STW81101 Multi-band RF frequency synthesizer with integrated VCOs Preliminary Data Feature summary ■ Integer-N Frequency Synthesizer ■ Dual differential integrated VCOs with automatic center frequency calibration: – 3300 - 3900 MHz (Direct output) – 3800 - 4400 MHz (Direct output) – 1650 - 1950 MHz (Internal divider by 2) – 1900 - 2200 MHz (Internal divider by 2) – 825 - 975 MHz (Internal divider by 4) – 950 - 1100 MHz (Internal divider by 4) VFQFPN28 Applications ■ ■ Excellent integrated phase noise ■ Fast lock time: 150µs 2.5G and 3G Cellular Infrastructure Equipment CATV Equipment ■ Instrumentation and Test Equipment ■ Other Wireless Communication Systems ■ Dual modulus programmable prescaler (16/17 or 19/20) Description ■ 2 programmable counters to achieve a feedback division ratio from 256 to 65551 (prescaler 16/17) and from 361 to 77836 (prescaler 19/20). ■ Programmable reference frequency divider (10 bits) ■ Phase frequency comparator and charge pump ■ Programmable charge pump current ■ Digital Lock Detector ■ Dual Digital Bus Interface: SPI and I2C bus with 3 bit programmable address (1100A2A1A0) ■ 3.3V Power Supply ■ Power down mode (HW and SW) ■ Small size exposed pad VFQFPN28 package 5x5x1.0mm ■ Process: BICMOS 0.35µm SiGe ■ The STMicroelectronics STW81101 is an integrated RF synthesizer with voltage controlled oscillators (VCOs). Showing high performance, high integration, low power, and multi-band performances, STW81101 is a low cost one chip alternative to discrete PLL and VCOs solutions. STW81101 includes an Integer-N frequency synthesizer and two fully integrated VCOs featuring low phase noise performance and a noise floor of -154dBc/Hz. The combination of wide frequency range VCOs (thanks to centerfrequency calibration over 32 sub-bands) and multiple output options (direct output, divided by 2 or divided by 4) allows to cover the 825MHz1100MHz, the 1650MHz-2200MHz and the 3300MHz-4400MHz bands. The STW81101 is designed with STMicroelectronics advanced 0.35µm SiGe process. Order codes Part number Temp range, °C Package Packing STW81101AT -40 to 85 VFQFPN28 Tray STW81101ATR -40 to 85 VFQFPN28 Tape & Reel March 2006 Rev 1 This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice. 1/42 www.st.com 1 Contents STW81101 Contents 1 2 Block diagram and pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Digital logic levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.5 Phase noise specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1 Circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1.1 Reference input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1.2 Reference divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1.3 Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1.4 A and B counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1.5 Phase frequency detector (PFD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1.6 Lock detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.1.7 Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.1.8 Voltage controlled oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 VCO Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 VCO Frequency Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 VCO Voltage Amplitude Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 5 I2C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1 2/42 General features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1.1 Power ON reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1.2 Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1.3 START condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1.4 STOP condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1.5 Byte format and acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 STW81101 Contents 5.2 5.1.6 Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1.7 Single-byte write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1.8 Multi-byte write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.1.9 Current byte address read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.2.1 5.3 5.4 6 7 Ack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 I2C registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.3.1 FUNCTIONAL_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.3.2 B_COUNTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3.3 A_COUNTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3.4 REF_DIVIDER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3.5 CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3.6 CALIBRATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.3.7 READ-ONLY register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 VCO calibration procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 SPI digital interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.1 General features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.2 Timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.3 Bits table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.4 VCO calibration procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7.1 Direct Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7.2 Divided by 2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7.3 Divided by 4 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 7.4 Evaluation Kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 8 Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 9 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3/42 List of tables STW81101 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. 4/42 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Digital logic levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Phase noise specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Current value vs selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Voltage level expected on the resonator nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Single-byte write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Multi-byte write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Current Byte Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Data and clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Start and stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Ack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Write-only registers list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Different functional mode of the FUNCTIONAL_MODE register . . . . . . . . . . . . . . . . . . . . 