STMICROELECTRONICS LIS3DSH

LIS3DSH
MEMS digital output motion sensor
ultra low-power high performance three-axis “nano” accelerometer
Preliminary data
Features
■
Wide supply voltage, 1.71 V to 3.6 V
■
Independent IOs supply (1.8 V) and supply
voltage compatible
■
Ultra low-power consumption
■
±2g/±4g/±6g/±8g/±16g dynamically selectable
full-scale
■
I2C/SPI digital output interface
■
16-bit data output
■
Programmable embedded state machines
■
Embedded temperature sensor
■
Embedded self-test
■
Embedded FIFO
■
10000 g high shock survivability
■
ECOPACK® RoHS and “Green” compliant
LGA-16 (3x3x1 mm)
of measuring accelerations with output data rates
from 3.125 Hz to 1.6 kHz.
The self-test capability allows the user to check
the functioning of the sensor in the final
application.
The device can be configured to generate
interrupt signals activated by user defined motion
patterns.
The LIS3DSH has an integrated first in, first out
(FIFO) buffer allowing the user to store data for
host processor intervention reduction.
The LIS3DSH is available in a small thin plastic
land grid array package (LGA) and it is
guaranteed to operate over an extended
temperature range from -40 °C to +85 °C.
Applications
■
Motion controlled user interface
■
Gaming and virtual reality
■
Pedometer
■
Intelligent power saving for handheld devices
■
Display orientation
■
Click/double click recognition
■
Impact recognition and logging
■
Vibration monitoring and compensation
Table 1.
Order
codes
Device summary
Temperature
Package
range [° C]
Packaging
LIS3DSH
-40 to +85
LGA-16
Tray
LIS3DSHTR
-40 to +85
LGA-16
Tape and
reel
Description
The LIS3DSH is an ultra low-power high
performance three-axis linear accelerometer
belonging to the “nano” family with embedded
state machine that can be programmed to
implement autonomous applications.
The LIS3DSH has dynamically selectable full
scales of ±2g/±4g/±6g/±8g/±16g and it is capable
October 2011
Doc ID 022405 Rev 1
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to
change without notice.
1/53
www.st.com
53
Contents
LIS3DSH
1
Contents
1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3
2.1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Mechanical and electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1
Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3
Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.1
SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.2
I2C - inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6
3.5.1
Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5.2
Zero-g level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6.1
4
3.7
Sensing element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.8
IC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.9
Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1
5
2/53
Self-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Digital main blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1
State machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2
FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.1
Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.2
FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.3
Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.4
Stream-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.5
Retrieve data from FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Doc ID 022405 Rev 1
LIS3DSH
6
Contents
Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1
I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1.1
6.2
I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.2.1
SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2.2
SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2.3
SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7
Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.1
INFO1 (0Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.2
INFO2 (0Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.3
WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.4
CTRL_REG3 (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.5
CTRL_REG4 (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.6
CTRL_REG5 (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.7
CTRL_REG6 (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.8
STATUS (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.9
OUT_T (0Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.10
OFF_X (10h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.11
OFF_Y (11h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.12
OFF_Z (12h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.13
CS_X (13h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.14
CS_Y (14h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.15
CS_Z (15h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.16
LC (16h - 17h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.17
STAT (18h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.18
VFC_1 (1Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.19
VFC_2 (1Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.20
VFC_3 (1Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.21
VFC_4 (1Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.22
THRS3 (1Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.23
OUT_X (28h - 29h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Doc ID 022405 Rev 1
3/53
Contents
4/53
LIS3DSH
8.24
OUT_Y (2Ah - 2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.25
OUT_Z (2Ch - 2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.26
FIFO_CTRL (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.27
FIFO_SRC (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.28
CTRL_REG1 (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.29
STx_1 (40h-4Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.30
TIM4_1 (50h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.31
TIM3_1 (51h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.32
TIM2_1 (52h - 53h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.33
TIM1_1 (54h - 55h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.34
THRS2_1 (56h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.35
THRS1_1 (57h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.36
MASK1_B (59h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.37
MASK1_A (5Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.38
SETT1 (5Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.39
PR1 (5Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.40
TC1 (5Dh-5E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.41
OUTS1 (5Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.42
PEAK1 (19h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.43
CTRL_REG2 (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.44
STx_1 (60h-6Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.45
TIM4_2 (70h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.46
TIM3_2 (71h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.47
TIM2_2 (72h - 73h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.48
TIM1_2 (74h - 75h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.49
THRS2_2 (76h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.50
THRS1_2 (77h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.51
MASK2_B (79h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.52
MASK2_A (7Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.53
SETT2 (7Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.54
PR2 (7Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.55
TC2 (7Dh-7E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.56
OUTS2 (7Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Doc ID 022405 Rev 1
LIS3DSH
Contents
8.57
PEAK2 (1Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.58
DES2 (78h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Doc ID 022405 Rev 1
5/53
List of tables
LIS3DSH
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
6/53
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
LIS3DSH state machines: sequence of state to execute an algorithm . . . . . . . . . . . . . . . . 15
Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Transfer when master is writing multiple bytes to slave:. . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Transfer when master is receiving (reading) one byte of data from slave: . . . . . . . . . . . . . 19
Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 19
Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
INFO1 register default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
INFO2 register default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
WHO_AM_I register default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Control register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
CTRL_REG3 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Control register 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
CTRL_REG4 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
CTRL4 ODR configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Control register 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Control register 5 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Self-test mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Control register 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Control register 6 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Status register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Status register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
OUT_T register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
OUT_T register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Offset X default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Offset Y default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Offset Z default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Constant shift X-axis default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Constant shift Y-axis default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Constant shift Y-axis default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
LC_L default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
LC_H default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
STAT register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
STAT register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Vector filter coefficient register 1 default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Vector filter coefficient register 2 default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Vector filter coefficient register 3 default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Vector filter coefficient register 4 default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Threshold value register 3 default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Doc ID 022405 Rev 1
LIS3DSH
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.
Table 97.
Table 98.
Table 99.
Table 100.
List of tables
OUT_X_L register default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
OUT_X_H register default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
OUT_Y_L register default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
OUT_Y_H register default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
OUT_Z_L register default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
OUT_Z_H register default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
FIFO control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
FIFO mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
FIFO_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
FIFO_SRC register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
SM1 control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
SM1 control register structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Timer4 default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Timer3 default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
TIM2_1_L default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
TIM2_1_H default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
TIM1_1_L default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
TIM1_1_H default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
THRS2_1 default value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
THRS1_1 default value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
MASK1_B axis and sign mask register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
MASK1_B register structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
MASK1_A axis and sign mask register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
MASK1_A register structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
SETT1 register structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
SETT1 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
PR1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
PR1 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
TC1_L default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
TC1_H default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
OUTS1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
OUTS1 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
PEAK1 default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
SM2 control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
SM2 control register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Timer4 default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Timer3 default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
TIM2_2_L default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
TIM2_2_H default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
TIM1_2_L default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
TIM1_2_H default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
THRS2_2 default value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
THRS1_2 default value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
MASK2_B axis and sign mask register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
MASK2_B register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
MASK2_A axis and sign mask register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
MASK2_B register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
SETT2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
SETT2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
PR2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
PR2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
TC2_L default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Doc ID 022405 Rev 1
7/53
List of tables
Table 101.
Table 102.
Table 103.
Table 104.
Table 105.
Table 106.
8/53
LIS3DSH
TC2_H default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
OUTS2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
OUTS2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
PEAK2 default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
DES2 default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Doc ID 022405 Rev 1
LIS3DSH
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
SPI slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
I2C slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
LIS3DSH electrical connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Multiple bytes SPI read protocol (2-byte example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Multiple bytes SPI write protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
LGA-16: mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Doc ID 022405 Rev 1
9/53
Block diagram and pin description
LIS3DSH
2
Block diagram and pin description
2.1
Block diagram
Figure 1.
Block diagram
X+
Y+
a
CS
CHARGE
AMPLIFIER
Z+
MUX
STATE MACHINES
AND CONTROL
LOGIC
A/D
CONVERTER
I2C
SCL/SPC
SDA/SDO/SDI
SPI
SDO/SEL
ZY-
FIFO /
TEMP. SENSOR
X-
INT 1/DRDY
INT 2
SELF TEST
REFERENCE
TRIMMING
CIRCUITS
CLOCK
AM10209V1
2.2
Pin description
Figure 2.
