CS4270 24-Bit, 192 kHz Stereo Audio CODEC D/A Features A/D Features High Performance High Performance – – 105 dB Dynamic Range -95 dB THD+N – – Selectable Serial Audio Interface Formats – – – 105 dB Dynamic Range -95 dB THD+N Multi-bit Delta Sigma Conversion Left-Justified up to 24-bit I²S up to 24-bit Right-Justified 16-, and 24-Bit High-Pass Filter to remove DC Offsets Selectable Serial Audio Interface Formats – – Control Output for External Muting Left-Justified up to 24-bit I²S up to 24-bit On-Chip Digital De-Emphasis System Features Popguard Technology Direct Interface with Logic Levels 1.8 V to 5 V Multi-bit ∆Σ Conversion Internal Digital Loopback Digital Volume Control Stand-Alone or Control Port Functionality Single-Ended Analog Architecture Supports all Audio Sample Rates from 4 kHz to 216 kHz Control Port Supply 1.8 V to 5 V Reset Level Translator Hardware Mode or I2C/SPI Software Mode Control Data Internal Voltage Reference External Mute Control Volume Controls Serial Interface 2 Advance Product Information http://www.cirrus.com Analog Supply 3.3 V to 5 V Register/Hardware Configuration PCM Serial Audio Input PCM Serial Audio Output Digital Supply 3.3 V to 5 V 2 Digital Filters High-Pass Filter Multi-bit ∆Σ Modulators Digital Filters Switch-Cap DAC and Analog Filters Switch-Cap ADC 2 2 2 Mute Signals Single-Ended Outputs Single-Ended Inputs This document contains information for a new product. Cirrus Logic reserves the right to modify this product without notice. Copyright © Cirrus Logic, Inc. 2005 (All Rights Reserved) MAY '05 DS686A1 CS4270 Stand-Alone Mode Feature Set General Description System Features – Serial Audio Port Master or Slave Operation – Single, Double, or Quad-Speed Operation The CS4270 is a high-performance, integrated audio CODEC. The CS4270 performs stereo analog-to-digital (A/D) and digital-to-analog (D/A) conversion of up to 24-bit serial values at sample rates up to 216 kHz. D/A Features – Auto-mute on Static Samples – 44.1 kHz 50/15 µs De-emphasis Available – Selectable Serial Audio Interface Formats Left-Justified up to 24-bit I²S up to 24-bit Standard 50/15 µs de-emphasis is available for sampling rates of 44.1 kHz for compatibility with digital audio programs mastered using the 50/15 µs pre-emphasis technique. Integrated level translators allow easy interfacing between the CS4270 and other devices operating over a wide range of logic levels. A/D Features – High-Pass Filter – Selectable Serial Audio Interface Formats Left-Justified up to 24-bit I²S up to 24-bit Independently addressable high-pass filters are available for the right and left channel of the A/D. This allows the A/D to be used in a wide variety of applications where one audio channel and one DC measurement channel is desired. Software Mode Feature Set System Features – Serial Audio Port Master or Slave Operation – Internal Digital Loopback Available The CS4270’s wide dynamic range, negligible distortion, and low noise make it ideal for applications such as DVD-recorders, digital televisions, set top boxes, effects processors, and automotive audio systems. D/A Features – Selectable Auto-mute – 44.1-kHz De-emphasis Filters – Configurable Muting Controls – Volume Control – Selectable Serial Audio Interface Formats Left-Justified up to 24-bit I²S up to 24-bit Right Justified 16, and 24-bit A/D Features – Selectable High-Pass Filter or DC Offset Calibration – Selectable Serial Audio Interface Formats Left-Justified up to 24-bit I²S up to 24-bit ORDERING INFORMATION Product Description Package 24-Bit 192 kHz Stereo CS4270 24-TSSOP Audio CODEC 24-Bit 192 kHz Stereo CS4270 24-TSSOP Audio CODEC CDB4270 CS4270 Evaluation Board - 2 Pb-Free YES YES - Grade Temp Range Container Order # Rail CS4270-CZZ Commercial -10° to +85° C Tape & Reel CS4270-CZZR Rail CS4270-DZZ Commercial -40° to +85° C Tape & Reel CS4270-DZZR CDB4270 DS686A1 CS4270 TABLE OF CONTENTS 1. PIN DESCRIPTIONS - SOFTWARE MODE ............................................................................. 6 2. PIN DESCRIPTIONS - STAND-ALONE MODE ....................................................................... 7 3. CHARACTERISTICS AND SPECIFICATIONS ........................................................................ 8 SPECIFIED OPERATING CONDITIONS ................................................................................. 8 ABSOLUTE MAXIMUM RATINGS ........................................................................................... 8 THERMAL CHARACTERISTICS.............................................................................................. 8 DAC ANALOG CHARACTERISTICS (CS4270-CZZ)............................................................... 9 DAC ANALOG CHARACTERISTICS (CS4270-DZZ)............................................................... 9 DAC COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE................ 11 ADC ANALOG CHARACTERISTICS (CS4270-CZZ)............................................................. 12 ADC ANALOG CHARACTERISTICS (CS4270-DZZ)............................................................. 13 ADC ANALOG CHARACTERISTICS - ALL MODES ............................................................. 14 ADC DIGITAL FILTER CHARACTERISTICS ........................................................................ 14 DC ELECTRICAL CHARACTERISTICS ................................................................................ 15 DIGITAL CHARACTERISTICS............................................................................................... 16 SWITCHING CHARACTERISTICS - SERIAL AUDIO PORT................................................. 16 SWITCHING CHARACTERISTICS - I²C MODE CONTROL PORT....................................... 19 SWITCHING CHARACTERISTICS - SPI CONTROL PORT.................................................. 20 4. TYPICAL CONNECTION DIAGRAM ..................................................................................... 21 5. APPLICATIONS ..................................................................................................................... 22 5.1 Stand-Alone Mode ........................................................................................................... 22 5.1.1 Recommended Power-Up Sequence ................................................................. 22 5.1.2 Master/Slave Mode ............................................................................................. 22 5.1.3 System Clocking ................................................................................................. 22 5.1.4 Clock Ratio Selection .......................................................................................... 23 5.1.5 Interpolation Filter .............................................................................................. 23 5.1.6 High-Pass Filter .................................................................................................. 23 5.1.7 Mode Selection & De-Emphasis ......................................................................... 24 5.1.8 Serial Audio Interface Format Selection ............................................................. 24 5.2 Control Port Mode ........................................................................................................... 24 5.2.1 Recommended Power-Up Sequence - Access to Control Port Mode ................ 24 5.2.2 Master / Slave Mode Selection ........................................................................... 24 5.2.3 System Clocking ................................................................................................. 25 5.2.4 Clock Ratio Selection .......................................................................................... 25 5.2.5 Internal Digital Loopback .................................................................................... 26 5.2.6 Auto-Mute ........................................................................................................... 26 5.2.7 High-Pass Filter and DC Offset Calibration ........................................................ 26 5.2.8 De-Emphasis ...................................................................................................... 27 5.2.9 Oversampling Modes .......................................................................................... 27 5.3 De-Emphasis Filter .......................................................................................................... 27 5.4 Analog Connections ........................................................................................................ 28 5.4.1 Input Connections ............................................................................................... 28 5.4.2 Output Connections ............................................................................................ 29 5.5 Mute Control .................................................................................................................... 29 5.6 Synchronization of Multiple Devices ................................................................................ 30 5.7 Grounding and Power Supply Decoupling ....................................................................... 30 6. CONTROL PORT INTERFACE .............................................................................................. 31 6.1 SPI™ Mode ..................................................................................................................... 31 6.2 I²C Mode .......................................................................................................................... 32 7. REGISTER QUICK REFERENCE .......................................................................................... 33 8. REGISTER DESCRIPTION .................................................................................................... 34 8.1 Chip ID - Address 01h ..................................................................................................... 34 DS686A1 3 CS4270 8.2 Power Control - Address 02h .......................................................................................... 34 8.2.1 Freeze (Bit 7) ...................................................................................................... 34 8.2.2 PDN_ADC (Bit 5) ................................................................................................ 