STMICROELECTRONICS STW81101AT

STW81101
Multi-band RF frequency synthesizer with integrated VCOs
Features
■
Integer-N frequency synthesizer
■
Dual differential integrated VCOs with
automatic center frequency calibration:
– 3300 - 3900 MHz (Direct output)
– 3800 - 4400 MHz (Direct output)
– 1650 - 1950 MHz (Internal divider by 2)
– 1900 - 2200 MHz (Internal divider by 2)
– 825 - 975 MHz (Internal divider by 4)
– 950 - 1100 MHz (Internal divider by 4)
■
Excellent integrated phase noise
■
Fast lock time: 150µs
■
Dual modulus programmable prescaler (16/17
or 19/20)
■
2 programmable counters to achieve a
feedback division ratio from 256 to 65551
(prescaler 16/17) and from 361 to 77836
(prescaler 19/20).
■
Programmable reference frequency divider (10
bits)
■
Phase frequency comparator and charge pump
■
Programmable charge pump current
■
Digital lock detector
■
Dual digital bus Interface: SPI and I2C bus with
a 3-bit programmable address (1100A2A1A0)
■
3.3V power supply
■
Power down mode (HW and SW)
■
Small size exposed pad VFQFPN28 package
5x5x1.0mm
■
Process: BICMOS 0.35µm SiGe
VFQFPN28
Applications
■
2.5G and 3G cellular infrastructure equipment
■
CATV equipment
■
Instrumentation and test equipment
■
Other wireless communication systems
Description
The STMicroelectronics STW81101 is an
integrated RF synthesizer with voltage controlled
oscillators (VCOs). Showing high performance,
high integration, low power, and multi-band
performances, STW81101 is a low-cost one-chip
alternative to discrete PLL and VCO solutions.
The STW81101 includes an Integer-N frequency
synthesizer and two fully integrated VCOs
featuring low phase-noise performance and a
noise floor of -155dBc/Hz. The combination of
wide frequency range VCOs (using centerfrequency calibration over 32 sub-bands) and
multiple output options (direct output, divided by
2, or divided by 4) allows coverage of the
825MHz-1100MHz, 1650MHz-2200MHz and
3300MHz-4400MHz bands.
The STW81101 is designed with
STMicroelectronics advanced 0.35µm SiGe
process.
August 2007
Rev 3
1/48
www.st.com
1
Contents
STW81101
Contents
1
2
Block diagram and pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3
Digital logic levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5
Phase noise specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3
Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5
Circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6
5.1
Reference input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2
Reference divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3
Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.4
A and B counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.5
Phase frequency detector (PFD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.6
Lock detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.7
Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.8
Voltage controlled oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
VCO selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.8.2
VCO frequency calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.8.3
VCO voltage amplitude control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
I2C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.1
2/48
5.8.1
General features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.1.1
Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.1.2
START and STOP conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.1.3
Byte format and acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
STW81101
Contents
Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.1.5
Single-byte write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.1.6
Multi-byte write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.1.7
Current byte address read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2
Timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3
I2C registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.4
7
6.1.4
6.3.1
Write-only registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3.2
Read-only register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3.3
Default configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
VCO calibration procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
SPI digital interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.1
General features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.2
Timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.3
Bit tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.3.1
7.4
8
Default configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
VCO calibration procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.1
Direct output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.2
Divided by 2 output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.3
Divided by 4 output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.4
Evaluation kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9
Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
10
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
11
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
12
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3/48
List of tables
STW81101
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
4/48
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Operating conditions (refer to Figure 36: Application diagram) . . . . . . . . . . . . . . . . . . . . . . 9
Digital logic levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Electrical specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Phase noise specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Current value vs. selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
VCO A performances versus amplitude setting (Freq=3.6GHz). . . . . . . . . . . . . . . . . . . . . 23
VCO B performances vs. amplitude setting (Freq=4.1GHz). . . . . . . . . . . . . . . . . . . . . . . . 23
Single-byte write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Multi-byte write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Current byte address read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Data and clock timing specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Start and stop timing specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Ack timing specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Write-only registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Functional modes of the FUNCTIONAL_MODE register . . . . . . . . . . . . . . . . . . . . . . . . . . 29
SPI data structure (MSB is sent first) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Address decoder and outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
SPI timing specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Bits at 00h and ST1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Bits at 01h and ST2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Order code of the evaluation kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Package dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
STW81101
List of figures
List of figures
Figure 1.
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2.
Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 3.
VCO A (direct output) open loop phase noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 4.
VCO B (direct output) open loop phase noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 5.
VCO A (direct output) closed loop phase noise at 3.6GHz
(FSTEP=200kHz; FPFD=200kHz; ICP=3.5mA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 6.
VCO B (direct output) closed loop phase noise at 4.0GHz
(FSTEP=200kHz; FPFD=200kHz; ICP=4mA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 7.
VCO A (div. by 2 output) closed loop phase noise at 1.8GHz
(FSTEP=200kHz; FPFD=400kHz; ICP=2mA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 8.
VCO B (div. by 2 output) closed loop phase noise at 2.0GHz
(FSTEP=200kHz; FPFD=400kHz; ICP=3mA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 9.
VCO A (div. by 4 output) closed loop phase noise at 900MHz
(FSTEP=200kHz; FPFD=800kHz; ICP=1.5mA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 10. VCO B (div. by 4 output) closed loop phase noise at 1.0GHz
(FSTEP=200kHz; FPFD=800kHz; ICP=1.5mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 11. PFD frequency spurs (direct output; FPFD=200kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 12. PFD frequency spurs (div. by 2 output; FPFD=400kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 13. PFD frequency spurs (div. by 4 output; FPFD=800kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 14. Settling time (final frequency=1.8 GHz; FPFD=400kHz; ICP=2mA . . . . . . . . . . . . . . . . . . . 16
Figure 15. Reference frequency input buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 16. VCO divider diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 17. PFD diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 18. Loop filter connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 19. VCO sub-bands frequency characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 20. Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 21. START and STOP conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 22. Byte format and acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 23. Data and clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 24. Start and stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 25. Ack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 26. SPI input and output bit order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 27. SPI timing specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 28. Differential/single-ended output network (MATCH_LC_LUMP_4G_DIFF.dsn) . . . . . . . . . 38
Figure 29. LC lumped balun and matching network (MATCH_LC_LUMP_4G.dsn) . . . . . . . . . . . . . . 39
Figure 30. Evaluation board (EVB4G) matching network (MATCH_EVB4G.dsn) . . . . . . . . . . . . . . . . 40
Figure 31. Differential/single-ended output network (MATCH_LC_LUMP_2G_DIFF.dsn) . . . . . . . . . 40
Figure 32. LC lumped balun for divided by 2 output (MATCH_LC_LUMP_2G.dsn) . . . . . . . . . . . . . . 41
Figure 33. Evaluation board (EVB2G) matching network (MATCH_EVB2G.dsn) . . . . . . . . . . . . . . . . 41
Figure 34. LC lumped balun for divided by 4 output (MATCH_LC_LUMP_1G.dsn) . . . . . . . . . . . . . . 42
Figure 35. Evaluation board (EVB1G) matching network (MATCH_EVB1G.dsn) . . . . . . . . . . . . . . . . 43
Figure 36. Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 37. VFQFPN28 mechanical drawing (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5/48
Block diagram and pin configuration
STW81101
1
Block diagram and pin configuration
1.1
Block diagram
Figure 1.
