MITSUBISHI CM1200HB

MITSUBISHI HVIGBT MODULES
CM1200HB-50H
HIGH POWER SWITCHING USE
2nd-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules
INSULATED TYPE
CM1200HB-50H
● IC ................................................................ 1200A
● VCES ....................................................... 2500V
● Insulated Type
● 1-element in a pack
APPLICATION
Inverters, Converters, DC choppers, Induction heating, DC to DC converters.
OUTLINE DRAWING & CIRCUIT DIAGRAM
190
171
57 ±0.25
57 ±0.25
Dimensions in mm
6 - M8 NUTS
57 ±0.25
C
C
C
E
E
E
C
20
G
E
C
CM
E
C
E
E
124 ±0.25
140
C
40
C
E
CIRCUIT DIAGRAM
G
20.25
8 - φ7MOUNTING HOLES
41.25
79.4
15
61.5
61.5
40
13
28
5
38
5.2
LABEL
29.5
3 - M4 NUTS
HVIGBT MODULES (High Voltage Insulated Gate Bipolar Transistor Modules)
Mar. 2003
MITSUBISHI HVIGBT MODULES
CM1200HB-50H
2nd-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules
HIGH POWER SWITCHING USE
INSULATED TYPE
MAXIMUM RATINGS (Tj = 25°C)
Symbol
VCES
VGES
IC
ICM
I E (Note 2)
I EM(Note 2)
P C (Note 3)
Tj
Tstg
Viso
Item
Collector-emitter voltage
Gate-emitter voltage
Collector current
Emitter current
Maximum collector dissipation
Junction temperature
Storage temperature
Isolation voltage
—
Mounting torque
—
Mass
Conditions
Ratings
Unit
—
—
Charged part to base plate, rms, sinusoidal, AC 60Hz 1min.
Main terminals screw M8
Mounting screw M6
Auxiliary terminals screw M4
Typical value
2500
±20
1200
2400
1200
2400
15600
–40 ~ +150
–40 ~ +125
6000
6.67 ~ 13.00
2.84 ~ 6.00
0.88 ~ 2.00
2.2
V
V
A
A
A
A
W
°C
°C
V
N·m
N·m
N·m
kg
VGE = 0V
VCE = 0V
DC, TC = 110°C
Pulse
(Note 1)
Pulse
TC = 25°C, IGBT part
(Note 1)
ELECTRICAL CHARACTERISTICS (Tj = 25°C)
Symbol
Collector cutoff current
Gate-emitter
VGE(th)
threshold voltage
Gate-leakage current
IGES
Collector-emitter
VCE(sat)
saturation voltage
Input capacitance
Cies
Output capacitance
Coes
Reverse transfer capacitance
Cres
Total gate charge
QG
td (on)
Turn-on delay time
tr
Turn-on rise time
td (off)
Turn-off delay time
tf
Turn-off fall time
V EC(Note 2) Emitter-collector voltage
trr (Note 2) Reverse recovery time
Q rr (Note 2) Reverse recovery charge
Rth(j-c)Q
Thermal resistance
Rth(j-c)R
Rth(c-f)
Contact thermal resistance
ICES
Note 1.
2.
3.
4.
VCE = VCES, VGE = 0V
Min
—
Limits
Typ
—
Max
15
IC = 120mA, VCE = 10V
4.5
6.0
7.5
V
VGE = VGES, VCE = 0V
Tj = 25°C
IC = 1200A, VGE = 15V
Tj = 125°C
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
2.80
3.15
180
19.8
6.0
8.1
—
—
—
—
2.50
—
350
—
—
0.006
0.5
3.64
—
—
—
—
—
1.60
2.00
2.50
1.00
3.25
1.20
—
0.008
0.016
—
µA
Item
Conditions
(Note 4)
VCE = 10V
VGE = 0V
VCC = 1250V, IC = 1200A, VGE = 15V
VCC = 1250V, IC = 1200A
VGE1 = VGE2 = 15V
RG = 1.6Ω
Resistive load switching operation
IE = 1200A, VGE = 0V
IE = 1200A,
die / dt = –2400A / µs
Junction to case, IGBT part
Junction to case, FWDi part
Case to fin, conductive grease applied
(Note 1)
Unit
mA
V
nF
nF
nF
µC
µs
µs
µs
µs
V
µs
µC
K/W
K/W
K/W
Pulse width and repetition rate should be such that the device junction temp. (Tj) does not exceed T jmax rating.
IE , VEC, trr, Qrr & die/dt represent characteristics of the anti-parallel, emitter to collector free-wheel diode.
Junction temperature (Tj) should not increase beyond 150°C.
Pulse width and repetition rate should be such as to cause negligible temperature rise.
