FREESCALE MC9S08LG32CLH

深圳市南天星电子科技有限公司
专业代理飞思卡尔
(Freescale)
飞思卡尔主要产品
8 位微控制器
16 位微控制器
数字信号处理器与控制器
i.MX 应用处理器
基于 ARM®技术的 Kinetis MCU
32/64 位微控制器与处理器
模拟与电源管理器件
射频器件(LDMOS,收发器)
传感器(压力,加速度,磁场,
触摸,电池)
飞思卡尔产品主要应用
汽车电子
数据连接
消费电子
工业控制
医疗保健
电机控制
网络
智能能源
深圳市南天星电子科技有限公司
电话:0755-83040796
传真:0755-83040790
邮箱:[email protected]
网址:www.soustar.com.cn
地址:深圳市福田区福明路雷圳大厦 2306 室
Freescale Semiconductor
Data Sheet: Technical Data
Document Number: MC9S08LG32
Rev. 7, 8/2009
MC9S08LG32 Series
Covers: MC9S08LG32 and
MC9S08LG16
MC9S08LG32
80-LQFP
Case 917A
14 mm × 14 mm
64-LQFP
Case 840F
10 mm × 10 mm
Features
48-LQFP
• 8-bit HCS08 Central Processor Unit (CPU)
Case 932
7 mm × 7mm
– Up to 40 MHz CPU at 5.5 V to 2.7 V across temperature
– On-chip in-circuit emulator (ICE) debug module containing
range of –40 °C to 85 °C and –40 °C to 105 °C
three comparators and nine trigger modes; eight deep FIFO
– HCS08 instruction set with added BGND instruction
for storing change-of-flow addresses and event-only data;
– Support for up to 32 interrupt/reset sources
debug module supports both tag and force breakpoints
• On-Chip Memory
• Peripherals
– 32 KB or 18 KB dual array flash; read/program/erase
– LCD — Up to 4 × 41 or 8 × 37 LCD driver with internal
over full operating voltage and temperature
charge pump.
– 1984 byte random access memory (RAM)
– ADC — Up to 16-channel, 12-bit resolution; 2.5 μs
– Security circuitry to prevent unauthorized access to
conversion time; automatic compare function; temperature
RAM and flash contents
sensor; internal bandgap reference channel; runs in stop3 and
• Power-Saving Modes
can wake up the system; fully functional from 5.5 V to 2.7 V
– Two low-power stop modes (stop2 and stop3)
– SCI — Full duplex non-return to zero (NRZ); LIN master
– Reduced-power wait mode
extended break generation; LIN slave extended break
– Peripheral clock gating register can disable clocks to
detection; wakeup on active edge
unused modules, thereby reducing currents
– SPI — Full-duplex or single-wire bidirectional;
– Low power on-chip crystal oscillator (XOSC) that can
double-buffered transmit and receive; master or slave mode;
be used in low-power modes to provide accurate clock
MSB-first or LSB-first shifting
source to real time counter and LCD controller
– IIC — With up to 100 kbps with maximum bus loading;
– 100 μs typical wakeup time from stop3 mode
multi-master operation; programmable slave address;
• Clock Source Options
interrupt driven byte-by-byte data transfer; supports
– Oscillator (XOSC) — Loop-control Pierce oscillator;
broadcast mode and 10-bit addressing
crystal or ceramic resonator range of 31.25 kHz to
– TPMx — One 6 channel and one 2 channel; selectable input
38.4 kHz or 1 MHz to 16 MHz
capture, output compare, or buffered edge or center-aligned
– Internal Clock Source (ICS) — Internal clock source
PWM on each channel
module containing a frequency-locked-loop (FLL)
– MTIM — 8-bit counter with match register; four clock
controlled by internal or external reference; precision
sources with prescaler dividers; can be used for periodic
trimming of internal reference allows 0.2% resolution
wakeup
and 2% deviation over temperature and voltage; supports
– RTC — 8-bit modulus counter with binary or decimal based
bus frequencies from 1 MHz to 20 MHz.
prescaler; three clock sources including one external source;
• System Protection
can be used for time base, calendar, or task scheduling
– COP reset with option to run from dedicated 1 kHz
functions
internal clock or bus clock
– KBI — One keyboard control module capable of supporting
– Low-voltage warning with interrupt
8 × 8 keyboard matrix
– Low-voltage detection with reset
– IRQ — External pin for wakeup from low-power modes
– Illegal opcode detection with reset
• Input/Output
– Illegal address detection with reset
– 39, 53, or 69 GPIOs
– Flash and RAM protection
– 8 KBI and 1 IRQ interrupt with selectable polarity
• Development Support
– Hysteresis and configurable pullup device on all input pins;
– Single-wire background debug interface
configurable slew rate and drive strength on all output pins.
– Breakpoint capability to allow single breakpoint setting
during in-circuit debugging (plus two more breakpoints • Package Options
– 48-pin LQFP, 64-pin LQFP, and 80-pin LQFP
in on-chip debug module)
Freescale reserves the right to change the detail specifications as may be required to permit
improvements in the design of its products.
© Freescale Semiconductor, Inc., 2009. All rights reserved.
Table of Contents
1
2
3
4
5
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
2.2 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . .10
2.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . .10
2.4 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .11
2.5 ESD Protection and Latch-Up Immunity . . . . . . . . . . . .12
2.6 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
2.7 Supply Current Characteristics . . . . . . . . . . . . . . . . . . .17
2.8 External Oscillator (XOSC) Characteristics . . . . . . . . .22
2.9 Internal Clock Source (ICS) Characteristics . . . . . . . . .24
2.10 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .25
2.11 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
2.11.1 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . .29
2.11.2 TPM Module Timing . . . . . . . . . . . . . . . . . . . . .30
2.11.3 SPI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
2.12 LCD Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
2.13 Flash Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . .34
2.14 EMC Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
2.14.1 Radiated Emissions . . . . . . . . . . . . . . . . . . . . . .35
2.14.2 Conducted Transient Susceptibility . . . . . . . . . .35
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
3.1 Device Numbering System . . . . . . . . . . . . . . . . . . . . . .39
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
4.1 Mechanical Drawings . . . . . . . . . . . . . . . . . . . . . . . . . .39
4.1.1 80-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . .40
4.1.2 64-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . .43
4.1.3 48-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
List of Figures
Figure 1. MC9S08LG32 Series Block Diagram . . . . . . . . . . . . . . 3
Figure 2. 80-Pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 3. 64-Pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 4. 48-Pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 5. Typical Low-side Drive (sink) characteristics – High Drive
(PTxDSn = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 6. Typical Low-side Drive (sink) characteristics – Low Drive
(PTxDSn = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 7. Typical High-side Drive (source) characteristics – High
Drive (PTxDSn = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 8. Typical High-side Drive (source) characteristics – Low Drive
(PTxDSn = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 9. Typical Run IDD for FBE Mode at 1 MHz. . . . . . . . . . . 19
Figure 10.Typical Run IDD for FBE Mode at 20 MHz . . . . . . . . . 20
Figure 11.Typical Run IDD for FEE Mode at 1 MHz . . . . . . . . . . 20
Figure 12.Typical Run IDD for FEE Mode at 20 MHz . . . . . . . . . 21
Figure 13.Typical Stop2 IDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 14.Typical Stop3 IDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 15.Typical Crystal or Resonator Circuit: High Range and Low