25 SPI data structure (MSB is sent first) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Address decoder and outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 SPI Timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Order code of the evaluation kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 STW81101 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 VCO A (Direct output) closed loop phase noise at 3.6GHz with FSTEP=400KHz (FPFD=400KHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 VCO B (Direct output) closed loop phase noise at 4.0GHz with FSTEP=400KHz (FPFD=400KHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 VCO A (Div. by 2 output) closed loop phase noise at 1.8GHz with FSTEP=200KHz (FPFD=400KHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 VCO B (Div. by 2 output) closed loop phase noise at 2.0GHz with FSTEP=200KHz (FPFD=400KHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 VCO A (Div. by 4 output) closed loop phase noise at 900MHz with FSTEP=100KHz (FPFD=400KHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 VCO B (Div. by 4 output) closed loop phase noise at 1.0GHz with FSTEP=100KHz (FPFD=400KHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 PFD Frequency Spurs (Div. by 2 Output; FPFD=400KHz) . . . . . . . . . . . . . . . . . . . . . . . . . 15 PFD Frequency Spurs (Div. by 4 Output; FPFD=400KHz) . . . . . . . . . . . . . . . . . . . . . . . . . 15 Reference Frequency Input Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 VCO Divider Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 PFD diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Loop filter connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 VCO Sub-Bands Frequency Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Start and Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Byte format and acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Data and clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Start and stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Ack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 SPI input and output bit order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 SPI Timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Differential/single ended output network in the 3.3 - 4.4GHz range (MATCH_LC_LUMP_4G_DIFF.dsn). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 LC lumped balun and matching network (MATCH_LC_LUMP_4G.dsn) . . . . . . . . . . . . . . 35 Microstrip line and lumped matching network (MATCH_4G_HYBRID.dsn) . . . . . . . . . . . . 35 Differential/single ended output network in the 1.65 - 2.2GHz range (MATCH_LC_LUMP_2G_DIFF.dsn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 LC lumped balun for divided by 2 output (MATCH_LC_LUMP_2G.dsn) . . . . . . . . . . . . . . 36 Lumped output matching for divided by 2 output (MATCH_LC_BAL_2G.dsn) . . . . . . . . . 37 LC lumped balun for the divided by 4 output (MATCH_LC_LUMP_1G.dsn) . . . . . . . . . . . 37 Lumped output matching for divided by 4 output (MATCH_LC_BAL_1G.dsn) . . . . . . . . . 38 Application diiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 VFQFPN28 Mechanical Data & Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5/42 Block diagram and pin configuration STW81101 1 Block diagram and pin configuration 1.1 Block diagram Figure 1. Block diagram REXT VSS_PLL VDD_PLL REF_CLK OUTBUFN OUTBUFP VDD_OUTBUF VSS_OUTBUF BUF DIV2 BUF VCO BUF VSS_DIV4 DIV4 BUF VDD_DIV4 VSS_CP VDD_DIV2 DIV2 DIV4 VSS_DIV2 REF Divider VDD_CP P F D VDD_BUFVCO VSS_BUFVCO BUF EXTVCO_INP EXTVCO_INN UP DN VCO Divider ICP LOCK_DET EXT VCO BUF DBUS_SEL DBUS VDD_VCOA C P SCL / CLK SDA / DATA ADD0 / LOAD ADD1 VCO BUFF ADD2 VSS_VCOA VCO Calibrator VDD_VCOB VSS_VCOB VDD_DBUS VSS_DBUS VDD_ESD VSS_ESD EXT_PD TEST2 TEST1 VCTRL 6/42 STW81101 Pin configuration VDD_DBUS EXT_PD SDA/DATA SCL/CLK ADD1 ADD0/LOAD Pin connection (top view) ADD2 Figure 2. VDD_VCOA DBUS_SEL VDD_DIV2 VDD_BUFVCO EXTVCO_INP VDD_OUTBUF VFQFPN28 OUTBUFP Table 1. EXTVCO_INN LOCK_DET TEST2 TEST1 VDD_VCOB VDD_CP REF_CLK REXT VDD_DIV4 ICP VDD_PLL VCTRL OUTBUFN VDD_ESD 1.2 Block diagram and pin configuration Pin description Pin No Name Description Observation 1 VDD_VCOA VCOA power supply 2 VDD_DIV2 Divider by 2 power supply 3 VDD_OUTBUF Output buffer power supply 4 OUTBUFP LO buffer positive output Open collector 5 OUTBUFN LO buffer negative output Open collector 6 VDD_DIV4 Divider by 4 power supply 7 VDD_VCOB VCOB power supply 8 VDD_ESD ESD positive rail power supply 9 VCTRL VCO control voltage 10 ICP PLL charge pump output 11 REXT External resistance connection for PLL charge pump 12 VDD_CP Power supply for charge pump 13 TEST1 Test input 1 Test purpose only; must be connected to GND 14 LOCK_DET Lock detector CMOS Output 7/42 Block diagram and pin configuration Table 1. Pin description (continued) Pin No 8/42 STW81101 Name Description Observation Test purpose only; must be connected to GND 15 TEST2 Test input 2 16 REF_CLK Reference clock input 17 VDD_PLL PLL digital power supply 18 EXTVCO_INN External VCO negative input Test purpose only; must be connected to GND 19 EXTVCO_INP External VCO positive input Test purpose only; must be connected to GND 20 VDD_BUFVCO VCO buffer power supply 21 DBUS_SEL Digital Bus Interface select 2C CMOS Input bus power supply 22 VDD_DBUS SPI and I 23 EXT_PD Power down hardware CMOS Input 24 SDA/DATA I2CBUS/SPI data line CMOS Bidir Schmitt triggered 25 SCL/CLK I2CBUS/SPI clock line CMOS Input 26 ADD0/LOAD I2CBUS address select pin/ SPI load line CMOS Input 27 ADD1 I2CBUS address select pin CMOS Input 28 ADD2 I2CBUS address select pin CMOS Input STW81101 Electrical specifications 2 Electrical specifications 2.1 Absolute maximum ratings Table 2. Absolute maximum ratings Symbol Parameter Values Unit AVCC Analog Supply voltage 0 to 4.6 V DVCC Digital Supply voltage 0 to 4.6 V Tstg Storage temperature +150 °C ESD Electrical Static Discharge - HBM(1) - CDM-JEDEC Standard - MM 4 1.5 0.2 KV 1. The maximum rating of the ESD protection circuitry on pin 4 and