AD AD9361

RF捷变收发器
AD9361
特性
功能框图
RX1B_P,
RX1B_N
AD9361
RX1A_P,
RX1A_N
ADC
RX1C_P,
RX1C_N
RX2A_P,
RX2A_N
ADC
RX2C_P,
RX2C_N
RX LO
TX_MON1
TX LO
TX1A_P,
TX1A_N
DAC
DATA INTERFACE
RX2B_P,
RX2B_N
P0_[D11:D0]/
TX_[D5:D0]
P1_[D11:D0]/
RX_[D5:D0]
TX1B_P,
TX1B_N
TX_MON2
TX2A_P,
TX2A_N
SPI
CTRL
DAC
TX2B_P,
TX2B_N
DAC
DAC
ADC
集成12位DAC和ADC的RF 2×2收发器
频段:70 MHz至6.0 GHz
支持TDD和FDD
可调谐通道带宽:<200 kHz至56 MHz
双通道接收器:6路差分或12路单端输入
出色的接收器灵敏度,噪声系数为2 dB(800 MHz,本振(LO))
RX增益控制
实时监控和控制信号用于手动增益
独立的自动增益控制
双发射器:4路差分输出
高线性度宽带发射器
TX EVM:≤− 40 dB
TX噪声:≤−157 dBm/Hz本底噪声
TX监控器:动态范围≥66 dB,精度=1 dB
集成小数N分频频率合成器
最大LO步长:2.4 Hz
多器件同步
CMOS/LVDS数字接口
CTRL
GPO
RADIO
SWITCHING
PLLs
CLK_OUT
NOTES
1. SPI, CTRL, P0_[D11:D0]/TX_[D5:D0], P1_[D11:D0]/RX_[D5:D0],
AND RADIO SWITCHING CONTAIN MULTIPLE PINS.
点对点通信系统
毫微微蜂窝/微微蜂窝/微蜂窝基站
通用无线电系统
10453-001
AUXADC AUXDACx XTALP XTALN
应用
图1.
概述
AD9361是一款面向3G和4G基站应用的高性能、高集成度
的射频(RF)Agile Transceiver™捷变收发器。该器件的可编程
性和宽带能力使其成为多种收发器应用的理想选择。该器
件集RF前端与灵活的混合信号基带部分为一体,集成频率
合成器,为处理器提供可配置数字接口,从而简化设计导
入。AD9361工作频率范围为70 MHz至6.0 GHz,涵盖大部
分特许执照和免执照频段,支持的通道带宽范围为不到
200 kHz至56 MHz。
两个独立的直接变频接收器拥有首屈一指的噪声系数和线
性度。每个接收(RX)子系统都拥有独立的自动增益控制
(AGC)、直流失调校正、正交校正和数字滤波功能,从而
消除了在数字基带中提供这些功能的必要性。AD9361还拥
有灵活的手动增益模式,支持外部控制。每个通道搭载两
个高动态范围ADC,先将收到的I信号和Q信号进行数字化
处理,然后将其传过可配置抽取滤波器和128抽头有限脉
冲响应(FIR)滤波器,结果以相应的采样率生成12位输出
信号。
Rev. D
发射器采用直接变频架构,可实现较高的调制精度和超低
的噪声。这种发射器设计带来了行业最佳的TX EVM,数值
不到<−40 dB,可为外部功率放大器的选择留出可观的系统
裕量。板载发射(TX)功率监控器可以用作功率检测器,从
而实现高度精确的TX功率测量。
完全集成的锁相环(PLL)可针对所有接收和发射通道提供低
功耗的小数N分频频率合成。设计中集成了频分双工(FDD)
系统需要的通道隔离。还集成了所有VCO和环路滤波器
器件。
AD9361的心核可以直接用1.3 V稳压器供电。IC通过一个标
准四线式串行端口和四个实时I/O控制引脚进行控制。全
面的省电模式可将正常使用情况下的功耗降至最低。
AD9361采用10 mm × 10 mm、144引脚芯片级球栅阵列封装
(CSP_BGA)。
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
©2013 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com
ADI中文版数据手册是英文版数据手册的译文,敬请谅解翻译中可能存在的语言组织或翻译错误,ADI不对翻译中存在的差异或由此产生的错误负责。如需确认任何词语的准确性,请参考ADI提供
的最新英文版数据手册。
AD9361
目录
特性.................................................................................................. 1
应用.................................................................................................. 1
功能框图 ......................................................................................... 1
概述.................................................................................................. 1
修订历史 ......................................................................................... 2
技术规格 ......................................................................................... 3
功耗—VDD接口 ...................................................................... 8
功耗—VDDD1P3_DIG和VDDAx
(全部1.3 V电源相结合) ........................................................ 10
绝对最大额定值..................................................................... 15
回流温度曲线 ......................................................................... 15
热阻 .......................................................................................... 15
ESD警告................................................................................... 15
引脚配置和功能描述 ................................................................. 16
典型性能参数 .............................................................................. 20
800 MHz频段 .......................................................................... 20
2.4 GHz频段 ............................................................................ 25
5.5 GHz频段 ............................................................................ 29
工作原理 ....................................................................................... 33
一般特性.................................................................................. 33
接收器 ...................................................................................... 33
发射器 ...................................................................................... 33
时钟输入选项 ......................................................................... 33
频率合成器 ............................................................................. 34
数字数据接口 ......................................................................... 34
使能状态机 ............................................................................. 34
SPI接口..................................................................................... 35
控制引脚.................................................................................. 35
GPO引脚(GPO_3至GPO_0)................................................ 35
辅助转换器 ............................................................................. 35
AD9361的供电 ....................................................................... 35
封装和订购信息.......................................................................... 36
外形尺寸.................................................................................. 36
订购指南.................................................................................. 36
修订历史
2013年11月—修订版C至修订版D
更改“订购指南”........................................................................... 36
2013年9月—修订版C:初始版
Rev. D | Page 2 of 36
AD9361
规格
除非另有说明,电气特性在VDD_GPO = 3.3 V,VDD_INTERFACE = 1.8 V,所有其他VDDx引脚= 1.3 V,TA = 25°C下测得。
表1.
参数1
接收器,一般
中心频率
增益
最小值
最大值
增益步进
接收信号强度指示器
档位
准确度
接收器,800 MHz
噪声系数
三阶输入交调载点
二阶输入交调载点
本振(LO)泄漏
正交
增益误差
相位误差
调制精度(EVM)
输入S11
RX1至RX2隔离
RX1A至RX2A,RX1C至RX2C
RX1B至RX2B
RX2至RX1隔离
RX2A至RX1A,RX2C至RX1C
RX2B至RX1B
接收器,2.4 GHz
噪声系数
三阶输入交调载点
二阶输入交调载点
本振(LO)泄漏
正交
增益误差
相位误差
调制精度(EVM)
输入S11
RX1至RX2隔离
RX1A至RX2A,RX1C至RX2C
RX1B至RX2B
RX2至RX1隔离
RX2A至RX1A,RX2C至RX1C
RX2B至RX1B
符号
最小值
典型值
70
最大值
件
6000
MHz
0
74.5
73.0
72.0
dB
dB
dB
dB
65.5
1
dB
dB
100
±2
dB
dB
2
−18
40
−122
dB
dBm
dBm
dBm
0.2
0.2
−42
−10
%
度
dB
dB
70
55
dB
dB
70
55
dB
dB
3
−14
45
−110
dB
dBm
dBm
dBm
0.2
0.2
−42
−10
%
度
dB
dB
65
50
dB
dB
65
50
dB
dB
测试条件/注释
800 MHz
2300 MHz (RX1A, RX2A)
2300 MHz (RX1B, RX1C,
RX2B, RX2C)
5500 MHz (RX1A, RX2A)
RSSI
NF
IIP3
IIP2
NF
IIP3
IIP2
Rev. D | Page 3 of 36
最大RX增益
最大RX增益
最大RX增益
RX前端输入
19.2 MHz参考时钟
最大RX增益
最大RX增益
最大RX增益
接收器前端输入
40 MHz参考时钟
AD9361
参数1
接收器,5.5 GHz
噪声系数
三阶输入交调载点
二阶输入交调载点
符号
最小值
NF
IIP3
IIP2
本振(LO)泄漏
正交
增益误差
相位误差
调制精度(EVM)
输入S11
RX1A至RX2A隔离
RX2A至RX1A隔离
发射器—一般
中心频率
功率控制范围
功率控制分辨率
发射器,800 MHz
输出S22
最大输出功率
调制精度(EVM)
三阶输出交调载点
载波泄漏
本底噪声
隔离
TX1至TX2
TX2至TX1
发射器,2.4 GHz
输出S22
最大输出功率
调制精度(EVM)
三阶输出交调载点
载波泄漏
本底噪声
隔离
TX1至TX2
TX2至TX1
件
测试条件/注释
3.8
−17
42
dB
dBm
dBm
最大RX增益
最大RX增益
最大RX增益
−95
dBm
RX前端输入
0.2
0.2
−37
%
度
dB
−10
52
52
dB
dB
dB
70
OIP3
OIP3
本底噪声
隔离
TX1至TX2
TX2至TX1
发射器,5.5 GHz
输出S22
最大输出功率
调制精度(EVM)
三阶输出交调载点
载波泄漏
典型值
OIP3
最大值
90
0.25
6000
MHz
dB
dB
−10
8
−40
23
−50
−32
−157
dB
dBm
dB
dBm
dBc
dBc
dBm/Hz
50
50
dB
dB
−10
7.5
−40
19
−50
−32
−156
dB
dBm
dB
dBm
dBc
dBc
dBm/Hz
50
50
dB
dB
−10
6.5
−36
dB
dBm
dB
17
−50
−30
−151.5
dBm
dBc
dBc
dBm/Hz
50
50
dB
dB
Rev. D | Page 4 of 36
40 MHz参考时钟
(针对RF频率
合成器内部加倍)
1 MHz信号音(50 Ω负载)
19.2 MHz参考时钟
0 dB衰减
40 dB衰减
90 MHz偏移
1 MHz信号音(50 Ω负载)
40 MHz参考时钟
0 dB衰减
40 dB衰减
90 MHz偏移
7 7 MHz信号音(50 Ω负载)
40 MHz参考时钟
(针对RF频率
合成器内部加倍)
0 dB衰减
40 dB衰减
90 MHz偏移
AD9361
参数1
TX监控器输入(TX_MON1,
TX_MON2)
最大输入电平
动态范围
准确度
LO频率合成器
LO频率阶跃
符号
最小值
典型值
最大值
件
测试条件/注释
4
66
1
dBm
dB
dB
2.4
Hz
2.4 GHz,40 MHz
参考时钟
积分相位噪声
800 MHz
0.13
° rms
2.4 GHz
0.37
° rms
5.5 GHz
0.59
° rms
100 Hz至100 MHz,
30.72 MHz参考时钟
(针对RF频率合成器
内部加倍)
100 Hz至100 MHz,
40 MHz参考时钟
100 Hz至100 MHz,
40 MHz参考时钟
(针对RF频率合成器
内部加倍)
REF_CLK要么为XTALP/
XTALN引脚的输入,
要么为直接连接
XTALN引脚的线路
参考时钟(REF_CLK)
输入
频率范围
信号电平
辅助转换器
ADC
分辨度
输入电压
最小值
最大值
DAC
分辨度
输出电压
最小值
最大值
输出电流
数字规格(CMOS)
逻辑输入
输入电压
高
低
输入电流
高
低
逻辑输出
输出电压
高
低
数字规格(LVDS)
逻辑输入
输入电压范围
输入差分电压阈值
接收机差分输入阻抗
19
10
50
80
1.3
MHz
MHz
V p-p
12
位
0.05
VDDA1P3_BB − 0.05
V
V
10
位
0.5
VDD_GPO − 0.3
10
V
V
mA
VDD_INTERFACE × 0.8
0
VDD_INTERFACE
VDD_INTERFACE × 0.2
−10
−10
+10
+10
VDD_INTERFACE × 0.8
VDD_INTERFACE × 0.2
825
−100
1575
+100
100
Rev. D | Page 5 of 36
晶振输入
外部振荡器
交流耦合外部振荡器
V
V
V
V
mV
mV
Ω
对中的各差分输入
AD9361
参数1
逻辑输出
输出电压
高
低
输出差分电压
输出失调电压
通用输出
输出电压
高
低
输出电流
SPI时序
SPI_CLK
周期
脉冲宽度
SPI_ENB建立至第一SPI_CLK
上升沿
最后SPI_CLK下降沿至
SPI_ENB保持
SPI_DI
数字输入建立至SPI_CLK
数据输入保持至SPI_CLK
SPI_CLK上升沿至输出数据延迟
4线模式
3线模式
总线周转时间,读
总线周转时间,读
数字数据时序(CMOS),
VDD_INTERFACE = 1.8 V
DATA_CLK时钟周期
DATA_CLK和FB_CLK脉冲宽度
TX数据
建立至FB_CLK
保持至FB_CLK
DATA_CLK至数据总线输出延迟
DATA_CLK至RX_FRAME延迟
脉冲宽度
使能
TXNRX
TXNRX建立至ENABLE
总线周转时间
RX前
RX后
容性负载
容性输入
符号
最小值
典型值
最大值
件
1375
mV
mV
mV
mV
1025
150
1200
VDD_GPO × 0.8
VDD_GPO × 0.2
10
测试条件/注释
可分75 mV个阶跃编程
V
V
mA
VDD_INTERFACE = 1.8 V
tCP
tMP
tSC
20
9
1
ns
ns
ns
tHC
0
ns
tS
tH
2
1
ns
ns
tCO
tCO
tHZM
tHZS
3
3
tH
0
8
8
tCO (max)
tCO (max)
ns
ns
ns
ns
tCP
tMP
16.276
tCP的45%
tCP的55%
ns
ns
1.5
1.0
ns
ns
ns
ns
1
0
0
0
tENPW
tTXNRXPW
tTXNRXSU
tCP
tCP
0
ns
ns
ns
tRPRE
tRPST
2 × tCP
2 × tCP
ns
ns
pF
pF
Rev. D | Page 6 of 36
61.44 MHz
TX_FRAME,P0_D和
P1_D
tSTX
tHTX
tDDRX
tDDDV
3
3
BBP驱动最后地址位后
AD9361驱动最后数据
位后
FDD独立ENSM模式
TDD ENSM模式
TDD模式
TDD模式
AD9361
参数1
数字数据时序(CMOS),
VDD_INTERFACE = 2.5 V
DATA_CLK时钟周期
DATA_CLK和FB_CLK脉冲宽度
TX数据
符号
最小值
tCP
tMP
16.276
tCP的45%
建立至FB_CLK
保持至FB_CLK
DATA_CLK至数据总线输出延迟
DATA_CLK至RX_FRAME延迟
脉冲宽度
使能
TXNRX
TXNRX建立至ENABLE
总线周转时间
RX前
RX后
容性负载
容性输入
数字数据时序(LVDS)
DATA_CLK时钟周期
DATA_CLK和FB_CLK脉冲宽度
TX数据
建立至FB_CLK
保持至FB_CLK
DATA_CLK至数据总线输出延迟
DATA_CLK至RX_FRAME延迟
脉冲宽度
使能
TXNRX
TXNRX建立至ENABLE
总线周转时间
RX前
RX后
容性负载
容性输入
电源特性
1.3 V电源电压
VDD_INTERFACE电源额定设置
CMOS
LVDS
VDD_INTERFACE容差
VDD_GPO电源标称设置
VDD_GPO容差
电流消耗
VDDx,休眠模式
VDD_GPO
tSTX
tHTX
tDDRX
tDDDV
1
0
0
0
tENPW
tTXNRXPW
tTXNRXSU
tCP
tCP
0
ns
ns
ns
tRPRE
tRPST
2 × tCP
2 × tCP
ns
ns
pF
pF
TDD模式
TDD模式
ns
ns
245.76 MHz
tCP的55%
1.25
1.25
ns
ns
ns
ns
1
典型值
最大值
件
测试条件/注释
ns
ns
61.44 MHz
tCP的55%
1.2
1.0
ns
ns
ns
ns
3
3
TX_FRAME,P0_D和
P1_D
tCP
tMP
4.069
tCP的45%
tSTX
tHTX
tDDRX
tDDDV
1
0
0.25
0.25
tENPW
tTXNRXPW
tTXNRXSU
tCP
tCP
0
ns
ns
ns
tRPRE
tRPST
2 × tCP
2 × tCP
ns
ns
pF
pF
3
3
1.267
1.3
1.2
1.8
−5
1.3
−5
180
50
FDD独立ENSM模式
TDD ENSM模式
TX_FRAME和TX_D
1.33
V
2.5
2.5
+5
3.3
+5
V
V
%
V
%
FDD独立ENSM模式
TDD ENSM模式
容差适用于任何电压设置
未用时,必须设为1.3 V
容差适用于任何电压设置
所有输入电流之和
无负载
指参数中多功能引脚的单个功能时,只会列出引脚名称中与规格相关的部分。要了解多功能引脚的全部引脚名称,请参见“引脚配置和功能描述”部分。
Rev. D | Page 7 of 36
AD9361
功耗——VDD_INTERFACE
表2.VDD_INTERFACE = 1.2 V
参数
休眠模式
1RX, 1TX, DDR
LTE10
单端口
双端口
LTE20
双端口
2RX, 2TX, DDR
LTE3
双端口
LTE10
单端口
双端口
LTE20
双端口
GSM
双端口
WiMAX 8.75
双端口
WiMAX 10
单端口
TDD RX
TDD TX
FDD
WiMAX 20
双端口
FDD
最小值
典型值
45
最大值
件
µA
测试条件/注释
加电,器件禁用
2.9
2.7
mA
mA
30.72 MHz数据时钟,CMOS
15.36 MHz数据时钟,CMOS
5.2
mA
30.72 MHz数据时钟,CMOS
1.3
mA
7.68 MHz数据时钟,CMOS
4.6
5.0
mA
mA
61.44 MHz数据时钟,CMOS
30.72 MHz数据时钟,CMOS
8.2
mA
61.44 MHz数据时钟,CMOS
0.2
mA
1.08 MHz数据时钟,CMOS
3.3
mA
20 MHz数据时钟,CMOS
0.5
3.6
3.8
mA
mA
mA
22.4 MHz数据时钟,CMOS
22.4 MHz数据时钟,CMOS
44.8 MHz数据时钟,CMOS
6.7
mA
44.8 MHz数据时钟,CMOS
表3.VDD_INTERFACE = 1.8 V
参数
休眠模式
1RX, 1TX, DDR
LTE10
单端口
双端口
LTE20
双端口
2RX, 2TX, DDR
LTE3
双端口
LTE10
单端口
双端口
LTE20
双端口
GSM
双端口
WiMAX 8.75
双端口
最小值
典型值
84
最大值
件
A
测试条件/注释
加电,器件禁用
4.5
4.1
mA
mA
30.72 MHz数据时钟,CMOS
15.36 MHz数据时钟,CMOS
8.0
mA
30.72 MHz数据时钟,CMOS
2.0
mA
7.68 MHz数据时钟,CMOS
8.0
7.5
mA
mA
61.44 MHz数据时钟,CMOS
30.72 MHz数据时钟,CMOS
14.0
mA
61.44 MHz数据时钟,CMOS
0.3
mA
1.08 MHz数据时钟,CMOS
5.0
mA
20 MHz数据时钟,CMOS
Rev. D | Page 8 of 36
AD9361
参数
WiMAX 10
单端口
TDD RX
TDD TX
FDD
WiMAX 20
双端口
FDD
P-P56
75 mV差分输出
300 mV差分输出
450 mV差分输出
最小值
典型值
最大值
件
测试条件/注释
0.7
5.6
6.0
mA
mA
mA
22.4 MHz数据时钟,CMOS
22.4 MHz数据时钟,CMOS
44.8 MHz数据时钟,CMOS
10.7
mA
44.8 MHz数据时钟,CMOS
14.0
35.0
47.0
mA
mA
mA
240 MHz数据时钟,LVDS
240 MHz数据时钟,LVDS
240 MHz数据时钟,LVDS
件
µA
测试条件/注释
加电,器件禁用
6.5
6.0
mA
mA
30.72 MHz数据时钟,CMOS
15.36 MHz数据时钟,CMOS
11.5
mA
30.72 MHz数据时钟,CMOS
3.0
mA
7.68 MHz数据时钟,CMOS
11.5
10.0
mA
mA
61.44 MHz数据时钟,CMOS
30.72 MHz数据时钟,CMOS
20.0
mA
61.44 MHz数据时钟,CMOS
0.5
mA
1.08 MHz数据时钟,CMOS
7.3
mA
20 MHz数据时钟,CMOS
1.3
8.0
8.7
mA
mA
mA
22.4 MHz数据时钟,CMOS
22.4 MHz数据时钟,CMOS
44.8 MHz数据时钟,CMOS
15.3
mA
44.8 MHz数据时钟,CMOS
26.0
45.0
58.0
mA
mA
mA
240 MHz数据时钟,LVDS
240 MHz数据时钟,LVDS
240 MHz数据时钟,LVDS
表4.VDD_INTERFACE = 2.5 V
参数
休眠模式
1RX, 1TX, DDR
LTE10
单端口
双端口
LTE20
双端口
2RX, 2TX, DDR
LTE3
双端口
LTE10
单端口
双端口
LTE20
双端口
GSM
双端口
WiMAX 8.75
双端口
WiMAX 10
单端口
TDD RX
TDD TX
FDD
WiMAX 20
双端口
FDD
P-P56
75 mV差分输出
300 mV差分输出
450 mV差分输出
最小值
典型值
150
最大值
Rev. D | Page 9 of 36
AD9361
功耗——VDDD1P3_DIG和VDDAx(全部1.3 V电源组合)
表5.800 MHz,TDD模式
参数
1RX
5 MHz带宽
10 MHz带宽
20 MHz带宽
2RX
5 MHz带宽
10 MHz带宽
20 MHz带宽
1TX
5 MHz带宽
7 dBm
−27 dBm
10 MHz带宽
7 dBm
−27 dBm
20 MHz带宽
7 dBm
−27 dBm
2TX
5 MHz带宽
7 dBm
−27 dBm
10 MHz带宽
7 dBm
−27 dBm
20 MHz带宽
7 dBm
−27 dBm
最小值
典型值
最大值
件
测试条件/注释
180
210
260
mA
mA
mA
连续RX
连续RX
连续RX
265
315
405
mA
mA
mA
连续RX
连续RX
连续RX
340
190
mA
mA
连续TX
连续TX
360
220
mA
mA
连续TX
连续TX
400
250
mA
mA
连续TX
连续TX
550
260
mA
mA
连续TX
连续TX
600
310
mA
mA
连续TX
连续TX
660
370
mA
mA
连续TX
连续TX
Rev. D | Page 10 of 36
AD9361
表6.TDD模式,2.4 GHz
参数
1RX
5 MHz带宽
10 MHz带宽
20 MHz带宽
2RX
5 MHz带宽
10 MHz带宽
20 MHz带宽
1TX
5 MHz带宽
7 dBm
−27 dBm
10 MHz带宽
7 dBm
−27 dBm
20 MHz带宽
7 dBm
−27 dBm
2TX
5 MHz带宽
7 dBm
−27 dBm
10 MHz带宽
7 dBm
−27 dBm
20 MHz带宽
7 dBm
−27 dBm
最小值
典型值
最大值
件
测试条件/注释
175
200
240
mA
mA
mA
连续RX
连续RX
连续RX
260
305
390
mA
mA
mA
连续RX
连续RX
连续RX
350
160
mA
mA
连续TX
连续TX
380
220
mA
mA
连续TX
连续TX
410
260
mA
mA
连续TX
连续TX
580
280
mA
mA
连续TX
连续TX
635
330
mA
mA
连续TX
连续TX
690
390
mA
mA
连续TX
连续TX
件
测试条件/注释
175
275
mA
mA
连续RX
连续RX
270
445
mA
mA
连续RX
连续RX
400
240
mA
mA
连续TX
连续TX
490
385
mA
mA
连续TX
连续TX
650
335
mA
mA
连续TX
连续TX
820
500
mA
mA
连续TX
连续TX
表7.TDD模式,5.5 GHz
参数
1RX
5 MHz带宽
40 MHz带宽
2RX
5 MHz带宽
40 MHz带宽
1TX
5 MHz带宽
7 dBm
−27 dBm
40 MHz带宽
7 dBm
−27 dBm
2TX
5 MHz带宽
7 dBm
−27 dBm
40 MHz带宽
7 dBm
−27 dBm
最小值
典型值
最大值
Rev. D | Page 11 of 36
AD9361
表8.FDD模式,800 MHz
参数
1RX, 1TX
5 MHz带宽
7 dBm
−27 dBm
10 MHz带宽
7 dBm
−27 dBm
20 MHz带宽
7 dBm
−27 dBm
2RX, 1TX
5 MHz带宽
7 dBm
−27 dBm
10 MHz带宽
7 dBm
−27 dBm
20 MHz带宽
7 dBm
−27 dBm
1RX, 2TX
5 MHz带宽
7 dBm
−27 dBm
10 MHz带宽
7 dBm
−27 dBm
20 MHz带宽
7 dBm
−27 dBm
2RX, 2TX
5 MHz带宽
7 dBm
−27 dBm
10 MHz带宽
7 dBm
−27 dBm
20 MHz带宽
7 dBm
−27 dBm
最小值
典型值
最大值
件
490
345
mA
mA
540
395
mA
mA
615
470
mA
mA
555
410
mA
mA
625
480
mA
mA
740
600
mA
mA
685
395
mA
mA
755
465
mA
mA
850
570
mA
mA
790
495
mA
mA
885
590
mA
mA
1020
730
mA
mA
Rev. D | Page 12 of 36
测试条件/注释
AD9361
表9.FDD模式,2.4 GHz
参数
1RX, 1TX
5 MHz带宽
7 dBm
−27 dBm
10 MHz带宽
7 dBm
−27 dBm
20 MHz带宽
7 dBm
−27 dBm
2RX, 1TX
5 MHz带宽
7 dBm
−27 dBm
10 MHz带宽
7 dBm
−27 dBm
20 MHz带宽
7 dBm
−27 dBm
1RX, 2TX
5 MHz带宽
7 dBm
−27 dBm
10 MHz带宽
7 dBm
−27dBm
20 MHz带宽
7 dBm
−27 dBm
2RX, 2TX
5 MHz带宽
7 dBm
−27 dBm
10 MHz带宽
7 dBm
−27 dBm
20 MHz带宽
7 dBm
−27 dBm
最小值
典型值
最大值
件
500
350
mA
mA
540
390
mA
mA
620
475
mA
mA
590
435
mA
mA
660
510
mA
770
620
mA
mA
mA
730
425
mA
mA
800
500
mA
mA
900
600
mA
mA
mA
820
515
mA
900
595
mA
mA
1050
740
mA
mA
Rev. D | Page 13 of 36
测试条件/注释
AD9361
表10.FDD模式,5.5 GHz
参数
1RX, 1TX
5 MHz带宽
7 dBm
−27 dBm
2RX, 1TX
5 MHz带宽
7 dBm
−27 dBm
1RX, 2TX
5 MHz带宽
7 dBm
−27 dBm
2RX, 2TX
5 MHz带宽
7 dBm
−27 dBm
最小值
典型值
最大值
件
550
385
mA
mA
645
480
mA
mA
805
480
mA
mA
895
575
mA
mA
Rev. D | Page 14 of 36
测试条件/注释
AD9361
绝对最大额定值
热阻
表11.
