STMICROELECTRONICS STW82100B

STW82100B
RF down converter with embedded integer-N synthesizer
Datasheet −production data
Features
■
High linearity:
– IIP3: +25.5 dBm
– 2FRF-2FLO spurious rejection: 77 dBc
■
Noise figure:
– NF: 10.5 dB
Applications
■
Conversion gain
– CG: 8 dB
■
RF range: 1620 MHz to 2400 MHz
■
Wide IF amplifier frequency range: 70 MHz to
400 MHz
■
Integrated RF balun with internal matching
■
Dual differential integrated VCOs with
automatic center frequency calibration:
– LOA: 1650 to 1950 MHz
– LOB: 2050 to 2370 MHz
■
Embedded integer-N synthesizer
– Dual modulus programmable prescaler
(16/17 or 19/20)
– Programmable reference frequency divider
(10 bits)
– Adjustable charge pump current
– Digital lock detector
– Excellent integrated phase noise
– Fast lock time: 150 µs
■
Integrated DAC with dual current output
■
Supply: 3.3 V and 5 V analog,
3.3 V Digital
■
Dual digital bus interface: SPI and I2C bus (fast
mode) with 3 bit programmable address
(1101A2A1A0)
■
Process: 0.35 µm BICMOS SiGe
■
Operating temperature range -40 to +85oC
■
44-lead exposed pad VFQFPN
package7x7x1.0 mm
May 2012
This is information on a product in full production.
VFQFPN-44
■
Cellular infrastructure equipment:
– IF sampling receivers
– Digital PA linearization loops
■
Other wireless communication systems.
Table 1.
Device summary
Part number
Package
Packaging
STW82100B
VFQFPN-44
Tray
STW82100BTR
VFQFPN-44
Tape and reel
Description
The STMicroelectronics STW82100B is an
integrated down converter providing 8 dB of gain,
10.5 dB NF, and a very high input linearity by
means of its passive mixer.
Embedding two wide band auto calibrating VCOs
and an integer-N synthesizer, the STW82100B is
suitable for both Rx and Tx requirements for
Cellular infrastructure equipment.
The integrated RF balun and internal matching
permit direct 50 ohm single-ended interface to RF
port. The IF output is suitable for driving 200-ohm
impedance filters.
By embedding a DAC with dual current output to
drive an external PIN diode attenuator, the
STW82100B replaces several costly discrete
components and offers a significant footprint
reduction.
The STW82100B device is designed with
STMicroelectronics advanced 0.35 µm
SiGe process. Its performance is specified over a
-40 °C to +85 °C temperature range.
Doc ID 018355 Rev 5
1/67
www.st.com
1
Contents
STW82100B
Contents
1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5
Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7
Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.1
2/67
Circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.1.1
Reference input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.1.2
Reference divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.1.3
Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.1.4
A and B counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.1.5
Phase frequency detector (PFD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.1.6
Lock detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.1.7
Mute until lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.1.8
Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.1.9
Voltage controlled oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.1.10
Output stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.1.11
External VCO buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.1.12
Mixer and IF amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.1.13
Dual output current DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Doc ID 018355 Rev 5
STW82100B
9
I2C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9.1
9.2
9.3
9.4
10
Contents
I2C general features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9.1.1
Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9.1.2
START and STOP conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.1.3
Byte format and acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.1.4
Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
9.1.5
Single-byte write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
9.1.6
Multi-byte write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
9.1.7
Current byte address read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
I2C timing specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9.2.1
Data and clock timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9.2.2
I2C START and STOP timing specification . . . . . . . . . . . . . . . . . . . . . . 36
9.2.3
I2C acknowledge timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . 37
I2C registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.3.1
I2C register summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.3.2
I2C register definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Device calibration through the I2C interface . . . . . . . . . . . . . . . . . . . . . . . 45
9.4.1
VCO calibration procedure (I2C interface) . . . . . . . . . . . . . . . . . . . . . . . 45
9.4.2
Power ON sequence (I2C interface) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.4.3
VCO calibration auto-restart procedure (I2C interface) . . . . . . . . . . . . . 46
SPI digital interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.1
SPI general features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.2
SPI timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10.2.1
10.3
10.4
Data, clock and load timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
SPI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.3.1
SPI register summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.3.2
SPI register definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Device calibration through the SPI interface . . . . . . . . . . . . . . . . . . . . . . 53
10.4.1
VCO calibration procedure (SPI interface) . . . . . . . . . . . . . . . . . . . . . . . 53
10.4.2
Power ON sequence (SPI interface) . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.4.3
VCO calibration auto-restart procedure (SPI interface) . . . . . . . . . . . . . 54
Doc ID 018355 Rev 5
3/67
Contents
11
STW82100B
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
11.1
Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
11.2
Standard Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
11.3
Diversity mode operation with same LO frequency . . . . . . . . . . . . . . . . . 58
11.4
Diversity mode operation with different LO frequencies . . . . . . . . . . . . . . 59
11.5
External VCO standard mode operation . . . . . . . . . . . . . . . . . . . . . . . . . 60
11.6
External VCO diversity mode operation with same LO . . . . . . . . . . . . . . 61
12
Evaluation kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
13
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
14
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4/67
Doc ID 018355 Rev 5
STW82100B
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Digital logic levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Down converter mixer and IF amplifier electrical characteristics . . . . . . . . . . . . . . . . . . . . 15
Pin diode attenuator driver (dual output current DAC) electrical characteristics. . . . . . . . . 16
Integer-N synthesizer electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Phase noise performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Current values for CPSEL[2:0] selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
VCOA performance against amplitude setting (frequency = 3.6 GHz) . . . . . . . . . . . . . . . . 30
VCOB performance against amplitude setting (frequency = 4.3 GHz) . . . . . . . . . . . . . . . . 30
Suggested CAP[2:0] values for LO Frequency range mixer . . . . . . . . . . . . . . . . . . . . . . . . 31
Linearity performance against IFAMP[1:0] configuration (typical condition) . . . . . . . . . . . . 32
I2C data and clock timing parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
I2C START and STOP timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
I2C acknowledge timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
I2C register list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Address decoder and outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
SPI timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
SPI register list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Application circuit component values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Evaluation kit order code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
VFQFPN-44 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Doc ID 018355 Rev 5
5/67
List of figures
STW82100B
List of figures
Figure 1.
STW82100B block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2.
STW82100B pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 3.
Conversion gain against RF frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 4.
Noise figure against RF frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 5.
IIP3 against RF frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 6.
2RF-2LO response against RF frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 7.
LOA (VCOA div. by 2) closed-loop phase noise at 1.8 GHz
(FSTEP = 200 kHz, ICP = 2 mA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 8.
LOB (VCOB div. by 2) closed-loop phase noise at 2.2 GHz
(FSTEP = 200 kHz, ICP = 2 mA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 9.
Reference frequency input buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 10. VCO divider diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 11. PFD diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 12. Loop filter connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 13. VCO typical sub-band characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 14. Data validity waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 15. START and STOP condition waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 16. Byte format and acknowledge waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 17. I2C data and clock waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 18. I2C START and STOP timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 19. I2C acknowledge timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 20. I2C first programming timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 21. SPI input and output bit order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 22. SPI data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 23. SPI timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 24. SPI first programming timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 25. Typical STW82100B application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 26. Standard mode operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 27. Diversity mode operation with same LO frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 28. Diversity mode operation with different LO frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 29. External VCO standard mode operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 30. External VCO diversity mode operation with same LO. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 31. VFQFPN-44 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6/67
Doc ID 018355 Rev 5
VSS_IFAMP
VDD_IFAMP
TEST1
VDD_DAC
I_PINDRV2
VSS_ALC
VDD_RFESD
TEST2
STW82100B block diagram
REXT_DAC
Figure 1.
I_PINDRV1
Block diagram
VDD_ALC
1
TEST_ALC
Block diagram
VSS_DAC
STW82100B
DAC
VSS_RFESD
RF_IN
IF_OUTP
IF
AMP
RF_VSS
IF_OUTN
RF_CT
MIXDRV_CT
DBUS_SEL
VDD_MIXDRV
MIX
DRV
VSS_MIXDRV
SDA/DATA
SCL/CLK
DBUS
VDD_DIV
LOAD
VSS_DIV
ADD0
ADD1
ADD2
VCO
calibrator
VDD_OUTBUF
VSS_OUTBUF
LO
OUT
DIV2
CAL_VCO
VDD_DIG
OUTBUFN
VSS_DIG
OUTBUFP
LOCK_DET
LO/2xLO
OUT
VCO
divider
EXTVCO_INP
EXTVCO_INN
EXT
LO/VCO
BUF
UP
PFD
DN
CHP
ICP
REF
divider
VDD_VCO
VCO
BUFF
VSS_VCO
VDD_PLL
VDD_IO
BUF
VSS_IO
VSS_PLL
Doc ID 018355 Rev 5
REXT_CP
VSS_CP
VDD_CP
EXT_PD
REF_CLK
VCTRL
VSS_PSCBUF
VDD_PSCBUF
CAL_VCO
7/67
Pin description
STW82100B
8/67
44
43
42
41
40
39
38
37
36
35
34
VDD_ALC
MIXDRV_CT
VDD_RFESD
RF_IN
RF_CT
TEST_ALC
TEST1
TEST2
STW82100B pin configuration
VDD_MIXDRV
Figure 2.
I_PINDRV1
Pin description
I_PINDRV2
2
VDD_IFAMP
33
REXT_DAC
IF_OUTP
32
3
VDD_DIV
IF_OUTN
31
4
VDD_VCO
NC
30
5
EXTVCO_INN
LOAD
29
SCL/CLK
28
1
VDD_DAC
2
STW82100B
VFQFPN44
ADD1
DBUS_SEL
25
10
ADD0
VDD_PLL
24
11
VDD_IO
REF_CLK
23
LOCK_DET
9
VDD_CP
26
REXT_CP
VDD_DIG
ICP
ADD2
VCTRL
8
OUTBUFP
27
OUTBUFN
SDA/DATA
VDD_OUTBUF
EXT_PD
NC
7
NC
EXTVCO_INP
VDD_PSCBUF
6
12
13
14
15
16
17
18
19
20
21
22
Doc ID 018355 Rev 5
STW82100B
Table 2.