pin 5 is 1KV. 2.2 Operating conditions Table 3. Operating conditions Symbol Parameter Test conditions Min Typ Max Unit AVCC Analog Supply voltage 3.0 3.3 3.6 V DVCC Digital Supply voltage 3.0 3.3 3.6 V ICC Current Consumption 100 mA 85 °C 125 °C Tamb Operating ambient temperature Tj Maximum junction temperature Rth j-amb Junction to ambient package thermal resistance -40 Multilayer JEDEC board 2.3 Digital logic levels Table 4. Digital logic levels Symbol Parameter Vil Low level input voltage Vih High level input voltage Vhyst Schmitt trigger hysteresis Vol Low level output voltage Voh High level output voltage Test conditions 35 Min Typ °C/W Max Unit 0.2*Vdd V 0.8*Vdd V 0.8 V 0.4 0.85*Vdd V V 9/42 Electrical specifications STW81101 2.4 Electrical characteristics Table 5. Electrical characteristics All the Electrical Specifications are intended at 3.3V supply Voltage. Symbol Parameter Test conditions Min Typ Max Unit OUTPUT FREQUENCY RANGE FOUTA FOUTB Direct Output Output Frequency Range with Divider by 2 VCOA Divider by 4 3300 3900 MHz 1650 1950 MHz 825 975 MHz Direct Output Output Frequency Range with Divider by 2 VCOB Divider by 4 3800 4400 MHz 1900 2200 MHz 950 1100 MHz Prescaler 16/17 256 65551 Prescaler 19/20 361 77836 Reference input frequency 10 200 MHz Reference input sensitivity 0.35 1.5 Vpeak VCO DIVIDERS N VCO Divider Ratio REFERENCE CLOCK and PHASE FREQUENCY DETECTOR fref R fPFD fstep Reference Divider Ratio 1 2 1023 PFD input frequency Frequency 16 MHz Prescaler 16/17 FOUT/ 65551 FOUT/ 256 Hz Prescaler 19/20 FOUT/ 77836 FOUT/ 361 Hz 5 mA Vdd-0.3 V step(1) CHARGE PUMP ICP VOCP ICP sink/source(2) 3bit programmable Output voltage compliance range Spurious(3) 0.4 Direct Output -76 dBc Divider by 2 -82 dBc Divider by 4 -88 dBc VCOs KVCOA KVCOB VCOA sensitivity(4) VCOB sensitivity(4) 10/42 90 105 115 MHz/V Sub-Band 01111 55 70 85 MHz/V Sub-Band 11111 35 45 55 MHz/V Sub-Band 00000 90 105 115 MHz/V Sub-Band 01111 55 70 85 MHz/V Sub-Band 11111 35 45 55 MHz/V (4) 8 12 MHz/V Pushing(4) 8 12 MHz/V VCO A Pushing VCO B Sub-Band 00000 STW81101 Table 5. Symbol VCTRL Electrical specifications Electrical characteristics (continued) All the Electrical Specifications are intended at 3.3V supply Voltage. Parameter Test conditions VCO control voltage(4) Min Typ 0.4 (4) LO Harmonic Spurious Max Unit 3 V -20 dBc VCO current consumption 25 mA VCO buffer consumption 15 mA DIVIDER by 2 consumption 18 mA DIVIDER by 4 consumption 14 mA 0 dBm Matched to 50ohm 15 dB DIV4 Buff 26 mA DIV2 Buff 23 mA Direct Output 37 mA LO OUTPUT BUFFER Output level Return Loss (4) Current Consumption EXTERNAL VCO (Test purpose only) Frequency range Input level Current Consumption 3.3 4.4 GHz 0 +6 dBm VCO Internal Buffer 15 µA Current Consumption Input Buffer, Prescaler, Digital Dividers, misc. 12 mA Lock up time (4) 40 KHz PLL bandwidth; within 1 ppm of frequency error 150 µs PLL MISCELLANEOUS 1. The frequency step is related to the PFD input frequency as follows: - fstep = fPFD for Direct Output - fstep = fPFD/2 for Divided by 2 Output - fstep = fPFD/4 for Divided by 4 Output 2. see relationship between ICP and REXT in the Circuit Description section (Charge Pump) 3. PFD frequency leakage (400KHz) and harmonics 4. Guaranteed by design and characterization. 2.5 Phase noise specification Table 6. Phase noise specification Parameter Test conditions Min Typ Max Unit PHASE NOISE PERFORMANCE(1) In Band Phase Noise Floor – Closed Loop(2) Normalized In Band Phase Noise Floor ICP=4mA, PLL BW = 50KHz; including reference clock contribution -220 dBc/Hz 11/42 Electrical specifications Table 6. STW81101 Phase noise specification (continued) Parameter Test conditions In Band Phase Noise Floor Direct Output Min Typ Max Unit -220+20log(N)+10log(fPFD) dBc/Hz -226+20log(N)+10log(fPFD) dBc/Hz -232+20log(N)+10log(fPFD) dBc/Hz -38 dBc 1.0 ° rms -44 dBc 0.5 ° rms -50 dBc 0.25 ° rms Phase Noise @ 1 KHz -56 dBc/Hz Phase Noise @ 10 KHz -83 dBc/Hz Phase Noise @ 100 KHz -105 dBc/Hz Phase Noise @ 1 MHz -128 dBc/Hz Phase Noise @ 10 MHz -148 dBc/Hz Phase Noise @ 40 MHz -156 dBc/Hz Phase Noise @ 1 KHz -55 dBc/Hz Phase Noise @ 10 KHz -82 dBc/Hz Phase Noise @ 100 KHz -104 dBc/Hz Phase Noise @ 1 MHz -127 dBc/Hz Phase Noise @ 10 MHz -147 dBc/Hz Phase Noise @ 40 MHz -155 dBc/Hz Phase Noise @ 1 KHz -62 dBc/Hz Phase Noise @ 10 KHz -89 dBc/Hz Phase Noise @ 100 KHz -111 dBc/Hz Phase Noise @ 1 MHz -134 dBc/Hz In Band Phase Noise Floor Divider by 2 ICP=4mA, PLL BW = 50KHz; including reference clock contribution In Band Phase Noise Floor Divider by 4 PLL Integrated Phase Noise – Direct Output Integrated Phase Noise 100Hz to 40MHz FOUT = 4 GHz, fPFD = 400KHz, fSTEP =400 KHz, PLL BW = 35KHz, ICP=4mA PLL Integrated Phase Noise – Divider by 2 Integrated Phase Noise 100Hz to 40MHz FOUT = 2 GHz, fPFD = 400KHz, fSTEP =200 KHz, PLL BW = 35KHz, ICP=4mA PLL Integrated Phase Noise – Divider by 4 Integrated Phase Noise 100Hz to 40MHz FOUT = 1 GHz, fPFD = 400KHz, fSTEP =100 KHz, PLL BW = 35KHz, ICP=4mA VCO A Direct (3300MHz-3900MHz) – Open Loop(3) VCO B Direct (3800MHz-4400MHz) – Open Loop(3) VCO A with divider by 2 (1650MHz-1950MHz) – Open Loop(3) 12/42 STW81101 Table 6. Electrical specifications Phase noise specification (continued) Parameter Test conditions Min Typ Max Unit Phase Noise @ 10 MHz -150 dBc/Hz Phase Noise @ 20 MHz -152 dBc/Hz Phase Noise Floor @ 40 MHz -154 dBc/Hz Phase Noise @ 1 KHz -61 dBc/Hz Phase Noise @ 10 KHz -88 dBc/Hz Phase Noise @ 100 KHz -110 dBc/Hz Phase Noise @ 1 MHz -133 dBc/Hz Phase Noise @ 10 MHz -150 dBc/Hz Phase Noise @ 20 MHz -152 dBc/Hz Phase Noise Floor @ 40 MHz -154 dBc/Hz Phase Noise @ 1 KHz -68 dBc/Hz Phase Noise @ 10 KHz -95 dBc/Hz Phase Noise @ 100 KHz -117 dBc/Hz Phase Noise @ 1 MHz -139 dBc/Hz Phase Noise @ 10 MHz -151 dBc/Hz -154 dBc/Hz Phase Noise @ 1 KHz -67 dBc/Hz Phase Noise @ 10 KHz -94 dBc/Hz Phase Noise @ 100 KHz -116 dBc/Hz Phase Noise @ 1 MHz -138 dBc/Hz Phase Noise @ 10 MHz -151 dBc/Hz Phase Noise Floor @ 40 MHz -154 dBc/Hz VCO B with divider by 2 (1900MHz-2200MHz) – Open Loop(3) VCO A with divider by 4 (825MHz-975MHz) – Open Loop(3) Phase Noise Floor @ 40 MHz VCO B with divider by 4 (950MHz-1100MHz) – Open Loop (3) 1. Phase Noise SSB. VCO amplitude setting to value [10]. All the closed-loop performances are specified using a Reference Clock signal at 76.8 MHz with phase noise of -135dBc/Hz @1KHz offset, -145dBc/Hz @10KHz offset and -149.5dBc/Hz of noise floor. 