TI SN74LV166ADR

SCLS456C − FEBRUARY 2001 − REVISED APRIL 2005
D 2-V to 5.5-V VCC Operation
D Max tpd of 10.5 ns at 5 V
D Typical VOLP (Output Ground Bounce)
D
D
D
D Direct Overriding Clear
D Parallel-to-Serial Conversion
D Latch-Up Performance Exceeds 100 mA Per
<0.8 V at VCC = 3.3 V, TA = 25°C
Typical VOHV (Output VOH Undershoot)
>2.3 V at VCC = 3.3 V, TA = 25°C
Ioff Supports Partial-Power-Down-Mode
Operation
Synchronous Load
D
JESD 78, Class II
ESD Protection Exceeds JESD 22
− 2000-V Human-Body Model (A114-A)
− 200-V Machine Model (A115-A)
− 1000-V Charged-Device Model (C101)
SN54LV166A . . . J OR W PACKAGE
SN74LV166A . . . D, DB, DGV, NS, OR PW PACKAGE
(TOP VIEW)
16
2
15
3
14
4
13
5
12
6
11
7
10
8
9
A
SER
NC
VCC
SH/LD
1
VCC
SH/LD
H
QH
G
F
E
CLR
B
C
NC
D
CLK INH
4
3
2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
H
QH
NC
G
F
CLK
GND
NC
CLR
E
SER
A
B
C
D
CLK INH
CLK
GND
SN54LV166A . . . FK PACKAGE
(TOP VIEW)
NC − No internal connection
description/ordering information
The ’LV166A devices are 8-bit parallel-load shift registers, designed for 2-V to 5.5-V VCC operation.
ORDERING INFORMATION
TOP-SIDE
MARKING
Tube of 40
SN74LV166AD
Reel of 2500
SN74LV166ADR
SOP − NS
Reel of 2000
SN74LV166ANSR
74LV166A
SSOP − DB
Reel of 2000
SN74LV166ADBR
LV166A
Tube of 90
SN74LV166APW
Reel of 2000
SN74LV166APWR
Reel of 250
SN74LV166APWT
TVSOP − DGV
Reel of 2000
SN74LV166ADGVR
LV166A
CDIP − J
Tube of 25
SNJ54LV166AJ
SNJ54LV166AJ
CFP − W
Tube of 150
SNJ54LV166AW
SNJ54LV166AW
LCCC − FK
Tube of 55
SNJ54LV166AFK
SOIC − D
−40°C to 85°C
TSSOP − PW
−55°C
125°C
−55
C to 125
C
ORDERABLE
PART NUMBER
PACKAGE†
TA
LV166A
LV166A
SNJ54LV166AFK
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design
guidelines are available at www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2005, Texas Instruments Incorporated
!"#$%& "!&'& (
&)!*$'!& "#**%& ' !) +#,-"'!& '%. *!#" "!&)!*$ !
+%")"'!& +%* % %*$ !) %/' &*#$%& '&'* 0'**'&1.
*!#"!& +*!"%&2 !% &! &%"%'*-1 &"-#% %&2 !) '-+'*'$%%*.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SCLS456C − FEBRUARY 2001 − REVISED APRIL 2005
description/ordering information (continued)
The ’LV166A parallel-in or serial-in, serial-out registers feature gated clock (CLK, CLK INH) inputs and an
overriding clear (CLR) input. The parallel-in or serial-in modes are established by the shift/ load (SH/LD) input.
When high, SH/LD enables the serial (SER) data input and couples the eight flip-flops for serial shifting with each
clock (CLK) pulse. When low, the parallel (broadside) data inputs are enabled, and synchronous loading occurs
on the next clock pulse. During parallel loading, serial data flow is inhibited. Clocking is accomplished on the
low-to-high-level edge of CLK through a 2-input positive-NOR gate, permitting one input to be used as a
clock-enable or clock-inhibit function. Holding either CLK or CLK INH high inhibits clocking; holding either low
enables the other clock input. This allows the system clock to be free running, and the register can be stopped
on command with the other clock input. CLK INH should be changed to the high level only when CLK is high.
CLR overrides all other inputs, including CLK, and resets all flip-flops to zero.