Range/High Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 16.Typical Crystal or Resonator Circuit: Low Range/Low
Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 17.Internal Oscillator Deviation from Trimmed Frequency 25
Figure 18.ADC Input Impedance Equivalency Diagram. . . . . . . 26
Figure 19.Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 20.IRQ/KBIPx Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 21.Timer External Clock . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 22.Timer Input Capture Pulse . . . . . . . . . . . . . . . . . . . . . 30
Figure 23.SPI Master Timing (CPHA = 0) . . . . . . . . . . . . . . . . . 32
Figure 24.SPI Master Timing (CPHA =1) . . . . . . . . . . . . . . . . . . 32
Figure 25.SPI Slave Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . 33
Figure 26.SPI Slave Timing (CPHA = 1) . . . . . . . . . . . . . . . . . . 33
Figure 27.4 MHz, Positive Polarity Pins 1 – 41 . . . . . . . . . . . . . 36
Figure 28.4 MHz, Positive Polarity Pins 42 – 80 . . . . . . . . . . . . 36
Figure 29.4 MHz, Negative Polarity Pins 1 – 41. . . . . . . . . . . . . 37
Figure 30.4 MHz, Negative Polarity Pins 42 – 80. . . . . . . . . . . . 37
Figure 31.Device Number Example for Auto Parts. . . . . . . . . . . 39
Figure 32.Device Number Example for IMM Parts. . . . . . . . . . . 39
Figure 33.80-pin LQFP Package Drawing (Case 917A, Doc
#98ASS23237W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 34.64-pin LQFP Package Drawing (Case 840F, Doc
#98ASS23234W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 35.48-pin LQFP Package Drawing (Case 932, Doc
#98ASH00962A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
List of Tables
Table 1. MC9S08LG32 Series Features by MCU and Package . 4
Table 2. Pin Availability by Package Pin-Count . . . . . . . . . . . . . . 8
Table 3. Parameter Classifications . . . . . . . . . . . . . . . . . . . . . . 10
Table 4. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . 11
Table 5. Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . 11
Table 6. ESD and Latch-Up Test Conditions . . . . . . . . . . . . . . . 12
Table 7. ESD and Latch-Up Protection Characteristics. . . . . . . 13
Table 8. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 9. Supply Current Characteristics. . . . . . . . . . . . . . . . . . 17
Table 10.Oscillator Electrical Specifications (Temperature Range =
–40 °C to 105 °C Ambient) . . . . . . . . . . . . . . . . . . . . . 22
Table 11.ICS Frequency Specifications (Temperature Range =
–40 °C to 105 °C Ambient) . . . . . . . . . . . . . . . . . . . . . 24
Table 12.12-bit ADC Operating Conditions . . . . . . . . . . . . . . . . 25
Table 13.12-bit ADC Characteristics (VREFH = VDDAD, VREFL =
VSSAD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 14.Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 15.TPM Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 16.SPI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 17.LCD Electricals, 3 V Glass . . . . . . . . . . . . . . . . . . . . . 34
Table 18.Flash Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 19.Radiated Emissions, Electric Field . . . . . . . . . . . . . . . 35
Table 20.Conducted Susceptibility, EFT/B . . . . . . . . . . . . . . . . . 35
Table 21.Susceptibility Performance Classification . . . . . . . . . . 38
Table 22.Device Numbering System . . . . . . . . . . . . . . . . . . . . . 38
Table 23.Package Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 24.Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
MC9S08LG32 Series Data Sheet, Rev. 7
2
Freescale Semiconductor
PORT A
Real Time Counter
LCD[40:37]/PTB[7:4]
LCD[32:29]/PTB[3:0]
RESET/PTC6
BKGD/MS/PTC5
LCD[20:16]/PTC[4:0]
(RTC)
RESETS AND INTERRUPTS
MODES OF OPERATION
POWER MANAGEMENT
8-BIT KEYBOARD
INTERRUPT (KBI)
RESET
COP
IRQ
LVD
SERIAL PERIPHERAL
INTERFACE (SPI)
KBI[7:0]
SS
SPSCK
MISO
MOSI
SCL
IIC MODULE (IIC)
USER FLASH A
(LG32 = 16K BYTES)
(LG16 = 2K BYTES)
6-CHANNEL TIMER/PWM
(TPM2)
USER FLASH B
(LG32 = 16K BYTES)
(LG16 = 16K BYTES)
2-CHANNEL TIMER/PWM
(TPM1)
SERIAL COMMUNICATIONS
INTERFACE (SCI1)
USER RAM
SDA
TPM2CH[5:0]
TPMCLK
PORT D
TMRCLK
(MTIM)
LCD[7:0]/PTD[7:0]
PORT E
Modulo Timer
HCS08 SYSTEM CONTROL
IRQ
PORT B
BKGD/MS
LCD[15:8]/PTE[7:0]
TPM1CH[1:0]
PORT F
BKP
EXTAL/PTF7
XTAL/PTF6
TPM2CH3/KBI2/MOSI/PTF5
TPM2CH4/KBI1/MISO/PTF4
TPM2CH5/KBI0/SS/PTF3
ADC14/IRQ/TPM1CH1/SPSCK/PTF2
ADC13/TPM1CH0/RX1/PTF1
ADC12/TPM2CH2/KBI3/TX1/PTF0
PORT G
BKGD
LCD[44:41]/PTG[7:4]
LCD[36:33]/PTG[3:0]
PORT H
INT
ON-CHIP ICE (ICE) and
DEBUG MODULE (DBG)
TPM2CH4/KBI1/PTH7
ADC15/KBI0/TPM2CH5/PTH6
ADC11/TPM1CH0/KBI3/TX1/PTH5
ADC10/TPM1CH1/KBI2/RX1/PTH4
ADC[9:6]/KBI[7:4]/PTH[3:0]
PORT I
CPU
LCD28/ADC5/TPMCLK/PTA7
LCD27/ADC4/TPM2CH1/KBI7/PTA6
LCD26/ADC3/TPM2CH0/KBI6/PTA5
LCD25/ADC2/RX2/KBI5/PTA4
LCD24/ADC1/TX2/KBI4/PTA3
LCD23/ADC0/SDA/PTA2
LCD22/SCL/PTA1
LCD21/PTA0
PORT C
HCS08 CORE
SS/SCL/TPM2CH0/PTI5
SPSCK/SDA/TPM2CH1/PTI4
MOSI/TPM2CH2/PTI3
MISO/TPM2CH3/PTI2
TX2/TMRCLK/PTI1
RX2/PTI0
TPMCLK
TxD1
RxD1
1984 BYTES
SERIAL COMMUNICATIONS
INTERFACE (SCI2)
INTERNAL CLOCK
Source (ICS)
TxD2
RxD2
XTAL
LOW-POWER OSCILLATOR
12-BIT
ANALOG-TO-DIGITAL
CONVERTER (ADC)
VLL3_2
VLL3
VLL1
VLL2
VCAP1
EXTAL
AD[15:0]
LIQUID CRYSTAL
DISPLAY DRIVER
(LCD)
VCAP2
LCD[44:0]
VDD
VSS
VSS2
VOLTAGE
REGULATOR
VDDA/VREFH
VSSA/VREFL
Available only on 80-pin package
Available only on 64-pin and 80-pin package
*/Default function out of reset/*
Figure 1. MC9S08LG32 Series Block Diagram
MC9S08LG32 Series Data Sheet, Rev. 7
Freescale Semiconductor
3
Pin Assignments
Table 1. MC9S08LG32 Series Features by MCU and Package
Feature
Flash size (bytes)
MC9S08LG32
MC9S08LG16
32,768
18,432
RAM size (bytes)
Pin quantity
1984
80
64
48
64
48
ADC
16 ch
12 ch
9 ch
12 ch
9 ch
LCD
8 x 37
4 x 41
8 x 29
4 x 33
8 x 21
4 x 25
8 x 29
4 x 33
8 x 21
4 x 25
53
39
ICE + DBG
yes
ICS
yes
IIC
yes
IRQ
yes
KBI
8 pin
GPIOs
69
39
RTC
yes
MTIM
yes
SCI1
yes
SCI2
yes
SPI
yes
TPM1 channels
2
TPM2 channels
6
XOSC
1
53
yes
Pin Assignments
This section shows the pin assignments for the MC9S08LG32 series devices. The priority of functions on a pin is in ascending
order from left to right and bottom to top. Another view of pinouts and function priority is given in Table 2.
MC9S08LG32 Series Data Sheet, Rev. 7
4
Freescale Semiconductor
80-Pin LQFP
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
PTC4/LCD20
PTA0/LCD21
PTG2/LCD35
PTG3/LCD36
PTA1/SCL/LCD22
PTA2/SDA/ADC0/LCD23
PTA3/KBI4/TX2/ADC1/LCD24
PTA4/KBI5/RX2/ADC2/LCD25
PTA5/KBI6/TPM2CH0/ADC3/LCD26
PTA6/KBI7/TPM2CH1/ADC4/LCD27
PTA7/TPMCLK/ADC5/LCD28
PTC5/BKGD/MS
PTC6/RESET
PTH0/KBI4/ADC6
PTH1/KBI5/ADC7
PTH2KBI6/ADC8
PTH3/KBI7/ADC9
PTH4/RX1/KBI2/TPM1CH1/ADC10
PTH5/TX1/KBI3/TPM1CH0/ADC11
PTF3/SS/KBI0/TPM2CH5
VLL3
PTF5/MOSI/KBI2/TPM2CH3
PTF4/MISO/KBI1/TPM2CH4
PTI5/TPM2CH0/SCL/SS
PTI4/TPM2CH1/SDA/SPSCK
PTI3/TPM2CH2/MOSI
PTI2/TPM2CH3/MISO
PTI1/TMRCLK/TX2
PTI0/RX2
PTH7/KBI1/TPM2CH4
VSS
VDD
PTF7/EXTAL
PTF6/XTAL
VDDA/VREFH
VSSA/VREFL
PTH6/TPM2CH5/KBI0/ADC15
PTF2/SPSCK/TPM1CH1/IRQ/ADC14
PTF1/RX1/TPM1CH0/ADC13
PTF0/TX1/KBI3/TPM2CH2/ADC12
PTD7/LCD7
PTD6/LCD6
PTD5/LCD5
PTD4/LCD4
PTD3/LCD3
PTD2/LCD2
PTB3/LCD32
PTB2/LCD31
PTB7/LCD40
PTB6/LCD39
PTB5/LCD38
PTB4/LCD37
PTB1/LCD30
PTB0/LCD29
PTD1/LCD1
PTD0/LCD0
VCAP1
VCAP2
VLL1
VLL2
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
PTE0/LCD8
PTE1/LCD9
PTE2/LCD10
PTE3/LCD11
PTE4/LCD12
PTE5/LCD13
PTG0/LCD33
PTG1/LCD34
PTG4/LCD41
PTG5/LCD42
PTG6/LCD43
PTG7/LCD44
VLL3_2
VSS2
PTE6/LCD14
PTE7/LCD15
PTC0/LCD16
PTC1/LCD17
PTC2/LCD18
PTC3/LCD19
Pin Assignments
Figure 2. 80-Pin LQFP
NOTE
VREFH/VREFL are internally connected to VDDA/VSSA.
