5 V
0.15
0.10
0.05
120
110
100
90
80
70
60
50
0.00
10
100
1K
40
100
10K
VCC+ = 5 V
RL = 100 k
AV = 1
VI = 3 VPP
1K
Frequency − Hz
10K
Figure 9
Figure 10
PSRR
vs
FREQUENCY
FREQUENCY
vs
RL
85
180
40
VCC+ = 5 V,
+PSRR
75
RL = 10 kΩ
65
VCC+ = 2.7 V
RL = 10 kΩ
RL = 100 kΩ
Phase
30
VCC+ = 2.7 V,
+PSRR
25
Gain
80
10
60
40
VCC+ = −2.7 V,
−PSRR
0
20
−5
−15
100
0
1K
10K
100K
1M
−10
1
Frequency − Hz
10
100
1K
Frequency − kHz
Figure 11
10
140
100
20
15
5
160
120
VCC+ = −5 V,
−PSRR
45
Gain − dB
PSRR − dB
55
35
100K
Frequency − Hz
Figure 12
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
−20
10K
Phase Margin − Deg
Input Current Noise − pA/Hz
0.35
SLOS433H − FEBRUARY 2004 − REVISED OCTOBER 2004
FREQUENCY RESPONSE
vs
CL
180
40
140
Gain
VCC+ = 5 V
RL = 10 kΩ
RL = 100 kΩ
10
80
60
40
0
Gain − dB
100
20
100
20
10
CL = 22 pF
CL = 200 pF
CL = 1,000 pF
10
10K
SLEW RATE
vs
SUPPLY VOLTAGE
0.13
100
0.12
80
0.11
60
Gain
40
20
20
0
10
−20
VCC+ = 5.0 V
CL = 22 pF
CL = 200 pF
CL = 1,000 pF
100
Slew Rate − V/s
120
Phase Margin − Deg
30
Gain − dB
1K
Figure 14
FREQUENCY RESPONSE
vs
CL
10
100
Frequency − kHz
Phase
−10
1
−40
−60
1
Figure 13
0
−20
−10
1K
Frequency − kHz
40
80
40
Gain
0
−20
10
100
60
20
0
1
120
0
20
−10
CL = 22 pF
CL = 200 pF
CL = 1000 pF
30
Phase Margin − Deg
120
140
VCC+ = 2.7 V
Phase
160
Phase
30
Gain − dB
40
Phase Margin − Deg
FREQUENCY
vs
RL
0.1
0.09
0.08
Falling Edge
0.07
0.06
−40
0.05
−60
0.04
−80
1K
Positive Edge
Open Loop
VID = 100 mV
VCC+ = 5 V
0.03
2.5
3
3.5
4
4.5
5
5.5
VCC − Supply Voltage − V
Frequency − kHz
Figure 16
Figure 15
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
SLOS433H − FEBRUARY 2004 − REVISED OCTOBER 2004
NONINVERTING SMALL-SIGNAL PULSE RESPONSE
NONINVERTING LARGE-SIGNAL PULSE RESPONSE
0.16
3
TA = 25°C
RL = 10 kΩ
VCC = 5 V/0 V
AV = 1
2
1
0
Input − 20 mV/Div
Input − 1 V/Div
4
0.12
0.08
0.04
VI = 100 mV/0 V
0
−1
100 s/Div
−0.04
0.16
Output − 20 mV/Div
Output − 1 V/Div
4
100 s/Div
3
2
TA = 25°C
RL = 10 kΩ
VCC = 5 V/0 V
AV = 1
1
0
0.12
0.08
TA = 25°C
VCC+ = 5 V/0 V
RL = 10 kΩ
AV = 1
0.04
0
−1
100 s/Div
100 s/Div
Figure 18
Figure 17
INVERTING LARGE-SIGNAL PULSE RESPONSE
INVERTING SMALL-SIGNAL PULSE RESPONSE
Input − 20 mV/Div
Input − 1 V/Div
6
4
2
0
−2
TA = 25°C
0.08
0.04
0
−0.04
−0.08
−4
100 s/Div
TA = 25°C
AV = −5
RL = 10 kΩ Rf = 10 kΩ
VCC+ = 5 V Ri = 2 kΩ
0
−2
−4
Output − 20 mV/Div
Output − 1 V/Div
2
0.16
0.12
0.08
0
100 s/Div
TA = 25°C
RL = 10 kΩ
VCC+ = 5 V
AV = −5
Rf = 10 kΩ
Ri = 2 kΩ
0.04
100 s/Div
Figure 20
Figure 19
12
100 s/Div
0.20
6
4
TA = 25 C
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2004, Texas Instruments Incorporated