AIC1660 Switched-Capacitor Voltage Converter n FEATURES l n DESCRIPTION Lowest Output Impedance (Typical 35Ω at VIN=5V). capacitor voltage converter. Designed to be an l Improved Direct Replacement for 7660. l 1.5V to 6V Operation. l No External Diode Required. l Simple Conversion of +5V to -5V. l Low Quiescent Current (Typical 36µA at VIN=5V). l High Power Efficiency (Typical 98%) l Boost Pin for Higher Switching Frequency. l Improved SCR Latchup Protection. improved direct replacement for the popular 7660 and LTC1044, the main function of the AIC1660 is to convert a positive input voltage in the range of 1.5V to 6V to the corresponding negative output voltage in the range of -1.5V to -6V. The input voltage can also be doubled (V OUT = 2V IN ), divided (VOUT = VIN /2 ), or multiplied (V OUT = ±nV IN ), as shown in application examples. n APPLICATIONS The chip contains a series DC power supply regulator, oscillator, control circuitry and four l RS-232 Power Supplies. l Handheld Instruments. l Data Acquisition Systems. l Supply Splitter, VOUT= ±VIN /2. l Operational Amplifier Supplies. l Panel Meter. output power MOS switches. The frequency of oscillator can be lowered by the addition of an external capacitor to the OSC pin, or the oscillator may be over-driven by an external clock. The boost function is available to raise the n TYPICAL APPLICATION CIRCUIT 1 2 + larger than 3V to improve power dissipation. 7 3 6 4 5 specific applications. The “LV” terminal may be ≤3V) operation, or be left floating for input voltage 8 AIC1660 oscillator frequency to optimize performance in tied to GND to improve low input voltage (V IN VIN (1.5V to 6V) 10µF C1 The AIC1660 is a monolithic CMOS switched Required for VIN ≤3V The AIC1660 provides performance superior to previous designs by combining low output impedance, low quiescent current with high VOUT=-VIN + 10µF C2 efficiency, and by eliminating diode drop voltage losses. The only required external components are two low cost electrolytic capacitors. Negative Voltage Converter Analog Integrations Corporation 4F, 9, Industry E. 9th Rd, Science Based Industrial Park, Hsinchu Taiwan, ROC DS-1660T-P4 TEL: 886-3-5772500 Oct. 4, 01 FAX: 886-3-5772510 www.analog.com.tw 1 AIC1660 n ORDERING INFORMATION AIC1660 CX ORDER NUMBER PIN CONFIGURATION TOP VIEW PACKAGE TYPE N: PLASTIC DIP S: SMALL OUTLINE AIC1660CN (PLASTIC DIP) BOOST 8 VIN 1 7 OSC CAP+ 2 AIC1660CS (PLASTIC SO) GND 3 6 LV CAP- 4 5 VOUT n ABSOLUTE MAXIMUM RATINGS Supply Voltage .............… … … … … … ............… … … … … … … … ....................................................... 6.0V Input Voltage on Pin 1, 6 and 7 ...… … … … … ..........................… … … … … … … ............. -0.3V ~VIN + 0.3V Operating Temperature Range ........… … … … ................… … … … … … .… … .......… … ........... -40°C~+85°C Storage Temperature Range..........… … … … ...................… … … … … … … … ........................ -65°C~150°C n TEST CIRCUIT 10µF + C1 IS VIN 8 1 BOOST 2 CAP+ 3 AIC1660 LV GND 4 CAP- VIN IL OSC 7 COSC External Oscillator RL 6 VOUT 5 VOUT C2 10µF + 2 AIC1660 n ELECTRICAL CHARACTERISTICS (VIN=5.0V, TA=25°C, OSC=free running, unless otherwise specified.) PARAMETER TEST CONDITIONS SYMBOL Supply Current RL = ∞ IS Minimum Supply Voltage RL = ∞ VINL Maximum Supply Voltage RL = ∞ VINH Output Resistance IL =20mA, ROUT MIN TYP MAX UNIT 36 70 µA 1.5 V 35 6 V 70 Ω FOSC =10KHz Oscillator Frequency FOSC Pin 1 Floating or GND 10 Pin 1=VIN 50 Power Efficiency RL= 5K, FOSC =10KHz Voltage Conversion Efficiency RL = ∞ KHz PEFF 96 98 % VOUTEFF 98 99.9 % TYPICAL PERFORMANCE CHARACTERISTICS (TA=25°C) 100 Power Efficiency (%) 50 Supply Current (µA) n COSC =0 40 30 20 10 90 80 