参数
VDDx至VSSx
VDD_INTERFACE至VSSx
VDD_GPO至VSSx
逻辑输入和输出至VSSx
输入电流至除电源引脚外的
任何引脚
RF输入(峰值功率)
TX监控器输入功率
(峰值功率)
封装功耗
最大结温(TJMAX)
工作温度范围
存储温度范围
评分
−0.3 V至+1.4 V
−0.3 V至+3.0 V
−0.3 V至+3.9 V
−0.3 V至VDD_INTERFACE + 0.3 V
±10 mA
2.5 dBm
9 dBm
θJA针对最差条件,即器件焊接在电路板上实现表贴封装。
表12.热阻
封装类型
144引脚
CSP_BGA
1
2
(TJMAX − TA)/θJA
110°C
−40°C至+85°C
−65°C至+150°C
3
4
气流
速度
(m/s)
0
1.0
2.5
θJA1, 2
32.3
29.6
27.8
θJC1, 3
9.6
θJB1, 4
20.2
ΨJT1, 2
0.27
0.43
0.57
件
°C/W
°C/W
°C/W
按照JEDEC JESD51-7,加上JEDEC JESD51-5 2S2P测试板。
按照JEDEC JESD51-2(静止空气)或JEDEC JESD51-6(流动空气)。
按照MIL-STD 883、方法1012.1。
按照JEDEC JESD51-8(静止空气)。
ESD警告
ESD(静电放电)敏感器件。
注意,超出上述绝对最大额定值可能会导致器件永久性
损坏。这只是额定最值,并不能以这些条件或者在任何其
它超出本技术规范操作章节中所示规格的条件下,推断器
件能否正常工作。长期在绝对最大额定值条件下工作会影
响器件的可靠性。
回流温度曲线
AD9361回流温度曲线依据的是JEDEC JESD20无铅器件标准。
最大回流温度为260°C。
Rev. D | Page 15 of 36
带电器件和电路板可能会在没有察觉的情况下放电。
尽管本产品具有专利或专有保护电路,但在遇到高
能量ESD时,器件可能会损坏。因此,应当采取适当
的ESD防范措施,以避免器件性能下降或功能丧失。
AD9361
引脚配置和功能描述
1
2
3
4
5
6
7
8
9
10
11
12
A
RX2A_N
RX2A_P
NC
VSSA
TX_MON2
VSSA
TX2A_N
TX2A_P
TX2B_N
TX2B_P
VDDA1P1_
TX_VCO
TX_EXT_
LO_IN
B
VSSA
VSSA
AUXDAC1
GPO_3
GPO_2
GPO_1
GPO_0
VDD_GPO
VDDA1P3_
TX_LO
VDDA1P3_
TX_VCO_
LDO
TX_VCO_
LDO_OUT
VSSA
AUXDAC2
TEST/
ENABLE
CTRL_IN0
CTRL_IN1
VSSA
VSSA
VSSA
VSSA
VSSA
VSSA
CTRL_IN3
CTRL_IN2
P0_D9/
TX_D4_P
P0_D7/
TX_D3_P
P0_D5/
TX_D2_P
P0_D3/
TX_D1_P
P0_D1/
TX_D0_P
VSSD
P0_D11/
TX_D5_P
P0_D8/
TX_D4_N
P0_D6/
TX_D3_N
P0_D4/
TX_D2_N
P0_D2/
TX_D1_N
P0_D0/
TX_D0_N
VSSD
P0_D10/
TX_D5_N
VSSD
FB_CLK_P
VSSD
VDDD1P3_
DIG
RX_
FRAME_N
RX_
FRAME_P
TX_
FRAME_P
FB_CLK_N
DATA_
CLK_P
VSSD
TX_
FRAME_N
VSSD
DATA_
CLK_N
VDD_
INTERFACE
C
RX2C_P
VSSA
D
RX2C_N
VDDA1P3_
RX_RF
VDDA1P3_
CTRL_OUT0
RX_TX
E
RX2B_P
VDDA1P3_
RX_LO
VDDA1P3_
TX_LO_ CTRL_OUT1 CTRL_OUT2 CTRL_OUT3
BUFFER
F
RX2B_N
VDDA1P3_
RX_VCO_
LDO
VSSA
G
RX_EXT_
LO_IN
RX_VCO_
LDO_OUT
VDDA1P1_
RX_VCO
CTRL_OUT6 CTRL_OUT5 CTRL_OUT4
CTRL_OUT7
EN_AGC
ENABLE
RX1B_P
VSSA
VSSA
TXNRX
SYNC_IN
VSSA
VSSD
J
RX1B_N
VSSA
VDDA1P3_
RX_SYNTH
SPI_DI
SPI_CLK
CLK_OUT
P1_D10/
RX_D5_N
P1_D9/
RX_D4_P
P1_D7/
RX_D3_P
P1_D5/
RX_D2_P
P1_D3/
RX_D1_P
P1_D1/
RX_D0_P
K
RX1C_P
VSSA
VDDA1P3_
TX_SYNTH
VDDA1P3_
BB
RESETB
SPI_ENB
P1_D8/
RX_D4_N
P1_D6/
RX_D3_N
P1_D4/
RX_D2_N
P1_D2/
RX_D1_N
P1_D0/
RX_D0_N
VSSD
L
RX1C_N
VSSA
VSSA
RBIAS
AUXADC
SPI_DO
VSSA
VSSA
VSSA
VSSA
VSSA
VSSA
M
RX1A_P
RX1A_N
NC
VSSA
TX_MON1
VSSA
TX1A_P
TX1A_N
TX1B_P
TX1B_N
XTALP
XTALN
ANALOG I/O
DIGITAL I/O
NO CONNECT
10453-002
H
P1_D11/
RX_D5_P
DC POWER
GROUND
图2.引脚配置(顶视图)
表13.引脚功能描述
引脚编号
A1, A2
类型1
I
引脚名称
RX2A_N, RX2A_P
A3, M3
A4, A6, B1, B2,
B12, C2, C7 to
C12, F3, H2,
H3, H6, J2, K2,
L2, L3, L7 to
L12, M4, M6
A5
A7, A8
A9, A10
NC
I
NC
VSSA
不连接。请勿连接到这些引脚。
模拟地。将这些引脚直接连接至印刷电路板上的VSSD数字地(一个接地层)。
I
O
O
TX_MON2
TX2A_N, TX2A_P
TX2B_N, TX2B_P
发射通道2功率监控输入。若未使用此引脚,则将其接地。
发射通道2差分输出A。将未使用的引脚连接至1.3 V。
发射通道2差分输出B。将未使用的引脚连接至1.3 V。
A11
A12
B3
B4至B7
B8
I
I
O
O
I
VDDA1P1_TX_VCO
TX_EXT_LO_IN
AUXDAC1
GPO_3 to GPO_0
VDD_GPO
B9
B10
B11
C1, D1
I
I
O
I
VDDA1P3_TX_LO
VDDA1P3_TX_VCO_LDO
TX_VCO_LDO_OUT
RX2C_P, RX2C_N
发射VCO电源输入。连接至B11。
外部发射LO输入。若未使用此引脚,则将其接地。
辅助DAC 1输出。
支持3.3 V的通用输出。
2.5 V至3.3 V电源,支持AUXDAC和通用输出引脚。不使用VDD_GPO电源时,
必须将该电源设为1.3 V。
发射LO 1.3 V电源输入。
发射VCO LDO 1.3 V电源输入。连接至B9。
发射VCO LDO输出。连接至A11,将一个1 µF旁路电容与一个1 Ω电阻串联接地。
接收通道2差分输入C。每个引脚都可作为单端输入或者结合形成差分对。
这些输入在3 GHz以上时性能会下降。将未使用的引脚接地。
说明
接收通道2差分输入A。或者,每个引脚都可作为单端输入或者结合形
成差分对。将未使用的引脚接地。
Rev. D | Page 16 of 36
AD9361
引脚编号
C3
C4
C5, C6, D5, D6
D2
D3
D4,E4至E6,
F4至F6,G4
类型1
O
I
I
I
I
O
D7
I/O
引脚名称
AUXDAC2
测试/使能
CTRL_IN0至CTRL_IN3
VDDA1P3_RX_RF
VDDA1P3_RX_TX
CTRL_OUT0,CTRL_OUT1至
CTRL_OUT3,CTRL_OUT6至
CTRL_OUT4,CTRL_OUT7
P0_D9/TX_D4_P
D8
I/O
P0_D7/TX_D3_P
D9
I/O
P0_D5/TX_D2_P
D10
I/O
P0_D3/TX_D1_P
D11
I/O
P0_D1/TX_D0_P
D12, F7, F9,
F11, G12, H7,
H10, K12
E1, F1
I
VSSD
I
RX2B_P, RX2B_N
E2
E3
E7
I
I
I/O
VDDA1P3_RX_LO
VDDA1P3_TX_LO_BUFFER
P0_D11/TX_D5_P
E8
I/O
P0_D8/TX_D4_N
E9
I/O
P0_D6/TX_D3_N
E10
I/O
P0_D4/TX_D2_N
E11
I/O
P0_D2/TX_D1_N
E12
I/O
P0_D0/TX_D0_N
说明
辅助DAC 2输出。
测试输入。正常工作时,将该引脚接地。
控制输入。用于手动RX增益和TX衰减控制。
接收器1.3 V电源输入。连接至D3。
1.3 V电源输入。
控制输出。这些引脚是多功能输出,具有可编程功能。
数字数据端口P0/发射差分输入总线。这是双功能引脚。对于P0_D9,
它充当12位双向并行CMOS电平数据端口0的一部分。或者,该引脚
(TX_D4_P)也可作为LVDS 6位TX差分输入总线(带内部LVDS端子)的一部分。
数字数据端口P0/发射差分输入总线。这是双功能引脚。对于P0_D7,
它充当12位双向并行CMOS电平数据端口0的一部分。或者,该引脚
(TX_D3_P)也可作为LVDS 6位TX差分输入总线(带内部LVDS端子)的一部分。
数字数据端口P0/发射差分输入总线。这是双功能引脚。对于P0_D5,
它充当12位双向并行CMOS电平数据端口0的一部分。或者,该引脚
(TX_D2_P)也可作为LVDS 6位TX差分输入总线(带内部LVDS端子)的一部分。
数字数据端口P0/发射差分输入总线。这是双功能引脚。对于P0_D3,
它充当12位双向并行CMOS电平数据端口0的一部分。或者,该引脚
(TX_D1_P)也可作为LVDS 6位TX差分输入总线(带内部LVDS端子)的一部分。
数字数据端口P0/发射差分输入总线。这是双功能引脚。对于P0_D1,
它充当12位双向并行CMOS电平数据端口0的一部分。或者,该引脚
(TX_D0_P)也可作为LVDS 6位TX差分输入总线(带内部LVDS端子)的一部分。
数字地。将这些引脚直接连接至印刷电路板上的VSSA模拟地(一个接地层)。
接收通道2差分输入B。每个引脚都可作为单端输入或者相结合从而形
成差分对。这些输入在3 GHz以上时性能会下降。将未使用的引脚接地。
接收LO 1.3 V电源输入。
1.3 V电源输入。
数字数据端口P0/发射差分输入总线。这是双功能引脚。对于P0_D11,
它充当12位双向并行CMOS电平数据端口0的一部分。或者,该引脚
(TX_D5_P)也可作为LVDS 6位TX差分输入总线(带内部LVDS端子)的一部分。
数字数据端口P0/发射差分输入总线。这是双功能引脚。对于P0_D8,
它充当12位双向并行CMOS电平数据端口0的一部分。或者,该引脚
(TX_D4_N)也可作为LVDS 6位TX差分输入总线(带内部LVDS端子)的一部分。
数字数据端口P0/发射差分输入总线。这是双功能引脚。对于P0_D6,
它充当12位双向并行CMOS电平数据端口0的一部分。或者,该引脚
(TX_D3_N)也可作为LVDS 6位TX差分输入总线(带内部LVDS端子)的一部分。
数字数据端口P0/发射差分输入总线。这是双功能引脚。对于P0_D4,
它充当12位双向并行CMOS电平数据端口0的一部分。或者,该引脚
(TX_D2_N)也可作为LVDS 6位TX差分输入总线(带内部LVDS端子)的一部分。
数字数据端口P0/发射差分输入总线。这是双功能引脚。对于P0_D2,
它充当12位双向并行CMOS电平数据端口0的一部分。或者,该引脚
(TX_D1_N)也可作为LVDS 6位TX差分输入总线(带内部LVDS端子)的一部分。
数字数据端口P0/发射差分输入总线。这是双功能引脚。对于P0_D0,
它充当12位双向并行CMOS电平数据端口0的一部分。或者,该引脚
(TX_D0_N)也可作为LVDS 6位TX差分输入总线(带内部LVDS端子)的一部分。
Rev. D | Page 17 of 36
AD9361
引脚编号
F2
F8
类型1
I
I/O
引脚名称
VDDA1P3_RX_VCO_LDO
P0_D10/TX_D5_N
F10, G10
I
FB_CLK_P, FB_CLK_N
F12
G1
G2
I
I
O
VDDD1P3_DIG
RX_EXT_LO_IN
RX_VCO_LDO_OUT
G3
G5
G6
G7, G8
I
I
I
O
VDDA1P1_RX_VCO
EN_AGC
使能
RX_FRAME_N, RX_FRAME_P
G9, H9
I
TX_FRAME_P, TX_FRAME_N
G11, H11
O
DATA_CLK_P, DATA_CLK_N
H1, J1
I
RX1B_P, RX1B_N
H4
I
TXNRX
H5
I
SYNC_IN
H8
I/O
P1_D11/RX_D5_P
H12
J3
J4
J5
J6
I
I
I
I
O
VDD_INTERFACE
VDDA1P3_RX_SYNTH
SPI_DI
SPI_CLK
CLK_OUT
J7
I/O
P1_D10/RX_D5_N
J8
I/O
P1_D9/RX_D4_P
J9
I/O
P1_D7/RX_D3_P
J10
I/O
P1_D5/RX_D2_P
说明
接收VCO LDO 1.3 V电源输入。连接至E2。
数字数据端口P0/发射差分输入总线。这是双功能引脚。对于P0_D10,
它充当12位双向并行CMOS电平数据端口0的一部分。或者,该引脚
(TX_D5_N)也可作为LVDS 6位TX差分输入总线(带内部LVDS端子)的一部分。
反馈时钟。这些引脚接收作为TX数据时钟的FB_CLK信号。在CMOS模
式中,以FB_CLK_P为输入,将FB_CLK_N接地。
1.3 V数字电源输入。
外部接收LO输入。若未使用此引脚,则将其接地。
接收VCO LDO输出。将该引脚直接连至G3,将一个1 µF旁路电容与一个
1 Ω电阻串联接地。
接收VCO电源输入。将该引脚只直接连至G2。
用于自动增益控制(AGC)的手动控制输入。
控制输入。该引脚使器件在各种运行状态之间移动。
接收数字数据帧输出信号。这些引脚发射RX_FRAME信号,用于指示RX
输 出 数 据 是 否 有 效 。 在 CMOS模 式 下 , 以 RX_FRAME_P为 输 出 , 使
RX_FRAME_N保持断开状态。
发射数字数据帧输入信号。这些引脚接收用于指示TX数据何时有效的
TX_FRAME信 号 。 在 CMOS模 式 中 , 以 TX_FRAME_P为 输 入 , 将
TX_FRAME_N接地。
接收数据时钟输出。这些引脚发射DATA_CLK信号,BBP用这些信号为
RX数 据 提 供 时 钟 。 在 CMOS模 式 下 , 以 DATA_CLK_P为 输 出 , 使
DATA_CLK_N保持断开状态。
接收通道1差分输入B。另外,每个引脚均可用作单端输入。这些输入
在3 GHz以上时性能会下降。将未使用的引脚接地。
使能状态机控制信号。该引脚控制数据端口总线方向。逻辑低电平选
择RX方向,逻辑高电平选择TX方向。
用于同步多个AD9361器件之间数字时钟的输入。若未使用此引脚,则
将其接地。
数字数据端口P1/接收差分输出总线。这是双功能引脚。对于P1_D11,
它充当12位双向并行CMOS电平数据端口1的一部分。或者,该引脚
(RX_D5_P)也可作为LVDS 6位RX差分输出总线(带内部LVDS端子)的一部分。
数字I/O引脚,1.2 V至2.5 V电源(LVDS模式下为1.8 V至2.5 V)。
1.3 V电源输入。
SPI串行数据输入。
SPI时钟输入。
输出时钟。可将该引脚配置为输出缓冲版外部输入时钟DCXO,或者输
出分频版内部ADC_CLK。
数字数据端口P1/接收差分输出总线。这是双功能引脚。对于P1_D10,
它充当12位双向并行CMOS电平数据端口1的一部分。或者,该引脚
(RX_D5_N)也可作为LVDS 6位RX差分输出总线(带内部LVDS端子)的一部分。
数字数据端口P1/接收差分输出总线。这是双功能引脚。对于P1_D9,
它充当12位双向并行CMOS电平数据端口1的一部分。或者,该引脚
(RX_D4_P)也可作为LVDS 6位RX差分输出总线(带内部LVDS端子)的一部分。
数字数据端口P1/接收差分输出总线。这是双功能引脚。对于P1_D7,
它充当12位双向并行CMOS电平数据端口1的一部分。或者,该引脚
(RX_D3_P)也可作为LVDS 6位RX差分输出总线(带内部LVDS端子)的一部分。
数字数据端口P1/接收差分输出总线。这是双功能引脚。对于P1_D5,
它充当12位双向并行CMOS电平数据端口1的一部分。或者,该引脚
(RX_D2_P)也可作为LVDS 6位RX差分输出总线(带内部LVDS端子)的一部分。
Rev. D | Page 18 of 36
AD9361
引脚编号
J11
类型1
I/O
引脚名称
P1_D3/RX_D1_P
J12
I/O
P1_D1/RX_D0_P
K1, L1
I
RX1C_P, RX1C_N
K3
K4
K5
K6
K7
I
I
I
I
I/O
VDDA1P3_TX_SYNTH
VDDA1P3_BB
RESETB
SPI_ENB
P1_D8/RX_D4_N
K8
I/O
P1_D6/RX_D3_N
K9
I/O
P1_D4/RX_D2_N
K10
I/O
P1_D2/RX_D1_N
K11
I/O
P1_D0/RX_D0_N
L4
L5
L6
M1, M2
I
I
O
I
RBIAS
AUXADC
SPI_DO
RX1A_P, RX1A_N
M5
M7, M8
M9, M10
M11, M12
I
O
O
I
TX_MON1
TX1A_P, TX1A_N
TX1B_P, TX1B_N
XTALP, XTALN
1
说明
数字数据端口P1/接收差分输出总线。这是双功能引脚。对于P1_D3,
它充当12位双向并行CMOS电平数据端口1的一部分。或者,该引脚
(RX_D1_P)也可作为LVDS 6位RX差分输出总线(带内部LVDS端子)的一部分。
数字数据端口P1/接收差分输出总线。这是双功能引脚。对于P1_D1,
它充当12位双向并行CMOS电平数据端口1的一部分。或者,该引脚
(RX_D0_P)也可作为LVDS 6位RX差分输出总线(带内部LVDS端子)的一部分。
接收通道1差分输入C。另外,每个引脚均可用作单端输入。这些输入
在3 GHz以上时性能会下降。将未使用的引脚接地。
1.3 V电源输入。
1.3 V电源输入。
异步复位。逻辑低电平复位器件。
SPI使能输入。将该引脚设为逻辑低电平,以使能SPI总线。
数字数据端口P1/接收差分输出总线。这是双功能引脚。对于P1_D8,
它充当12位双向并行CMOS电平数据端口1的一部分。或者,该引脚
(RX_D4_N)也可作为LVDS 6位RX差分输出总线(带内部LVDS端子)的一部分。
数字数据端口P1/接收差分输出总线。这是双功能引脚。对于P1_D6,
它充当12位双向并行CMOS电平数据端口1的一部分。或者,该引脚
(RX_D3_N)也可作为LVDS 6位RX差分输出总线(带内部LVDS端子)的一部分。
数字数据端口P1/接收差分输出总线。这是双功能引脚。对于P1_D4,
它充当12位双向并行CMOS电平数据端口1的一部分。或者,该引脚
(RX_D2_N)也可作为LVDS 6位RX差分输出总线(带内部LVDS端子)的一部分。
数字数据端口P1/接收差分输出总线。这是双功能引脚。对于P1_D2,
它充当12位双向并行CMOS电平数据端口1的一部分。或者,该引脚
(RX_D1_N)也可作为LVDS 6位RX差分输出总线(带内部LVDS端子)的一部分。
数字数据端口P1/接收差分输出总线。这是双功能引脚。对于P1_D0,
它充当12位双向并行CMOS电平数据端口1的一部分。或者,该引脚
(RX_D0_N)也可作为LVDS 6位RX差分输出总线(带内部LVDS端子)的一部分。
偏置输入参考。通过一个14.3 kΩ (1%容差)电阻将此引脚接地。
辅助ADC输入。若未使用此引脚,则将其接地。
4线模式的SPI串行数据输出,或者3线模式下的高Z。
接收通道1差分输入A。另外,每个引脚均可用作单端输入。将未使用
的引脚接地。
发射通道1功率监控输入。未使用此引脚时,将其接地。
发射通道1差分输出A。将未使用的引脚连接至1.3 V。
发射通道1差分输出B。将未使用的引脚连接至1.3 V。
参考频率晶振连接。使用晶振时,将其连接于这两个引脚之间。使用
外部时钟源时,将其连接至XTALN,使XTALP保持断开。
I为输入,O为输出,I/O为输入/输出,NC为未连接。
Rev. D | Page 19 of 36
AD9361
典型性能参数
800 MHz频段
0
4.0
–40°C
+25°C
+85°C
–10
3.0
–15
RX EVM (dB)
2.5
2.0
1.5
–20
–25
–35
0.5
–40
0
700
750
800
850
900
RF FREQUENCY (MHz)
–45
–75
–35
–30
–25
RX EVM (dB)
–20
–25
–30
–1
–35
–2
–80
–70
–60
–50
–40
–30
–20
–10
RX INPUT POWER (dBm)
–45
–90
10453-004
–90
–80
–70
–60
–50
–40
–30
–20
–10
RX INPUT POWER (dBm)
10453-007
–40
图7.RX EVM与RX输入功率的关系
(GSM模式,30.72 MHz REF_CLK,RF频率合成器内部加倍)
图4.RSSI误差与RX输入功率的关系
(LTE 10 MHz调制,折合至−50 dBm输入功率,800 MHz)
0
–40°C
+25°C
+85°C
–5
1
–40°C
+25°C
+85°C
RX EVM (dB)
–10
0
–15
–20
–2
–25
–3
–110 –100
–90
–80
–70
–60
–50
–40
–30
–20
RX INPUT POWER (dBm)
–10
10453-005
–1
–30
–72
–68
–64
–60
–56
–52
–48
–44
–40
–36
INTERFERER POWER LEVEL (dBm)
图8.RX EVM与干扰功率水平的关系
(LTE 10 MHz目标信号,PIN = −82 dBm,
5 MHz OFDM阻塞,7.5 MHz失调)
图5.RSSI误差与RX输入功率的关系
(Edge调制,折合至−50 dBm输入功率,800 MHz)
Rev. D | Page 20 of 36
–32
10453-008
RSSI ERROR (dB)
–40
–15
0
RSSI ERROR (dB)
–45
–40°C
+25°C
+85°C
–10
1
2
–50
–5
2
3
–55
0
3
–3
–100
–60
图6.RX EVM与RX输入功率的关系
(64 QAM LTE 10 MHz模式,19.2 MHz REF_CLK)
–40°C
+25°C
+85°C
4
–65
RX INPUT POWER (dBm)
图3.RX噪声系数与RF频率的关系
5
–70
10453-006
–30
1.0
10453-003
RX NOISE FIGURE (dB)
3.5
–40°C
+25°C
+85°C
–5
AD9361
0
20
–40°C
+25°C
+85°C
15
10
–4
IIP3 (dBm)
RX EVM (dB)
5
–8
0
–5
–40°C
+25°C
+85°C
–10
–12
–15
–54
–52
–50
–48
–46
–44
–42
–40
–38
–25
10453-009
–16
–56
–36
INTERFERER POWER LEVEL (dBm)