2. Normalized PN = Measured PN – 20log(N) – 10log(fPFD) where N is the VCO divider ratio (N=B*P+A) and fPFD is the comparison frequency at the PFD input 3. Typical Phase Noise at centre band frequency Upon request an Evaluation Kit is available including a powerful simulation tool (STWPLLSim) which allows to estimate very accurately the Phase Noise of the device according to the desired project parameters (VCO Frequency, Selected Output Stage, Reference Clock, Frequency Step, …); refer to the Application Information (Section 7) for more details. 13/42 Typical performance characteristics 3 STW81101 Typical performance characteristics The phase noise is measured with the Agilent E5052A Signal Source Analyzer. All the closed-loop measurements are done with fPFD = 400 KHz and using a Reference Clock signal at 76.8 MHz with phase noise of -135dBc/Hz @1KHz offset, -145dBc/Hz @10KHz offset and -149.5dBc/Hz @1KHz of noise floor. Figure 3. VCO A (Direct output) closed loop phase noise at 3.6GHz with FSTEP=400KHz (FPFD=400KHz) Figure 4. 0.9° rms Figure 5. VCO A (Div. by 2 output) closed loop phase noise at 1.8GHz with FSTEP=200KHz (FPFD=400KHz) 0.45° rms 14/42 VCO B (Direct output) closed loop phase noise at 4.0GHz with FSTEP=400KHz (FPFD=400KHz) 1.0° rms Figure 6. VCO B (Div. by 2 output) closed loop phase noise at 2.0GHz with FSTEP=200KHz (FPFD=400KHz) 0.5° rms STW81101 Figure 7. Typical performance characteristics VCO A (Div. by 4 output) closed loop phase noise at 900MHz with FSTEP=100KHz (FPFD=400KHz) 0.24° rms Figure 9. PFD Frequency Spurs (Div. by 2 Output; FPFD=400KHz) -82 dBc @400KHz Figure 8. VCO B (Div. by 4 output) closed loop phase noise at 1.0GHz with FSTEP=100KHz (FPFD=400KHz) 0.25° rms Figure 10. PFD Frequency Spurs (Div. by 4 Output; FPFD=400KHz) -89 dBc @400KHz 15/42 General description 4 STW81101 General description The block diagram of Figure 1 shows the different blocks, which have been integrated to achieve an integer-N PLL frequency synthesizer. The STW81101 consists of 2 internal low-noise VCOs with buffer blocks, a divider by 2, a divider by 4, a low-noise PFD (Phase Frequency Detector), a precise charge pump, a 10-bit programmable reference divider, two programmable counters and a programmable dualmodulus prescaler. The A-counter (5 bits) and B counter (12 bits) counters, in conjunction with the dual modulus prescaler P/P+1 (16/17 or 19/20), implement an N integer divider, where N = B*P +A. The division ratio of both reference and VCO dividers is controlled through the selected digital interface (I2C bus or SPI). The selection of the digital interface type is done by the proper hardware connection of the pin DBUS_SEL (0 V for I2C bus, 3.3 V for SPI). All devices operate with a power supply of 3.3 V and can be powered down when not in use. 4.1 Circuit description 4.1.1 Reference input stage The reference input stage is shown in Figure 11. The resistor network feeds a DC bias at the Fref input while the inverter used as the frequency reference buffer is AC coupled. Figure 11. Reference Frequency Input Buffer VDD Fref INV BUF Power Down 4.1.2 Reference divider The 10-bit programmable reference counter allows the input reference frequency to be divided to produce the input clock to the PFD. The division ratio is programmed through the digital interface. 4.1.3 Prescaler The dual-modulus prescaler P/P+1 takes the CML clock from the VCO buffer and divides it down to a manageable frequency for the CMOS A and B counters. The modulus (P) is programmable and can be set to 16 or 19. It is based on a synchronous 4/5 core which division ratio depends on the state of the modulus input. 16/42 STW81101 4.1.4 General description A and B counters The A (5 bits) and B (12 bits) counters, in conjunction with the selected dual modulus (16/17 or 19/20) prescaler make it possible to generate output frequencies which are spaced only by the reference frequency divided by the reference division ratio. Thus, the division ratio and the VCO output frequency are given by these formulas: N=B·P+A ( B ⋅ P + A ) ⋅ F ref F vco = -----------------------------------------R where: Fvco: output frequency of VCO. P: modulus of dual modulus prescaler (16 or 19 selected through the digital interface). B: division ratio of the main counter. A: division ratio of the swallow counter. Fref: input reference frequency. R: division ratio of reference counter. N: division ratio of PLL For a correct work of the VCO divider, B must be strictly higher than A. A can take any value ranging from 0 to 31. The range of the N number can vary from 256 to 65551 (P=16) or from 361 to 77836 (P=19). Figure 12. VCO Divider Diagram VCOBUF- Prescaler 16/17 or 19/20 VCOBUF+ To PFD modulus 5 bit A counter 4.1.5 12 bit B counter Phase frequency detector (PFD) The PFD takes inputs from the reference and the VCO dividers and produces an output proportional to the phase error. The PFD includes a delay gate that controls the width of the anti-backlash pulse. This pulse ensures that there is no dead zone in the PFD transfer function. Figure 13 is a simplified schematic of the PFD. 17/42 General description STW81101 Figure 13. PFD diagram VDD Up D FF Fref R Delay R Fref D FF VDD Down ABL 4.1.6 Lock detect This signal indicates that the difference between rising edges of both UP and DOWN PFD signals is found to be shorter than the fixed delay (roughly 5 ns). Lock Detect signal is high when the PLL is locked. When Power Down is activated, Lock Detect is let to high level (Lock Detect consumes current only during PLL transients). 