34 8.2.3 PDN_DAC (Bit 1) ................................................................................................ 34 8.2.4 Power Down (Bit 0) ............................................................................................. 34 8.3 Mode Control - Address 03h ............................................................................................ 35 8.3.1 ADC Functional Mode & Master / Slave Mode (Bits 5:4) .................................... 35 8.3.2 Ratio Select (Bits 3:1) ......................................................................................... 35 8.3.3 PopGuard Disable (Bit 0) .................................................................................... 35 8.4 ADC and DAC Control - Address 04h ............................................................................. 35 8.4.1 ADC HPF Freeze A (Bit 7) .................................................................................. 35 8.4.2 ADC HPF Freeze B (Bit 6) .................................................................................. 36 8.4.3 Digital Loopback (Bit 5) ....................................................................................... 36 8.4.4 DAC Digital Interface Format (Bits 4:3) ............................................................... 36 8.4.5 ADC Digital Interface Format (Bit 0) ................................................................... 36 8.5 Transition Control - Address 05h ..................................................................................... 37 8.5.1 DAC Single Volume (Bit 7) .................................................................................. 37 8.5.2 Soft Ramp or Zero Cross Enable (Bits 6:5) ........................................................ 37 8.5.3 Invert Signal Polarity (Bits 4:1) ............................................................................ 37 8.5.4 De-Emphasis Control (Bit 0) ............................................................................... 38 8.6 Mute Control - Address 06h ............................................................................................. 38 8.6.1 Auto-Mute (Bit 5) ................................................................................................. 38 8.6.2 ADC Channel A & B Mute (Bits 4:3) ................................................................... 38 8.6.3 Mute Polarity (Bit 2) ............................................................................................ 38 8.6.4 DAC Channel A & B Mute (Bits 1:0) ................................................................... 38 8.7 DAC Channel A Volume Control - Address 07h .............................................................. 39 8.8 DAC Channel B Volume Control - Address 08h .............................................................. 39 10. PACKAGE DIMENSIONS .................................................................................................... 41 11. APPENDIX ....................................................................................................................... 42 12. REVISION HISTORY ............................................................................................................ 48 LIST OF FIGURES Figure 1. Output Test Load ....................................................................................................................... 10 Figure 2. Maximum Loading ...................................................................................................................... 10 Figure 3. Master Mode Serial Audio Port Timing ...................................................................................... 17 Figure 4. Slave Mode Serial Audio Port Timing ........................................................................................ 17 Figure 5. Format 0, Left Justified up to 24-Bit Data .................................................................................. 18 Figure 6. Format 1, I²S up to 24-Bit Data .................................................................................................. 18 Figure 7. Format 2, Right Justified 16-Bit Data. (Available in Control Port Mode only) Format 3, Right Justified 24-Bit Data. (Available in Control Port Mode only) ............................................ 18 Figure 8. I²C Mode Control Port Timing .................................................................................................... 19 Figure 9. SPI Control Port Timing ............................................................................................................. 20 Figure 10. CS4270 Typical Connection Diagram ...................................................................................... 21 Figure 11. De-Emphasis Curve ................................................................................................................. 27 Figure 12. CS4270 Recommended Analog Input Network ....................................................................... 28 Figure 13. CS5344 Example Analog Input Network .................................................................................. 29 Figure 14. CS4270 Recommended Analog Output Filter .......................................................................... 29 Figure 15. Suggested Active-Low Mute Circuit ......................................................................................... 30 Figure 16. Control Port Timing, SPI mode ................................................................................................ 31 Figure 17. Control Port Timing, I²C Mode ................................................................................................. 32 Figure 18. De-Emphasis Curve ................................................................................................................. 38 Figure 19. DAC Single-Speed (fast) Stopband Rejection ......................................................................... 42 Figure 20. DAC Single-Speed (fast) Transition Band ............................................................................... 42 4 DS686A1 CS4270 Figure 21. DAC Single-Speed (fast) Transition Band (detail) ................................................................... 42 Figure 22. DAC Single-Speed (fast) Passband Ripple ............................................................................. 42 Figure 23. DAC Single-Speed (slow) Stopband Rejection ........................................................................ 42 Figure 24. DAC Single-Speed (slow) Transition Band .............................................................................. 42 Figure 25. DAC Single-Speed (slow) Transition Band (detail) .................................................................. 43 Figure 26. DAC Single-Speed (slow) Passband Ripple ............................................................................ 43 Figure 27. DAC Double-Speed (fast) Stopband Rejection ........................................................................ 43 Figure 28. DAC Double-Speed (fast) Transition Band .............................................................................. 43 Figure 29. DAC Double-Speed (fast) Transition Band (detail) .................................................................. 43 Figure 30. DAC Double-Speed (fast) Passband Ripple ............................................................................ 43 Figure 31. DAC Double-Speed (slow) Stopband Rejection ...................................................................... 44 Figure 32. DAC Double-Speed (slow) Transition Band ............................................................................. 44 Figure 33. DAC Double-Speed (slow) Transition Band (detail) ................................................................. 44 Figure 34. DAC Double-Speed (slow) Passband Ripple ........................................................................... 44 Figure 35. DAC Quad-Speed (fast) Stopband Rejection .......................................................................... 44 Figure 36. DAC Quad-Speed (fast) Transition Band ................................................................................. 44 Figure 37. DAC Quad-Speed (fast) Transition Band (detail) ..................................................................... 45 Figure 38. DAC Quad-Speed (fast) Passband Ripple ............................................................................... 45 Figure 39. DAC Quad-Speed (slow) Stopband Rejection ......................................................................... 45 Figure 40. DAC Quad-Speed (slow) Transition Band ............................................................................... 45 Figure 41. DAC Quad-Speed (slow) Transition Band (detail) ................................................................... 45 Figure 42. DAC Quad-Speed (slow) Passband Ripple ............................................................................. 45 Figure 43. ADC Single-Speed Mode Stopband Rejection ........................................................................ 46 Figure 44. ADC Single-Speed Mode Transition Band ............................................................................... 46 Figure 45. ADC Single-Speed Mode Transition Band (Detail) .................................................................. 46 Figure 46. ADC Single-Speed Mode Passband Ripple ............................................................................. 46 Figure 47. ADC Double-Speed Mode Stopband Rejection ....................................................................... 46 Figure 48. ADC Double-Speed Mode Transition Band ............................................................................. 46 Figure 49. ADC Double-Speed Mode Transition Band (Detail) ................................................................. 47 Figure 50. ADC Double-Speed Mode Passband Ripple ........................................................................... 47 Figure 51. ADC Quad-Speed Mode Stopband Rejection .......................................................................... 47 Figure 52. ADC Quad-Speed Mode Transition Band ................................................................................ 47 Figure 53. ADC Quad-Speed Mode Transition Band (Detail) ................................................................... 47 Figure 54. ADC Quad-Speed Mode Passband Ripple .............................................................................. 