MITSUBISHI HVIGBT MODULES CM1200HB-50H HIGH POWER SWITCHING USE 2nd-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules INSULATED TYPE CM1200HB-50H ● IC ................................................................ 1200A ● VCES ....................................................... 2500V ● Insulated Type ● 1-element in a pack APPLICATION Inverters, Converters, DC choppers, Induction heating, DC to DC converters. OUTLINE DRAWING & CIRCUIT DIAGRAM 190 171 57 ±0.25 57 ±0.25 Dimensions in mm 6 - M8 NUTS 57 ±0.25 C C C E E E C 20 G E C CM E C E E 124 ±0.25 140 C 40 C E CIRCUIT DIAGRAM G 20.25 8 - φ7MOUNTING HOLES 41.25 79.4 15 61.5 61.5 40 13 28 5 38 5.2 LABEL 29.5 3 - M4 NUTS HVIGBT MODULES (High Voltage Insulated Gate Bipolar Transistor Modules) Mar. 2003 MITSUBISHI HVIGBT MODULES CM1200HB-50H 2nd-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules HIGH POWER SWITCHING USE INSULATED TYPE MAXIMUM RATINGS (Tj = 25°C) Symbol VCES VGES IC ICM I E (Note 2) I EM(Note 2) P C (Note 3) Tj Tstg Viso Item Collector-emitter voltage Gate-emitter voltage Collector current Emitter current Maximum collector dissipation Junction temperature Storage temperature Isolation voltage — Mounting torque — Mass Conditions Ratings Unit — — Charged part to base plate, rms, sinusoidal, AC 60Hz 1min. Main terminals screw M8 Mounting screw M6 Auxiliary terminals screw M4 Typical value 2500 ±20 1200 2400 1200 2400 15600 –40 ~ +150 –40 ~ +125 6000 6.67 ~ 13.00 2.84 ~ 6.00 0.88 ~ 2.00 2.2 V V A A A A W °C °C V N·m N·m N·m kg VGE = 0V VCE = 0V DC, TC = 110°C Pulse (Note 1) Pulse TC = 25°C, IGBT part (Note 1) ELECTRICAL CHARACTERISTICS (Tj = 25°C) Symbol Collector cutoff current Gate-emitter VGE(th) threshold voltage Gate-leakage current IGES Collector-emitter VCE(sat) saturation voltage Input capacitance Cies Output capacitance Coes Reverse transfer capacitance Cres Total gate charge QG td (on) Turn-on delay time tr Turn-on rise time td (off) Turn-off delay time tf Turn-off fall time V EC(Note 2) Emitter-collector voltage trr (Note 2) Reverse recovery time Q rr (Note 2) Reverse recovery charge Rth(j-c)Q Thermal resistance Rth(j-c)R Rth(c-f) Contact thermal resistance ICES Note 1. 2. 3. 4. VCE = VCES, VGE = 0V Min — Limits Typ — Max 15 IC = 120mA, VCE = 10V 4.5 6.0 7.5 V VGE = VGES, VCE = 0V Tj = 25°C IC = 1200A, VGE = 15V Tj = 125°C — — — — — — — — — — — — — — — — — — 2.80 3.15 180 19.8 6.0 8.1 — — — — 2.50 — 350 — — 0.006 0.5 3.64 — — — — — 1.60 2.00 2.50 1.00 3.25 1.20 — 0.008 0.016 — µA Item Conditions (Note 4) VCE = 10V VGE = 0V VCC = 1250V, IC = 1200A, VGE = 15V VCC = 1250V, IC = 1200A VGE1 = VGE2 = 15V RG = 1.6Ω Resistive load switching operation IE = 1200A, VGE = 0V IE = 1200A, die / dt = –2400A / µs Junction to case, IGBT part Junction to case, FWDi part Case to fin, conductive grease applied (Note 1) Unit mA V nF nF nF µC µs µs µs µs V µs µC K/W K/W K/W Pulse width and repetition rate should be such that the device junction temp. (Tj) does not exceed T jmax rating. IE , VEC, trr, Qrr & die/dt represent characteristics of