70 60 0 1 2 3 4 5 6 Supply Voltage (V) Fig. 1 Supply Current vs. Supply Voltage 50 0 10 20 30 40 50 60 70 80 Load Current (mA) Fig. 2 Power Efficiency vs. Load Current 3 AIC1660 TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 2 Output Voltage (V) Output Voltage (V) -5 -4 -3 1 0 -1 -2 -2 -10 0 10 20 30 40 50 60 70 0 80 Oscillation Frequency, FOSC (KHz) Oscillation Frequency, FOSC (KHz) 60 50 40 BOOST MODE 30 20 10 5 1 2 3 4 5 6 2 4 6 8 10 12 14 16 Load Current (mA) Fig. 4 Power Efficiency vs. Load Current (VIN=2V) Load Current (mA) Fig. 3 Output Voltage vs. Load Current 35 30 PIN 1=VIN 25 20 15 10 PIN 1=OPEN 5 0 10 100 1000 10000 Supply Voltage, VIN (V) External Capacitor (Pin 7 to GND), COSC (pF) Fig. 5 Oscillator Frequency vs. Supply Voltage Fig. 6 Oscillator Frequency vs Value of C OSC 450 400 Output Resistance ROUT (Ω) n C1=C2=100µF C1=C2=10µF C1=C2=1µF 300 200 100 0 0.1 1 10 100 Oscillation Frequency, FOSC (KHz) Fig. 7 Output Resistance vs. Oscillation Frequency 4 AIC1660 n BLOCK DIAGRAM VIN BOOST Oscillator ÷2 OSC Voltage Level Converter CAP+ LV VOUT CAPSubstrate Logic Network Voltage Regulator GND n PIN DESCRIPTIONS PIN 1: BOOST- The frequency of oscillator will be 5 times if boost pin is connected to VIN. PIN 6: LV - If VIN is below 3V, LV should be tied to GND. For VIN larger than 3V, LV can be floating. PIN 2: CAP+ - To be connected to the positive side of the flying capacitor. PIN 7: OSC - The frequency of oscillator can be lowered by the addition of an external capacitor to the OSC pin, or the oscillator may be over-driven by an external clock. PIN 8: VIN - Input supply. PIN 3: GND - Ground PIN 4: CAP- - To be connected to the negative side of flying capacitor. PIN 5: VOUT - Negative output voltage, typically connected to a 10µF capacitor. 5 AIC1660 n APPLICATION EXAMPLES VIN (1.5V to 6V) 10µF C1 1 8 2 7 AIC1660 + 3 6 4 5 VOUT =-VIN + Fig. 8 Fig. 8 shows a typical connection, which will provide a negative supply from an available positive supply without the need of any external diodes. The LV pin should be connect to ground for VIN≤3V, or may be “floated“ for VIN >3V Required for VIN≤3V 10µF C2 Negative Voltage Converter 1N4148 VIN (1.5V to 6V) IOUT R1 220Ω C1 10µF + 1 2 8 VOUT=2VIN + (3V to 12V) C2 10µF 7 AIC1660 3 6 4 5 Fig. 9 Fig. 9 shows a method of voltage doubling. Voltage doubling is achieved by simply rearranging the connection of the two external capacitors. An external 470KΩ resistor is required to ensure the oscillator will start. R2 470K Voltage Doubling (3 to 12V) VI N 10µF VOUT =VIN/2 ± 0.002% T MIN≤T A≤T MAX IL <100nA Fig. 10 + C1 + 1 8 2 7 AIC1660 3 6 4 5 C2 10 µF An ultra precision voltage divider is shown in Fig. 10. To achieve the 0.002% accuracy as indicated, the load current should be kept below 100nA. However, with a slight loss in accuracy, the load current can be increased. Required for VI N≤3V Ultra Precision Voltage Divider 6 AIC1660 n APPLICATION EXAMPLES (Continued) VBAT (6V) + 1 8 2 7 3 6 4 5 + C1 10µF VOUT= VBAT/2 (3.0V) A common need in many systems is to obtain (+) and ( - ) supplies from a single battery or power supply system. Where current requirements are Required for VBAT≤3V low, the circuit shown in Fig. 11 is a simple VOUT= -VBAT/2(-3V) solution. AIC1660 C2 10µ F + Output Common Fig. 11 Battery Splitter n PHYSICAL DIMENSIONS 8 LEAD PLASTIC SO (unit: mm) D H E e SYMBOL MIN MAX A 1.35 1.75 A1 0.10 0.25 B 0.33 0.51 C 0.19 0.25 D 4.80 5.00 E 3.80 4.00 e 1.27(TYP) A C A1 l B H 5.80 6.20 L 0.40 1.27 L 7 AIC1660 l 8 LEAD PLASTIC DIP (unit: mm) D E1 E A2 A1 C L eB b e SYMBOL MIN MAX A1 0.381 — A2 2.92 4.96 b 0.35 0.56 C 0.20 0.36 D 9.01 10.16 E 7.62 8.26 E1 6.09 7.12 e 2.54 (TYP) eB — 10.92 L 2.92 3.81 8