47 LIST OF TABLES Table 1. Speed Modes .............................................................................................................................. Table 2. Clock Ratios - Stand-Alone Mode ............................................................................................... Table 3. CS4270 Stand-Alone Mode Control............................................................................................ Table 4. Speed Modes .............................................................................................................................. Table 5. Clock Ratios - Control Port Mode................................................................................................ Table 6. Analog Input Design Parameters ................................................................................................ Table 7. Memory Address Pointer............................................................................................................. Table 8. Functional Mode Selection.......................................................................................................... Table 9. MCLK Divider Configuration........................................................................................................ Table 10. DAC Digital Interface Formats .................................................................................................. Table 11. ADC Digital Interface Formats .................................................................................................. Table 12. Soft Cross or Zero Cross Mode Selection................................................................................. Table 13. Digital Volume Control .............................................................................................................. DS686A1 22 23 24 25 25 28 32 35 35 36 36 37 39 5 CS4270 1. PIN DESCRIPTIONS - SOFTWARE MODE SDIN LRCK MCLK SCLK VD DGND SDOUT VLC SDA/CDOUT SCL/CCLK AD0/CS AD1/CDIN Pin Name # 1 24 2 23 3 22 4 21 5 20 6 19 7 18 8 17 9 16 10 15 11 14 12 13 MUTEB AOUTB AOUTA MUTEA AGND VA FILT+ VQ AINB AINA RST AD2 Pin Description SDIN 1 Serial Audio Data Input (Input) - Input for two’s complement serial audio data. LRCK 2 Left Right Clock (Input/Output) - Determines which channel, Left or Right, is currently active on the serial audio data line. MCLK 3 Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters. SCLK 4 Serial Clock (Input/Output) - Serial clock for the serial audio interface. VD 5 Digital Power (Input) - Positive power supply for the digital section. DGND 6 Digital Ground (Input) - Ground reference for the internal digital section. SDOUT 7 Serial Audio Data Output (Output) - Output for two’s complement serial audio data. VLC 8 Control Port Power (Input) - Determines the signal level for the control port. SDA/CDOUT 9 Serial Control Data (Input/Output) - SDA is a data I/O in I²C mode. CDOUT is the output data line for the control port interface in SPI mode. SCL/CCLK 10 Serial Control Port Clock (Input) - Serial clock for the serial control port. AD0/CS 11 Address Bit 0 (I²C) / Control Port Chip Select (SPI) (Input) - AD0 is a chip address pin in I²C mode. CS is the chip select signal for SPI format. AD1/CDIN 12 Address Bit 1 (I²C) / Serial Control Data (Input) - AD1 is a chip address pin in I²C mode. CDIN is the input data line for the control port interface in SPI mode. AD2 13 Address Bit 2 (I²C) (Input) - AD2 is a chip address pin in I²C mode. RST 14 Reset (Input) - The device enters a low power mode when low. AINA AINB 15 16 Analog Input (Input) - The full-scale analog input level is specified in the ADC Analog Characteristics specification table. VQ 17 Quiescent Voltage (Output) - Filter connection for internal quiescent voltage. FILT+ 18 Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling circuits. VA 19 Analog Power (Input) - Positive power for the analog sections. AGND 20 Analog Ground (Input) - Ground reference. Must be connected to analog ground. MUTEA MUTEB 21 24 Mute Control (Output) - Each pin is active during power-up initialization, reset, muting, when master clock to left/right clock frequency ratio is incorrect, or power-down. AOUTA AOUTB 22 23 Analog Audio Output (Output) - The full-scale output level is specified in the DAC Analog Characteristics specification table. 6 DS686A1 CS4270 2. PIN DESCRIPTIONS - STAND-ALONE MODE SDIN LRCK MCLK SCLK VD DGND SDOUT VLC M1 M0 I²S/LJ MDIV1 Pin Name SDIN # 1 24 2 23 3 22 4 21 5 20 6 19 7 18 8 17 9 16 10 15 11 14 12 13 MUTEB AOUTB AOUTA MUTEA AGND VA FILT+ VQ AINB AINA RST MDIV2 Pin Description 1 Serial Audio Data Input (Input) - Input for two’s complement serial audio data. LRCK 2 Left Right Clock (Input/Output) - Determines which channel, Left or Right, is currently active on the serial audio data line. MCLK 3 Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters. SCLK 4 Serial Clock (Input/Output) - Serial clock for the serial audio interface. VD 5 Digital Power (Input) - Positive power supply for the digital section. DGND 6 Digital Ground (Input) - Ground reference for the internal digital section. SDOUT (M/S) 7 Serial Audio Data Output (Output) - Output for two’s complement serial audio data. This pin must be pulled-up or pulled-down to select Master or Slave Mode. VLC 8 Control Port Power (Input) - Determines the signal level for the control port. M1 M0 9 10 Mode Selection (Input) - Determines the operational mode of the device. I²S/LJ 11 Serial Audio Interface Select (Input) - Selects either the left-justified orI²S format for the Serial Audio Interface. MDIV1 MDIV2 12 13 MCLK Divide (Input) - Configures MCLK divider to divide by 1, 1.5, 2, or 4. RST 14 Reset (Input) - The device enters a low power mode when low. AINA AINB 15 16 Analog Input (Input) - The full-scale analog input level is specified in the ADC Analog Characteristics specification table. VQ 17 Quiescent Voltage (Output) - Filter connection for internal quiescent voltage. FILT+ 18 Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling circuits. VA 19 Analog Power (Input) - Positive power for the analog sections. AGND 20 Analog Ground (Input) - Ground reference. Must be connected to analog ground. MUTEA MUTEB 21 24 Mute Control (Output) - Each pin is active during power-up initialization, reset, muting, when master clock to left/right clock frequency ratio is incorrect, or power-down. AOUTA AOUTB 22 23 Analog Audio Output (Output) - The full-scale output level is specified in the DAC Analog Characteristics specification table. DS686A1 7 CS4270 3. CHARACTERISTICS AND SPECIFICATIONS (All Min/Max characteristics and specifications are guaranteed over the Specified Operating Conditions. Typical performance characteristics and specifications are derived from measurements taken at nominal supply voltages and TA = 25°C.) SPECIFIED OPERATING CONDITIONS (AGND = 0 V; all voltages with respect to ground.) Parameters Analog Digital Control Port Interface Ambient Operating Temperature (Power Applied) (-CZZ) (-DZZ) DC Power Supplies: Symbol VA VD VLC TA-CZZ TA-DZZ Min 3.1 3.1 1.7 -10 -40 Nom 5.0 3.3 3.3 - Max 5.25 5.25 5.25 +70 +85 Units V V V °C °C ABSOLUTE MAXIMUM RATINGS (AGND = DGND = 0 V, All voltages with respect to ground.) (Note 1) Parameter Symbol Min Typ Max Units Analog Digital Control Port Interface (Note 2) VA VD VLC -0.3 -0.3 -0.3 - +6.0 +6.0 +6.0 V V V Iin -10 - +10 mA VIN AGND-0.7 - VA+0.7 V Control Port Interface Digital Interface VIND-C VIND-D -0.3 -0.3 - VLC+0.3 VD+0.3 V V Ambient Operating Temperature (Power Applied) TAC -50 - +95 °C Storage Temperature Tstg -65 - +150 °C DC Power Supplies: Input Current Analog Input Voltage Digital Input Voltage Notes: 1. Operation beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. 2. Any pin except supplies. Transient currents of up to ±100 mA on the analog input pins will not cause SRC latch-up. THERMAL CHARACTERISTICS Parameters Symbol Min - Typ - Max 135 Units °C θJA-TM θJA-SM θJA-TS θJA-SS - 70 60 105 80 - °C/W °C/W °C/W °C/W Allowable Junction Temperature Junction to Ambient Thermal Impedance (Note 3) (Multi-layer PCB) TSSOP (Multi-layer PCB) SOIC (Single-layer PCB) TSSOP (Single-layer PCB) SOIC 3. θJA is specified according to JEDEC specifications for multi-layer PCBs. 8 DS686A1 CS4270 DAC ANALOG CHARACTERISTICS (CS4270-CZZ) (Full-Scale Output Sine Wave, 997 Hz (Note 4), Fs = 48/96/192 kHz; Test load RL = 3 kΩ, CL = 10 pF (see Figure 1). Measurement Bandwidth 10 Hz to 20 kHz, unless otherwise specified.) VA = 5V Parameter Dynamic Range 18 to 24-Bit A-weighted 16-Bit Total Harmonic Distortion + Noise 18 to 24-Bit 16-Bit unweighted A-weighted unweighted 0 dB -20 dB -60 dB 0 dB -20 dB -60 dB VA = 3.3V Min Typ Max Min Typ Max Unit 99 96 90 87 105 102 96 93 - 97 94 90 87 103 100 96 93 - dB dB dB dB - -95 -82 -42 -93 -73 -33 -89 -76 -36 -87 -67 -27 - -95 -80 -40 -93 -73 -33 -89 -74 -34 -87 -67 -27 dB dB dB dB dB dB DAC ANALOG CHARACTERISTICS (CS4270-DZZ) (Full-Scale Output Sine Wave, 997 Hz (Note 4), Fs = 48/96/192 kHz; Test load RL = 3 kΩ, CL = 10 pF (see Figure 1). Measurement Bandwidth 10 Hz to 20 kHz, unless otherwise specified.) VA = 5V Parameter Dynamic Range 18 to 24-Bit A-weighted 16-Bit Total Harmonic Distortion + Noise 18 to 24-Bit 16-Bit unweighted A-weighted unweighted 0 dB -20 dB -60 dB 0 dB -20 dB -60 dB VA = 3.3V Min Typ Max Min Typ Max Unit 95 92 86 83 105 102 96 93 - 93 90 86 83 103 100 96 93 - dB dB dB dB - -95 -82 -42 -93 -73 -33 -85 -72 -32 -83 -63 -23 - -95 -80 -40 -93 -73 -33 -85 -70 -30 -83 -63 -23 dB dB dB dB dB dB 4. One-half LSB of triangular PDF dither added to data. DS686A1 9 CS4270 DAC ANALOG CHARACTERISTICS - ALL MODES Parameter Symbol (1 kHz) Interchannel Isolation Min Typ Max Unit - 100 - dB - 0.1 0.25 dB +100 ppm/°C DC Accuracy Interchannel Gain Mismatch -100 Gain Drift Analog Output 0.640•VA 0.688•VA 0.739•VA Vpp IOUTmax - 10 - µA Max AC-Load Resistance (see Figure 2) RL - 3 - kΩ Max Load Capacitance (see Figure 2) CL - 100 - pF ZOUT - 100 - Ω Full Scale Output Voltage Max DC Current draw from AOUTA or AOUTB Output Impedance of AOUTA and AOUTB 125 V out AOUTx R L AGND C L Capacitive Load -- C (pF) L 3.3 µF 100 75 25 2.5 3 Figure 1. Output Test Load 10 Safe Operating Region 50 5 10 15 20 Resistive Load -- RL (kΩ ) Figure 2. Maximum Loading DS686A1 CS4270 DAC COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE (The filter characteristics have been normalized to the sample rate (Fs) and can be referenced to the desired sample rate by multiplying the given characteristic by Fs.) (See Note 5) Parameter Symbol Min Typ Max Unit 0 0 - .4780 .4996 Fs Fs -.01 - +.08 dB Single-Speed Mode Passband (Note 6) to -0.05 dB corner to -3 dB corner Frequency Response 10 Hz to 20 kHz .5465 - - Fs 50 - - dB - 10/Fs - s Fs = 32 kHz Fs = 44.1 kHz Fs = 48 kHz - - +1.5/+0 +.05/-.25 -.2/-.4 dB dB dB to -0.1 dB corner to -3 dB corner 0 0 - .4650 .4982 Fs Fs -.05 - +.2 dB .5770 - - Fs 55 - - dB - 5/Fs - s 0 0 - 0.397 0.476 Fs Fs StopBand StopBand Attenuation (Note 7) tgd Group Delay De-emphasis Error (Note 8) Double-Speed Mode Passband (Note 6) Frequency Response 10 Hz to 20 kHz StopBand StopBand Attenuation (Note 7) tgd Group Delay Quad-Speed Mode Passband (Note 6) to -0.1 dB corner to -3 dB corner Frequency Response 10 Hz to 20 kHz StopBand StopBand Attenuation (Note 7) Group Delay tgd 0 - +0.00004 dB 0.7 - - Fs 51 - - dB - 2.5/Fs - s 5. Amplitude vs. Frequency plots of this data are available in Section 11. “Appendix” on page 42. See Figures 19 through 42. 