Pin connection
X
1
GND
RES
GND
Vdd
Z
13
Pin 1 indicator
1
GND
NC
INT1/DRDY
NC
SCL/SPC
RES
INT2
Vdd_IO
9
5
GND
DIRECTION OF THE
DETECTABLE
ACCELERATIONS
10/53
Doc ID 022405 Rev 1
SDA/SDI/SDO
(TOP VIEW)
SEL/SDO
CS
Y
(BOTTOM VIEW)
am10210V1
LIS3DSH
Block diagram and pin description
Table 2.
Pin description
Pin#
Name
Function
1
Vdd_IO
2
NC
Not connected
3
NC
Not connected
4
SCL
SPC
I2C serial clock (SCL)
SPI serial port clock (SPC)
5
GND
0 V supply
6
SDA
SDI
SDO
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
7
SEL
SDO
I2C address selection
SPI serial data output (SDO)
8
CS
9
INT 2
10
Reserved
Connect to GND
11
INT 1/DRDY
Interrupt 1/ DRDY
12
GND
0 V supply
13
GND
0 V supply
14
Vdd
Power supply
15
Reserved
16
GND
Power supply for I/O pins
SPI enable
I2C/SPI mode selection (1: SPI idle mode / I2C communication
enabled; 0: SPI communication mode / I2C disabled)
Interrupt 2
Connect to Vdd
0 V supply
Doc ID 022405 Rev 1
11/53
Mechanical and electrical specifications
LIS3DSH
3
Mechanical and electrical specifications
3.1
Mechanical characteristics
@ Vdd = 2.5 V, T = 25 °C unless otherwise noted(a).
Table 3.
Symbol
FS
So
Mechanical characteristics
Parameter
Measurement
range(2)
Sensitivity
Test conditions
Min.
Typ.(1)
Max.
Unit
FS bit set to 000
±2.0
g
FS bit set to 001
±4.0
g
FS bit set to 010
±6.0
g
FS bit set to 011
±8.0
g
FS bit set to 100
±16.0
g
FS bit set to 000
0.06
mg/digit
FS bit set to 001
0.12
mg/digit
FS bit set to 010
0.18
mg/digit
FS bit set to 011
0.24
mg/digit
FS bit set to 100
0.73
mg/digit
TCSo
Sensitivity change vs.
temperature
FS bit set to 00
0.01
%/°C
TyOff
Typical zero-g level
offset accuracy(3)
FS bit set to 00
±40
mg
TCOff
Zero-g level change
vs. temperature
Max. delta from 25 °C
±0.5
mg/°C
An
Acceleration noise
density
FS bit set to 00, normal mode,
ODR = 100 Hz
150
ug/
sqrt(Hz)
± 2g range, X,Y-axis ST2,ST1 = [01]
see Figure 24
140
ST
Self test positive
difference(4)
± 2g range, Z-axis ST2,ST1 = [01]
see Figure 24
590
Top
Operating
temperature range
mg
-40
+85
1. Typical specifications are not guaranteed.
2. Verified by wafer level test and measurement of initial offset and sensitivity.
3. Typical zero-g level offset value after MSL3 preconditioning.
4. Self-test output change” is defined as: OUTPUT[mg](CNTL5 ST2, ST1 bits=01) - OUTPUT[mg](CNTL5 ST2, ST1 bits=00)
a. The product is factory calibrated at 2.5 V. The operational power supply range is from 1.71 V to 3.6 V.
12/53
Doc ID 022405 Rev 1
°C
LIS3DSH
3.2
Mechanical and electrical specifications
Electrical characteristics
@ Vdd = 2.5 V, T = 25 °C unless otherwise noted(b).
Table 4.
Symbol
Vdd
Vdd_IO
IddA
Electrical characteristics (1)
Parameter
Test conditions
Supply voltage
(3)
I/O pins supply voltage
Current consumption in Active
mode
IddPdn
Current consumption in powerdown/standby mode
VIH
Digital high level input voltage
VIL
Digital low level input voltage
VOH
High level output voltage
VOL
Low level output voltage
Top
Operating temperature range
Min.
Typ.(2)
Max.
Unit
1.71
2.5
3.6
V
Vdd+0.1
V
1.71
1.6 kHz ODR
225
µA
3.125 Hz ODR
11
µA
2
µA
0.8*Vdd_IO
V
0.2*Vdd_IO
0.9*Vdd_IO
V
V
0.1*Vdd_IO
V
+85
°C
-40
1. The product is factory calibrated at 2.5 V. The operational power supply range is from 1.71 V to 3.6 V.
2. Typical specifications are not guaranteed.
3. It is possible to remove Vdd maintaining Vdd_IO without blocking the communication buses, in this condition the
measurement chain is powered off.
b. The product is factory calibrated at 2.5 V. The operational power supply range is from 1.71 V to 3.6 V.
Doc ID 022405 Rev 1
13/53
Mechanical and electrical specifications
LIS3DSH
3.3
Communication interface characteristics
3.3.1
SPI - serial peripheral interface
Subject to general operating conditions for Vdd and Top.
Table 5.
SPI slave timing values
Value (1)
Symbol
Parameter
Unit
Min.
tc(SPC)
SPI clock cycle
fc(SPC)
SPI clock frequency
tsu(CS)
CS setup time
6
th(CS)
CS hold time
8
tsu(SI)
SDI input setup time
5
th(SI)
SDI input hold time
15
tv(SO)
SDO valid output time
th(SO)
SDO output hold time
tdis(SO)
Max.
100
ns
10
MHz
ns
50
9
SDO output disable time
50
1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not
tested in production.
Figure 3.
CS
SPI slave timing diagram (c)
(2)
(2)
tc(SPC)
tsu(CS)
SPC
(2)
(2)
tsu(SI)
SDI
(2)
th(SI)
LSB IN
M SB IN
tv(SO)
SDO
th(CS)
(2)
tdis(SO)
th(SO)
M SB OUT
LSB O UT
2. When no communication is on-going, data on SDO is driven by internal pull-up resistor.
c.
14/53
Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output ports.
Doc ID 022405 Rev 1
(2)
(2)
LIS3DSH
Mechanical and electrical specifications
I2C - inter IC control interface
3.3.2
Subject to general operating conditions for Vdd and Top.
I2C slave timing values
Table 6.
I2C standard mode (1)
Symbol
I2C fast mode (1)
Parameter
f(SCL)
Unit
SCL clock frequency
Min.
Max.
Min.
Max.
0
100
0
400
tw(SCLL)
SCL clock low time
4.7
1.3
tw(SCLH)
SCL clock high time
4.0
0.6
tsu(SDA)
SDA setup time
250
100
th(SDA)
SDA data hold time
0.01
kHz
µs
ns
3.45
0.01
0.9
tr(SDA) tr(SCL)
SDA and SCL rise time
1000
20 + 0.1Cb (2)
300
tf(SDA) tf(SCL)
SDA and SCL fall time
300
20 + 0.1Cb (2)
300
th(ST)
START condition hold time
4
0.6
tsu(SR)
Repeated START condition
setup time
4.7
0.6
tsu(SP)
STOP condition setup time
4
0.6
4.7
1.3
µs
ns
µs
Bus free time between STOP
and START condition
tw(SP:SR)
1. Data based on standard I2C protocol requirement, not tested in production.
2. Cb = total capacitance of one bus line, in pF.
Figure 4.
I2C slave timing diagram (d)
REPEATED
START
START
tsu(SR)
tw(SP:SR)
SDA
tf(SDA)
tsu(SDA)
tr(SDA)
START
th(SDA)
tsu(SP)
STOP
SCL
th(ST)
tw(SCLL)
tw(SCLH)
tr(SCL)
tf(SCL)
d. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.
Doc ID 022405 Rev 1
15/53
Mechanical and electrical specifications
3.4
LIS3DSH
Absolute maximum ratings
Stresses above those listed as “absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Table 7.