MC9S08LG32 Series Data Sheet, Rev. 7
Freescale Semiconductor
5
64-Pin LQFP
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
PTC4/LCD20
PTA0/LCD21
PTG2/LCD35
PTG3/LCD36
PTA1/SCL/LCD22
PTA2/SDA/ADC0/LCD23
PTA3/KBI4/TX2/ADC1/LCD24
PTA4/KBI5/RX2/ADC2/LCD25
PTA5/KBI6/TPM2CH0/ADC3/LCD26
PTA6/KBI7/TPM2CH1/ADC4/LCD27
PTA7/TPMCLK/ADC5/LCD28
PTC5/BKGD/MS
PTC6/RESET
PTH4/RX1/KBI2/TPM1CH1/ADC10
PTH5/TX1/KBI3/TPM1CH0/ADC11
PTF3/SS/KBI0/TPM2CH5
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
VLL3
PTF5/MOSI/KBI2/TPM2CH3
PTF4/MISO/KBI1/TPM2CH4
PTI5/TPM2CH0/SCL/SS
PTI4/TPM2CH1/SDA/SPSCK
PTH7/KBI1/TPM2CH4
VSS
VDD
PTF7/EXTAL
PTF6/XTAL
VDDA/VREFH
VSSA/VREFL
PTH6/TPM2CH5/KBI0/ADC15
PTF2/SPSCK/TPM1CH1/IRQ/ADC14
PTF1/RX1/TPM1CH0/ADC13
PTF0/TX1/KBI3/TPM2CH2/ADC12
PTD7/LCD7
PTD6/LCD6
PTD5/LCD5
PTD4/LCD4
PTD3/LCD3
PTD2/LCD2
PTB3/LCD32
PTB2/LCD31
PTB1/LCD30
PTB0/LCD29
PTD1/LCD1
PTD0/LCD0
VCAP1
VCAP2
VLL1
VLL2
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
PTE0/LCD8
PTE1/LCD9
PTE2/LCD10
PTE3/LCD11
PTE4/LCD12
PTE5/LCD13
PTG0/LCD33
PTG1/LCD34
VLL3_2
VSS2
PTE6/LCD14
PTE7/LCD15
PTC0/LCD16
PTC1/LCD17
PTC2/LCD18
PTC3/LCD19
Pin Assignments
Figure 3. 64-Pin LQFP
NOTE
VREFH/VREFL are internally connected to VDDA/VSSA.
MC9S08LG32 Series Data Sheet, Rev. 7
6
Freescale Semiconductor
37
48
PTD7/LCD7
47
1
PTC3/LCD19
PTC2/LCD18
PTC1/LCD17
PTC0/LCD16
PTE7/LCD15
PTE6/LCD14
PTE5/LCD13
PTE4/LCD12
PTE3/LCD11
PTE2/LCD10
PTE1/LCD9
PTE0/LCD8
Pin Assignments
46
45
44
43
42
41
40
39
38
36 PTC4/LCD20
PTD6/LCD6
2
35
PTA0/LCD21
PTD5/LCD5
3
34
PTA1/SCL/LCD22
PTD4/LCD4
4
33
PTA2/SDA/ADC0/LCD23
PTD3/LCD3
5
32
PTA3/KBI4/TX2/ADC1/LCD24
PTD2/LCD2
6
31
PTA4/KBI5/RX2/ADC2/LCD25
PTD1/LCD1
7
30
PTA5/KBI6/TPM2CH0/ADC3/LCD26
PTD0/LCD0
8
29
PTA6/KBI7/TPM2CH1/ADC4/LCD27
9
28
PTA7/TPMCLK/ADC5/LCD28
VCAP2
10
27
PTC5/BKGD/MS
VLL1
11
26
PTC6/RESET
VCAP1
48-Pin LQFP
25 PTF3/SS/KBI0/TPM2CH5
VLL2 12
14
15
16
17
18
19
20
21
22
23
PTF1/RX1/TPM1CH0/ADC13
PTF2/SPSCKS/TPM1CH1/IRQ/ADC14
VSSA/VREFL
VDDA/VREFH
PTF6/XTAL
PTF7/EXTAL
VDD
VSS
PTF4/MISO/KBI1/TPM2CH4
PTF5/MOSI/KBI2/TPM2CH3
VLL3
PTF0/TX1/KBI3/TPM2CH2/ADC12
24
13
Figure 4. 48-Pin LQFP
NOTE
VREFH/VREFL are internally connected to VDDA/VSSA.
MC9S08LG32 Series Data Sheet, Rev. 7
Freescale Semiconductor
7
Pin Assignments
Table 2. Pin Availability by Package Pin-Count
Packages
<-- Lowest
Priority
--> Highest
80
64
48
Port Pin
Alt 1
Alt 2
Alt 3
Alt 4
1
1
1
PTD7
LCD7
—
—
—
2
2
2
PTD6
LCD6
—
—
—
3
3
3
PTD5
LCD5
—
—
—
4
4
4
PTD4
LCD4
—
—
—
5
5
5
PTD3
LCD3
—
—
—
6
6
6
PTD2
LCD2
—
—
—
7
7
—
PTB3
LCD32
—
—
—
8
8
—
PTB2
LCD31
—
—
—
9
—
—
PTB7
LCD40
—
—
—
10
—
—
PTB6
LCD39
—
—
—
11
—
—
PTB5
LCD38
—
—
—
12
—
—
PTB4
LCD37
—
—
—
13
9
—
PTB1
LCD30
—
—
—
14
10
—
PTB0
LCD29
—
—
—
15
11
7
PTD1
LCD1
—
—
—
16
12
8
PTD0
LCD0
—
—
—
17
13
9
VCAP1
—
—
—
—
18
14
10
VCAP2
—
—
—
—
19
15
11
VLL1
—
—
—
—
20
16
12
VLL2
—
—
—
—
21
17
13
VLL3
—
—
—
—
22
18
14
PTF5
MOSI
KBI2
TPM2CH3
—
23
19
15
PTF4
MISO
KBI1
TPM2CH4
—
24
20
—
PTI5
TPM2CH0
SCL
SS
—
25
21
—
PTI4
TPM2CH1
SDA
SPSCK
—
26
—
—
PTI3
TPM2CH2
MOSI
—
—
27
—
—
PTI2
TPM2CH3
MISO
—
—
28
—
—
PTI1
TMRCLK
TX2
—
—
29
—
—
PTI0
RX2
—
—
—
30
22
—
PTH7
KBI1
TPM2CH4
—
—
31
23
16
VSS
—
—
—
—
32
24
17
VDD
—
—
—
—
33
25
18
PTF7
EXTAL
—
—
—
34
26
19
PTF6
XTAL
—
—
—
35
27
20
VDDA
VREFH
—
—
—
36
28
21
VSSA
VREFL
—
—
—
37
29
—
PTH6
TPM2CH5
KBI0
ADC15
—
38
30
22
PTF2
SPSCK
TPM1CH1
IRQ
ADC14
MC9S08LG32 Series Data Sheet, Rev. 7
8
Freescale Semiconductor
Pin Assignments
Table 2. Pin Availability by Package Pin-Count (continued)
Packages
<-- Lowest
Priority
--> Highest
80
64
48
Port Pin
Alt 1
Alt 2
Alt 3
Alt 4
39
31
23
PTF1
RX1
TPM1CH0
ADC13
—
40
32
24
PTF0
TX1
KBI3
TPM2CH2
ADC12
41
33
25
PTF3
SS
KBI0
TPM2CH5
—
42
34
—
PTH5
TX1
KBI3
TPM1CH0
ADC11
43
35
—
PTH4
RX1
KBI2
TPM1CH1
ADC10
44
—
—
PTH3
KBI7
ADC9
—
—
45
—
—
PTH2
KBI6
ADC8
—
—
46
—
—
PTH1
KBI5
ADC7
—
—
47
—
—
PTH0
KBI4
ADC6
—
—
48
36
26
PTC6
RESET
—
—
—
49
37
27
PTC5
BKGD/MS
—
—
—
50
38
28
PTA7
TPMCLK
ADC5
LCD28
—
51
39
29
PTA6
KBI7
TPM2CH1
ADC4
LCD27
52
40
30
PTA5
KBI6
TPM2CH0
ADC3
LCD26
53
41
31
PTA4
KBI5
RX2
ADC2
LCD25
54
42
32
PTA3
KBI4
TX2
ADC1
LCD24
55
43
33
PTA2
SDA
ADC0
LCD23
—
56
44
34
PTA1
SCL
LCD22
—
—
57
45
—
PTG3
LCD36
—
—
—
58
46
—
PTG2
LCD35
—
—
—
59
47
35
PTA0
LCD21
—
—
—
60
48
36
PTC4
LCD20
—
—
—
61
49
37
PTC3
LCD19
—
—
—
62
50
38
PTC2
LCD18
—
—
—
63
51
39
PTC1
LCD17
—
—
—
64
52
40
PTC0
LCD16
—
—
—
65
53
41
PTE7
LCD15
—
—
—
66
54
42
PTE6
LCD14
—
—
—
67
55
—
VSS2
—
—
—
—
68
56
—
VLL3_2
—
—
—
—
69
—
—
PTG7
LCD44
—
—
—
70
—
—
PTG6
LCD43
—
—
—
71
—
—
PTG5
LCD42
—
—
—
72
—
—
PTG4
LCD41
—
—
—
73
57
—
PTG1
LCD34
—
—
—
74
58
—
PTG0
LCD33
—
—
—
75
59
43
PTE5
LCD13
—
—
—
76
60
44
PTE4
LCD12
—
—
—
MC9S08LG32 Series Data Sheet, Rev. 7
Freescale Semiconductor
9
Electrical Characteristics
Table 2. Pin Availability by Package Pin-Count (continued)
Packages
<-- Lowest
Priority
--> Highest
80
64
48
Port Pin
Alt 1
Alt 2
Alt 3
Alt 4
77
61
45
PTE3
LCD11
—
—
—
78
62
46
PTE2
LCD10
—
—
—
79
63
47
PTE1
LCD9
—
—
—
80
64
48
PTE0
LCD8
—
—
—
2
Electrical Characteristics
2.1
Introduction
This section contains electrical and timing specifications for the MC9S08LG32 series of microcontrollers available at the time
of publication.
2.2
Parameter Classification
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better
understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:
Table 3. Parameter Classifications
P
Those parameters are guaranteed during production testing on each individual device.
C
Those parameters are achieved by the design characterization by measuring a statistically relevant
sample size across process variations.
T
Those parameters are achieved by design characterization on a small sample size from typical devices
under typical conditions unless otherwise noted. All values shown in the typical column are within this
category.
D
Those parameters are derived mainly from simulations.
NOTE
The classification is shown in the column labeled “C” in the parameter tables where
appropriate.