Pin description
Pin list
Pin No
Name
Description
Observation
1
VDD_DAC
DAC power supply
Vsupply analog1= 3.3 V
2
REXT_DAC
External resistance connection for DAC
-
3
VDD_DIV
Divider by 2 power supply
Vsupply analog1= 3.3 V
4
VDD_VCO
VCOs and External VCO Buffer power supply
Vsupply analog1= 3.3 V
5
EXTVCO_INN
External VCO (LO) negative input
Diversity Slave Mode and External
VCO Modes; otherwise it must be
connected to GND
6
EXTVCO_INP
External VCO (LO) positive input
Diversity Slave Mode and External
VCO Modes; otherwise it must be
connected to GND
7
EXT_PD
Hardware power down:
‘0’ device ON; ‘1’ device OFF
CMOS Input
8
ADD2
I2CBUS address select pin
CMOS Input
9
ADD1
I2CBUS address select pin
CMOS Input
2CBUS
address select pin
CMOS Input
10
ADD0
I
11
VDD_IO
Digital IO power supply
Vsupply digital = 3.3 V
12
VDD_PSCBUF
Prescaler input buffer power supply
Vsupply analog1= 3.3 V
13
NC
Not connected
-
14
NC
Not connected
-
15
VDD_OUTBUF
Power supply for LO buffer
Vsupply analog1=3.3 V
16
OUTBUFN
LO Output buffer negative output
Open collector @3.3 V
17
OUTBUFP
LO Output buffer positive output
Open collector @ 3.3 V
18
VCTRL
Control voltage for VCOs
-
19
ICP
PLL charge pump output
-
20
REXT_CP
External resistance connection for PLL charge
pump current
-
21
VDD_CP
Power supply for charge pump
Vsupply analog1= 3.3 V
22
LOCK_DET
Lock detector
CMOS Output
23
REF_CLK
Reference frequency input
-
24
VDD_PLL
PLL digital power supply
Vsupply analog1= 3.3 V
25
DBUS_SEL
Digital Bus Interface select
CMOS Input
26
VDD_DIG
Power supply for digital bus interface
Vsupply digital = 3.3 V
SDA/DATA
I
2CBUS
/SPI data line
CMOS Bidir Schmitt triggered
28
SCL/CLK
I2CBUS
/SPI clock line
CMOS Input Schmitt triggered
29
LOAD
SPI load line
CMOS Input Schmitt triggered
30
NC
Not connected
-
31
IF_OUTN
IF amplifier negative output
Open collector @ 5 V(1)
27
Doc ID 018355 Rev 5
9/67
Pin description
Table 2.
Pin No
STW82100B
Pin list (continued)
Name
Description
Observation
32
IF_OUTP
IF Amplifier positive output
Open collector @ 5 V(1)
33
VDD_IFAMP
IF Amplifier power supply
Vsupply analog1 = 3.3 V
34
TEST2
Test input 2
Test purpose only; it must be
connected to GND
35
TEST1
Test input 1
Test purpose only; it must be
connected to GND
36
TEST_ALC
Test output
Test purpose only; it must be
connected to GND
37
RF_CT
RF balun central tap
-
38
RF_IN
RF input
-
39
VDD_RFESD
RF ESD positive rail power supply
Vsupply analog1 = 3.3 V
40
MIXDRV_CT
Mixer driver balun central tap
Vsupply analog2 = 5 V(1)
41
VDD_ALC
ALC power supply
Vsupply analog1 = 3.3 V
42
VDD_MIXDRV
Mixer driver power supply
Vsupply analog1 = 3.3 V
43
I_PINDRV1
DAC current output for external PIN Diode
attenuator
PMOS Open drain
44
I_PINDRV2
DAC current output for external PIN Diode
attenuator
PMOS Open drain
1. Supply voltage @ 3.3 V in low-current mode operation
10/67
Doc ID 018355 Rev 5
STW82100B
Absolute maximum ratings
3
Absolute maximum ratings
Table 3.
Absolute maximum ratings
Symbol
Parameter
Values
Unit
AVCC1
Analog Supply voltage
0 to 4.6
V
AVCC2
Analog Supply voltage
0 to 6
V
DVCC
Digital Supply voltage
0 to 4.6
V
Tstg
Storage temperature
+150
°C
HBM on pins 16, 17, 31, 32, 37, 40
ESD
(Electro-static discharge)
0.8
HBM on pin 38
1
HBM on all remaining pins
2
kV
CDM-JEDEC Standard on pin 38
0.25
CDM-JEDEC Standard on all remaining pins
0.5
MM
0.2
Doc ID 018355 Rev 5
11/67
Operating conditions
STW82100B
4
Operating conditions
Table 4.
Operating conditions
Symbol
Parameter
Test conditions
Min
Typ
Max
Unit
AVCC1
Analog Supply voltage
-
3.15
3.3
3.45
V
AVCC2
Analog Supply voltage
-
4.75
5
5.25
V
DVCC
Digital Supply voltage
-
3.15
3.3
3.45
V
Standard mode
-
130
150
mA
External VCO standard mode
-
110
130
mA
Diversity slave mode
-
105
120
mA
Diversity master mode
-
155
180
mA
External VCO diversity master
mode
-
140
160
mA
High current mode at 5 V
-
170
195
mA
Low current mode at 3.3 V
-
100
115
mA
ICC3.3V
Current Consumption at 3.3 V
ICC5V
Current Consumption
TA
Operating ambient temperature
-
-40
85
°C
TJ
Maximum junction temperature
-
-
125
°C
ΘJA
Junction to ambient package thermal
resistance(1)
Multi-layer JEDEC board
-
33
-
°C/W
ΘJB
Junction to board package thermal
resistance(1)
Multi-layer JEDEC board
-
19
-
°C/W
ΘJC
Junction to case package thermal
resistance(1)
Multi-layer JEDEC board
-
3
-
°C/W
ΨJB
Thermal characterization parameter
junction to board(1)
Multi-layer JEDEC board
-
18
-
°C/W
ΨJT
Thermal characterization parameter
junction to top case(1)
Multi-layer JEDEC board
-
0.3
-
°C/W
1. Refer to JEDEC standard JESD 51-12 for a detailed description of the thermal resistances and thermal parameters.
Data here presented are referring to a Multi-layer board according to JEDEC standard.
TJ = TA + ΘJA * Pdiss (in order to estimate TJ if ambient temperature TA and dissipated power Pdiss are known)
TJ = TB + ΨJB * Pdiss (in order to estimate TJ if board temperature TB and dissipated power Pdiss are known)
TJ = TT + ΨJT * Pdiss (in order to estimate TJ if top case temperature TT and dissipated power Pdiss are known)
12/67
Doc ID 018355 Rev 5
STW82100B
Table 5.
Symbol
Operating conditions
T
Digital logic levels
Parameter
Test conditions
Min
Typ
Max
Unit
Vil
Low level input voltage
-
-
-
0.2*Vdd
V
Vih
High level input voltage
-
0.8*Vdd
-
-
V
Vhyst
Schmitt trigger hysteresis
-
0.8
-
-
V
Vol
Low level output voltage
-
-
-
0.4
V
Voh
High level output voltage
-
0.85*Vdd
-
-
V
Doc ID 018355 Rev 5
13/67
Test conditions
5
STW82100B
Test conditions
Unless otherwise specified the following test conditions are applied:
●
Vsupply digital = 3.3 V
●
Vsupply analog1 = 3.3 V
●
Vsupply analog2 = 5 V
●
FIF = 150 MHz
●
MIX = 0111
●
T ambient = 27 ° C
Refer also to Section 11: Application information.
14/67
Doc ID 018355 Rev 5
STW82100B
Electrical characteristics
6
Electrical characteristics
Note:
Vsupply digital = 3.3 V, Vsupply analog1 = 3.3 V, Vsupply analog2 = 5 V, FRF = 2100 MHz,
FLO = 1950 MHz, TA = +25 *C, RF power = 0 dBm, unless otherwise specified.
Table 6.
Down converter mixer and IF amplifier electrical characteristics(1)
Symbol
)
Parameter
Conditions
Min
Typ
Max
Unit
-
1620
-
2400 MHz
VCOA divided by 2
1650
-
1950 MHz
VCOB divided by 2
2050
-
2370 MHz
FRF
RF Frequency
FLO
LO Frequency
FIF
IF Center Frequency(2)
FIF = ABS(FLO-FRF)
70
-
400
MHz
CG
Power Conversion Gain
Rin = 50 ohm, Rout = 200 ohm
RFin = 0 dBm
7.5
8
8.5
dB
CGΔT
Power Conversion Gain over
Temperature(3)
T= -40 to +85 °C
-
±0.7
-
dB
High current Mode
-
13.5
-
IP1dB
Input P1dB
Low current Mode
-
8
-
Third-order input intercept
point(4)
High current Mode
24.5
25.5
-
IIP3
Low current Mode
18.5
19.5
-
T= -40 to +85 °C
-
±0.5
-
dB
2FRF-2FLO FRFin = -5 dBm,
FIF = 150 MHz
-
77
-
dBc
3FRF-3FLO FRFin = -5 dBm,
FIF = 150 MHz
-
77
-
dBc
High-current mode, MIX = 0011
-
10.5
11
dB
Low-current mode, MIX = 0011
-
10.5
11
dB
1xLO
-
-35
-
dBm
IIP3ΔT
IIP3 variation over
temperature(3)
nFRF-nFLO Spurious rejection at IF(3)
NFSSB
Noise figure
-
LO to IF Leakage
dBm
dBm
2xLO
-33
-
LO to RF Leakage
-
-
-29
-
dBm
-
RF to IF Isolation
-
-
58
-
dB
RFRL
RF Return Loss
Matched to 50 ohm
-
20
-
dB
IFRL
IF Return Loss
Matched to 200 ohm
-
25
-
dB
Maximum deviation from Fc over ±10
MHz. For any Fc within each TX
observation path band.
-0.05
-
+0.05 dB
Maximum deviation from Fc over ±30
MHz. For any Fc within each TX
observation path band.
-0.10
-
+0.10 dB
-
Gain Flatness for TX
observation path(5)
Doc ID 018355 Rev 5
15/67
Electrical characteristics
Table 6.
Symbol
STW82100B
Down converter mixer and IF amplifier electrical characteristics(1) (continued)
Parameter
Phase Flatness for TX
observation path(5)
-
Conditions
Min
Typ
Max
Unit
Maximum deviation from linear phase
at Fc over ±10 MHz. For any Fc within
each TX observation path band.
-0.3
-
+0.3
deg
Maximum deviation from linear phase
at Fc over ±30 MHz. For any Fc within
each TX observation path band.
-0.7
-
+0.7
deg
-
Gain Flatness for RX path(5)
Maximum ripple over a 4 MHz band.
For any Fc within each RX path band.
-
-
0.1
dB
pk-pk
-
Phase Flatness for RX path(5)
Maximum ripple over a 4 MHz band.
For any Fc within each RX path band.
-
-
0.6
deg
pk-pk
Mixer Driver Current
Consumption
3.3 V Supply (pin 41, 42)
-
49
-
mA
5 V Supply (pin 40)
-
60
-
mA
Mixer Driver Current
Consumption (Low Current
Mode)
3.3 V Supply (pin 41, 42)
-
20
-
mA
3.3 V Supply (pin 40)
-
35
-
mA
3.3 V Supply (pin 33)
-
10
-
mA
5 V Supply (pin 31, 32)
-
108
-
mA
3.3 V Supply (pin 33)
-
6
-
mA
3.3 V Supply (pin 31, 32)
-
55
-
mA
ICCMD
IFAMP Current Consumption
ICCIFAM
IFAMP Current Consumption
(Low Current Mode)
1. All linearity and NF performances are intended at maximum LO amplitude (LO_A[1:0]=[11]), tuning capacitors (CAP[2:0])
programmed according to the selected frequency, mixer bias (MIX[3:0]) set to maximize performance and the device
operated in high current mode. The performances of conversion gain, NF and linearity are intended at the SMA connectors
of a typical application board.