6. Response is clock dependent and will scale with Fs. 7. For Single-Speed Mode, the Measurement Bandwidth is 0.5465 Fs to 3 Fs. For Double-Speed Mode, the Measurement Bandwidth is 0.577 Fs to 1.4 Fs. For Quad-Speed Mode, the Measurement Bandwidth is 0.7 Fs to 1 Fs. 8. De-emphasis is available only in Single-Speed Mode. DS686A1 11 CS4270 ADC ANALOG CHARACTERISTICS (CS4270-CZZ) Measurement Bandwidth is 10 Hz to 20 kHz unless otherwise specified. Input is 1 kHz sine wave. VA = 5V Parameter Single-Speed Mode Symbol A-weighted unweighted Total Harmonic Distortion + Noise Dynamic Range Typ Max Min Typ Max Unit 99 96 105 102 - 96 93 102 99 - dB dB - -98 -82 -42 -92 - - -95 -79 -39 -89 - dB dB dB 99 96 - 105 102 99 - 96 93 - 102 99 96 - dB dB dB - -98 -82 -42 -95 -92 - - -95 -79 -39 -87 -89 - dB dB dB dB 99 96 - 105 102 99 - 96 93 - 102 99 96 - dB dB dB - -98 -82 -42 -95 -92 - - -95 -79 -39 -87 -89 - dB dB dB dB THD+N Fs = 96 kHz Total Harmonic Distortion + Noise 40 kHz bandwidth Dynamic Range (Note 9) -1 dB -20 dB -60 dB A-weighted unweighted 40 kHz bandwidth unweighted Quad-Speed Mode Min Fs = 48 kHz Dynamic Range Double-Speed Mode VA = 3.3V (Note 9) -1 dB -20 dB -60 dB -1 dB THD+N Fs = 192 kHz A-weighted unweighted 40 kHz bandwidth unweighted Total Harmonic Distortion + Noise 40 kHz bandwidth (Note 9) -1 dB -20 dB -60 dB -1 dB THD+N 9. Referred to the typical full-scale input voltage. 12 DS686A1 CS4270 ADC ANALOG CHARACTERISTICS (CS4270-DZZ) Measurement Bandwidth is 10 Hz to 20 kHz unless otherwise specified. Input is 1 kHz sine wave. VA = 5V Parameter Single-Speed Mode Symbol A-weighted unweighted Total Harmonic Distortion + Noise Dynamic Range (Note 10) -1 dB -20 dB -60 dB Max Min Typ Max Unit 97 94 105 102 - 94 91 102 99 - dB dB - -98 -82 -42 -90 - - -95 -79 -39 -87 - dB dB dB 97 94 - 105 102 99 - 94 91 - 102 99 96 - dB dB dB - -98 -82 -42 -95 -90 - - -95 -79 -39 -87 -87 - dB dB dB dB 97 94 - 105 102 99 - 94 91 - 102 99 96 - dB dB dB - -98 -82 -42 -95 -90 - - -95 -79 -39 -87 -87 - dB dB dB dB THD+N A-weighted unweighted 40 kHz bandwidth unweighted 40 kHz bandwidth Dynamic Range Typ Fs = 96 kHz Total Harmonic Distortion + Noise Quad-Speed Mode Min Fs = 48 kHz Dynamic Range Double-Speed Mode VA = 3.3V (Note 10) -1 dB -20 dB -60 dB -1 dB THD+N Fs = 192 kHz A-weighted unweighted 40 kHz bandwidth unweighted Total Harmonic Distortion + Noise 40 kHz bandwidth (Note 10) -1 dB -20 dB -60 dB -1 dB THD+N 10. Referred to the typical full-scale input voltage. DS686A1 13 CS4270 ADC ANALOG CHARACTERISTICS - ALL MODES - 90 - dB - 0.1 - dB Gain Error -3 - 3 % Gain Drift -100 - +100 ppm/°C 0.54*V A 0.56*VA 0.58*V A Vpp - 300 - kΩ Interchannel Isolation DC Accuracy Interchannel Gain Mismatch Analog Input Characteristics Full-scale Input Voltage Input Impedance ADC DIGITAL FILTER CHARACTERISTICS (Note 11) (Measurement Bandwidth is 10 Hz to 20 kHz unless otherwise specified) Parameter Symbol Min Typ Max Unit (Note 12) 0 - 0.47 Fs -0.1 - 0.035 dB (Note 12) 0.58 - - Fs -95 - - dB - 12/Fs - s - - 0.0001 deg 0 - 0.45 Fs -0.1 - 0.035 dB Single-Speed Mode Passband (-0.1 dB) Passband Ripple Stopband Stopband Attenuation tgd Group Delay Interchannel Phase Deviation Double-Speed Mode Passband (-0.1 dB) (Note 12) Passband Ripple (Note 12) Stopband Stopband Attenuation tgd Group Delay Interchannel Phase Deviation 0.68 - - Fs -92 - - dB - 9/Fs - s - - 0.0001 deg 0 - 0.24 Fs -0.1 - 0.035 dB 0.78 - - Fs -97 - - dB - 5/Fs - s - - 0.0001 deg - 1 20 - Hz Hz - 10 - deg Quad-Speed Mode Passband (-0.1 dB) (Note 12) Passband Ripple (Note 12) Stopband Stopband Attenuation tgd Group Delay Interchannel Phase Deviation High-Pass Filter Characteristics Frequency Response Phase Deviation 14 -3.0 dB -0.13 dB (Note 13) @ 20 Hz (Note 13) DS686A1 CS4270 Parameter Symbol Min Typ Max Unit - 0 dB - Passband Ripple 5 10 /Fs Filter Settling Time s 11. Plots of this data are contained in Section 11. “Appendix” on page 42. See Figures 43 through 54. 12. The filter frequency response scales precisely with Fs. 13. Response shown is for Fs equal to 48 kHz. Filter characteristics scale with Fs. DC ELECTRICAL CHARACTERISTICS (TA = 25° C; AGND=DGND=0, all voltages with respect to ground; MLCK=12.288 MHz; Master Mode) Parameter Symbol Min Typ Max Unit VA = 5 V VA = 3.3 V VD, VLC = 5 V VD, VLC = 3.3 V IA IA ID ID - 31 27 29 20 40 35 38 29 mA mA mA mA VA = 5 V VD, VLC = 5 V IA ID - 1.51 0.45 - mA mA Normal Operation VA = 5 V, VD = VLC = 5 V Normal Operation Power-Down Mode (Note 14) - - 221 255 9.8 296 323 mW mW mW PSRR - 60 - dB Power Supply Power Supply Current (Normal Operation) Power Supply Current (Power-Down Mode) (Note 14) Power Consumption VA = 5 V, VD = VLC= 3.3 V Power Supply Rejection Ratio (1 kHz) (Note 15) Common Mode Voltage - VA/2 - VDC Maximum DC Current Source/Sink from VQ - 1 - µA VQ Output Impedance - 25 - kΩ Nominal Common Mode Voltage VQ Positive Voltage Reference - VA - VDC Maximum DC Current Source/Sink from FILT+ - 10 - µA FILT+ Output Impedance - 18 - kΩ FILT+ Nominal Voltage FILT+ Mute Control MUTEA, MUTEB Low-Level Output Voltage - 0 - V MUTEA, MUTEB High-Level Output Voltage - VA - V Maximum MUTEA & MUTEB Drive Current - 3 - mA 14. Power Down Mode is defined as RST = Low with all clocks and data lines held static. 15. Valid with the recommended capacitor values on FILT+ and VQ as shown in the Typical Connection Diagram. DS686A1 15 CS4270 DIGITAL CHARACTERISTICS Symbol Min Typ Max Units High-Level Input Voltage Parameter (Note 16) Serial Port Control Port VIH 0.7xVD 0.7xVLC - - V V Low-Level Input Voltage Serial Port Control Port VIL - - 0.2xVD 0.2xVLC V V Serial Port Control Port MUTEA, MUTEB VOH VD - 1.0 VLC - 1.0 VA - 1.0 - - V V V VOL - - 0.4 V Iin -10 - 10 µA High-Level Output Voltage at Io = 2 mA Low-Level Output Voltage at Io = 2 mA Input Leakage Current 16. Serial Port signals include: SCLK, LRCK, SDOUT, SDIN Control Port signals include: SDA/CDOUT, SCL/CCLK, AD1/CDIN, AD0/CS, RST SWITCHING CHARACTERISTICS - SERIAL AUDIO PORT (Logic "0" = AGND = 0 V; Logic "1" = VD, CL = 20 pF) Parameter Sample Rate Single-Speed Mode Double-Speed Mode Quad-Speed Mode Symbol Min Typ Max Unit Fs Fs Fs 4 50 100 - 54 108 216 kHz kHz kHz fmclk fmclk 1.024 1.024 40 50 55.296 55.296 60 MHz MHz ns - 50 - % - 1 -----------------( 64 )Fs - s MCLK Specifications MCLK Frequency (Note 17) Stand-Alone Mode Control Port Mode MCLK Duty Cycle Master Mode LRCK Duty Cycle SCLK Period - 50 - % SCLK falling to LRCK edge tslr -10 - 10 ns SCLK falling to SDOUT valid tsdo - - 32 ns SDIN valid to SCLK rising setup time tsdis 16 - - ns SCLK rising to SDIN hold time tsdih 20 - - ns 40 50 60 % SCLK Duty Cycle Slave Mode LRCK Duty Cycle SCLK Period (Note 17) Single-Speed Mode tsclkw 1 --------------------( 128 )Fs - - s Double-Speed Mode tsclkw 1 --------------------( 128 )Fs - - s Quad-Speed Mode tsclkw 1 -----------------( 64 )Fs - - s 45 -10 50 - 55 10 ns ns SCLK Duty Cycle SCLK falling to LRCK edge 16 tslr DS686A1 CS4270 SCLK falling to SDOUT valid tsdo - - 32 ns SDIN valid to SCLK rising setup time tsdis 16 - - ns SCLK rising to SDIN hold time tsdih 20 - - ns 17. In Control Port Mode, MCLK Frequency and Functional Mode Select bits must be configured according to Table 5, Table 9, and Table 8 LRCK O utput t slr SCLK O utput t sdo SDO UT t t sdis sdih SDIN Figure 3. Master Mode Serial Audio Port Timing LRCK Input t slr SCLK Input t t sdo sclkw SDO UT t sdis t sdih SDIN Figure 4. Slave Mode Serial Audio Port Timing DS686A1 17 CS4270 Left Channel LRCK Right Channel SCLK SDATA MSB -1 -2 -3 -4 -5 +5 +4 +3 +2 +1 LSB MSB -1 -2 -3 -4 +5 +4 +3 +2 +1 LSB Figure 5. Format 0, Left Justified up to 24-Bit Data Left Channel LRCK Right Channel SCLK SDATA MSB -1 -2 -3 -4 -5 +5 +4 +3 +2 +1 LSB MSB -1 -2 -3 -4 +5 +4 +3 +2 +1 LSB Figure 6. Format 1, I²S up to 24-Bit Data LRCK R ight Channel Left Channel SCLK SDATA LSB MSB-1 -2 -3 -4 -5 -6 +6 +5 +4 +3 +2 +1 LSB MSB -1 -2 -3 -4 -5 -6 +6 +5 +4 +3 +2 +1 LSB 32 clo cks Figure 7. Format 2, Right Justified 16-Bit Data. (Available in Control Port Mode only) Format 3, Right Justified 24-Bit Data. (Available in Control Port Mode only) 18 DS686A1 CS4270 SWITCHING CHARACTERISTICS - I²C MODE CONTROL PORT (Inputs: logic 0 = DGND, logic 1 = VLC) Parameter Symbol Min Max Unit SCL Clock Frequency fscl - 100 kHz RST Rising Edge to Start tirs 500 - ns Bus Free Time Between Transmissions tbuf 4.7 - µs Start Condition Hold Time (prior to first clock pulse) thdst 4.0 - µs Clock Low time tlow 4.7 - µs Clock High Time thigh 4.0 - µs Setup Time for Repeated Start Condition tsust 4.7 - µs I²C Mode (Note 18) thdd 0 - µs tsud 250 - ns Rise Time of Both SDA and SCL Lines tr - 1 µs Fall Time of Both SDA and SCL Lines tf - 300 ns tsusp 4.7 - µs SDA Hold Time from SCL Falling SDA Setup time to SCL Rising Setup Time for Stop Condition 18. Data must be held for sufficient time to bridge the 300 ns transition time of SCL. RST t irs Stop Repeated Start Start Stop SDA t buf t t high t hdst tf hdst t susp SCL t low t hdd t sud t sust tr Figure 8. I²C Mode Control Port Timing DS686A1 19 CS4270 SWITCHING CHARACTERISTICS - SPI CONTROL PORT (Inputs: logic 0 = DGND, logic 1 = VLC) Parameter Symbol Min Max Unit CCLK Clock Frequency fsclk - 6 MHz RST Rising Edge to CS Falling tsrs 500 - ns tspi 500 - ns CS High Time Between Transmissions tcsh 1.0 - µs CS Falling to CCLK Edge tcss 20 - ns CCLK Low Time tscl 82 - ns CCLK High Time tsch 82 - ns SPI Mode (Note 19) CCLK Edge to CS Falling tdsu 40 - ns CCLK Rising to DATA Hold Time (Note 20) tdh 15 - ns Rise Time of CCLK and CDIN (Note 21) tr2 - 100 ns Fall Time of CCLK and CDIN (Note 21) tf2 - 100 ns CDIN to CCLK Rising Setup Time 19. tspi only needed before first falling edge of CS after RST rising edge. tspi = 0 at all other times. 