20
图9.RX EVM与干扰功率水平的关系
(LTE 10 MHz目标信号,PIN = -90 dBm,5 MHz OFDM阻塞,17.5 MHz失调)
44
52
RX GAIN INDEX
60
68
76
100
–40°C
+25°C
+85°C
90
80
10
70
IIP2 (dBm)
RX NOISE FIGURE (dB)
36
图12.三阶输入交调截点(IIP3)与增益指数的关系
(f1 = 1.45 MHz,f2 = 2.89 MHz,GSM模式)
14
12
28
10453-012
–20
8
6
–40°C
+25°C
+85°C
60
50
40
30
4
20
2
–35
–31
–27
–23
INTERFERER POWER LEVEL (dBm)
0
20
–100
–105
RX LO LEAKAGE (dBm)
RX GAIN (dB)
76
74
72
70
52
60
68
76
900
–40°C
+25°C
+85°C
–110
–115
–120
–125
750
800
850
900
RX LO FREQUENCY (MHz)
10453-011
68
66
700
44
图13.二阶输入交调截点(IIP2)与增益指数的关系
(f1 = 2.00 MHz,f2 = 2.01 MHz,GSM模式)
–40°C
+25°C
+85°C
78
36
RX GAIN INDEX
图10.RX噪声系数与干扰功率水平的关系
(Edge目标信号,PIN = −90 dBm,CW阻塞、3 MHz失调,增益指数 = 64)
80
28
10453-013
–39
10453-014
–43
10453-010
0
–47
10
图11.RX增益与RX LO频率的关系(增益指数 = 76,最大设置)
–130
700
750
800
850
RX LO FREQUENCY (MHz)
图14.RX本振(LO)泄漏与RX LO频率的关系
Rev. D | Page 21 of 36
AD9361
–20
–40
–60
–80
–100
2000
4000
6000
8000
10000
12000
FREQUENCY (MHz)
图15.LNA输入端的RX发射(直流至12 GHz,fLO_RX = 800 MHz,
LTE 10 MHz,fLO_TX = 860 MHz)
–5
0
5
10
15
FREQUENCY OFFSET (MHz)
图16.TX输出功率与TX LO频率的关系(衰减设置 = 0 dB,单音输出)
1.6
1.4
1.2
1.0
0.8
0.6
–100
0.4
–80
FREQUENCY OFFSET (MHz)
10453-019
TX LO FREQUENCY (MHz)
–60
0
900
–40
0.2
850
–20
–0.2
800
ATT 0dB
ATT 3dB
ATT 6dB
0
–0.4
750
10453-016
6.5
图19.TX频谱与相对载波频率的频率失调的关系
(fLO_TX = 800 MHz,GSM 下行链路,展示的是数字衰减变化,3 MHz范围)
20
0.3
0.2
0.1
0
–0.1
–0.2
–0.3
–0.4
10
20
30
40
ATTENUATION SETTING (dB)
图17.TX功率控制线性度误差与衰减设置的关系
50
0
ATT 0dB
ATT 3dB
ATT 6dB
–20
–40
–60
–80
–100
–120
–6
–4
–2
0
2
FREQUENCY OFFSET (MHz)
4
6
10453-020
TRANSMITTER OUTPUT POWER (dBm/30kHz)
–40°C
+25°C
+85°C
10453-017
STEP LINEARITY ERROR (dB)
–10
–0.6
7.0
0
–90
–0.8
7.5
–0.5
–80
–1.0
8.0
0.4
–70
–100
–15
TRANSMITTER OUTPUT POWER (dBm/30kHz)
TX OUTPUT POWER (dBm)
8.5
0.5
–60
20
9.0
6.0
700
–50
图18.TX频谱与相对载波频率的频率失调的关系
(fLO_TX = 800 MHz,LTE 10 MHz下行链路,展示的是数字衰减变化)
–40°C
+25°C
+85°C
9.5
–40
–1.2
10.0
–30
–1.4
0
–20
–1.6
–120
ATT 0dB
ATT 3dB
ATT 6dB
–10
10453-018
TRANSMITTER OUTPUT POWER (dBm/100kHz)
0
10453-015
POWER AT LNA INPUT (dBm/750kHz)
0
图20.TX频谱与相对载波频率的频率失调的关系
(fLO_TX = 800 MHz,GSM 下行链路,展示的是数字衰减变化,12 MHz范围)
Rev. D | Page 22 of 36
AD9361
0.30
–40°C
+25°C
+85°C
INTEGRATED PHASE NOISE (°rms)
–25
–35
–40
0
5
10
15
20
25
30
35
40
TX ATTENUATION SETTING (dB)
0.15
0.10
0.05
0
700
–30
–35
TX CARRIER AMPLITUDE (dBc)
–40°C
+25°C
+85°C
TX EVM (dB)
–30
–35
–40
–45
900
ATT 0, –40°C
ATT 25, –40°C
ATT 50, –40°C
ATT 0, +25°C
ATT 25, +25°C
ATT 50, +25°C
ATT 0, +85°C
ATT 25, +85°C
ATT 50, +85°C
–40
–45
–50
–55
–60
–65
10
20
30
40
50
–70
700
10453-022
0
TX ATTENUATION SETTING (dB)
–40°C
+25°C
+85°C
0.4
0.3
0.2
750
800
850
900
FREQUENCY (MHz)
10453-023
0.1
0
700
800
850
900
900
图25.TX载波抑制与频率的关系
TX SECOND-ORDER HARMONIC DISTORTION (dBc)
0.5
750
FREQUENCY (MHz)
图22.TX EVM与TX衰减设置的关系(fLO_TX = 800 MHz,
GSM调制,30.72 MHz REF_CLK,RF频率合成器内部加倍)
INTEGRATED PHASE NOISE (°RMS)
850
图24.集成TX LO相位噪声与频率的关系
(30.72 MHz REF_CLK,RF频率合成器内部加倍)
–20
–50
800
FREQUENCY (MHz)
图21.TX EVM与TX衰减设置的关系(fLO_TX = 800 MHz,
LTE 10 MHz,64 QAM调制,19.2 MHz REF_CLK)
–25
750
10453-025
–50
10453-021
–45
0.20
10453-026
TX EVM (dB)
–30
–40°C
+25°C
+85°C
0.25
10453-024
–20
图23.集成TX LO相位噪声与频率的关系(19.2 MHz REF_CLK)
–50
–55
ATT 0, –40°C
ATT 25, –40°C
ATT 50, –40°C
ATT 0, +25°C
ATT 25, +25°C
ATT 50, +25°C
ATT 0, +85°C
ATT 25, +85°C
ATT 50, +85°C
–60
–65
–70
–75
–80
700
750
800
850
FREQUENCY (MHz)
图26.TX二次谐波失真(HD2)与频率的关系
Rev. D | Page 23 of 36
–20
ATT 0, –40°C
ATT 25, –40°C
ATT 50, –40°C
–25
170
ATT 0, +85°C
ATT 25, +85°C
ATT 50, +85°C
ATT 0, +25°C
ATT 25, +25°C
ATT 50, +25°C
165
TX SNR (dB/Hz)
–30
–35
–40
–45
160
150
750
800
850
900
140
TX SINGLE SIDEBAND AMPLITUDE (dBc)
TX OIP3 (dBm)
–30
20
15
10
0
4
8
12
16
20
TX ATTENUATION SETTING (dB)
10453-028
5
0
图28.TX三阶输出交调截点(OIP3)与TX衰减设置的关系
170
160
155
150
0
3
6
9
12
15
TX ATTENUATION SETTING (dB)
10453-029
145
140
12
16
–35
ATT 0, –40°C
ATT 25, –40°C
ATT 50, –40°C
ATT 0, +25°C
ATT 25, +25°C
ATT 50, +25°C
20
900
ATT 0, +85°C
ATT 25, +85°C
ATT 50, +85°C
–40
–45
–50
–55
–60
–65
–70
700
750
800
850
FREQUENCY (MHz)
图31.TX单边带(SSB)抑制与频率的关系
(1.5375 MHz失调)
–40°C
+25°C
+85°C
165
8
图30.TX信噪比(SNR)与TX衰减设置的关系
(GSM目标信号,噪声于20 MHz失调条件下测量)
–40°C
+25°C
+85°C
25
4
TX ATTENUATION SETTING (dB)
图27.TX三次谐波失真(HD3)与频率的关系
30
0
10453-030
–60
700
10453-031
145
–55
FREQUENCY (MHz)
TX SNR (dB/Hz)
–40°C
+25°C
+85°C
155
–50
10453-027
TX THIRD-ORDER HARMONIC DISTORTION (dBc)
AD9361
图29.TX信噪比(SNR)与TX衰减设置的关系
(LTE 10 MHz目标信号,噪声于90 MHz失调条件下测量)
Rev. D | Page 24 of 36
AD9361
2.4 GHz频段
0
4.0
–5
–40°C
+25°C
+85°C
3.0
–10
2.5
RX EVM (dB)
RX NOISE FIGURE (dB)
3.5
2.0
1.5
–15
–20
1.0
–40°C
+25°C
+85°C
1900
2000
2100
2200
2300
2400
2500
2600
2700
RF FREQUENCY (MHz)
–64
–60
–56
–52
–48
–44
–40
–36
–32
–28
INTERFERER POWER LEVEL (dBm)
0
–40°C
+25°C
+85°C
4
–68
图35.RX EVM与干扰功率水平的关系(LTE 20 MHz目标信号,
PIN = -75 dBm,LTE 20 MHz阻塞,20 MHz失调)
图32.RX噪声系数与RF频率的关系
5
–30
–72
10453-032
0
1800
10453-035
–25
0.5
–5
–40°C
+25°C
+85°C
–10
2
RX EVM (dB)
RSSI ERROR (dB)
3
1
0
–15
–20
–1
–90
–80
–70
–60
–50
–40
–30
–20
–10
RX INPUT POWER (dBm)
–50
–45
–40
–35
–30
–25
–20
INTERFERER POWER LEVEL (dBm)
80
–40°C
+25°C
+85°C
–5
–55
图36.RX EVM与干扰功率水平的关系(LTE 20 MHz目标信号,
PIN = -75 dBm,LTE 20 MHz阻塞,40 MHz失调)
图33.RSSI误差与RX输入功率的关系
(折合至−50 dBm输入功率,2.4 GHz)
0
–30
–60
10453-033
–3
–100
10453-036
–25
–2
78
–40°C
+25°C
+85°C
–10
76
RX GAIN (dB)
–20
–25
74
72
–30
70
–35
–45
–75
–70
–65
–60
–55
–50
–45
–40
–35
–30
INPUT POWER (dBm)
–25
图34.RX EVM与输入功率的关系
(64 QAM LTE 20 MHz模式,40 MHz REF_CLK)
66
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
RX LO FREQUENCY (MHz)
图37.RX增益与RX LO频率的关系(增益指数 = 76,最大设置)
Rev. D | Page 25 of 36
10453-037
68
–40
10453-034
RX EVM (dB)
–15
AD9361
0
15
POWER AT LNA INPUT (dBm/750kHz)
–40°C
+25°C
+85°C
10
IIP3 (dBm)
5
0
–5
–10
–15
–25
20
28
36
44
52
60
68
76
RX GAIN INDEX
–80
–100
0
2000
4000
6000
8000
10000
12000
FREQUENCY (MHz)
10.0
–40°C
+25°C
+85°C
–40°C
+25°C
+85°C
9.5
TX OUTPUT POWER (dBm)
70
60
IIP2 (dBm)
–60
图41.LNA输入端的RX发射(直流至12 GHz,fLO_RX = 2.4 GHz,
LTE 20 MHz,fLO_TX = 2.46 GHz)
图38.三阶输入交调截点(IIP3)与增益指数的关系
(f1 = 30 MHz,f2 = 61 MHz)
80
–40
–120
10453-038
–20
–20
10453-041
20
50
40
9.0
8.5
8.0
7.5
7.0
30
28
36
44
52
60
68
76
RX GAIN INDEX
2000
2100
2200
2300
2400
2500
2600
2700
TX LO FREQUENCY (MHz)
0.5
–40°C
+25°C
+85°C
–40°C
+25°C
+85°C
0.4
STEP LINEARITY ERROR (dB)
–105
–110
–115
–120
–125
0.3
0.2
0.1
0
–0.1
–0.2
–0.3
–130
1800
1900
2000
2100
2200
2300
2400
2500
2600
RX LO FREQUENCY (MHz)
2700
图40.RX本振(LO)泄漏与RX LO频率的关系
–0.5
0
10
20
30
40
ATTENUATION SETTING (dB)
图43.TX功率控制线性度误差与衰减设置的关系
Rev. D | Page 26 of 36
50
10453-043
–0.4
10453-040
RX LO LEAKAGE (dBm)
1900
图42.TX输出功率与TX LO频率的关系(衰减设置 = 0 dB,单音输出)
图39.二阶输入交调截点(IIP2)与增益指数的关系
(f1 = 60 MHz,f2 = 61 MHz)
–100
6.0
1800
10453-039
20
20
10453-042
6.5
AD9361
–30
ATT 0dB
ATT 3dB
ATT6dB
–35
TX CARRIER AMPLITUDE (dBc)
–20
–40
–60
–80
–100
ATT 0, –40°C
ATT 25, –40°C
ATT 50, –40°C
–40
–45
–50
–55
–60
–10
–5
0
5
10
15
20
25
–70
1800
1900
–25
TX EVM (dB)
–30
–35
–40
0
5
10
15
20
25
30
35
40
ATTENUATION SETTING (dB)
10453-045
–45
–50
–55
0.3
0.2
2100
2200
2300
2400
2500
2600
2700
FREQUENCY (MHz)
10453-046
0.1
2000
2500
2600
2700
ATT 0, –40°C
ATT 25, –40°C
ATT 50, –40°C
ATT 0, +25°C
ATT 25, +25°C
ATT 50, +25°C
ATT 0, +85°C
ATT 25, +85°C
ATT 50, +85°C
–65
–70
–75
–80
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2700
FREQUENCY (MHz)
TX THIRD-ORDER HARMONIC DISTORTION (dBc)
–40°C
+25°C
+85°C
1900
2400
图48.TX二次谐波失真(HD2)与频率的关系
0.4
0
1800
2300
–60
图45.TX EVM与发射器衰减设置的关系
(40 MHz REF_CLK,LTE 20 MHz,64 QAM调制)
0.5
2200
图47.TX载波抑制与频率的关系
TX SECOND-ORDER HARMONIC DISTORTION (dBc)
–40°C
+25°C
+85°C
2100
FREQUENCY (MHz)
图44.TX频谱与相对载波频率于的频率失调的关系
(fLO_TX = 2.3 GHz,LTE 20 MHz下行链路,展示的是数字衰减变化)
–20
2000
10453-047
–15
10453-048
–20
FREQUENCY OFFSET (MHz)
INTEGRATED PHASE NOISE (°rms)
ATT 0, +85°C
ATT 25, +85°C
ATT 50, +85°C
10453-049
–120
–25
–50
ATT 0, +25°C
ATT 25, +25°C
ATT 50, +25°C
–65
10453-044
TRANSMITTER OUTPUT POWER (dBm/100kHz)
0
图46.集成TX LO相位噪声与频率的关系(40 MHz REF_CLK)
–20
–25
ATT 0, –40°C
ATT 25, –40°C
ATT 50, –40°C
ATT 0, +25°C
ATT 25, +25°C
ATT 50, +25°C
ATT 0, +85°C
ATT 25, +85°C
ATT 50, +85°C
–30
–35
–40
–45
–50
–55
–60
1800
1900
2000
2100
2200
2300
2400
2500
2600
FREQUENCY (MHz)
图49.TX三次谐波失真(HD3)与频率的关系
Rev. D | Page 27 of 36
AD9361
TX SINGLE SIDEBAND AMPLITUDE (dBc)
25
TX OIP3 (dBm)
–30
–40°C
+25°C
+85°C
20
15
10
0
0
4
8
12
16
20
TX ATTENUATION SETTING (dB)
10453-050
5
–40°C
+25°C
+85°C
158
156
152
150
148
146
144
142
0
3
6
9
12
15
TX ATTENUATION SETTING (dB)
10453-051
TX SNR (dB/Hz)
154
140
ATT 0, +25°C
ATT 25, +25°C
ATT 50, +25°C
ATT 0, +85°C
ATT 25, +85°C
ATT 50, +85°C
–40
–45
–50
–55
–60
–65
–70
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
FREQUENCY (MHz)
图52.TX单边带(SSB)抑制与频率的关系(3.075 MHz失调)
图50.TX三阶输出交调截点(OIP3)与TX衰减设置的关系
160
–35
ATT 0, –40°C
ATT 25, –40°C
ATT 50, –40°C
图51.TX信噪比(SNR)与TX衰减设置的关系
(LTE 20 MHz目标信号,噪声于90 MHz失调条件下测量)
Rev. D | Page 28 of 36
10453-052
30
AD9361
6
5
5
0
4
–5
RX EVM (dB)
3
–40°C
+25°C
+85°C
2
–10
–40°C
+25°C
+85°C
–15
–20
1
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
6.0
RF FREQUENCY (GHz)
–25
–72
10453-053
0
5.0
–67
–62
–57
–52
–47
–42
–37
–32
INTERFERER POWER LEVEL (dBm)
10453-056
RX NOISE FIGURE (dB)
5.5 GHz频段
图56.RX EVM与干扰功率水平的关系(WiMAX 40 MHz目标信号,
PIN = −74 dBm,WiMAX 40 MHz阻塞,40 MHz失调)
图53.RX噪声系数与RF频率的关系
5
5
4
0
2
–40°C
+25°C
+85°C
–5
RX EVM (dB)
RSSI ERROR (dB)
3
1
0
–10
–40°C
+25°C
+85°C
–15
–1
–80
–70
–60
–50
–40
–30
–20
–10
RX INPUT POWER (dBm)
–25
–60
10453-054
–3
–90
–55
–50
–45
–40
–35
–30
–25
INTERFERER POWER LEVEL (dBm)
图54.RSSI误差与RX输入功率的关系(折合至−50 dBm输入功率,5.8 GHz)
10453-057
–20
–2
图57.RX EVM与干扰功率水平的关系(WiMAX 40 MHz目标信号,
PIN = −74 dBm,WiMAX 40 MHz阻塞,80 MHz失调)
0
70
–5
–20
–25
66
64
–30
–40°C
+25°C
+85°C
62
–40
–74
–68
–62
–56
–50
–44
–38
RX INPUT POWER (dBm)
–32
–26
–20
10453-055
–35
图55.RX EVM与RX输入功率的关系(64 QAM WiMAX 40 MHz模式,
40 MHz REF_CLK,RF频率合成器内部加倍)
Rev. D | Page 29 of 36
60
5.0
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
FREQUENCY (GHz)
图58.RX增益与频率的关系(增益指数 = 76,最大设置)
6.0
10453-058
–15
RX GAIN (dB)
RX EVM (dB)
68
–40°C
+25°C
+85°C
–10
AD9361
20
0
5
–40°C
+25°C
+85°C
0
–5
–10
6
16
26
36
46
56
66
76
RX GAIN INDEX
–40
–60
–80
–100
–120
0
70
9
TX OUTPUT POWER (dBm)
10
IIP2 (dBm)
60
–40°C
+25°C
+85°C
40
30
20
25
30
–40°C
+25°C
+85°C
8
7
6
5
28
36
44
52
60
68
76
4
5.0
10453-060
20
RX GAIN INDEX
–92
0.4
–94
0.3
STEP LINEARITY ERROR (dB)
0.5
–96
–98
–40°C
+25°C
+85°C
–102
–104
–106
5.3
5.4
5.5.