Block diagram
REXT
VSS_PLL
VDD_PLL
REF_CLK
OUTBUFP
OUTBUFN
VDD_OUTBUF
VSS_OUTBUF
BUF
DIV2
BUF
DIV2
DIV4
VDD_DIV2
VSS_DIV2
VCO
BUF
DIV4
BUF
VDD_DIV4
VSS_DIV4
VDD_BUFVCO
VSS_BUFVCO
EXTVCO_INN
P
F
D
VCO
BUF
EXTVCO_INP
VSS_CP
VDD_CP
REF
Divider
UP
DN
Divider
C
P
ICP
LOCK_DET
EXT
VCO
BUF
DBUS_SEL
SCL / CLK
DBUS
VDD_VCOA
ADD0 / LOAD
ADD1
ADD2
VCO
BUFF
VSS_VCOA
VDD_VCOB
VCO
Calibrator
VDD_DBUS
VSS_DBUS
VSS_VCOB
VDD_ESD
VSS_ESD
EXT_PD
TEST2
TEST1
VCTRL
6/48
SDA / DATA
STW81101
Pin configuration
VDD_DBUS
EXT_PD
SDA/DATA
SCL/CLK
ADD0/LOAD
ADD1
Pin connection (top view)
ADD2
Figure 2.
VDD_VCOA
DBUS_SEL
VDD_DIV2
VDD_BUFVCO
VDD_OUTBUF
EXTVCO_INP
VFQFPN28
QFN 28
OUTBUFP
Table 1.
EXTVCO_INN
LOCK_DET
TEST2
TEST1
VDD_VCOB
VDD_CP
REF_CLK
REXT
VDD_DIV4
ICP
VDD_PLL
VCTRL
OUTBUFN
VDD_ESD
1.2
Block diagram and pin configuration
Pin description
Pin No
Name
Description
Observation
1
VDD_VCOA
VCOA power supply
2
VDD_DIV2
Divider by 2 power supply
3
VDD_OUTBUF
Output buffer power supply
4
OUTBUFP
LO buffer positive output
Open collector
5
OUTBUFN
LO buffer negative output
Open collector
6
VDD_DIV4
Divider by 4 power supply
7
VDD_VCOB
VCOB power supply
8
VDD_ESD
ESD positive rail power supply
9
VCTRL
VCO control voltage
7/48
Block diagram and pin configuration
Table 1.
Pin description (continued)
Pin No
8/48
STW81101
Name
Description
Observation
10
ICP
PLL charge pump output
11
REXT
External resistance connection for
PLL charge pump
12
VDD_CP
Power supply for charge pump
13
TEST1
Test input 1
For test purposes only;
must be connected to
GND
14
LOCK_DET
Lock detector
CMOS output
15
TEST2
Test input 2
For test purposes only;
must be connected to
GND
16
REF_CLK
Reference clock input
17
VDD_PLL
PLL digital power supply
18
EXTVCO_INN
External VCO negative input
For test purposes only;
must be connected to
GND
19
EXTVCO_INP
External VCO positive input
For test purposes only;
must be connected to
GND
20
VDD_BUFVCO
VCO buffer power supply
21
DBUS_SEL
Digital Bus Interface select
2C
CMOS input
bus power supply
22
VDD_DBUS
SPI and I
23
EXT_PD
Power down hardware
‘0’ device ON; ‘1’ device OFF
CMOS input
24
SDA/DATA
I2CBUS/SPI data line
CMOS Bidir Schmitt
triggered
25
SCL/CLK
I2CBUS/SPI clock line
CMOS input
26
ADD0/LOAD
I2CBUS address select pin/ SPI load
line
CMOS input
27
ADD1
I2CBUS address select pin
CMOS input
28
ADD2
I2CBUS address select pin
CMOS input
STW81101
Electrical specifications
2
Electrical specifications
2.1
Absolute maximum ratings
Table 2.
Absolute maximum ratings
Symbol
Parameter
Values
Unit
AVCC
Analog supply voltage
0 to 4.6
V
DVCC
Digital supply voltage
0 to 4.6
V
Tstg
Storage temperature
-65 to 150
°C
ESD
Electrical static discharge
- HBM(1)
- CDM-JEDEC standard
- MM
4
1.5
0.2
KV
1. The maximum rating of the ESD protection circuitry on pin 4 and pin 5 is 800V.
2.2
Operating conditions
Table 3.
Operating conditions (refer to Figure 36: Application diagram)
Symbol
Parameter
Test conditions
Min
Typ
Max
Unit
AVDD
Analog supply voltage
3.0
3.3
3.6
V
DVDD
Digital supply voltage
3.0
3.3
3.6
V
IVDD1
VDD1 current consumption
100
mA
IVDD2
VDD2 current consumption
15
mA
Tamb
Operating ambient
temperature
85
°C
Tj
Maximum junction
temperature
125
°C
Rth j-amb
Junction to ambient package
thermal resistance
-40
Multilayer JEDEC board
2.3
Digital logic levels
Table 4.
Digital logic levels
Symbol
Parameter
Vil
Low level input voltage
Vih
High level input voltage
Vhyst
Schmitt trigger hysteresis
Vol
Low level output voltage
Voh
High level output voltage
Test conditions
35
Min
Typ
°C/W
Max
Unit
0.2*Vdd
V
0.8*Vdd
V
0.8
V
0.4
0.85*Vdd
V
V
9/48
Electrical specifications
2.4
STW81101
Electrical specifications
All the electrical specifications are intended at 3.3V supply voltage.
Table 5.
Electrical specifications
Symbol
Parameter
Test conditions
Min
Typ
Max
Unit
Output frequency range
FOUTA
FOUTB
Output frequency range with
VCOA
Output frequency range with
VCOB
Direct output
3300
3900
MHz
Divider by 2
1650
1950
MHz
Divider by 4
825
975
MHz
Direct output
3800
4400
MHz
Divider by 2
1900
2200
MHz
Divider by 4
950
1100
MHz
Prescaler 16/17
256
65551
Prescaler 19/20
361
77836
10
200
MHz
1.5
Vpeak
VCO dividers
N
VCO divider ratio
Reference clock and phase frequency detector
Fref
Reference input frequency
Reference input sensitivity
R
FPFD
FSTEP
(1)
0.35
Reference divider ratio
1
2
1023
PFD input frequency
Frequency
16
MHz
Prescaler 16/17
FOUT/
65551
FOUT/
256
Hz
Prescaler 19/20
FOUT/
77836
FOUT/
361
Hz
5
mA
Vdd-0.3
V
step(2)
Charge pump
ICP
VOCP
ICP sink/source(3)
3bit programmable
Output voltage compliance
range
Spurious(4)
0.4
Direct output (FPFD = 200kHz)
-75
dBc
Divider by 2 (FPFD = 400kHz)
-84
dBc
Divider by 4 (FPFD = 800kHz)
-92
dBc
VCOs
Lower frequency range
KVCOA
KVCOB
10/48
VCOA
VCOB
sensitivity(5)
sensitivity(5)
40
65
80
MHz/V
Intermediate frequency range
60
80
100
MHz/V
Higher frequency range
70
95
125
MHz/V
Lower frequency range
35
60
80
MHz/V
Intermediate frequency range
55
70
100
MHz/V
Higher frequency range
60
80
120
MHz/V
VCO A
pushing(5)
6
10
MHz/V
VCO B
pushing(5)
11
16
MHz/V
STW81101
Table 5.