2.3
Absolute Maximum Ratings
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the
limits specified in Table 4 may affect device reliability or cause permanent damage to the device. For functional operating
conditions, refer to the remaining tables in this section.
This device contains circuitry that protects against damage due to high static voltage or electrical fields. However, it is advised
that normal precautions should be taken to avoid application of any voltages higher than maximum-rated voltages to this
high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for
instance, either VSS or VDD) or the programmable pull-up resistor associated with the pin is enabled.
MC9S08LG32 Series Data Sheet, Rev. 7
10
Freescale Semiconductor
Electrical Characteristics
Table 4. Absolute Maximum Ratings
Rating
Symbol
Value
Unit
Supply voltage
VDD
–0.3 to +5.8
V
Maximum current into VDD
IDD
120
mA
Digital input voltage
VIn
–0.3 to VDD + 0.3
V
Instantaneous maximum current
Single pin limit (applies to all port pins)1, 2, 3
ID
±25
±2
mA
Tstg
–55 to 150
°C
Storage temperature range
1
Input must be current limited to the value specified. To determine the value of the required
current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp
voltages and use the largest of the two resistance values.
2
All functional non-supply pins are internally clamped to VSS and VDD.
3 Power supply must maintain regulation within operating V
DD range during instantaneous and
operating maximum current conditions. If positive injection current (VIn > VDD) is greater than
IDD, the injection current may flow out of VDD and could result in an external power supply going
out of regulation. Ensure that the external VDD load will shunt current greater than maximum
injection current, this will be of greater risk when the MCU is not consuming power. For instance,
If no system clock is present, or if the clock rate is very low (which would reduce overall power
consumption).
2.4
Thermal Characteristics
This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power
dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and
it is user-determined rather than being controlled by the MCU design. To take PI/O into account in power calculations, determine
the difference between actual pin voltage and VSS or VDD and multiply by the pin current for each I/O pin. Except in cases of
unusually high pin current (heavy loads), the difference between pin voltage and VSS or VDD will be very small.
Table 5. Thermal Characteristics
Rating
Symbol
Value
Unit
Operating temperature range
(packaged)
TA
TL to TH
–40 to +105
°C
Maximum junction temperature
TJ
125
°C
Thermal resistance
Single-layer board
80-pin LQFP
64-pin LQFP
48-pin LQFP
θJA
61
71
80
°C/W
Thermal resistance
Four-layer board
80-pin LQFP
64-pin LQFP
48-pin LQFP
θJA
48
52
56
°C/W
The average chip-junction temperature (TJ) in °C can be obtained from:
TJ = TA + (PD × θJA)
Eqn. 1
MC9S08LG32 Series Data Sheet, Rev. 7
Freescale Semiconductor
11
Electrical Characteristics
where:
TA = Ambient temperature, °C
θJA = Package thermal resistance, junction-to-ambient, °C/W
PD = Pint + PI/O
Pint = IDD × VDD, Watts — chip internal power
PI/O = Power dissipation on input and output pins — user determined
For most applications, PI/O << Pint and can be neglected. An approximate relationship between PD and TJ (if PI/O is neglected)
is:
PD = K ÷ (TJ + 273 °C)
Eqn. 2
Solving Equation 1 and Equation 2 for K gives:
K = PD × (TA + 273 °C) + θJA × (PD)2
Eqn. 3
where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring PD (at equilibrium)
for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving Equation 1 and Equation 2 iteratively
for any value of TA.
2.5
ESD Protection and Latch-Up Immunity
Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits,
normal handling precautions should be taken to avoid exposure to static discharge. Qualification tests are performed to ensure
that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.
All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for automotive grade integrated circuits. During the
device qualification, ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge
device model (CDM).
A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete
DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot
temperature, unless instructed otherwise in the device specification.
Table 6. ESD and Latch-Up Test Conditions
Model
Symbol
Value
Unit
R1
1500
Ω
C
100
pF
Number of pulses per pin
—
3
—
Minimum input voltage limit
—
–2.5
V
Maximum input voltage limit
—
7.5
V
Description
Human Body Series resistance
Model
Storage capacitance
Latch-up
MC9S08LG32 Series Data Sheet, Rev. 7
12
Freescale Semiconductor
Electrical Characteristics
Table 7. ESD and Latch-Up Protection Characteristics
Rating1
No.
1
2.6
Symbol
Min
Max
Unit
1
Human body model (HBM)
VHBM
2500
—
V
2
Charge device model (CDM)
VCDM
750
—
V
3
Latch-up current at TA = 85 °C
ILAT
±100
—
mA
Parameter is achieved by design characterization on a small sample size from typical devices
under typical conditions unless otherwise noted.
DC Characteristics
This section includes information about power supply requirements and I/O pin characteristics.
Table 8. DC Characteristics
Num C
Characteristic
1
— Operating Voltage
2
P Output high voltage — Low Drive (PTxDSn = 0)
5 V, ILoad = –2 mA
3 V, ILoad = –0.6 mA
Symbol
Min
Typ1
Max
Unit
—
2.7
—
5.5
V
VDD – 0.8
VDD – 0.8
—
—
—
—
VDD – 0.8
VDD – 0.8
—
—
—
—
—
—
0.8
0.8
—
—
0.8
0.8
VOH
Output high voltage — High Drive (PTxDSn = 1) V
5 V, ILoad = –10 mA
3 V, ILoad = –3 mA
3
P Output low voltage — Low Drive (PTxDSn = 0)
5 V, ILoad = 2 mA
3 V, ILoad = 0.6 mA
VOL
V
—
Output low voltage — High Drive (PTxDSn = 1)
5 V, ILoad = 10 mA
3 V, ILoad = 3 mA
4
P Output high current — Max total IOH for all ports
IOHT
—
V
—
5V
3V
5
C Output high current — Max total IOL for all ports
mA
100
60
IOLT
—
—
5V
3V
mA
100
60
6
P Bandgap voltage reference
VBG
—
1.225
—
V
7
P Input high voltage; all digital inputs
VIH
0.65 x VDD
—
—
V
8
P Input low voltage; all digital inputs
VIL
—
—
0.35 x VDD
V
9
P Input hysteresis; all digital inputs
Vhys
0.06 x VDD
—
—
mV
|IIn|
—
0.1
1
μA
|IOZ|
—
0.1
1
μA
RPU
20
45
65
kΩ
RPD
20
45
65
kΩ
10
2
P Input leakage current; input only pins
VIn = VDD or VSS
11
P High impedence (off-state) leakage current
VIn = VDD or VSS
12
13
P Internal pullup resistors3
P Internal pulldown resistors
4
MC9S08LG32 Series Data Sheet, Rev. 7
Freescale Semiconductor
13
Electrical Characteristics
Table 8. DC Characteristics (continued)
Num C
14
D DC injection
current 5, 6, 7
VIN < VSS, VIN >
VDD
Characteristic
Single pin limit
Symbol
Min
Typ1
Max
Unit
IIC
—
—
2
mA
—
—
25
mA
CIn
—
—
8
pF
V
Total MCU limit, includes sum of
all stressed pins
15
C Input Capacitance, all non-supply pins
16
C RAM retention voltage
VRAM
2
—
—
17
P POR rearm voltage
VPOR
0.9
1.4
2.0
V
18
D POR rearm time
tPOR
10
—
—
μs
19
P Low-voltage detection threshold — high range
3.9
4.0
4.0
4.1
4.1
4.2
2.48
2.54
2.56
2.62
2.64
2.70
4.5
4.6
4.6
4.7
4.7
4.8
4.2
4.3
4.3
4.4
4.4
4.5
2.84
2.90
2.92
2.98
3.00
3.06
2.66
2.72
2.74
2.80
2.82
2.88
VLVD1
VDD falling
VDD rising
20
P Low-voltage detection threshold — low range
VLVD0
VDD falling
VDD rising
21
P Low-voltage warning threshold — high range 1
P Low-voltage warning threshold — low range 1
P Low-voltage warning threshold — low range 0
P Low-voltage inhibit reset/recover hysteresis
Vhys
5V
3V
1
2
3
4
5
6
7
V
V
VLVW0
VDD falling
VDD rising
25
V
VLVW1
VDD falling
VDD rising
24
V
VLVW2
P Low-voltage warning threshold — high range 0
VDD falling
VDD rising
23
V
VLVW3
VDD falling
VDD rising
22
V
—
—
mV
100
60
Typical values are measured at 25 °C. Characterized, not tested
Measured with VIn = VDD or VSS.
Measured with VIn = VSS.
Measured with VIn = VDD.
All functional non-supply pins, except for PTC6 are internally clamped to VSS and VDD.
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate
resistance values for positive and negative clamp voltages, then use the larger of the two values.
Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current
conditions. If the positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could
result in external power supply going out of regulation. Ensure that external VDD load will shunt current greater than maximum
injection current. This will be the greatest risk when the MCU is not consuming power. For instance, if no system clock is
present, or if clock rate is very low (which would reduce overall power consumption).