5.6
5.7
5.8
5.9
6.0
0.2
0.1
0.0
–0.1
–0.2
–40°C
+25°C
+85°C
–0.3
–0.4
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
FREQUENCY (GHz)
5.9
6.0
10453-061
–108
–110
5.0
5.2
图63.TX输出功率与频率的关系(衰减设置 = 0 dB,单音)
–90
–100
5.1
FREQUENCY (GHz)
图60.二阶输入交调截点(IIP2)与增益指数的关系
(f1 = 70 MHz,f2 = 71 MHz)
RX LO LEAKAGE (dBm)
15
图62.LNA输入端的RX发射(直流至26 GHz,
fLO_RX = 5.8 GHz,WiMAX 40 MHz)
80
20
10
FREQUENCY (GHz)
图59.三阶输入交调截点(IIP3)与增益指数的关系
(f1 = 50 MHz,f2 = 101 MHz)
50
5
10453-063
–20
10453-059
–15
–20
图61.RX本振(LO)泄漏与频率的关系
–0.5
0
10
20
30
40
50
60
70
80
ATTENUATION SETTING (dB)
图64.TX功率控制线性度误差与衰减设置的关系
Rev. D | Page 30 of 36
90
10453-064
IIP3 (dBm)
10
10453-062
POWER AT LNA INPUT (dBm/150kHz)
15
AD9361
0
–10
–10
–20
TX CARRIER AMPLITUDE (dBc)
ATT 0dB
ATT 3dB
ATT 6dB
–30
–40
–50
–60
–70
–20
–30
–40
–50
–20
–10
0
10
20
30
40
50
–70
5.0
5.1
–34
–36
–40°C
+25°C
+85°C
4
6
8
10
TX ATTENUATION SETTING (dB)
10453-066
TX EVM (dB)
–32
2
0.7
0.6
0.5
0.4
–40°C
+25°C
+85°C
0.2
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
FREQUENCY (GHz)
6.0
5.7
5.8
5.9
6.0
ATT 0, –40°C
ATT 25, –40°C
ATT 50, –40°C
–55
ATT 0, +25°C
ATT 25, +25°C
ATT 50, +25°C
ATT 0, +85°C
ATT 25, +85°C
ATT 50, +85°C
–60
–65
–70
–75
–80
5.0
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
6.0
图69.TX二次谐波失真(HD2)与频率的关系
10453-067
0.1
5.1
5.6
FREQUENCY (GHz)
TX THIRD-ORDER HARMONIC DISTORTION (dBc)
0.8
0
5.0
5.5
–50
图66.TX EVM与TX衰减设置的关系(WiMAX 40 MHz,64 QAM调制,
fLO_TX = 5.495 GHz,40 MHz REF_CLK,RF频率合成器内部加倍)
0.3
5.4
图68.TX载波抑制与频率的关系
TX SECOND-ORDER HARMONIC DISTORTION (dBc)
–30
0
5.3
FREQUENCY (GHz)
图65.TX频谱与相对载波频率于的频率失调的关系
(fLO_TX = 5.8 GHz,WiMAX 40 MHz下行链路,展示的是数字衰减变化)
–38
5.2
10453-068
–30
10453-069
–40
FREQUENCY OFFSET (MHz)
INTEGRATED PHASE NOISE (°RMS)
ATT 0, +85°C
ATT 25, +85°C
ATT 50, +85°C
图67.集成TX LO相位噪声与频率的关系
(40 MHz REF_CLK,RF频率合成器内部加倍)
–10
–15
ATT 0, –40°C
ATT 25, –40°C
ATT 50, –40°C
ATT 0, +25°C
ATT 25, +25°C
ATT 50, +25°C
ATT 0, +85°C
ATT 25, +85°C
ATT 50, +85°C
–20
–25
–30
–35
–40
–45
–50
5.0
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
FREQUENCY (GHz)
图70.TX三次谐波失真(HD3)与频率的关系
Rev. D | Page 31 of 36
6.0
10453-070
–90
–50
–40
ATT 0, +25°C
ATT 25, +25°C
ATT 50, +25°C
ATT 0, –40°C
ATT 25, –40°C
ATT 50, –40°C
–60
–80
10453-065
TRANSMITTER OUTPUT POWER (dBm/1MHz)
0
AD9361
20
TX OIP3 (dBm)
16
12
–40°C
+25°C
+85°C
8
4
–4
0
4
8
12
16
20
TX ATTENUATION SETTING (dB)
10453-071
0
150
149
TX SNR (dB/Hz)
148
147
146
–40°C
+25°C
+85°C
144
0
3
6
9
12
15
TX ATTENUATION SETTING (dB)
10453-072
143
142
ATT 0, +25°C
ATT 25, +25°C
ATT 50, +25°C
ATT 0, +85°C
ATT 25, +85°C
ATT 50, +85°C
–40
–45
–50
–55
–60
–65
–70
5.0
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
6.0
FREQUENCY (GHz)
图73.TX单边带(SSB)抑制与频率的关系(7 MHz失调)
图71.TX三阶输出交调截点(OIP3)与TX衰减设置的关系
(fLO_TX = 5.8 GHz)
145
ATT 0, –40°C
ATT 25, –40°C
ATT 50, –40°C
–35
图72.TX信噪比(SNR)与TX衰减设置的关系
(WiMAX 40 MHz目标信号,噪声于90 MHz失调条件下测量,
fLO_TX = 5.745 GHz)
Rev. D | Page 32 of 36
10453-073
TX SINGLE SIDEBAND AMPLITUDE (dBc)
–30
AD9361
工作原理
一般特性
发射器
AD9361是一款高集成度的射频(RF)收发器,能够配置用于
广泛应用,在单个器件中集成了提供所有收发器功能的所
有必要RF、混合信号和数字模块。可编程能力使这款宽带
收发器可以适用于多种通信标准,包括频分双工(FDD)和
时分双工(TDD)系统。此外,这种可编程能力还允许通过
单通道12位并行数据端口、双通道12位并行数据端口或12
位低电压差分信令(LVDS)接口,与各种基带处理器(BBP)
相连接。
发射器部分含有两个相同的、独立控制的通道,提供了所
有必要的数字处理、混合信号和RF模块,可以实现一个直
接变频系统,同时共用一个通用型频率合成器。从BBP收
到的数字数据通过一个不带插值选项的完全可编程128抽
头FIR滤波器。FIR输出被发送到一系列插值滤波器,在输
出到达DAC之前,提供额外的滤波和数据速率插值处理。
每个12位DAC都拥有可调的采样速率。I和Q通道都馈入RF
模块以进行上变频。
AD9361还提供了自我校准和自动增益控制(AGC)系统,可
以在多种温度和输入信号条件下维持高性能水平。另外,
器件还包括几种测试模式,允许系统设计师插入测试音,
创建内部回送模式,以便用于在原型制作过程中对设计进
行调试,并针对具体应用优化无线电配置。
当转换为基带模拟信号时,I和Q信号将进行滤波,以移除
采样伪像,然后馈入上变频混频器。这里,I和Q信号将重
新组合起来,并在载波频率下进行调制,以便传输到输出
级。组合信号还会通过模拟滤波器,由它们提供额外的频
带整形处理,然后再将信号传输至输出放大器。每个发射
通道都提供了较宽的细粒度衰减调整范围,以帮助设计师
优化信噪比(SNR)。
接收器
接收器部分含有所有必要模块,用于接收RF信号并将其转
换成可供BBP使用的数字数据。有两个独立控制的通道,
可以接收来自不同源的信号,使器件可以用于多输入、多
输出(MIMO)系统,同时还可共享一个通用频率合成器。
每个通道都有三个输入,可以多路复用至信号链,使
AD9361可以用于搭载多个天线输入的分集系统。接收器是
一个直接变频系统,含有一个低噪声放大器(LNA),其后
是匹配相内(I)和正交(Q)放大器、混频器和频带整形滤波
器,该滤波器可以将接收到的信号下变频为基带,以便进
行数字化。外部LNA也可连接至该器件,给设计师带来了
极大的灵活性,使其可以针对具体应用定制接收器前端。
依据预编程增益指数映射,可实现增益控制,该映射将增
益分配于各模块之间,从而实现各电平下的性能优化。这
可以通过在快速或慢速模式下使能内部AGC来实现,也可
通过手动增益控制来实现,使BBP可以根据需要调整增
益。此外,各个通道还拥有独立的RSSI测量功能、直流失
调跟踪功能和进行自我校准的所有必要电路。
接收器包括12位、Σ-Δ ADC和可调采样速率,可以从收到
的信号产生数据流。数字化信号可以通过一系列抽取滤波
器和一个完全可编程的128抽头FIR滤波器(带有额外的抽取
设置)进一步调理。各个数字滤波器模块的采样速率可以通
过更改抽取系数来进行调整,从而产生需要的输出数据
速率。
每个发射通道内置自我校准电路,以支持自动实时调整。
发射器模块同时为每个通道提供一个TX监控器模块。该模
块监控发射器输出,并通过一个未使用的接收器通道将其
送回BBP,以实现信号监控。TX监控器模块仅在接收器空
闲的TDD模式下可用。
时钟输入选项
AD9361运行时使用的参考时钟可由两个不同时钟源提供。
第一个选择是使用一个专门的晶振,其频率在19 MHz和50 MHz
之前,连接于XTALP和XTALN引脚之间。第二个选择是将
一个外部振荡器或时钟分配器件(如AD9548)连接至XTALN
引脚(其中,XTALP引脚保持断开状态)。如果使用外部振
荡器,则频率可在10 MHz和80 MHz之间变化。该参考时钟
用于为频率合成器模块提供电源,这些模块在器件内部生
成所有数据时钟、采样时钟和本振。
利用数字可编程、数字控制晶振(DCXO)功能来调节片内
可变电容,则可消除晶振频率误差。该电容可以调谐系统
中的晶振频率变化,结果产生精度更高的参考时钟,而所
有其他频率就是从这些时钟生成的。该功能也可配合片内
温度检测功能使用,以便在正常运行中提供振荡器频率温
度补偿。
Rev. D | Page 33 of 36
AD9361
RX_FRAME信号
频率合成器
RF PLL
AD9361含有两个完全相同的频率合成器,用于为RF信号
路径生成需要的LO信号:一个用于接收器,一个用于发射
器。锁相环(PLL)频率合成器采用小数N设计,融入了完全
集成式电压控制振荡器(VCO)和环路滤波器。在TDD运行
模式下,频率合成器会根据RX和TX帧的需要开启和关闭。在
FDD模式下,TX PLL和RX PLL可以同时激活。这些PLL不
需要外部元件。
BB PLL
AD9361还含有一个基带PLL频率合成器,用于生成所有基
带相关时钟信号。这些包括ADC和DAC采样时钟、DATA_
CLK信号(见“数字数据接口”部分)和所有数据帧信号。该
PLL的编程频率范围为700 MHz至1400 MHz,具体取决于系
统的数据速率和采样速率要求。
数字数据接口
AD9361数据接口采用并行数据端口(P0和P1)来在器件和
BBP之间传输数据。数据端口可以配置为单端CMOS格式
或差分LVDS格式。这两种格式都可以配置为多种方式,
以满足数据排序和数据端口连接的系统需求。具体包括单
端口数据总线、双端口数据总线、单数据速率、双数据速
率和各种数据排序组合,以在适当的时间将来自不同通道
的数据传过总线。
总线传输是通过简单的硬件握手信令来控制的。两个端口
可以工作于双向(TDD)模式或全双工(FDD)模式,在后一
种模式下,一半位数用于发射数据、一半用于接收数据。
接口也可配置为,只将其中一个数据端口用于不需要高数
据速率而且倾向于使用较少接口引脚的应用。
DATA_CLK信号
RX数据提供DATA_CLK信号,BBP可以在接收数据时使用
后者。DATA_CLK可以设为提供单数据速率(SDR)时序的
速率(其中,数据在各上升时钟沿采样),也可设为提供双
数据速率(DDR)时序(其中,同时在上升沿和下降沿捕获数
据)。该时序适用于使用单端口或两个端口的运行模式。
FB_CLK信号
对于发射数据,接口以FB_CLK信号作为时序参考。对于
突发控制信号,FB_CLK允许源与上升沿捕获时序同步,
而对于发射信号突发,则允许与上升沿(SDR模式)或双沿
捕 获 (DDR模 式 )时 序 同 步 。 FB_CLK信 号 必 须 具 有 与
DATA_CLK的频率和占空比。
每 当 接 收 器 输 出 有 效 数 据 时 , 器 件 都 会 生 成 一 个 RX_
FRAME输出信号。该信号有两个模式:电平模式(RX_
FRAME在 数 据 有 效 期 间 保 持 高 电 平 )和 脉 冲 模 式 (RX_
FRAME以50%的占空比脉动)。类似地,BBP必须提供一个
TX_FRAME信号,以上升沿来指示有效数据传输的开始。
与RX_FRAME相似,TX_FRAME信号可能在整个突发过程
中保持高电平,或者,可能以50%的占空比脉动。
使能状态机
AD9361收发器包括一个使能状态机(ENSM),允许对器件
的当前状态进行实时控制。在正常运行过程中,器件可以
置于多种不同状态,包括
•
•
•
•
•
•
待机—节能,频率合成器被禁用
休眠—待机,所有时钟/BB PLL被禁用
TX—TX信号链被使能
RX—RX信号链被使能
FDD—TX和RX信号链被使能
报警—频率合成器被使能
ENSM有两种可能的控制方法:SPI控制和引脚控制。
SPI控制模式
在SPI控制模式下,通过写SPI寄存器,从当前状态进入下
一状态,从而实现对ENSM的异步控制。SPI控制被认为与
DATA_CLK异步,因为SPI_CLK可能派生自一个不同的参
考时钟,而且仍然能正常工作。当不需要对频率合成器进
行实时控制时,推荐采用SPI控制ENSM法。只要BBIC能够
精确执行SPI写操作,SPI控制就可以用于实时控制。
引脚控制模式
在引脚控制模式下,ENABLE引脚和TXNRX引脚的使能功
能允许对当前状态进行实时控制。ENSM支持TDD或FDD
运行模式,具体取决于相应SPI寄存器的配置。如果BBIC
有可以实时控制的额外控制输出,允许用一个简单的双线
接口来控制器件状态,则建议使用ENABLE和TXNRX引脚
控制方法。为了使ENSM的当前状态进入下一状态,可以
通过一个脉冲(边沿在内部检测)或电平来鸡翅ENABLE引脚
的使能功能。
使用脉冲时,其最小脉冲宽度必须为一个FB_CLK周期。
在电平模式下,ENABLE和TXNRX引脚同样由AD9361检测
其边沿,而且必须符合相同的最小脉冲宽度要求,即一个
FB_CLK周期。
Rev. D | Page 34 of 36
AD9361
在FDD模式下,ENABLE和TXNRX引脚必须重新映射,作
为实时RX和TX数据传输控制信号。在该模式下,ENABLE
引脚使能或禁用接收信号路径,TXNRX引脚使能或禁用发
射信号路径。在该模式下,ENSM将从系统中移除,以便
由这些引脚控制所有数据流。
SPI接口
AD9361通过一个串行外设接口(SPI)与BBP通信。该接口可
以配置为4线接口,带有专门的接收和发射端口,也可以
配置为3线接口,带一个双向数据通信端口。该总线允许
BBP通过一种简单地址数据串行总线协议,设置所有器件
控制参数。
写命令遵循一种24位格式。前6位用于设置总线方向和需
要传输的字节数。接下来的10位数据的写入地址。最后8
位是将被传输至指定寄存器地址(MSB至LSB)的数据。
AD9361还支持LSB优先格式,允许命令以LSB至MSB格式
写入。在该模式下,对于多字节写命令,寄存器地址将
递增。
读命令遵循相似的格式,区别在于,前16位在SPI_DI引脚
上传输,最后8位从AD9361中读取,如果是4线模式,则在
SPI_DO引脚上完成,如果是3线模式,则在SPI_DI引脚上
完成。
辅助转换器
AUXADC
AD9361含有一个辅助ADC,可以用来监控温度、功率输
出等系统功能。转换器为12位宽,输入范围为0 V至1.25 V。
使能时,ADC处于自由运行状态。SPI读操作提供在ADC
输出端锁存的最后值。借助位于ADC之前的一个多路复用
器,用户可以在AUXADC输入引脚与内置温度传感器之间
进行选择。
AUXDAC1和AUXDAC2
AD9361含有两个完全相同的辅助DAC,可以提供功率放
大器(PA)偏置或其他系统功能。辅助DAC为10位宽,输出
电压范围为0.5 V至VDD_GPO − 0.3 V,电流驱动为10 mA,
可以通过内部使能状态机直接控制。
AD9361的供电
AD9361必须通过以下三种电源供电:模拟电源(VDDD1P3_
DIG/VDDAx = 1.3 V)、接口电源(VDD_INTERFACE = 1.8 V)
和GPO电源(VDD_GPO = 3.3 V)。
对于要求优化噪声性能的应用,建议用低噪声、低压差
(LDO)稳压器分离和提供1.3 V电源。图74展示的是建议方法。
3.3V
控制引脚
ADP2164
1.8V
控制输入(CTRL_IN[3:0])
ADP1755
1.3V_A
ADP1755
1.3V_B
图74.面向AD9361的低噪声电源解决方案
对于注重电路板空间并且最佳噪声性能不构成绝对要求的
应用,1.3 V模块电轨可以直接由一个开关提供,并且可以
采取一种集成程度更高的电源管理装置(PMU)。图75显示
了这种方法。
AD9361提供4个边沿检测控制输入引脚。在手动增益模式
下,BBP可以用这些引脚来实时更改增益表索引。在发射
模式下,BBP可以使用两个这些引脚来实时更改发射增益。
GPO引脚(GPO_3至GPO_0)
AD9361提供4个支持3.3 V的通用逻辑输出引脚:GPO_3、
GPO_2、GPO_1和GPO_0。这些引脚可以用于通过AD9361
SPI总线控制其他外设器件,比如稳压器、开关等,或者,
也可充当内部AD9361状态机的从机。
Rev. D | Page 35 of 36
ADP5040
1.2A
BUCK
ADP1755
1.3V
LDO
VDDD1P3_DIG/VDDAx
AD9361
300mA
LDO
1.8V
300mA
LDO
3.3V
VDD_INTERFACE
VDD_GPO
图75.面向AD9361的空间优化型电源解决方案
10453-075
AD9361提供8个同步实时输出信号,用作BBP的中断。这
些输出可以配置为输出一些内部设置和测量值,BBP在监
控收发器在不同情况下的性能时可以使用这些设置和测量
值。控制输出指针寄存器选择将哪些信息输出到这些引
脚,而控制输出使能寄存器则决定BBP将激活哪些信号以
便监控。用于手动增益模式的信号、校准标志、状态机状
态和ADC输出都是可以在这些引脚上监控的部分输出。
10453-074
控制输出(CTRL_OUT[7:0])
AD9361
封装和订购信息
外形尺寸
A1 BALL
CORNER
10.10
10.00 SQ
9.90
A1 BALL
CORNER
12 11 10 9 8
7 6
5
4
3
2
1
A
B
C
D
8.80 SQ
E
F
G
H
0.80
J
K
L
M
0.60
REF
TOP VIEW
BOTTOM VIEW
DETAIL A
1.70 MAX
DETAIL A
1.00 MIN
0.32 MIN
0.50
COPLANARITY
0.45
0.12
0.40
BALL DIAMETER
COMPLIANT TO JEDEC STANDARDS MO-275-EEAB-1.
11-18-2011-A
SEATING
PLANE
图76.144引脚芯片级封装球栅阵列[CSP_BGA]
(BC-144-7)
图示尺寸单位:毫米
订购指南
型号1
AD9361BBCZ
AD9361BBCZ-REEL
1
温度范围
−40°C至+85°C
−40°C至+85°C
封装描述
144引脚CSP_BGA封装
144引脚CSP_BGA封装
Z = 符合RoHS标准的器件。
©2013 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D10453sc-0-11/13(D)
Rev. D | Page 36 of 36
封装选项
BC-144-7
BC-144-7
AD9361
封装和订购信息
外形尺寸
A1 BALL
CORNER
10.10
10.00 SQ
9.90
A1 BALL
CORNER
12 11 10 9 8
7 6
5
4
3
2
1
A
B
C
D
8.80 SQ
E
F
G
H
0.80
J
K
L
M
0.60
REF
TOP VIEW
BOTTOM VIEW
DETAIL A
1.70 MAX
DETAIL A
1.00 MIN
0.32 MIN
0.50
COPLANARITY
0.45
0.12
0.40
BALL DIAMETER
COMPLIANT TO JEDEC STANDARDS MO-275-EEAB-1.
11-18-2011-A
SEATING
PLANE
图76.144引脚芯片级封装球栅阵列[CSP_BGA]
(BC-144-7)
图示尺寸单位:毫米
订购指南
型号1
AD9361BBCZ
AD9361BBCZ-REEL
1
温度范围
−40°C至+85°C
−40°C至+85°C
封装描述
144引脚CSP_BGA封装
144引脚CSP_BGA封装
Z = 符合RoHS标准的器件。
©2013 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D10453sc-0-11/13(D)
Rev. D | Page 36 of 36
封装选项
BC-144-7
BC-144-7
AD9361
封装和订购信息
外形尺寸
A1 BALL
CORNER
10.10
10.00 SQ
9.90
A1 BALL
CORNER
12 11 10 9 8
7 6
5
4
3
2
1
A
B
C
D
8.80 SQ
E
F
G
H
0.80
J
K
L
M
0.60
REF
TOP VIEW
BOTTOM VIEW
DETAIL A
1.70 MAX
DETAIL A
1.00 MIN
0.32 MIN
0.50
COPLANARITY
0.45
0.12
0.40
BALL DIAMETER
COMPLIANT TO JEDEC STANDARDS MO-275-EEAB-1.
11-18-2011-A
SEATING
PLANE
图76.144引脚芯片级封装球栅阵列[CSP_BGA]
(BC-144-7)
图示尺寸单位:毫米
订购指南
型号1
AD9361BBCZ
AD9361BBCZ-REEL
1
温度范围
−40°C至+85°C
−40°C至+85°C
封装描述
144引脚CSP_BGA封装
144引脚CSP_BGA封装
Z = 符合RoHS标准的器件。
©2013 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D10453sc-0-11/13(D)
Rev. D | Page 36 of 36
封装选项
BC-144-7
BC-144-7
RF Agile Transceiver
AD9361
Data Sheet
FEATURES
FUNCTIONAL BLOCK DIAGRAM
RX1B_P,
RX1B_N
AD9361
RX1A_P,
RX1A_N
ADC
RX1C_P,
RX1C_N
RX2A_P,
RX2A_N
ADC
RX2C_P,
RX2C_N
RX LO
TX_MON1
TX LO
TX1A_P,
TX1A_N
DAC
DATA INTERFACE
RX2B_P,
RX2B_N
P0_[D11:D0]/
TX_[D5:D0]
P1_[D11:D0]/
RX_[D5:D0]
TX1B_P,
TX1B_N
TX_MON2
TX2A_P,
TX2A_N
SPI
CTRL
DAC
TX2B_P,
TX2B_N
DAC
DAC
ADC
CTRL
GPO
RADIO
SWITCHING
PLLs
CLK_OUT
AUXADC AUXDACx XTALP XTALN
NOTES
1. SPI, CTRL, P0_[D11:D0]/TX_[D5:D0], P1_[D11:D0]/RX_[D5:D0],
AND RADIO SWITCHING CONTAIN MULTIPLE PINS.
