CIRRUS CS4384_08

CS4384
103 dB, 192 kHz 8-Channel D/A Converter
Features
Description
 Advanced Multi-bit Delta Sigma Architecture
The CS4384 is a complete 8-channel digital-to-analog
system. This D/A system includes digital de-emphasis,
half-dB step size volume control, ATAPI channel mixing, selectable fast and slow digital interpolation filters
followed by an oversampled, multi-bit delta sigma modulator which includes mismatch shaping technology that
eliminates distortion due to capacitor mismatch. Following this stage is a multi-element switched capacitor
stage and low-pass filter with single-ended analog
outputs.
 24-bit Conversion
 Automatic Detection of Sample Rates up to







C ontrol Port Supply = 1.8 V to 5 V
Hardware Mode or
I2C /SPI Software Mode
C ontrol Data
Reset
The CS4384 also has a proprietary DSD processor
which allows for volume control and 50 kHz on-chip filtering without an intermediate decimation stage. It also
offers an optional path for direct DSD conversion by directly using the multi-element switched capacitor array.
The CS4384 accepts PCM data at sample rates from
4 kHz to 216 kHz, DSD audio data, and delivers excellent sound quality. These features are ideal for multichannel audio systems including SACD players, A/V receivers, digital TV’s, mixing consoles, effects
processors, and sound cards.
This product is available in 48-pin LQFP package in
Commercial (-40°C to +85°C) temperature grade. See
“Ordering Information” on page 51 for complete details.
Digital Supply = 2.5 V
A nalog Supply = 5 V
Internal Voltage
Reference
Register/Hardware
C onfiguration
Serial A udio Port
Supply = 1.8 V to 5 V
PC M Serial
A udio Input
TDM Serial
A udio Input
DSD A udio
Input
http://www.cirrus.com
8
S e ria l Inte rfa ce

Le ve l T ra nsla tor

Le ve l T ra nsla tor

192 kHz
103 dB Dynamic Range
-88 dB THD+N
Single-Ended Output Architecture
Direct Stream Digital® (DSD™) Mode
– Non-Decimating Volume Control
– On-Chip 50 kHz Filter
– Matched PCM and DSD Analog Output
Levels
Compatible with Industry-Standard Time
Division Multiplexed (TDM) Serial Interface
Selectable Digital Filters
Volume Control with 1/2-dB Step Size and Soft
Ramp
Low Clock-Jitter Sensitivity
+5 V Analog Supply, +2.5 V Digital Supply
Separate 1.8 to 5 V Logic Supplies for the
Control and Serial Ports
Volume
C ontrols
Digital
F ilters
Multi-bit ∆Σ
Modulators
DSD Processor
-Volume control
-50 kHz filter
Copyright © Cirrus Logic, Inc. 2008
(All Rights Reserved)
Switch-C ap
DAC and
Analog F ilters
E xternal Mute
C ontrol
8
2
E ight C hannels
of Single-E nded
O utputs
Mute Signals
MAY '08
DS620F1
CS4384
TABLE OF CONTENTS
1. PIN DESCRIPTION................................................................................................................................. 6
2. CHARACTERISTICS AND SPECIFICATIONS...................................................................................... 8
RECOMMENDED OPERATING CONDITIONS .......................................................................................... 8
ABSOLUTE MAXIMUM RATINGS............................................................................................................... 8
DAC ANALOG CHARACTERISTICS........................................................................................................... 9
POWER AND THERMAL CHARACTERISTICS........................................................................................ 10
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE............................................ 11
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE............................................ 12
DSD COMBINED DIGITAL & ON-CHIP ANALOG FILTER RESPONSE .................................................. 12
DIGITAL CHARACTERISTICS .................................................................................................................. 13
SWITCHING CHARACTERISTICS - PCM ................................................................................................ 14
SWITCHING CHARACTERISTICS - DSD................................................................................................. 15
SWITCHING CHARACTERISTICS - CONTROL PORT - I²C FORMAT.................................................... 16
SWITCHING CHARACTERISTICS - CONTROL PORT - SPI FORMAT................................................... 17
3. TYPICAL CONNECTION DIAGRAM ................................................................................................ 18
4. APPLICATIONS ................................................................................................................................... 20
4.1 Master Clock.................................................................................................................................. 20
4.2 Mode Select.................................................................................................................................. 21
4.3 Digital Interface Formats ............................................................................................................... 22
4.3.1 OLM #1 ................................................................................................................................ 23
4.3.2 OLM #2 ................................................................................................................................ 23
4.3.3 OLM #3 ................................................................................................................................ 24
4.3.4 OLM #4 ................................................................................................................................ 24
4.3.5 TDM ..................................................................................................................................... 24
4.4 Oversampling Modes..................................................................................................................... 25
4.5 Interpolation Filter .......................................................................................................................... 25
4.6 De-Emphasis ................................................................................................................................. 25
4.7 ATAPI Specification ....................................................................................................................... 26
4.8 Direct Stream Digital (DSD) Mode................................................................................................. 26
4.9 Grounding and Power Supply Arrangements ................................................................................ 27
4.9.1 Capacitor Placement............................................................................................................ 27
4.10 Analog Output and Filtering ......................................................................................................... 27
4.11 The MUTEC Outputs ................................................................................................................... 28
4.12 Recommended Power-Up Sequence .......................................................................................... 29
4.12.1 Hardware Mode.................................................................................................................. 29
4.12.2 Software Mode ................................................................................................................... 29