MC9S08LG32 Series Data Sheet, Rev. 7
14
Freescale Semiconductor
Electrical Characteristics
Typical VOL vs. IOL AT VDD = 5V
1.40
Hot (105°C)
0.70
Room (25°C)
0.60
Cold (-40°C)
0.50
VOL (v)
VOL (v)
0.80
Typical V OL vs. IOL AT V DD = 3V
0.40
0.30
Hot (105°C)
1.20
Room (25°C)
1.00
Cold (-40°C)
0.80
0.60
0.40
0.20
0.20
0.10
0.00
0.00
0
1
2
3
4
5
6
7
8
9
0
10 11 12 13 14 15
1
2
3
4
5
6
7
8
9
10
11
12
13
IOL (mA)
IOL (mA)
Figure 5. Typical Low-side Drive (sink) characteristics – High Drive (PTxDSn = 1)
Typical VOL vs. IOL AT VDD = 5V
0.90
Typical VOL vs. IOL AT VDD = 3V
0.90
Hot (105°C)
0.80
0.70
Room (25°C)
0.70
Cold (-40°C)
Cold (-40°C)
0.60
VOL (v)
0.60
VOL (v)
Hot (105°C)
0.80
Room (25°C)
0.50
0.40
0.50
0.40
0.30
0.30
0.20
0.20
0.10
0.10
0.00
0.00
0
1
2
3
4
0
5
1
2
3
IOL (mA)
IOL (mA)
Figure 6. Typical Low-side Drive (sink) characteristics – Low Drive (PTxDSn = 0)
Typical VDD - VOH vs. IOH AT VDD = 5V
0.6
1.2
Hot (105°C)
Hot (105°C)
1.0
Room (25°C)
VDD - VOH (v)
V DD - VOH (v)
0.8
Typical VDD - VOH vs. IOH AT VDD=3V
Cold (-40°C)
0.4
0.2
Room (25°C)
Cold (-40°C)
0.8
0.6
0.4
0.2
0.0
0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15
IOH (mA)
0.0
0
-1
-2
-3
-4
-5
-6
-7
IOH (mA)
-8
-9 -10 -11 -12 -13
Figure 7. Typical High-side Drive (source) characteristics – High Drive (PTxDSn = 1)
MC9S08LG32 Series Data Sheet, Rev. 7
Freescale Semiconductor
15
Electrical Characteristics
Typical VDD - VOH vs. IOH AT VDD=3V
Typical VDD - VOH vs. IOH AT VDD = 5V
1.2
1.2
VDD - VOH (v)
Cold (-40°C)
0.8
Room (25°C)
1.0
Room (25°C)
1.0
V DD - VOH (v)
Hot (105°C)
Hot (105°C)
0.6
0.4
Cold (-40°C)
0.8
0.6
0.4
0.2
0.2
0.0
0.0
0
-1
-2
-3
-4
-5
0
IOH (mA)
-1
IOH (mA)
-2
-3
Figure 8. Typical High-side Drive (source) characteristics – Low Drive (PTxDSn = 0)
MC9S08LG32 Series Data Sheet, Rev. 7
16
Freescale Semiconductor
Electrical Characteristics
2.7
Supply Current Characteristics
This section includes information about power supply current in various operating modes.
Table 9. Supply Current Characteristics
Num
C
1
C
C
Parameter
Run supply current
FEI mode, all modules on
Symbol
Bus
Freq
VDD
(V)
Typ1
Max
Unit
Temp
(°C)
RIDD
20 MHz
3
16.38
27.85
mA
–40 °C to 85 °C
C
1 MHz
1.67
C
P
20 MHz
5
16.55
P
C
1 MHz
1.77
C
2
T
T
Run supply current
FEI mode, all modules off
RIDD
T
20 MHz
3
1 MHz
11.9
1.16
T
T
20 MHz
5
12.68
T
T
1 MHz
1.4
T
3
T
T
Wait mode supply current
FEI mode, all modules off
WIDD
T
20 MHz
3
1 MHz
7.9
0.88
T
P
20 MHz
5
8.13
P
T
1 MHz
1.12
T
4
C
Stop2 mode supply current
S2IDD
n/a
3
1.1
C
5
1.2
P
C
C
–40 °C to105 °C
2.84
–40 °C to 85 °C
2.87
–40 °C to105 °C
28.14
mA
–40 °C to105 °C
3.01
–40 °C to 85 °C
3.05
–40 °C to105 °C
20.25
mA
P
S3IDD
n/a
3
1.2
–40 °C to105 °C
1.95
–40 °C to 85 °C
1.98
–40 °C to105 °C
21.56
mA
1.32
P
–40 °C to 85 °C
23.12
–40 °C to105 °C
2.39
–40 °C to 85 °C
2.41
–40 °C to105 °C
13.42
mA
–40 °C to 85 °C
13.59
–40 °C to105 °C
1.49
–40 °C to 85 °C
1.51
–40 °C to105 °C
13.81
mA
–40 °C to 85 °C
13.98
–40 °C to105 °C
1.91
–40 °C to 85 °C
1.94
–40 °C to105 °C
16.0
μA
18.7
22.4
25.5
63.9
–40 °C to 85 °C
–40 °C to105 °C
μA
–40 °C to 85 °C
–40 °C to105 °C
μA
–40 °C to 85 °C
–40 °C to105 °C
56.2
5
–40 °C to 85 °C
21.72
46.1
Stop3 mode supply current
No clocks active
–40 °C to 85 °C
28.35
39.0
P
5
28.05
μA
–40 °C to 85 °C
–40 °C to105 °C
MC9S08LG32 Series Data Sheet, Rev. 7
Freescale Semiconductor
17
Electrical Characteristics
Table 9. Supply Current Characteristics (continued)
Num
C
6
T
Symbol
Bus
Freq
VDD
(V)
Typ1
Max
Unit
Temp
(°C)
—
n/a
3
210
—
nA
–40 °C to 105 °C
RTC using low
power crystal
oscillator
4.25
—
μA
LCD2 with rbias
(Low Gain)
1.23
—
LCD2 with rbias
(High Gain)
184
—
4.053
—
210
—
nA
RTC using low
power crystal
oscillator
4.22
—
μA
LCD2 with rbias
(Low Gain)
1.53
—
LCD2 with rbias
(High Gain)
324
—
7.123
—
210
—
nA
RTC using low
power crystal
oscillator
4.75
—
μA
LCD2 with rbias
(Low Gain)
1.23
—
LCD2 with rbias
(High Gain)
184
—
4.353
—
230
—
nA
RTC using low
power crystal
oscillator
4.74
—
μA
LCD2 with rbias
(Low Gain)
1.53
—
LCD2 with rbias
(High Gain)
324
—
7.493
—
Parameter
Stop2 adders:
RTC using LPO
LCD2 with Cpump
RTC using LPO
5
LCD2 with Cpump
7
T
Stop3 adders:
RTC using LPO
—
n/a
3
LCD2 with Cpump
RTC using LPO
LCD2 with Cpump
5
–40 °C to 85 °C
–40 °C to 105 °C
–40 °C to 85 °C
–40 °C to 105 °C
–40 °C to 85 °C
–40 °C to 105 °C
–40 °C to 85 °C
MC9S08LG32 Series Data Sheet, Rev. 7
18
Freescale Semiconductor
Electrical Characteristics
Table 9. Supply Current Characteristics (continued)
Num
C
8
T
Symbol
Bus
Freq
VDD
(V)
Typ1
Max
Unit
Temp
(°C)
—
n/a
3
4.58
—
μA
–40 °C to 105 °C
IREFSTEN = 1
71.7
—
LVD
94.35
—
4.61
—
IREFSTEN = 1
71.69
—
LVD
107.34
—
Parameter
Stop3 adders:
EREFSTEN = 1
EREFSTEN = 1
5
μA
Typical values are measured at 25 °C. Characterized, not tested.
LCD configured for Charge Pump Enabled VLL3 connected to VDD..
3 This does not include current required for 32 kHz oscillator.
4 This is the maximum current when all LCD inputs/outputs are used.
1
2
IDD
VDD
Figure 9. Typical Run IDD for FBE Mode at 1 MHz
MC9S08LG32 Series Data Sheet, Rev. 7
Freescale Semiconductor
19
Electrical Characteristics
IDD
VDD
Figure 10. Typical Run IDD for FBE Mode at 20 MHz
IDD
VDD
Figure 11. Typical Run IDD for FEE Mode at 1 MHz
MC9S08LG32 Series Data Sheet, Rev. 7
20
Freescale Semiconductor
Electrical Characteristics
IDD
VDD
Figure 12. Typical Run IDD for FEE Mode at 20 MHz
IDD
VDD
Figure 13. Typical Stop2 IDD
MC9S08LG32 Series Data Sheet, Rev. 7
Freescale Semiconductor
21
Electrical Characteristics
IDD
VDD
Figure 14. Typical Stop3 IDD
2.8
External Oscillator (XOSC) Characteristics
Table 10. Oscillator Electrical Specifications (Temperature Range = –40 °C to 105 °C Ambient)
Num
C
1
D
2
D
Characteristic
Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1)
• Low range (RANGE = 0)
• High range (RANGE = 1) FEE or FBE mode2
• High range (RANGE = 1, HGO = 1) BLPE mode
• High range (RANGE = 1, HGO = 0) BLPE mode
Load capacitors
Symbol
Min
Typ1
Max
Unit
flo
fhi
32
1
1
1
—
—
—
—
38.4
5
16
8
kHz
MHz
MHz
MHz
fhi-hgo
fhi-lp
C1
C2
See crystal or resonator
manufacturer’s recommendation.
MC9S08LG32 Series Data Sheet, Rev. 7
22
Freescale Semiconductor
Electrical Characteristics
Table 10. Oscillator Electrical Specifications (Temperature Range = –40 °C to 105 °C Ambient) (continued)
Num
C
3
D
4
5
D
D
Characteristic
Symbol
Feedback resistor
• Low range (32 kHz to 100 kHz)
• High range (1 MHz to 16 MHz)
RF
Series resistor
• Low range, low gain (RANGE = 0, HGO = 0)
• Low range, high gain (RANGE = 0, HGO = 1)
RS
Series resistor
• High range, low gain (RANGE = 1, HGO = 0)
• High range, high gain (RANGE = 1, HGO = 1)
RS
7
T
D
Typ1
Max
—
—
10
1
—
—
Unit
MΩ
kΩ
0
100
≥8 MHz
4 MHz
1 MHz
6
Min
Crystal start-up time3, 4
• Low range (HGO = 0)
• Low range (HGO = 1)
• High range (HG0 = 0)5
• High range (HG0 = 1)5
kΩ
—
—
—
0
0
0
0
10
20
—
—
—
—
500
3570
4
4
—
—
—
—
0.03125
0
—
—
5
40
ms
tCSTL-LP
tCSTL-HGO
tCSTH-LP
tCSTH-HGO
Square wave input clock frequency (EREFS = 0, ERCLKEN = 1)
• FEE or FBE mode2
• BLPE mode
fextal
MHz
Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
When ICS is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz
to 39.0625 kHz.