Electrical specifications
Electrical specifications (continued)
Symbol
VCTRL
Parameter
Test conditions
VCO control voltage(5)
LO harmonic spurious
Min
Typ
0.4
(5)
IVCOA
VCOA current consumption
IVCOB
VCOB current consumption
Max
Unit
3
V
-20
dBc
FVCO=3.6GHz; amplitude [11]
27
mA
FVCO=3.6GHz; amplitude [00]
15
mA
FVCO=4.1GHz; amplitude [11]
24
mA
FVCO=4.1GHz; amplitude [00]
13
mA
IVCOBUF
VCO buffer consumption
15
mA
IDIV2
Divider by 2 consumption
17
mA
IDIV4
Divider by 4 consumption
13
mA
0
dBm
Matched to 50 ohms
15
dB
DIV4 buff
27
mA
DIV2 buff
23
mA
Direct output
39
mA
LO output buffer
PLO
RL
IOUTBUF
Output level
Return
loss(5)
Current consumption
External VCO (for test purposes only)
Frequency range
3.3
Input level
Current consumption
0
4.4
GHz
+6
dBm
VCO internal buffer
15
mA
PLL miscellaneous
IPLL
Current consumption
Input buffer, prescaler, digital
dividers, misc.
12
mA
tlock
Lock up time (5),(6)
25 kHz PLL bandwidth; within
1 ppm of frequency error
150
µs
1. In order to achieve best phase noise performance 1V peak level is suggested.
2. The frequency step is related to the PFD input frequency as follows:
- Fstep = FPFD for direct output
- Fstep = FPFD/2 for divided by 2 output
- Fstep = FPFD/4 for divided by 4 output
3. See the relationship between ICP and REXT in Section 5.7: Charge pump.
4. The level of the spurs may change depending on PFD frequency, charge pump current, selected channel and PLL loop
BW.
5. Guaranteed by design and characterization.
6. Frequency jump from 1950 to 1800 MHz; it includes the time required by the VCO calibration procedure (7 FPFD cycles with
FPFD=400kHz).
11/48
Electrical specifications
STW81101
2.5
Phase noise specification
Table 6.
Phase noise specification
Parameter
Test conditions
Min
Typ
Max
Unit
Phase noise performance(1)
Inband phase noise floor – closed loop(2)
Normalized inband phase noise
floor
ICP=4mA, PLL BW = 50kHz;
including reference clock
contribution
-222
dBc/Hz
-222+20log(N)+10log(FPFD)
dBc/Hz
-228+20log(N)+10log(FPFD)
dBc/Hz
-234+20log(N)+10log(FPFD)
dBc/Hz
-36
dBc
1.3
° rms
-43
dBc
0.55
° rms
-51
dBc
0.23
° rms
Phase noise @ 1 kHz
-56
dBc/Hz
Phase noise @ 10 kHz
-83
dBc/Hz
Phase noise @ 100 kHz
-106
dBc/Hz
Phase noise @ 1 MHz
-129
dBc/Hz
Phase Noise @ 10 MHz
-149
dBc/Hz
-159
dBc/Hz
Phase noise @ 1 kHz
-55
dBc/Hz
Phase noise @ 10 kHz
-83
dBc/Hz
Phase noise @ 100 kHz
-106
dBc/Hz
Inband phase noise floor
direct output
Inband phase noise floor
divider by 2
ICP=4mA, PLL BW = 50kHz;
including reference clock
contribution
Inband phase noise floor
divider by 4
PLL integrated phase noise – direct output
Integrated phase noise
100Hz to 40MHz
FOUT = 4 GHz,
FPFD = 200kHz, FSTEP =200 kHz,
PLL BW = 15kHz, ICP=4mA
PLL integrated phase noise – divider by 2
Integrated phase noise
100Hz to 40MHz
FOUT = 2 GHz,
FPFD = 400kHz, FSTEP =200 kHz,
PLL BW = 25kHz, ICP=3mA
PLL integrated phase noise – divider by 4
Integrated phase noise
100Hz to 40MHz
FOUT = 1 GHz,
FPFD = 800kHz, FSTEP =200 kHz,
PLL BW = 25kHz, ICP=1.5mA
VCO A direct (3300MHz-3900MHz) – open loop(3)
Phase Noise @ 40 MHz
(3)
VCO B direct (3800MHz-4400MHz) – open loop
Phase noise @ 1 MHz
-128
dBc/Hz
Phase noise @ 10 MHz
-148
dBc/Hz
Phase noise @ 40 MHz
-158
dBc/Hz
12/48
STW81101
Table 6.
Electrical specifications
Phase noise specification (continued)
Parameter
Test conditions
Min
Typ
Max
Unit
VCO A with divider by 2 (1650MHz-1950MHz) – open loop(3)
Phase noise @ 1 kHz
-62
dBc/Hz
Phase noise @ 10 kHz
-89
dBc/Hz
Phase noise @ 100 kHz
-112
dBc/Hz
Phase noise @ 1 MHz
-135
dBc/Hz
Phase noise @ 10 MHz
-151.5
dBc/Hz
-155
dBc/Hz
Phase noise floor @ 40 MHz
VCO B with divider by 2 (1900MHz-2200MHz) – open loop
(3)
Phase noise @ 1 kHz
-61
dBc/Hz
Phase noise @ 10 kHz
-89
dBc/Hz
Phase noise @ 100 kHz
-112
dBc/Hz
Phase noise @ 1 MHz
-134
dBc/Hz
Phase noise @ 10 MHz
-151.5
dBc/Hz
-155
dBc/Hz
-68
dBc/Hz
Phase noise floor @ 40 MHz
VCO A with divider by 4 (825MHz-975MHz) – open loop(3)
Phase noise @ 1 kHz
Phase noise @ 10 kHz
-95
dBc/Hz
Phase noise @ 100 kHz
-118
dBc/Hz
Phase noise @ 1 MHz
-141
dBc/Hz
Phase noise @ 10 MHz
-154
dBc/Hz
-155
dBc/Hz
Phase noise @ 1 kHz
-67
dBc/Hz
Phase noise @ 10 kHz
-95
dBc/Hz
Phase noise @ 100 kHz
-118
dBc/Hz
Phase noise @ 1 MHz
-140
dBc/Hz
Phase noise @ 10 MHz
-154
dBc/Hz
Phase noise floor @ 40 MHz
-155
dBc/Hz
Phase noise floor @ 40 MHz
(3)
VCO B with divider by 4 (950MHz-1100MHz) – open loop
1. Phase noise SSB.
VCO amplitude setting to value [11].
All the closed-loop performances are specified using a reference clock signal at 76.8 MHz with phase noise of
-135dBc/Hz @1kHz offset, -145dBc/Hz @10kHz offset and -149.5dBc/Hz of noise floor.
2. Normalized PN = Measured PN – 20log(N) – 10log(FPFD) where N is the VCO divider ratio (N=B*P+A) and FPFD is the
comparison frequency at the PFD input
3. Typical Phase Noise at centre band frequency
An evaluation kit is available upon request, including a powerful simulation tool
(STWPLLSim) that allows a very accurate estimation of the device’s phase noise according
to the desired project parameters (VCO frequency, selected output stage, reference clock,
frequency step, and so on); refer to Chapter 8: Application information for more details.
13/48
Typical performance characteristics
3
STW81101
Typical performance characteristics
Phase noise is measured with the Agilent E5052A Signal Source Analyzer. All closed-loop
measurements are done with FSTEP=200 kHz, with the FPFD and charge pump current
properly set. The loop filter configuration is depicted in Figure 36: Application diagram, and
the reference clock signal is at 76.8 MHz with phase noise of -135dBc/Hz @1kHz offset, 145dBc/Hz @10kHz offset and -149.5dBc/Hz of noise floor.