4.13 Recommended Procedure for Switching Operational Modes...................................................... 30
4.14 Control Port Interface .................................................................................................................. 30
4.14.1 MAP Auto Increment .......................................................................................................... 30
4.14.2 I²C Mode ............................................................................................................................ 30
4.14.3 SPI Mode ........................................................................................................................... 31
4.15 Memory Address Pointer (MAP) ................................................................................................. 32
4.15.1 INCR (Auto Map Increment Enable) .................................................................................. 32
4.15.2 MAP4-0 (Memory Address Pointer) ................................................................................... 32
5. REGISTER QUICK REFERENCE ....................................................................................................... 33
6. REGISTER DESCRIPTION .................................................................................................................. 35
6.1 Chip Revision (Address 01h) ......................................................................................................... 35
6.1.1 Part Number ID (PART) [Read Only] ................................................................................... 35
6.1.2 Revision ID (REV) [Read Only] ............................................................................................ 35
6.2 Mode Control 1 (Address 02h) ...................................................................................................... 35
6.2.1 Control Port Enable (CPEN) ................................................................................................ 35
6.2.2 Freeze Controls (FREEZE) .................................................................................................. 35
2
DS620F1
CS4384
6.2.3 PCM/DSD Selection (DSD/PCM)......................................................................................... 36
6.2.4 DAC Pair Disable (DACx_DIS) ............................................................................................ 36
6.2.5 Power Down (PDN).............................................................................................................. 36
6.3 PCM Control (Address 03h) .......................................................................................................... 36
6.3.1 Digital Interface Format (DIF)............................................................................................... 36
6.3.2 Functional Mode (FM) .......................................................................................................... 37
6.4 DSD Control (Address 04h) ........................................................................................................... 37
6.4.1 DSD Mode Digital Interface Format (DSD_DIF) .................................................................. 37
6.4.2 Direct DSD Conversion (DIR_DSD)..................................................................................... 38
6.4.3 Static DSD Detect (STATIC_DSD) ...................................................................................... 38
6.4.4 Invalid DSD Detect (INVALID_DSD).................................................................................... 38
6.4.5 DSD Phase Modulation Mode Select (DSD_PM_MODE).................................................... 38
6.4.6 DSD Phase Modulation Mode Enable (DSD_PM_EN) ........................................................ 38
6.5 Filter Control (Address 05h) .......................................................................................................... 39
6.5.1 Interpolation Filter Select (FILT_SEL).................................................................................. 39
6.6 Invert Control (Address 06h) ......................................................................................................... 39
6.6.1 Invert Signal Polarity (INV_xx) ............................................................................................. 39
6.7 Group Control (Address 07h) ........................................................................................................ 39
6.7.1 Mutec Pin Control (MUTEC) ................................................................................................ 39
6.7.2 Channel A Volume = Channel B Volume (Px_A=B)............................................................. 39
6.7.3 Single Volume Control (SNGLVOL) ..................................................................................... 40
6.8 Ramp and Mute (Address 08h) ..................................................................................................... 40
6.8.1 Soft Ramp and Zero Cross Control (SZC) ........................................................................... 40
6.8.2 Soft Volume Ramp-Up After Error (RMP_UP) ..................................................................... 41
6.8.3 Soft Ramp-Down Before Filter Mode Change (RMP_DN) ................................................... 41
6.8.4 PCM Auto-Mute (PAMUTE) ................................................................................................. 41
6.8.5 DSD Auto-Mute (DAMUTE) ................................................................................................. 41
6.8.6 MUTE Polarity and DETECT (MUTEP1:0)........................................................................... 41
6.9 Mute Control (Address 09h) .......................................................................................................... 42
6.9.1 Mute (MUTE_xx) .................................................................................................................. 42
6.10 Mixing Control (Address 0Ah, 0Dh, 10h, 13h) ............................................................................. 42
6.10.1 De-Emphasis Control (PX_DEM1:0).................................................................................. 42
6.10.2 ATAPI Channel Mixing and Muting (ATAPI) ...................................................................... 43
6.11 Volume Control (Address 0Bh, 0Ch, 0Eh, 0Fh, 11h, 12h, 14h, 15h)........................................... 44
6.11.1 Digital Volume Control (xx_VOL7:0) .................................................................................. 44
6.12 PCM Clock Mode (Address 16h) ................................................................................................. 44
6.12.1 Master Clock Divide by 2 Enable (MCLKDIV).................................................................... 44
7. FILTER RESPONSE PLOTS ............................................................................................................... 45
8. REFERENCES...................................................................................................................................... 49
9. PARAMETER DEFINITIONS................................................................................................................ 49
10. PACKAGE DIMENSIONS .................................................................................................................. 50