3 This parameter is characterized and not tested on each device.
4 Proper PC board layout procedures must be followed to achieve specifications.
5 4 MHz crystal
1
2
XOSC
EXTAL
XTAL
RF
C1
RS
Crystal or Resonator
C2
Figure 15. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain
MC9S08LG32 Series Data Sheet, Rev. 7
Freescale Semiconductor
23
Electrical Characteristics
XOSC
EXTAL
XTAL
Crystal or Resonator
Figure 16. Typical Crystal or Resonator Circuit: Low Range/Low Power
2.9
Internal Clock Source (ICS) Characteristics
Table 11. ICS Frequency Specifications (Temperature Range = –40 °C to 105 °C Ambient)
Num
C
Characteristic
Symbol
Min
Typ1
Max
Unit
1
P
Average internal reference frequency — factory trimmed
at VDD = 5.0 V and temperature = 25 °C
fint_ft
—
32.768
—
kHz
2
C
Average internal reference frequency — user trimmed
fint_t
31.25
—
39.0625
kHz
3
C
Internal reference start-up time
tIRST
—
60
100
μs
4
P
DCO output frequency range — Low range (DRS = 00)
trimmed2
Mid range (DRS = 01)
fdco_t
16
—
20
MHz
32
—
40
—
19.92
—
—
39.85
—
P
5
P
P
frequency2
DCO output
Reference = 32768 Hz
and
DMX32 = 1
Low range (DRS = 00)
fdco_DMX32
Mid range (DRS = 01)
MHz
6
C
Resolution of trimmed DCO output frequency at fixed
voltage and temperature (using FTRIM)3
Δfdco_res_t
—
±0.1
±0.2
%fdco
7
C
Resolution of trimmed DCO output frequency at fixed
voltage and temperature (not using FTRIM)3
Δfdco_res_t
—
±0.2
±0.4
%fdco
8
C
Total deviation of trimmed DCO output frequency over
voltage and temperature3
Δfdco_t
—
–1.0
to +0.5
±2
%fdco
9
C
Total deviation of trimmed DCO output frequency over
fixed voltage and temperature range of 0 °C to 70 °C3
Δfdco_t
—
±0.5
±1
%fdco
10
C
FLL acquisition time3, 4
tAcquire
—
—
1
mS
11
C
Long term jitter of DCO output clock (averaged over 2 ms
interval)5
CJitter
—
0.02
0.2
%fdco
Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.
3
This parameter is characterized and not tested on each device.
4 This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing
from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference,
this specification assumes it is already running.
5
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBus.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise
injected into the FLL circuitry via VDD and VSS and variation in the crystal oscillator frequency increase the CJitter percentage
for a given interval.
1
2
MC9S08LG32 Series Data Sheet, Rev. 7
24
Freescale Semiconductor
Electrical Characteristics
65.00
60.00
ICS Frequency (khz)
55.00
50.00
45.00
40.00
35.00
30.00
25.00
'0
00
0
'0 00
00 00
0
'0 11
00 01
1
'0 10
01 10
0
'0 01
01 11
1
'0 01
10 00
0
'0 00
10 01
0
'0 11
10 10
1
'0 10
11 11
0
'0 10
11 00
1
'1 01
00 01
0
'1 00
00 10
0
'1 11
00 11
1
'1 11
01 00
0
'1 10
01 01
1
'1 01
10 10
0
'1 00
10 11
1
'1 00
10 00
1
'1 11
11 01
0
'1 10
11 10
10
11
1
20.00
ICS Trim values
-40°C
25°C
110°C
Figure 17. Internal Oscillator Deviation from Trimmed Frequency
2.10
ADC Characteristics
Table 12. 12-bit ADC Operating Conditions
Symb
Min
Typ1
Max
Unit
Comment
Absolute
VDDAD
2.7
—
5.5
V
—
Delta to VDD
(VDD – VDDAD)2
ΔVDDAD
–100
0
+100
mV
—
Delta to VSS
(VSS – VSSAD)2
ΔVSSAD
–100
0
+100
mV
—
Ref Voltage
High
—
VREFH
—
—
—
V
VREFH shorted to
VDDAD
Ref Voltage
Low
—
VREFL
—
—
—
V
VREFLshorted to
VSSAD
Input Voltage
—
VADIN
VREFL
—
VREFH
V
—
Input
Capacitance
—
CADIN
—
4.5
5.5
pF
—
Characteristic
Supply voltage
Ground voltage
Conditions
MC9S08LG32 Series Data Sheet, Rev. 7
Freescale Semiconductor
25
Electrical Characteristics
Table 12. 12-bit ADC Operating Conditions (continued)
Conditions
Symb
Min
Typ1
Max
Unit
Comment
—
RADIN
—
5
7
kΩ
—
kΩ
External to MCU
—
—
—
—
2
5
10-bit mode
fADCK > 4MHz
fADCK < 4MHz
—
—
—
—
5
10
8-bit mode (all valid fADCK)
—
—
10
0.4
—
8.0
MHz
—
0.4
—
4.0
Characteristic
Input
Resistance
Analog Source
Resistance
ADC
Conversion
Clock Freq.
12-bit mode
fADCK > 4MHz
fADCK < 4MHz
RAS
High Speed (ADLPC = 0)
fADCK
Low Power (ADLPC = 1)
Typical values assume VDDAD = 5.0 V, Temp = 25 °C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
2 DC potential difference.
1
SIMPLIFIED
INPUT PIN EQUIVALENT
CIRCUIT
Pad
leakage
due to
input
protection
ZAS
RAS
VAS
+
–
CAS
ZADIN
SIMPLIFIED
CHANNEL SELECT
CIRCUIT
RADIN
ADC SAR
ENGINE
+
VADIN
–
RADIN
INPUT PIN
INPUT PIN
RADIN
RADIN
INPUT PIN
CADIN
Figure 18. ADC Input Impedance Equivalency Diagram
MC9S08LG32 Series Data Sheet, Rev. 7
26
Freescale Semiconductor
Electrical Characteristics
Table 13. 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD)
Num
C
Characteristic
Conditions
Symb
Min
Typ1
Max
Unit
Comment
1
T
Supply Current
ADLPC = 1
ADLSMP = 1
ADCO = 1
—
IDDAD
—
195
—
μA
—
2
T
Supply Current
ADLPC = 1
ADLSMP = 0
ADCO = 1
—
IDDAD
—
347
—
μA
—
3
T
Supply Current
ADLPC = 0
ADLSMP = 1
ADCO = 1
—
IDDAD
—
407
—
μA
—
4
P
Supply Current
ADLPC = 0
ADLSMP = 0
ADCO = 1
—
IDDAD
—
0.755
1
mA
—
5
—
Supply Current
Stop, Reset, Module Off
IDDAD
0.011
1
μA
—
6
P
ADC
Asynchronous
Clock Source
High Speed (ADLPC=0)
fADACK
2
3.3
5
MHz
1.25
2
3.3
tADACK =
1/fADACK
—
20
—
—
40
—
ADCK
cycles
—
3.5
—
—
23.5
—
See ADC
chapter in the
LG32
Reference
Manual for
conversion
time variances
—
±3.0
—
10-bit mode
—
±1
±2.5
8-bit mode
—
±0.5
±1
—
±1.75
—
10-bit mode3
—
±0.5
±1.0
8-bit mode3
—
±0.3
±0.5
—
±1.5
—
10-bit mode
—
±0.5
±1
8-bit mode
—
±0.3
±0.5
—
±1.5
—
10-bit mode
—
±0.5
±1.5
8-bit mode
—
±0.5
±0.5
7
8
C
C
Low Power (ADLPC=1)
Conversion
Time (Including
sample time)
Short sample (ADLSMP=0)
Long sample (ADLSMP=1)
Sample Time
Short sample (ADLSMP=0)
tADC
tADS
Long sample (ADLSMP=1)
9
T
P
Total
Unadjusted
Error
T
10
T
P
Differential
Non-Linearity
T
11
T
P
Integral
Non-Linearity
T
12
T
P
Zero-Scale
Error
T
12-bit mode
12-bit mode
12-bit mode
12-bit mode
ETUE
DNL
INL
EZS
ADCK
cycles
LSB2
Includes
quantization
LSB2
LSB2
LSB2
VADIN = VSSAD
MC9S08LG32 Series Data Sheet, Rev. 7
Freescale Semiconductor
27
Electrical Characteristics
Table 13. 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD) (continued)
Num
C
Characteristic
13
T
Full-Scale
Error
P
T
14
15
16
17
D
D
C
C
Quantization
Error
Input Leakage
Error
Temp Sensor
Slope
Temp Sensor
Voltage
Symb
Min
Typ1
Max
Unit
Comment
EFS
—
±1
—
LSB2
VADIN = VDDAD
10-bit mode
—
±0.5
±1
8-bit mode
—
±0.5
±0.5
—
–1 to 0
—
LSB2
—
10-bit mode
—
—
±0.5
8-bit mode
—
—
±0.5
—
±1
—
LSB2
10-bit mode
—
±0.2
±2.5
Pad leakage4 *
RAS
8-bit mode
—
±0.1
±1
—
1.646
—
mV/°C
—
—
1.769
—
—
701.2
—
mV
—
Conditions
12-bit mode
12-bit mode
12-bit mode
–40 °C to 25 °C
EQ
EIL
m
25 °C to 125°C
25 °C
VTEMP25
Typical values assume VDDAD = 5.0 V, Temp = 25 °C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for reference only
and are not tested in production.