2. The IF frequency range supported by the IF Amplifier is from 70 to 400 MHz. The exact IF frequency range supported for a
specific RF frequency can be calculated as FIF = ABS(FLO-FRF) where FLO is inside the specified LO frequency range.
3. Guaranteed by design and characterization
4. RFin = 0 dBm/tone, RF tone spacing = 5 MHz
5. Guaranteed by design
Table 7.
Symbol
Pin diode attenuator driver (dual output current DAC) electrical characteristics
Parameters
Conditions
Min
Typ
Max
Unit
R
Resolution
-
-
10
-
Bit
DNL
Differential non linearity
-
-0.05
-
0.05
LSB
INL
Integral non linearity
-
-0.45
-
0.45
LSB
(1)
-
0.28
-
2.8
mA
IFS
Full Scale current
-
Current Mismatch
-
-
-
2
%
-
Output voltage compliance
range
-
0
-
3
V
VREXT_DAC
Voltage Reference
-
-
1.19
REXT_DAC
REXT DAC Range
-
10
-
100
kΩ
Iccstatic
Static current consumption
(Iout = 0 mA; pin 1)
-
2.5
-
mA
1.
See relationship between IDAC and REXT_DAC in the Circuit Description section (Dual Output Current DAC)
16/67
Doc ID 018355 Rev 5
V
STW82100B
Table 8.
Electrical characteristics
Integer-N synthesizer electrical characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
Prescaler 16/17
256
-
65551
-
Prescaler 19/20
361
-
77836
-
VCO dividers
N
VCO Divider Ratio (N)
Reference clock and phase frequency detector
Fref
Reference input frequency
-
10
19.2
200
MHz
-
Reference input sensitivity
-
0.35
1
1.5
Vpeak
R
Reference Divider Ratio
-
2
-
1023
FPFD
PFD input frequency
-
-
-
16
Prescaler 16/17
FLO/
65551
-
FLO/
256
Hz
Prescaler 19/20
FLO/
77836
-
FLO/
361
Hz
-
-
5
mA
FSTEP
Frequency
step (1)
MHz
Charge pump
ICP
ICP sink/source (2)
3bit programmable
VOCP
Output voltage compliance range
-
0.4
-
-
Spurious(3)
-
-
-70
-
dBc
Higher frequency range
-
100
-
MHz/V
Intermediate frequency
range
-
85
-
MHz/V
Lower frequency range
-
70
-
MHz/V
Higher frequency range
-
75
-
MHz/V
Intermediate frequency
range
-
65
-
MHz/V
Lower frequency range
-
55
-
MHz/V
CALTYPE [0]
-
-
125
°C
CALTYPE [1]
-
-
125
°C
Vdd-0.3 V
VCOs
KVCOA
KVCOB
VCOA sensitivity
VCOB sensitivity
ΔTLKA
VCOA Maximum Temperature
variation for continuous lock (4)
ΔTLKB
VCOB Maximum Temperature
variation for continuous lock (4)
CALTYPE [0]
-
-
95
°C
CALTYPE [1]
-
-
125
°C
VCO A Pushing
-
-
8
-
MHz/V
VCO B Pushing
-
-
14
-
MHz/V
VCTRL
VCO control voltage
-
0.4
-
LO Harmonic Spurious
-
-
IVCO
VCO and VCO buffer current
consumption
Amplitude [11] (pin 4)
-
IDIV2
DIVIDER by 2 consumption
(pin 3)
-
-
Doc ID 018355 Rev 5
Vdd-0.3 V
-20
dBc
35
-
mA
20
-
mA
17/67
Electrical characteristics
Table 8.
STW82100B
Integer-N synthesizer electrical characteristics (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
2 x LO output buffer (test purpose only)
FOUT
Frequency range
-
3.3
-
4.74
GHz
POUT
Output level
-
-
0
-
dBm
RL
Return Loss
Matched to 50ohm
-
15
-
dB
I2LOBUF
Current Consumption
(pin 15, 16, 17)
-
26
-
mA
LO output buffer
FOUT
Frequency range
-
1.65
-
2.37
GHz
POUT
Output level
-
-
3
-
dBm
RL
Return Loss
Matched to 50ohm
-
14
-
dB
ILOBUF
Current Consumption
(pin 15, 16, 17)
-
26
-
mA
External VCO (LO) buffer
fINVCO
Frequency range
-
1.65
-
2.37
GHz
PIN
Input level
-
-
0
-
dBm
IEXTBUF
Current Consumption
External VCO Buffer
(pin 4)
-
25
-
mA
PLL miscellaneous
IPLL
PLL Current Consumption
Input Buffer, Prescaler,
Digital Dividers, misc.
(pin 24)
-
8
-
mA
IPRE
Prescaler input buffer Current
Consumption
(pin 12)
-
3
-
mA
ICP
Charge Pump Current Consumption
CPSEL=[111], REXT_CP
= 4.7 kΩ (pin 21)
-
4
-
mA
tLOCK
Lock up time(5)
25 kHz PLL bandwidth;
within 1ppm of frequency
error
-
150
-
µs
1. The frequency step is related to the PFD input frequency as follows: FSTEP=FPFD/2)
2. See relationship between ICP and REXT_CP in the Circuit Description section (Charge Pump)
3. The level of spurs may change depending on PFD frequency, Charge Pump current, selected channel and PLL loop BW.
4. When setting a specified output frequency, the VCO calibration procedure must be run first in order to select the best
subrange for the VCO covering the desired frequency. Once programmed at the initial temperature T0 inside the operating
temperature range (-40 oC to +85 oC), the synthesizer is able to maintain the lock status if the temperature drift (in either
direction) is within the limit specified by ΔTLKA or ΔTLKB, provided that the final temperature T1 is still inside the nominal
range.
5. Frequency jump form 1950 to 1800 MHz; it includes the time required by the VCO calibration procedure (7 x FPFD cycles
=17.5 µs with FPFD =400 kHz))
18/67
Doc ID 018355 Rev 5
STW82100B
Table 9.
Electrical characteristics
Phase noise performance(1)
Parameters
Conditions
Min.
Typ.
Max.
-
-230
-
Unit
In band phase noise floor, closed loop(2)
Normalized In Band Phase Noise I =4 mA, PLL BW = 50 kHz
CP
Floor (LO)
(including reference clock
In Band Phase Noise Floor (LO) contribution)
dBc/Hz
-230+20log(N)+10log(FPFD) dBc/Hz
PLL integrated phase noise
Integrated Phase Noise
(single sided)
100 Hz to 40 MHz
FLO=2.200 GHz, FSTEP=200 kHz,
ICP=3 mA, PLL BW = 25 kHz
-
-45
-
dBc
-
0.48
-
° rms
LOA (1650 MHz to 1950 MHz) – open loop
Phase Noise @ 1 kHz
-
-
-69
-
dBc/Hz
Phase Noise @ 10 kHz
-
-
-95
-
dBc/Hz
Phase Noise @ 100 kHz
-
-
-118
-
dBc/Hz
Phase Noise @ 1 MHz
-
-
-139
-
dBc/Hz
Phase Noise @ 10 MHz
-
-
-152
-
dBc/Hz
Phase Noise Floor @ 40 MHz
-
-
-154
-
dBc/Hz
LOB (2050 MHz to 2370 MHz) – open loop
Phase Noise @ 1 kHz
-
-
-62
-
dBc/Hz
Phase Noise @ 10 kHz
-
-
-88
-
dBc/Hz
Phase Noise @ 100 kHz
-
-
-112
-
dBc/Hz
Phase Noise @ 1 MHz
-
-
-134
-
dBc/Hz
Phase Noise @ 10 MHz
-
-
-150
-
dBc/Hz
Phase Noise Floor @ 40 MHz
-
-
-153
-
dBc/Hz
1. Phase Noise SSB. VCO amplitude set to maximum value [11]. All the closed-loop performances are specified using a
Reference Clock signal at 76.8 MHz with phase noise of -144 dBc/Hz @1 kHz offset, -157 dBc/Hz @10 kHz offset and
-168 dBc/Hz of noise floor.
2. Normalized PN = Measured LO PN – 20log(N) – 10log(FPFD) where N is the VCO divider ratio (N=B*P+A) and FPFD is the
comparison frequency at the PFD input
Doc ID 018355 Rev 5
19/67
Typical performance characteristics
STW82100B
7
Typical performance characteristics
Note:
Vsupply digital = 3.3 V, Vsupply analog1 = 3.3 V, Vsupply analog2 = 5 V, FIF = 150 MHz,
TA = +25 °C, RF power = 0 dBm, unless otherwise specified.
Conversion gain against RF frequency
Conversion gain (dB)
Figure 3.
RF frequency (MHz)
Noise figure against RF frequency
Noise figure (dB)
Figure 4.
RF frequency (MHz)
20/67
Doc ID 018355 Rev 5
STW82100B
Typical performance characteristics
IIP3 against RF frequency
IIP3 (dBm)
Figure 5.
RF frequency (MHz)
2RF-2LO response against RF frequency
2RF-2LO response (dB)
Figure 6.
RF frequency (MHz)
Doc ID 018355 Rev 5
21/67
Typical performance characteristics
22/67
STW82100B
Figure 7.
LOA (VCOA div. by 2) closed-loop phase noise at 1.8 GHz (FSTEP =
200 kHz, ICP = 2 mA)
Figure 8.
LOB (VCOB div. by 2) closed-loop phase noise at 2.2 GHz (FSTEP =
200 kHz, ICP = 2 mA)
Doc ID 018355 Rev 5
STW82100B
8
General description
General description
The STW82100B (see Figure 1: STW82100B block diagram on page 7) consists of a high
linearity passive CMOS mixer with integrated RF balun, an IF amplifier, a 10-bit current
steering DAC with dual output, and an integrated integer-N synthesizer.
The synthesizer embeds 2 internal low-noise VCOs with buffer blocks, a divider by 2, a low
noise PFD (Phase Frequency Detector), a precise charge pump, a 10-bit programmable
reference divider, two programmable counters and a dual-modulus prescaler. The A-counter
(5 bits) and B counter (12 bits) counters, in conjunction with the dual modulus prescaler
P/P+1 (16/17 or 19/20), implement an N integer divider, where N = B*P+A.
The device is controlled through a digital interface (I2C bus interface or SPI digital interface).
All internal devices operate with a power supply of 3.3 V except for the IF Amplifier output
stage and the mixer driver stage operating at 5 V power supply in order to maximize the
linearity performance. If the application requires a reduced linearity and noise figure
performance the device is programmed in a low-current mode by using the minimum LO
amplitude and the minimum biasing current in the IF amplifier. In low-current mode
operation the device can use only the 3.3 V power supply thus dissipating less power.
8.1
Circuit description
8.1.1
Reference input stage
The reference input stage is shown in Figure 9. The resistor network feeds a DC bias at the
Fref input while the inverter used as the frequency reference buffer is AC coupled.