Absolute maximum ratings
Symbol
Vdd
Vdd_IO
Vin
Note:
Ratings
Maximum value
Unit
Supply voltage
-0.3 to 4.8
V
I/O pins supply voltage
-0.3 to 4.8
V
-0.3 to Vdd_IO +0.3
V
3000 for 0.5 ms
g
10000 for 0.1 ms
g
3000 for 0.5 ms
g
10000 for 0.1 ms
g
Input voltage on any control pin
(CS, SCL/SPC, SDA/SDI/SDO, SDO/SEL)
APOW
Acceleration (any axis, powered, Vdd = 2.5 V)
AUNP
Acceleration (any axis, unpowered)
TOP
Operating temperature range
-40 to +85
°C
TSTG
Storage temperature range
-40 to +125
°C
ESD
Electrostatic discharge protection
2 (HBM)
kV
Supply voltage on any pin should never exceed 4.8 V
This is a mechanical shock sensitive device, improper handling can cause permanent
damage to the part.
This is an ESD sensitive device, improper handling can cause permanent damage to
the part.
16/53
Doc ID 022405 Rev 1
LIS3DSH
Mechanical and electrical specifications
3.5
Terminology
3.5.1
Sensitivity
Sensitivity describes the gain of the sensor and can be determined e.g. by applying 1 g
acceleration to it. As the sensor can measure DC accelerations this can be done easily by
pointing the axis of interest towards the center of the earth, noting the output value, rotating
the sensor by 180 degrees (pointing to the sky) and noting the output value again. By doing
so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the
smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This
value changes very little over temperature and also time. The sensitivity tolerance describes
the range of sensitivities of a large population of sensors.
3.5.2
Zero-g level
Zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal
output signal if no acceleration is present. A sensor in a steady-state on a horizontal surface
measures 0 g in X axis and 0 g in Y axis, whereas the Z axis measures 1 g. The output is
ideally in the middle of the dynamic range of the sensor (content of OUT registers 00h, data
expressed as 2’s complement number). A deviation from the ideal value in this case is called
Zero-g offset. Offset is to some extent a result of stress to MEMS sensor and therefore the
offset can slightly change after mounting the sensor onto a printed circuit board or exposing
it to extensive mechanical stress. Offset changes little over temperature, see “Zero-g level
change vs. temperature”. The Zero-g level tolerance (TyOff) describes the standard
deviation of the range of Zero-g levels of a population of sensors.
3.6
Functionality
3.6.1
Self-test
Self-test allows to check the sensor functionality without moving it. The self-test function is
off when the self-test bit (ST) is programmed to ‘0‘. When the self-test bit is programmed to
‘1’, an actuation force is applied to the sensor, simulating a definite input acceleration. In this
case the sensor outputs exhibit a change in their DC levels which are related to the selected
full-scale through the device sensitivity. When self-test is activated, the device output level is
given by the algebraic sum of the signals produced by the acceleration acting on the sensor
and by the electrostatic test-force. If the output signals change within the amplitude
specified in Table 3, then the sensor is working properly and the parameters of the interface
chip are within the defined specifications.
3.7
Sensing element
A proprietary process is used to create a surface micro-machined accelerometer. The
technology allows to carry out suspended silicon structures which are attached to the
substrate in a few points called anchors and are free to move in the direction of the sensed
acceleration. To be compatible with the traditional packaging techniques, a cap is placed on
top of the sensing element to avoid blocking the moving parts during the moulding phase of
the plastic encapsulation.
Doc ID 022405 Rev 1
17/53
Mechanical and electrical specifications
LIS3DSH
When an acceleration is applied to the sensor the proof mass displaces from its nominal
position, causing an imbalance in the capacitive half bridge. This imbalance is measured
using charge integration in response to a voltage pulse applied to the capacitor.
At steady-state the nominal value of the capacitors are a few pF and when an acceleration is
applied, the maximum variation of the capacitive load is in the fF range.
3.8
IC interface
The complete measurement chain is made up of a low-noise capacitive amplifier which
converts the capacitive unbalancing of the MEMS sensor into an analog voltage that is
finally available to the user through an analog-to-digital converter.
The acceleration data may be accessed through an I2C/SPI interface, therefore making the
device particularly suitable for direct interfacing with a microcontroller.
The LIS3DSH features a Data-Ready signal (RDY) which indicates when a new set of
measured acceleration data is available, therefore simplifying data synchronization in the
digital system that uses the device.
3.9
Factory calibration
The IC interface is factory calibrated for sensitivity (So) and Zero-g level (TyOff).
The trimming values are stored inside the device in a non volatile memory. Any time the
device is turned on, the trimming parameters are downloaded into the registers to be used
during the active operation. This allows to use the device without further calibration.
18/53
Doc ID 022405 Rev 1
LIS3DSH
4
Application hints
Application hints
Figure 5.
LIS3DSH electrical connection
Vdd
16
10µF
14
1
Vdd_IO
13
NC
TOP VIEW
NC
INT1/DRDY
100nF
9
5
CS
SEL/SDO
SDA/SDI/SDO
SCL/SPC
INT 2
8
6
GND
Digital signal from/to signal controller.Signal’s levels are defined by proper selection of Vdd_IO
AM10211V1
The device core is supplied through the Vdd line while the I/O pins are supplied through the
Vdd_IO line. Power supply decoupling capacitors (100 nF ceramic, 10 µF) should be placed
as near as possible to pin 14 of the device (common design practice).
All the voltage and ground supplies must be present at the same time to have proper
behavior of the IC (refer to Figure 5). It is possible to remove Vdd maintaining Vdd_IO
without blocking the communication bus, in this condition the measurement chain is
powered off.
The functionality of the device and the measured acceleration data is selectable and
accessible through the I2C or SPI interfaces. When using the I2C, CS must be tied high.
4.1
Soldering information
The LGA package is compliant with the ECOPACK®, RoHS and “Green” standard.
It is qualified for soldering heat resistance according to JEDEC J-STD-020.
Leave “Pin 1 Indicator” unconnected during soldering.
Land pattern and soldering recommendations are available at www.st.com.
Doc ID 022405 Rev 1
19/53
Digital main blocks
LIS3DSH
5
Digital main blocks
5.1
State machine
The LIS3DSH embeds two state machines able to run a user defined program.
The program is made up of a set of instructions that define the transition to successive
states. Conditional branches are possible.
From each state (n) it is possible to have transition to the next state (n+1) or to reset state.
Transition to reset point happens when “RESET condition” is true; Transition to the next step
happens when “NEXT condition” is true.
Interrupt is triggered when output/stop/continue state is reached.
Each state machine allows to implement gesture recognition in a flexible way, free-fall,
wake-up, 4D/6D orientation, pulse counter and step recognition, click/double click,
shake/double shake, face-up/face-down, turn/double turn:
●
Code and parameters are loaded by the host into dedicated memory areas for the state
program
●
State program with timing based on ODR or decimated time
●
Possibility of conditional branches
Table 8.
LIS3DSH state machines: sequence of state to execute an algorithm
START
State 1
next
State 2
next
State 3
reset
reset
reset
next
State n
reset
OUTPUT/STOP/CONTINUE
INT set
AM10212V1
20/53
Doc ID 022405 Rev 1
LIS3DSH
5.2
Digital main blocks
FIFO
LIS3DSH embeds an acceleration data FIFO for each of the three output channels, X, Y,
and Z. This allows a consistent power saving for the system, since the host processor does
not need to continuously poll data from the sensor, but it can wake up only when needed
and burst the significant data out from the FIFO. This buffer can work according to four
different modes: Bypass mode, FIFO mode, Stream mode and Stream-to-FIFO mode. Each
mode is selected by the FIFO_MODE bits. Programmable Watermark level, FIFO_empty or
FIFO_Full events can be enabled to generate dedicated interrupts on the INT1/2 pin.
5.2.1
Bypass mode
In Bypass mode, the FIFO is not operational and for this reason it remains empty. For each
channel only the first address is used. The remaining FIFO slots are empty.
5.2.2
FIFO mode
In FIFO mode, data from X, Y, and Z channels are stored in the FIFO. A Watermark interrupt
can be enabled in order to be raised when the FIFO is filled to the level specified by the
internal register. The FIFO continues filling until it is full. When full, the FIFO stops collecting
data from the input channels.
5.2.3
Stream mode
In Stream mode, data from the X, Y, and Z measurement are stored in the FIFO. A
Watermark interrupt can be enabled and set as in the FIFO mode. The FIFO continues filling
until it’s full. When full, the FIFO discards the older data as the new arrive.