HVIGBT MODULES (High Voltage Insulated Gate Bipolar Transistor Modules)
Mar. 2003
MITSUBISHI HVIGBT MODULES
CM1200HB-50H
HIGH POWER SWITCHING USE
INSULATED TYPE
2nd-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules
PERFORMANCE CURVES
TRANSFER CHARACTERISTICS
(TYPICAL)
OUTPUT CHARACTERISTICS
(TYPICAL)
VGE=20V
VGE=9V
800
400
VGE=8V
COLLECTOR CURRENT IC (A)
VGE=10V
VGE=7V
0
2
4
6
8
10
VCE=10V
2000
1600
1200
800
400
0
Tj = 25°C
Tj = 125°C
0
4
8
12
16
20
COLLECTOR-EMITTER VOLTAGE VCE (V)
GATE-EMITTER VOLTAGE VGE (V)
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
5
VGE=15V
4
3
2
1
Tj = 25°C
Tj = 125°C
0
0
400
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE(sat) (V)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE(sat) (V)
VGE=15V
VGE=11V
1200
0
EMITTER-COLLECTOR VOLTAGE VEC (V)
VGE=12V
2000 VGE=14V
1600
2400
VGE=13V
Tj=25°C
800 1200 1600 2000 2400
8
IC = 2400A
6
IC = 1200A
4
2
IC = 480A
0
4
8
12
16
20
GATE-EMITTER VOLTAGE VGE (V)
FREE-WHEEL DIODE
FORWARD CHARACTERISTICS
(TYPICAL)
CAPACITANCE CHARACTERISTICS
(TYPICAL)
4
3
2
1
Tj = 25°C
Tj = 125°C
0
Tj = 25°C
COLLECTOR CURRENT IC (A)
5
0
10
0
400
800 1200 1600 2000 2400
EMITTER CURRENT IE (A)
CAPACITANCE Cies, Coes, Cres (nF)
COLLECTOR CURRENT IC (A)
2400
103
7
5
3
2
Cies
102
7
5
3
2
Coes
101
7
5
Cres
VGE = 0V, Tj = 25°C
3
2 Cies, Coes : f = 100kHz
: f = 1MHz
Cres
100
10–1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102
COLLECTOR-EMITTER VOLTAGE VCE (V)
Mar. 2003
MITSUBISHI HVIGBT MODULES
CM1200HB-50H
SWITCHING ENERGY (J/P)
td(off)
100
7
5
td(on)
tr
tf
3
2
10–1
7
5
REVERSE RECOVERY TIME trr (µs)
3
2
VCC = 1250V, VGE = ±15V
RG = 1.6Ω, Tj = 125°C
Inductive load
5 7 102
2 3
5 7 103
2 3
5
Irr
101
7
5
103
7
5
3
2
100
7
5
3
2
trr
5 7 102
2 3
5 7 103
2 3
5
102
7
5
EMITTER CURRENT IE (A)
HALF-BRIDGE
SWITCHING ENERGY CHARACTERISTICS
(TYPICAL)
3.0
VCC = 1250V, VGE = ±15V,
RG = 1.6Ω, Tj = 125°C,
2.5 Inductive load
HALF-BRIDGE
SWITCHING ENERGY CHARACTERISTICS
(TYPICAL)
3.0
2.0
Eon
Eoff
1.5
1.0
Erec
0.5
0
0
400
800
2.0
1.5
1.0
0.5
0
5
10
15
20
25
CURRENT (A)
GATE RESISTANCE (Ω)
GATE CHARGE CHARACTERISTICS
(TYPICAL)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth(j – c)
VCC = 1250V
IC = 1200A
16
12
8
4
0
2.5
0
1200 1600 2000 2400
20
GATE-EMITTER VOLTAGE VGE (V)
REVERSE RECOVERY CHARACTERISTICS
OF FREE-WHEEL DIODE
(TYPICAL)
5
5
VCC = 1250V, Tj = 125°C
3 Inductive load
3
2 VGE = ±15V, RG = 1.6Ω
2
COLLECTOR CURRENT IC (A)
SWITCHING ENERGY (J/P)
SWITCHING TIMES (µs)
HALF-BRIDGE
SWITCHING TIME CHARACTERISTICS
(TYPICAL)
5
0
5000
10000
15000
GATE CHARGE QG (nC)
20000
REVERSE RECOVERY CURRENT Irr (A)
HIGH POWER SWITCHING USE
INSULATED TYPE
2nd-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules
101
7
5
3
2
30
Single Pulse
TC = 25°C
Rth(j – c)Q = 0.008K/ W
Rth(j – c)R = 0.016K/ W
100
7
5
3
2
10–1
7
5
3
2
10–2
10–3 2 3 5 7 10–2 2 3 5 7 10–1 2 3 5 7 100
TIME (s)
Mar. 2003