Figure 9.
Reference frequency input buffer
VDD
Fref
Inverter
Buffer
Power Down
Doc ID 018355 Rev 5
23/67
General description
8.1.2
STW82100B
Reference divider
The 10-bit programmable reference counter allows the input reference frequency to be
divided to produce the input clock to the PFD. The division ratio is programmed through the
digital interface.
8.1.3
Prescaler
The dual-modulus prescaler P/P+1 takes the CML clock from the VCO buffer and divides it
down to a manageable frequency for the CMOS A and B counters. The modulus (P) is
programmable and can be set to 16 or 19. It is based on a synchronous 4/5 core which
division ratio depends on the state of the modulus input.
8.1.4
A and B counters
The A (5 bits) and B (12 bits) counters, in conjunction with the selected dual modulus (16/17
or 19/20) prescaler make it possible to generate output frequencies which are spaced only
by the reference frequency divided by the reference division ratio. Thus, the division ratio
and the VCO output frequency are given by the following formulae:
N = B× P+A
( B × P + A ) × F ref
F VCO = ----------------------------------------------R
where:
FVCO: VCO output frequency.
P: modulus of dual modulus prescaler (16 or 19 selected through the digital interface).
B: division ratio of the main counter.
A: division ratio of the swallow counter.
Fref: input reference frequency.
R: division ratio of the reference counter.
N: division ratio of the PLL
The following points should be noted:
24/67
●
For the VCO divider to work correctly, B must be higher than A.
●
A can take any value from 0 to 31.
●
Two PLL division ratio (N) ranges are possible, depending on the value of P:
–
256 to 65551 (when P=16)
–
361 to 77836 (when P=19).
Doc ID 018355 Rev 5
STW82100B
General description
Figure 10. VCO divider diagram
VCOBUFVCOBUF+
Prescaler
16/17 or 19/20
To PFD
modulus
12-bit
B counter
5-bit
A counter
8.1.5
Phase frequency detector (PFD)
The PFD takes inputs from the reference and the VCO dividers and produces an output
proportional to the phase error. The PFD includes a delay gate that controls the width of the
anti-backlash pulse. This pulse ensures that there is no dead zone in the PFD transfer
function.
Figure 11 is a simplified schematic of the PFD.
Figure 11. PFD diagram
VDD
D
Q
Up
Fref_DIV
R
Delay
R
FVCO_div
VDD
D
Q
Down
ABL
Doc ID 018355 Rev 5
25/67
General description
8.1.6
STW82100B
Lock detect
This signal indicates that the difference between rising edges of both UP and DOWN PFD
signals is found to be shorter than the fixed delay (roughly 5 ns). The Lock Detect signal is
high when the PLL is locked. The Lock Detector consumes current only during PLL
transients.
8.1.7
Mute until lock
This (software controlled) function shuts down the following elements until the PLL achieves
the lock status:
●
RF output stage
●
LO output buffer
●
mixer
●
IF amplifier circuitry
Under this setting there is no signal at the IF output stage or the LO output during a
frequency jump.
8.1.8
Charge pump
This block drives two matched current sources, Iup and Idown, which are controlled
respectively by the UP and DOWN PFD outputs. The nominal value of the output current is
controlled by an external resistor (to be connected to the REXT input pin) and the selection
of one of 8 possible values by a 3-bit word.
The minimum value of the output current is: IMIN = 2*VBG/REXT_CP (VBG~1.17 V)
Table 10.
Note:
26/67
Current values for CPSEL[2:0] selection
CPSEL2
CPSEL1
CPSEL0
Current
Value for REXT=4.7 kΩ
0
0
0
IMIN
0.5 mA
0
0
1
2*IMIN
1.00 mA
0
1
0
3*IMIN
1.50 mA
0
1
1
4*IMIN
2.00 mA
1
0
0
5*IMIN
2.50 mA
1
0
1
6*IMIN
3.00 mA
1
1
0
7*IMIN
3.50 mA
1
1
1
8*IMIN
4.00 mA
The current is output on pin ICP. During the VCO auto calibration, ICP and VCTRL pins are
forced to VDD/2.
Doc ID 018355 Rev 5
STW82100B
General description
Figure 12. Loop filter connection
VDD
VCTRL
C3
Buffer
Charge
pump
R3
ICP
R1
C2
C1
Buffer
Cal bit
8.1.9
Voltage controlled oscillators
VCO selection
Within the STW82100B two low-noise VCOs are integrated to cover a wide band from
1650 MHz to 1950 MHz, and from 2050 MHz to 2370 MHz after the division by 2:
●
VCO A frequency range is 3300 MHz to 3900 MHz
●
VCO B frequency range is 4100 MHz to 4740 MHz
VCO frequency calibration
Both VCOs can operate on 32 frequency ranges that are selected by adding or subtracting
capacitors to the resonator. These frequency ranges are intended to cover the wide band of
operation and compensate for process variations on the VCO center frequency.
An automatic range selection is performed when the bit SERCAL rises from ‘0’ to ‘1’ . The
charge pump is inhibited and the pins ICP and VCTRL are set at a fixed calibration voltage
(VCAL). The frequency ranges are then tested to select the nearest one to the desired
output frequency (FOUT= N*Fref/R) with VCAL input voltage applied. After this selection, the
charge pump is once again enabled and the PLL performs a fine adjustment around VCAL
on the loop filter voltage to lock FOUT, thus enabling a fast settling time.
Two calibration algorithms are selectable by setting the CALTYPE bit.
Setting the CALTYPE to ’1’ guarantees the PLL lock versus temperature variations. Once
programmed at the initial temperature, T0, within the operating temperature range (-40 °C to
+85 °C), the synthesizer is able to maintain the lock status if the temperature drift (in either
direction) is within the limit specified by ΔTLK, and provided that the final temperature, T1, is
still inside the nominal range.
Setting the CALTYPE bit to ‘0’ fixes VCAL to the mid point of the charge pump output
(VDD/2). Optimum PLL phase noise performance versus temperature variations with a
reduced ΔTLK is guaranteed in this case. The ΔTLK parameter, specific to each VCO and
calibration type, in the STW82100B is specified in Table 8: Integer-N synthesizer electrical
characteristics.
Doc ID 018355 Rev 5
27/67
General description
STW82100B
Figure 13. VCO typical sub-band characteristics
FREQ (Hz)
00000
00001
01111
11111
Calibrator lock
range
0.50
0.00
1.00
1.50
2.00
2.50
3.00
3.50
VCTRL (V)
The SERCAL bit should be set to ’1’ at each division ratio change. The calibration takes
approximately 7 periods of the Comparison Frequency and the SERCAL bit is automatically
reset to ’0’ at the end of each calibration.
The maximum allowed FPFD to perform the calibration process is 1 MHz. If a higher FPFD is
used the following procedure should be adopted:
1.
Calibrate the VCO at the desired frequency with an FPFD lower than 1 MHz
2.
Set the A, B and R dividers ratio for the desired FPFD
For calibration details refer to Section 9.4.1: VCO calibration procedure (I2C interface) or
Section 10.4.1: VCO calibration procedure (SPI interface).
28/67
Doc ID 018355 Rev 5
STW82100B
General description
VCO calibration auto-restart feature
The VCO Calibration Auto-Restart feature, once activated, allows the calibration procedure
to be restarted when the Lock Detector reports that the PLL has moved to an unlock
condition (trigger on ‘1’ to ‘0’ transition of Lock Detector signal).
This situation could happen if the device experiences a significant temperature variation and
the CALTYPE bit is set for optimum PLL phase noise performance (CALTYPE [0]).
By enabling the VCO Calibration Auto-Restart feature (through the AUTO_CAL bit), the
device re-selects the proper VCO frequency sub-range without any external user command.
This feature can be enabled only when the FPFD is lower than 1 MHz.
VCO voltage amplitude control
The voltage swing of the VCOs can be adjusted over 4 levels by means of two dedicated
programming bits (PLL_A1 and PLL_A0). This setting trades current consumption with
phase noise performances of the VCO. Higher amplitudes provide best phase noise while
lower ones save power.
Doc ID 018355 Rev 5
29/67
General description
STW82100B
Table 11 and Table 12 give the current consumption and the phase noise at 1 MHz.
Table 11.
VCOA performance against amplitude setting (frequency = 3.6 GHz)
PLL_A[1:0]
Table 12.
8.1.10
Current
Consumption (mA)
PN @ 1 MHz
00
23
-127
01
24
-128
10
32
-131
11
35
-132
VCOB performance against amplitude setting (frequency = 4.3 GHz)
PLL_A[1:0]
Current
Consumption (mA)
PN @ 1 MHz
00
16
-124
01
18
-126
10
27
-128
11
30
-129
Output stage
The differential output signal of the synthesizer after the Divider by 2 is available on
pins 16 and 17.
The output stage is selected by programming the PD[4:0] bits.
The output stage is an open-collector structure which is able to meet different requirements
over the desired output frequency range by proper connections on the PCB. See Figure 27:
Diversity mode operation with same LO frequencies.
8.1.11
External VCO buffer
Although the STW82100B includes two wideband and low-noise VCOs, external VCO use
capability is also provided.
The external VCO buffer can be used to manage a signal coming from an external VCO in
order to build a local oscillator signal by using the STW82100B internal synthesizer as a
PLL. This is only possible when External VCO standard mode or External VCO diversity
master mode operation are selected. See Figure 29: External VCO standard mode
operation and Figure 30: External VCO diversity mode operation with same LO.
If the STW82100B is operated in Diversity slave mode, the external VCO buffer manage the
signal coming from the synthesizer output stage of another STW82100B device See
Figure 27: Diversity mode operation with same LO frequencies and Figure 30: External
VCO diversity mode operation with same LO.
The selection of the external VCO buffer is done by setting the PD[4:0] bits.
The external VCO signal can range from 1650 MHz to 2370 MHz and its minimum power
level must be -10 dBm.
30/67
Doc ID 018355 Rev 5
STW82100B
8.1.12
General description
Mixer and IF amplifier
LO mixer driver
The LO signal is fed through a driver in order to achieve the high power level needed to drive
the passive mixer for maximum performance of linearity and NF.
The LO Mixer Driver is coupled to the mixer with an integrated LO balun. The LO signal level
is adjusted by means of an Automatic Level Control loop (ALC) controlled by the bits
LO_A[1:0].
In low current mode the configuration LO_A[1:0]=’00’ (minimum LO amplitude) should be
selected and the power supply on pin 40 can be set to 3.3 V.
The LO balun resonating frequency can be adjusted by means of the bits CAP[2:0] in order
to match the selected LO frequency.
Table 13.
Suggested CAP[2:0] values for LO Frequency range mixer
CAP[2:0]
LO frequency range
000
2225MHz ÷ 2370MHz
001
2100MHz ÷ 2225MHz
010
2000MHz ÷ 2100MHz
011
1900MHz ÷ 2000MHz
100
1825MHz ÷ 1900MHz
101
1750MHz ÷ 1825MHz
110
1700MHz ÷ 1750MHz
111
1650MHz ÷ 1700MHz
Mixer
A doubly balanced CMOS passive mixer is internally driven by the high level LO signal in
order to achieve high linearity and low noise performance.