APPLICATIONS
Point to point communication systems
Femtocell/picocell/microcell base stations
General-purpose radio systems
10453-001
RF 2 × 2 transceiver with integrated 12-bit DACs and ADCs
Band: 70 MHz to 6.0 GHz
Supports TDD and FDD operation
Tunable channel bandwidth: <200 kHz to 56 MHz
Dual receivers: 6 differential or 12 single-ended inputs
Superior receiver sensitivity with a noise figure of 2 dB at
800 MHz local oscillator (LO)
RX gain control
Real-time monitor and control signals for manual gain
Independent automatic gain control
Dual transmitters: 4 differential outputs
Highly linear broadband transmitter
TX EVM: ≤−40 dB
TX noise: ≤−157 dBm/Hz noise floor
TX monitor: ≥66 dB dynamic range with 1 dB accuracy
Integrated fractional-N synthesizers
2.4 Hz maximum LO step size
Multichip synchronization
CMOS/LVDS digital interface
Figure 1.
GENERAL DESCRIPTION
The AD9361 is a high performance, highly integrated radio
frequency (RF) Agile Transceiver™ designed for use in 3G and 4G
base station applications. Its programmability and wideband
capability make it ideal for a broad range of transceiver applications.
The device combines a RF front end with a flexible mixed-signal
baseband section and integrated frequency synthesizers,
simplifying design-in by providing a configurable digital interface
to a processor. The AD9361 operates in the 70 MHz to 6.0 GHz
range, covering most licensed and unlicensed bands. Channel
bandwidths from less than 200 kHz to 56 MHz are supported.
The two independent direct conversion receivers have state-of-theart noise figure and linearity. Each receive (RX) subsystem includes
independent automatic gain control (AGC), dc offset correction,
quadrature correction, and digital filtering, thereby eliminating
the need for these functions in the digital baseband. The AD9361
also has flexible manual gain modes that can be externally
controlled. Two high dynamic range ADCs per channel digitize
the received I and Q signals and pass them through configurable
decimation filters and 128-tap finite impulse response (FIR) filters
to produce a 12-bit output signal at the appropriate sample rate.
Rev. D
The transmitters use a direct conversion architecture that
achieves high modulation accuracy with ultralow noise. This
transmitter design produces a best in class TX EVM of <−40 dB,
allowing significant system margin for the external PA selection.
The on-board transmit (TX) power monitor can be used as a
power detector, enabling highly accurate TX power measurements.
The fully integrated phase-locked loops (PLLs) provide low
power fractional-N frequency synthesis for all receive and
transmit channels. Channel isolation, demanded by frequency
division duplex (FDD) systems, is integrated into the design.
All VCO and loop filter components are integrated.
The core of the AD9361 can be powered directly from a 1.3 V
regulator. The IC is controlled via a standard 4-wire serial port
and four real-time I/O control pins. Comprehensive power-down
modes are included to minimize power consumption during
normal use. The AD9361 is packaged in a 10 mm × 10 mm,
144-ball chip scale package ball grid array (CSP_BGA).
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
©2013 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com
AD9361
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Theory of Operation ...................................................................... 33
Applications ....................................................................................... 1
General......................................................................................... 33
Functional Block Diagram .............................................................. 1
Receiver........................................................................................ 33
General Description ......................................................................... 1
Transmitter .................................................................................. 33
Revision History ............................................................................... 2
Clock Input Options .................................................................. 33
Specifications..................................................................................... 3
Synthesizers ................................................................................. 34
Current Consumption—VDD_Interface .................................. 8
Digital Data Interface................................................................. 34
Current Consumption—VDDD1P3_DIG and VDDAx
(Combination of all 1.3 V Supplies)......................................... 10
Enable State Machine ................................................................. 34
Absolute Maximum Ratings ..................................................... 15
Control Pins ................................................................................ 35
Reflow Profile .............................................................................. 15
GPO Pins (GPO_3 to GPO_0) ................................................. 35
Thermal Resistance .................................................................... 15
Auxiliary Converters .................................................................. 35
ESD Caution ................................................................................ 15
Powering the AD9361................................................................ 35
Pin Configuration and Function Descriptions ........................... 16
Packaging and Ordering Information ......................................... 36
Typical Performance Characteristics ........................................... 20
Outline Dimensions ................................................................... 36
800 MHz Frequency Band......................................................... 20
Ordering Guide .......................................................................... 36
SPI Interface ................................................................................ 35
2.4 GHz Frequency Band .......................................................... 25
5.5 GHz Frequency Band .......................................................... 29
REVISION HISTORY
11/13—Rev. C to Rev. D
Changes to Ordering Guide .......................................................... 36
9/13—Revision C: Initial Version
Rev. D | Page 2 of 36
Data Sheet
AD9361
SPECIFICATIONS
Electrical characteristics at VDD_GPO = 3.3 V, VDD_INTERFACE = 1.8 V, and all other VDDx pins = 1.3 V, TA = 25°C, unless otherwise noted.
Table 1.
Parameter 1
RECEIVERS, GENERAL
Center Frequency
Gain
Minimum
Maximum
Gain Step
Received Signal Strength
Indicator
Range
Accuracy
RECEIVERS, 800 MHz
Noise Figure
Third-Order Input Intermodulation
Intercept Point
Second-Order Input
Intermodulation Intercept Point
Local Oscillator (LO) Leakage
Quadrature
Gain Error
Phase Error
Modulation Accuracy (EVM)
Input S11
RX1 to RX2 Isolation
RX1A to RX2A, RX1C to RX2C
RX1B to RX2B
RX2 to RX1 Isolation
RX2A to RX1A, RX2C to RX1C
RX2B to RX1B
RECEIVERS, 2.4 GHz
Noise Figure
Third-Order Input Intermodulation
Intercept Point
Second-Order Input
Intermodulation Intercept Point
Local Oscillator (LO) Leakage
Quadrature
Gain Error
Phase Error
Modulation Accuracy (EVM)
Input S11
RX1 to RX2 Isolation
RX1A to RX2A, RX1C to RX2C
RX1B to RX2B
RX2 to RX1 Isolation
RX2A to RX1A, RX2C to RX1C
RX2B to RX1B
Symbol
Min
Typ
70
Max
Unit
6000
MHz
Test Conditions/
Comments
0
74.5
73.0
72.0
dB
dB
dB
dB
65.5
1
dB
dB
100
±2
dB
dB
NF
IIP3
2
−18
dB
dBm
Maximum RX gain
Maximum RX gain
IIP2
40
dBm
Maximum RX gain
−122
dBm
At RX front-end input
0.2
0.2
−42
−10
%
Degrees
dB
dB
70
55
dB
dB
70
55
dB
dB
NF
IIP3
3
−14
dB
dBm
Maximum RX gain
Maximum RX gain
IIP2
45
dBm
Maximum RX gain
−110
dBm
At receiver front-end
input
0.2
0.2
−42
−10
%
Degrees
dB
dB
65
50
dB
dB
65
50
dB
dB
At 800 MHz
At 2300 MHz (RX1A, RX2A)
At 2300 MHz (RX1B,
RX1C, RX2B, RX2C)
At 5500 MHz (RX1A, RX2A)
RSSI
Rev. D | Page 3 of 36
19.2 MHz reference clock
40 MHz reference clock
AD9361
Parameter 1
RECEIVERS, 5.5 GHz
Noise Figure
Third-Order Input Intermodulation
Intercept Point
Second-Order Input
Intermodulation Intercept Point
Local Oscillator (LO) Leakage
Quadrature
Gain Error
Phase Error
Modulation Accuracy (EVM)
Input S11
RX1A to RX2A Isolation
RX2A to RX1A Isolation
TRANSMITTERS—GENERAL
Center Frequency
Power Control Range
Power Control Resolution
TRANSMITTERS, 800 MHz
Output S22
Maximum Output Power
Modulation Accuracy (EVM)
Third-Order Output
Intermodulation Intercept Point
Carrier Leakage
Noise Floor
Isolation
TX1 to TX2
TX2 to TX1
TRANSMITTERS, 2.4 GHz
Output S22
Maximum Output Power
Modulation Accuracy (EVM)
Third-Order Output Intermodulation Intercept Point
Carrier Leakage
Data Sheet
Symbol
Noise Floor
Isolation
TX1 to TX2
TX2 to TX1
Typ
Max
Unit
Test Conditions/
Comments
NF
IIP3
3.8
−17
dB
dBm
Maximum RX gain
Maximum RX gain
IIP2
42
dBm
Maximum RX gain
−95
dBm
At RX front-end input
0.2
0.2
−37
%
Degrees
dB
−10
52
52
dB
dB
dB
70
OIP3
OIP3
Noise Floor
Isolation
TX1 to TX2
TX2 to TX1
TRANSMITTERS, 5.5 GHz
Output S22
Maximum Output Power
Modulation Accuracy (EVM)
Third-Order Output
Intermodulation Intercept Point
Carrier Leakage
Min
OIP3
6000
40 MHz reference clock
(doubled internally for
RF synthesizer)
90
0.25
MHz
dB
dB
−10
8
−40
23
dB
dBm
dB
dBm
1 MHz tone into 50 Ω load
19.2 MHz reference clock
−50
−32
−157
dBc
dBc
dBm/Hz
0 dB attenuation
40 dB attenuation
90 MHz offset
50
50
dB
dB
−10
7.5
−40
19
dB
dBm
dB
dBm
1 MHz tone into 50 Ω load
40 MHz reference clock
−50
−32
−156
dBc
dBc
dBm/Hz
0 dB attenuation
40 dB attenuation
90 MHz offset
50
50
dB
dB
−10
6.5
−36
dB
dBm
dB
17
dBm
−50
−30
−151.5
dBc
dBc
dBm/Hz
50
50
dB
dB
Rev. D | Page 4 of 36
7 MHz tone into 50 Ω load
40 MHz reference clock
(doubled internally for
RF synthesizer)
0 dB attenuation
40 dB attenuation
90 MHz offset
Data Sheet
Parameter 1
TX MONITOR INPUTS (TX_MON1,
TX_MON2)
Maximum Input Level
Dynamic Range
Accuracy
LO SYNTHESIZER
LO Frequency Step
AD9361
Symbol
Min
Typ
Max
Unit
Test Conditions/
Comments
4
66
1
dBm
dB
dB
2.4
Hz
2.4 GHz, 40 MHz
reference clock
0.13
° rms
2.4 GHz
0.37
° rms
5.5 GHz
0.59
° rms
100 Hz to 100 MHz,
30.72 MHz reference clock
(doubled internally for RF
synthesizer)
100 Hz to 100 MHz,
40 MHz reference clock
100 Hz to 100 MHz,
40 MHz reference clock
(doubled internally for RF
synthesizer)
REF_CLK is either the input
to the XTALP/XTALN pins
or a line directly to the
XTALN pin
Integrated Phase Noise
800 MHz
REFERENCE CLOCK (REF_CLK)
Input
Frequency Range
19
10
50
80
Signal Level
AUXILIARY CONVERTERS
ADC
Resolution
Input Voltage
Minimum
Maximum
DAC
Resolution
Output Voltage
Minimum
Maximum
Output Current
DIGITAL SPECIFICATIONS (CMOS)
Logic Inputs
Input Voltage
High
Low
Input Current
High
Low
Logic Outputs
Output Voltage
High
Low
DIGITAL SPECIFICATIONS (LVDS)
Logic Inputs
Input Voltage Range
Input Differential Voltage
Threshold
Receiver Differential Input
Impedance
1.3
MHz
MHz
V p-p
12
Bits
0.05
VDDA1P3_BB − 0.05
V
V
10
Bits
0.5
VDD_GPO − 0.3
10
V
V
mA
VDD_INTERFACE × 0.8
0
VDD_INTERFACE
VDD_INTERFACE × 0.2
V
V
−10
−10
+10
+10
μA
μA
VDD_INTERFACE × 0.2
V
V
825
1575
mV
−100
+100
mV
VDD_INTERFACE × 0.8
100
Rev. D | Page 5 of 36
Ω
Crystal input
External oscillator
AC-coupled external
oscillator
Each differential input in
the pair
AD9361
Parameter 1
Logic Outputs
Output Voltage
High
Low
Output Differential Voltage
Output Offset Voltage
GENERAL-PURPOSE OUTPUTS
Output Voltage
High
Low
Output Current
SPI TIMING
SPI_CLK
Period
Pulse Width
SPI_ENB Setup to First SPI_CLK
Rising Edge
Last SPI_CLK Falling Edge to
SPI_ENB Hold
SPI_DI
Data Input Setup to SPI_CLK
Data Input Hold to SPI_CLK
SPI_CLK Rising Edge to Output
Data Delay
4-Wire Mode
3-Wire Mode
Bus Turnaround Time, Read
Data Sheet
Symbol
Min
Typ
Max
Unit
1375
mV
mV
mV
1025
150
1200
Test Conditions/
Comments
Programmable in 75 mV
steps
mV
VDD_GPO × 0.8
VDD_GPO × 0.2
10
V
V
mA
VDD_INTERFACE = 1.8 V
tCP
tMP
tSC
20
9
1
ns
ns
ns
tHC
0
ns
tS
tH
2
1
ns
ns
tCO
tCO
tHZM
3
3
tH
8
8
tCO (max)
ns
ns
ns
Bus Turnaround Time, Read
tHZS
0
tCO (max)
ns
DIGITAL DATA TIMING (CMOS),
VDD_INTERFACE = 1.8 V
DATA_CLK Clock Period
DATA_CLK and FB_CLK Pulse
Width
TX Data
tCP
tMP
16.276
45% of tCP
55% of tCP
ns
ns
After BBP drives the last
address bit
After AD9361 drives the
last data bit
61.44 MHz
TX_FRAME, P0_D, and
P1_D
Setup to FB_CLK
Hold to FB_CLK
DATA_CLK to Data Bus Output
Delay
DATA_CLK to RX_FRAME Delay
Pulse Width
ENABLE
TXNRX
tSTX
tHTX
tDDRX
1
0
0
1.5
ns
ns
ns
tDDDV
0
1.0
ns
tENPW
tTXNRXPW
tCP
tCP
ns
ns
TXNRX Setup to ENABLE
Bus Turnaround Time
Before RX
After RX
Capacitive Load
Capacitive Input
tTXNRXSU
0
ns
tRPRE
tRPST
2 × tCP
2 × tCP
ns
ns
pF
pF
3
3
Rev. D | Page 6 of 36
FDD independent ENSM
mode
TDD ENSM mode
TDD mode
TDD mode
Data Sheet
Parameter 1
DIGITAL DATA TIMING (CMOS),
VDD_INTERFACE = 2.5 V
DATA_CLK Clock Period
DATA_CLK and FB_CLK Pulse
Width
TX Data
Setup to FB_CLK
Hold to FB_CLK
DATA_CLK to Data Bus Output
Delay
DATA_CLK to RX_FRAME Delay
Pulse Width
ENABLE
TXNRX
TXNRX Setup to ENABLE
Bus Turnaround Time
Before RX
After RX
Capacitive Load
Capacitive Input
DIGITAL DATA TIMING (LVDS)
DATA_CLK Clock Period
DATA_CLK and FB_CLK Pulse
Width
TX Data
Setup to FB_CLK
Hold to FB_CLK
DATA_CLK to Data Bus Output
Delay
DATA_CLK to RX_FRAME Delay
Pulse Width
ENABLE
TXNRX
TXNRX Setup to ENABLE
Bus Turnaround Time
Before RX
After RX
Capacitive Load
Capacitive Input
SUPPLY CHARACTERISTICS
1.3 V Main Supply Voltage
VDD_INTERFACE Supply
Nominal Settings
CMOS
LVDS
VDD_INTERFACE Tolerance
VDD_GPO Supply Nominal
Setting
VDD_GPO Tolerance
Current Consumption
VDDx, Sleep Mode
VDD_GPO
1
AD9361
Symbol
Min
tCP
tMP
16.276
45% of tCP
Typ
Max
Unit
55% of tCP
ns
ns
Test Conditions/
Comments
61.44 MHz
TX_FRAME, P0_D, and
P1_D
tSTX
tHTX
tDDRX
1
0
0
1.2
ns
ns
ns
tDDDV
0
1.0
ns
tENPW
tTXNRXPW
tCP
tCP
ns
ns
tTXNRXSU
0
ns
tRPRE
tRPST
2 × tCP
2 × tCP
ns
ns
pF
pF
TDD mode
TDD mode
ns
ns
245.76 MHz
55% of tCP
3
3
tCP
tMP
4.069
45% of tCP
tSTX
tHTX
tDDRX
1
0
0.25
1.25
ns
ns
ns
tDDDV
0.25
1.25
ns
tENPW
tTXNRXPW
tCP
tCP
ns
ns
tTXNRXSU
0
ns
tRPRE
tRPST
2 × tCP
2 × tCP
ns
ns
pF
pF
FDD independent ENSM
mode
TDD ENSM mode
TX_FRAME and TX_D
3
3
1.267
1.3
1.33
V
1.2
1.8
−5
2.5
2.5
+5
V
V
%
1.3
3.3
V
−5
+5
%
180
50
μA
μA
FDD independent ENSM
mode
TDD ENSM mode
Tolerance is applicable
to any voltage setting
When unused, must be
set to 1.3 V
Tolerance is applicable
to any voltage setting
Sum of all input currents
No load
When referencing a single function of a multifunction pin in the parameters, only the portion of the pin name that is relevant to the specification is listed. For full pin
names of multifunction pins, refer to the Pin Configuration and Function Descriptions section.