11. ORDERING INFORMATION .............................................................................................................. 51
12. REVISION HISTORY ......................................................................................................................... 51
DS620F1
3
CS4384
LIST OF FIGURES
Figure 1. Serial Audio Interface Timing...................................................................................................... 14
Figure 2. TDM Serial Audio Interface Timing ............................................................................................. 14
Figure 3. Direct Stream Digital - Serial Audio Input Timing........................................................................ 15
Figure 4. Direct Stream Digital - Serial Audio Input Timing for Phase Modulation Mode........................... 15
Figure 5. Control Port Timing - I²C Format................................................................................................. 16
Figure 6. Control Port Timing - SPI Format................................................................................................ 17
Figure 7. Typical Connection Diagram, Software Mode............................................................................. 18
Figure 8. Typical Connection Diagram, Hardware Mode ........................................................................... 19
Figure 9. Format 0 - Left-Justified up to 24-bit Data .................................................................................. 22
Figure 10. Format 1 - I²S up to 24-bit Data ................................................................................................ 22
Figure 11. Format 2 - Right-Justified 16-bit Data ....................................................................................... 22
Figure 12. Format 3 - Right-Justified 24-bit Data ....................................................................................... 22
Figure 13. Format 4 - Right-Justified 20-bit Data ....................................................................................... 22
Figure 14. Format 5 - Right-Justified 18-bit Data ....................................................................................... 23
Figure 15. Format 8 - One Line Mode 1..................................................................................................... 23
Figure 16. Format 9 - One Line Mode 2..................................................................................................... 23
Figure 17. Format 10 - One Line Mode 3................................................................................................... 24
Figure 18. Format 11 - One Line Mode 4................................................................................................... 24
Figure 19. Format 12 - TDM Mode............................................................................................................. 24
Figure 20. De-Emphasis Curve.................................................................................................................. 25
Figure 21. ATAPI Block Diagram (x = channel pair 1, 2, 3, or 4) ............................................................... 26
Figure 22. DSD Phase Modulation Mode Diagram .................................................................................... 27
Figure 23. Full-Scale Output ...................................................................................................................... 28
Figure 24. Recommended Output Filter..................................................................................................... 28
Figure 25. Recommended Mute Circuitry .................................................................................................. 29
Figure 26. Control Port Timing, I²C Mode .................................................................................................. 31
Figure 27. Control Port Timing, SPI Mode ................................................................................................. 32
Figure 28. Single-Speed (fast) Stopband Rejection................................................................................... 45
Figure 29. Single-Speed (fast) Transition Band ......................................................................................... 45
Figure 30. Single-Speed (fast) Transition Band (detail) ............................................................................. 45
Figure 31. Single-Speed (fast) Passband Ripple ....................................................................................... 45
Figure 32. Single-Speed (slow) Stopband Rejection ................................................................................. 45
Figure 33. Single-Speed (slow) Transition Band........................................................................................ 45
Figure 34. Single-Speed (slow) Transition Band (detail)............................................................................ 46
Figure 35. Single-Speed (slow) Passband Ripple...................................................................................... 46
Figure 36. Double-Speed (fast) Stopband Rejection ................................................................................. 46
Figure 37. Double-Speed (fast) Transition Band........................................................................................ 46
Figure 38. Double-Speed (fast) Transition Band (detail)............................................................................ 46
Figure 39. Double-Speed (fast) Passband Ripple...................................................................................... 46
Figure 40. Double-Speed (slow) Stopband Rejection ................................................................................ 47
Figure 41. Double-Speed (slow) Transition Band ...................................................................................... 47
Figure 42. Double-Speed (slow) Transition Band (detail) .......................................................................... 47
Figure 43. Double-Speed (slow) Passband Ripple .................................................................................... 47
Figure 44. Quad-Speed (fast) Stopband Rejection .................................................................................... 47
Figure 45. Quad-Speed (fast) Transition Band .......................................................................................... 47
Figure 46. Quad-Speed (fast) Transition Band (detail) .............................................................................. 48
Figure 47. Quad-Speed (fast) Passband Ripple ........................................................................................ 48
Figure 48. Quad-Speed (slow) Stopband Rejection................................................................................... 48
Figure 49. Quad-Speed (slow) Transition Band......................................................................................... 48
Figure 50. Quad-Speed (slow) Transition Band (detail)............................................................................. 48
Figure 51. Quad-Speed (slow) Passband Ripple....................................................................................... 48
4
DS620F1
CS4384
LIST OF TABLES
Table 1. Single-Speed Mode Standard Frequencies ................................................................................