The RF integrated balun permits the removal of external components and it is internally
matched to 50 ohms.
The gate bias of the CMOS devices in the mixer is programmable with 4 bits (MIX[3:0]) to
optimize the input matching and the gain of the signal chain.
Higher values of gate bias (higher decimal values of MIX[3:0]) are suggested to maximize
linearity and lower values to maximize the performance of Gain and NF.
Doc ID 018355 Rev 5
31/67
General description
STW82100B
IF amplifier
The integrated IF stage permits a 200-ohm load to be driven (typically a SAW filter) ensuring
high linearity.
It is an open collector stage (pin 31, 32) and should be biased to 5 V with choke inductors.
The typical output impedance is 200 ohms. The linearity performances are controlled by the
bits IFAMP[1:0]. In low current mode the configuration IFAMP[1:0]=’00’ (minimum linearity)
should be selected and the open collector stage can be biased to 3.3 V with choke
inductors.
Table 14.
8.1.13
Linearity performance against IFAMP[1:0] configuration (typical
condition)
IFAMP[1:0]
Linearity performance
00
19.5 dB
01
21.5 dB
10
23.5dB
11
25.5dB
Dual output current DAC
The STW82100B embeds a 10-bit Dual Output steering current DAC especially suited to
drive an external PIN diode attenuator. This provides power level calibration capability at the
RF input for the TX observation path applications.
The current sourced by the DAC is related to the REXT_DAC resistor according to the
following formulae (where VREXT_DAC is approximately 1.19 V):
1 3 × VR EXT_DAC
1
IDAC LSB = --- × ---------------------------------------- × -----R EXT_DAC
2
64
LSB DAC current
1 3 × VR EXT_DAC 1023
IDAC FS = --- × ---------------------------------------- × ------------R EXT_DAC
2
64
Full scale current
With a 10 kΩ REXT_DAC the FS current is approximately 2.8 mA.
32/67
Doc ID 018355 Rev 5
STW82100B
9
I2C bus interface
I2C bus interface
The I2C bus interface is selected by hardware connection of the pin 25 (DBUS_SEL) to 0 V.
Data transmission from a microprocessor to the STW82100B takes place through the 2
wires (SDA and SCL) I2C-bus interface. The STW82100B is always a slave device.
The I2C-bus protocol defines any device that sends data on to the bus as a transmitter and
any device that reads the data as receiver. The device that controls the data transfer is
known as the master and the others as slaves. The master always initiates the transfer and
provides the serial clock for synchronization.
The STW82100B I2C bus supports Fast Mode operation (clock frequency up to 1 MHz).
9.1
I2C general features
9.1.1
Data validity
Data changes on the SDA line must only occur when the SCL is LOW. SDA transitions while
the clock is HIGH identify START or STOP conditions.
Figure 14. Data validity waveform
SDA
SCL
Data line stable
data valid
Change
data allowed
Doc ID 018355 Rev 5
33/67
I2C bus interface
9.1.2
STW82100B
START and STOP conditions
Figure 15. START and STOP condition waveform
SCL
SDA
START
STOP
START condition
A START condition is identified by a HIGH to LOW transition of the data bus SDA while the
clock signal SCL is stable in the HIGH state. A Start condition must precede any command
for data transfer.
STOP condition
A STOP condition is identified by a transition of the data bus SDA from LOW to HIGH while
the clock signal SCL is stable in the HIGH state.. A STOP condition terminates
communications between the STW82100B and the Bus Master.
9.1.3
Byte format and acknowledge
Every byte (8 bits long) transferred on the SDA line must contain bits. Each byte must be
followed by an acknowledge bit. The MSB is transferred first.
An acknowledge bit indicates a successful data transfer. The transmitter, either master or
slave, releases the SDA bus after sending 8 bits of data. During the 9th clock pulse the
receiver pulls the SDA low to acknowledge the receipt of 8 bits of data.
Figure 16. Byte format and acknowledge waveform
SCL
1
SDA
MSB
2
3
7
8
Acknowledgement
from receiver
START
STOP
34/67
9
Doc ID 018355 Rev 5
STW82100B
9.1.4
I2C bus interface
Device addressing
To start the communication between the Master and the STW82100B, the master must
initiate with a START condition. Following this, the master sends onto the SDA line 8 bits
(MSB first) corresponding to the device select address and read or write mode.
The first 7 MSBs are the device address identifier, corresponding to the I2C-Bus definition.
For the STW82100B the address is set as ’1101A2A1A0’, 3-bits programmable. The 8th bit
(LSB) is the read or write operation bit (the RW bit is set to 1 in read mode and to 0 in write
mode).
After a START condition the STW82100B identifies the device address on the bus and, if
matched, it acknowledge the identification on SDA bus during the 9th clock pulse.
9.1.5
Single-byte write mode
Following a START condition the master sends a device select code with the RW bit set to 0.
The STW82100B gives an acknowledge and waits for the internal sub-address (1 byte). This
byte provides access to any of the internal registers.
After reception of the internal byte sub-address the STW82100B again responds with an
acknowledge. A single-byte write to sub-address 0x00 would affect DATA_OUT[47:40], a
single-byte write with sub-address 0x04 would affect DATA_OUT[15:8] and so on.
S
9.1.6
1101A2A1A0
0
sub-address
byte
ack
ack
DATA IN
ack
P
Multi-byte write mode
The multi-byte write mode can start from any internal address. The master sends the data
bytes and each one is acknowledged. The master terminates the transfer by generating a
STOP condition.
The sub-address determines the starting byte. For example, a multi-byte write with subaddress 0x01 and 4 DATA_IN bytes affects 4 bytes starting at address 0x01 (registers at
addresses 0x01, 0x02, 0x03 and 0x04 are modified).
S
9.1.7
1101A2A1A0
0 ack
sub-address
byte
ack
DATA IN
ack
..
DATA
IN
ack
P
Current byte address read
In the current byte address read mode, following a START condition, the master sends the
device address with the RW bit set to 1 (No sub-address is needed as there is only 1 byte
read register). The STW82100B acknowledges this and outputs the data byte. The master
does not acknowledge the received byte, but terminates the transfer with a STOP condition.
S
1101A2A1A0
1
ack
Doc ID 018355 Rev 5
DATA OUT
No ack
P
35/67
I2C bus interface
STW82100B
9.2
I2C timing specifications
9.2.1
Data and clock timing specification
Figure 17. I2C data and clock waveforms
SDA
SCL
tcwl
tcs
Table 15.
tcwh
I2C data and clock timing parameters
Symbol
9.2.2
tch
Parameter
Min
Tcs
Data to clock set up time
2
Tch
Data to clock hold time
2
Tcwh
Clock pulse width high
10
Tcwl
Clock pulse width low
5.5
ns
I2C START and STOP timing specification
Figure 18. I2C START and STOP timing waveforms
SDA
SCL
tstart
36/67
Unit
Doc ID 018355 Rev 5
tstop
STW82100B
I2C bus interface
Table 16.
I2C START and STOP timing parameters
Symbol
Parameter
Min
Tstart
Clock to data start time
2
Tstop
Data to clock down stop time
2
Unit
ns
9.2.3
I2C acknowledge timing specification
Figure 19. I2C acknowledge timing waveforms
SDA
SCL
9
8
td1
Table 17.
td2
I2C acknowledge timing parameters
Symbol
Parameter
Max
Td1
Ack begin delay
2
Td2
Ack end delay
2
Unit
ns
Doc ID 018355 Rev 5
37/67
I2C bus interface
9.3
STW82100B
I2C registers
STW82100B has 9 write-only registers and 1 read-only register.
9.3.1
I2C register summary
The following table gives a short description of the write-only registers list.
Table 18.
Offset
I2C register list
Register name
Description
Page
0x00
FUNCTIONAL_MODE
Functional mode register
on page 39
0x01
B_COUNTER
B counter register
on page 39
0x02
A_COUNTER
A counter register
on page 40
0x03
REF_DIVIDER
Reference clock divider ratio register
on page 40
0x04
CONTROL
PLL control register
on page 41
0x05
MUTE_&_CALIBRATION
Mute and calibration control register
on page 42
0x06
DAC_CONTROL
DAC control register
on page 42
0x07
MIXER_CONTROL
Mixer control register
on page 43
0x08
IFAMP_LO_CONTROL
IF amplifier LO control register
on page 43
0x09
READ_ONLY_REGISTER
Device ID and calibration status register
on page 44
38/67
Doc ID 018355 Rev 5
STW82100B
I2C bus interface
I2C register definitions
9.3.2
FUNCTIONAL_MODE
Functional mode register
7
6
ALC_PD
PKD_EN
5
PD[4:0]
B11
W
W
W
W
Address:
0x00
Type:
W
Reset:
0x00
4
3
2
1
0
[7] ALC_PD: for test purpose only must be set to ’0’. (ALC ON)
[6] PKD_EN: for test purpose only must be set to ’0’. (Peak detector output on pin 36 OFF)
[5:1] PD[4:0]: bits used to select different functional modes for the STW82100B according to
the following table
00000: (0 decimal) Power down mode
00001: (1 decimal) Standard Mode VCOA (VCOA and RX chain ON)
00010: (2 decimal) Standard Mode VCOB (VCOB and RX chain ON)
00011: (3 decimal). Diversity Slave Mode (ExtVCO/LO input buffer and RX Chain ON;
internal synthesizer OFF)
00100: (4 decimal) Diversity Master Mode VCOA (VCOA, RX Chain and LO output
buffer ON)
00101: (5 decimal) Diversity Master Mode VCOB (VCOB, RX Chain and LO output
buffer ON)
00110: (6 decimal) External LO Standard Mode (RX Chain ON; PLL and ExtVCO/LO
input buffer ON)
00111: (7 decimal) External LO Diversity Master Mode (RX Chain ON; PLL, ExtVCO/LO
input buffer and LO output buffer ON)
[0] B11: B counter value (bits B[10:0] in the B_COUNTER and A_COUNTER registers)
B_COUNTER
7
B counter register
6
5
4
3
2
1
0
B[10:3]
W
Address:
0x01
Type:
W
Reset:
0x00
Description:
Most significant bits of the B counter value
[7:0] B[10:3]: B counter value (bit B11 in the FUNCTIONAL_MODE register, bits B[2:0] in the
A_COUNTER register)
Doc ID 018355 Rev 5
39/67
I2C bus interface
STW82100B
A_COUNTER
A counter register
7
6
5
4
3
2
B[2:0]
A[4:0]
W
W
Address:
0x02
Type:
W
Reset:
0x00
Description:
Least significant bits of the B-counter value. A-counter value.
1
0
[7:5] B[2:0]: B Counter value (bit B11 in the FUNCTIONAL_MODE register, bits B[10:3] in
the B_COUNTER register).
[4:0] A[4:0]: A counter value
REF_DIVIDER
7
Reference clock divider ratio register
6
5
4
3
2
1
R[9:2]
W
Address:
0x03
Type:
W
Reset:
0x00
Description:
Most significant bits of the reference clock divider ratio value.