Rev. D | Page 7 of 36
AD9361
Data Sheet
CURRENT CONSUMPTION—VDD_INTERFACE
Table 2. VDD_INTERFACE = 1.2 V
Parameter
SLEEP MODE
1RX, 1TX, DDR
LTE10
Single Port
Dual Port
LTE20
Dual Port
2RX, 2TX, DDR
LTE3
Dual Port
LTE10
Single Port
Dual Port
LTE20
Dual Port
GSM
Dual Port
WiMAX 8.75
Dual Port
WiMAX 10
Single Port
TDD RX
TDD TX
FDD
WiMAX 20
Dual Port
FDD
Min
Typ
45
Max
Unit
µA
Test Conditions/Comments
Power applied, device disabled
2.9
2.7
mA
mA
30.72 MHz data clock, CMOS
15.36 MHz data clock, CMOS
5.2
mA
30.72 MHz data clock, CMOS
1.3
mA
7.68 MHz data clock, CMOS
4.6
5.0
mA
mA
61.44 MHz data clock, CMOS
30.72 MHz data clock, CMOS
8.2
mA
61.44 MHz data clock, CMOS
0.2
mA
1.08 MHz data clock, CMOS
3.3
mA
20 MHz data clock, CMOS
0.5
3.6
3.8
mA
mA
mA
22.4 MHz data clock, CMOS
22.4 MHz data clock, CMOS
44.8 MHz data clock, CMOS
6.7
mA
44.8 MHz data clock, CMOS
Table 3. VDD_INTERFACE = 1.8 V
Parameter
SLEEP MODE
1RX, 1TX, DDR
LTE10
Single Port
Dual Port
LTE20
Dual Port
2RX, 2TX, DDR
LTE3
Dual Port
LTE10
Single Port
Dual Port
LTE20
Dual Port
GSM
Dual Port
WiMAX 8.75
Dual Port
Min
Typ
84
Max
Unit
μA
Test Conditions/Comments
Power applied, device disabled
4.5
4.1
mA
mA
30.72 MHz data clock, CMOS
15.36 MHz data clock, CMOS
8.0
mA
30.72 MHz data clock, CMOS
2.0
mA
7.68 MHz data clock, CMOS
8.0
7.5
mA
mA
61.44 MHz data clock, CMOS
30.72 MHz data clock, CMOS
14.0
mA
61.44 MHz data clock, CMOS
0.3
mA
1.08 MHz data clock, CMOS
5.0
mA
20 MHz data clock, CMOS
Rev. D | Page 8 of 36
Data Sheet
Parameter
WiMAX 10
Single Port
TDD RX
TDD TX
FDD
WiMAX 20
Dual Port
FDD
P-P56
75 mV Differential Output
300 mV Differential Output
450 mV Differential Output
AD9361
Min
Typ
Max
Unit
Test Conditions/Comments
0.7
5.6
6.0
mA
mA
mA
22.4 MHz data clock, CMOS
22.4 MHz data clock, CMOS
44.8 MHz data clock, CMOS
10.7
mA
44.8 MHz data clock, CMOS
14.0
35.0
47.0
mA
mA
mA
240 MHz data clock, LVDS
240 MHz data clock, LVDS
240 MHz data clock, LVDS
Unit
μA
Test Conditions/Comments
Power applied, device disabled
6.5
6.0
mA
mA
30.72 MHz data clock, CMOS
15.36 MHz data clock, CMOS
11.5
mA
30.72 MHz data clock, CMOS
3.0
mA
7.68 MHz data clock, CMOS
11.5
10.0
mA
mA
61.44 MHz data clock, CMOS
30.72 MHz data clock, CMOS
20.0
mA
61.44 MHz data clock, CMOS
0.5
mA
1.08 MHz data clock, CMOS
7.3
mA
20 MHz data clock, CMOS
1.3
8.0
8.7
mA
mA
mA
22.4 MHz data clock, CMOS
22.4 MHz data clock, CMOS
44.8 MHz data clock, CMOS
15.3
mA
44.8 MHz data clock, CMOS
26.0
45.0
58.0
mA
mA
mA
240 MHz data clock, LVDS
240 MHz data clock, LVDS
240 MHz data clock, LVDS
Table 4. VDD_INTERFACE = 2.5 V
Parameter
SLEEP MODE
1RX, 1TX, DDR
LTE10
Single Port
Dual Port
LTE20
Dual Port
2RX, 2TX, DDR
LTE3
Dual Port
LTE10
Single Port
Dual Port
LTE20
Dual Port
GSM
Dual Port
WiMAX 8.75
Dual Port
WiMAX 10
Single Port
TDD RX
TDD TX
FDD
WiMAX 20
Dual Port
FDD
P-P56
75 mV Differential Output
300 mV Differential Output
450 mV Differential Output
Min
Typ
150
Max
Rev. D | Page 9 of 36
AD9361
Data Sheet
CURRENT CONSUMPTION—VDDD1P3_DIG AND VDDAx (COMBINATION OF ALL 1.3 V SUPPLIES)
Table 5. 800 MHz, TDD Mode
Parameter
1RX
5 MHz Bandwidth
10 MHz Bandwidth
20 MHz Bandwidth
2RX
5 MHz Bandwidth
10 MHz Bandwidth
20 MHz Bandwidth
1TX
5 MHz Bandwidth
7 dBm
−27 dBm
10 MHz Bandwidth
7 dBm
−27 dBm
20 MHz Bandwidth
7 dBm
−27 dBm
2TX
5 MHz Bandwidth
7 dBm
−27 dBm
10 MHz Bandwidth
7 dBm
−27 dBm
20 MHz Bandwidth
7 dBm
−27 dBm
Min
Typ
Max
Unit
Test Conditions/Comments
180
210
260
mA
mA
mA
Continuous RX
Continuous RX
Continuous RX
265
315
405
mA
mA
mA
Continuous RX
Continuous RX
Continuous RX
340
190
mA
mA
Continuous TX
Continuous TX
360
220
mA
mA
Continuous TX
Continuous TX
400
250
mA
mA
Continuous TX
Continuous TX
550
260
mA
mA
Continuous TX
Continuous TX
600
310
mA
mA
Continuous TX
Continuous TX
660
370
mA
mA
Continuous TX
Continuous TX
Rev. D | Page 10 of 36
Data Sheet
AD9361
Table 6. TDD Mode, 2.4 GHz
Parameter
1RX
5 MHz Bandwidth
10 MHz Bandwidth
20 MHz Bandwidth
2RX
5 MHz Bandwidth
10 MHz Bandwidth
20 MHz Bandwidth
1TX
5 MHz Bandwidth
7 dBm
−27 dBm
10 MHz Bandwidth
7 dBm
−27 dBm
20 MHz Bandwidth
7 dBm
−27 dBm
2TX
5 MHz Bandwidth
7 dBm
−27 dBm
10 MHz Bandwidth
7 dBm
−27 dBm
20 MHz Bandwidth
7 dBm
−27 dBm
Min
Typ
Max
Unit
Test Conditions/Comments
175
200
240
mA
mA
mA
Continuous RX
Continuous RX
Continuous RX
260
305
390
mA
mA
mA
Continuous RX
Continuous RX
Continuous RX
350
160
mA
mA
Continuous TX
Continuous TX
380
220
mA
mA
Continuous TX
Continuous TX
410
260
mA
mA
Continuous TX
Continuous TX
580
280
mA
mA
Continuous TX
Continuous TX
635
330
mA
mA
Continuous TX
Continuous TX
690
390
mA
mA
Continuous TX
Continuous TX
Unit
Test Conditions/Comments
175
275
mA
mA
Continuous RX
Continuous RX
270
445
mA
mA
Continuous RX
Continuous RX
400
240
mA
mA
Continuous TX
Continuous TX
490
385
mA
mA
Continuous TX
Continuous TX
650
335
mA
mA
Continuous TX
Continuous TX
820
500
mA
mA
Continuous TX
Continuous TX
Table 7. TDD Mode, 5.5 GHz
Parameter
1RX
5 MHz Bandwidth
40 MHz Bandwidth
2RX
5 MHz Bandwidth
40 MHz Bandwidth
1TX
5 MHz Bandwidth
7 dBm
−27 dBm
40 MHz Bandwidth
7 dBm
−27 dBm
2TX
5 MHz Bandwidth
7 dBm
−27 dBm
40 MHz Bandwidth
7 dBm
−27 dBm
Min
Typ
Max
Rev. D | Page 11 of 36
AD9361
Data Sheet
Table 8. FDD Mode, 800 MHz
Parameter
1RX, 1TX
5 MHz Bandwidth
7 dBm
−27 dBm
10 MHz Bandwidth
7 dBm
−27 dBm
20 MHz Bandwidth
7 dBm
−27 dBm
2RX, 1TX
5 MHz Bandwidth
7 dBm
−27 dBm
10 MHz Bandwidth
7 dBm
−27 dBm
20 MHz Bandwidth
7 dBm
−27 dBm
1RX, 2TX
5 MHz Bandwidth
7 dBm
−27 dBm
10 MHz Bandwidth
7 dBm
−27 dBm
20 MHz Bandwidth
7 dBm
−27 dBm
2RX, 2TX
5 MHz Bandwidth
7 dBm
−27 dBm
10 MHz Bandwidth
7 dBm
−27 dBm
20 MHz Bandwidth
7 dBm
−27 dBm
Min
Typ
Max
Unit
490
345
mA
mA
540
395
mA
mA
615
470
mA
mA
555
410
mA
mA
625
480
mA
mA
740
600
mA
mA
685
395
mA
mA
755
465
mA
mA
850
570
mA
mA
790
495
mA
mA
885
590
mA
mA
1020
730
mA
mA
Rev. D | Page 12 of 36
Test Conditions/Comments
Data Sheet
AD9361
Table 9. FDD Mode, 2.4 GHz
Parameter
1RX, 1TX
5 MHz Bandwidth
7 dBm
−27 dBm
10 MHz Bandwidth
7 dBm
−27 dBm
20 MHz Bandwidth
7 dBm
−27 dBm
2RX, 1TX
5 MHz Bandwidth
7 dBm
−27 dBm
10 MHz Bandwidth
7 dBm
−27 dBm
20 MHz Bandwidth
7 dBm
−27 dBm
1RX, 2TX
5 MHz Bandwidth
7 dBm
−27 dBm
10 MHz Bandwidth
7 dBm
−27dBm
20 MHz Bandwidth
7 dBm
−27 dBm
2RX, 2TX
5 MHz Bandwidth
7 dBm
−27 dBm
10 MHz Bandwidth
7 dBm
−27 dBm
20 MHz Bandwidth
7 dBm
−27 dBm
Min
Typ
Max
Unit
500
350
mA
mA
540
390
mA
mA
620
475
mA
mA
590
435
mA
mA
660
510
mA
770
620
mA
mA
mA
730
425
mA
mA
800
500
mA
mA
900
600
mA
mA
mA
820
515
mA
900
595
mA
mA
1050
740
mA
mA
Rev. D | Page 13 of 36
Test Conditions/Comments
AD9361
Data Sheet
Table 10. FDD Mode, 5.5 GHz
Parameter
1RX, 1TX
5 MHz Bandwidth
7 dBm
−27 dBm
2RX, 1TX
5 MHz Bandwidth
7 dBm
−27 dBm
1RX, 2TX
5 MHz Bandwidth
7 dBm
−27 dBm
2RX, 2TX
5 MHz Bandwidth
7 dBm
−27 dBm
Min
Typ
Max
Unit
550
385
mA
mA
645
480
mA
mA
805
480
mA
mA
895
575
mA
mA
Rev. D | Page 14 of 36
Test Conditions/Comments
Data Sheet
AD9361
ABSOLUTE MAXIMUM RATINGS
THERMAL RESISTANCE
Table 11.
Parameter
VDDx to VSSx
VDD_INTERFACE to VSSx
VDD_GPO to VSSx
Logic Inputs and Outputs to
VSSx
Input Current to Any Pin
Except Supplies
RF Inputs (Peak Power)
TX Monitor Input Power (Peak
Power)
Package Power Dissipation
Maximum Junction
Temperature (TJMAX)
Operating Temperature Range
Storage Temperature Range
Rating
−0.3 V to +1.4 V
−0.3 V to +3.0 V
−0.3 V to +3.9 V
−0.3 V to VDD_INTERFACE + 0.3 V
±10 mA
2.5 dBm
9 dBm
θJA is specified for the worst-case conditions, that is, a device
soldered in a circuit board for surface-mount packages.
Table 12. Thermal Resistance
Package
Type
144-Ball
CSP_BGA
Airflow
Velocity
(m/sec)
0
1.0
2.5
θJA1, 2
32.3
29.6
27.8
θJC1, 3
9.6
θJB1, 4
20.2
Per JEDEC JESD51-7, plus JEDEC JESD51-5 2S2P test board.
Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).
3
Per MIL-STD 883, Method 1012.1.
4
Per JEDEC JESD51-8 (still air).
1
2
(TJMAX − TA)/θJA
110°C
ESD CAUTION
−40°C to +85°C
−65°C to +150°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
REFLOW PROFILE
The AD9361 reflow profile is in accordance with the JEDEC
JESD20 criteria for Pb-free devices. The maximum reflow
temperature is 260°C.
Rev. D | Page 15 of 36
ΨJT1, 2
0.27
0.43
0.57
Unit
°C/W
°C/W
°C/W
AD9361
Data Sheet
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
1
2
3
4
5
6
7
8
9
10
11
12
A
RX2A_N
RX2A_P
NC
VSSA
TX_MON2
VSSA
TX2A_N
TX2A_P
TX2B_N
TX2B_P
VDDA1P1_
TX_VCO
TX_EXT_
LO_IN
B
VSSA
VSSA
AUXDAC1
GPO_3
GPO_2
GPO_1
GPO_0
VDD_GPO
VDDA1P3_
TX_LO
VDDA1P3_
TX_VCO_
LDO
TX_VCO_
LDO_OUT
VSSA
AUXDAC2
TEST/
ENABLE
CTRL_IN0
CTRL_IN1
VSSA
VSSA
VSSA
VSSA
VSSA
VSSA
CTRL_IN3
CTRL_IN2
P0_D9/
TX_D4_P
P0_D7/
TX_D3_P
P0_D5/
TX_D2_P
P0_D3/
TX_D1_P
P0_D1/
TX_D0_P
VSSD
P0_D11/
TX_D5_P
P0_D8/
TX_D4_N
P0_D6/
TX_D3_N
P0_D4/
TX_D2_N
P0_D2/
TX_D1_N
P0_D0/
TX_D0_N
VSSD
P0_D10/
TX_D5_N
VSSD
FB_CLK_P
VSSD
VDDD1P3_
DIG
RX_
FRAME_N
RX_
FRAME_P
TX_
FRAME_P
FB_CLK_N
DATA_
CLK_P
VSSD
TX_
FRAME_N
VSSD
DATA_
CLK_N
VDD_
INTERFACE
C
RX2C_P
VSSA
D
RX2C_N
VDDA1P3_
RX_RF
VDDA1P3_
CTRL_OUT0
RX_TX
E
RX2B_P
VDDA1P3_
RX_LO
VDDA1P3_
TX_LO_ CTRL_OUT1 CTRL_OUT2 CTRL_OUT3
BUFFER
F
RX2B_N
VDDA1P3_
RX_VCO_
LDO
VSSA
G
RX_EXT_
LO_IN
RX_VCO_
LDO_OUT
VDDA1P1_
RX_VCO
CTRL_OUT6 CTRL_OUT5 CTRL_OUT4
CTRL_OUT7
EN_AGC
ENABLE
RX1B_P
VSSA
VSSA
TXNRX
SYNC_IN
VSSA
VSSD
J
RX1B_N
VSSA
VDDA1P3_
RX_SYNTH
SPI_DI
SPI_CLK
CLK_OUT
P1_D10/
RX_D5_N
P1_D9/
RX_D4_P
P1_D7/
RX_D3_P
P1_D5/
RX_D2_P
P1_D3/
RX_D1_P
P1_D1/
RX_D0_P
K
RX1C_P
VSSA
VDDA1P3_
TX_SYNTH
VDDA1P3_
BB
RESETB
SPI_ENB
P1_D8/
RX_D4_N
P1_D6/
RX_D3_N
P1_D4/
RX_D2_N
P1_D2/
RX_D1_N
P1_D0/
RX_D0_N
VSSD
L
RX1C_N
VSSA
VSSA
RBIAS
AUXADC
SPI_DO
VSSA
VSSA
VSSA
VSSA
VSSA
VSSA
M
RX1A_P
RX1A_N
NC
VSSA
TX_MON1
VSSA
TX1A_P
TX1A_N
TX1B_P
TX1B_N
XTALP
XTALN
ANALOG I/O
DIGITAL I/O
NO CONNECT
10453-002
H
P1_D11/
RX_D5_P
DC POWER
GROUND
Figure 2. Pin Configuration, Top View
Table 13. Pin Function Descriptions
Pin No.
A1, A2
Type 1
I
Mnemonic
RX2A_N, RX2A_P
Description
Receive Channel 2 Differential Input A. Alternatively, each pin can be used as a
single-ended input or combined to make a differential pair. Tie unused pins to
ground.
No Connect. Do not connect to these pins.
Analog Ground. Tie these pins directly to the VSSD digital ground on the printed
circuit board (one ground plane).
A3, M3
A4, A6, B1, B2,
B12, C2, C7 to
C12, F3, H2,
H3, H6, J2, K2,
L2, L3, L7 to
L12, M4, M6
A5
A7, A8
A9, A10
NC
I
NC
VSSA
I
O
O
TX_MON2
TX2A_N, TX2A_P
TX2B_N, TX2B_P
Transmit Channel 2 Power Monitor Input. If this pin is unused, tie it to ground.
Transmit Channel 2 Differential Output A. Tie unused pins to 1.3 V.
Transmit Channel 2 Differential Output B. Tie unused pins to 1.3 V.
A11
A12
B3
B4 to B7
B8
I
I
O
O
I
VDDA1P1_TX_VCO
TX_EXT_LO_IN
AUXDAC1
GPO_3 to GPO_0
VDD_GPO
B9
B10
B11
I
I
O
VDDA1P3_TX_LO
VDDA1P3_TX_VCO_LDO
TX_VCO_LDO_OUT
C1, D1
I
RX2C_P, RX2C_N
Transmit VCO Supply Input. Connect to B11.
External Transmit LO Input. If this pin is unused, tie it to ground.
Auxiliary DAC 1 Output.
3.3 V Capable General-Purpose Outputs.
2.5 V to 3.3 V Supply for the AUXDAC and General-Purpose Output Pins. When
the VDD_GPO supply is not used, this supply must be set to 1.3 V.
Transmit LO 1.3 V Supply Input.
Transmit VCO LDO 1.3 V Supply Input. Connect to B9.
Transmit VCO LDO Output. Connect to A11 and a 1 µF bypass capacitor in series
with a 1 Ω resistor to ground.
Receive Channel 2 Differential Input C. Each pin can be used as a single-ended
input or combined to make a differential pair. These inputs experience
degraded performance above 3 GHz. Tie unused pins to ground.
Rev. D | Page 16 of 36
Data Sheet
AD9361
Pin No.
C3
C4
C5, C6, D5, D6
D2
D3
D4, E4 to E6,
F4 to F6, G4
Type 1
O
I
I
I
I
O
D7
I/O
Mnemonic
AUXDAC2
TEST/ENABLE
CTRL_IN0 to CTRL_IN3
VDDA1P3_RX_RF
VDDA1P3_RX_TX
CTRL_OUT0, CTRL_OUT1 to
CTRL_OUT3, CTRL_OUT6 to
CTRL_OUT4, CTRL_OUT7
P0_D9/TX_D4_P
D8
I/O
P0_D7/TX_D3_P
D9
I/O
P0_D5/TX_D2_P
D10
I/O
P0_D3/TX_D1_P
D11
I/O
P0_D1/TX_D0_P
D12, F7, F9,
F11, G12, H7,
H10, K12
E1, F1
I
VSSD
I
RX2B_P, RX2B_N
E2
E3
E7
I
I
I/O
VDDA1P3_RX_LO
VDDA1P3_TX_LO_BUFFER
P0_D11/TX_D5_P
E8
I/O
P0_D8/TX_D4_N
E9
I/O
P0_D6/TX_D3_N
E10
I/O
P0_D4/TX_D2_N
E11
I/O
P0_D2/TX_D1_N
E12
I/O
P0_D0/TX_D0_N
Description
Auxiliary DAC 2 Output.
Test Input. Ground this pin for normal operation.
Control Inputs. Used for manual RX gain and TX attenuation control.
Receiver 1.3 V Supply Input. Connect to D3.
1.3 V Supply Input.
Control Outputs. These pins are multipurpose outputs that have programmable
functionality.
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.
As P0_D9, it functions as part of the 12-bit bidirectional parallel CMOS level Data
Port 0. Alternatively, this pin (TX_D4_P) can function as part of the LVDS 6-bit TX
differential input bus with internal LVDS termination.
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.
As P0_D7, it functions as part of the 12-bit bidirectional parallel CMOS level Data
Port 0. Alternatively, this pin (TX_D3_P) can function as part of the LVDS 6-bit TX
differential input bus with internal LVDS termination.
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.
As P0_D5, it functions as part of the 12-bit bidirectional parallel CMOS level Data
Port 0. Alternatively, this pin (TX_D2_P) can function as part of the LVDS 6-bit TX
differential input bus with internal LVDS termination.
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.
As P0_D3, it functions as part of the 12-bit bidirectional parallel CMOS level Data
Port 0. Alternatively, this pin (TX_D1_P) can function as part of the LVDS 6-bit TX
differential input bus with internal LVDS termination.
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.
As P0_D1, it functions as part of the 12-bit bidirectional parallel CMOS level Data
Port 0. Alternatively, this pin (TX_D0_P) can function as part of the LVDS 6-bit TX
differential input bus with internal LVDS termination.
Digital Ground. Tie these pins directly to the VSSA analog ground on the printed
circuit board (one ground plane).
Receive Channel 2 Differential Input B. Each pin can be used as a single-ended
input or combined to make a differential pair. These inputs experience
degraded performance above 3 GHz. Tie unused pins to ground.
Receive LO 1.3 V Supply Input.
1.3 V Supply Input.
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.
As P0_D11, it functions as part of the 12-bit bidirectional parallel CMOS level
Data Port 0. Alternatively, this pin (TX_D5_P) can function as part of the LVDS
6-bit TX differential input bus with internal LVDS termination.
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.
As P0_D8, it functions as part of the 12-bit bidirectional parallel CMOS level Data
Port 0. Alternatively, this pin (TX_D4_N) can function as part of the LVDS 6-bit TX
differential input bus with internal LVDS termination.
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.
As P0_D6, it functions as part of the 12-bit bidirectional parallel CMOS level Data
Port 0. Alternatively, this pin (TX_D3_N) can function as part of the LVDS 6-bit TX
differential input bus with internal LVDS termination.
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.
As P0_D4, it functions as part of the 12-bit bidirectional parallel CMOS level Data
Port 0. Alternatively, this pin (TX_D2_N) can function as part of the LVDS 6-bit TX
differential input bus with internal LVDS termination.
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.
As P0_D2, it functions as part of the 12-bit bidirectional parallel CMOS level Data
Port 0. Alternatively, this pin (TX_D1_N) can function as part of the LVDS 6-bit TX
differential input bus with internal LVDS termination.
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.
As P0_D0, it functions as part of the 12-bit bidirectional parallel CMOS level Data
Port 0. Alternatively, this pin (TX_D0_N) can function as part of the LVDS 6-bit TX
differential input bus with internal LVDS termination.
Rev. D | Page 17 of 36
AD9361
Data Sheet
Pin No.
F2
F8
Type 1
I
I/O
Mnemonic
VDDA1P3_RX_VCO_LDO
P0_D10/TX_D5_N
F10, G10
I
FB_CLK_P, FB_CLK_N
F12
G1
G2
I
I
O
VDDD1P3_DIG
RX_EXT_LO_IN
RX_VCO_LDO_OUT
G3
G5
G6
G7, G8
I
I
I
O
VDDA1P1_RX_VCO
EN_AGC
ENABLE
RX_FRAME_N, RX_FRAME_P
G9, H9
I
TX_FRAME_P, TX_FRAME_N
G11, H11
O
DATA_CLK_P, DATA_CLK_N
H1, J1
I
RX1B_P, RX1B_N
H4
I
TXNRX
H5
I
SYNC_IN
H8
I/O
P1_D11/RX_D5_P
H12
J3
J4
J5
J6
I
I
I
I
O
VDD_INTERFACE
VDDA1P3_RX_SYNTH
SPI_DI
SPI_CLK
CLK_OUT
J7
I/O
P1_D10/RX_D5_N
J8
I/O
P1_D9/RX_D4_P
J9
I/O
P1_D7/RX_D3_P
J10
I/O
P1_D5/RX_D2_P
Description
Receive VCO LDO 1.3 V Supply Input. Connect to E2.
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.
As P0_D10, it functions as part of the 12-bit bidirectional parallel CMOS level
Data Port 0. Alternatively, this pin (TX_D5_N) can function as part of the LVDS
6-bit TX differential input bus with internal LVDS termination.
Feedback Clock. These pins receive the FB_CLK signal that clocks in TX data.
In CMOS mode, use FB_CLK_P as the input and tie FB_CLK_N to ground.
1.3 V Digital Supply Input.
External Receive LO Input. If this pin is unused, tie it to ground.
Receive VCO LDO Output. Connect this pin directly to G3 and a 1 µF bypass
capacitor in series with a 1 Ω resistor to ground.
Receive VCO Supply Input. Connect this pin directly to G2 only.
Manual Control Input for Automatic Gain Control (AGC).
Control Input. This pin moves the device through various operational states.
Receive Digital Data Framing Output Signal. These pins transmit the RX_FRAME
signal that indicates whether the RX output data is valid. In CMOS mode, use
RX_FRAME_P as the output and leave RX_FRAME_N unconnected.
Transmit Digital Data Framing Input Signal. These pins receive the TX_FRAME
signal that indicates when TX data is valid. In CMOS mode, use TX_FRAME_P as
the input and tie TX_FRAME_N to ground.
Receive Data Clock Output. These pins transmit the DATA_CLK signal that is used
by the BBP to clock RX data. In CMOS mode, use DATA_CLK_P as the output and
leave DATA_CLK_N unconnected.
Receive Channel 1 Differential Input B. Alternatively, each pin can be used as a
single-ended input. These inputs experience degraded performance above
3 GHz. Tie unused pins to ground.
Enable State Machine Control Signal. This pin controls the data port bus direction.
Logic low selects the RX direction, and logic high selects the TX direction.
Input to Synchronize Digital Clocks Between Multiple AD9361 Devices. If this pin
is unused, tied it to ground.
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.
As P1_D11, it functions as part of the 12-bit bidirectional parallel CMOS level
Data Port 1. Alternatively, this pin (RX_D5_P) can function as part of the LVDS
6-bit RX differential output bus with internal LVDS termination.
1.2 V to 2.5 V Supply for Digital I/O Pins (1.8 V to 2.5 V in LVDS Mode).
1.3 V Supply Input.
SPI Serial Data Input.
SPI Clock Input.
Output Clock. This pin can be configured to output either a buffered version of the
external input clock, the DCXO, or a divided-down version of the internal ADC_CLK.
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.
As P1_D10, it functions as part of the 12-bit bidirectional parallel CMOS level
Data Port 1. Alternatively, this pin (RX_D5_N) can function as part of the LVDS
6-bit RX differential output bus with internal LVDS termination.
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.
As P1_D9, it functions as part of the 12-bit bidirectional parallel CMOS level Data
Port 1. Alternatively, this pin (RX_D4_P) can function as part of the LVDS 6-bit RX
differential output bus with internal LVDS termination.
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.
As P1_D7, it functions as part of the 12-bit bidirectional parallel CMOS level Data
Port 1. Alternatively, this pin (RX_D3_P) can function as part of the LVDS 6-bit RX
differential output bus with internal LVDS termination.
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.
As P1_D5, it functions as part of the 12-bit bidirectional parallel CMOS level Data
Port 1. Alternatively, this pin (RX_D2_P) can function as part of the LVDS 6-bit RX
differential output bus with internal LVDS termination.
Rev. D | Page 18 of 36
Data Sheet
AD9361
Pin No.
J11
Type 1
I/O
Mnemonic
P1_D3/RX_D1_P
J12
I/O
P1_D1/RX_D0_P
K1, L1
I
RX1C_P, RX1C_N
K3
K4
K5
K6
K7
I
I
I
I
I/O
VDDA1P3_TX_SYNTH
VDDA1P3_BB
RESETB
SPI_ENB
P1_D8/RX_D4_N
K8
I/O
P1_D6/RX_D3_N
K9
I/O
P1_D4/RX_D2_N
K10
I/O
P1_D2/RX_D1_N
K11
I/O
P1_D0/RX_D0_N
L4
I
RBIAS
L5
L6
M1, M2
I
O
I
AUXADC
SPI_DO
RX1A_P, RX1A_N
M5
M7, M8
M9, M10
M11, M12
I
O
O
I
TX_MON1
TX1A_P, TX1A_N
TX1B_P, TX1B_N
XTALP, XTALN
1
Description
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.
As P1_D3, it functions as part of the 12-bit bidirectional parallel CMOS level Data
Port 1. Alternatively, this pin (RX_D1_P) can function as part of the LVDS 6-bit RX
differential output bus with internal LVDS termination.