Figure 3.
VCO A (direct output) open loop
phase noise
Figure 4.
VCO B (direct output) open loop
phase noise
Figure 5.
VCO A (direct output) closed loop
phase noise at 3.6GHz
(FSTEP=200kHz; FPFD=200kHz;
ICP=3.5mA)
Figure 6.
VCO B (direct output) closed loop
phase noise at 4.0GHz
(FSTEP=200kHz; FPFD=200kHz;
ICP=4mA)
1.3° rms
1.3° rms
14/48
STW81101
Figure 7.
Typical performance characteristics
VCO A (div. by 2 output) closed
loop phase noise at 1.8GHz
(FSTEP=200kHz; FPFD=400kHz;
ICP=2mA)
0.53° rms
Figure 9.
VCO A (div. by 4 output) closed
loop phase noise at 900MHz
(FSTEP=200kHz; FPFD=800kHz;
ICP=1.5mA)
0.24° rms
Figure 8.
VCO B (div. by 2 output) closed
loop phase noise at 2.0GHz
(FSTEP=200kHz; FPFD=400kHz;
ICP=3mA)
0.55° rms
Figure 10. VCO B (div. by 4 output) closed
loop phase noise at 1.0GHz
(FSTEP=200kHz; FPFD=800kHz;
ICP=1.5mA
0.23° rms
15/48
Typical performance characteristics
Figure 11.
PFD frequency spurs (direct
output; FPFD=200kHz)
-75 dBc
@200KHz
Figure 13. PFD frequency spurs (div. by 4
output; FPFD=800kHz)
< -92 dBc
@800KHz
16/48
STW81101
Figure 12. PFD frequency spurs (div. by 2
output; FPFD=400kHz
-84 dBc
@400KHz
Figure 14. Settling time (final frequency=1.8
GHz; FPFD=400kHz; ICP=2mA
STW81101
4
General description
General description
Figure 1: Block diagram shows the separate blocks that, when integrated, form an Integer-N
PLL frequency synthesizer.
The STW81101 consists of two internal low-noise VCOs with buffer blocks, a divider by 2, a
divider by 4, a low-noise PFD (phase frequency detector), a precise charge pump, a 10-bit
programmable reference divider, two programmable counters and a programmable dualmodulus prescaler. The 5-bit A-counter and 12-bit B-counter, in conjunction with the dual
modulus prescaler P/P+1 (16/17 or 19/20), implement an N integer divider, where N = B*P
+A. The division ratio of both reference and VCO dividers is controlled through the selected
digital interface (I2C bus or SPI).
The selection of the digital interface type is done by the proper hardware connection of the
pin DBUS_SEL (0 V for I2C bus, 3.3 V for SPI).
All devices operate with a power supply of 3.3 V and can be powered down when not in use.
17/48
Circuit description
STW81101
5
Circuit description
5.1
Reference input stage
The reference input stage is shown in Figure 15. The resistor network feeds a DC bias at the
Fref input while the inverter used as the frequency reference buffer is AC coupled.
Figure 15. Reference frequency input buffer
VDD
F
ref
INV
BUF
Power Down
5.2
Reference divider
The 10-bit programmable reference counter allows division of the input reference frequency
to produce the input clock to the PFD. The division ratio is programmed through the digital
interface.
5.3
Prescaler
The dual-modulus prescaler P/P+1 takes the CML clock from the VCO buffer and divides it
down to a manageable frequency for the CMOS A and B counters. The modulus P is
programmable and can be set to 16 or 19. The prescaler is based on a synchronous 4/5
core whose division ratio depends on the state of the modulus input.
18/48
STW81101
5.4
Circuit description
A and B counters
The 5-bit A-counter and 12-bit B-counter, in conjunction with the selected dual modulus
(16/17 or 19/20) prescaler, make it possible to generate output frequencies which are
spaced only by the reference frequency divided by the reference division ratio. Thus, the
division ratio and the VCO output frequency are given by these formulas:
N = B× P+A
( B × P + A ) × F ref
F VCO = -----------------------------------------------R
where:
FVCO: output frequency of VCO
P: modulus of dual modulus prescaler (16 or 19 selected through the digital interface)
B: division ratio of the main counter
A: division ratio of the swallow counter
Fref: input reference frequency
R: division ratio of reference counter
N: division ratio of PLL
For a correct working of the VCO divider, B must be strictly higher than A. A can take any
value ranging from 0 to 31. The range of N can vary from 256 to 65551 (P=16) or from 361
to 77836 (P=19).
Figure 16. VCO divider diagram
VCOBUFPrescaler
16/17 or 19/20
VCOBUF+
modulus
5-bit
A-counter
To PFD
12-bit
B-counter
PC00403
19/48
Circuit description
5.5
STW81101
Phase frequency detector (PFD)
The PFD takes inputs from the reference and the VCO dividers and produces an output
proportional to the phase error. The PFD includes a delay gate that controls the width of the
anti-backlash pulse. This pulse ensures that there is no dead zone in the PFD transfer
function.
Figure 17 is a simplified schematic of the PFD.
Figure 17. PFD diagram
VDD
Up
D FF
Fref
R
Delay
R
Fref
VDD
D FF
Down
ABL
5.6
Lock detect
This signal indicates that the difference between rising edges of both UP and DOWN PFD
signals is found to be shorter than the fixed delay (roughly 5 ns). The Lock Detect signal is
high when the PLL is locked and low when the PLL is unlocked. Lock Detect consumes
current only during PLL transients.
5.7
Charge pump
This block drives two matched current sources, IUP and IDOWN, which are controlled
respectively by UP and DOWN PFD outputs. The nominal value of the output current is
controlled by an external resistor (to be connected to the REXT input pin) and a 3-bit word
that allows selection among 8 different values.
The minimum value of the output current is: IMIN = 2*VBG/REXT (VBG~1.17 V)
20/48
STW81101
Circuit description
Table 7.
Note:
Current value vs. selection
CPSEL2
CPSEL1
CPSEL0
Current
Value for REXT=4.7 KΩ
0
0
0
IMIN
0.5 mA
0
0
1
2*IMIN
1.0 mA
0
1
0
3*IMIN
1.5 mA
0
1
1
4*IMIN
2.0 mA
1
0
0
5*IMIN
2.5 mA
1
0
1
6*IMIN
3.0 mA
1
1
0
7*IMIN
3.5 mA
1
1
1
8*IMIN
4.0 mA
The current is output on pin ICP. During VCO auto calibration, the ICP and VCTRL pins are
forced to VDD/2
Figure 18. Loop filter connection
VDD
VCTRL
BUF
R3
C3
Charge
Pump
ICP
R1
C2
C1
BUF
Cal bit
21/48
Circuit description
5.8
Voltage controlled oscillators
5.8.1
VCO selection
STW81101
The STW81101 integrates two low-noise VCOs to cover a wide band from:
●
3300MHz to 4400MHz (direct output)
●
1650MHz to 2200MHz (selecting divider by 2)
●
825MHz to 1100MHz (selecting divider by 4)
VCO A frequency range is 3300 MHz to 3900MHz.
VCO B frequency range 3800 MHz to 4400MHz.
5.8.2
VCO frequency calibration
Both VCOs can operate on 32 frequency ranges that are selected by adding or subtracting
capacitors from the resonator. These frequency ranges are intended to cover the wide band
of operation and compensate for process variation on the VCO center frequency.