5.2.4
Stream-to-FIFO mode
In Stream-to_FIFO mode, data from the X, Y, and Z measurement are stored in the FIFO. A
Watermark interrupt can be enabled in order to be raised when the FIFO is filled to the level
specified by the internal register. The FIFO continues filling until it’s full. When full, the FIFO
discards the older data as the new arrive. Once trigger event occurs, the FIFO starts
operating in FIFO mode.
5.2.5
Retrieve data from FIFO
FIFO data is read through the OUT_X, OUT_Y and OUT_Z registers. When the FIFO is in
Stream, Trigger or FIFO mode, a read operation to the OUT_X, OUT_Y or OUT_Z registers
provides the data stored in the FIFO. Each time data is read from the FIFO, the oldest X, Y,
and Z data are placed in the OUT_X, OUT_Y and OUT_Z registers and both single read and
read_burst operations can be used.
Doc ID 022405 Rev 1
21/53
Digital interfaces
6
LIS3DSH
Digital interfaces
The registers embedded inside the LIS3DSH may be accessed through both the I2C and
SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire
interface mode.
The serial interfaces are mapped onto the same pins. To select/exploit the I2C interface, the
CS line must be tied high (i.e. connected to Vdd_IO).
Table 9.
Serial interface pin description
Pin name
SPI enable
I2C/SPI mode selection (1: SPI idle mode / I2C communication
enabled; 0: SPI communication mode / I2C disabled)
CS
6.1
Pin description
SCL
SPC
I2C serial clock (SCL)
SPI serial port clock (SPC)
SDA
SDI
SDO
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
SEL
SDO
I2C address selection
SPI serial data output (SDO)
I2C serial interface
The LIS3DSH I2C is a bus slave. The I2C is employed to write data into registers whose
content can also be read back.
The relevant I2C terminology is given in the table below.
Table 10.
Serial interface pin description
Term
Transmitter
Receiver
Description
The device which sends data to the bus
The device which receives data from the bus
Master
The device which initiates a transfer, generates clock signals and terminates a
transfer
Slave
The device addressed by the master
There are two signals associated with the I2C bus: the serial clock line (SCL) and the serial
data line (SDA). The latter is a bi-directional line used for sending and receiving the data
to/from the interface. Both lines must be connected to Vdd_IO through an external pull-up
resistor. When the bus is free, both lines are high.
The I2C interface is compliant with fast mode (400 kHz) I2C standards as well as with normal
mode.
22/53
Doc ID 022405 Rev 1
LIS3DSH
6.1.1
Digital interfaces
I2C operation
The transaction on the bus is started through a start (ST) signal. A start condition is defined
as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has
been transmitted by the master, the bus is considered busy. The next byte of data
transmitted after the start condition contains the address of the slave in the first 7 bits and
the eighth bit tells whether the master is receiving data from the slave or transmitting data to
the slave. When an address is sent, each device in the system compares the first seven bits
after a start condition with its address. If they match, the device considers itself addressed
by the master.
The slave address (SAD) associated to the LIS3DSH is 00111xxb whereas the xx bits are
modified by the SEL/SDO pin in order to modify the device address. If the SEL pin is
connected to the voltage supply, the address is 0011101b, otherwise the address is
0011110b if the SEL pin is connected to ground. This solution permits to connect and
address two different accelerometers to the same I2C lines.
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line
during the acknowledge pulse. The receiver must then pull the data line LOW so that it
remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which
has been addressed is obliged to generate an acknowledge after each byte of data
received.
The I2C embedded inside the LIS3DSH behaves as a slave device and the following
protocol must be adhered to. After the start condition (ST) a slave address is sent, once a
slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted: the
7 LSb represents the actual register address while the ADD_INC bit (CTRL_REG6) defines
the address increment.
The slave address is completed with a read/write bit. If the bit is ‘1’ (Read), a repeated start
(SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (Write), the
master transmits to the slave with direction unchanged. Table 11 explains how the
SAD+Read/Write bit pattern is composed, listing all the possible configurations.
Table 11.
SAD+Read/Write patterns
Command
SAD[6:2]
SAD[1] = SEL
SAD[0] = SEL
R/W
Read
00111
1
0
1
00111101
Write
00111
1
0
0
00111100
Read
00111
0
1
1
00111011
Write
00111
0
1
0
00111010
Table 12.
Master
Slave
SAD+R/W
Transfer when master is writing one byte to slave
ST
SAD + W
SUB
SAK
Doc ID 022405 Rev 1
DATA
SAK
SP
SAK
23/53
Digital interfaces
LIS3DSH
Table 13.
Master
Transfer when master is writing multiple bytes to slave:
ST
SAD + W
Slave
SAK
Table 14.
Master
Master
Slave
ST
DATA
DATA
SAK
SAK
SP
SAK
Transfer when master is receiving (reading) one byte of data from slave:
ST
SAD + W
Slave
Table 15.
SUB
SUB
SAK
SR
SAD + R
SAK
NMAK
SAK
SP
DATA
Transfer when master is receiving (reading) multiple bytes of data from slave
SAD+W
SUB
SAK
SR SAD+R
SAK
MAK
SAK
DATA
MAK
DATA
NMAK
SP
DATA
Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number
of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit
(MSb) first. If a receiver can’t receive another complete byte of data until it has performed
some other function, it can hold the clock line, SCL LOW, to force the transmitter into a wait
state. Data transfer only continues when the receiver is ready for another byte and releases
the data line. If a slave receiver doesn’t acknowledge the slave address (i.e. it is not able to
receive because it is performing some real time function) the data line must be left HIGH by
the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line
while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be
terminated by the generation of a STOP (SP) condition.
In the presented communication format, MAK is Master acknowledge and NMAK is No
Master Acknowledge.
6.2
SPI bus interface
The LIS3DSH SPI is a bus slave. The SPI allows to write and read the registers of the
device.
The serial interface interacts with the outside world with 4 wires: CS, SPC, SDI and SDO.
24/53
Doc ID 022405 Rev 1
LIS3DSH
Digital interfaces
Figure 6.
Read and write protocol
CS
SPC
SDI
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
RW
MS AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
AM10129V1
CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of
the transmission and goes back high at the end. SPC is the serial port clock and it is
controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and
SDO are respectively the serial port data input and output. Those lines are driven at the
falling edge of SPC and should be captured at the rising edge of SPC.
Both the read register and write register commands are completed in 16 clock pulses or in
multiples of 8 in case of multiple bytes read/write. Bit duration is the time between two falling
edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge
of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the
rising edge of CS.
bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0)
from the device is read. In the latter case, the chip drives SDO at the start of bit 8.
bit 1-7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
In multiple read/write commands further blocks of 8 clock periods are added. When the
ADD_INC(CTRL_REG6) bit is ‘0’, the address used to read/write data remains the same for
every block. When the ADD_INC bit is ‘1’, the address used to read/write data is increased
at every block.
The function and the behavior of SDI and SDO remain unchanged.
Doc ID 022405 Rev 1
25/53
Digital interfaces
6.2.1
LIS3DSH
SPI read
Figure 7.
SPI read protocol
CS
SPC
SDI
RW
MS AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
AM10130V1
The SPI Read command is performed with 16 clock pulses. Multiple byte read command is
performed adding blocks of 8 clock pulses at the previous one.
bit 0: READ bit. The value is 1.
bit 1-7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
bit 16-... : data DO(...-8). Further data in multiple byte reading.
Figure 8.
Multiple bytes SPI read protocol (2-byte example)
CS
SPC
SDI
RW
M S A D5 A D4 AD 3 A D2 A D1 A D0
SD O
DO 7 DO 6 DO 5 DO 4 DO 3 DO 2 DO 1 DO 0 DO 15 DO 14 DO 13 DO 12 DO 11 DO 10 D O9 D O8
AM10131V1
26/53
Doc ID 022405 Rev 1
LIS3DSH
6.2.2
Digital interfaces
SPI write
Figure 9.
SPI write protocol
CS
SPC
SDI
D I7 D I6 D I5 D I4 DI3 DI2 DI1 DI0
RW
MS AD5 AD 4 AD 3 AD2 AD 1 AD0
AM10132V1
The SPI Write command is performed with 16 clock pulses. Multiple byte write command is
performed adding blocks of 8 clock pulses at the previous one.
bit 0: WRITE bit. The value is 0.
bit 1 -7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb
first).
bit 16-... : data DI(...-8). Further data in multiple byte writing.