4.1.7 Charge pump This block drives two matched current sources, Iup and Idown, which are controlled respectively by UP and DOWN PFD outputs. The nominal value of the output current is controlled by an external resistor (to be connected to the REXT input pin) and a selection among 8 by a 3 bit word. The minimum value of the output current is: IMIN = 2*VBG/REXT (VBG~1.17 V) Table 7. Note: 18/42 Current value vs selection CPSEL2 CPSEL1 CPSEL0 Current Value for REXT=4.7 KΩ 0 0 0 IMIN 0.5 mA 0 0 1 2*IMIN 1.0 mA 0 1 0 3*IMIN 1.5 mA 0 1 1 4*IMIN 2.0 mA 1 0 0 5*IMIN 2.5 mA 1 0 1 6*IMIN 3.0 mA 1 1 0 7*IMIN 3.5 mA 1 1 1 8*IMIN 4.0 mA The current is output on pin ICP. During the VCO auto calibration, ICP and VCTRL pins are forced to VDD/2 STW81101 General description Figure 14. Loop filter connection VDD VCTRL BUF C3 Charge Pump R3 ICP R1 C2 C1 BUF Cal bit 4.1.8 Voltage controlled oscillators VCO Selection Within STW81101 two low-noise VCOs are integrated to cover a wide band from 3300MHz to 4400MHz (direct output), from 1650MHz to 2200MHz (selecting divider by 2) and from 825MHz to 1100MHz (selecting divider by 4). VCO A frequency range 3300MHz-3900MHz VCO B frequency range 3800MHz-4400MHz VCO Frequency Calibration Both VCOs can operate on 32 frequency ranges that are selected by adding or subtracting capacitors to the resonator. These frequency ranges are intended to cover the wide band of operation and compensate for process variation on the VCO center frequency. An automatic selection of the range is performed when the bit SERCAL rises from "0" to "1". The charge pump is inhibited and the pins ICP & VCTRL are at VDD/2 volts. Then the ranges are tested to select the one which with this VCO input voltage is the nearest to the desired output frequency (Fout = N*Fref/R). When this selection is achieved the signal ENDCALB (which means End of Calibration) falls to "0", then the charge pump is enabled again and SERCAL should be reset to "0" before the next channel step. The PLL has just to perform fine adjustment around VDD/2 on the loop filter to reach Fout, which enables a fast settle. Figure 15. VCO Sub-Bands Frequency Characteristics 19/42 General description STW81101 The SERCAL bit should be set to "1" at each division ratio change. It should be noted that in order to reset the autocalibrator State Machine after a power-up, and anyway before the first calibration, the INITCAL bit should be set to "1" and back to "0" (this operation is automatically performed by the Power On Reset circuitry). The calibration takes approximately 7 periods of the PFD Frequency. The maximum allowed fPFD to perform the calibration process is 1 MHz. Using an higher FPFD the following procedure should be adopted: 1. Calibrate the VCO at the desired frequency with an fPFD less than 1 MHz 2. Set the A, B and R dividers ratio for the desired fPFD VCO Voltage Amplitude Control The bits A0 and A1 control the voltage swing of the VCO. The following table gives the voltage level expected on the resonator nodes. Table 8. Voltage level expected on the resonator nodes Code A[1:0] 20/42 Differential output voltage (Vp) 00 1.1 01 1.3 10 1.9 11 2.1 I2C bus interface STW81101 5 I2C bus interface The I2C bus interface is selected by hardware connection of the pin #21 (DBUS_SEL) to 0 V. Data transmission from microprocessor to the STW81101 takes place through the 2 wires (SDA and SCL) I2C-BUS interface. The STW81101 is always a slave device. The I2C-bus protocol defines any device that sends data on to the bus as a transmitter and any device that reads the data as receiver. The device that controls the data transfer is known as the Master and the others as the slave. The master will always initiate the transfer and will provide the serial clock for synchronization. 5.1 General features 5.1.1 Power ON reset The device at Power ON is able to configure itself to a fixed configuration, with all programmable bits set to factory default setting. 5.1.2 Data validity Data changes on the SDA line must only occur when the SCL is LOW. SDA transitions while the clock is HIGH are used to identify START or STOP condition. Figure 16. Data validity SDA SCL DATA LINE STABLE DATA VALID 5.1.3 CHANGE DATA ALLOWED START condition A Start condition is identified by a HIGH to LOW transition of the data bus SDA while the clock signal SCL is stable in the HIGH state. A Start condition must precede any command for data transfer. 5.1.4 STOP condition A LOW to HIGH transition of the data bus SDA identifies stop while the clock signal SCL is stable in the HIGH state. A STOP condition terminates communications between the STW81101 and the Bus Master. 21/42 I2C bus interface STW81101 Figure 17. Start and Stop condition SCL SDA START 5.1.5 STOP Byte format and acknowledge Every byte transferred on the SDA line must contain bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first. An acknowledge bit is used to indicate a successful data transfer. The bus transmitter, either master or slave, will release the SDA bus after sending 8 bits of data. During the 9th clock pulse the receiver pulls the SDA low to acknowledge the receipt of 8 bits data. Figure 18. Byte format and acknowledge SCL 1 2 3 7 8 9 // SDA MSB // START 5.1.6 ACKNOWLEDGMENT FROM RECEIVER Device addressing To start the communication between the Master and the STW81101, the master must initiate with a start condition. Following this, the master sends onto the SDA line 8 bits (MSB first) corresponding to the device select address and read or write mode. The first 7 MSB's are the device address identifier, corresponding to the I2C-Bus definition. For the STW81101 the address is set as "1100A2A1A0", 3bits programmable. The 8th bit (LSB) is the read or write operation bit (RW; set to 1 in read mode and to 0 in write mode). After a START condition the STW81101 identifies on the bus the device address and, if matched, it will acknowledge the identification on SDA bus during the 9th clock pulse. 