The range is automatically selected when the SERCAL bit rises from 0 to 1. The charge
pump is inhibited, and the ICP and VCTRL pins are at VDD/2 volts. The ranges are then
tested with this VCO input voltage to select the one nearest to the desired output frequency
(FOUT = N*Fref/R).
After this selection, the signal ENDCALB (which means End of Calibration) falls to 0, and the
charge pump is once again enabled. Additionally, the SERCAL bit should be reset to 0 before
the next channel step. To enable a fast settle, the PLL needs only to perform fine adjustment
around VDD/2 on the loop filter to reach FOUT.
Figure 19. VCO sub-bands frequency characteristics
22/48
STW81101
Circuit description
The SERCAL bit should be set to 1 at each division ratio change. Note that to reset the auto
calibrator state machine after a power-up, and before the first calibration in any case, the
INITCAL bit should be set to 1 and back to 0 (the Power On Reset circuitry does this
automatically). The calibration requires approximately 7 periods of the PFD frequency.
The maximum allowed FPFD to perform the calibration process is 1 MHz. When using a
higher FPFD , follow the steps below:
5.8.3
1.
Calibrate the VCO at the desired frequency with an FPFD less than 1 MHz.
2.
Set the A, B and R dividers ratio for the desired FPFD .
VCO voltage amplitude control
The voltage swing of the VCOs can be adjusted over four levels by means of two dedicated
programming bits (PLL_A1 and PLL_A0). This setting trades current consumption with
phase noise performances of the VCO. Higher amplitudes provide best phase noise,
whereas lower amplitudes save power.
Table 8 gives the voltage swing level expected on the resonator nodes, the current
consumption, and the phase noise @1MHz.
Table 8.
VCO A performances versus amplitude setting (Freq=3.6GHz)
Differential
Current
voltage swing (Vp)
consumption (mA)
00
1.1
15
-124
01
1.3
16
-125
10
1.9
24
-128.5
11
2.1
27
-129
PLL_A[1:0]
Table 9.
PN @1MHz (dBc/Hz)
VCO B performances vs. amplitude setting (Freq=4.1GHz)
Differential
Current
voltage swing (Vp)
consumption (mA)
00
1.1
13
-123
01
1.3
15
-125
10
1.9
22
-127.5
11
2.1
24
-128
PLL_A[1:0]
PN @1MHz (dBc/Hz)
23/48
I2C bus interface
6
STW81101
I2C bus interface
The I2C bus interface is selected by hardware connection of the pin #21 (DBUS_SEL) to 0 V.
Data is transmitted from microprocessor to the STW81101 through the 2-wire (SDA and
SCL) I2C bus interface. The STW81101 is always a slave device.
The I2C bus protocol defines any device that sends data on the bus as a transmitter, and
any device that reads the data as a receiver. The device controlling the data transfer is the
master, and the others are slaves. The master always initiates the transfer and provides the
serial clock for synchronization.
6.1
General features
6.1.1
Data validity
Data changes on the SDA line must only occur when the SCL is low. SDA transitions while
the clock is high are used to identify a START or STOP condition.
Figure 20. Data validity
SDA
SCL
Data line
Stable data
Valid
Change
data
allowed
PC00406
6.1.2
START and STOP conditions
START condition
A START condition is identified by a transition of the data bus SDA from high to low while the
clock signal SCL is stable in the high state. A START condition must precede any data
transfer command.
STOP condition
A STOP condition is identified by a transition of the data bus SDA from low to high while the
clock signal SCL is stable in the high state. A STOP condition terminates communications
between the STW81101 and the bus master.
24/48
I2C bus interface
STW81101
Figure 21. START and STOP conditions
SCL
SDA
START
6.1.3
STOP
Byte format and acknowledge
Every byte put on the SDA line must be 8 bits long, and be followed by an acknowledge bit
to indicate a successful data transfer. Data is transferred with the most significant bit (MSB)
first. The transmitter releases the SDA line after sending 8 bits of data. During the 9th clock
pulse, the receiver pulls the SDA line low to acknowledge the receipt of 8 bits of data.
Figure 22. Byte format and acknowledge
SCL
1
2
3
7
8
9
//
SDA
MSB
//
START
6.1.4
Acknowledgement
from receiver
Device addressing
The master must first initiate with a START condition to communicate with the STW81101,
and then send 8 bits (MSB first) on the SDA line which correspond to the device select
address and the read or write mode.
The first 7 MSBs are the device address identifier, which corresponds to the I2C bus
definition. For the STW81101, the address is set at “1100A2A1A0”, 3 bits programmable.
The 8th bit (LSB) is the read or write (RW) operation bit, which is set to 1 in read mode and
to 0 in write mode.
Following a START condition, the STW81103 identifies the device address on the bus and, if
matched, acknowledges the identification on the SDA bus during the 9th clock pulse.
25/48
I2C bus interface
6.1.5
STW81101
Single-byte write mode
Following a START condition, the master sends a device select code with the RW bit set to
0. The STW81101 sends an acknowledge and waits for the 1-byte internal sub-address that
provides access to the internal registers.
After receiving the sub-address internal byte, the STW81101 again responds with an
acknowledge. A single-byte write to sub-address 00H changes the FUNCTIONAL_MODE
register, a single-byte write with sub-address 04H changes the CONTROL register, and so
on.
Table 10.
S
6.1.6
Single-byte write mode
0
1100A2A1A0
ack
sub-address byte
ack
DATA IN
ack
P
Multi-byte write mode
The multi-byte write mode can start from any internal address. The master sends the data
bytes, and each one is acknowledged. The master then terminates the transfer by
generating a STOP condition.
The sub-address decides the starting byte. For example, a multi-byte with sub-address 01H
and 2 DATA_IN bytes will change the B_COUNTER and A_COUNTER registers (01H,02H),
and a multi-byte with sub-address 00H and 6 DATA_IN bytes changes all the STW81101
registers.
Table 11.
S
6.1.7
Multi-byte write mode
1100A2A1A0
0
ack
sub-address byte
ack
DATA IN
ack
....
DATA IN ack
P
Current byte address read mode
In the current byte address read mode, following a START condition, the master sends the
device address with the RW bit set to 1. Note that no sub-address is needed since there is
only one read register. The STW81101 acknowledges this and outputs the data byte. The
master does not acknowledge the received byte, and terminates the transfer with a STOP
condition.
Table 12.
S
26/48
Current byte address read mode
1100 A2 A1 A0
1
ack
DATA OUT
No ack
P
I2C bus interface
STW81101
6.2
Timing specification
Figure 23. Data and clock
SDA
SCL
t
t
Table 13.
t
cs
cwl
ch
t
cwh
Data and clock timing specifications
Symbol
Parameter
Minimum time
Units
tcs
Data to clock setup time
2
ns
tch
Data to clock hold time
2
ns
tcwh
Clock pulse width high
10
ns
tcwl
Clock pulse width low
5
ns
Figure 24. Start and stop
SDA
SCL
t
start
t
stop
27/48
I2C bus interface
STW81101
Table 14.
Start and stop timing specifications
Symbol
Parameter
Minimum time
Units
tstart
Clock to data start time
2
ns
tstop
Data to clock down stop time
2
ns
Figure 25. Ack
SDA
8
9
SCL
t d1
Table 15.
28/48
t d2
Ack timing specifications
Symbol
Parameter
Minimum time
Units
td1
Ack begin delay
2
ns
td2
Ack end delay
2
ns
I2C bus interface
STW81101
6.3
I2C registers
STW81101 has 6 write-only registers and 1 read-only register.