20. Data must be held for sufficient time to bridge the transition time of CCLK. 21. For FSCK < 1 MHz RST t srs CS t spi t css t scl t sch t csh CCLK t r2 t f2 CDIN t dsu t dh Figure 9. SPI Control Port Timing 20 DS686A1 CS4270 4. TYPICAL CONNECTION DIAGRAM +3.3 V to 5 V 1. 0.1 µF 1 µF 0.1 µF 1 µF 5.1 Ω 1. +3.3 V to 5 V 47 µF 2. VD VA FILT+ GND or VD 0.1 µF 47 kΩ AGND 1 µF 0.1 µF SDOUT (M/S) SDIN VQ Analog Input Network Audio Data Processor AINA AINB (see Figures 12 & 13) MCLK CS4270 Timing Logic & Clock SCLK LRCK AD2 (MDIV1) AD1 (MDIV2) Power Down and Mode Settings (Control Port) AD0 / CS (I2S/LJ) SDA / CDIN (M1) SCL / CCLK (M0) MUTEA AOUTA RST 3. 2 kΩ +1.8 V to 5 V AOUTB MUTEB 3. 2 kΩ Analog Conditioning & Mute (see Figures 14 & 15) VLC DGND 1. If using separate supplies for VA and VD, 5.1 Ω resistor not needed. See "Grounding and Power Supply Decoupling." 2. Use a 47 kΩ pull-down to select Master Mode or 47 kΩ pull-up to VD to select Slave Mode. See "Master/Slave Mode Selection." 3. Use pull-up resistors in Software Mode. In Hardware Mode, use pull-up or pull-down. See "Mode Selection & De-Emphasis." Figure 10. CS4270 Typical Connection Diagram DS686A1 21 CS4270 5. APPLICATIONS 5.1 Stand-Alone Mode 5.1.1 Recommended Power-Up Sequence Reliable power-up can be accomplished by keeping the device in reset until the power supplies, clocks and configuration pins are stable. It is also recommended that reset be enabled if the analog or digital supplies drop below the minimum specified operating voltages to prevent power glitch related issues. 5.1.2 Master/Slave Mode The CS4270 supports operation in either Master Mode or Slave Mode. In Master Mode, LRCK and SCLK are outputs and are synchronously generated on-chip. LRCK is equal to Fs and SCLK is equal to 64x Fs. In Slave Mode, LRCK and SCLK are inputs, requiring external generation that is synchronous to MCLK. It is recommended that SCLK be 48x or 64x Fs to maximize system performance. In Stand-Alone Mode, the CS4270 will enter Slave Mode when SDOUT (M/S) is pulled low through a 47 kΩ resistor. Master Mode may be accessed by placing a 47 kΩ pull-up to VD on the SDOUT (M/S) pin. Configuration of clock ratios in each of these modes is outlined in Table 2. 5.1.3 System Clocking The CS4270 will operate at sampling frequencies from 4 kHz to 216 kHz. This range is divided into three speed modes as shown in Table 1 . Mode Sampling Frequency Single-Speed 4-54 kHz Double-Speed 50-108 kHz Quad-Speed 100-216 kHz Table 1. Speed Modes 22 DS686A1 CS4270 5.1.4 Clock Ratio Selection Depending on whether the CS4270 is in Master or Slave Mode, different MCKL/LRCK and SCLK/LRCK ratios may be used. These ratios are shown in the Table 2. Master Mode Single-Speed Double-Speed Quad-Speed MCLK/LRCK SCLK/LRCK LRCK MDIV2 MDIV1 256 64 Fs 0 0 384 64 Fs 0 1 512 64 Fs 1 0 1024 64 Fs 1 1 128 64 Fs 0 0 192 64 Fs 0 1 256 64 Fs 1 0 512 64 Fs 1 1 64 64 Fs 0 0 96 64 Fs 0 1 128 64 Fs 1 0 256 64 Fs 1 1 MCLK/LRCK SCLK/LRCK LRCK MDIV2 MDIV1 256 32, 48, 64, 128 Fs 0 0 384 32, 48, 64, 96 Fs 0 1 512 32, 48, 64, 128 Fs 1 0 1024 32, 48, 64, 96 Fs 1 1 128 32, 48, 64 Fs 0 0 192 32, 48, 64 Fs 0 1 256 32, 48, 64 Fs 1 0 512 32, 48, 64 Fs 1 1 64 32, 48, 64 Fs 0 0 Slave Mode Single-Speed Double-Speed Quad-Speed 96 32, 48, 64 Fs 0 1 128 32, 48, 64 Fs 1 0 256 32, 48, 64 Fs 1 1 Table 2. Clock Ratios - Stand-Alone Mode 5.1.5 Interpolation Filter In Stand-Alone Mode, the fast roll-off interpolation filter is used. Filter specifications can be found in Section 3. Plots of the data are contained in Section 11. “Appendix” on page 42. 5.1.6 High-Pass Filter The operational amplifiers in the input circuitry driving the CS4270 may generate a small DC offset into the ADC. The CS4270 includes a high-pass filter after the decimator to remove any DC offset which could result in recording a DC level, possibly yielding "clicks" when switching between devices in a multichannel system. In Stand-Alone Mode, the high-pass filter continuously subtracts a measure of the DC offset from the output of the decimation filter This function cannot be disabled in Stand-Alone Mode. DS686A1 23 CS4270 5.1.7 Mode Selection & De-Emphasis The sample rate, Fs, can be adjusted from 4 kHz to 216 kHz and De-emphasis, optimized for 44.1 kHz, is available in Single-Speed Mode. In Stand-Alone Master Mode, the CS4270 must be set to the proper mode via the mode pins, M1 and M0. In Slave Mode, the CS4270 auto-detects Speed Mode and the M0 pin becomes De-emphasis select. Stand-alone definitions of the mode pins are shown in Table 3. Mode 1 Mode 0 Mode Sample Rate (Fs) De-Emphasis 0 0 Single-Speed Mode 4 kHz - 54 kHz Off 0 1 Single-Speed Mode 4 kHz - 54 kHz 44.1 kHz 1 0 Double-Speed Mode 50 kHz - 108 kHz Off 1 1 Quad-Speed Mode 100 kHz - 216 kHz Off Table 3. CS4270 Stand-Alone Mode Control 5.1.8 Serial Audio Interface Format Selection Either I²S or Left-Justified serial audio data format may be selected in Stand-Alone Mode. The selection will affect both the input and output format. Placing a 10 kΩ pull-up to VD on the I²S/LJ pin will select the I²S format, while placing a 10 kΩ pull-down to DGND on the I²S/LJ pin will select the left justified format. 5.2 Control Port Mode 5.2.1 Recommended Power-Up Sequence - Access to Control Port Mode 1. Pull RST low until the power supply, MCLK, and LRCK are stable. 2. Release RST. The control port will be accessible. 3. Initiate a SPI or I²C transaction as described in Section 6.1 or Section 6.2, respectively. 5.2.2 Master / Slave Mode Selection The CS4270 supports operation in either Master Mode or Slave Mode. In Master Mode, LRCK and SCLK are outputs and are synchronously generated on-chip. LRCK is equal to Fs and SCLK is equal to 64x Fs. In Slave Mode, LRCK and SCLK are inputs, requiring external generation that is synchronous to MCLK. It is recommended that SCLK be 48x or 64x Fs to maximize system performance. Configuration of clock ratios in each of these modes will be outlined in the Table 10 and Table 9. In Control Port Mode the CS4270 will default to Slave Mode. The user may change this default setting by changing the status of the M/S bits in the Functional Control Register (03h). 24 DS686A1 CS4270 5.2.3 System Clocking The CS4270 will operate at sampling frequencies from 4 kHz to 216 kHz. This range is divided into three speed modes as shown in Table 4. Mode Sampling Frequency Single-Speed 4-54 kHz Double-Speed 50-108 kHz Quad-Speed 100-216 kHz Table 4. Speed Modes 5.2.4 Clock Ratio Selection In Control Port Master Mode, the user must configure the mode bits (M0, M1, M2) to set the speed mode and select the appropriate clock ratios. Depending on whether the CS4270 is in Master or Slave Mode, different MCLK/LRCK and SCLK/LRCK ratios may be used. These ratios as well as the Control Port Register Bits are shown in Table 5, Table 9 and Section 8.3 on page 35. Master Mode Single-Speed Double-Speed Quad-Speed MCLK/LRCK SCLK/LRCK LRCK MCLK Freq<2> MCLK Freq<1> MCLK Freq<0> 256 64 Fs 0 0 0 384 64 Fs 0 0 1 512 64 Fs 0 1 0 768 64 Fs 0 1 1 1024 64 Fs 1 0 0 128 64 Fs 0 0 0 192 64 Fs 0 0 1 256 64 Fs 0 1 0 384 64 Fs 0 1 1 512 64 Fs 1 0 0 64 64 Fs 0 0 0 96 64 Fs 0 0 1 128 64 Fs 0 1 0 192 64 Fs 0 1 1 256 64 Fs 1 0 0 LRCK MCLK Freq<2> MCLK Freq<1> MCLK Freq<0> Slave Mode MCLK/LRCK Single-Speed SCLK/LRCK 256 32, 64, 128 Fs 0 0 0 384 32, 48, 64, 96, 128 Fs 0 0 1 512 32, 64, 128 Fs 0 1 0 768 32, 48, 64, 96, 128 Fs 0 1 1 1024 32, 64, 128 Fs 1 0 0 Table 5. Clock Ratios - Control Port Mode DS686A1 25 CS4270 Master Mode Double-Speed Quad-Speed 128 32, 48, 64 Fs 0 0 0 192 32, 48, 64 Fs 0 0 1 256 32, 48, 64 Fs 0 1 0 384 32, 48, 64 Fs 0 1 1 512 32, 64 Fs 1 0 0 64 32 Fs 0 0 0 96 48, 64 Fs 0 0 1 128 32, 64 Fs 0 1 0 192 48, 64 Fs 0 1 1 256 32, 64 Fs 1 0 0 Table 5. Clock Ratios - Control Port Mode (Continued) 5.2.5 Internal Digital Loopback In Control Port Mode, the CS4270 supports an internal digital loopback mode in which the output of the ADC is routed to the input of the DAC. This mode may be activated by setting the Digital Loopback bit in the ADC & DAC Ctrl register (04h). When this bit is set, the status of the DAC_DIF(4:3) bits in register 04h will be disregarded by the CS4270. Any changes made to the DAC_DIF(4:3) bits while the Digital Loopback bit is set will have no impact on operation until the Digital Loopback bit is released, at which time the Digital Interface Format of the DAC will operate according to the format selected in the DAC_DIF(4:3) bits. While the Digital Loopback bit is set, data will be present on the SDOUT pin in the format selected in the ADC_DIF(0) bit in register 04h. 5.2.6 Auto-Mute The Auto-Mute function is controlled by the status of the Auto Mute bit in the Mute register. When set, the DAC output will mute following the reception of 8192 consecutive audio samples of static 0 or -1. A single sample of non-static data will release the mute. Detection and muting are done independently for each channel. The common mode on the output will be retained and the Mute Control pin for that channel will become active during the mute period. The muting function is affected, similar to volume control changes, by the Soft and ZeroCross bits in the Transition and Control register. The Auto Mute bit is set by default. 5.2.7 High-Pass Filter and DC Offset Calibration The input circuitry driving the CS4270 may generate a small DC offset into the A/D converter. The CS4270 includes a high-pass filter after the decimator to remove any DC offset which could result in recording a DC level, possibly yielding "clicks" when switching between devices in a multichannel system. The high-pass filter continuously subtracts a measure of the DC offset from the output of the decimation filter. The high-pass filter can be enabled if the hpf_freeze bit is set during normal operation, the current value of the DC offset for the corresponding channel is frozen and this DC offset will continue to be subtracted from the conversion result. This feature makes it possible to perform a system DC offset calibration by: 1. Running the CS4270 with the high-pass filter enabled until the filter settles. See the Digital Filter Characteristics for filter settling time. 2. Disabling the high-pass filter and freezing the stored DC offset. A system calibration performed in this way will eliminate offsets anywhere in the signal path between the calibration point and the CS4270. 