[7:0] R[9:2]: Reference clock divider ratio (bits R[1:0] in the CONTROL register)
40/67
Doc ID 018355 Rev 5
0
STW82100B
I2C bus interface
CONTROL
7
PLL control register
6
5
4
3
2
1
0
[R1:0]
PLL_A[1:0]
CPSEL[2:0]
PSC_SEL
W
W
W
W
Address:
0x04
Type:
W
Reset:
0x00
Description:
Least significant bits of the reference clock divider ratio value and PLL control bits.
[7:6] R[1:0]: Reference clock divider ratio (bits R[9:2] in the REF_DIVIDER register)
[5:4] PLL_A[1:0]: VCO amplitude
[3:1] CPSEL[2:0]: Charge Pump output current
[0] PSC_SEL: Prescaler Modulus select (‘0’ for P=16, ‘1’ for P=19)
The LO output frequency is programmed by setting the proper value for A, B and R
according to the following formula:
F ref
F LO = D R ⋅ ( B ⋅ P + A ) ⋅ ---------R
where DR equals 0.5 (VCOs output frequency divided by 2)
and P is the selected Prescaler Modulus
Doc ID 018355 Rev 5
41/67
I2C bus interface
STW82100B
MUTE_&_CALIBRATION
MUTE_IFAMP_EN
0
MUTE_MIX_EN
1
MUTE_LOOUT_EN
2
MUTE_TYPE
3
MUTE_EN
4
SELEXTCAL
5
SERCAL
6
CALTYPE
7
Mute and calibration control register
W
W
W
W
W
W
W
W
Address:
0x05
Type:
W
Reset:
0x00
Description:
For test purposes only
[7] CALTYPE: Calibration algorithm selection
0: standard calibration to optimize the phase noise versus temperature
1: enhanced calibration to maximize the ΔTLK range
[6] SERCAL:
1: starts the VCO auto-calibration (automatically reset to ’0’ at the end of calibration)
[5] SELEXTCAL: test purpose only; must be set to ‘0’
[4] MUTE_EN:
0: mute function disabled
1: mute function enabled
[3] MUTE_TYPE: must be set to '1' while the mute function is enabled (mute the IF output
on Unlock state)
[2] MUTE_LOOUT_EN:
To be set to ’1’ to mute the LO output buffer
[1] MUTE_MIX_EN:
To be set to ’1’ mute the Mixer circuitry
[0] MUTE_IFAMP_EN: To be set to '1' to mute the IF amplifier circuitry
DAC_CONTROL
7
6
DAC control register
5
4
3
2
1
DAC[9:2]
W
Address:
0x06
Type:
W
Reset:
0x00
Description:
Most significant bits of the DAC control word
[7:0] DAC[9:2]: DAC input word for DAC current control (bits DAC[1:0] in the
MIXER_CONTROL register).
42/67
Doc ID 018355 Rev 5
0
STW82100B
I2C bus interface
MIXER_CONTROL
3
2
1
0
CAL_AUTOSTART_EN
4
PD_DAC
5
MIX[3:0]
6
DAC[1:0]
7
Mixer control register
W
W
W
W
Address:
0x07
Type:
W
Reset:
0x00
Description:
Least significant bits of DAC control word and mixer control bit fields
[7:6] DAC[1:0]: DAC input word for DAC current control (bits DAC[9:2] in the DAC_CONTROL
register)
[5:2] MIX[3:0]: Mixer bias control value
[1] PD_DAC: DAC power down
[0] CAL_AUTOSTART_EN: VCO calibration auto-restart enable (’1’ active), permits to
automatically restart the VCO calibration procedure in case of PLL unlock
IFAMP_ LO_CONTROL
7
6
IF amplifier LO control register
5
4
3
2
1
0
IFAMP[1:0]
CAP[2:0]
LO_A[1:0]
LPMUX_EN
W
W
W
W
Address:
0x08
Type:
W
Reset:
0x00
[7:6] IFAMP[1:0]: power consumption/linearity control
[5:3] CAP[2:0]: Tuning capacitors control
[2:1] LO_A[1:0]: LO amplitude control
[0] LPMUX_EN: for test purpose only (low power mode for MUX). Must be set to ’0’
Doc ID 018355 Rev 5
43/67
I2C bus interface
STW82100B
READ-ONLY REGISTER
7
6
Device ID and calibration status register
5
4
3
2
ID[1:0]
LOCK_DET
INTCAL[4:0]
R
R
R
1
0
Address:
0x09
Type:
R
Reset:
0x00
Description:
This register is automatically addressed in the ‘current byte address read mode’
[7:6] ID[1:0]: device identification ’00’ for STW82100B
[5] LOCK_DET: ’1’ when PLL is locked
[4:0] INTCAL[4:0]: internal value of the VCO calibration control word
44/67
Doc ID 018355 Rev 5
STW82100B
I2C bus interface
9.4
Device calibration through the I2C interface
9.4.1
VCO calibration procedure (I2C interface)
The calibration of the VCO center frequency is activated by setting the SERCAL bit of the
MUTE & CALIBRATION register to ’1’.
To program the device ensuring a correct VCO calibration, the following procedure is
required before every channel change:
1.
2.
Program all the Registers using a multi-byte write sequence with the desired setting:
–
Functional Mode
–
B and A counters
–
R counter
–
VCO amplitude
–
Charge Pump
–
Prescaler Modulus
–
DAC
–
Mixer and LO Control
–
all bits of the MUTE & CALIBRATION Register (0x05) set to ’0’.
Program the MUTE & CALIBRATION register using a single-byte write sequence (subaddress 0x05) with the SERCAL bit set to ’1’.
The maximum allowed PFD frequency (FPFD) to perform the calibration process is 1 MHz. If
the desired FPFD is higher than 1 MHz the following steps are needed:
9.4.2
3.
Perform all the step of the above calibration procedure programming the desired VCO
frequency with a proper setting of R, B and A counter so that FPFD results lower than
1 MHz.
4.
Once calibration is completed, program all the Registers by using a multi-byte write
sequence (Functional Mode, B and A counters, R counter, VCO amplitude, Charge
Pump, Prescaler Modulus, DAC, Mixer and LO Control) with the proper settings for the
desired VCO and PFD frequencies.
Power ON sequence (I2C interface)
At power-on the device is configured in power-down mode.
In order to guarantee correct setting of the internal circuitry after the power on, the following
steps must be followed:
1.
Power up the device
2.
Provide the Reference clock
3.
Implement the first programming sequence with a proper delay time between the STOP
condition of the multi-byte write sequence and that of the single-byte write sequence
(see Figure 20). The Tdelay value must respect the following condition:
1
T delay > 1023 × ---------F ref
Fref is the reference clock frequency.
Doc ID 018355 Rev 5
45/67
I2C bus interface
STW82100B
Figure 20. I2C first programming timing
START
STOP
START
STOP
CLK
Tdelay > 1023/Fref
MSB
DATA
LSB
Multi-byte sequence
9.4.3
LSB
MSB
Single-byte sequence
VCO calibration auto-restart procedure (I2C interface)
The VCO calibration auto-restart feature is enabled in two steps:
46/67
1.
Set the desired frequency ensuring VCO calibration procedure as described above
(Section 9.4.1).
2.
Program the MIXER_CONTROL register (sub-address 0x07) using a single-byte write
sequence with the CAL_AUTOSTART_EN bit set to '1' while keeping the others
unchanged.
Doc ID 018355 Rev 5
STW82100B
SPI digital interface
10
SPI digital interface
10.1
SPI general features
The SPI digital interface is selected by hardware connection of the pin 25 (DBUS_SEL) to
3.3 V.
The STW82100B IC is programmed by means of a high-speed serial-to-parallel interface
with write option only. The 3-wires bus can be clocked at a frequency as high as 100 MHz to
allow fast programming of the registers containing the data for RF IC configuration.
The programming of the chip is done through serial words with whole length of 26 bits. The
first 2 MSB represent the address of the registers. The others 24 LSB represent the value of
the registers.
Each data bit is stored in the internal shift register on the rising edge of the CLOCK signal.
On the rising edge of the LOAD signal the outputs of the selected register are sent to the
device.
Figure 21. SPI input and output bit order
Last
bit sent
(LSB) 0
1
23
2
25 (MSB)
24
DATA
A1
LOAD
Address
decoder
LOAD #4
00 (LSB)
Reg. #0
Reg. #1
Doc ID 018355 Rev 5
Reg. #4
47/67
SPI digital interface
STW82100B
Figure 22. SPI data structure
LSB
MSB
Address
A1
Data for register (24 bits)
A0 D23 D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
Note: MSB is sent first
Table 19.
Address decoder and outputs
Address
Outputs
DATABITS
No
A1
A0
0
0
24
0
ST1
DAC, Mixer, Tuning capacitors, LO_amplitude
0
1
24
1
ST2
Reference divider, VCO amplitude, VCO Calibration, Charge
Pump current, Prescaler Modulus, Mute functions
1
0
24
2
ST3
Functional modes, VCO dividers
1
1
24
3
ST4
Reserved
48/67
D23-D0
Name
Function
Doc ID 018355 Rev 5
STW82100B
SPI digital interface
10.2
SPI timing specification
10.2.1
Data, clock and load timing
Figure 23. SPI timing waveforms
tsetup
thold
MSB
DATA
MSB - 1
LSB
CLOCK
tclk_loadr
tclk
LOAD
tload
Table 20.
tclk_loadf
SPI timing parameters
Parameter
Description
Min.
Typ.
Max.
Unit
1
-
-
ns
tsetup
DATA to CLOCK setup time
thold
DATA to clock hold time
0.5
-
-
ns
tclk
CLOCK cycle period
10
-
-
ns
tload
LOAD pulse width
3
-
-
ns
tclk_loadr
CLOCK to LOAD rising edge
0.6
-
-
ns
tclk_loadf
CLOCK to LOAD falling edge
2.5
-
-
ns
Doc ID 018355 Rev 5
49/67
SPI digital interface
STW82100B
10.3
SPI registers
10.3.1
SPI register summary
Table 21.