6.3.1
Write-only registers
Table 16 gives a short description of the write-only registers.
Table 16.
Write-only registers
HEX code
DEC code
Description
0x00
0
FUNCTIONAL_MODE
0x01
1
B_COUNTER
0x02
2
A_COUNTER
0x03
3
REF_DIVIDER
0x04
4
CONTROL
0x05
5
CALIBRATION
FUNCTIONAL_MODE
MSB
LSB
b7
b6
b5
b4
b3
b2
b1
b0
PD6
PD5
PD4
PD3
PD2
PD1
PD0
B11
The FUNCTIONAL_MODE register selects different functional modes for the STW81101
synthesizer according to Table 17:
Table 17.
Functional modes of the FUNCTIONAL_MODE register
Decimal value
Description
0
Power down mode
1
Enable VCO A, output frequency divided by 2
2
Enable VCO B, output frequency divided by 2
3
Enable external VCO, output frequency divided by 2
4
Enable VCO A, output frequency divided by 4
5
Enable VCO B, output frequency divided by 4
6
Enable external VCO, output frequency divided by 4
7
Enable VCO A, direct output
8
Enable VCO B, direct output
9
Enable external VCO, direct output
29/48
I2C bus interface
STW81101
B_COUNTER
MSB
LSB
b7
b6
b5
b4
b3
b2
b1
b0
B10
B9
B8
B7
B6
B5
B4
B3
B[10:3]. Counter value (bit B11 in the previous register, bits B[2:0] in the next register)
A_COUNTER
MSB
LSB
b7
b6
b5
b4
b3
b2
b1
b0
B2
B1
B0
A4
A3
A2
A1
A0
Bits B[2:0] for B_COUNTER, A_COUNTER value.
REF_DIVIDER
MSB
LSB
b7
b6
b5
b4
b3
b2
b1
b0
R9
R8
R7
R6
R5
R4
R3
R2
Reference clock divider ratio R[9:1] (bits R1, R0 in the next register).
CONTROL
MSB
LSB
b7
b6
b5
b4
b3
b2
b1
b0
R1
R0
PLL_A1
PLL_A0
CPSEL2
CPSEL1
CPSEL0
PSC_SEL
The CONTROL register is used to set the charge pump current, the VCO output voltage
amplitude and the prescaler modulus:
PLL_A[1:0]:
VCO amplitude
CPSEL[2:0]:
charge pump output current
PSC_SEL:
prescaler modulus select ('0' for P=16, '1' for P=19)
The LO output frequency is programmed by setting the proper values for A, B and R
according to the following formula:
F
OUT
= D
R
F
REF – CLK
× ( B × P + A ) × ----------------------------------R
where DR equals
30/48
{
1
for direct output
0.5
for output divided by 2
0.25 for output divided by 4
I2C bus interface
STW81101
and P is the selected prescaler modulus.
CALIBRATION
MSB
LSB
b7
b6
b5
b4
b3
b2
b1
b0
INITCAL
SERCAL
SELEXTCAL
CAL4
CAL3
CAL2
CAL1
CAL0
This register controls the VCO calibrator using the following values:
6.3.2
INITCAL:
resets the auto-calibrator state machine (writing to 1 and back to 0)
SERCAL:
at 1, starts the VCO auto-calibration (should be reset to 0 at the end of calibration)
SELEXTCAL:
for test purposes only; must be set to 0
CAL[4:0]:
for test purposes only; must be set to 0
Read-only register
MSB
LSB
b7
b6
DEV_ID1
DEV_ID0
b5
b4
b3
b2
b1
b0
LOCK_DET INTCAL4 INTCAL3 INTCAL2 INTCAL1 INTCAL0
This register is automatically addressed in the 'current byte address read mode', using the
following values:
6.3.3
DEV_ID[1:0]:
device identifier bits; returns 00
LOCK_DET:
1 when PLL is locked
INTCAL[4:0]:
internal value of the VCO control word
Default configuration
At power on reset, the following configuration is automatically loaded:
–
–
–
–
–
–
–
FUNCTIONAL MODE = 1 (VCOA with divided by 2 output)
A COUNTER = 8
B COUNTER = 562
R DIVIDER = 192
PLL_A[1:0] = [10]
CP_SEL[2:0] = [111]
PSC_MOD_SEL set to "0" (modulus = 16)
This corresponds to an output frequency of 1800MHz and a PFD frequency of 400kHz using
a 76.8MHz reference clock (calibration algorithm of the VCO is automatically started).
31/48
I2C bus interface
6.4
STW81101
VCO calibration procedure
Calibration of the VCO center frequency is activated when the SERCAL bit (CALIBRATION
register bit[6]) transitions from 0 to 1.
To program the device properly while ensuring VCO calibration, perform the following steps
before every channel change:
32/48
1.
Program all the registers using a multi-byte write sequence with the desired settings
(functional mode, B and A counters, R counter, VCO amplitude, charge pump,
prescaler modulus), and all the bits of the CALIBRATION register (05H) set to 0.
2.
Program the CALIBRATION register using a single-byte write sequence (subaddress
05H) with the SERCAL bit set to 1.
3.
The maximum allowed PFD frequency (FPFD) during calibration is 1 MHz; if you want a
FPFD higher than 1 MHz, perform the following additional steps:
a)
Perform all the steps of the calibration procedure, making sure to program the
desired VCO frequency with proper settings for the R, B and A counters so that
FPFD is ≤1 MHz.
b)
Program the device with the desired VCO and PFD frequency settings according
to step 1) above.
STW81101
SPI digital interface
7
SPI digital interface
7.1
General features
The SPI digital interface is selected by hardware connection of the pin #21 (DBUS_SEL) to
3.3V.
The STW81101 IC is programmed by means of a high-speed serial-to-parallel interface with
write option only. The 3-wire bus can be clocked at a frequency as high as 100MHz to allow
fast programming of the registers containing the data for RF IC configuration.
The chip is programmed through serial words with a full length of 26 bits. The first 2 MSBs
represent the address of the registers, and the 24 LSBs represent the value of the registers.
Each data bit is stored in the internal shift register on the rising edge of the CLOCK signal.
The outputs of the selected register are sent to the device on the rising edge of the LOAD
signal.
Figure 26. SPI input and output bit order
Last bit sent
(LSB)0
23
2
1
24
25(MSB)
DATA
A1
LOAD
Address
decoder
D23 (MSB)
LOAD #4
D0 (LSB)
Reg.#0
Reg.#1
Reg.#4
33/48
SPI digital interface
STW81101
Table 18.
SPI data structure (MSB is sent first)
MSB
LSB
Address
Data for register (24 bits)
A1 A0 D23 D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
Table 19.
Address decoder and outputs
Address
7.2
Outputs
A1
A0
Data bits
D23-D0
No
Name
Function
0
0
24
0
ST1
Reference divider, VCO amplitude, VCO calibration,
charge pump current, prescaler modulus
0
1
24
1
ST2
Functional modes, VCO dividers
1
0
24
2
ST3
Reserved
1
1
24
3
ST4
Reserved
Timing specification
Figure 27. SPI timing specification
tsetup thold
Data
MSB
MSB-1
LSB
tclk_loadf
Clock
tdk
Load
Table 20.
Parameter
34/48
t
clk_loadr
tload
SPI timing specification
Description
Min.
Typ.
Max.