These devices are fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the
outputs, preventing damaging current backflow through the devices when they are powered down.
FUNCTION TABLE
OUTPUTS
INPUTS
2
INTERNAL
QH
CLR
SH/LD
CLK INH
CLK
SER
PARALLEL
A...H
QA
QB
L
X
X
X
X
X
L
L
L
H
X
L
L
X
X
QA0
QB0
QH0
H
L
L
↑
X
a...h
a
b
h
H
H
L
↑
H
X
H
QAn
QGn
H
H
L
↑
L
X
L
QAn
QGn
H
X
H
↑
X
X
QA0
QB0
QH0
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SCLS456C − FEBRUARY 2001 − REVISED APRIL 2005
logic diagram (positive logic)
A
SH/LD
SER
B
2
15
C
D
3
4
1D
C1
R
1D
C1
R
E
F
G
H
5
10
11
12
14
1D
C1
R
1D
C1
R
1D
C1
R
1D
C1
R
1D
C1
R
1
CLK INH
CLK
CLR
1D
C1
R
6
7
9
13
QH
Pin numbers shown are for the D, DB, DGV, J, NS, PW, and W packages.
typical clear, shift, load, inhibit, and shift sequence
CLK
CLK INH
CLR
SER
SH/LD
Parallel
Inputs
A
H
B
L
C
H
D
L
E
H
F
L
G
H
H
H
QH
Serial Shift
Clear
H
Inhibit
H
L
H
L
H
L
H
Serial Shift
Load
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SCLS456C − FEBRUARY 2001 − REVISED APRIL 2005
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V
Output voltage range applied in high or low state, VO (see Notes 1 and 2) . . . . . . . . . . −0.5 V to VCC + 0.5 V
Voltage range applied to any output in the power-off state, VO (see Note 1) . . . . . . . . . . . . . . . . −0.5 V to 7 V
Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −20 mA
Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA
Continuous output current, IO (VO = 0 to VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±25 mA
Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA
Package thermal impedance, θJA (see Note 3): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73°C/W
DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82°C/W
DGV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120°C/W
NS package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64°C/W
PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
2. This value is limited to 5.5 V maximum.
3. The package thermal impedance is calculated in accordance with JESD 51-7.
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SCLS456C − FEBRUARY 2001 − REVISED APRIL 2005
recommended operating conditions (see Note 4)
SN54LV166A
VCC
VIH
High-level input voltage
VIL
Low-level input voltage
VI
VO
Input voltage
IOH
IOL
∆t/∆v
MIN
MAX
2
5.5
Supply voltage
VCC = 2 V
VCC = 2.3 V to 2.7 V
VCC = 3 V to 3.6 V
VCC = 4.5 V to 5.5 V
2
5.5
VCC × 0.7
VCC × 0.7
VCC × 0.7
VCC × 0.7
VCC × 0.7
VCC × 0.7
Output voltage
UNIT
V
V
0.5
0.5
VCC × 0.3
VCC × 0.3
VCC × 0.3
VCC × 0.3
VCC × 0.3
5.5
0
0
0
VCC
−50
VCC = 2 V
VCC = 2.3 V to 2.7 V
V
VCC
−50
µA
0
V
−2
−6
−6
−12
−12
VCC = 2 V
VCC = 2.3 V to 2.7 V
50
50
2
2
VCC = 3 V to 3.6 V
VCC = 4.5 V to 5.5 V
6
6
12
12
200
200
100
100
VCC = 2.3 V to 2.7 V
VCC = 3 V to 3.6 V
V
VCC × 0.3
5.5
−2
VCC = 3 V to 3.6 V
VCC = 4.5 V to 5.5 V
Input transition rise or fall rate
MAX
1.5
VCC = 3 V to 3.6 V
VCC = 4.5 V to 5.5 V
Low-level output current
MIN
1.5
VCC = 2 V
VCC = 2.3 V to 2.7 V
High-level output current
SN74LV166A
mA
µA
mA
ns/V
VCC = 4.5 V to 5.5 V
20
20
TA
Operating free-air temperature
−55
125
−40
85
°C
NOTE 4: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
SN54LV166A
PARAMETER
VOH
VOL
TEST CONDITIONS
IOH = −50 µA
IOH = −2 mA
IOL = 6 mA
IOL = 12 mA
Ioff
Ci
VI or VO = 0 to 5.5 V
VI = VCC or GND
IO = 0
TYP
SN74LV166A
MAX
MIN
VCC−0.1
2
VCC−0.1
2
3V
2.48
2.48
4.5 V
3.8
2.3 V
IOL = 50 µA
IOL = 2 mA
VI = 5.5 V or GND
VI = VCC or GND,
MIN
2 V to 5.5 V
IOH = −6 mA
IOH = −12 mA
II
ICC
VCC
TYP
MAX
UNIT
V
3.8
2 V to 5.5 V
0.1
0.1
2.3 V
0.4
0.4
3V
0.44
0.44
4.5 V
V
0.55
0.55
0 to 5.5 V
±1
±1
µA
5.5 V
20
20
µA
0
5
5
µA
3.3 V
1.6
1.6
pF
( &)!*$'!& "!&"%*& +*!#" & % )!*$'3% !*
%2& +'% !) %3%-!+$%&. ('*'"%*" '' '& !%*
+%")"'!& '*% %2& 2!'-. %/' &*#$%& *%%*3% % *2 !