5.1.7 Single-byte write mode Following a START condition the master sends a device select code with the RW bit set to 0. The STW81101 gives an acknowledge and waits for the internal sub-address (1 byte). This byte provides access to any of the internal registers. After the reception of the sub-address internal byte the STW81101 again responds with an acknowledge. A single-byte write to sub-address 00H will change the "FUNCTIONAL_MODE" register, so a single-byte write with sub-address 04H will change the "CONTROL" register and so on. 22/42 I2C bus interface STW81101 Table 9. S 5.1.8 Single-byte write mode 0 1100A2A1A0 ack sub-address byte ack DATA IN ack P Multi-byte write mode The multi-byte write mode can start from any internal address. The master sends the data bytes and each one is acknowledged. The master terminates the transfer by generating a STOP condition. The sub-address decides the starting byte. A multi-byte with sub-address 01H and 2 DATA_IN bytes will change the "B_COUNTER" and "A_COUNTER" registers (01H,02H), so a multi-byte with sub-address 00H and and 6 DATA_IN bytes will change all the STW81101 registers. Table 10. S 5.1.9 Multi-byte write mode 1100A2A1A0 0 ack sub-address byte ack DATA IN ack .... DATA IN ack P Current byte address read In the current byte address read mode, following a START condition, the master sends the device address with the rw bit set to 1 (No sub-address is needed as there is only 1 byte read register). The STW81101 acknowledges this and outputs the data byte. The master does not acknowledge the received byte, but terminates the transfer with a STOP condition. Table 11. S 5.2 Current Byte Address Read 1100 A2 A1 A0 1 ack DATA OUT No ack P Timing specification Figure 19. Data and clock SDA SCL tcwl tcs Table 12. tch tcwh Data and clock Symbol Parameter Minimum time (ns) Tcs Data to clock set up time 2 Tch Data to clock hold time 2 Tcwh Clock pulse width high 10 Tcwl Clock pulse width low 5 23/42 I2C bus interface STW81101 Figure 20. Start and stop Table 13. Start and stop Symbol 5.2.1 Parameter Minimum time (ns) Tstart Clock to data start time 2 Tstop Data to clock down stop time 2 Ack Figure 21. Ack SDA SCL 8 9 td1 Table 14. 24/42 td2 Ack Symbol Parameter Minimum time (ns) Td1 Ack begin delay 2 Td2 Ack end delay 2 I2C bus interface STW81101 5.3 I2C registers STW81101 has 6 write-only registers and 1 read-only register. The following table gives a short description of the write-only registers list. Table 15. 5.3.1 Write-only registers list HEX CODE DEC CODE DESCRIPTION 0x00 0 FUNCTIONAL_MODE 0x01 1 B_COUNTER 0x02 2 A_COUNTER 0x03 3 REF_DIVIDER 0x04 4 CONTROL 0x05 5 CALIBRATION FUNCTIONAL_MODE MSB LSB b7 b6 b5 b4 b3 b2 b1 b0 PD6 PD5 PD4 PD3 PD2 PD1 PD0 B11 FUNCTIONAL_MODE register is used to select different functional mode for the STW81101 synthesizer according to the following table: Table 16. Different functional mode of the FUNCTIONAL_MODE register Decimal value Description 0 Power down mode 1 Enable VCO A, output frequency divided by 2 2 Enable VCO B, output frequency divided by 2 3 Enable external VCO, output frequency divided by 2 4 Enable VCO A, output frequency divided by 4 5 Enable VCO B, output frequency divided by 4 6 Enable external VCO, output frequency divided by 4 7 Enable VCO A, direct output 8 Enable VCO B, direct output 9 Enable external VCO, direct output 25/42 I2C bus interface 5.3.2 STW81101 B_COUNTER MSB LSB b7 b6 b5 b4 b3 b2 b1 b0 B10 B9 B8 B7 B6 B5 B4 B3 B[10:3]. Counter value (bit B11 in the previous register, bits B[2:0] in the next register) 5.3.3 A_COUNTER MSB LSB b7 b6 b5 b4 b3 b2 b1 b0 B2 B1 B0 A4 A3 A2 A1 A0 Bits B[2:0] for B Counter, A Counter value. 5.3.4 REF_DIVIDER MSB LSB b7 b6 b5 b4 b3 b2 b1 b0 R9 R8 R7 R6 R5 R4 R3 R2 Reference Clock divider ratio R[9:1] (bits R1, R0 in the next register). 5.3.5 CONTROL MSB LSB b7 b6 b5 b4 b3 b2 b1 b0 R1 R0 PLL_ A1 PLL_ A0 CP SEL2 CP SEL1 CP SEL0 PSC_ SEL The CONTROL register is used to set the Charge Pump current, the VCO output voltage amplitude and the Prescaler Modulus. PLL_A[1:0]: VCO amplitude CPSEL[2:0]: Charge Pump output current PSC_SEL: Prescaler Modulus select ('0' for P=16, '1' for P=19) The LO output frequency is programmed by setting the proper value for A,B and R according to the following formula: F REF_CLK F OUT = D R ⋅ ( B ⋅ P + A ) ⋅ ---------------------------R 26/42 I2C bus interface STW81101 where DR equals { 1 for Direct Output 0.5 for Output Divided by 2 0.25 for Output Divided by 4 and P is the selected Prescaler Modulus 5.3.6 CALIBRATION MSB LSB b7 b6 b5 b4 b3 b2 b1 b0 INIT CAL SER CAL SEL EXT CAL CAL4 CAL3 CAL2 CAL1 CAL0 This register controls VCO calibrator. INITCAL: resets the auto-calibrator State Machine (writing to "1" and back to "0") SERCAL: at "1" starts the VCO auto-calibration (should be reset to "0" at the end of calibration) SELEXTCAL: test purpose only; must be set to '0' CAL[4:0]: test purpose only; must be set to '0' 5.3.7 READ-ONLY register MSB LSB b7 b6 b5 b4 b3 b2 b1 b0 DEV_ID1 DEV_ID0 LOCK_ DET INT CAL4 INT CAL3 INT CAL2 INT CAL1 INT CAL0 This register is automatically addressed in the 'current byte address read mode'. DEV_ID[1:0]: device identifier bits; returns '00' LOCK_DET: "1" when PLL is locked INTCAL[4:0]: internal value of the VCO control word 5.4 VCO calibration procedure The calibration of the VCO center frequency is activated by a '0' to '1' transition of the SERCAL bit (CALIBRATION Register bit[6]). In order to program properly the device, ensuring the VCO calibration, the following procedure is required before every channel change: a) Program all the Registers using a multi-byte write sequence with the desired settings (Functional Mode, B and A counters, R counter, VCO amplitude, Charge 27/42 I2C bus interface STW81101 Pump, Prescaler Modulus) and all the bits of the "CALIBRATION" Register (05H) set to '0' b) Program the "CALIBRATION" Register using a single-byte write sequence (subaddress 05H) with the SERCAL bit set to '1' The maximum allowed PFD frequency (fPFD) to perform the calibration process is 1 MHz; if the desired fPFD is higher than 1MHz the following steps are needed: 28/42 – Perform all the steps of the calibration procedure programming the desired VCO frequency with a proper setting of R, B and A counter so that fPFD is ≤ 1MHz. – Program the device with the proper setting for the desired VCO and PFD frequencies according to the above step a) only. STW81101 SPI digital interface 6 SPI digital interface 6.1 General features The SPI digital interface is selected by hardware connection of the pin #21 (DBUS_SEL) to 3.3V. The STW81101 IC is programmed by means of a high-speed serial-to-parallel interface with write option only. The 3-wires bus can be clocked at a frequency as high as 100MHz to allow fast programming of the registers containing the data for RF IC configuration. The programming of the chip is done through serial words with whole length of 26 bits. The first 2 MSB represent the address of the registers. The others 24 LSB represent the value of the registers. Each Data bit is stored in the internal shift register on the rising edge of the