Figure 10. Multiple bytes SPI write protocol (2-byte example)
CS
SPC
SDI
DI7 D I6 DI5 D I4 DI3 DI2 DI1 DI0 DI15 D I1 4DI13 D I1 2DI11 DI10 DI9 DI8
RW
MS AD5 AD4 AD3 AD2 AD1 AD 0
AM10133V1
6.2.3
SPI read in 3-wire mode
3-wire mode is entered by setting to ‘1’ bit SIM (SPI serial interface mode selection) by
internal register.
Doc ID 022405 Rev 1
27/53
Digital interfaces
LIS3DSH
Figure 11. SPI read protocol in 3-wire mode
CS
SPC
SDI/O
D O7 D O6 D O5 DO4 DO3 DO2 DO1 DO0
RW
MS AD5 AD 4 AD 3 AD2 AD1 AD 0
AM10134V1
The SPI read command is performed with 16 clock pulses:
bit 0: READ bit. The value is 1.
bit 1-7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
Multiple read command is also available in 3-wire mode.
28/53
Doc ID 022405 Rev 1
LIS3DSH
Register mapping
7
Register mapping
Table 16 provides a list of the 8/16-bit registers embedded in the device and the related
address:
Table 16.
Register address map
Register address
Name
Type
Hex
Binary
Default
Comment
INFO1
r
0D
00001101
0010 0001
Information register 1
INFO2
r
0E
00001110
0000 0000
Information register 2
WHO_AM_I
r
OF
00001111
0011 1111
Who I am ID
CTRL_REG3
r/w
23
00100011
-
CTRL_REG4
r/w
20
00100000
-
CTRL_REG5
r/w
24
00100100
-
CTRL_REG6
r/w
25
00100101
-
STATUS
r
27
00100111
-
Status data register
OUT_T
r
0C
00001100
-
Temperature output
OFF_X
r/w
10
00010000
0000 0000
X-axis offset correction
OFF_Y
r/w
11
00010001
0000 0000
Y-axis offset correction
OFF_Z
r/w
12
00010010
0000 0000
Z-axis offset correction
CS_X
r/w
13
00010011
0000 0000
Constant shift X
CS_Y
r/w
14
00010100
0000 0000
Constant shift Y
CS_Z
r/w
15
00010101
0000 0000
Constant shift Z
LC_L
r/w
16
00010110
0000 0001
LC_H
r/w
17
00010111
0000 0000
STAT
r
18
00011000
-
Interrupt synchronization
VFC_1
r/w
1B
00011011
-
Vector filter coefficient 1
VFC_2
r/w
1C
00011100
-
Vector filter coefficient 2
VFC_3
r/w
1D
00011101
-
Vector filter coefficient 3
VFC_4
r/w
1E
00011110
-
Vector filter coefficient 4
THRS3
r/w
1F
00011111
-
Threshold value 3
OUT_X_L
r
28
00101000
OUT_X_H
r
29
00101001
OUT_Y_L
r
2A
00101010
0000 0000
Output registers
OUT_Y_H
r
2B
00101011
OUT_Z_L
r
2C
00101100
OUT_Z_H
r
2D
00101101
Control registers
Long counter registers
Doc ID 022405 Rev 1
29/53
Register mapping
Table 16.
LIS3DSH
Register address map (continued)
Register address
Name
Type
Default
Hex
Binary
Comment
FIFO_CTRL
r/w
2E
00101110
0000 0000
FIFO_SRC
r
2F
00101111
-
r/w
21
00100001
0000 0000
SM1 control register
ST1_X
w
40-4F
01000000
01001111
-
SM1 code register
(X =1-16)
TIM4_1
w
50
01010000
-
TIM3_1
w
51
01010001
-
TIM2_1
w
52-53
01010010
01010011
-
TIM1_1
w
54-55
01010100
01010101
-
THRS2_1
w
56
01010110
-
SM1 threshold value 1
THRS1_1
w
57
01010111
-
SM1 threshold value 2
MASK1_B
w
59
01011001
-
SM1 axis and sign mask
MASK1_A
w
5A
01011010
-
SM1 axis and sign mask
SETT1
w
5B
01011011
-
SM1 detection settings
PR1
r
5C
01011100
-
Program-reset pointer
TC1
r
5D-5E
01011101
01011110
-
Timer counter
OUTS1
r
5F
01011111
-
Main set flag
PEAK1
r
19
00011001
-
Peak value
r/w
22
00100010
-
SM2 control register
ST2_X
w
60-6F
01100000
01101111
-
SM2 code register
(X =1-16)
TIM4_2
w
70
01110000
-
TIM3_2
w
71
01110001
-
TIM2_2
w
72-73
01110010
01110011
-
TIM1_2
w
74-75
01110100
01110101
-
THRS2_2
w
76
01110110
-
SM2 threshold value 1
THRS1_2
w
77
01110111
-
SM2 threshold value 2
MASK2_B
w
79
01111001
-
SM2 axis and sign mask
MASK2_A
w
7A
01111010
SETT2
w
7B
01111011
FIFO registers
CTRL_REG1
CTRL_REG2
30/53
Doc ID 022405 Rev 1
SM1 general timer
SM2 general timer
SM2 axis and sign mask
-
SM2 detection settings
LIS3DSH
Table 16.
Register mapping
Register address map (continued)
Register address
Name
Type
Hex
Binary
Default
Comment
PR2
r
7C
01111100
-
Program-reset pointer
TC2
r
7D-7E
01111101
01111110
-
Timer counter
OUTS2
r
7F
01111111
PEAK2
r
1A
00011010
-
Peak value
DES2
w
78
01111000
-
Decimation factor
Doc ID 022405 Rev 1
Main set flag
31/53
Register description
LIS3DSH
8
Register description
8.1
INFO1 (0Dh)
Read only information register.
Table 17.
0
8.2
INFO1 register default value
0
1
0
0
0
0
1
0
0
0
0
1
1
1
1
1
INT2_EN
INT1_EN
VFILT
-
STRT
INFO2 (0Eh)
Read only information register.
Table 18.
0
8.3
INFO2 register default value
0
0
0
WHO_AM_I (0Fh)
Who_AM_I register.
Table 19.
0
8.4
WHO_AM_I register default value
0
1
CTRL_REG3 (23h)
Control register 3.
Table 20.
DR_EN
Table 21.
DR_EN
32/53
Control register 3
IEA
IEL
CTRL_REG3 register description
DRDY signal enable to INT1. Default value:0
0 = data ready signal not connected, 1 = data ready signal connected to INT1
IEA
Interrupt signal polarity. Default value:0
0 = interrupt signals active LOW, 1 = interrupt signals active HIGH
IEL
Interrupt signal latching. Default value:0
0 = interrupt signals latched, 1 = interrupt signal pulsed
INT2_EN
Interrupt 2 enable/disable. Default value:0
0 = INT2 signal disabled, 1 = INT2 signal enabled
INT1_EN
Interrupt 2 enable/disable. Default Value:0
0 = INT1/DRDY signal disabled, 1 = INT1/DRDY signal enabled
Doc ID 022405 Rev 1
LIS3DSH
Register description
Table 21.
8.5
CTRL_REG3 register description (continued)
VFILT
Vector filter enable/disable. Default value:0
0 = vector filter disabled, 1 = vector filter enabled
STRT
Soft reset bit
0 = no soft reset, 1 = soft reset (POR function)
CTRL_REG4 (20h)
Control register 4.
Table 22.
ODR3
Table 23.
Control register 4
ODR2
ODR1
ODR0
BDU
ZEN
YEN
XEN
CTRL_REG4 register description
ODR 3:0
Output data rate and power mode selection. Default value:0000 (see Table 24)
BDU
Block data update. Default value:0
0:continuos update,1:output registers not updated until MSB and LSB reading)
Zen
Z axis enable. Default value:1
(0:Z axis disabled; 1:Z axis enabled)
Yen
Y axis enable. Default value:1
(0:Y axis disabled; 1:Y axis enabled)
Xen
X axis enable. Default value:1
0=X axis disabled; 1=X axis enabled
ODR<3:0> is used to set Power Mode and ODR selection. In Table 24 (output data rate
selection Table 22) all frequencies available are reported.