"'&2% !* "!&&#% %% +*!#" 0!# &!"%.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SCLS456C − FEBRUARY 2001 − REVISED APRIL 2005
timing requirements over recommended operating free-air temperature range, VCC = 2.5 V ± 0.2 V
(unless otherwise noted) (see Figure 1)
TA = 25°C
MIN
MAX
CLR low
tw
Pulse duration
CLK high or low
CLK INH before CLK↑
Data before CLK↑
tsu
Setup time
SH/LD before CLK↑
SER before CLK↑
CLR↑ inactive before CLK↑
th
Hold time
Data after CLK↑
SN54LV166A
MIN
MAX
SN74LV166A
MIN
8
9
9
8.5
9
9
7
7
7
6.5
8.5
8.5
7
8.5
8.5
8.5
9.5
9.5
6
7
7
−0.5
0
0
MAX
UNIT
ns
ns
ns
timing requirements over recommended operating free-air temperature range, VCC = 3.3 V ± 0.3 V
(unless otherwise noted) (see Figure 1)
TA = 25°C
MIN
MAX
tw
tsu
th
Pulse duration
Setup time
Hold time
SN54LV166A
MIN
MAX
SN74LV166A
MIN
CLR low
6
7
7
CLK high or low
6
7
7
CLK INH before CLK↑
5
5
5
Data before CLK↑
5
6
6
SH/LD before CLK↑
5
6
6
SER before CLK↑
5
6
6
CLR↑ inactive before CLK↑
4
4
4
Data after CLK↑
0
0
0
MAX
UNIT
ns
ns
ns
timing requirements over recommended operating free-air temperature range, VCC = 5 V ± 0.5 V
(unless otherwise noted) (see Figure 1)
TA = 25°C
MIN
MAX
tw
tsu
Pulse duration
Setup time
Hold time
MAX
MIN4
CLR low
5
5
5
4
4
4
CLK INH before CLK↑
3.5
3.5
3.5
Data before CLK↑
4.5
4.5
4.5
SH/LD before CLK↑
4
4
4
SER before CLK↑
4
4
4
3.5
3.5
3.5
1
1
1
Data after CLK↑
( &)!*$'!& "!&"%*& +*!#" & % )!*$'3% !*
%2& +'% !) %3%-!+$%&. ('*'"%*" '' '& !%*
+%")"'!& '*% %2& 2!'-. %/' &*#$%& *%%*3% % *2 !
"'&2% !* "!&&#% %% +*!#" 0!# &!"%.