CLOCK signal. On the rising edge of the LOAD signal the outputs of the selected register are sent to the device. Figure 22. SPI input and output bit order 29/42 SPI digital interface Table 17. STW81101 SPI data structure (MSB is sent first) MSB LSB Address Data for Register (24 bits) A1 A0 D23 D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Table 18. Address decoder and outputs Address 6.2 Outputs A1 A0 0 0 0 DATABITS No Name 24 0 ST1 Reference divider, VCO amplitude, VCO Calibration, Charge Pump current, Prescaler Modulus 1 24 1 ST2 Functional modes, VCO dividers 1 0 24 2 ST3 Reserved 1 1 24 3 ST4 Reserved D23-D0 Function Timing specification Figure 23. SPI Timing specification Table 19. Parameter Description Min. Typ. Max. Unit tsetup DATA to CLOCK setup time 0.8 ns thold DATA to clock hold time 0.2 ns CLOCK cycle period 10 ns LOAD pulse width 3 ns tclk_loadr CLOCK to LOAD rising edge 2 ns tclk_loadf CLOCK to LOAD falling edge 0.5 ns tclk tload 30/42 SPI Timing specification STW81101 6.3 SPI digital interface Bits table Table 20. Bits Serial Interface Address = 00h Register name = ST1 Bit Name Description [23] R9 [22] R8 [21] R7 [20] R6 [19] R5 [18] R4 [17] R3 [16] R2 [15] R1 [14] R0 [13] PLL_A1 [12] PLL_A0 [11] CPSEL2 [10] CPSEL1 [9] CPSEL0 [8] PSC_SEL [7] INITCAL test purpose only; must be set to ‘0’ [6] SERCAL Enable VCO calibration (see paragraph xxx) [5] SELEXTCAL test purpose only; must be set to ‘0’ [4] CAL4 test purpose only; must be set to ‘0’ [3] CAL3 [2] CAL2 [1] CAL1 [0] CAL0 REFERENCE CLOCK DIVIDER RATIO VCO Amplitude Control Charge Pump output current Control Prescaler Modulus select (‘0’ for P=16, ‘1’ for P=19) 31/42 SPI digital interface Table 20. STW81101 Bits (continued) Serial Interface Address = 00h Bit Name [23] PD6 [22] PD5 [21] PD4 [20] PD3 [19] PD2 [18] PD1 [17] PD0 [16] B11 [15] B10 [14] B9 [13] B8 [12] B7 [11] B6 [10] B5 [9] B4 [8] B3 [7] B2 [6] B1 [5] B0 [4] A4 [3] A3 [2] A2 [1] A1 [0] A0 Register name = ST1 Description DEVICE FUNCTIONAL MODES 0. Power down 1. Enable VCO A, output frequency divided by 2 2. Enable VCO B, output frequency divided by 2 3. Enable external VCO, output frequency divided by 2 4. Enable VCO A, output frequency divided by 4 5. Enable VCO B, output frequency divided by 4 6. Enable external VCO, output frequency divided by 4 7. Enable VCO A, direct output 8. Enable VCO B, direct output 9. Enable external VCO, direct output B Counter Bits A Counter Bits The LO output frequency is programmed by setting the proper value for A,B and R according to the following formula: F REF_CLK F OUT = D R ⋅ ( B ⋅ P + A ) ⋅ ---------------------------R where DR equals { 1 for Direct Output 0.5 for Output Divided by 2 0.25 for Output Divided by 4 and P is the selected Prescaler Modulus 32/42 STW81101 6.4 SPI digital interface VCO calibration procedure The calibration of the VCO center frequency is activated by a '0' to '1' transition of the SERCAL bit (ST1 Register bit[6]). In order to program properly the device, ensuring the VCO calibration, the following procedure is required before every channel change: a) Program the ST1 Register with the desired settings (R counter, VCO amplitude, Charge Pump, Prescaler Modulus) and SERCAL bit set to '0' b) Program the ST2 Register with the desired settings (Functional mode, B and A counters) c) Program the ST1 Register with the desired settings (R counter, VCO amplitude, Charge Pump, Prescaler Modulus) and SERCAL bit set to '1' The maximum allowed PFD frequency (fPFD) to perform the calibration process is 1 MHz; if the desired fPFD is higher than 1MHz the following steps are needed: – Perform all the steps of the calibration procedure programming the desired VCO frequency with a proper setting of R, B and A counter so that fPFD is ≤ 1MHz. – Program the device with the proper setting for the desired VCO and PFD frequencies according to the above step a) and b) only. 33/42 Application information 7 STW81101 Application information The STW81101 features three different alternatively selectable bands: direct output (3.3 to 4.4GHz), divided by 2 (1.65 to 2.2GHz) and divided by 4 (850 to 1100MHz). In order to achieve a suitable power level, a good matching network is needed to adapt the output stage to a 50Ω load. Moreover, since most of commercial RF components have single ended input and output terminations, a differential to single ended conversion could be required. Below different matching configurations for the three bands are suggested as a guideline for the design of own application board. The user can find in the Evaluation Kit the ADS Design for each matching configuration suggested in this section. The name of the corresponding ADS Design is reported below each figure. 7.1 Direct Output If a differential to single conversion is not needed it is possible to match the output buffer of the STW81101 in the simple way shown in Figure 24. Figure 24. Differential/single ended output network in the 3.3 - 4.4GHz range (MATCH_LC_LUMP_4G_DIFF.dsn) VCC 50 O hm 2 nH 50 O hm 10pF R FO UTP 10pF R F O UTN 50 O hm 2nH 50 O hm VCC Since most of discrete components for microwave applications are single ended, the user can easily use one of the two outputs and terminate the other one to 50Ω with a 3dB power loss. Alternatively it is possible to combine the 2 outputs in different ways. A first topology for the direct output (3.3GHz to 4.4GHz) is suggested in Figure 25. It basically consists of a simple LC balun and a matching network to adapt the output to a 50Ω load. The two LC networks shift output signal phase of -90° and +90° thus combining the 2 outputs. This topology, designed for a center frequency of 4GHz, is intrinsically narrow band, since the LC balun is tuned at a single frequency. If the application requires a different sub-band, the LC combiner could be easily adjusted to be tuned at the frequency of interest. 