Table 24.
CTRL4 ODR configuration
ODR3
ODR2
ODR1
ODR0
ODR selection
0
0
0
0
Power down
0
0
0
1
3.125 Hz
0
0
1
0
6.25 Hz
0
0
1
1
12.5 Hz
0
1
0
0
25 Hz
0
1
0
1
50 Hz
0
1
1
0
100 Hz
0
1
1
1
400 Hz
1
0
0
0
800 Hz
1
0
0
1
1600 Hz
Doc ID 022405 Rev 1
33/53
Register description
LIS3DSH
The BDU bit is used to inhibit the output registers update until both upper and lower register
parts are read. In default mode (BDU=‘0’) the output register values are updated
continuously. If for any reason it is not sure whether to read faster than the output data rate it
is recommended to set the BDU bit to ‘1’. In this way the content of output registers is not
updated until both MSb and LSb are read avoiding the reading of values related to a
different sample time.
8.6
CTRL_REG5 (24h)
Control register 5.
Table 25.
Control register 5
BW2
BW1
Table 26.
FSCALE2
FSCALE0
ST2
ST1
SIM
Control register 5 description
BW2:BW1
Anti-aliasing filter bandwidth. Default value: 00
00=800 Hz; 01=400 Hz; 10:=200 Hz; 11:=50 Hz)
FSCALE2:0
Full-scale selection. Default value: 00
000=+/- 2G; 001=+/- 4G; 010=+/- 6G; 011=+/- 8G; 100=+/- 16G
ST2:1
Self-test enable. Default value: 00
00=self-test disabled;
SIM
SPI serial interface mode selection. Default value: 0
0=4-wire interface; 1:=3-wire interface
Table 27.
Self-test mode selection
ST2
8.7
FSCALE1
ST1
Self test mode
0
0
Normal mode
0
1
Positive sign self-test
1
0
Negative sign self-test
1
1
Not allowed
CTRL_REG6 (25h)
Control register 6.
Table 28.
BOOOT
34/53
Control register 6
FIFO_EN
WTM_EN
ADD_
INC
P1_
EMPTY
Doc ID 022405 Rev 1
P1_WTM
P1_OVER
RUN
P2_
BOOT
LIS3DSH
Register description
Table 29.
Control register 6 description
BOOT
Force reboot, cleared as soon as the reboot is finished. Active high.
FIFO_EN
FIFO enable. Default value 0.
0=disable; 1=enable
WTM_EN
Enable FIFO Watermark level use. Default value 0.
0=disable; 1=enable
ADD_INC
Register address automatically incremented during a multiple byte access with a
serial interface (I2C or SPI).
0=disable; 1=enable
P1_EMPTY
Enable FIFO Empty indication on int1. Default value 0.
0=disable; 1=enable
P1_WTM
FIFO Watermark interrupt on int1. Default value 0.
0:=disable; 1=enable
P1_OVERRUN FIFO overrun interrupt on int1. Default value 0.
0=disable; 1=enable
P2_BOOT
8.8
BOOT interrupt on int2. Default value 0.
0=disable; 1=enable
STATUS (27h)
Status register.
Table 30.
ZYXOR
Table 31.
Status register
ZOR
YOR
XOR
ZYXDA
ZDA
YDA
XDA
Status register description
ZYXOR
X, Y, and Z axis data overrun. Default value: 0
0=no overrun has occurred; 1=a new set of data has overwritten the previous ones
ZOR
Z axis data overrun. Default value: 0
0=no overrun has occurred; 1=a new set of data for the Z-axis has overwritten the previous one
YOR
Y axis data overrun. Default value: 0
0=no overrun has occurred;
1=a new data for the Y-axis has overwritten the previous one
XOR
X axis data overrun. Default value: 0
0=no overrun has occurred;
1=a new data for the X-axis has overwritten the previous one
ZYXDA
X, Y, and Z axis new data available. Default value: 0
0=a new set of data is not yet available; 1=a new set of data is available
ZDA
Z axis new data available. Default value: 0
0=a new data for the Z-axis is not yet available;
1=a new data for the Z-axis is available
Doc ID 022405 Rev 1
35/53
Register description
Table 31.
8.9
LIS3DSH
Status register description (continued)
YDA
Y axis new data available. Default value: 0
0=a new data for the Y-axis is not yet available;
1=a new data for the Y-axis is available
XDA
X axis new data available. Default value: 0
0=a new data for the X-axis is not yet available;
1=a new data for the X-axis is available
OUT_T (0Ch)
Temperature output register. Temperature data (1LSB/deg - 8-bit resolution). The value is
expressed as two's complement.
Table 32.
Temp7
Table 33.
OUT_T register
Temp6
Temp4
Temp3
Temp2
Temp1
Temp0
OUT_T register description
Temp7-Temp0
8.10
Temp5
Temperature data.
OFF_X (10h)
Offset correction X-axis register,signed value.
Table 34.
0
8.11
Offset X default value
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
OFF_Y (11h)
Offset correction Y-axis register, signed value.
Table 35.
0
8.12
Offset Y default value
0
0
0
OFF_Z (12h)
Offset correction Z-axis register, signed value.
Table 36.
0
36/53
Offset Z default value
0
0
0
Doc ID 022405 Rev 1
LIS3DSH
8.13
Register description
CS_X (13h)
Constant shift signed value X-axis register - state machine only.
Table 37.
Constant shift X-axis default value
0
8.14
0
0
0
0
0
0
0
0
0
0
0
CS_Y (14h)
Constant shift signed value Y-axis register - state machine only.
Table 38.
Constant shift Y-axis default value
0
8.15
0
0
0
0
0
CS_Z (15h)
Constant shift signed value Y-axis register - state machine only.
Table 39.
Constant shift Y-axis default value
0
8.16
0
0
0
0
0
LC (16h - 17h)
16-bit long-counter register for interrupt state machine programs timing.
Table 40.
LC_L default value
0
Table 41.
0
0
0
0
0
0
1
0
0
0
0
0
LC_H default value
0
0
0
01h=counting stopped, 00h=counter full:interrupt available and counter is set to default.
Values higher than 00h:counting
8.17
STAT (18h)
Interrupt status - interrupt synchronization register.
Table 42.
LONG
STAT register
SYNCW
SYNC1
SYNC2
INT_SM1
Doc ID 022405 Rev 1
INT_SM2
DOR
DRDY
37/53
Register description
Table 43.
8.18
LIS3DSH
STAT register description
LONG
0=no interrupt, 1=long counter (LC) interrupt flag common for both SM
SYNCW
Synchronization for external Host Controller interrupt based on output data
0=no action waiting from host; 1=action from host based on output data
SYNC1
0=SM1 running normally, 1=SM1 stopped and await restart request from SM2
SYNC2
0=SM2 running normally, 1=SM2 stopped and await restart request from SM1
INT_SM1
SM1 - Interrupt Selection - 1=SM1 interrupt enable; 0: SM1 interrupt disable
NT_SM2
SM2 - Interrupt Selection - 1=SM2 interrupt enable; 0: SM2 interrupt disable
DOR
Data overrun indicates not read data from output register when next data samples
measure start; 0=no overrun, 1=data overrun data overrun bit is reset when next
sample is ready
DRDY
data ready from output register
0=data not ready, 1=data ready
VFC_1 (1Bh)
Vector coefficient register 1 for DIff filter.
Table 44.
0
8.19
Vector filter coefficient register 1 default value
0
0
0
0
0
0
0
0
0
0
0
0
0
VFC_2 (1Ch)
Vector coefficient register 2 for DIff filter.
Table 45.
0
8.20
Vector filter coefficient register 2 default value
0
0
0
0
0
VFC_3 (1Dh)
Vector coefficient register 3 for FSM2 filter.
Table 46.
0
8.21
Vector filter coefficient register 3 default value
0
0
0
0
0
VFC_4 (1Eh)
Vector coefficient register 4 for DIff filter.
Table 47.
0
38/53
Vector filter coefficient register 4 default value
0
0
0
Doc ID 022405 Rev 1
0
0
LIS3DSH
8.22
Register description
THRS3 (1Fh)
Threshold value e register.