2 1 LSB = (V
N
REFH – VREFL)/2
3
Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes
4 Based on input pad leakage current. Refer to pad electricals.
1
MC9S08LG32 Series Data Sheet, Rev. 7
28
Freescale Semiconductor
Electrical Characteristics
2.11
AC Characteristics
This section describes timing characteristics for each peripheral system.
2.11.1
Control Timing
Table 14. Control Timing
Num
C
1
D
2
D
3
4
5
6
Typ1
Max
Unit
Bus frequency (tcyc = 1/fBus)
fBus
dc
—
20
MHz
Internal low power oscillator period
tLPO
700
—
1300
μs
textrst
100
—
—
ns
2
D
External reset pulse width
4
D
Reset low drive
trstdrv
66 x tcyc
—
—
ns
5
D
BKGD/MS setup time after issuing background debug
force reset to enter user or BDM modes
tMSSU
500
—
—
ns
6
D
BKGD/MS hold time after issuing background debug
force reset to enter user or BDM modes 3
tMSH
100
—
—
μs
7
D
IRQ pulse width
Asynchronous path2
Synchronous path4
tILIH
tIHIL
100
1.5 x tcyc
—
—
—
—
Keyboard interrupt pulse width
Asynchronous path2
Synchronous path4
tILIH
tIHIL
100
1.5 x tcyc
—
—
—
—
Port rise and fall time — (load = 50 pF)5, 6
Slew rate control disabled (PTxSE = 0)
Slew rate control enabled (PTxSE = 1)
tRise
tFall
—
—
3
30
—
—
9
2
Min
3
8
1
Symbol
Rating
D
C
ns
ns
ns
Typical values are based on characterization data at VDD = 5.0 V, 25 °C unless otherwise stated.
This is the shortest pulse that is guaranteed to be recognized as a reset pin request.
To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of tMSH after VDD
rises above VLVD.
This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or
may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.
Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range –40 °C to 105 °C.
Except for LCD pins in Open Drain mode.
textrst
RESET PIN
Figure 19. Reset Timing
MC9S08LG32 Series Data Sheet, Rev. 7
Freescale Semiconductor
29
Electrical Characteristics
tIHIL
IRQ/KBIPx
IRQ/KBIPx
tILIH
Figure 20. IRQ/KBIPx Timing
2.11.2
TPM Module Timing
Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the
optional external source to the timer counter. These synchronizers operate from the current bus rate clock.
Table 15. TPM Input Timing
No.
C
1
D
2
Function
Symbol
Min
Max
Unit
External clock frequency
fTCLK
0
fBus/4
Hz
D
External clock period
tTCLK
4
—
tcyc
3
D
External clock high time
tclkh
1.5
—
tcyc
4
D
External clock low time
tclkl
1.5
—
tcyc
5
D
Input capture pulse width
tICPW
1.5
—
tcyc
tTCLK
tclkh
TPMCLK
tclkl
Figure 21. Timer External Clock
tICPW
TPMCHn
TPMCHn
tICPW
Figure 22. Timer Input Capture Pulse
MC9S08LG32 Series Data Sheet, Rev. 7
30
Freescale Semiconductor
Electrical Characteristics
2.11.3
SPI Timing
Table 16 and Figure 23 through Figure 26 describe the timing requirements for the SPI system.
Table 16. SPI Timing
No.
C
—
D
1
D
2
D
3
D
4
D
5
D
6
D
7
Function
Operating frequency
Master
Slave
Symbol
Min
Max
fBus/2048
0
fBus/2
fBus/4
2
4
2048
—
tcyc
tcyc
1/2
1
—
—
tSPSCK
tcyc
1/2
1
—
—
tSPSCK
tcyc
tcyc – 30
tcyc – 30
1024 tcyc
—
ns
ns
15
15
—
—
ns
ns
0
25
—
—
ns
ns
Hz
fop
SPSCK period
Master
Slave
Unit
tSPSCK
Enable lead time
Master
Slave
tLead
Enable lag time
Master
Slave
tLag
Clock (SPSCK) high or low time
Master
Slave
tWSPSCK
Data setup time (inputs)
Master
Slave
tSU
Data hold time (inputs)
Master
Slave
tHI
D
Slave access time
ta
—
1
tcyc
8
D
Slave MISO disable time
tdis
—
1
tcyc
9
D
Data valid (after SPSCK edge)
Master
Slave
—
—
25
25
ns
ns
10
D
0
0
—
—
ns
ns
11
D
12
D
Data hold time (outputs)
Master
Slave
tv
tHO
Rise time
Input
Output
tRI
tRO
—
—
tcyc – 25
25
ns
ns
Fall time
Input
Output
tFI
tFO
—
—
tcyc – 25
25
ns
ns
MC9S08LG32 Series Data Sheet, Rev. 7
Freescale Semiconductor
31
Electrical Characteristics
SS1
(OUTPUT)
1
2
11
3
4
SPSCK
(CPOL = 0)
(OUTPUT)
4
12
SPSCK
(CPOL = 1)
(OUTPUT)
5
MISO
(INPUT)
6
MS BIN2
BIT 6 . . . 1
LSB IN
9
9
MOSI
(OUTPUT)
10
BIT 6 . . . 1
MSB OUT2
LSB OUT
NOTES:
1. SS output mode (DDS7 = 1, SSOE = 1).
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure 23. SPI Master Timing (CPHA = 0)
SS1
(OUTPUT)
1
2
12
11
11
12
3
SPSCK
(CPOL = 0)
(OUTPUT)
4
4
SPSCK
(CPOL = 1)
(OUTPUT)
5
MISO
(INPUT)
6
MSB IN2
9
MOSI
(OUTPUT) PORT DATA
BIT 6 . . . 1
LSB IN
10
MASTER MSB OUT2
BIT 6 . . . 1
MASTER LSB OUT
PORT DATA
NOTES:
1. SS output mode (DDS7 = 1, SSOE = 1).
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure 24. SPI Master Timing (CPHA =1)
MC9S08LG32 Series Data Sheet, Rev. 7
32
Freescale Semiconductor
Electrical Characteristics
SS
(INPUT)
1
12
11
11
12
3
SPSCK
(CPOL = 0)
(INPUT)
2
4
4
SPSCK
(CPOL = 1)
(INPUT)
8
7
MISO
(OUTPUT)
9
SLAVE LSB OUT
SEE
NOTE 1
6
5
MOSI
(INPUT)
BIT 6 . . . 1
MSB OUT
SLAVE
10
10
BIT 6 . . . 1
MSB IN
LSB IN
NOTE:
1. Not defined but normally MSB of character just received.
Figure 25. SPI Slave Timing (CPHA = 0)
SS
(INPUT)
1
3
2
12
11
11
12
SPSCK
(CPOL = 0)
(INPUT)
4
4
SPSCK
(CPOL = 1)
(INPUT)
9
MISO
(OUTPUT)
10
SEE
NOTE 1 SLAVE
7
MOSI
(INPUT)
MSB OUT
BIT 6 . . . 1
c
SLAVE LSB OUT
6
o
MSB IN
BIT 6 . . . 1
LSB IN
NOTE:
1. Not defined but normally LSB of character just received
Figure 26. SPI Slave Timing (CPHA = 1)
MC9S08LG32 Series Data Sheet, Rev. 7
Freescale Semiconductor
33
Electrical Characteristics
2.12
LCD Specifications
Table 17. LCD Electricals, 3 V Glass
C
Characteristic
Symbol
Min
Typ
Max
Units
D
VLL3 Supply Voltage
VLL3
2.7
—
5.5
V
D
LCD Frame Frequency
fFrame
28
30
64
Hz
D
LCD Charge Pump Capacitance
CLCD
—
100
100
pF
D
LCD Bypass Capacitance
CBYLCD
—
100
100
D
LCD Glass Capacitance
Cglass
—
2000
8000
2.13
Flash Specifications
This section provides details about program/erase times and program-erase endurance for the flash memory.
Program and erase operations do not require any special power sources other than the normal VDD supply. For more detailed
information about program/erase operations, see the Memory section.
Table 18. Flash Characteristics
C
Characteristic
Symbol
Min
Typical
Max
Unit
D
Supply voltage for program/erase
–40 °C to 85 °C
Vprog/erase
2.7
5.5
V
D
Supply voltage for read operation
VRead
2.7
5.5
V
fFCLK
150
200
kHz
5
6.67
μs
frequency1
D
Internal FCLK
D
Internal FCLK period (1/FCLK)
tFcyc
C
Byte program time (random location)2
tprog
9
tFcyc
tBurst
4
tFcyc
mode)2
C
Byte program time (burst
C
Page erase time2
tPage
4000
tFcyc
C
Mass erase time2
tMass
20,000
tFcyc
D
Byte program
current3
3
D
Page erase current
C
Program/erase endurance4
TL to TH = –40 °C to + 85 °C
T = 25 °C
C
Data retention5
RIDDBP
—
4
—
mA
RIDDPE
—
6
—
mA
10,000
—
100,000
—
—
cycles
15
100
—
years
tD_ret
1
The frequency of this clock is controlled by a software setting.
These values are hardware state machine controlled. User code does not need to count cycles. This information supplied
for calculating approximate time to program and erase.
3
The program and erase currents are additional to the standard run IDD. These values are measured at room temperatures
with VDD = 5.0 V, bus frequency = 4.0 MHz.
4 Typical endurance for flash was evaluated for this product family on the 9S12Dx64. For additional information on how
Freescale defines typical endurance, please refer to Engineering Bulletin EB619, Typical Endurance for Nonvolatile
Memory.
5 Typical data retention values are based on intrinsic capability of the technology measured at high temperature and
de-rated to 25 °C using the Arrhenius equation. For additional information on how Freescale defines typical data retention,
please refer to Engineering Bulletin EB618, Typical Data Retention for Nonvolatile Memory.