34/42 STW81101 Application information Figure 25. LC lumped balun and matching network (MATCH_LC_LUMP_4G.dsn) V CC 3.6nH 6.8nH 0.7pF 1.1nH RF O UTP 0.3pF 0.7pF 3.6nH 50 O hm 3.5nH 1.1nH RF O UTN 0.3pF The 6.8nH shunt inductor works as a DC feed for one of the open collector terminal as well as a matching element along with the other components. The 1.1nH series inductors are used to resonate the parasitic capacitance of the chip. For an optimum output matching it is recommended to use 0402 Murata or AVX capacitors and 0403 or 0604 HQ Coilcraft inductors. It is also advisable to use short interconnection paths to minimize losses and undesired impedance shift. An alternative topology, which allows for a more broadband matching and balanced to unbalanced conversion, is shown it Figure 26. Figure 26. Microstrip line and lumped matching network (MATCH_4G_HYBRID.dsn) VCC L=1.5nH C=0.7pF C=8pF RFOUTP 2:1 W=16mil L=400mil 50Ohm load RFOUTN C=0.7pF L=1.5nH VCC Those results have been achieved on an FR4 substrate with a thickness of 350um. By using this topology the STW81101 is capable to deliver an almost flat power to a 50Ω load with a return loss grater than 10dB over the whole frequency band (3.3 to 4.4GHz). For the differential to single conversion the 50 to 100Ω Johanson balun is recommended (3700BL15B100). 35/42 Application information 7.2 STW81101 Divided by 2 Output If the user's application does not require a balanced to unbalanced conversion, the output matching reduces to the simple circuit shown below (Figure 27). This solution can be easily used to provide one single ended output just terminating the other output at 50Ω with a 3dB power loss. Figure 27. Differential/single ended output network in the 1.65 - 2.2GHz range (MATCH_LC_LUMP_2G_DIFF.dsn) VCC 22nH 50 O hm 50 Ohm 10pF RFOUTP 10pF RFOUTN 50 Ohm 22nH 50 O hm VCC A first solution to combine the differential outputs is the lumped LC type balun tuned in the 2GHz band (Figure 28). Figure 28. LC lumped balun for divided by 2 output (MATCH_LC_LUMP_2G.dsn) VCC 5.5nH RFOUTP 3nH 1pF 5.5nH RFO UTN 1nH 2.8pF 2nH 50 O hm 3nH 1pF The same recommendation for the SMD components applies also for the divided by 2 output. Another topology suitable to combine the two outputs for the divided by 2 frequencies is represented in Figure 29. 36/42 STW81101 Application information Figure 29. Lumped output matching for divided by 2 output (MATCH_LC_BAL_2G.dsn) VCC 22nH 50 O hm 10pF RFO UTP 10pF 2:1 50 Ohm 10pF RFO UTN 22nH 50 Ohm VCC For the differential to single conversion the 50 to 100Ω Johanson balun (1600BL15B100) is recommended. 7.3 Divided by 4 Output The same topology, components values and considerations of Figure 27, applies also for the divided by 4 output (MATCH_LC_LUMP_1G_DIFF.dsn). As for the previous sections, a solution to combine the differential outputs is the lumped LC type balun tuned in the 1GHz band (Figure 30). Figure 30. LC lumped balun for the divided by 4 output (MATCH_LC_LUMP_1G.dsn) VCC 25 Ohm 5.5nH 4pF 5.5nH RFOUTP 4pF 5.5nH 6pF 14nH 50 Ohm RFOUTN 4pF 25 Ohm 5.5nH 4pF VCC If the user prefers to use an RF balun it is possible to adopt the same topology depicted in Figure 29, just changing the balun and the resistor value (Figure 31). The suggested balun for the 0.8 - 1.1GHz frequency range is the 1:1 Johanson 900BL15C050. 37/42 Application information STW81101 Figure 31. Lumped output matching for divided by 4 output (MATCH_LC_BAL_1G.dsn) VCC 25 Ohm 22nH 10pF RFOUTP 10pF 1:1 50 Ohm 10pF RFOUTN 25 Ohm 22nH VCC 7.4 Evaluation Kit Upon request an Evaluation Kit can be delivered. It includes: ● Evaluation Board ● GUI (Graphical User Interface) to program the device ● Measured S parameters of the RF output ● ADS2005 schematics providing guidelines for application board design ● STWPLLSim software for PLL loop filter design and noise simulation Three different Evaluation Kits are available, one optimized for 1GHz frequency range, one for 2GHz frequency range and the last one for 4GHz range. While ordering please specify the following order codes: Table 21. Order code of the evaluation kit Part Number Description STW81101-EVB1G 1GHz frequency range - Divider by 4 output optimized STW81101-EVB2G 2GHz frequency range - Divider by 2 output optimized STW81101-EVB4G 4GHz frequency range - Direct output optimized The three Evaluation Kits differ only regarding the output balun and the choke inductors of the related Evaluation Board; each Evaluation Kit is provided with the needed components (baluns and inductors) in order to easily adapt the output stage to a different frequency range. 38/42 STW81101 8 Application diagram Application diagram Figure 32. Application diiagram µ-controller 100 ADD1 10µ VDD_VCOA 15p VDD_DBUS 22p 15p SCL/CLK 1n ADD2 VDD 1 AD D0/LOAD 15p 100 EXT_PD 100 SDA/DATA From/to I2C DBUS_SEL VDD_DIV2 SPI VDD_BUFVCO VDD 2 VDD 1 VDD_OUTBUF RF Out EXTVCO_INP 1n 1:2 STW81101 OUTBUFP 22p 10µ EXTVCO_INN VDD_PLL OUTBUFN ref clk 1n 22p TEST1 VDD _CP REXT VDD 1 ICP VD D_ESD VDD_VCOB VCTR L VDD 1 LOCK_DET REF_CLK VDD_DIV4 TEST2 1.8n 51 10µ 4.7K VDD 1 2.2K loop filter Note: 150p 8.2K 1n 22p 220p 6.8n 10µ to µ-controller 1 See Application Information (Section 7) for further information on Output Matching topology. 2 EXT_PD, ADD2, ADD1 (and ADD0 when I2C Bus is selected) can be hard wired directly on the board. 3 Loop Filter values are for fPFD = 400KHz and ICP = 4mA. 39/42 Package information 9 STW81101 Package information In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: http://www.st.com. Figure 33. VFQFPN28 Mechanical Data & Package Dimensions REF. mm inch MIN. TYP. MAX. MIN. TYP. MAX. 0.800 0.900 1.000 0.031 0.035 0.039 A1 0.020 0.050 A2 0.650 1.000 A3 0.200 A 0.0008 0.0019 0.025 0.039 0.0078 b 0.180 0.250 0.300 0.007 0.0098 0.012 D 4.850 5.000 5.150 0.191 D1 4.750 0.197 0.203 0.187 D2 2.550 2.700 2.850 0.100 0.106 0.113 E 4.850 5.000 5.150 0.191 0.197 0.203 E1 E2 4.750 2.550 e L P 2.700 0.187 2.850 0.100 0.500 0.350 0.550 OUTLINE AND MECHANICAL DATA 0.106 0.113 0.020 0.750 0.60 0.014 0.022 0.029 0.0236 K 14˚ 14˚ ddd 0.080 0.003 Notes: 1) VFQFPN stands for Thermally Enhanced Very thin Fine pitch Quad Packages No lead. Very thin: A = 1.00 Max. 2) The pin #1 identifier must be existed on the top surface of the package by using indentation mark or other feature of package body. Exact shape and size of this feature is optional. VFQFPN-28 (5x5x1.0mm) Very Fine Quad Flat Package No lead 7655832 A 40/42 STW81101 10 Revision history Revision history Table 22. Document revision history Date Revision 06-Mar-2006 1 Changes Initial release. 41/42 STW81101 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 42/42