Table 48.
0
8.23
Threshold value register 3 default value
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
OUT_X (28h - 29h)
X-axis output register.
Table 49.
0
Table 50.
0
8.24
OUT_X_L register default value
0
0
0
OUT_X_H register default value
0
0
0
OUT_Y (2Ah - 2Bh)
Y-axis output register.
Table 51.
0
Table 52.
0
8.25
OUT_Y_L register default value
0
0
0
OUT_Y_H register default value
0
0
0
OUT_Z (2Ch - 2Dh)
Z-axis output register.
Table 53.
0
Table 54.
0
OUT_Z_L register default value
0
0
0
OUT_Z_H register default value
0
0
0
Doc ID 022405 Rev 1
39/53
Register description
8.26
LIS3DSH
FIFO_CTRL (2Eh)
FIFO control register.
Table 55.
FMODE2
FIFO control register
FMODE1
FMODE0
WTMP4
WTMP3
WTMP2
WTMP1
WTMP4
FMODE2:FMODE0 = FIFO Mode Selection.
WTMP4:WTMP0 = FIFO Watermark pointer; FIFO deep if the Watermark is enabled.
Table 56.
FIFO mode selection
FMODE2
FMODE1
FMODE0
Mode
0
0
0
Bypass Mode. FIFO turned off
0
0
1
FIFO Mode. Stop collecting data
when FIFO is full.
0
1
0
Stream Mode. If the FIFO is full
the new sample overwrites the
older one
0
1
1
Stream mode until trigger is deasserted, then FIFO mode
1
0
0
Bypass mode until trigger is deasserted, then Stream mode
1
0
1
Not Used
1
1
0
Not Used.
1
1
1
Bypass mode until trigger is deasserted, then FIFO mode
The FIFO trigger is the INT2 source.
8.27
FIFO_SRC (2Fh)
FIFO SRC control register.
Table 57.
WTM
40/53
FIFO_SRC register
OVRN_
FIFO
EMPTY
FSS4
FSS3
Doc ID 022405 Rev 1
FSS2
FSS1
FSS0
LIS3DSH
Register description
Table 58.
8.28
FIFO_SRC register description
WTM
Watermark status.
0=FIFO filling is lower than WTM level; 1=FIFO filling is equal or higher than WTM
level
OVRN_FIFO
Overrun bit status. 0=FIFO is not completely filled; 1=FIFO is completely filled
EMPTY
FIFO empty bit.
0=FIFO not empty; 1=FIFO empty)
FSS4-FSS0
FIFO stored data level
CTRL_REG1 (21h)
SM1 control register.
Table 59.
HYST2_1
Table 60.
8.29
SM1 control register
HYST1_1
HYST0_1
-
SM1_PIN
-
-
SM1_EN
SM1 control register structure
HYST2_1
HYST1_1
HYST0_1
Hysteresis unsigned value to be added or subtracted from threshold value in SM1
Default value=000
SM1_PIN
0=SM1 interrupt routed to INT1, 1=SM1 interrupt routed to INT2 pin
Default value=0
SM1_EN
0=SM1 disabled, 1=SM1 enabled
Default value=0
STx_1 (40h-4Fh)
State machine 1 code register STx_1 (x = 1-16).
State machine 1 system register is made up of 16, 8- bit registers to implement 16-step opcode.
8.30
TIM4_1 (50h)
8-bit general timer (unsigned value) for SM1 operation timing.
Table 61.
0
8.31
Timer4 default value
0
0
0
0
0
0
0
TIM3_1 (51h)
8-bit general timer (unsigned value) for SM1 operation timing.
Doc ID 022405 Rev 1
41/53
Register description
Table 62.
0
8.32
LIS3DSH
Timer3 default value
0
0
0
0
0
0
0
TIM2_1 (52h - 53h)
16-bit general timer (unsigned value) for SM1 operation timing.
Table 63.
0
Table 64.
0
8.33
TIM2_1_L default value
0
0
0
0
0
0
0
0
0
0
0
0
TIM2_1_H default value
0
0
TIM1_1 (54h - 55h)
16-bit general timer (unsigned value) for SM1 operation timing.
Table 65.
0
Table 66.
0
8.34
TIM1_1_L default value
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TIM1_1_H default value
0
0
THRS2_1 (56h)
Threshold value for SM1 operation.
Table 67.
0
8.35
THRS2_1 default value
0
0
THRS1_1 (57h)
Threshold value for SM1 operation.
Table 68.
0
42/53
THRS1_1 default value
0
0
Doc ID 022405 Rev 1
LIS3DSH
8.36
Register description
MASK1_B (59h)
Axis and sign mask (swap) for SM1 motion detection operation.
Table 69.
P_X
Table 70.
8.37
MASK1_B axis and sign mask register
N_X
P_Y
N_Y
P_Z
N_Z
P_V
N_V
P_V
N_V
MASK1_B register structure
P_X
0=X + disabled, 1=X + enabled
N_X
0=X - disabled, 1=X – enabled
P_Y
0=Y+ disabled, 1=Y + enabled
N_Y
0=Y- disabled, 1=Y – enabled
P_Z
0=Z + disabled, 1=Z + enabled
N_Z
0=Z - disabled, 1=Z – enabled
P_V
0=V + disabled, 1=V + enabled
N_V
0=V - disabled, 1=V – enabled
MASK1_A (5Ah)
Axis and sign mask (default) for SM1 motion detection operation.
Table 71.
P_X
Table 72.
8.38
MASK1_A axis and sign mask register
N_X
P_Y
N_Y
P_Z
N_Z
MASK1_A register structure
P_X
0=X + disabled, 1=X + enabled
N_X
0=X - disabled, 1=X – enabled
P_Y
0=Y + disabled, 1=Y + enabled
N_Y
0=Y - disabled, 1=Y – enabled
P_Z
0=Z + disabled, 1=Z + enabled
N_Z
0=Z - disabled, 1= Z – enabled
P_V
0=V + disabled, 1=V + enabled
N_V
0=V - disabled, 1=V – enabled
SETT1 (5Bh)
Setting of threshold, peak detection and flags for SM1 motion detection operation.
Doc ID 022405 Rev 1
43/53
Register description
Table 73.
P_DET
Table 74.
P_DET
LIS3DSH
SETT1 register structure
THR3_SA
ABS
-
-
THR3_MA
R_TAM
SITR
SETT1 register description
SM1 peak detection. Default value:0
0=peak detection disabled, 1=peak detection enabled
THR3_SA
Default value:0
0=no action, 1=threshold 3 limit value for axis and sign mask reset (MASKB_1)
Default value:0
ABS
0=unsigned thresholds, 1=signed thresholds
THR3_MA
R_TAM
Default value:0
0=no action, 1=threshold 3 limit value for axis and sign mask reset (MASKA_1)
Next condition validation flag. Default value:0
0=no valid next condition found, 1=valid next condition found and reset
SITR
8.39
Default value:0
0=no actions, 1=program flow can be modified by STOP and CONT commands
PR1 (5Ch)
Program and reset pointer for SM1 motion detection operation.
Table 75.
PP3
Table 76.
8.40
PR1 register
PP2
PP1
PP0
RP3
RP2
RP1
RP0
PR1 register description
PP3-PP0
SM1 program pointer address
RP3-RP0
SM1 reset pointer address
TC1 (5Dh-5E)
16-bit general timer (unsigned output value) for SM1 operation timing.
Table 77.
0
Table 78.
0
44/53
TC1_L default value
0
0
0
0
0
0
0
0
0
0
0
0
TC1_H default value
0
0
Doc ID 022405 Rev 1
LIS3DSH
8.41
Register description
OUTS1 (5Fh)
Output flags on axis for interrupt SM1 management.
Table 79.
P_X
OUTS1 register
N_X
P_Y
N_Y
P_Z
N_Z
P_V
N_V
Read action of this register, depending on the flag affects SM1 interrupt functions.
Table 80.
8.42
OUTS1 register description
P_X
0=X + no show, 1=X+ show
N_X
0=X - no show, 1=X – show
P_Y
0=Y + no show, 1=Y + show
N_Y
0=Y - no show, 1=Y – show
P_Z
0=Z + no show, 1=Z + show
N_Z
0=Z - no show, 1=Z – show
P_V
0=V + no show, 1=V + show
N_V
0=V - no show, 1=V – show
PEAK1 (19h)
Peak detection value register for SM1 operation.