Table 2. Double-Speed Mode Standard Frequencies...............................................................................
Table 3. Quad-Speed Mode Standard Frequencies .................................................................................
Table 4. PCM Digital Interface Format, Hardware Mode Options.............................................................
Table 5. Mode Selection, Hardware Mode Options ..................................................................................
Table 6. Direct Stream Digital (DSD), Hardware Mode Options ...............................................................
Table 7. Digital Interface Formats - PCM Mode........................................................................................
Table 8. Digital Interface Formats - DSD Mode ........................................................................................
Table 9. ATAPI Decode ............................................................................................................................
Table 10. Example Digital Volume Settings ..............................................................................................
DS620F1
20
20
20
21
21
21
37
37
43
44
5
CS4384
TST_OUT
AOUT2
AOUT1
TST_OUT
MUTEC1
DSD_SCLK
DSD8
VLS
DSD6
DSD7
DSD5
DSD4
1. PIN DESCRIPTION
48 47 46 45 44 43 42 41 40 39 38 37
DSD3
1
36
TST_OUT
DSD2
2
35
AOUT3
DSD1
3
4
34
33
AOUT4
VD
GND
5
32
MCLK
6
31
VA
GND
LRCK
7
30
TST_OUT
SDIN1
8
29
SCLK
9
28
AOUT5
AOUT6
TST_OUT
CS4384
TST_OUT
M4(TST)
10
27
SDIN2
M3(TST)
11
26
TST_OUT
12
25
AOUT7
#
AOUT8
TST_OUT
MUTEC2
VQ
RST
FILT+
VLC
M0(AD0/CS)
M1(SDA/CDIN)
M2(SCL/CCLK)
SDIN3
Pin Name
SDIN4
13 14 15 16 17 18 19 20 21 22 23 24
Pin Description
VD
4
Digital Power (Input) - Positive power supply for the digital section. Refer to the Recommended
Operating Conditions for appropriate voltages.
GND
5
31
Ground (Input) - Ground reference. Should be connected to analog ground.
MCLK
6
Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters. Table 1 illustrates several standard audio sample rates and the required master clock frequencies.
LRCK
7
Left Right Clock (Input) - Determines which channel, Left or Right, is currently active on the serial
audio data line. The frequency of the left/right clock must be at the audio sample rate, Fs.
SDIN1
SDIN2
SDIN3
SDIN4
8
11
13
14
Serial Data Input (Input) - Input for two’s complement serial audio data.
SCLK
9
Serial Clock (Input) - Serial clocks for the serial audio interface.
VLC
18
Control Port Power (Input) - Determines the required signal level for the control port and hardware mode configuration pins. Refer to the Recommended Operating Conditions for appropriate
voltages.
RST
19
Reset (Input) - The device enters a low power mode and all internal registers are reset to their
default settings when low.
FILT+
20
Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling circuits. Requires the capacitive decoupling to analog ground as shown in the Typical Connection
Diagram.
VQ
21
Quiescent Voltage (Output) - Filter connection for internal quiescent voltage.
MUTEC1
MUTEC234
41
22
Mute Control (Output) - These pins are intended to be used as a control for external mute circuits
on the line outputs to prevent the clicks and pops that can occur in any single supply system.
6
DS620F1
CS4384
#
Pin Description
AOUT1
AOUT2
AOUT3
AOUT4
AOUT5
AOUT6
AOUT7
AOUT8
Pin Name
39
38
35
34
29
28
25
24
Analog Output (Output) - The full scale analog output level is specified in the Analog Characteristics specification table.
VA
32
Analog Power (Input) - Positive power supply for the analog section. Refer to the Recommended
Operating Conditions for appropriate voltages.
VLS
43
Serial Audio Interface Power (Input) - Determines the required signal level for the serial audio
interface. Refer to the Recommended Operating Conditions for appropriate voltages.
TST_OUT
23, 26
27, 30
Test Output - These pins need to be floating and not connected to any trace or plane.
33, 36
37, 40
Hardware Mode Definitions
M0
M1
M2
M3
M4
17
16
15
12
10
Mode Selection (Input) - Determines the operational mode of the device as detailed in Tables 4
and 5.
Software Mode Definitions
SCL/CCLK
15
Serial Control Port Clock (Input) - Serial clock for the serial control port. Requires an external
pull-up resistor to the logic interface voltage in I²C® mode as shown in the Typical Connection Diagram.