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.
As P1_D1, it functions as part of the 12-bit bidirectional parallel CMOS level Data
Port 1. Alternatively, this pin (RX_D0_P) can function as part of the LVDS 6-bit RX
differential output bus with internal LVDS termination.
Receive Channel 1 Differential Input C. Alternatively, each pin can be used as a
single-ended input. These inputs experience degraded performance above
3 GHz. Tie unused pins to ground.
1.3 V Supply Input.
1.3 V Supply Input.
Asynchronous Reset. Logic low resets the device.
SPI Enable Input. Set this pin to logic low to enable the SPI bus.
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.
As P1_D8, it functions as part of the 12-bit bidirectional parallel CMOS level Data
Port 1. Alternatively, this pin (RX_D4_N) can function as part of the LVDS 6-bit RX
differential output bus with internal LVDS termination.
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.
As P1_D6, it functions as part of the 12-bit bidirectional parallel CMOS level Data
Port 1. Alternatively, this pin (RX_D3_N) can function as part of the LVDS 6-bit RX
differential output bus with internal LVDS termination.
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.
As P1_D4, it functions as part of the 12-bit bidirectional parallel CMOS level Data
Port 1. Alternatively, this pin (RX_D2_N) can function as part of the LVDS 6-bit RX
differential output bus with internal LVDS termination.
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.
As P1_D2, it functions as part of the 12-bit bidirectional parallel CMOS level Data
Port 1. Alternatively, this pin (RX_D1_N) can function as part of the LVDS 6-bit RX
differential output bus with internal LVDS termination.
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.
As P1_D0, it functions as part of the 12-bit bidirectional parallel CMOS level Data
Port 1. Alternatively, this pin (RX_D0_N) can function as part of the LVDS 6-bit RX
differential output bus with internal LVDS termination.
Bias Input Reference. Connect this pin through a 14.3 kΩ (1% tolerance) resistor
to ground.
Auxiliary ADC Input. If this pin is unused, tie it to ground.
SPI Serial Data Output in 4-Wire Mode, or High-Z in 3-Wire Mode.
Receive Channel 1 Differential Input A. Alternatively, each pin can be used as a
single-ended input. Tie unused pins to ground.
Transmit Channel 1 Power Monitor Input. When this pin is unused, tie it to ground.
Transmit Channel 1 Differential Output A. Tie unused pins to 1.3 V.
Transmit Channel 1 Differential Output B. Tie unused pins to 1.3 V.
Reference Frequency Crystal Connections. When a crystal is used, connect it
between these two pins. When an external clock source is used, connect it to
XTALN and leave XTALP unconnected.
I is input, O is output, I/O is input/output, or NC is not connected.
Rev. D | Page 19 of 36
AD9361
Data Sheet
TYPICAL PERFORMANCE CHARACTERISTICS
800 MHz FREQUENCY BAND
0
4.0
–40°C
+25°C
+85°C
RX EVM (dB)
–15
2.5
2.0
1.5
–25
–35
0.5
–40
750
800
850
900
RF FREQUENCY (MHz)
–45
–75
5
–60
–65
–55
–50
–45
–40
–35
–30
–25
RX INPUT POWER (dBm)
Figure 6. RX EVM vs. RX Input Power, 64 QAM LTE 10 MHz Mode,
19.2 MHz REF_CLK
0
–40°C
+25°C
+85°C
4
–70
10453-006
–30
Figure 3. RX Noise Figure vs. RF Frequency
–5
–40°C
+25°C
+85°C
–10
3
–15
2
RX EVM (dB)
1
0
–20
–25
–30
–1
–35
–2
–80
–70
–60
–50
–40
–30
–20
–10
RX INPUT POWER (dBm)
0
–5
1
–10
RX EVM (dB)
2
0
–20
–2
–25
–70
–60
–50
–40
–30
–20
–10
RX INPUT POWER (dBm)
Figure 5. RSSI Error vs. RX Input Power, Edge Modulation
(Referenced to −50 dBm Input Power at 800 MHz)
–30
–72
10453-005
–80
–60
–50
–30
–40
–20
–10
–40°C
+25°C
+85°C
–15
–1
–90
–70
RX INPUT POWER (dBm)
–40°C
+25°C
+85°C
–3
–110 –100
–80
Figure 7. RX EVM vs. RX Input Power, GSM Mode, 30.72 MHz REF_CLK
(Doubled Internally for RF Synthesizer)
Figure 4. RSSI Error vs. RX Input Power, LTE 10 MHz Modulation
(Referenced to −50 dBm Input Power at 800 MHz)
3
–45
–90
10453-004
–90
10453-007
–40
–3
–100
–68
–64
–60
–56
–52
–48
–44
–40
INTERFERER POWER LEVEL (dBm)
–36
–32
10453-008
RSSI ERROR (dB)
–20
1.0
0
700
RSSI ERROR (dB)
–40°C
+25°C
+85°C
–10
3.0
10453-003
RX NOISE FIGURE (dB)
3.5
–5
Figure 8. RX EVM vs. Interferer Power Level, LTE 10 MHz Signal of Interest with
PIN = −82 dBm, 5 MHz OFDM Blocker at 7.5 MHz Offset
Rev. D | Page 20 of 36
Data Sheet
0
AD9361
20
–40°C
+25°C
+85°C
15
10
–4
IIP3 (dBm)
RX EVM (dB)
5
–8
0
–5
–40°C
+25°C
+85°C
–10
–12
–15
–54
–52
–50
–48
–46
–44
–42
–40
–38
–25
10453-009
–16
–56
–36
INTERFERER POWER LEVEL (dBm)
20
14
52
44
RX GAIN INDEX
60
68
76
100
90
–40°C
+25°C
+85°C
80
10
70
IIP2 (dBm)
RX NOISE FIGURE (dB)
36
Figure 12. Third-Order Input Intercept Point (IIP3) vs. RX Gain Index,
f1 = 1.45 MHz, f2 = 2.89 MHz, GSM Mode
Figure 9. RX EVM vs. Interferer Power Level, LTE 10 MHz Signal of Interest with
PIN = −90 dBm, 5 MHz OFDM Blocker at 17.5 MHz Offset
12
28
10453-012
–20
8
6
–40°C
+25°C
+85°C
60
50
40
30
4
20
2
–39
–35
–31
–27
–23
INTERFERER POWER LEVEL (dBm)
0
–100
RX LO LEAKAGE (dBm)
52
60
68
76
–40°C
+25°C
+85°C
74
72
70
–110
–115
–120
–125
750
800
RX LO FREQUENCY (MHz)
850
900
10453-011
68
Figure 11. RX Gain vs. RX LO Frequency, Gain Index = 76 (Maximum Setting)
Rev. D | Page 21 of 36
–130
700
750
800
850
900
RX LO FREQUENCY (MHz)
Figure 14. RX Local Oscillator (LO) Leakage vs. RX LO Frequency
10453-014
RX GAIN (dB)
44
–105
76
66
700
36
Figure 13. Second-Order Input Intercept Point (IIP2) vs. RX Gain Index,
f1 = 2.00 MHz, f2 = 2.01 MHz, GSM Mode
–40°C
+25°C
+85°C
78
28
RX GAIN INDEX
Figure 10. RX Noise Figure vs. Interferer Power Level, Edge Signal of Interest
with PIN = −90 dBm, CW Blocker at 3 MHz Offset, Gain Index = 64
80
20
10453-013
–43
10453-010
0
–47
10
AD9361
Data Sheet
–20
–40
–60
–80
–100
2000
6000
4000
10000
8000
12000
FREQUENCY (MHz)
Figure 15. RX Emission at LNA Input, DC to 12 GHz, fLO_RX = 800 MHz,
LTE 10 MHz, fLO_TX = 860 MHz
10
5
0
–5
15
FREQUENCY OFFSET (MHz)
Figure 18. TX Spectrum vs. Frequency Offset from Carrier Frequency, fLO_TX =
800 MHz, LTE 10 MHz Downlink (Digital Attenuation Variations Shown)
Figure 16. TX Output Power vs. TX LO Frequency, Attenuation Setting = 0 dB,
Single Tone Output
–80
1.6
1.4
1.2
1.0
0.8
0.6
–100
FREQUENCY OFFSET (MHz)
10453-019
TX LO FREQUENCY (MHz)
–60
0.4
900
–40
0
850
–20
0.2
800
ATT 0dB
ATT 3dB
ATT 6dB
0
–0.2
750
10453-016
6.5
Figure 19. TX Spectrum vs. Frequency Offset from Carrier Frequency, fLO_TX =
800 MHz, GSM Downlink (Digital Attenuation Variations Shown), 3 MHz Range
20
0.3
0.2
0.1
0
–0.1
–0.2
–0.3
10
20
30
40
50
ATTENUATION SETTING (dB)
Figure 17. TX Power Control Linearity Error vs. Attenuation Setting
ATT 0dB
ATT 3dB
ATT 6dB
–20
–40
–60
–80
–100
–120
–6
10453-017
–0.4
0
–4
–2
0
2
FREQUENCY OFFSET (MHz)
4
6
10453-020
–40°C
+25°C
+85°C
TRANSMITTER OUTPUT POWER (dBm/30kHz)
STEP LINEARITY ERROR (dB)
–10
–0.4
7.0
0
–90
–0.6
7.5
–0.5
–80
–0.8
8.0
0.4
–70
–1.0
8.5
0.5
–60
–100
–15
TRANSMITTER OUTPUT POWER (dBm/30kHz)
TX OUTPUT POWER (dBm)
9.0
6.0
700
–50
20
–40°C
+25°C
+85°C
9.5
–40
–1.2
10.0
–30
–1.4
0
–20
–1.6
–120
ATT 0dB
ATT 3dB
ATT 6dB
–10
10453-018
TRANSMITTER OUTPUT POWER (dBm/100kHz)
0
10453-015
POWER AT LNA INPUT (dBm/750kHz)
0
Figure 20. TX Spectrum vs. Frequency Offset from Carrier Frequency, fLO_TX =
800 MHz, GSM Downlink (Digital Attenuation Variations Shown), 12 MHz Range
Rev. D | Page 22 of 36
Data Sheet
0.30
–40°C
+25°C
+85°C
INTEGRATED PHASE NOISE (°rms)
–25
–35
–40
–50
0
5
10
15
20
25
30
35
40
TX ATTENUATION SETTING (dB)
Figure 21. TX EVM vs. TX Attenuation Setting, fLO_TX = 800 MHz,
LTE 10 MHz, 64 QAM Modulation, 19.2 MHz REF_CLK
0.10
0.05
–35
TX CARRIER AMPLITUDE (dBc)
–40°C
+25°C
+85°C
–30
–35
–40
–45
800
850
900
ATT 0, –40°C
ATT 25, –40°C
ATT 50, –40°C
ATT 0, +25°C
ATT 25, +25°C
ATT 50, +25°C
ATT 0, +85°C
ATT 25, +85°C
ATT 50, +85°C
–40
–45
–50
–55
–60
10
20
30
40
50
–70
700
10453-022
0
0.4
0.3
0.2
0
700
750
800
FREQUENCY (MHz)
850
900
10453-023
0.1
Figure 23. Integrated TX LO Phase Noise vs. Frequency, 19.2 MHz REF_CLK
850
900
Figure 25. TX Carrier Rejection vs. Frequency
TX SECOND-ORDER HARMONIC DISTORTION (dBc)
–40°C
+25°C
+85°C
800
FREQUENCY (MHz)
Figure 22. TX EVM vs. TX Attenuation Setting, fLO_TX = 800 MHz, GSM
Modulation, 30.72 MHz REF_CLK (Doubled Internally for RF Synthesizer)
0.5
750
10453-025
–65
TX ATTENUATION SETTING (dB)
INTEGRATED PHASE NOISE (°RMS)
750
Figure 24. Integrated TX LO Phase Noise vs. Frequency, 30.72 MHz REF_CLK
(Doubled Internally for RF Synthesizer)
–30
–25
TX EVM (dB)
0.15
FREQUENCY (MHz)
–20
–50
0.20
0
700
10453-021
–45
–40°C
+25°C
+85°C
–50
ATT 0, –40°C
ATT 25, –40°C
ATT 50, –40°C
ATT 0, +25°C
ATT 25, +25°C
ATT 50, +25°C
ATT 0, +85°C
ATT 25, +85°C
ATT 50, +85°C
–55
–60
–65
–70
–75
–80
700
750
800
FREQUENCY (MHz)
850
900
10453-026
TX EVM (dB)
–30
0.25
10453-024
–20
AD9361
Figure 26. TX Second-Order Harmonic Distortion (HD2) vs. Frequency
Rev. D | Page 23 of 36
Data Sheet
–20
ATT 0, –40°C
ATT 25, –40°C
ATT 50, –40°C
–25
170
ATT 0, +85°C
ATT 25, +85°C
ATT 50, +85°C
ATT 0, +25°C
ATT 25, +25°C
ATT 50, +25°C
165
TX SNR (dB/Hz)
–30
–35
–40
–45
145
750
800
850
900
30
15
10
12
16
20
TX ATTENUATION SETTING (dB)
10453-028
5
8
Figure 28. TX Third-Order Output Intercept Point (OIP3) vs.
TX Attenuation Setting
170
–40°C
+25°C
+85°C
160
155
150
3
6
9
TX ATTENUATION SETTING (dB)
12
15
10453-029
145
0
12
16
20
–35
ATT 0, –40°C
ATT 25, –40°C
ATT 50, –40°C
ATT 0, +25°C
ATT 25, +25°C
ATT 50, +25°C
ATT 0, +85°C
ATT 25, +85°C
ATT 50, +85°C
–40
–45
–50
–55
–60
–65
–70
700
750
800
850
900
FREQUENCY (MHz)
Figure 31. TX Single Sideband (SSB) Rejection vs. Frequency,
1.5375 MHz Offset
165
140
8
TX ATTENUATION SETTING (dB)
TX SINGLE SIDEBAND AMPLITUDE (dBc)
20
4
4
–30
–40°C
+25°C
+85°C
0
0
Figure 30. TX Signal-to-Noise Ratio (SNR) vs. TX Attenuation Setting,
GSM Signal of Interest with Noise Measured at 20 MHz Offset
25
0
140
Figure 29. TX Signal-to-Noise Ratio (SNR) vs. TX Attenuation Setting,
LTE 10 MHz Signal of Interest with Noise Measured at 90 MHz Offset
Rev. D | Page 24 of 36
10453-031
–60
700
10453-030
–55
Figure 27. TX Third-Order Harmonic Distortion (HD3) vs. Frequency
TX OIP3 (dBm)
–40°C
+25°C
+85°C
155
150
FREQUENCY (MHz)
TX SNR (dB/Hz)
160
–50
10453-027
TX THIRD-ORDER HARMONIC DISTORTION (dBc)
AD9361
Data Sheet
AD9361
2.4 GHz FREQUENCY BAND
0
4.0
–40°C
+25°C
+85°C
–5
3.0
–10
2.5
RX EVM (dB)
RX NOISE FIGURE (dB)
3.5
2.0
1.5
–15
–20
1.0
1900
2000
2100
2200
2300
2400
2500
2600
2700
RF FREQUENCY (MHz)
Figure 32. RX Noise Figure vs. RF Frequency
5
4
–30
–72
10453-032
0
1800
–40°C
+25°C
+85°C
–68
–64
–60
–56
–52
–48
–44
–40
–36
–32
–28
INTERFERER POWER LEVEL (dBm)
10453-035
–25
0.5
Figure 35. RX EVM vs. Interferer Power Level, LTE 20 MHz Signal of Interest
with PIN = −75 dBm, LTE 20 MHz Blocker at 20 MHz Offset
0
–40°C
+25°C
+85°C
–40°C
+25°C
+85°C
–5
–10
2
RX EVM (dB)
RSSI ERROR (dB)
3
1
0
–15
–20
–1
–25
–90
–80
–70
–60
–50
–40
–30
–20
–10
RX INPUT POWER (dBm)
Figure 33. RSSI Error vs. RX Input Power, Referenced to −50 dBm Input Power
at 2.4 GHz
0
–5
–30
–60
10453-033
–3
–100
–55
–50
–45
–40
–35
–30
–25
–20
INTERFERER POWER LEVEL (dBm)
10453-036
–2
Figure 36. RX EVM vs. Interferer Power Level, LTE 20 MHz Signal of Interest
with PIN = −75 dBm, LTE 20 MHz Blocker at 40 MHz Offset
80
–40°C
+25°C
+85°C
78
–40°C
+25°C
+85°C
–10
76
RX GAIN (dB)
–20
–25
74
72
–30
70
–35
–45
–75
–70
–65
–60
–55
–50
–45
–40
–35
–30
–25
INPUT POWER (dBm)
Figure 34. RX EVM vs. Input Power, 64 QAM LTE 20 MHz Mode,
40 MHz REF_CLK
66
1800
1900
2000
2100
2200
2300
2400
RX LO FREQUENCY (MHz)
2500
2600
2700
10453-037
68
–40
10453-034
RX EVM (dB)
–15
Figure 37. RX Gain vs. RX LO Frequency, Gain Index = 76 (Maximum Setting)
Rev. D | Page 25 of 36
AD9361
15
0
–40°C
+25°C
+85°C
POWER AT LNA INPUT (dBm/750kHz)
20
Data Sheet
10
IIP3 (dBm)
5
0
–5
–10
–15
–20
–40
–60
–80
–100
28
36
44
52
60
76
68
RX GAIN INDEX
–120
10453-038
–25
20
6000
4000
8000
10000
12000
Figure 41. RX Emission at LNA Input, DC to 12 GHz, fLO_RX = 2.4 GHz,
LTE 20 MHz, fLO_TX = 2.46 GHz
10.0
–40°C
+25°C
+85°C
–40°C
+25°C
+85°C
9.5
TX OUTPUT POWER (dBm)
70
60
IIP2 (dBm)
2000
FREQUENCY (MHz)
Figure 38. Third-Order Input Intercept Point (IIP3) vs. RX Gain Index,
f1 = 30 MHz, f2 = 61 MHz
80
0
10453-041
–20
50
40
9.0
8.5
8.0
7.5
7.0
30
36
28
44
60
52
68
76
RX GAIN INDEX
Figure 39. Second-Order Input Intercept Point (IIP2) vs. RX Gain Index,
f1 = 60 MHz, f2 = 61 MHz
–100
6.0
1800
10453-039
20
20
STEP LINEARITY ERROR (dB)
–105
2300
2400
2500
2600
2700
0.3
0.2
0.1
0
–0.1
–0.2
–0.3
–125
–130
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
RX LO FREQUENCY (MHz)
–0.5
0
10
20
30
ATTENUATION SETTING (dB)
40
50
10453-043
–0.4
10453-040
RX LO LEAKAGE (dBm)
2200
–40°C
+25°C
+85°C
0.4
–120
2100
Figure 42. TX Output Power vs. TX LO Frequency, Attenuation Setting = 0 dB,
Single Tone Output
0.5
–115
2000
TX LO FREQUENCY (MHz)
–40°C
+25°C
+85°C
–110
1900
10453-042
6.5
Figure 43. TX Power Control Linearity Error vs. Attenuation Setting
Figure 40. RX Local Oscillator (LO) Leakage vs. RX LO Frequency
Rev. D | Page 26 of 36
Data Sheet
–30
ATT 0dB
ATT 3dB
ATT6dB
–35
TX CARRIER AMPLITUDE (dBc)
–20
–40
–60
–80
–100
–40
–45
–50
–55
–60
–10
–5
0
5
10
15
20
25
–70
1800
–25
TX EVM (dB)
–30
–35
–40
0
5
10
15
20
25
30
35
40
ATTENUATION SETTING (dB)
10453-045
–45
0.5
–40°C
+25°C
+85°C
0.4
0.3
0.2
0
1800
1900
2000
2100
2200
2300
2400
FREQUENCY (MHz)
2500
2600
2700
2300
2400
2500
2600
2700
–50
ATT 0, –40°C
ATT 25, –40°C
ATT 50, –40°C
ATT 0, +25°C
ATT 25, +25°C
ATT 50, +25°C
ATT 0, +85°C
ATT 25, +85°C
ATT 50, +85°C
–55
–60
–65
–70
–75
–80
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
Figure 48. TX Second-Order Harmonic Distortion (HD2) vs. Frequency
10453-046
0.1
2200
FREQUENCY (MHz)
TX THIRD-ORDER HARMONIC DISTORTION (dBc)
Figure 45. TX EVM vs. Transmitter Attenuation Setting, 40 MHz REF_CLK,
LTE 20 MHz, 64 QAM Modulation
2100
Figure 47. TX Carrier Rejection vs. Frequency
TX SECOND-ORDER HARMONIC DISTORTION (dBc)
–40°C
+25°C
+85°C
2000
FREQUENCY (MHz)
Figure 44. TX Spectrum vs. Frequency Offset from Carrier Frequency, fLO_TX =
2.3 GHz, LTE 20 MHz Downlink (Digital Attenuation Variations Shown)
–20
1900
10453-047
–15
10453-048
–20
FREQUENCY OFFSET (MHz)
INTEGRATED PHASE NOISE (°rms)
ATT 0, +85°C
ATT 25, +85°C
ATT 50, +85°C
Figure 46. Integrated TX LO Phase Noise vs. Frequency, 40 MHz REF_CLK
Rev. D | Page 27 of 36
–20
–25
ATT 0, –40°C
ATT 25, –40°C
ATT 50, –40°C
ATT 0, +85°C
ATT 25, +85°C
ATT 50, +85°C
ATT 0, +25°C
ATT 25, +25°C
ATT 50, +25°C
–30
–35
–40
–45
–50
–55
–60
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
FREQUENCY (MHz)
Figure 49. TX Third-Order Harmonic Distortion (HD3) vs. Frequency
10453-049
–120
–25
–50
ATT 0, +25°C
ATT 25, +25°C
ATT 50, +25°C
ATT 0, –40°C
ATT 25, –40°C
ATT 50, –40°C
–65
10453-044
TRANSMITTER OUTPUT POWER (dBm/100kHz)
0
AD9361
AD9361
–30
TX SINGLE SIDEBAND AMPLITUDE (dBc)
–40°C
+25°C
+85°C
TX OIP3 (dBm)
25
20
15
10
0
0
4
8
12
16
20
TX ATTENUATION SETTING (dB)
10453-050
5
Figure 50. TX Third-Order Output Intercept Point (OIP3) vs.