26 DS686A1 CS4270 5.2.8 De-Emphasis One de-emphasis mode is available via the Control Port and is optimized for 44.1 kHz sampling rate. 5.2.9 Oversampling Modes The CS4270 operates in one of three oversampling modes based on the input sample rate. Mode selection is determined by the FM_&_M/S_Mode[1:0] bits in the Functional Mode register (03h). Single-Speed mode supports input sample rates up to 54 kHz and uses a 128x oversampling ratio. Double-Speed mode supports input sample rates up to 108 kHz and uses an oversampling ratio of 64x. Quad-Speed mode supports input sample rates up to 216 kHz and uses an oversampling ratio of 32x. See Table 10 for Control Port Mode settings. 5.3 De-Emphasis Filter The CS4270 includes on-chip digital de-emphasis. Figure 11 shows the de-emphasis curve for Fs equal to 44.1 kHz. The frequency response of the de-emphasis curve will scale proportionally with changes in sample rate, Fs. Please see Section 5.1.7 for the desired de-emphasis control for Stand-Alone mode and Section 5.2.8 for control port mode. The de-emphasis feature is included to accommodate audio recordings that utilize 50/15 µs pre-emphasis equalization as a means of noise reduction. De-emphasis is only available in Single-Speed Mode. Gain dB T1=50 µs 0dB T2 = 15 µs -10dB F1 3.183 kHz F2 Frequency 10.61 kHz Figure 11. De-Emphasis Curve DS686A1 27 CS4270 5.4 Analog Connections 5.4.1 Input Connections The analog modulator samples the input at 6.144 MHz.The digital filter will reject signals within the stopband of the filter. However, there is no rejection for input signals which are multiples of the input sampling frequency (n × 6.144 MHz), where n=0,1,2,... Refer to Figure 12 which shows the recommended topology of the analog input network. The capacitor values chosen not only provide the appropriate filtering of noise at the modulator sampling frequency, but also act as a charge source for the internal sampling circuits. The use of capacitors which have a large voltage coefficient (such as general purpose ceramics) must be avoided since these can degrade signal linearity. Analog Input AINx 10 µF R1 R2 2200 pF CS4270 Figure 12. CS4270 Recommended Analog Input Network Three parameters determine the values of resistors R1 and R2 as shown in Figure 12: source impedance, attenuation, and input impedance. Source impedance is defined as the impedance as seen from the ADC looking back into the signal network. Analog performance is optimized for small source impedance and a source impedance above 2.5 kΩ results in degraded THD+N. The required attenuation factor depends on the magnitude of the input signal. The full-scale input voltage scales with VA; for VA = 5 V, the CS5344 full-scale input magnitude is 1 Vrms. R1 and R2 should be set such that an input signal greater than the full-scale input should be attenuated to the appropriate magnitude. Typical line-level voltage in audio applications is 2 Vrms, in which case R1 and R2 must combine to form an attenuation factor of 2, thus giving the CS5344 a 1 Vrms input. Input impedance is the impedance from the signal source to the ADC analog input pins. The target input impedance depends on the overall system specifications, but typical audio systems require an input impedance of 10 kΩ. Table 6 shows the input parameters and the associated design equations. Figure 13 illustrates an example configuration for a source impedance of 46 Ω, an attenuation factor of 1, and input impedance of 9.8 kΩ. Source Impedance ( R1 × R2 ) ------------------------R1 + R2 Attenuation Factor Input Impedance R2 ------------------R1 × R2 ( R1 + R2 ) Table 6. Analog Input Design Parameters 28 DS686A1 CS4270 Analog Input AINx 47 Ω 10 µF 9.76 kΩ 2200 pF CS4270 Figure 13. CS5344 Example Analog Input Network 5.4.2 Output Connections The analog output filter present in the CS4270 is a switched-capacitor filter followed by a continuous time low pass filter. Its response, combined with that of the digital interpolator, is given in Figures Figures 19 42. The recommended external analog circuitry is shown in Figure 14. 470Ω 3.3µF Analog Output AOUTx + C 10kΩ R ext CS4270 R ext C = + 470 4 πFs ( Rext 470 ) For best 20 kHz response Figure 14. CS4270 Recommended Analog Output Filter 5.5 Mute Control The Mute Control pins become active during power-up initialization, reset, muting, when the MCLK to LRCK ratio is incorrect, and during power-down. The MUTE pins are intended to be used as control for an external mute circuit in order to add off-chip mute capability. The CS4270 also features Auto-Mute, which is enabled by default. The Auto-Mute function causes the MUTE pin corresponding to an individual channel to activate following the reception of 8192 consecutive static-level audio samples on the respective channel. A single transition of data on the channel will cause the corresponding MUTE pin to deactivate. Use of the Mute Control function is not mandatory but recommended for designs requiring the absolute minimum in extraneous clicks and pops. Also, use of the Mute Control function can enable the system DS686A1 29 CS4270 designer to achieve idle channel noise/signal-to-noise ratios which are only limited by the external mute circuit. The MUTE pins are active-low. See Figure 15 for a suggested active-low mute circuit. +V EE AC Couple AOUTx 560 Ω LPF Audio Out 47 kΩ -V EE CS4270 +V A MMUN2111LT1 MUTEx 2 kΩ 10 kΩ -V EE Figure 15. Suggested Active-Low Mute Circuit 5.6 Synchronization of Multiple Devices In systems where multiple ADCs are required, care must be taken to achieve simultaneous sampling. To ensure synchronous sampling, the MCLK and LRCK must be the same for all of the CS4270’s in the system. If only one MCLK source is needed, one solution is to place one CS4270 in Master Mode, and slave all of the other CS4270’s to the one master. If multiple MCLK sources are needed, a possible solution would be to supply all clocks from the same external source and time the CS4270 reset with the inactive edge of MCLK. This will ensure that all converters begin sampling on the same clock edge. 5.7 Grounding and Power Supply Decoupling As with any high resolution converter, the CS4270 requires careful attention to power supply and grounding arrangements if its potential performance is to be realized. Figure 10 shows the recommended power arrangements, with VA and VD connected to clean supplies. VD, which powers the digital filter, may be run from the system digital supply (VD) or may be powered from the analog supply (VA) via a resistor. In this case, no additional devices should be powered from VD. Power supply decoupling capacitors should be as near to the CS4270 as possible, with the low value ceramic capacitor being the nearest. All signals, especially clocks, should be kept away from the VREF and VCOM pins in order to avoid unwanted coupling into the modulators. The VREF and VCOM decoupling capacitors, particularly the 0.1 µF, must be positioned to minimize the electrical path from VREF and AGND. The CDB4270 evaluation board demonstrates the optimum layout and power supply arrangements. To minimize digital noise, connect the CS4270 digital outputs only to CMOS inputs. 30 DS686A1 CS4270 6. CONTROL PORT INTERFACE The Control Port is used to load all the internal settings of the CS4270. The operation of the Control Port may be completely asynchronous to the audio sample rate. However, to avoid potential interference problems, the Control Port pins should remain static if no operation is required. The Control Port has 2 modes: SPI and I²C, with the CS4270 operating as a slave to control messages in both modes. If I²C operation is desired, AD0/CS should be tied to VLC or DGND. If the CS4270 ever detects a high to low transition on AD0/CS after power-up, SPI mode will be selected. Upon release of the RST pin, the CS4270 will wait approximately 10 ms before it begins its start-up sequence. The part defaults to Stand-Alone Mode, in which all operational modes are controlled as described in Section 5.1 on page 22. If the user initiates communication to the part through the SPI or I²C interface, the part enters Control-Port Mode and all operational modes are controlled by the Control Port registers. If system requirements do not allow writing to the control port immediately following the release of RST, the SDIN line should be held at logic “0” until the proper serial mode can be selected. 6.1 SPI™ Mode In SPI mode, CS is the CS4270 chip select signal, CCLK is the control port bit clock, CDIN is the input data line from the microcontroller and the chip address is 1001111. All control signals are inputs and data is clocked in on the rising edge of CCLK. Figure 16 shows the operation of the Control Port in SPI mode. To write to a register, bring CS low. The first 7 bits on CDIN form the chip address, and must be 1001111. The eighth bit is a read/write indicator (R/W), which must be low to write. The next 8 bits form the Memory Address Pointer (MAP), which is set to the address of the register that is to be updated. The next 8 bits are the data which will be placed into the register designated by the MAP. See Table 9 on page 35. CS CCLK CHIP ADDRESS CDIN 1001111 MAP R/W DATA MSB byte 1 LSB byte n MAP = Memory Address Pointer Figure 16. Control Port Timing, SPI mode The CS4270 has MAP auto increment capability, enabled by the INCR bit in the MAP. If INCR is 0, then the MAP will stay constant for successive writes. If INCR is set, then MAP will auto increment after each byte is written, allowing block writes to successive registers. DS686A1 31 CS4270 6.2 I²C Mode In I²C mode, SDA is a bi-directional data line. Data is clocked into and out of the part by the clock, SCL, with the clock to data relationship as shown in Figure 17. There is no CS pin. Pins AD0, AD1, and AD2 form the partial chip address and should be tied to VLC or DGND as required. The upper 4 bits of the 7-bit address field must be 1001. To communicate with the CS4270, the three lower bits of the chip address field should match the setting on the AD0, AD1, and AD2 pins. The eighth bit of the address byte is the R/W bit (high for a read, low for a write). The next byte is the Memory Address Pointer, MAP, which selects the register to be read or written. If the operation is a write, the MAP is then followed by the data to be written. If the operation is a read, then the contents of the register pointed to by the MAP will be output after the chip address. The CS4270 has MAP auto increment capability, enabled by the INCR bit in the MAP. If INCR is 0, then the MAP will stay constant for successive writes. If INCR is set, then MAP will auto increment after each byte is written, allowing block reads or writes of successive registers. Note 1 SDA 1001 ADDR AD2 - AD0 R/W ACK DATA 1-8 ACK DATA 1-8 ACK SCL Start Stop Note: If operation is a write, this byte contains the Memory Address Pointer, MAP. Figure 17. Control Port Timing, I²C Mode 7 INCR 0 6 Reserved 0 5 Reserved 0 4 3 Reserved MAP3 0 0 INCR - Auto MAP Increment Enable Default = ‘0’. 