SDA/CDIN
16
Serial Control Port Data (Input/Output) - SDA is a data I/O line in I²C mode and is open drain,
requiring an external pull-up resistor to the logic interface voltage, as shown in the Typical Connection Diagram; CDIN is the input data line for the control port interface in SPI™ mode.
AD0/CS
17
Address Bit 0 (I²C) / Control Port Chip Select (SPI) (Input) - AD0 is a chip address pin in I²C
mode; CS is the chip select signal for SPI mode.
TST
10
12
Test - These pins need to be tied to analog ground.
DSD Definitions
DSD1, DSD2
DSD3, DSD4
DSD5, DSD6
DSD7, DSD8
DSD_SCLK
DS620F1
3, 2
1, 48
Direct Stream Digital Input (Input) - Input for Direct Stream Digital serial audio data.
47,46
45, 44
42
DSD Serial Clock (Input) - Serial clock for the Direct Stream Digital serial audio interface.
7
CS4384
2. CHARACTERISTICS AND SPECIFICATIONS
RECOMMENDED OPERATING CONDITIONS
(GND = 0 V; all voltages with respect to ground.)
Parameters
Symbol
Min
Typ
Max
Units
Analog power
Digital internal power
Serial data port interface power
Control port interface power
Ambient Operating Temperature (Power Applied)
-CQZ
VA
VD
VLS
VLC
TA
4.75
2.37
1.71
1.71
-40
5.0
2.5
5.0
5.0
-
5.25
2.63
5.25
5.25
+85
V
V
V
V
°C
DC Power Supply
ABSOLUTE MAXIMUM RATINGS
(GND = 0 V; all voltages with respect to ground.)
Parameters
Symbol
Min
Max
Units
Analog power
Digital internal power
Serial data port interface power
Control port interface power
Input Current
Any Pin Except Supplies
Digital Input Voltage
Serial data port interface
Control port interface
Ambient Operating Temperature (power applied)
Storage Temperature
VA
VD
VLS
VLC
Iin
VIND-S
VIND-C
Top
Tstg
-0.3
-0.3
-0.3
-0.3
-0.3
-0.3
-55
-65
6.0
3.2
6.0
6.0
±10
VLS+ 0.4
VLC+ 0.4
125
150
V
V
V
V
mA
V
V
°C
°C
DC Power Supply
WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation
is not guaranteed at these extremes.
8
DS620F1
CS4384
DAC ANALOG CHARACTERISTICS
Test Conditions (unless otherwise indicated): VA = VLS = VLC = 5 V; VD = 2.5 V; TA = 25 °C; Full-Scale 997 Hz
input sine wave (Note 1); Tested under max ac-load resistance; Valid with FILT+ and VQ capacitors as shown in
“Typical Connection Diagram” on page 18; Measurement Bandwidth 10 Hz to 20 kHz.
Parameters
Symbol
Min
Typ
Max
Unit
97
94
-
103
100
97
94
-
dB
dB
dB
dB
-
-88
-80
-40
-88
-74
-34
-82
-74
-34
-
dB
dB
dB
dB
dB
dB
-
100
-
dB
-
110
-
dB
Interchannel Gain Mismatch
-
0.1
-
dB
Gain Drift
-
100
-
ppm/°
C
VFS
64%•VA
47%•VA
66%•VA
48%•VA
68%•VA
49%•VA
Vpp
Vpp
FS = 48 kHz, 96 kHz, 192 kHz and DSD
Dynamic Range
24-bit
A-weighted
unweighted
16-bit A-weighted
(Note 2) unweighted
Total Harmonic Distortion + Noise
24-bit
(Note 2) 16-bit
-0 dB THD+N
-20 dB
-60 dB
0 dB
-20 dB
-60 dB
Idle Channel Noise / Signal-to-noise ratio
Interchannel Isolation
(1 kHz)
DC Accuracy
Analog Output
Full Scale DifferentialOutput Voltage (Note 3)
PCM, DSD processor
Direct DSD Mode
ZOUT
-
130
-
Ω
IOUTmax
-
1.0
-
mA
Min AC-Load Resistance
RL
-
3
-
kΩ
Max Load Capacitance
CL
-
100
-
pF
VQ
-
50% VA
-
VDC
IQMAX
-
10
-
µA
Output Impedance
Max DC Current draw from an AOUT pin
Quiescent Voltage
Max Current draw from VQ
Notes:
1. One-half LSB of triangular PDF dither is added to data.
2. Performance limited by 16-bit quantization noise.
3. VFS is tested under load RL and includes attenuation due to ZOUT
DS620F1
9
CS4384
POWER AND THERMAL CHARACTERISTICS
Parameters
Symbol
Min
Typ
Max
Units
normal operation, VA= 5 V
VD= 2.5 V
(Note 5) Interface current, VLC=5 V
VLS=5 V
(Note 6) power-down state (all supplies)
Power Dissipation (Note 4)
VA = 5 V, VD = 2.5 V
normal operation
(Note 6) power-down
Package Thermal Resistance
multi-layer
dual-layer
IA
ID
ILC
ILS
Ipd
-
83
20
2
84
200
92
25
-
mA
mA
µA
µA
µA
-
465
1
48
65
15
60
40
520
-
mW
mW
°C/Watt
°C/Watt
°C/Watt
dB
dB
Power Supplies
Power Supply Current
(Note 4)
Power Supply Rejection Ratio (Note 7)
(1 kHz)
(60 Hz)
θJA
θJA
θJC
PSRR
Notes:
4. Current consumption increases with increasing FS within a given speed mode and is signal dependant. Max
values are based on highest FS and highest MCLK.
5. ILC measured with no external loading on the SDA pin.
6. Power Down Mode is defined as RST pin = Low with all clock and data lines held static.
7. Valid with the recommended capacitor values on FILT+ and VQ as shown in Figures 7 and 8.
10
DS620F1
CS4384
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE
The filter characteristics have been normalized to the sample rate (Fs) and can be referenced to the desired sample rate by multiplying the given characteristic by Fs.
(See (Note 12))
Fast Roll-Off
Parameter
Min
Typ
Combined Digital and On-chip Analog Filter Response - Single-Speed Mode - 48 kHz
Passband (Note 9)
Frequency Response
StopBand
StopBand Attenuation
Group Delay
De-emphasis Error (Note 11)
(Relative to 1 kHz)
to -0.01 dB corner
to -3 dB corner
10 Hz to 20 kHz
(Note 10)
Fs = 32 kHz
Fs = 44.1 kHz
Fs = 48 kHz
0
0
-0.01
0.547
102
-
10.4/Fs
-
Max
Unit
.454
.499
+0.01
±0.36
±0.21
±0.14
Fs
Fs
dB
Fs
dB
s
dB
dB
dB
.430
.499
+0.01
-
Fs
Fs
dB
Fs
dB
s
.105
.490
+0.01
-
Fs
Fs
dB
Fs
dB
s
Combined Digital and On-chip Analog Filter Response - Double-Speed Mode - 96 kHz
Passband (Note 9)
Frequency Response
StopBand
StopBand Attenuation
Group Delay
to -0.01 dB corner
to -3 dB corner
10 Hz to 20 kHz
(Note 10)
0
0
-0.01
.583
80
-
6.15/Fs
Combined Digital and On-chip Analog Filter Response - Quad-Speed Mode - 192 kHz
Passband (Note 9)
Frequency Response
StopBand
StopBand Attenuation
Group Delay
to -0.01 dB corner
to -3 dB corner
10 Hz to 20 kHz
(Note 10)
0
0
-0.01
.635
90
-
7.1/Fs
Notes:
8. Slow Roll-off interpolation filter is only available in Software Mode.
9. Response is clock dependent and will scale with Fs.
10. For Single-Speed Mode, the Measurement Bandwidth is from stopband to 3 Fs.
For Double-Speed Mode, the Measurement Bandwidth is from stopband to 3 Fs.
For Quad-Speed Mode, the Measurement Bandwidth is from stopband to 1.34 Fs.
11. De-emphasis is available only in Single-Speed Mode; Only 44.1 kHz De-emphasis is available in Hardware
Mode.