SPI register list
Offset
Register name
Description
Page
0x00
ST1
SPI register 1
on page 50
0x01
ST2
SPI register 2
on page 51
0x10
ST3
SPI register 3
on page 52
10.3.2
SPI register definitions
ST1
15
14
13
12
11
10
9
8
7
6
4
3
2
1
0
W
W
W
W
W
W
W
W
Address:
0x00
Type:
W
Reset:
0x00
[23:14] DAC[9:0]: DAC input word
[13:10] MIX[3:0]: Mixer bias control
[9] PWD_DAC: DAC power down
[8] CAL_AUTOSTART_EN: VCO calibration auto-restart enable
[7:6] IF[1:0]: Power consumption/linearity control
[5:3] CAP[2:0]: Tuning capacitors control
[2:1] LO_A[1:0]: LO amplitude control
[0] LPMUX_EN: For test purpose only. Must be set to ‘0’
50/67
5
LPMUX_EN
16
LO_A[1:0]
17
CAP[2:0]
18
IF[1:0]
19
CAL_AUTOSTART_EN
20
PWD_DAC
21
MIX[3:0]
22
DAC[9:0]
23
SPI register 1
Doc ID 018355 Rev 5
STW82100B
SPI digital interface
ST2
11
10
9
8
7
6
5
4
3
2
1
0
MUTE_IFAMP_EN
12
MUTE_MIX_EN
13
MUTE_LOOUT_EN
14
MUTE_TYPE
15
MUTE_EN
16
SELEXTCAL
17
SERCAL
18
CAL_TYPE
19
PSC_SEL
20
CPSEL[2:0]
21
PLL_A[1:0]
22
R[9:0]
23
SPI register 2
W
W
W
W
W
W
W
W
W
W
W
W
Address:
0x01
Type:
W
Reset:
0x00
[23:14] R[9:0]: Reference clock divider ratio
[13:12] PLL_A[1:0]: VCO amplitude control
[11:9] CPSEL[2:0]: Charge pump output current control
[8] PSC_SEL: Prescaler modulus select (‘0’ for P=16, ‘1’ for P=19)
[7] CAL_TYPE: Calibration algorithm selection
0: standard calibration to optimize the phase noise versus temperature
1: enhanced calibration to maximize the ΔTLK range
[6] SERCAL:
at ‘1’ starts the VCO auto-calibration (automatically reset to ‘0’ at the end of calibration)
[5] SELEXTCAL: test purpose only. Must be set to ‘0’
[4] MUTE_EN:
0: mute function disabled
1: mute function enabled
[3] MUTE_TYPE: must be set to '1' while the mute function is enabled (mute the IF output
on Unlock state)
[2] MUTE_LOOUT_EN:
To be set to ’1’ to mute the LO output buffer
[1] MUTE_MIX_EN:
To be set to ’1’ to mute the Mixer circuitry
[0] MUTE_IFAMP_EN:
To be set to ’1’ to mute the IF amplifier circuitry
Doc ID 018355 Rev 5
51/67
SPI digital interface
STW82100B
ST3
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
A[4:0]
19
B[11:0]
20
PD[4:0]
21
PKD_EN
22
ALC_PD
23
SPI register 3
W
W
W
W
W
Address:
0x10
Type:
W
Reset:
0x00
1
0
[23] ALC_PD: Test purpose only; must be set to ‘0’ (ALC ON)
[22] PKD_EN: for test purpose only; must be set to ‘0’
[21:17] PD[4:0]:
00000: (0 decimal) Power down mode
00001: (1 decimal) Standard Mode VCOA (VCOA and RX chain ON)
00010: (2 decimal) Standard Mode VCOB (VCOB and RX chain ON)
00011: (3 decimal). Diversity Slave Mode (ExtVCO/LO input buffer and RX Chain ON;
internal synthesizer OFF)
00100: (4 decimal) Diversity Master Mode VCOA (VCOA, RX Chain and LO output
buffer ON)
00101: (5 decimal) Diversity Master Mode VCOB (VCOB, RX Chain and LO output
buffer ON)
00110: (6 decimal) External LO Standard Mode (RX Chain ON; PLL and ExtVCO/LO
input buffer ON)
00111: (7 decimal) External LO Diversity Master Mode (RX Chain ON; PLL, ExtVCO/LO
input buffer and LO output buffer ON)
[16:5] B[11:0]: B counter bits
[4:0] A[4:0]: A Counter Bits
52/67
Doc ID 018355 Rev 5
STW82100B
SPI digital interface
10.4
Device calibration through the SPI interface
10.4.1
VCO calibration procedure (SPI interface)
The calibration of the VCO center frequency is activated by setting to ’1’ the SERCAL bit
(ST2 Register bit [6]).
In order to program properly the device while ensuring the VCO calibration, the following
procedure is required before every channel change:
1.
Program the ST1 Register with the desired setting (DAC, Mixer, LO Control)
2.
Program the ST3 Register with the desired setting (Functional mode, B and A counters)
3.
Program the ST2 Register with the desired setting (R counter, VCO amplitude, Charge
Pump, Prescaler Modulus) and SERCAL bit set to ’1’
The maximum allowed PFD frequency (FPFD) to perform the calibration process is 1 MHz; if
the desired FPFD is higher than 1 MHz the following steps are needed:
10.4.2
4.
Perform all the steps of the above calibration procedure programming the desired VCO
frequency with a proper setting of R, B and A counter so that FPFD results lower than 1
MHz.
5.
Once calibration is completed program the device with the proper setting for the desired
VCO and PFD frequencies according to the following steps:
a)
Program the ST3 Register with the desired setting (Functional mode, B and A
counters)
b)
Program the ST2 Register with the desired setting (R counter, VCO amplitude,
Charge Pump, Prescaler Modulus) with the SERCAL bit set to ’0’.
Power ON sequence (SPI interface)
At power-on the device is configured in power-down mode.
In order to guarantee correct setting of the internal circuitry after the power on, the following
steps must be followed:
1.
Power up the device
2.
Provide the reference clock
3.
Implement the first programming sequence with a proper delay time between the ST3
and ST2 load rising edges (see Figure 24). The Tdelay value must respect the following
condition:
1
T delay > 1023 × ---------F ref
Fref is the reference clock frequency.
Doc ID 018355 Rev 5
53/67
SPI digital interface
STW82100B
Figure 24. SPI first programming timing
ST2
ST3
DATA
MSB
MSB-1
LSB-1
LSB
MSB
LSB-1
MSB-1
LSB
Tdelay > 1023/Fref
LOAD
10.4.3
VCO calibration auto-restart procedure (SPI interface)
The VCO calibration auto-restart feature is enabled in two steps:
54/67
1.
Set the desired frequency ensuring VCO calibration as described in Section 10.4.1.
2.
Program the ST1 register with the CAL_AUTOSTART_EN bit set to '1' while keeping
unchanged the others.
Doc ID 018355 Rev 5
STW82100B
Application information
11
Application information
11.1
Application circuit
Figure 25. Typical STW82100B application circuit
3.3V_LN4
C1 C2 C3
RF_IN
5V_1
C19
C1 C2 C3
C1 C2 C3
3.3V_LN1
3.3V_LN1
RF_IN
RF_CT
36 35
34
TEST2
37
TEST1
39 38
TEST_ALC
40
VDD_RFESD
REXT_DAC
41
VDD_ALC
VDD_DAC
2
42
MIXDRV_CT
1
I_PINDRV1
I_PINDRV2
44 43
VDD_MIXDRV
C1 C2 C3
3.3V_LN3
C1 C2 C3
VDD_IFAMP 33
U3
5V_2
32
IF_OUTP
C4
NC
3
C5
X4
6
EXTVCO_INP
7
EXT_PD
VFQFPN-44
IF_OUTN
31
NC
30
LOAD
29
SLC/CLK
28
SDA/DATA
27
C18
L4
C14
C12
8
ADD2
VDD_DIG
26
3.3V_LN1
SPI
DBUS_SEL
13 14
15
16
17
18 19
LOCK_DET
12
REXT_CP
VDD_IO
VDD_CP
ADD0
11
ICP
10
VCTRL
ADD1
OUTBUFP
9
20
21
22
24
REF_CLK
23
1
2 NC
4
3
R10
SLC/CLK
R9
SDA/DATA
3.3V_LN2
3.3V_LN2
C1 C2 C3
I2C
3.3V_LN2
REF_CLK
C11
C1 C2 C3
R7
LOCK_DET
3.3V_LN1
C1 C2 C3
25
VDD_PLL
IF_out
6
5
LOAD
C13
R8
VDD_OUTBUF
2
EXTVCO_INN
OUTBUFN
X2
1
5
R1
NC
X3
4
VDD_VCO
VDD_PSCBUF
X1
External VCO
5
VDD_DIV
4
NC
6
U1
3
L3
C15 C16 C17
C1 C2 C3
3.3V_LN1
R6
3.3V_LN1
3.3V_LN1
C1 C2 C3
C1 C2 C3
R2
R3
L1
L2
R4
C9
C1 C2 C3
C10
C8
R5
C6
C7
3
4
2
5
1
6
NC
U2
X5
X6
X7
X8
LO_Output
Doc ID 018355 Rev 5
55/67
Application information
Table 22.
STW82100B
Application circuit component values
Designation
Quantity
Description
Supplier
C1, C15
2
4.7 µF capacitors COG (0402)
C2, C11
2
1 nF capacitors COG (0402)
C3
1
10 pF capacitor COG (0402)
C4,C5
2
3.6 pF capacitors COG (0402)
C6, C7, C19
3
6.8 pF capacitors COG (0402)
C8
1
270 pF capacitor COG (0402)
C9
1
2.7 nF capacitor COG (0402)
C10
1
68 pF capacitor COG (0402)
C12, C13, C14
3
15 pF capacitors COG (0402)
C16
1
100 nF capacitor COG (0402)
C17
1
100 pF capacitor COG (0402)
C18
1
180 pF capacitor COG (0402)
R1, R8, R9, R10
4
100 Ohm resistors (0402)
-
R2, R3, R7
3
51 Ohm resistors (0402)
-
R4
1
2.2 kohm resistor (0402)
-
R5
1
8.2 kohm resistor (0402)
-
R6
1
4.7 kohm resistor (0402)
-
U1
1
Balun JTI - 2450BL15B100
U2
1
Balun JTI - 1600BL15B100
U3
1
Balun ADT4-5WT
Mini Circuits
X1, X8
2
3.3 nH inductors CS (0402)
Coilcraft, Inc
X2
1
1.2 pF capacitor COG (0402)
Murata Manufacturing Co., Ltd
X3
1
0 Ohm resistor (0402)
-
X4
0
NC
-
X5
1
1.6 pF capacitor COG (0402)
Murata Manufacturing Co., Ltd
X6
1
3.9 nH inductor CS (0402)
Coilcraft, Inc
X7
1
2 pF capacitor COG (0402)
Murata Manufacturing Co., Ltd
L1, L2
2
3.7 nH inductors HQ (0402)
L3, L4
2
220 nH inductors CS (1206)
Murata Manufacturing Co., Ltd
JOHANSON TECHNOLOGY
Coilcraft, Inc
Note:
56/67
1
For optimum performance a low-noise 3.3 V power supply must be used.
2
The 3.3 V and 5 V power supplies are split in order to maximize the isolation between RF,
LO, IF and digital sections.
Doc ID 018355 Rev 5
STW82100B
11.2
Application information
Standard Mode Operation
The STW82100B can be used in Standard Mode for both RX path and TX observation path
(RX Chain ON and Synthesizer ON).
In such a case the 10-bit internal DAC can drive an external PIN diode attenuator in order to
calibrate the signal level at the input of the device.