0 - Disabled 1 - Enabled 2 MAP2 0 1 MAP1 0 0 MAP0 0 MAP(3:0) - Memory Address Pointer Default = ‘0000’. Table 7. Memory Address Pointer 32 DS686A1 CS4270 7. REGISTER QUICK REFERENCE This table shows the register names and their associated default values. Addr Function 01h ID 02h Power Control 7 6 5 4 3 2 1 0 id<3> id<2> id<1> id<0> rev<3> rev<2> rev<1> rev<0> 1 1 0 0 0 0 0 1 Reserved Reserved Reserved PDN_DAC PDN 0 0 0 0 0 MCLK freq<2> MCLK freq<1> MCLK freq<0> PopGuard Disable Freeze 0 03h Funct Mode Reserved PDN_ADC 0 Reserved Reserved 0 0 04h Serial Format ADC HPF ADC HPF 05h Transition Control 06h Mute 07h Vol Ctrl AOUTA 08h Vol Ctrl AOUTB DS686A1 0 FM_&_M/S FM_&_M/S_ _Mode1 Mode0 1 1 0 0 0 0 Freeze A Freeze B Digital Loopback DAC_DIF1 DAC_DIF0 Reserved Reserved ADC_DIF0 0 0 0 0 0 0 0 0 DAC Single Vol soft_dac zc_dac Invert ADC ch B Invert DAC ch A De-Emph 0 1 1 0 0 0 0 0 Mute ADC SP ch B Mute ADC SP ch A Mute Polarity Mute DAC ch B Mute DAC ch A Reserved Reserved Auto Mute Invert ADC Invert DAC ch A ch B 0 0 1 0 0 0 0 0 dacA vol<7> dacA vol<6> dacA vol<5> dacA vol<4> dacA vol<3> dacA vol<2> dacA vol<1> dacA vol<0> 0 0 0 0 0 0 0 0 dacB vol<7> dacB vol<6> dacB vol<5> dacB vol<4> dacB vol<3> dacB vol<2> dacB vol<1> dacB vol<0> 0 0 0 0 0 0 0 0 33 CS4270 8. REGISTER DESCRIPTION ** All registers are read/write in I²C mode and SPI mode, unless otherwise noted** 8.1 Chip ID - Address 01h 7 id<3> 6 id<2> 5 id<1> 4 id<0> 3 rev<3> 2 rev<2> 1 rev<1> 0 rev<0> Function: This register is Read-Only. Bits 7 through 4 are the part number ID which is 1100b (01h) and the remaining bits (b3:b0) are for the chip revision. 8.2 Power Control - Address 02h 7 Freeze 6 Reserved 5 PDN_ADC 4 Reserved 3 Reserved 2 Reserved 1 PDN_DAC 0 PDN 8.2.1 Freeze (Bit 7) Function: This function allows modifications to be made to certain control port bits without the changes taking effect until the Freeze bit is disabled. To make multiple changes to these bits take effect simultaneously, set the Freeze bit, make all changes, then clear the Freeze bit. The bits affected by the Freeze function are listed below: – Register 05h (Bits 7:0) – Register 06h (Bits 7:0) – Register 07h (Bits 7:0) – Register 08h (Bits 7:0) 8.2.2 PDN_ADC (Bit 5) Function: The ADC portion of the device will enter a low-power state whenever this bit is set. 8.2.3 PDN_DAC (Bit 1) Function: The DAC portion of the device will enter a low-power state whenever this bit is set. 8.2.4 Power Down (Bit 0) Function: The device will enter a low-power state whenever this bit is set. The contents of the control registers are retained when the device is in power-down. 34 DS686A1 CS4270 8.3 Mode Control - Address 03h 7 6 Reserved Reserved 5 FM_&_M/S_ Mode1 4 3 2 1 FM_&_M/S_ MCLK freq<2> MCLK freq<1> MCLK freq<0> Mode0 0 PopGuard Disable 8.3.1 ADC Functional Mode & Master / Slave Mode (Bits 5:4) Function: In Control Port Master Mode, the user must configure the CS4270 Speed Mode with these bits. In Control Port Slave Mode, the CS4270 auto-detects speed mode. FM_&_M/S_ FM_&_M/S_ Mode1 Mode0 Mode 0 0 Single-Speed Mode: 4 to 54 kHz sample rates 0 1 Double-Speed Mode: 50 to 108 kHz sample rates 1 0 Quad-Speed Mode: 100 to 216 kHz sample rates 1 1 Slave Mode (default) Table 8. Functional Mode Selection 8.3.2 Ratio Select (Bits 3:1) Function: These bits are used to select the clocking ratios. MCLK freq<2> MCLK freq<1> MCLK freq<0> Mode 0 0 0 Divide by 1 (default) 0 0 1 Divide by 1.5 0 1 0 Divide by 2 0 1 1 Divide by 3 1 0 0 Divide by 4 Table 9. MCLK Divider Configuration 8.3.3 PopGuard Disable (Bit 0) Function: Disables PopGuard when set. PopGuard is enabled by default. 8.4 ADC and DAC Control - Address 04h 7 ADC HPF Freeze A 6 ADC HPF Freeze B 5 Digital Loopback 4 3 2 1 0 DAC_DIF1 DAC_DIF0 Reserved Reserved ADC_DIF0 8.4.1 ADC HPF Freeze A (Bit 7) Function: When this bit is set, the internal high-pass filter for the selected channel will be disabled.The current DC offset value will be frozen and continuously subtracted from the conversion result. Section 5.2.7 “HighPass Filter and DC Offset Calibration” on page 26. DS686A1 35 CS4270 8.4.2 ADC HPF Freeze B (Bit 6) Function: When this bit is set, the internal high-pass filter for the selected channel will be disabled.The current DC offset value will be frozen and continuously subtracted from the conversion result. Section 5.2.7 “HighPass Filter and DC Offset Calibration” on page 26. 8.4.3 Digital Loopback (Bit 5) Function: When this bit is set, an internal digital loopback from the ADC to the DAC will be enabled. Please refer to Section 5.2.5 “Internal Digital Loopback” on page 26. 8.4.4 DAC Digital Interface Format (Bits 4:3) Function: The DAC Digital Interface Format and the options are detailed in Table 10 and Figures 5 through 7. DAC_DIF1 DAC_DIF0 0 0 0 1 1 0 1 1 Description Left Justified, up to 24-bit data (default) I²S, up to 24-bit data Right Justified, 16-bit Data Right Justified, 24-bit Data Format 0 1 2 3 Figure 5 6 7 7 Table 10. DAC Digital Interface Formats 8.4.5 ADC Digital Interface Format (Bit 0) Function: The required relationship between LRCK, SCLK and SDOUT for the ADC is defined by the ADC Digital Interface Format. The options are detailed in Table 11 and may be seen in Figures 5 and 6. ADC_DIF Description Format Figure 0 Left Justified, up to 24-bit data (default) 0 5 1 I²S, up to 24-bit data 1 6 Table 11. ADC Digital Interface Formats 36 DS686A1 CS4270 8.5 Transition Control - Address 05h 7 DAC Single Volume 6 5 soft_dac zc_dac 4 invert ADC ch B 3 invert ADC ch A 2 invert DAC ch B 1 invert DAC ch A 0 De-emph 8.5.1 DAC Single Volume (Bit 7) Function: The AOUTA and AOUTB volume levels are independently controlled by the A and the B Channel Volume Control Bytes when this function is disabled. The volume on both AOUTA and AOUTB are determined by the A Channel Volume Control Byte (07h) and the B Channel Byte (08h) is ignored when this function is enabled. Volume and muting functions are affected by the Soft Ramp and ZeroCross functions below. 8.5.2 Soft Ramp or Zero Cross Enable (Bits 6:5) Function: Soft Ramp Enable Soft Ramp allows level changes, both muting and attenuation, to be implemented by incrementally ramping, in 1/8 dB steps, from the current level to the new level at a rate of 1 dB per 8 left/right clock periods. See Table 12 on page 37. Zero Cross Enable Zero Cross Enable dictates that signal level changes, either by attenuation changes or muting, will occur on a signal zero crossing to minimize audible artifacts. The requested level change will occur after a timeout period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample rate) if the signal does not encounter a zero crossing. The zero cross function is independently monitored and implemented for each channel. See Table 9 on page 35. Soft Ramp and Zero Cross Enable Soft Ramp and Zero Cross Enable dictate that signal level changes, either by attenuation changes or muting, will occur in 1/8 dB steps and be implemented on a signal zero crossing. The 1/8 dB level change will occur after a time-out period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample rate) if the signal does not encounter a zero crossing. The zero cross function is independently monitored and implemented for each channel. See Table 9 on page 35. Soft ZeroCross Mode 0 0 Changes to affect immediately 0 1 Zero Cross enabled 1 0 Soft Ramp enabled 1 1 Soft Ramp and Zero Cross enabled (default) Table 12. Soft Cross or Zero Cross Mode Selection 8.5.3 Invert Signal Polarity (Bits 4:1) Function: When set, this bit activates an inversion of the signal polarity for the appropriate channel. This is useful if a board layout error has occurred or in other situations where a 180 degree phase shift is desirable. DS686A1 37 CS4270 8.5.4 De-Emphasis Control (Bit 0) Function: Implementation of the standard 50/15 µs digital de-emphasis filter on the DAC output requires reconfiguration of the digital filter to maintain the proper filter response for 44.1 kHz sample rate. Figure 18 shows the filter response. NOTE: De-emphasis is available only in Single-Speed Mode. Gain dB T1=50 µs 0dB T2 = 15 µs -10dB F1 3.183 kHz F2 Frequency 10.61 kHz Figure 18. De-Emphasis Curve 8.6 Mute Control - Address 06h 7 6 5 Auto Mute 4 3 Mute ADC SP Mute ADC SP ch B ch A 2 mute polarity 1 0 Mute DAC SP Mute DAC SP ch B ch B 8.6.1 Auto-Mute (Bit 5) Function: When set, enables the Auto-Mute function. Section 5.2.6 “Auto-Mute” on page 26. 8.6.2 ADC Channel A & B Mute (Bits 4:3) Function: When this bit is set, the output of the ADC for the selected channel will be muted. 8.6.3 Mute Polarity (Bit 2) Function: The MUTEA and MUTEB pins (pins 24 and 21) are active low by default. When this bit is set, these pins are active high. 8.6.4 DAC Channel A & B Mute (Bits 1:0) Function: When this bit is set, the output of the DAC for the selected channel will be muted. 