2
MC9S08LG32 Series Data Sheet, Rev. 7
34
Freescale Semiconductor
Electrical Characteristics
2.14
EMC Performance
Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board
design and layout, circuit topology choices, location and characteristics of external components as well as MCU software
operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such
as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC
performance.
2.14.1
Radiated Emissions
Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM cell method in accordance
with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a
custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller
are measured in a TEM cell in two package orientations (North and East).
The maximum radiated RF emissions of the tested configuration in all orientations are less than or equal to the reported
emissions levels.
Table 19. Radiated Emissions, Electric Field
Parameter
Radiated emissions,
electric field
1
Symbol
Conditions
Frequency
fOSC/fBUS
VRE_TEM
VDD = 5.5
TA = +25 oC
Package type =
80 LQFP
0.15 – 50 MHz
4 MHz crystal
16 MHz bus
50 – 150 MHz
Level1
(Max)
Unit
10
dBμV
14
150 – 500 MHz
8
500 – 1000 MHz
5
IEC Level
L
—
SAE Level
2
—
Data based on qualification test results.
2.14.2
Conducted Transient Susceptibility
Microcontroller transient conducted susceptibility is measured in accordance with an internal Freescale test method. The
measurement is performed with the microcontroller installed on a custom EMC evaluation board and running specialized EMC
test software designed in compliance with the test method. The conducted susceptibility is determined by injecting the transient
susceptibility signal on each pin of the microcontroller. The transient waveform and injection methodology is based on IEC
61000-4-4 (EFT/B). The transient voltage required to cause performance degradation on any pin in the tested configuration is
greater than or equal to the reported levels unless otherwise indicated by footnotes below Table 20.
Table 20. Conducted Susceptibility, EFT/B
Parameter
Conducted susceptibility, electrical
fast transient/burst (EFT/B)
1
2
Symbol
VCS_EFT
Conditions
fOSC/fBUS
4 kHz crystal
VDD = 5.5
4 MHz bus
TA = +25 oC
Package type = 80-pin LQFP
Result
Amplitude1
(Min)
A
B
C
D
>4.02
>4.03
>4.04
>4.0
Unit
kV
Data based on qualification test results. Not tested in production.
Exceptions as covered in footnotes 3 and 4.
MC9S08LG32 Series Data Sheet, Rev. 7
Freescale Semiconductor
35
Electrical Characteristics
3
Except pins PHT1, PTH2, PTH3, PTH4, PTH5. See figures below for values.
Except pins PTF3, PTH5, PTH4, PHT0, Reset, and BKGD. See figures below for values.
4
Individual performance of each pin is shown in Figure 27, Figure 28, Figure 29, and Figure 30.
Figure 27. 4 MHz, Positive Polarity Pins 1 – 41
Note:
RESET retested with 0.1 μF capacitor from pin to ground is Class A compliant as shown by 48*.
Figure 28. 4 MHz, Positive Polarity Pins 42 – 80
MC9S08LG32 Series Data Sheet, Rev. 7
36
Freescale Semiconductor
Electrical Characteristics
Figure 29. 4 MHz, Negative Polarity Pins 1 – 41
Note:
RESET retested with 0.1 μF capacitor from pin to ground is Class A compliant as shown by 48*.
Figure 30. 4 MHz, Negative Polarity Pins 42 – 80
MC9S08LG32 Series Data Sheet, Rev. 7
Freescale Semiconductor
37
Ordering Information
The susceptibility performance classification is described in Table 21.
Table 21. Susceptibility Performance Classification
Result
3
Performance Criteria
A
No failure
The MCU performs as designed during and after exposure.
B
Self-recovering
failure
C
Soft failure
The MCU does not perform as designed during exposure. The MCU does not return to
normal operation until exposure is removed and the RESET pin is asserted.
D
Hard failure
The MCU does not perform as designed during exposure. The MCU does not return to
normal operation until exposure is removed and the power to the MCU is cycled.
E
Damage
The MCU does not perform as designed during and after exposure. The MCU cannot
be returned to proper operation due to physical damage or other permanent
performance degradation.
The MCU does not perform as designed during exposure. The MCU returns
automatically to normal operation after exposure is removed.
Ordering Information
This section contains ordering information for MC9S08LG32 and MC9S08LG16 devices.
Table 22. Device Numbering System
Device Number1
Memory
Temperature Range (°C)
FLASH
RAM
LCD Mode
Operation
Available Packages2
Charge Pump
80-pin LQFP
Auto
S9S08LG32J0CLK
32 KB
1984
-40 °C to +85 °C
S9S08LG32J0CLH
64-pin LQFP
S9S08LG32J0CLF
S9S08LG32J0VLK
48-pin LQFP
32 KB
1984
-40 °C to +105 °C
Register Bias
80-pin LQFP
S9S08LG32J0VLH
64-pin LQFP
S9S08LG32J0VLF
48-pin LQFP
S9S08LG16J0VLH
18 KB
1984
64-pin LQFP
S9S08LG16J0VLF
48-pin LQFP
IMM
MC9S08LG32CLK
32 KB
1984
-40 °C to + 85 °C
Charge Pump
80-pin LQFP
MC9S08LG32CLH
64-pin LQFP
MC9S08LG32CLF
48-pin LQFP
MC9S08LG16CLH
18 KB
1984
MC9S08LG16CLF
64-pin LQFP
48-pin LQFP
1
See the MC9S08LG32 Reference Manual (document MC9S08LG32RM), for a complete description of modules included on
each device.
2 See Table 23 for package information.
MC9S08LG32 Series Data Sheet, Rev. 7
38
Freescale Semiconductor
Package Information
3.1
Device Numbering System
Example of the device numbering system:
S
9 S08 LG 32
J0 X XX
Package designator (see Table 23)
Temperature range
(C = –40 °C to 85 °C)
(V = –40 °C to 105 °C)
Maskset Identifier Suffix
(First digit usually references wafer fab
Second digit usually differentiates mask rev)
Status/Partnumber Type
(S = Maskset specific partnumber)
Memory
(9 = FLASH-based)
Core
Family
Approximate Flash size in KB
Figure 31. Device Number Example for Auto Parts
MC 9 S08 LG 32
C XX
Status
(MC = Fully Qualified)
Package designator (see Table 23)
Temperature range
(C = –40 °C to 85 °C)
Memory
(9 = FLASH-based)
Core
Approximate Flash size in KB
Family
Figure 32. Device Number Example for IMM Parts
4
Package Information
Table 23. Package Descriptions
Pin Count
4.1
Package Type
Abbreviation
Designator
Case No.
Document No.
80
Low Quad Flat Package
LQFP
LK
917A
98ASS23237W
64
Low Quad Flat Package
LQFP
LH
840F
98ASS23234W
48
Low Quad Flat Package
LQFP
LF
932
98ASH00962A
Mechanical Drawings
The following pages are mechanical drawings for the packages described in Table 23. For the latest
available drawings please visit our web site (http://www.freescale.com) and enter the package’s document
number into the keyword search box.
MC9S08LG32 Series Data Sheet, Rev. 7
Freescale Semiconductor
39
Package Information
4.1.1
80-pin LQFP
MC9S08LG32 Series Data Sheet, Rev. 7
40
Freescale Semiconductor
Package Information
MC9S08LG32 Series Data Sheet, Rev. 7
Freescale Semiconductor
41
Package Information
Figure 33. 80-pin LQFP Package Drawing (Case 917A, Doc #98ASS23237W)
MC9S08LG32 Series Data Sheet, Rev. 7
42
Freescale Semiconductor
Package Information
4.1.2
64-pin LQFP
MC9S08LG32 Series Data Sheet, Rev. 7
Freescale Semiconductor
43
Package Information
MC9S08LG32 Series Data Sheet, Rev. 7
44
Freescale Semiconductor
Package Information
Figure 34. 64-pin LQFP Package Drawing (Case 840F, Doc #98ASS23234W)
MC9S08LG32 Series Data Sheet, Rev. 7
Freescale Semiconductor
45
Package Information
4.1.3
48-pin LQFP
MC9S08LG32 Series Data Sheet, Rev. 7
46
Freescale Semiconductor
Package Information
Figure 35. 48-pin LQFP Package Drawing (Case 932, Doc #98ASH00962A)
MC9S08LG32 Series Data Sheet, Rev. 7
Freescale Semiconductor
47
Revision History
5
Revision History
To provide the most up-to-date information, the revision of our documents on the World Wide Web are the most current. Your
printed copy may be an earlier revision. To verify you have the latest information available, refer to:
http://www.freescale.com
The following revision history table summarizes changes contained in this document.
Table 24. Revision History
Revision
Date
Description of Changes
1
8/2008
First Initial release.
2
9/2008
Second Initial Release.
3
11/2008
Alpha Customer Release.
4
2/2009
Launch Release.
5
4/2009
Added EMC Radiated Emission and Transient Susceptibility data in Table 19 and Table 20.
6
4/2009
Updated EMC performance data.
7
8/2009
Updated auto part numbers, changed TCLK, T0CH0, T0CH1, T1CH0, T1CH1, T1CH2, T1CH3,
T1CH3, T1CH4, and T1CH5 to TPMCLK, TPM0CH0, TPM0CH1,TPM1CH0, TPM1CH1,
TPM1CH2, TPM1CH3, TPM1CH4, and TPM1CH5, and changed the maximum LCD frame
frequency to 64 Hz.
MC9S08LG32 Series Data Sheet, Rev. 7
48
Freescale Semiconductor
THIS PAGE INTENTIONALLY BLANK
MC9S08LG32 Series Data Sheet, Rev. 7
Freescale Semiconductor
49
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
[email protected]
Document Number: MC9S08LG32
Rev. 7
8/2009
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2009. All rights reserved.