Unit
tsetup
Data to clock setup time
0.8
ns
thold
Data to clock hold time
0.2
ns
tclk
Clock cycle period
10
ns
tload
Load pulse width
3
ns
tclk_loadr
Clock to load rising edge
2
ns
tclk_loadf
Clock to load falling edge
0.5
ns
STW81101
7.3
SPI digital interface
Bit tables
Table 21.
Bits at 00h and ST1
Serial interface address = 00h
Register name = ST1
Bit
Name
Description
[23]
R9
[22]
R8
[21]
R7
[20]
R6
[19]
R5
[18]
R4
[17]
R3
[16]
R2
[15]
R1
[14]
R0
[13]
PLL_A1
[12]
PLL_A0
[11]
CPSEL2
[10]
CPSEL1
[9]
CPSEL0
[8]
PSC_SEL
[7]
INITCAL
For test purposes only; must be set to 0
[6]
SERCAL
Enable VCO calibration (see Section 7.4)
[5]
SELEXTCAL
[4]
CAL4
[3]
CAL3
[2]
CAL2
[1]
CAL1
[0]
CAL0
Reference clock divider ratio
VCO amplitude control
Charge pump output current control
Prescaler modulus select (0 for P=16, 1 for P=19)
For test purposes only; must be set to 0
For test purposes only; must be set to 0
35/48
SPI digital interface
Table 22.
STW81101
Bits at 01h and ST2
Serial interface address = 01h
Bit
Name
[23]
PD6
[22]
PD5
[21]
PD4
[20]
PD3
[19]
PD2
[18]
PD1
[17]
PD0
[16]
B11
[15]
B10
[14]
B9
[13]
B8
[12]
B7
[11]
B6
[10]
B5
[9]
B4
[8]
B3
[7]
B2
[6]
B1
[5]
B0
[4]
A4
[3]
A3
[2]
A2
[1]
A1
[0]
A0
Register name = ST2
Description
DEVICE FUNCTIONAL MODES
0. Power down
1. Enable VCO A, output frequency divided by 2
2. Enable VCO B, output frequency divided by 2
3. Enable external VCO, output frequency divided by 2
4. Enable VCO A, output frequency divided by 4
5. Enable VCO B, output frequency divided by 4
6. Enable external VCO, output frequency divided by 4
7. Enable VCO A, direct output
8. Enable VCO B, direct output
9. Enable external VCO, direct output
B Counter Bits
A Counter Bits
The LO output frequency is programmed by setting the proper values for A, B and R
according to the following formula:
F REF – CLK
F OUT = D R × ( B × P + A ) × ---------------------------R
where DR equals
{
1
for direct output
0.5
for output divided by 2
0.25 for output divided by 4
and P is the selected prescaler modulus.
36/48
STW81101
7.3.1
SPI digital interface
Default configuration
At power on reset, the following configuration is automatically loaded:
–
FUNCTIONAL MODE = 1 (VCOA with divided by 2 output)
–
A COUNTER = 8
–
B COUNTER = 562
–
R DIVIDER = 192
–
PLL_A[1:0] = [10]
–
CP_SEL[2:0] = [111]
–
PSC_MOD_SEL set to 0 (Modulus = 16)
This corresponds to an output frequency of 1800MHz and a PFD frequency of 400kHz using
a 76.8MHz reference clock (calibration algorithm of the VCO is automatically started).
7.4
VCO calibration procedure
Calibration of the VCO center frequency is activated by a transition of the SERCAL bit (ST1
register bit[6]) from 0 to 1.
To program the device properly while ensuring VCO calibration, perform the following steps
before every channel change:
1.
Program the ST1 register with the desired settings (R counter, VCO amplitude, charge
pump, prescaler modulus) and with the SERCAL bit set to 0.
2.
Program the ST2 register with the desired settings (functional mode, B and A
counters).
3.
Program the ST1 register with the desired settings (R counter, VCO amplitude, charge
pump, prescaler modulus) and with the SERCAL bit set to 1.
4.
The maximum allowed PFD frequency (FPFD) during calibration is 1 MHz; if you want a
FPFD higher than 1MHz, perform the following additional steps:
a)
Perform all the steps of the calibration procedure, making sure to program the
desired VCO frequency with proper settings of the R, B and A counters so that
FPFD is ≤1MHz.
b)
Program the device with the desired VCO and PFD frequency settings using only
steps 1) and 2) above.
37/48
Application information
8
STW81101
Application information
The STW81101 features three different alternately selectable bands: direct output (3.3 to
4.4GHz), divided by 2 (1.65 to 2.2GHz) and divided by 4 (850 to 1100MHz). To achieve a
suitable power level, a good matching network is necessary to adapt the output stage to a
50Ω load. Moreover, since most commercial RF components have single-ended input and
output terminations, a differential to single-ended conversion may be required.
The different matching configurations shown below for each of the three bands are
suggested as a guideline when designing your own application board.
Inside the evaluation kit is the ADS design for each matching configuration suggested in this
chapter. The name of the corresponding ADS design is given in each figure.
The ADS designs provide only a first indication of the output stage matching, and should be
reworked according to the choices of layout, board substrate, components and so on.
The ADS designs of the evaluation boards are provided with a complete electromagnetic
modelling (board, components, and so on).
8.1
Direct output
If you do not need a differential to single conversion, you can match the output buffer of the
STW81101 in the simple way shown in Figure 28. This illustrates a differential to singleended output network in the 3.3 - 4.4GHz range (MATCH_LC_LUMP_4G_DIFF.dsn).
Figure 28. Differential/single-ended output network
(MATCH_LC_LUMP_4G_DIFF.dsn)
Vcc
100 ohm
5.5nH
50 ohm
10pF
RF
OUTP
10pF
RF
OUTN
100 ohm
5.5nH
50 ohm
Vcc
Since most discrete components for microwave applications are single-ended, you can
easily use one of the two outputs and terminate the other one to 50Ω with a 3dB power loss.
38/48
STW81101
Application information
Alternatively, you can combine the two outputs in other ways. A first topology for the direct
output (3.3GHz to 4.4GHz) is suggested in Figure 29. It basically consists of a simple LC
balun and a matching network to adapt the output to a 50Ω load. The two LC networks shift
output signal phase of -90° and +90°, thus combining the two outputs. This topology,
designed for a center frequency of 4GHz, is intrinsically narrow-band since the LC balun is
tuned at a single frequency. If the application requires a different sub-band, the LC combiner
can be easily tuned to the frequency of interest.
Figure 29. LC lumped balun and matching network (MATCH_LC_LUMP_4G.dsn)
Vcc
50 ohm
1.9nH
0.8pF
1.9nH
RF
OUTP
0.8pF
1.9nH
2.5pF
50 ohm
RF
OUTN
0.8pF
50 ohm
1.9nH
0.8pF
Vcc
The 1.9nH shunt inductor works as a DC feed for one of the open collector terminals as well
as a matching element along with the other components. The 1.9nH series inductors are
used to resonate the parasitic capacitance of the chip.
For optimum output matching, it is recommended to use 0402 Murata or AVX capacitors and
0403 or 0604 HQ Coilcraft inductors. It is also advisable to use short interconnection paths
to minimize losses and undesired impedance shift.
An alternative topology that permits a more broadband matching as well as balanced to
unbalanced conversion, is shown in Figure 30.
39/48
Application information
STW81101
Figure 30. Evaluation board (EVB4G) matching network (MATCH_EVB4G.dsn)
Vcc
50 ohm
5.5nH
12pF
12pF
RF
4.7pF
OUTP
2:1
12pF
1pF
RF
1pF
1.2pF
1.2pF
50 ohm
OUTN
50 ohm
5.5nH
Vcc
For differential to single conversion, the 50 to 100Ω Johanson balun is recommended
(3700BL15B100).