REXT_DAC
Figure 26. Standard mode operation
I_PINDRV1
STW82100B
DAC
I_PINDRV2
5V
RF_IN2
RF_IN
IF_OUTP
RF_IN
IF AMP
RF_VSS
IF_OUTN
4:1
IF_OUT
50 Ω
RF_CT
DBUS_SEL
5V
SDA/DATA
SCL/CLK
LOAD
DBUS
MIXDRV_CT
VCO
calibrator
MIX
DRV
CAL_VCO
REF_CLK
BUF
DIV2
LOCK_DET
UP
PLL
PFD
DN
CHP
REXT_CP
VCO
BUFF
CAL_VCO
VCTRL
ICP
Doc ID 018355 Rev 5
57/67
Application information
11.3
STW82100B
Diversity mode operation with same LO frequency
The STW82100B supports the Diversity mode with the same LO frequency by using one
STW82100B in Master Mode (RX Chain ON, Synthesizer ON and LO output buffer ON) and
the other in Slave Mode (RX Chain ON, Synthesizer OFF and EXT VCO/LO buffer ON). This
operation mode is suitable for antenna diversity.
Figure 27. Diversity mode operation with same LO frequencies
5V
RF_IN_M
STW82100B Master
RF_IN
4:1
IF_OUTP
IF AMP
RF_VSS
IF_M
50 Ω
IF_OUTN
RF_CT
DBUS_SEL
to DAC
5V
SDA/DATA
SCL/CLK
LOAD
DBUS
MIXDRV_CT
VCO
calibrator
MIX
DRV
CAL_VCO
3.3V
REF_CLK
50 Ω
50 Ω
OUTBUFP
BUF
LO
OUT
DIV2
OUTBUFN
LOCK_DET
UP
PFD
PLL
DN
CHP
REXT_CP
VCO
BUFF
CAL_VCO
VCTRL
STW82100B Slave
EXTVCO_INP
EXT
LO/VCO
BUF
100 Ω
ICP
EXTVCO_INN
DBUS_SEL
DBUS
SDA/DATA
SCL/CLK
LOAD
MIX
DRV
5V
5V
MIXDRV_CT
RF_IN_S
RF_IN
IF_OUTP
IF AMP
RF_VSS
RF_CT
58/67
Doc ID 018355 Rev 5
IF_OUTN
4:1
IF_S
50 Ω
STW82100B
11.4
Application information
Diversity mode operation with different LO frequencies
The STW82100B is particularly suitable for Diversity schemes using different LO
frequencies such as the Interferer Diversity. In these schemes two STW82100Bs are used,
each one set in Standard Mode and with different LO frequencies.
Figure 28. Diversity mode operation with different LO frequencies
5V
RF_IN1
STW82100B Master
RF_IN
4:1
IF_OUTP
RF_VSS
IF AMP
IF_OUT1
50 Ω
IF_OUTN
RF_CT
LO1
DBUS_SEL
5V
SDA/DATA
SCL/CLK
LOAD
DBUS
MIXDRV_CT
VCO
calibrator
MIX
DRV
CAL_VCO
REF_CLK
BUF
DIV2
LOCK_DET
UP
PFD
PLL
DN
CHP
REXT_CP
VCO
BUFF
CAL_VCO
ICP
VCTRL
5V
RF_IN2
RF_IN
STW82100B Diversity
IF_OUTP
RF_VSS
IF AMP
IF_OUTN
4:1
IF_OUT2
50 Ω
RF_CT
LO2
DBUS_SEL
5V
SDA/DATA
SCL/CLK
LOAD
DBUS
MIXDRV_CT
VCO
calibrator
MIX
DRV
CAL_VCO
REF_CLK
BUF
DIV2
LOCK_DET
UP
PFD
PLL
DN
CHP
REXT_CP
VCO
BUFF
CAL_VCO
VCTRL
ICP
Doc ID 018355 Rev 5
59/67
Application information
11.5
STW82100B
External VCO standard mode operation
The STW82100B can be used in Ext VCO Mode for both RX path and TX observation path
(RX Chain ON, Synthesizer ON, EXT VCO/LO buffer ON and with an external VCO).
In such a case the 10-bit internal DAC can drive an external PIN diode attenuator in order to
calibrate the signal level at the input of the device.
REXT_DAC
Figure 29. External VCO standard mode operation
I_PINDRV1
STW82100B
DAC
I_PINDRV2
5V
RF_IN2
RF_IN
IF_OUTP
RF_IN
IF AMP
RF_VSS
IF_OUTN
RF_CT
DBUS_SEL
5V
SDA/DATA
SCL/CLK
LOAD
DBUS
MIXDRV_CT
MIX
DRV
REF_CLK
BUF
LOCK_DET
UP
PLL
PFD
DN
CHP
REXT_CP
EXT
LO/VCO
BUF
EXTVCO_INP
EXTVCO_INN
EXTERNAL
VCO
60/67
Doc ID 018355 Rev 5
ICP
4:1
IF_OUT
50 Ω
STW82100B
11.6
Application information
External VCO diversity mode operation with same LO
The STW82100B can be used in Diversity mode using one STW82100B in Master Mode
(RX Chain ON, Synthesizer ON, EXT VCO/LO buffer ON, LO output buffer ON and with an
external VCO) and the other one in Slave Mode (RX Chain ON, Synthesizer OFF and EXT
VCO/LO buffer ON).
Figure 30. External VCO diversity mode operation with same LO
STW82100B Master
RF_IN_M
5V
4:1
IF_OUTP
RF_IN
IF AMP
RF_VSS
IF_M
50 Ω
IF_OUTN
RF_CT
to DAC
DBUS_SEL
5V
SDA/DATA
SCL/CLK
LOAD
DBUS
MIXDRV_CT
MIX
DRV
REF_CLK
3.3V
BUF
50 Ω
50 Ω
OUTBUFP
OUTBUFN
LO/2xLO
OUT
LOCK_DET
UP
PLL
PFD
CHP
DN
REXT_CP
VCO
BUFF
EXTVCO_INP
ICP
EXTVCO_INN
EXTERNAL
VCO
EXTVCO_INP
STW82100B Slave
EXT
LO/VCO
BUF
100 Ω
EXTVCO_INN
DBUS_SEL
DBUS
SDA/DATA
SCL/CLK
LOAD
MIX
DRV
5V
5V
MIXDRV_CT
RF_IN_S
RF_IN
IF_OUTP
IF AMP
RF_VSS
IF_OUTN
4:1
IF_S
50 Ω
RF_CT
Doc ID 018355 Rev 5
61/67
Evaluation kit
12
STW82100B
Evaluation kit
An evaluation kit can be delivered upon request, including the following:
●
Evaluation board
●
GUI (graphical user interface) to program the device
●
PLLSim software for PLL loop filter design and noise simulation
When ordering, please specify the following order code:
Table 23.
Evaluation kit order code
Part number
STW82100B-EVB
62/67
Description
STW82100B evaluation kit, 1.6 to 2.4 GHz RF frequency range
Doc ID 018355 Rev 5
STW82100B
13
Package mechanical data
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Figure 31. VFQFPN-44 package outline
Doc ID 018355 Rev 5
63/67
Package mechanical data
Table 24.
STW82100B
VFQFPN-44 package dimensions
Dimensions in mm
Symbol
Note:
64/67
Min
Typ
Max
A
0.80
0.90
1.00
A1
-
0.02
0.05
A2
-
0.65
1.00
A3
-
0.200
-
b
0.18
0.25
0.30
D
6.85
7.00
7.15
D1
-
6.750
-
D2
3.80
3.90
4.00
D3
-
4.90
-
E
6.85
7.00
7.15
E1
-
6.750
-
E2
3.80
3.90
4.00
E3
-
4.90
-
e
-
0.50
-
L
0.35
0.55
0.75
P
-
-
0.60
K (degree)
-
-
12
ddd
-
-
0.08
1
VFQFPN stands for Thermally Enhanced Very thin Fine pitch Quad Flat Package No lead.
Very thin: A=1.00 Max.
2
Details of terminal 1 identifier are optional but must be located on the top surface of the
package by using either a mold or marked features.
Doc ID 018355 Rev 5
STW82100B
Revision history
14
Revision history
Table 25.
Document revision history
Date
14-Jan-2011
07-Mar-2011
29-Jun-2011
10-Jan-2012
Revision
Changes
1
First release
2
Corrected cover-page description paragraph tag
Table 11 and Table 12:
– corrected introductory sentence
– aligned titles with corporate rules
3
Corrected RF range on cover page and in Table 6: Down converter mixer and
IF amplifier electrical characteristics
Updated description of bitfield MUTE_TYPE in Mute and calibration control
register
Removed Section 4.4.1: Default configuration
Added Section 9.4.2: Power ON sequence (I2C interface)
Updated Figure 23: SPI timing waveforms
Updated Table 20: SPI timing parameters
Updated description of bitfield MUTE_TYPE in SPI register 2
Updated description of bitfield PD[4:0] in SPI register 3
Removed Section 5.4.1: Default configuration
Added Section 10.4.2: Power ON sequence (SPI interface)
4
Removed ‘Preliminary Data’ tags from cover page.
Table 3 moved to new Section 3: Absolute maximum ratings
Section 2.1 becomes Section 4: Operating conditions
Secction 2.2 becomes Section 5: Test conditions
Section 2.3 becomes Section 6: Electrical characteristics
Table 3: Absolute maximum ratings pins 31 and 32 changed from 0.7 to 0.8 kV
ESD rating.
Table 4: Operating conditions updated current consumption:
– ICC3.3V. Updated typical values for Diversity Master mode and external VCO
diversity master mode. Added maximum values.
– ICC5V. Added maximum values.
Section 6: Electrical characteristics. Added note about Vsupply, RF frequency
range, ambient temperature and RF power conditons.
Table 6: Down converter mixer and IF amplifier electrical characteristics :
– added Max value for CG
– added Min values for IIP3
– modified typical value of nFRF-nFLO at 3FRF-3FLO FRFin = -5 dBm,
FIF = 150 MHz condition.
– modified LO to IF leakage typical value
– modified IFRL typical value
– modified ICCMD typical value on 3.3 V supply (pin 41, 42)
Doc ID 018355 Rev 5
65/67
Revision history
Table 25.
Date
10-Jan-2012
10-May-2012
66/67
STW82100B
Document revision history (continued)
Revision
Changes
4
Table 8: Integer-N synthesizer electrical characteristics updated:
– KVCOA and KVCOB value
– ΔTLK split into ΔTLK A and ΔTLK B (for VCOA and VCOB). Specified as
maximum values.
– I2LOBUF, ILOBUF, IPLL and IPRE values
– Added table footnote 4
Table 9: Phase noise performance updated values of:
– Integrated Phase Noise (single sided) 100 Hz to 40 MHz
– LOA open-loop phase noise @ 1 kHz and 10 kHz
– LOB open-loop phase noise @ 1 kHz and 100 kHz
Added Section 7: Typical performance characteristics.
Modified sub-sections;
– VCO frequency calibration
– VCO calibration auto-restart feature
Updated description of bitfield CALTYPE in registers
– MUTE_&_CALIBRATION
– ST2
Added Section 12: Evaluation kit.
5
Corrected RF range lower value on cover page.
Replaced occurrences of ‘STI register’ with ‘SPI register’ in section headers:
– Section 10.3: SPI registers
– Section 10.3.1: SPI register summary
– Section 10.3.2: SPI register definitions.
Doc ID 018355 Rev 5
STW82100B
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 018355 Rev 5
67/67