TX Attenuation Setting
160
156
TX SNR (dB/Hz)
154
152
150
148
146
144
0
3
6
9
TX ATTENUATION SETTING (dB)
12
15
10453-051
142
140
ATT 0, +25°C
ATT 25, +25°C
ATT 50, +25°C
ATT 0, +85°C
ATT 25, +85°C
ATT 50, +85°C
–40
–45
–50
–55
–60
–65
–70
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
FREQUENCY (MHz)
Figure 52. TX Single Sideband (SSB) Rejection vs. Frequency,
3.075 MHz Offset
–40°C
+25°C
+85°C
158
–35
ATT 0, –40°C
ATT 25, –40°C
ATT 50, –40°C
Figure 51. TX Signal-to-Noise Ratio (SNR) vs. TX Attenuation Setting,
LTE 20 MHz Signal of Interest with Noise Measured at 90 MHz Offset
Rev. D | Page 28 of 36
10453-052
30
Data Sheet
Data Sheet
AD9361
6
5
5
0
4
–5
RX EVM (dB)
3
–40°C
+25°C
+85°C
2
–10
–40°C
+25°C
+85°C
–15
–20
1
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
6.0
RF FREQUENCY (GHz)
–25
–72
10453-053
0
5.0
Figure 53. RX Noise Figure vs. RF Frequency
–67
–62
–57
–52
–47
–42
–37
–32
INTERFERER POWER LEVEL (dBm)
10453-056
RX NOISE FIGURE (dB)
5.5 GHz FREQUENCY BAND
Figure 56. RX EVM vs. Interferer Power Level, WiMAX 40 MHz Signal of
Interest with PIN = −74 dBm, WiMAX 40 MHz Blocker at 40 MHz Offset
5
5
4
0
2
–40°C
+25°C
+85°C
–5
RX EVM (dB)
RSSI ERROR (dB)
3
1
0
–10
–40°C
+25°C
+85°C
–15
–1
–20
–80
–70
–60
–50
–40
–30
–20
–10
RX INPUT POWER (dBm)
–25
–60
10453-054
–3
–90
–55
–50
–45
–40
–35
–30
–25
INTERFERER POWER LEVEL (dBm)
Figure 54. RSSI Error vs. RX Input Power, Referenced to −50 dBm Input Power
at 5.8 GHz
10453-057
–2
Figure 57. RX EVM vs. Interferer Power Level, WiMAX 40 MHz Signal of
Interest with PIN = −74 dBm, WiMAX 40 MHz Blocker at 80 MHz Offset
0
70
–5
–20
–25
66
64
–30
–40°C
+25°C
+85°C
62
–35
–68
–62
–56
–50
–44
–38
RX INPUT POWER (dBm)
–32
–26
–20
60
5.0
10453-055
–40
–74
Figure 55. RX EVM vs. RX Input Power, 64 QAM WiMAX 40 MHz Mode,
40 MHz REF_CLK (Doubled Internally for RF Synthesizer)
5.1
5.2
5.3
5.4
5.5
5.6
FREQUENCY (GHz)
5.7
5.8
5.9
6.0
10453-058
–15
RX GAIN (dB)
RX EVM (dB)
68
–40°C
+25°C
+85°C
–10
Figure 58. RX Gain vs. Frequency, Gain Index = 76 (Maximum Setting)
Rev. D | Page 29 of 36
AD9361
Data Sheet
20
0
5
–40°C
+25°C
+85°C
0
–5
–10
–20
6
16
26
36
46
56
66
76
RX GAIN INDEX
–80
–100
15
30
25
20
FREQUENCY (GHz)
10
70
9
TX OUTPUT POWER (dBm)
80
–40°C
+25°C
+85°C
50
10
5
Figure 62. RX Emission at LNA Input, DC to 26 GHz, fLO_RX = 5.8 GHz,
WiMAX 40 MHz
60
40
30
–40°C
+25°C
+85°C
8
7
6
5
20
28
36
44
52
60
68
76
RX GAIN INDEX
4
5.0
10453-060
20
Figure 60. Second-Order Input Intercept Point (IIP2) vs. RX Gain Index,
f1 = 70 MHz, f2 = 71 MHz
0.4
–94
0.3
STEP LINEARITY ERROR (dB)
–92
–40°C
+25°C
+85°C
–100
–102
–104
5.5
5.6
5.7
5.8
5.9
FREQUENCY (GHz)
6.0
10453-061
5.4
5.8
5.9
6.0
0.0
–0.2
–0.4
5.3
5.7
–0.1
–108
5.2
5.6
0.1
–0.3
5.1
5.5.
5.4
0.2
–106
–110
5.0
5.3
Figure 63. TX Output Power vs. Frequency, Attenuation Setting = 0 dB,
Single Tone
0.5
–98
5.2
FREQUENCY (GHz)
–90
–96
5.1
10453-063
IIP2 (dBm)
–60
0
Figure 59. Third-Order Input Intercept Point (IIP3) vs. RX Gain Index,
f1 = 50 MHz, f2 = 101 MHz
RX LO LEAKAGE (dBm)
–40
–120
10453-059
–15
–20
Figure 61. RX Local Oscillator (LO) Leakage vs. Frequency
–40°C
+25°C
+85°C
–0.5
0
10
20
30
40
50
60
70
80
90
ATTENUATION SETTING (dB)
Figure 64. TX Power Control Linearity Error vs. Attenuation Setting
Rev. D | Page 30 of 36
10453-064
IIP3 (dBm)
10
10453-062
POWER AT LNA INPUT (dBm/150kHz)
15
Data Sheet
AD9361
0
–10
–10
–20
TX CARRIER AMPLITUDE (dBc)
ATT 0dB
ATT 3dB
ATT 6dB
–30
–40
–50
–60
–70
–20
–30
–40
–50
–20
–10
0
10
20
30
40
50
–70
5.0
–34
–36
–40°C
+25°C
+85°C
2
4
6
8
10
TX ATTENUATION SETTING (dB)
10453-066
TX EVM (dB)
–32
0
Figure 66. TX EVM vs. TX Attenuation Setting, WiMAX 40 MHz,
64 QAM Modulation, fLO_TX = 5.495 GHz, 40 MHz REF_CLK
(Doubled Internally for RF Synthesizer)
0.6
0.5
0.4
–40°C
+25°C
+85°C
0.2
5.3
5.4
5.5
5.6
FREQUENCY (GHz)
5.7
5.8
5.9
6.0
5.6
5.7
5.8
5.9
6.0
ATT 0, –40°C
ATT 25, –40°C
ATT 50, –40°C
–55
ATT 0, +25°C
ATT 25, +25°C
ATT 50, +25°C
ATT 0, +85°C
ATT 25, +85°C
ATT 50, +85°C
–60
–65
–70
–75
–80
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
6.0
FREQUENCY (GHz)
10453-067
0.1
5.2
5.5
–50
5.0
TX THIRD-ORDER HARMONIC DISTORTION (dBc)
INTEGRATED PHASE NOISE (°RMS)
0.7
5.1
5.4
Figure 69. TX Second-Order Harmonic Distortion (HD2) vs. Frequency
0.8
0.3
5.3
Figure 68. TX Carrier Rejection vs. Frequency
TX SECOND-ORDER HARMONIC DISTORTION (dBc)
–30
–40
5.2
FREQUENCY (GHz)
Figure 65. TX Spectrum vs. Frequency Offset from Carrier Frequency, fLO_TX =
5.8 GHz, WiMAX 40 MHz Downlink (Digital Attenuation Variations Shown)
–38
5.1
10453-068
–30
10453-069
–40
FREQUENCY OFFSET (MHz)
0
5.0
ATT 0, +85°C
ATT 25, +85°C
ATT 50, +85°C
Figure 67. Integrated TX LO Phase Noise vs. Frequency, 40 MHz REF_CLK
(Doubled Internally for RF Synthesizer)
Rev. D | Page 31 of 36
–10
–15
ATT 0, –40°C
ATT 25, –40°C
ATT 50, –40°C
ATT 0, +25°C
ATT 25, +25°C
ATT 50, +25°C
ATT 0, +85°C
ATT 25, +85°C
ATT 50, +85°C
–20
–25
–30
–35
–40
–45
–50
5.0
5.1
5.2
5.3
5.4
5.5
5.6
FREQUENCY (GHz)
5.7
5.8
5.9
6.0
10453-070
–90
–50
ATT 0, +25°C
ATT 25, +25°C
ATT 50, +25°C
ATT 0, –40°C
ATT 25, –40°C
ATT 50, –40°C
–60
–80
10453-065
TRANSMITTER OUTPUT POWER (dBm/1MHz)
0
Figure 70. TX Third-Order Harmonic Distortion (HD3) vs. Frequency
AD9361
Data Sheet
20
TX OIP3 (dBm)
16
12
–40°C
+25°C
+85°C
8
4
–4
0
4
8
12
16
20
TX ATTENUATION SETTING (dB)
149
TX SNR (dB/Hz)
148
147
146
–40°C
+25°C
+85°C
144
142
6
9
TX ATTENUATION SETTING (dB)
12
15
10453-072
143
3
–45
–50
–55
–60
–65
5.1
5.2
5.3
5.4
5.5
5.6
FREQUENCY (GHz)
150
0
ATT 0, +85°C
ATT 25, +85°C
ATT 50, +85°C
5.7
5.8
5.9
6.0
Figure 73. TX Single Sideband (SSB) Rejection vs. Frequency, 7 MHz Offset
Figure 71. TX Third-Order Output Intercept Point (OIP3) vs.
TX Attenuation Setting, fLO_TX = 5.8 GHz
145
ATT 0, +25°C
ATT 25, +25°C
ATT 50, +25°C
–40
–70
5.0
10453-071
0
ATT 0, –40°C
ATT 25, –40°C
ATT 50, –40°C
–35
10453-073
TX SINGLE SIDEBAND AMPLITUDE (dBc)
–30
Figure 72. TX Signal-to-Noise Ratio (SNR) vs. TX Attenuation Setting,
WiMAX 40 MHz Signal of Interest with Noise Measured at 90 MHz Offset,
fLO_TX = 5.745 GHz
Rev. D | Page 32 of 36
Data Sheet
AD9361
THEORY OF OPERATION
GENERAL
The AD9361 is a highly integrated radio frequency (RF)
transceiver capable of being configured for a wide range of
applications. The device integrates all RF, mixed signal, and
digital blocks necessary to provide all transceiver functions in a
single device. Programmability allows this broadband transceiver
to be adapted for use with multiple communication standards,
including frequency division duplex (FDD) and time division
duplex (TDD) systems. This programmability also allows the
device to be interfaced to various baseband processors (BBPs) using
a single 12-bit parallel data port, dual 12-bit parallel data ports,
or a 12-bit low voltage differential signaling (LVDS) interface.
The AD9361 also provides self-calibration and automatic gain
control (AGC) systems to maintain a high performance level
under varying temperatures and input signal conditions. In
addition, the device includes several test modes that allow system
designers to insert test tones and create internal loopback modes
that can be used by designers to debug their designs during
prototyping and optimize their radio configuration for a
specific application.
RECEIVER
The receiver section contains all blocks necessary to receive RF
signals and convert them to digital data that is usable by a BBP.
There are two independently controlled channels that can receive
signals from different sources, allowing the device to be used in
multiple input, multiple output (MIMO) systems while sharing
a common frequency synthesizer.
Each channel has three inputs that can be multiplexed to the
signal chain, making the AD9361 suitable for use in diversity
systems with multiple antenna inputs. The receiver is a direct
conversion system that contains a low noise amplifier (LNA),
followed by matched in-phase (I) and quadrature (Q) amplifiers,
mixers, and band shaping filters that down convert received
signals to baseband for digitization. External LNAs can also be
interfaced to the device, allowing designers the flexibility to
customize the receiver front end for their specific application.
Gain control is achieved by following a preprogrammed gain
index map that distributes gain among the blocks for optimal
performance at each level. This can be achieved by enabling the
internal AGC in either fast or slow mode or by using manual
gain control, allowing the BBP to make the gain adjustments as
needed. Additionally, each channel contains independent RSSI
measurement capability, dc offset tracking, and all circuitry
necessary for self-calibration.
The receivers include 12-bit, sigma-delta (Σ-Δ) ADCs and
adjustable sample rates that produce data streams from the received
signals. The digitized signals can be conditioned further by a series
of decimation filters and a fully programmable 128-tap FIR filter
with additional decimation settings. The sample rate of each
digital filter block is adjustable by changing decimation factors
to produce the desired output data rate.
TRANSMITTER
The transmitter section consists of two identical and independently
controlled channels that provide all digital processing, mixed
signal, and RF blocks necessary to implement a direct conversion
system while sharing a common frequency synthesizer. The digital
data received from the BBP passes through a fully programmable
128-tap FIR filter with interpolation options. The FIR output is
sent to a series of interpolation filters that provide additional
filtering and data rate interpolation prior to reaching the DAC.
Each 12-bit DAC has an adjustable sampling rate. Both the I
and Q channels are fed to the RF block for upconversion.
When converted to baseband analog signals, the I and Q signals are
filtered to remove sampling artifacts and fed to the upconversion
mixers. At this point, the I and Q signals are recombined and
modulated on the carrier frequency for transmission to the
output stage. The combined signal also passes through analog
filters that provide additional band shaping, and then the signal
is transmitted to the output amplifier. Each transmit channel
provides a wide attenuation adjustment range with fine granularity
to help designers optimize signal-to-noise ratio (SNR).
Self-calibration circuitry is built into each transmit channel to
provide automatic real-time adjustment. The transmitter block
also provides a TX monitor block for each channel. This block
monitors the transmitter output and routes it back through an
unused receiver channel to the BBP for signal monitoring. The
TX monitor blocks are available only in TDD mode operation
while the receiver is idle.
CLOCK INPUT OPTIONS
The AD9361 operates using a reference clock that can be provided
by two different sources. The first option is to use a dedicated
crystal with a frequency between 19 MHz and 50 MHz connected
between the XTALP and XTALN pins. The second option is to
connect an external oscillator or clock distribution device (such as
the AD9548) to the XTALN pin (with the XTALP pin remaining
unconnected). If an external oscillator is used, the frequency
can vary between 10 MHz and 80 MHz. This reference clock
is used to supply the synthesizer blocks that generate all data
clocks, sample clocks, and local oscillators inside the device.
Errors in the crystal frequency can be removed by using the
digitally programmable digitally controlled crystal oscillator
(DCXO) function to adjust the on-chip variable capacitor. This
capacitor can tune the crystal frequency variance out of the
system, resulting in a more accurate reference clock from which
all other frequency signals are generated. This function can also
be used with on-chip temperature sensing to provide oscillator
frequency temperature compensation during normal operation.
Rev. D | Page 33 of 36
AD9361
Data Sheet
SYNTHESIZERS
RX_FRAME Signal
RF PLLs
The device generates an RX_FRAME output signal whenever the
receiver outputs valid data. This signal has two modes: level
mode (RX_FRAME stays high as long as the data is valid) and
pulse mode (RX_FRAME pulses with a 50% duty cycle). Similarly,
the BBP must provide a TX_FRAME signal that indicates the
beginning of a valid data transmission with a rising edge. Similar
to the RX_FRAME, the TX_FRAME signal can remain high
throughout the burst or it can be pulsed with a 50% duty cycle.
The AD9361 contains two identical synthesizers to generate the
required LO signals for the RF signal paths:—one for the receiver
and one for the transmitter. Phase-locked loop (PLL) synthesizers
are fractional-N designs incorporating completely integrated
voltage controlled oscillators (VCOs) and loop filters. In TDD
operation, the synthesizers turn on and off as appropriate for the
RX and TX frames. In FDD mode, the TX PLL and the RX PLL
can be activated simultaneously. These PLLs require no external
components.
BB PLL
The AD9361 also contains a baseband PLL synthesizer that is
used to generate all baseband related clock signals. These include
the ADC and DAC sampling clocks, the DATA_CLK signal (see
the Digital Data Interface section), and all data framing signals.
This PLL is programmed from 700 MHz to 1400 MHz based on
the data rate and sample rate requirements of the system.
DIGITAL DATA INTERFACE
The AD9361 data interface uses parallel data ports (P0 and P1)
to transfer data between the device and the BBP. The data ports can
be configured in either single-ended CMOS format or differential
LVDS format. Both formats can be configured in multiple
arrangements to match system requirements for data ordering and
data port connections. These arrangements include single port
data bus, dual port data bus, single data rate, double data rate,
and various combinations of data ordering to transmit data
from different channels across the bus at appropriate times.
Bus transfers are controlled using simple hardware handshake
signaling. The two ports can be operated in either bidirectional
(TDD) mode or in full duplex (FDD) mode where half the bits
are used for transmitting data and half are used for receiving data.
The interface can also be configured to use only one of the data
ports for applications that do not require high data rates and
prefer to use fewer interface pins.
DATA_CLK Signal
RX data supplies the DATA_CLK signal that the BBP can use
when receiving the data. The DATA_CLK can be set to a rate that
provides single data rate (SDR) timing where data is sampled on
each rising clock edge, or it can be set to provide double data rate
(DDR) timing where data is captured on both rising and falling
edges. This timing applies to operation using either a single port
or both ports.
FB_CLK Signal
For transmit data, the interface uses the FB_CLK signal as the
timing reference. FB_CLK allows source synchronous timing
with rising edge capture for burst control signals and either
rising edge (SDR mode) or both edge capture (DDR mode) for
transmit signal bursts. The FB_CLK signal must have the same
frequency and duty cycle as DATA_CLK.
ENABLE STATE MACHINE
The AD9361 transceiver includes an enable state machine (ENSM)
that allows real-time control over the current state of the device.
The device can be placed in several different states during normal
operation, including
•
•
•
•
•
•
Wait—power save, synthesizers disabled
Sleep—wait with all clocks/BB PLL disabled
TX—TX signal chain enabled
RX—RX signal chain enabled
FDD—TX and RX signal chains enabled
Alert—synthesizers enabled
The ENSM has two possible control methods: SPI control and
pin control.
SPI Control Mode
In SPI control mode, the ENSM is controlled asynchronously
by writing SPI registers to advance the current state to the next
state. SPI control is considered asynchronous to the DATA_CLK
because the SPI_CLK can be derived from a different clock
reference and can still function properly. The SPI control
ENSM method is recommended when real-time control of the
synthesizers is not necessary. SPI control can be used for realtime control as long as the BBIC has the ability to perform
timed SPI writes accurately.
Pin Control Mode
In pin control mode, the enable function of the ENABLE pin
and the TXNRX pin allow real-time control of the current state.
The ENSM allows TDD or FDD operation depending on the
configuration of the corresponding SPI register. The ENABLE
and TXNRX pin control method is recommended if the BBIC
has extra control outputs that can be controlled in real time,
allowing a simple 2-wire interface to control the state of the
device. To advance the current state of the ENSM to the next
state, the enable function of the ENABLE pin can be driven by
either a pulse (edge detected internally) or a level.
When a pulse is used, it must have a minimum pulse width of
one FB_CLK cycle. In level mode, the ENABLE and TXNRX
pins are also edge detected by the AD9361 and must meet the
same minimum pulse width requirement of one FB_CLK cycle.
Rev. D | Page 34 of 36
Data Sheet
AD9361
In FDD mode, the ENABLE and TXNRX pins can be remapped
to serve as real-time RX and TX data transfer control signals. In
this mode, the ENABLE pin enables or disables the receive signal
path, and the TXNRX pin enables or disables the transmit signal
path. In this mode, the ENSM is removed from the system for
control of all data flow by these pins.
SPI INTERFACE
The AD9361 uses a serial peripheral interface (SPI) to
communicate with the BBP. This interface can be configured
as a 4-wire interface with dedicated receive and transmit ports,
or it can be configured as a 3-wire interface with a bidirectional
data communication port. This bus allows the BBP to set all device
control parameters using a simple address data serial bus protocol.
AUXILIARY CONVERTERS
AUXADC
The AD9361 contains an auxiliary ADC that can be used to
monitor system functions such as temperature or power output.
The converter is 12 bits wide and has an input range of 0 V to
1.25 V. When enabled, the ADC is free running. SPI reads provide
the last value latched at the ADC output. A multiplexer in front
of the ADC allows the user to select between the AUXADC input
pin and a built-in temperature sensor.
AUXDAC1 and AUXDAC2
The AD9361 contains two identical auxiliary DACs that can
provide power amplifier (PA) bias or other system functionality.
The auxiliary DACs are 10 bits wide, have an output voltage range
of 0.5 V to VDD_GPO − 0.3 V, a current drive of 10 mA, and
can be directly controlled by the internal enable state machine.
Write commands follow a 24-bit format. The first six bits are
used to set the bus direction and number of bytes to transfer.
The next 10 bits set the address where data is to be written. The
final eight bits are the data to be transferred to the specified register
address (MSB to LSB). The AD9361 also supports an LSB-first
format that allows the commands to be written in LSB to MSB
format. In this mode, the register addresses are incremented for
multibyte writes.
The AD9361 must be powered by the following three supplies:
the analog supply (VDDD1P3_DIG/VDDAx = 1.3 V), the
interface supply (VDD_INTERFACE = 1.8 V), and the GPO
supply (VDD_GPO = 3.3 V).
Read commands follow a similar format with the exception that
the first 16 bits are transferred on the SPI_DI pin and the final
eight bits are read from the AD9361, either on the SPI_DO pin
in 4-wire mode or on the SPI_DI pin in 3-wire mode.
For applications requiring optimal noise performance, it is
recommended that the 1.3 V analog supply be split and sourced
from low noise, low dropout (LDO) regulators. Figure 74 shows
the recommended method.
POWERING THE AD9361
3.3V
CONTROL PINS
ADP2164
Control Inputs (CTRL_IN[3:0])
1.8V
ADP1755
1.3V_A
ADP1755
1.3V_B
Figure 74. Low Noise Power Solution for the AD9361
For applications where board space is at a premium, and
optimal noise performance is not an absolute requirement, the
1.3 V analog rail can be provided directly from a switcher, and a
more integrated power management unit (PMU) approach can
be adopted. Figure 75 shows this approach.
The AD9361 provides four edge detected control input pins. In
manual gain mode, the BBP can use these pins to change the gain
table index in real time. In transmit mode, the BBP can use two
of the pins to change the transmit gain in real time.
GPO PINS (GPO_3 TO GPO_0)
The AD9361 provides four, 3.3 V capable general-purpose logic
output pins: GPO_3, GPO_2, GPO_1, and GPO_0. These pins
can be used to control other peripheral devices such as regulators
and switches via the AD9361 SPI bus, or they can function as
slaves for the internal AD9361 state machine.
Rev. D | Page 35 of 36
ADP5040
1.2A
BUCK
ADP1755
1.3V
LDO
VDDD1P3_DIG/VDDAx
AD9361
300mA
LDO
1.8V
300mA
LDO
3.3V
VDD_INTERFACE
VDD_GPO
Figure 75. Space-Optimized Power Solution for the AD9361
10453-075
The AD9361 provides eight simultaneous real-time output signals
for use as interrupts to the BBP. These outputs can be configured to
output a number of internal settings and measurements that the
BBP can use when monitoring transceiver performance in different
situations. The control output pointer register selects what
information is output to these pins, and the control output enable
register determines which signals are activated for monitoring by
the BBP. Signals used for manual gain mode, calibration flags,
state machine states, and the ADC output are among the outputs
that can be monitored on these pins.
10453-074
Control Outputs (CTRL_OUT[7:0])
AD9361
Data Sheet
PACKAGING AND ORDERING INFORMATION
OUTLINE DIMENSIONS
A1 BALL
CORNER
10.10
10.00 SQ
9.90
A1 BALL
CORNER
12 11 10 9 8
7 6
5
4
3
2
1
A
B
C
D
8.80 SQ
E
F
G
H
0.80
J
K
L
M
0.60
REF
TOP VIEW
BOTTOM VIEW
DETAIL A
1.70 MAX
DETAIL A
1.00 MIN
0.32 MIN
0.50
COPLANARITY
0.45
0.12
0.40
BALL DIAMETER
COMPLIANT TO JEDEC STANDARDS MO-275-EEAB-1.
11-18-2011-A
SEATING
PLANE
Figure 76. 144-Ball Chip Scale Package Ball Grid Array [CSP_BGA]
(BC-144-7)
Dimensions shown in millimeters
ORDERING GUIDE
Model 1
AD9361BBCZ
AD9361BBCZ-REEL
1
Temperature Range
−40°C to +85°C
−40°C to +85°C
Package Description
144-Ball Chip Scale Package Ball Grid Array [CSP_BGA]
144-Ball Chip Scale Package Ball Grid Array [CSP_BGA]
Z = RoHS Compliant Part.
©2013 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D10453-0-11/13(D)
Rev. D | Page 36 of 36
Package Option
BC-144-7
BC-144-7