8.2
Divided by 2 output
If your application does not require a balanced to unbalanced conversion, the output
matching reduces to the simple circuit shown below (Figure 31), which illustrates a
differential to single-ended output network in the 1.65 - 2.2GHz range
(MATCH_LC_LUMP_2G_DIFF.dsn). You can easily use this solution to provide one singleended output that terminates the other output at 50Ω with a 3dB power loss.
Figure 31. Differential/single-ended output network
(MATCH_LC_LUMP_2G_DIFF.dsn)
Vcc
50 ohm
22nH
50 ohm
10pF
RF
OUTP
10pF
RF
OUTN
50 ohm
22nH
Vcc
40/48
50 ohm
STW81101
Application information
A first solution to combine the differential outputs is the lumped LC type balun tuned in the
2GHz band (Figure 32).
Figure 32. LC lumped balun for divided by 2 output (MATCH_LC_LUMP_2G.dsn)
Vcc
50 ohm
2.7nH
2pF
2.7nH
RF
OUTP
2pF
3pF
2.7nH
50 ohm
3nH
RF
OUTN
2pF
50 ohm
2.7nH
2pF
Vcc
The same recommendation for the SMD components also applies to the divided by 2 output.
Another topology suited to combining the two outputs for the divided by 2 frequencies is
represented in Figure 33.
Figure 33. Evaluation board (EVB2G) matching network (MATCH_EVB2G.dsn)
Vcc
50 ohm
5.5nH
22pF
22pF
RF
1.9nH
OUTP
2:1
22pF
RF
1.2pF
50 ohm
OUTN
50 ohm
5.5nH
Vcc
41/48
Application information
STW81101
For differential to single conversion, the 50 to 100Ω Johanson balun (1600BL15B100) is
recommended.
8.3
Divided by 4 output
The topology, components, values and considerations of Figure 31, also apply to the divided
by 4 output (MATCH_LC_LUMP_1G_DIFF.dsn).
As for the previous sections, a solution to combine the differential outputs is the lumped LC
type balun tuned in the 1GHz band (Figure 34).
Figure 34. LC lumped balun for divided by 4 output (MATCH_LC_LUMP_1G.dsn)
Vcc
25 ohm
5.5nH
4pF
5.5nH
RF
OUTP
4pF
5.5nH
6pF
14nH
50 ohm
RF
OUTN
4pF
25 ohm
5.5nH
4pF
Vcc
If you prefer to use an RF balun, you can adapt the topology depicted in Figure 33, and
change the balun and the matching components (Figure 35). The suggested balun for the
0.8 - 1.1GHz frequency range is the 1:1 Johanson 900BL15C050.
42/48
STW81101
Application information
Figure 35. Evaluation board (EVB1G) matching network (MATCH_EVB1G.dsn)
Vcc
25 ohm
18nH
8.2pF
22pF
RF
2.1nH
OUTP
1:1
8.2pF
0.5pF
RF
50 ohm
OUTN
25 ohm
18nH
Vcc
8.4
Evaluation kit
An evaluation kit can be delivered upon request, including the following:
●
Evaluation board
●
GUI (graphical user interface) to program the device
●
Measured S parameters of the RF output
●
ADS2005 schematics providing guidelines for application board design
●
STWPLLSim software for PLL loop filter design and noise simulation
Three different evaluation kits are available, each optimized for one of the following
frequency ranges:
●
1GHz
●
2GHz
●
4GHz
When ordering, please specify one of the following order codes:
Table 23.
Order code of the evaluation kit
Part number
Description
STW81101-EVB1G
1GHz frequency range - divider by 4 output optimized
STW81101-EVB2G
2GHz frequency range - divider by 2 output optimized
STW81101-EVB4G
4GHz frequency range - direct output optimized
The three evaluation kits differ only for the output stage network and can be adapted from
one frequency band variant to a different one replacing properly the matching components
and the balun.
43/48
Application diagram
9
STW81101
Application diagram
Figure 36. Application diagram
From/to microcontroller
VDD_VCOA
15p
SPI
VDD2
VDD_OUTBUF
RF Out
REXT
ICP
TEST1
REF_CLK
VDD _CP
VDD_DIV4
VCTR L
VDD_PLL
VDD_ESD
22p
10P
EXTVCO_INN
OUTBUFN
VDD_VCOB
VDD1
1n
STW81101
STW81103
OUTBUFP
VDD1
EXTVCO_INP
LOCK_DET
VDD1
22p
DBUS_SEL
VDD_BUFVCO
VDD_DIV2
1n
I2C
VDD_DBUS
SDA/DATA
10P
15p
SCL/CLK
22p
ADD1
1n
ADD2
VDD1
ADD0/LOAD
15p
100
EXT_PD
100
100
ref clk
1.8n
TEST2
51
10P
4.7K
VDD1
2.2K
270p
loop filter
Note:
44/48
8.2K
1n
22p
10µ
68p
2.7n
to microcontroller
1
See Chapter 8: Application information for further information on output matching topology.
2
EXT_PD, ADD2, ADD1 (and ADD0 when the I2C bus is selected) can be hard wired directly
on the board.
3
Loop filter values are for FSTEP = 200kHz.
STW81101
10
Package mechanical data
Package mechanical data
In order to meet environmental requirements, ST offers these devices in ECOPACK®
packages, which have a lead-free second level interconnect. The category of second level
interconnect is marked on the package and on the inner box label, in compliance with
JEDEC standard JESD97. The maximum ratings related to soldering conditions are also
marked on the inner box label. ECOPACK is an ST trademark.
ECOPACK specifications are available at: http://www.st.com.
Figure 37. VFQFPN28 mechanical drawing (Note 1)
7655832 A
Note:
1
VFQFPN stands for Thermally Enhanced Very thin Fine pitch Quad Flat Package No lead.
(Very thin: A=1.00 Max)
2
Details of the terminal 1 identifier are optional, but if given, must be located on the top
surface of the package by using either a mold or marked features.
45/48
Package mechanical data
Table 24.
STW81101
Package dimensions
Ref.
Min.
Typ.
Max.
Unit
A
0.800
0.900
1.000
mm
A1
0.020
0.050
mm
A2
0.650
1.000
mm
A3
0.200
b
0.180
0.250
0.300
mm
D
4.850
5.000
5.150
mm
D1
4.750
mm
D2
2.950
3.100
3.250
mm
E
4.850
5.000
5.150
mm
E1
E2
4.750
2.950
e
L
46/48
mm
3.100
mm
3.250
0.500
0.350
0.550
mm
mm
0.750
mm
P
0.600
mm
K
14
degrees
ddd
0.080
mm
STW81101
11
Ordering information
Ordering information
Table 25.
Order codes
Temp range, ° C
Part number
12
Package
Packing
STW81101AT
-40 to 85
VFQFPN28
Tray
STW81101ATR
-40 to 85
VFQFPN28
Tape and reel
Revision history
Table 26.
Document revision history
Date
Revision
Changes
06-Mar-2006
1
Initial release.
16-Jun-2006
2
Changed from preliminary data to maturity.
Updated Chapter 2: Electrical specifications; Chapter 8: Application
information and Chapter 9: Application diagram.
13-Aug-2007
3
Updated Section 6.4: VCO calibration procedure, and pin #23
description in Table 1. Moved order codes to Chapter 11.
47/48
STW81101
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2007 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
48/48