Table 81.
0
PEAK1 default value
0
0
0
0
0
0
0
-
-
SM2_EN
Peak detected value for next condition SM1.
8.43
CTRL_REG2 (22h)
State program 2 interrupt MNG - SM2 control register.
Table 82.
HYST2_2
SM2 control register
HYST1_2
HYST0_2
-
SM2_PIN
Doc ID 022405 Rev 1
45/53
Register description
Table 83.
8.44
LIS3DSH
SM2 control register description
HYST2_2
HYST1_2
HYST0_2
Hysteresis unsigned value to be added or subtracted from threshold value in SM2.
Default value=000
SM2_PIN
0=SM2 interrupt routed to INT1, 1=SM2 interrupt routed to INT1 pin.
Default value=0
SM2_EN
0=SM2 disabled, 1=SM2 enabled.
Default value=0
STx_1 (60h-6Fh)
State Machine 2 code register STx_1 (x = 1-16).
State machine 2 system register is made up of 16 8-bit registers, to implement 16-step opcode.
8.45
TIM4_2 (70h)
8-bit general timer (unsigned value) for SM2 operation timing.
Table 84.
0
8.46
Timer4 default value
0
0
0
0
0
0
0
0
0
0
TIM3_2 (71h)
8-bit general timer (unsigned value) for SM2 operation timing.
Table 85.
0
8.47
Timer3 default value
0
0
0
0
TIM2_2 (72h - 73h)
16-bit general timer (unsigned value) for SM2 operation timing.
Table 86.
0
Table 87.
0
46/53
TIM2_2_L default value
0
0
0
0
0
0
0
0
0
0
0
0
TIM2_2_H default value
0
0
Doc ID 022405 Rev 1
LIS3DSH
8.48
Register description
TIM1_2 (74h - 75h)
16-bit general timer (unsigned value) for SM2 operation timing.
Table 88.
0
Table 89.
0
8.49
TIM1_2_L default value
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
P_V
N_V
TIM1_2_H default value
0
0
THRS2_2 (76h)
Threshold signed value for SM2 operation.
Table 90.
0
8.50
THRS2_2 default value
0
0
0
THRS1_2 (77h)
Threshold signed value for SM2 operation.
Table 91.
0
8.51
THRS1_2 default value
0
0
0
MASK2_B (79h)
Axis and sign mask (swap) for SM2 motion detection operation.
Table 92.
P_X
Table 93.
MASK2_B axis and sign mask register
N_X
P_Y
N_Y
P_Z
N_Z
MASK2_B register description
P_X
0=X + disabled, 1=X + enabled
N_X
0=X - disabled, 1=X – enabled
P_Y
0=Y + disabled, 1=Y + enabled
N_Y
0=Y - disabled, 1=Y – enabled
P_Z
0=Z + disabled, 1=Z + enabled
N_Z
0=Z - disabled, 1=Z – enabled
Doc ID 022405 Rev 1
47/53
Register description
Table 93.
8.52
LIS3DSH
MASK2_B register description
P_V
0=V + disabled, 1=V + enabled
N_V
0=V - disabled, 1=V – enabled
MASK2_A (7Ah)
Axis and sign mask (default) for SM2 motion detection operation.
Table 94.
P_X
Table 95.
8.53
MASK2_A axis and sign mask register
N_X
P_Y
N_Y
P_Z
N_Z
P_V
N_V
MASK2_B register description
P_X
0=X + disabled, 1=X + enabled
N_X
0=X - disabled, 1=X – enabled
P_Y
0=Y + disabled, 1=Y + enabled
N_Y
0=Y - disabled, 1=Y – enabled
P_Z
0=Z + disabled, 1=Z + enabled
N_Z
0=Z - disabled, 1=Z – enabled
P_V
0=V + disabled, 1=V + enabled
N_V
0=V - disabled, 1=V – enabled
SETT2 (7Bh)
Setting of threshold, peak detection and flags for SM2 motion detection operation.
Table 96.
P_DET
Table 97.
48/53
SETT2 register
THR3_SA
ABS
-
-
THR3_MA
R_TAM
SITR
SETT2 register description
P_DET
SM2 peak detection. Default value: 0
0=peak detection disabled, 1=peak detection enabled
THR3_SA
Default value: 0
0=no action, 1=threshold 3 limit value for axis and sign mask reset (MASK2_B)
ABS
Default value: 0
0=unsigned thresholds, 1=signed thresholds
THR3_MA
Default value: 0
0=no action, 1=threshold 3 limit value for axis and sign mask reset (MASK2_A)
Doc ID 022405 Rev 1
LIS3DSH
Register description
Table 97.
8.54
SETT2 register description
R_TAM
Next condition validation flag. Default value:0
0=no valid next condition found, 1=valid next condition found and reset
SITR
Default value: 0
0=no actions, 1=program flow can be modified by STOP and CONT commands
PR2 (7Ch)
Program and reset pointer for SM2 motion detection operation.
Table 98.
PP3
Table 99.
8.55
PR2 register
PP2
PP1
PP0
RP3
RP2
RP1
RP0
PR2 register description
PP3-PP0
SM2 program pointer address
RP3-RP0
SM2 reset pointer address
TC2 (7Dh-7E)
16-bit general timer (unsigned output value) for SM2 operation timing.
Table 100. TC2_L default value
0
0
0
0
0
0
0
0
0
0
0
0
0
N_Z
P_V
N_V
Table 101. TC2_H default value
0
8.56
0
0
OUTS2 (7Fh)
Output flags on axis for interrupt SM2 management.
Table 102. OUTS2 register
P_X
N_X
P_Y
N_Y
P_Z
Read action of this register, depending on the flag affects SM2 interrupt functions.
Table 103. OUTS2 register description
P_X
0=X + no show, 1=X + show
N_X
0=X - no show, 1=X – show
Doc ID 022405 Rev 1
49/53
Register description
LIS3DSH
Table 103. OUTS2 register description
8.57
P_Y
0=Y + no show, 1=Y + show
N_Y
0=Y - no show, 1=Y – show
P_Z
0=Z + no show, 1=Z + show
N_Z
0=Z - no show, 1=Z – show
P_V
0=V + no show, 1=V + show
N_V
0=V - no show, 1=V – show
PEAK2 (1Ah)
Peak detection value register for SM2 operation.
Table 104. PEAK2 default value
0
0
0
0
0
0
0
0
0
0
0
Peak detected value for next condition SM2.
8.58
DES2 (78h)
Decimation counter value register for SM2 operation.
Table 105. DES2 default value
0
0
0
0
0
Registers marked as ‘Reserved’ must not be changed. The writing to those registers may
cause permanent damages to the device.
The content of the registers that are loaded at boot should not be changed. They contain the
factory calibration values. Their content is automatically restored when the device is
powered up.
50/53
Doc ID 022405 Rev 1
LIS3DSH
9
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
Figure 12. LGA-16: mechanical data and package dimensions
D im ensions
R ef.
mm
inch
M in. Typ. M ax. M in. Typ. M ax.
A1
1.000
A2
0.785
A3
0.0394
0.0309
0.200
0.0079
D1
2.850
3.000
3.150 0.1122 0.1181 0.1240
E1
2.850
3.000
3.150 0.1122 0.1181 0.1240
L1
1.000
1.060
L2
2.000
2.060
N1
0.500
N2
M
1.000
0.040
0.100
0.0394 0.0417
0.0787 0.0811
0.0197
0.0394
0.160 0.0016 0.0039 0.0063
P1
0.875
0.0344
P2
1.275
0.0502
T1
0.290
T2
0.190
O utline and
m echanicaldata
0.350
0.410 0.0114 0.0138 0.0161
0.250
0.310 0.0075 0.0098 0.0122
d
0.150
0.0059
k
0.050
0.0020
LGA-16 (3x3x1.0mm)
Land Grid Array Package
7983231
Doc ID 022405 Rev 1
51/53
Revision history
10
LIS3DSH
Revision history
Table 106. Document revision history
52/53
Date
Revision
26-Oct-2011
1
Changes
Initial release.
Doc ID 022405 Rev 1
LIS3DSH
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 022405 Rev 1
53/53