38 DS686A1 CS4270 8.7 DAC Channel A Volume Control - Address 07h 7 dacA vol<7> 6 dacA vol<6> 5 dacA vol<5> 4 dacA vol<4> 3 dacA vol<3> 2 dacA vol<2> 1 dacA vol<1> 0 dacA vol<0> 2 dacB vol<2> 1 dacB vol<1> 0 dacB vol<0> Function: See Section 8.8 DAC Channel B Volume Control - Address 08h. 8.8 DAC Channel B Volume Control - Address 08h 7 dacB vol<7> 6 dacB vol<6> 5 dacB vol<5> 4 dacB vol<4> 3 dacB vol<3> Function: The digital volume control allows the user to attenuate the signal in 0.5 dB increments from 0 to -127 dB. The vol<0> bit activates a 0.5 dB attenuation when set, and no attenuation when cleared. The Vol[7:1] bits activate attenuation equal to their decimal value (in dB). Example volume settings are decoded as shown in Table 13. The volume changes are implemented as dictated by the DACSoft and DACZeroCross bits in the Transition Control register (see Section 8.5.2). Binary Code Volume Setting 00000000 0 dB 00000001 -0.5 dB 00101000 -20 dB 00101001 -20.5 dB 11111110 -127 dB 11111111 -127.5 dB Table 13. Digital Volume Control DS686A1 39 CS4270 9. PARAMETER DEFINITIONS Dynamic Range The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified bandwidth. Dynamic Range is a signal-to-noise ratio measurement over the specified bandwidth made with a -60 dBFS signal. 60 dB is added to resulting measurement to refer the measurement to full-scale. This technique ensures that the distortion components are below the noise level and do not affect the measurement. This measurement technique has been accepted by the Audio Engineering Society, AES17-1991, and the Electronic Industries Association of Japan, EIAJ CP-307. Expressed in decibels. Total Harmonic Distortion + Noise The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels. Measured at -1 and -20 dBFS as suggested in AES17-1991 Annex A. Frequency Response A measure of the amplitude response variation from 10 Hz to 20 kHz relative to the amplitude response at 1 kHz. Units in decibels. Interchannel Isolation A measure of crosstalk between the left and right channels. Measured for each channel at the converter's output with no signal to the input under test and a full-scale signal applied to the other channel. Units in decibels. Interchannel Gain Mismatch The gain difference between left and right channels. Units in decibels. Gain Error The deviation from the nominal full-scale analog output for a full-scale digital input. Gain Drift The change in gain value with temperature. Units in ppm/°C. Offset Error The deviation of the mid-scale transition (111...111 to 000...000) from the ideal. Units in mV. 40 DS686A1 CS4270 10.PACKAGE DIMENSIONS 24L TSSOP (4.4 mm BODY) PACKAGE DRAWING N D E11 A2 E A ∝ e b2 SIDE VIEW A1 L END VIEW SEATING PLANE 1 2 3 TOP VIEW DIM MIN INCHES NOM A A1 A2 b D E E1 e L µ -0.002 0.03150 0.00748 0.378 BSC 0.248 0.169 -0.020 0° -0.004 0.035 0.0096 0.382 BSC 0.2519 0.1732 0.026 BSC 0.024 4° MAX 0.47 0.006 0.04 0.012 0.386 BSC 0.256 0.177 -0.029 8° MIN MILLIMETERS NOM NOTE MAX -0.05 0.80 0.19 9.60 BSC 6.30 4.30 -0.50 0° -0.10 0.90 0.245 9.70 BSC 6.40 4.40 0.65 BSC 0.60 4° 1.20 0.15 1.00 0.30 9.80 BSC 6.50 4.50 -0.75 8° 2,3 1 1 JEDEC #: MO-153 Controlling Dimension is Millimeters. Notes: 1. “D” and “E1” are reference datums and do not included mold flash or protrusions, but do include mold mismatch and are measured at the parting line, mold flash or protrusions shall not exceed 0.20 mm per side. 2. Dimension “b” does not include dambar protrusion/intrusion. Allowable dambar protrusion shall be 0.13 mm total in excess of “b” dimension at maximum material condition. Dambar intrusion shall not reduce dimension “b” by more than 0.07 mm at least material condition. 3. These dimensions apply to the flat section of the lead between 0.10 and 0.25 mm from lead tips. DS686A1 41 CS4270 11.APPENDIX 0 20 20 40 40 Amplitude (dB) Amplitude (dB) 0 60 60 80 80 100 100 120 120 0.4 0.5 0.6 0.7 0.8 Frequency(normalized to Fs) 0.9 1 0.4 Figure 19. DAC Single-Speed (fast) Stopband Rejection 0.42 0.44 0.46 0.48 0.5 0.52 Frequency(normalized to Fs) 0.54 0.56 0.58 0.6 Figure 20. DAC Single-Speed (fast) Transition Band 0.02 0 1 0.015 2 0.01 0.005 4 Amplitude (dB) Amplitude (dB) 3 5 6 0 0.005 7 0.01 8 0.015 9 10 0.45 0.46 0.47 0.48 0.49 0.5 0.51 Frequency(normalized to Fs) 0.52 0.53 0.54 0.02 0.55 Figure 21. DAC Single-Speed (fast) Transition Band (detail) 20 20 40 40 Amplitude (dB) Amplitude (dB) 0.1 0.15 0.2 0.25 0.3 Frequency(normalized to Fs) 0.35 0.4 0.45 0.5 0 60 80 60 80 100 100 0.4 0.5 0.6 0.7 0.8 Frequency(normalized to Fs) 0.9 1 Figure 23. DAC Single-Speed (slow) Stopband Rejection 42 0.05 Figure 22. DAC Single-Speed (fast) Passband Ripple 0 120 0 120 0.4 0.42 0.44 0.46 0.48 0.5 0.52 Frequency(normalized to Fs) 0.54 0.56 0.58 0.6 Figure 24. DAC Single-Speed (slow) Transition Band DS686A1 CS4270 0.02 0 1 0.015 2 0.01 3 Amplitude (dB) Amplitude (dB) 0.005 4 5 6 0 0.005 7 0.01 8 0.015 9 10 0.45 0.02 0.46 0.47 0.48 0.49 0.5 0.51 Frequency(normalized to Fs) 0.52 0.53 0.54 Figure 25. DAC Single-Speed (slow) Transition Band (detail) 0.1 0.15 0.2 0.25 0.3 Frequency(normalized to Fs) 0.35 0.4 0.45 0.5 0 20 20 40 40 Amplitude (dB) Amplitude (dB) 0.05 Figure 26. DAC Single-Speed (slow) Passband Ripple 0 60 60 80 80 100 100 120 0 0.55 120 0.4 0.5 0.6 0.7 0.8 Frequency(normalized to Fs) 0.9 1 0.4 Figure 27. DAC Double-Speed (fast) Stopband Rejection 0.42 0.44 0.46 0.48 0.5 0.52 Frequency(normalized to Fs) 0.54 0.56 0.58 0.6 Figure 28. DAC Double-Speed (fast) Transition Band 0 0.02 1 0.015 2 0.01 0.005 4 Amplitude (dB) Amplitude (dB) 3 5 6 0 0.005 7 0.01 8 0.015 9 10 0.45 0.46 0.47 0.48 0.49 0.5 0.51 Frequency(normalized to Fs) 0.52 0.53 0.54 0.55 Figure 29. DAC Double-Speed (fast) Transition Band (detail) DS686A1 0.02 0 0.05 0.1 0.15 0.2 0.25 0.3 Frequency(normalized to Fs) 0.35 0.4 0.45 0.5 Figure 30. DAC Double-Speed (fast) Passband Ripple 43 CS4270 0 20 20 40 40 Amplitude (dB) Amplitude (dB) 0 60 60 80 80 100 100 120 120 0.2 0.3 0.4 0.5 0.6 0.7 Frequency(normalized to Fs) 0.8 0.9 1 Figure 31. DAC Double-Speed (slow) Stopband Rejection 0.2 0.3 0.4 0.5 0.6 Frequency(normalized to Fs) 0.7 0.8 Figure 32. DAC Double-Speed (slow) Transition Band 0 0.02 1 0.015 2 0.01 0.005 4 Amplitude (dB) Amplitude (dB) 3 5 6 0 0.005 7 0.01 8 0.015 9 10 0.45 0.46 0.47 0.48 0.49 0.5 0.51 Frequency(normalized to Fs) 0.52 0.53 0.54 0.02 0.55 Figure 33. DAC Double-Speed (slow) Transition Band (detail) 40 40 Amplitude (dB) Amplitude (dB) 20 60 0.15 0.2 Frequency(normalized to Fs) 0.25 0.3 0.35 60 80 80 100 100 120 0.3 0.4 0.5 0.6 0.7 Frequency(normalized to Fs) 0.8 0.9 Figure 35. DAC Quad-Speed (fast) Stopband Rejection 44 0.1 0 20 0.2 0.05 Figure 34. DAC Double-Speed (slow) Passband Ripple 0 120 0 1 0.2 0.3 0.4 0.5 0.6 Frequency(normalized to Fs) 0.7 0.8 Figure 36. DAC Quad-Speed (fast) Transition Band DS686A1 CS4270 0.2 0 1 0.15 2 0.1 3 Amplitude (dB) Amplitude (dB) 0.05 4 5 6 0 0.05 7 0.1 8 0.15 9 10 0.45 0.2 0.46 0.47 0.48 0.49 0.5 0.51 Frequency(normalized to Fs) 0.52 0.53 0.54 0.55 0 Figure 37. DAC Quad-Speed (fast) Transition Band (detail) 0.05 0.1 0.15 Frequency(normalized to Fs) 0.2 0.25 Figure 38. DAC Quad-Speed (fast) Passband Ripple 0 0 20 40 40 Amplitude (dB) Amplitude (dB) 20 60 60 80 80 100 100 120 120 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Frequency(normalized to Fs) 0.8 0.9 1 Figure 39. DAC Quad-Speed (slow) Stopband Rejection 0.1 0.2 0.3 0.4 0.5 0.6 Frequency(normalized to Fs) 0.7 0.8 0.9 Figure 40. DAC Quad-Speed (slow) Transition Band 0.02 0 1 0.015 2 0.01 0.005 4 Amplitude (dB) Amplitude (dB) 3 5 6 0 0.005 7 0.01 8 0.015 9 10 0.45 0.46 0.47 0.48 0.49 0.5 0.51 Frequency(normalized to Fs) 0.52 0.53 0.54 0.55 Figure 41. DAC Quad-Speed (slow) Transition Band (detail) DS686A1 0.02 0 0.02 0.04 0.06 0.08 Frequency(normalized to Fs) 0.1 0.12 Figure 42. DAC Quad-Speed (slow) Passband Ripple 45 0 0 -10 -10 -20 -20 -30 -30 -40 -40 -50 -50 Amplitude (dB) Amplitude (dB) CS4270 -60 -70 -80 -60 -70 -80 -90 -90 -100 -100 -110 -110 -120 -120 -130 -130 -140 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 -140 0.40 1.0 Frequency (normalized to Fs) 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 Frequency (normalized to Fs) Figure 43. ADC Single-Speed Mode Stopband Rejection Figure 44. ADC Single-Speed Mode Transition Band 0.10 0 -1 0.08 -2 0.05 0.03 -4 Amplitude (dB) Amplitude (dB) -3 -5 -6 0.00 -0.03 -7 -0.05 -8 -9 -0.08 -10 0.45 0.46 0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55 Frequency (normalized to Fs) -0.10 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 Frequency (normalized to Fs) Figure 46. ADC Single-Speed Mode Passband Ripple 0 0 -10 -10 -20 -20 -30 -30 -40 -40 -50 -50 Amplitude (dB) Amplitude (dB) Figure 45. ADC Single-Speed Mode Transition Band (Detail) -60 -70 -80 -70 -80 -90 -90 -100 -100 -110 -110 -120 -120 -130 -130 -140 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Frequency (normalized to Fs) Figure 47. ADC Double-Speed Mode Stopband Rejection 46 -60 1.0 -140 0.40 0.43 0.45 0.48 0.50 0.53 0.55 0.58 0.60 0.63 0.65 0.68 0.70 Frequency (normalized to Fs) Figure 48. ADC Double-Speed Mode Transition Band DS686A1 CS4270 0.10 0 -1 0.08 -2 0.05 -3 0.03 Amplitude (dB) Amplitude (dB) -4 -5 -6 0.00 -0.03 -7 -0.05 -8 -9 -0.08 -10 0.40 0.43 0.45 0.48 0.50 0.53 -0.10 0.00 0.55 Frequency (normalized to Fs) 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 Frequency (normalized to Fs) Figure 49. ADC Double-Speed Mode Transition Band (Detail) Figure 50. ADC Double-Speed Mode Passband Ripple 0 0 -10 -10 -20 -20 -30 -30 -40 Amplitude (dB) Amplitude (dB) -40 -50 -60 -70 -50 -60 -70 -80 -80 -90 -90 -100 -100 -110 -110 -120 -130 -120 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.2 1.0 0.25 0.3 0 0.10 -1 0.08 -2 0.06 -3 0.04 -4 0.02 -5 -6 -0.04 -0.06 -9 -0.08 -10 0.25 0.3 0.35 0.4 0.45 0.5 0.55 Frequency (normalized to Fs) Figure 53. ADC Quad-Speed Mode Transition Band (Detail) DS686A1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.00 -8 0.2 0.45 -0.02 -7 0.15 0.4 Figure 52. ADC Quad-Speed Mode Transition Band Amplitude (dB) Amplitude (dB) Figure 51. ADC Quad-Speed Mode Stopband Rejection 0.1 0.35 Frequency (normalized to Fs) Frequency (normalized to Fs) 0.6 -0.10 0.00 0.05 0.10 0.15 0.20 0.25 Frequency (normalized to Fs) Figure 54. ADC Quad-Speed Mode Passband Ripple 47 CS4270 12.REVISION HISTORY Release A1 Date May 2005 Changes Initial Advance Release Contacting Cirrus Logic Support For all product questions and inquiries contact a Cirrus Logic Sales Representative. To find the one nearest to you go to www.cirrus.com IMPORTANT NOTICE "Advance" product information describes products that are in development and subject to development changes. Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES. Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners. SPI is a trademark of Motorola, Inc. 48 DS686A1