6
MIN
SN74LV166A
CLK high or low
CLR↑ inactive before CLK↑
th
SN54LV166A
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MAX
UNIT
ns
ns
ns
SCLS456C − FEBRUARY 2001 − REVISED APRIL 2005
switching characteristics over recommended operating
VCC = 2.5 V ± 0.2 V (unless otherwise noted) (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
fmax
tPHL
TA = 25°C
TYP
MAX
CLK
tPHL
CLR
tpd
CLK
temperature
SN54LV166A
MIN
CL = 15 pF
50*
105*
45*
45
CL = 50 pF
40
80
35
35
QH
CL = 15 pF
QH
CL = 50 pF
MIN
MAX
range,
SN74LV166A
LOAD
CAPACITANCE
CLR
tpd
free-air
MIN
MAX
UNIT
MHz
8.8*
16*
1*
18*
1
18
9.2*
19.8*
1*
22*
1
22
11.3
19.5
1
22
1
22
11.8
23.3
1
26
1
26
ns
ns
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
switching characteristics over recommended operating
VCC = 3.3 V ± 0.3 V (unless otherwise noted) (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
fmax
tPHL
CLR
tpd
CLK
tPHL
CLR
tpd
CLK
free-air
TA = 25°C
TYP
MAX
temperature
SN54LV166A
SN74LV166A
LOAD
CAPACITANCE
MIN
CL = 15 pF
65*
150*
55*
55
CL = 50 pF
60
120
50
50
QH
CL = 15 pF
QH
CL = 50 pF
MIN
MAX
range,
MIN
MAX
UNIT
MHz
6.3*
12.5*
1*
15*
1
15
6.6*
15.4*
1*
18*
1
18
7.9
16.3
1
18.5
1
18.5
8.3
18.9
1
21.5
1
21.5
ns
ns
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
switching characteristics over recommended operating
VCC = 5 V ± 0.5 V (unless otherwise noted) (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
fmax
tPHL
CLR
tpd
CLK
tPHL
CLR
tpd
CLK
LOAD
CAPACITANCE
free-air
TA = 25°C
MIN
TYP
MAX
temperature
SN54LV166A
MIN
MAX
SN74LV166A
MIN
CL = 15 pF
110*
205*
90*
90
CL = 50 pF
95
160
85
85
QH
CL = 15 pF
QH
CL = 50 pF
range,
MAX
UNIT
MHz
4.6*
8.6*
1*
10*
1
10
4.8*
9.9*
1*
11.5*
1
11.5
5.7
10.6
1
12
1
12
6.1
11.9
1
13.5
1
13.5
VCC
3.3 V
TYP
5V
44.5
ns
ns
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
operating characteristics, TA = 25°C
PARAMETER
Cpd
Power dissipation capacitance
TEST CONDITIONS
CL = 50 pF,
f = 10 MHz
UNIT
39.1
pF
( &)!*$'!& "!&"%*& +*!#" & % )!*$'3% !*
%2& +'% !) %3%-!+$%&. ('*'"%*" '' '& !%*
+%")"'!& '*% %2& 2!'-. %/' &*#$%& *%%*3% % *2 !
"'&2% !* "!&&#% %% +*!#" 0!# &!"%.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
SCLS456C − FEBRUARY 2001 − REVISED APRIL 2005
PARAMETER MEASUREMENT INFORMATION
From Output
Under Test
RL = 1 kΩ
From Output
Under Test
Test
Point
S1
VCC
Open
TEST
GND
CL
(see Note A)
CL
(see Note A)
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open Drain
Open
VCC
GND
VCC
LOAD CIRCUIT FOR
3-STATE AND OPEN-DRAIN OUTPUTS
LOAD CIRCUIT FOR
TOTEM-POLE OUTPUTS
VCC
50% VCC
Timing Input
0V
tw
tsu
VCC
50% VCC
Input
50% VCC
th
VCC
50% VCC
Data Input
50% VCC
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VCC
50% VCC
Input
50% VCC
tPLH
In-Phase
Output
tPHL
50% VCC
tPHL
Out-of-Phase
Output
0V
VOH
50% VCC
VOL
VOH
50% VCC
VOL
50% VCC
50% VCC
0V
tPZL
Output
Waveform 1
S1 at VCC
(see Note B)
tPLZ
≈VCC
50% VCC
tPZH
tPLH
50% VCC
VCC
Output
Control
Output
Waveform 2
S1 at GND
(see Note B)
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
VOL + 0.3 V
VOL
tPHZ
50% VCC
VOH − 0.3 V
VOH
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, ZO = 50 Ω, tr ≤ 3 ns, tf ≤ 3 ns.
D. The outputs are measured one at a time, with one input transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPHL and tPLH are the same as tpd.
H. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PACKAGE OPTION ADDENDUM
www.ti.com
4-Jun-2007
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
SN74LV166AD
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV166ADB
PREVIEW
SSOP
DB
16
80
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV166ADBR
ACTIVE
SSOP
DB
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV166ADBRE4
ACTIVE
SSOP
DB
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV166ADBRG4
ACTIVE
SSOP
DB
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV166ADE4
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV166ADG4
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV166ADGVR
ACTIVE
TVSOP
DGV
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV166ADGVRE4
ACTIVE
TVSOP
DGV
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV166ADGVRG4
ACTIVE
TVSOP
DGV
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV166ADR
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV166ADRE4
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV166ADRG4
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV166ANSR
ACTIVE
SO
NS
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV166ANSRE4
ACTIVE
SO
NS
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV166ANSRG4
ACTIVE
SO
NS
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV166APW
ACTIVE
TSSOP
PW
16
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV166APWE4
ACTIVE
TSSOP
PW
16
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV166APWG4
ACTIVE
TSSOP
PW
16
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV166APWR
ACTIVE
TSSOP
PW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV166APWRE4
ACTIVE
TSSOP
PW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV166APWRG4
ACTIVE
TSSOP
PW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV166APWT
ACTIVE
TSSOP
PW
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV166APWTE4
ACTIVE
TSSOP
PW
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV166APWTG4
ACTIVE
TSSOP
PW
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Addendum-Page 1
Lead/Ball Finish
MSL Peak Temp (3)
PACKAGE OPTION ADDENDUM
www.ti.com
4-Jun-2007
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
12-Jan-2008
TAPE AND REEL BOX INFORMATION
Device
Package Pins
Site
Reel
Diameter
(mm)
Reel
Width
(mm)
A0 (mm)
B0 (mm)
K0 (mm)
P1
(mm)
W
Pin1
(mm) Quadrant
SN74LV166ADBR
DB
16
SITE 41
330
16
8.2
6.6
2.5
12
16
Q1
SN74LV166ADGVR
DGV
16
SITE 41
330
12
6.8
4.0
1.6
8
16
Q1
SN74LV166ADR
D
16
SITE 27
330
16
6.5
10.3
2.1
8
16
Q1
SN74LV166ANSR
NS
16
SITE 41
330
16
8.2
10.5
2.5
12
16
Q1
SN74LV166APWR
PW
16
SITE 41
330
12
7.0
5.6
1.6
8
12
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
Device
12-Jan-2008
Package
Pins
Site
Length (mm)
Width (mm)
Height (mm)
SN74LV166ADBR
DB
16
SITE 41
346.0
346.0
33.0
SN74LV166ADGVR
DGV
16
SITE 41
346.0
346.0
29.0
SN74LV166ADR
D
16
SITE 27
342.9
345.9
28.58
SN74LV166ANSR
NS
16
SITE 41
346.0
346.0
33.0
SN74LV166APWR
PW
16
SITE 41
346.0
346.0
29.0
Pack Materials-Page 2
MECHANICAL DATA
MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000
DGV (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
24 PINS SHOWN
0,40
0,23
0,13
24
13
0,07 M
0,16 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
0°–8°
1
0,75
0,50
12
A
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,08
14
16
20
24
38
48
56
A MAX
3,70
3,70
5,10
5,10
7,90
9,80
11,40
A MIN
3,50
3,50
4,90
4,90
7,70
9,60
11,20
DIM
4073251/E 08/00
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
Falls within JEDEC: 24/48 Pins – MO-153
14/16/20/56 Pins – MO-194
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001
DB (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
28 PINS SHOWN
0,38
0,22
0,65
28
0,15 M
15
0,25
0,09
8,20
7,40
5,60
5,00
Gage Plane
1
14
0,25
A
0°–ā8°
0,95
0,55
Seating Plane
2,00 MAX
0,10
0,05 MIN
PINS **
14
16
20
24
28
30
38
A MAX
6,50
6,50
7,50
8,50
10,50
10,50
12,90
A MIN
5,90
5,90
6,90
7,90
9,90
9,90
12,30
DIM
4040065 /E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-150
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Amplifiers
Data Converters
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions
amplifier.ti.com
dataconverter.ti.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright 2008, Texas Instruments Incorporated