the anti-parallel, emitter to collector free-wheel diode. Junction temperature (Tj) should not increase beyond 150°C. Pulse width and repetition rate should be such as to cause negligible temperature rise. HVIGBT MODULES (High Voltage Insulated Gate Bipolar Transistor Modules) Mar. 2003 MITSUBISHI HVIGBT MODULES CM1200HB-50H HIGH POWER SWITCHING USE INSULATED TYPE 2nd-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules PERFORMANCE CURVES TRANSFER CHARACTERISTICS (TYPICAL) OUTPUT CHARACTERISTICS (TYPICAL) VGE=20V VGE=9V 800 400 VGE=8V COLLECTOR CURRENT IC (A) VGE=10V VGE=7V 0 2 4 6 8 10 VCE=10V 2000 1600 1200 800 400 0 Tj = 25°C Tj = 125°C 0 4 8 12 16 20 COLLECTOR-EMITTER VOLTAGE VCE (V) GATE-EMITTER VOLTAGE VGE (V) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) 5 VGE=15V 4 3 2 1 Tj = 25°C Tj = 125°C 0 0 400 COLLECTOR-EMITTER SATURATION VOLTAGE VCE(sat) (V) COLLECTOR-EMITTER SATURATION VOLTAGE VCE(sat) (V) VGE=15V VGE=11V 1200 0 EMITTER-COLLECTOR VOLTAGE VEC (V) VGE=12V 2000 VGE=14V 1600 2400 VGE=13V Tj=25°C 800 1200 1600 2000 2400 8 IC = 2400A 6 IC = 1200A 4 2 IC = 480A 0 4 8 12 16 20 GATE-EMITTER VOLTAGE VGE (V) FREE-WHEEL DIODE FORWARD CHARACTERISTICS (TYPICAL) CAPACITANCE CHARACTERISTICS (TYPICAL) 4 3 2 1 Tj = 25°C Tj = 125°C 0 Tj = 25°C COLLECTOR CURRENT IC (A) 5 0 10 0 400 800 1200 1600 2000 2400 EMITTER CURRENT IE (A) CAPACITANCE Cies, Coes, Cres (nF) COLLECTOR CURRENT IC (A) 2400 103 7 5 3 2 Cies 102 7 5 3 2 Coes 101 7 5 Cres VGE = 0V, Tj = 25°C 3 2 Cies, Coes : f = 100kHz : f = 1MHz Cres 100 10–1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 COLLECTOR-EMITTER VOLTAGE VCE (V) Mar. 2003 MITSUBISHI HVIGBT MODULES CM1200HB-50H SWITCHING ENERGY (J/P) td(off) 100 7 5 td(on) tr tf 3 2 10–1 7 5 REVERSE RECOVERY TIME trr (µs) 3 2 VCC = 1250V, VGE = ±15V RG = 1.6Ω, Tj = 125°C Inductive load 5 7 102 2 3 5 7 103 2 3 5 Irr 101 7 5 103 7 5 3 2 100 7 5 3 2 trr 5 7 102 2 3 5 7 103 2 3 5 102 7 5 EMITTER CURRENT IE (A) HALF-BRIDGE SWITCHING ENERGY CHARACTERISTICS (TYPICAL) 3.0 VCC = 1250V, VGE = ±15V, RG = 1.6Ω, Tj = 125°C, 2.5 Inductive load HALF-BRIDGE SWITCHING ENERGY CHARACTERISTICS (TYPICAL) 3.0 2.0 Eon Eoff 1.5 1.0 Erec 0.5 0 0 400 800 2.0 1.5 1.0 0.5 0 5 10 15 20 25 CURRENT (A) GATE RESISTANCE (Ω) GATE CHARGE CHARACTERISTICS (TYPICAL) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth(j – c) VCC = 1250V IC = 1200A 16 12 8 4 0 2.5 0 1200 1600 2000 2400 20 GATE-EMITTER VOLTAGE VGE (V) REVERSE RECOVERY CHARACTERISTICS OF FREE-WHEEL DIODE (TYPICAL) 5 5 VCC = 1250V, Tj = 125°C 3 Inductive load 3 2 VGE = ±15V, RG = 1.6Ω 2 COLLECTOR CURRENT IC (A) SWITCHING ENERGY (J/P) SWITCHING TIMES (µs) HALF-BRIDGE SWITCHING TIME CHARACTERISTICS (TYPICAL) 5 0 5000 10000 15000 GATE CHARGE QG (nC) 20000 REVERSE RECOVERY CURRENT Irr (A) HIGH POWER SWITCHING USE INSULATED TYPE 2nd-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules 101 7 5 3 2 30 Single Pulse TC = 25°C Rth(j – c)Q = 0.008K/ W Rth(j – c)R = 0.016K/ W 100 7 5 3 2 10–1 7 5 3 2 10–2 10–3 2 3 5 7 10–2 2 3 5 7 10–1 2 3 5 7 100 TIME (s) Mar. 2003