12. Amplitude vs. Frequency plots of this data are available in the “Filter Response Plots” on page 45.
DS620F1
11
CS4384
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE
(CONTINED)
Slow Roll-Off (Note 8)
Min
Typ
Max
Parameter
Single-Speed Mode - 48 kHz
Passband (Note 9)
to -0.01 dB corner
to -3 dB corner
10 Hz to 20 kHz
Frequency Response
StopBand
StopBand Attenuation
Group Delay
De-emphasis Error (Note 11)
(Relative to 1 kHz)
(Note 10)
Fs = 32 kHz
Fs = 44.1 kHz
Fs = 48 kHz
Unit
0
0
-0.01
.583
64
-
7.8/Fs
-
0.417
0.499
+0.01
±0.36
±0.21
±0.14
Fs
Fs
dB
Fs
dB
s
dB
dB
dB
0
0
-0.01
.792
70
-
5.4/Fs
.296
.499
+0.01
-
Fs
Fs
dB
Fs
dB
s
0
0
-0.01
.868
75
-
6.6/Fs
.104
.481
+0.01
-
Fs
Fs
dB
Fs
dB
s
Double-Speed Mode - 96 kHz
Passband (Note 9)
to -0.01 dB corner
to -3 dB corner
10 Hz to 20 kHz
Frequency Response
StopBand
StopBand Attenuation
Group Delay
(Note 10)
Quad-Speed Mode - 192 kHz
Passband (Note 9)
to -0.01 dB corner
to -3 dB corner
10 Hz to 20 kHz
Frequency Response
StopBand
StopBand Attenuation
Group Delay
(Note 10)
DSD COMBINED DIGITAL & ON-CHIP ANALOG FILTER RESPONSE
Parameter
Min
Typ
Max
Unit
to -3 dB corner
10 Hz to 20 kHz
0
-0.05
27
-
50
+0.05
-
kHz
dB
dB/Oct
to -0.1 dB corner
to -3 dB corner
0
0
-0.1
-
26.9
176.4
0
kHz
kHz
dB
DSD Processor Mode
Passband (Note 9)
Frequency Response
Roll-off
Direct DSD Mode
Passband (Note 9)
Frequency Response 10 Hz to 20 kHz
12
DS620F1
CS4384
DIGITAL CHARACTERISTICS
Parameters
Input Leakage Current
Input Capacitance
High-Level Input Voltage
(Note 13)
Serial I/O
Control I/O
Low-Level Input Voltage
Serial I/O
Control I/O
Low-Level Output Voltage (IOL = -1.2 mA)
Control I/O = 3.3 V, 5 V
Control I/O = 1.8 V, 2.5 V
MUTEC auto detect input high voltage
MUTEC auto detect input low voltage
Maximum MUTEC Drive Current
MUTEC High-Level Output Voltage
MUTEC Low-Level Output Voltage
Symbol
Min
Typ
Max
Units
Iin
70%
70%
70%
-
8
3
VA
0
±10
30%
30%
20%
25%
30%
-
µA
pF
VLS
VLC
VLS
VLC
VLC
VLC
VA
VA
mA
V
V
VIH
VIH
VIL
VIL
VOL
VOL
VIH
VIL
Imax
VOH
VOL
13. Any pin except supplies. Transient currents of up to ±100 mA on the input pins will not cause SCR latch-up
DS620F1
13
CS4384
SWITCHING CHARACTERISTICS - PCM
(Inputs: Logic 0 = GND, Logic 1 = VLS, CL = 30 pF)
Parameters
Symbol
RST pin Low Pulse Width
(Note 14)
MCLK Frequency
MCLK Duty Cycle
(Note 15)
Min
Max
Units
1
-
ms
1.024
55.2
MHz
45
55
%
Input Sample Rate - LRCK (Manual selection)
Single-Speed Mode
Double-Speed Mode
Quad-Speed Mode
Fs
Fs
Fs
4
50
100
54
108
216
kHz
kHz
kHz
Input Sample Rate - LRCK (Auto detect)
Single-Speed Mode
Double-Speed Mode
Quad-Speed Mode
Fs
Fs
Fs
4
84
170
54
108
216
kHz
kHz
kHz
45
55
%
45
55
%
LRCK Duty Cycle
(Note 16)
SCLK Duty Cycle
SCLK High Time
tsckh
8
-
ns
SCLK Low Time
tsckl
8
-
ns
LRCK Edge to SCLK Rising Edge
tlcks
5
-
ns
SCLK Rising Edge to LRCK Falling Edge
tlckd
5
-
ns
SDIN Setup Time Before SCLK Rising Edge
tds
3
-
ns
SDIN Hold Time After SCLK Rising Edge
tdh
5
-
ns
Notes:
14. After powering up, RST should be held low until after the power supplies and clocks are settled.
15. See Tables 1 - 3 for suggested MCLK frequencies.
16. Not required for TDM Mode.
LRCK
LRCK
tlcks
tsckh
tsckl
t lcks
SCLK
tdh
MSB
t ds
MSB-1
Figure 1. Serial Audio Interface Timing
14
t lcks
t sckh
t sckl
SCLK
tds
SDINx
t lckd
SDIN1
t dh
MSB
M SB-1
Figure 2. TDM Serial Audio Interface Timing
DS620F1
CS4384
SWITCHING CHARACTERISTICS - DSD
(Logic 0 = AGND = DGND; Logic 1 = VLS; CL = 30 pF)
Parameter
Symbol
MCLK Duty Cycle
DSD_SCLK Pulse Width Low
DSD_SCLK Pulse Width High
DSD_SCLK Frequency
tsclkl
tsclkh
(64x Oversampled)
(128x Oversampled)
DSD_A / _B valid to DSD_SCLK rising setup time
DSD_SCLK rising to DSD_A or DSD_B hold time
DSD clock to data transition (Phase Modulation Mode)
tsdlrs
tsdh
tdpm
Min
Typ
Max
Unit
40
160
160
1.024
2.048
20
20
-20
-
60
3.2
6.4
20
%
ns
ns
MHz
MHz
ns
ns
ns
t sclkh
t sclkl
DSD_SCLK
t sdlrs
t sdh
DSDxx
Figure 3. Direct Stream Digital - Serial Audio Input Timing
t dpm
t dpm
DSD_SCLK
(128Fs)
DSD_SCLK
(64Fs)
DSDxx
Figure 4. Direct Stream Digital - Serial Audio Input Timing for Phase Modulation Mode
DS620F1
15
CS4384
SWITCHING CHARACTERISTICS - CONTROL PORT - I²C FORMAT
(Inputs: Logic 0 = GND, Logic 1 = VLC, CL = 30 pF)
Parameter
Symbol
Min
Max
Unit
SCL Clock Frequency
fscl
-
100
kHz
RST Rising Edge to Start
tirs
500
-
ns
Bus Free Time Between Transmissions
tbuf
4.7
-
µs
Start Condition Hold Time (prior to first clock pulse)
thdst
4.0
-
µs
Clock Low time
tlow
4.7
-
µs
Clock High Time
thigh
4.0
-
µs
Setup Time for Repeated Start Condition
tsust
4.7
-
µs
thdd
0
-
µs
tsud
250
-
ns
Rise Time of SCL and SDA
trc, trc
-
1
µs
Fall Time SCL and SDA
tfc, tfc
-
300
ns
Setup Time for Stop Condition
tsusp
4.7
-
µs
Acknowledge Delay from SCL Falling
tack
300
1000
ns
SDA Hold Time from SCL Falling
(Note 17)
SDA Setup time to SCL Rising
Notes:
17. Data must be held for sufficient time to bridge the transition time, tfc, of SCL.
RST
t irs
Stop
R e p e a te d
S ta rt
S ta rt
Stop
SDA
t buf
t
t high
t hdst
tf
hdst
t susp
SCL
t
lo w
t
hdd
t sud
t sust
tr
Figure 5. Control Port Timing - I²C Format
16
DS620F1
CS4384
SWITCHING CHARACTERISTICS - CONTROL PORT - SPI FORMAT
(Inputs: Logic 0 = GND, Logic 1 = VLC, CL = 30 pF)
Parameter
Symbol
Min
Max
Unit
CCLK Clock Frequency
fsclk
-
6
MHz
RST Rising Edge to CS Falling
tsrs
500
-
ns
tspi
500
-
ns
CS High Time Between Transmissions
tcsh
1.0
-
µs
CS Falling to CCLK Edge
tcss
20
-
ns
CCLK Low Time
tscl
66
-
ns
CCLK High Time
tsch
66
-
ns
CDIN to CCLK Rising Setup Time
tdsu
40
-
ns
CCLK Edge to CS Falling
(Note 18)
CCLK Rising to DATA Hold Time
(Note 19)
tdh
15
-
ns
Rise Time of CCLK and CDIN
(Note 20)
tr2
-
100
ns
Fall Time of CCLK and CDIN
(Note 20)
tf2
-
100
ns
Notes:
18. tspi only needed before first falling edge of CS after RST rising edge. tspi = 0 at all other times.
19. Data must be held for sufficient time to bridge the transition time of CCLK.
20. For FSCK < 1 MHz.
RST
t srs
CS
t spi t css
t scl
t sch
t csh
CCLK
t r2
t f2
C D IN
t dsu t
dh
Figure 6. Control Port Timing - SPI Format
DS620F1
17
CS4384
3. TYPICAL CONNECTION DIAGRAM
+2.5 V
+5 V
1 µF
+
0.1 µF
0.1 µF
4
VD
6
7
PCM
Digital
Audio
Source
9
8
11
13
14
470 Ω
43
+1.8 V to +5 V
32
AOUT2
2
1
48
DSD
Audio
Source
47
46
45
44
42
19
15
MicroController
16
38
Analog Conditioning
and Muting
SCLK
AOUT3
35
Analog Conditioning
and Muting
34
Analog Conditioning
and Muting
29
Analog Conditioning
and Muting
28
Analog Conditioning
and Muting
25
Analog Conditioning
and Muting
24
Analog Conditioning
and Muting
SDIN1
SDIN2
AOUT4
SDIN3
SDIN4
AOUT5
VLS
CS4384
DSD1
AOUT7
DSD2
DSD3
DSD4
AOUT8
DSD5
DSD6
DSD7
MUTEC1
DSD8
MUTEC234
41
Mute
Drive
22
DSD_SCLK
RST
SCL/CCLK
SDA/CDIN
ADO/CS
FILT+
VQ
20
+
21
0.1 µ F + 1 µF
2 KΩ
2 KΩ
17
Analog Conditioning
and Muting
MCLK
AOUT6
3
39
LRCK
0.1 µF
470 Ω
1 µF
VA
AOUT1
220 Ω
+
0.1 µ F
47 µF
Note*
18
+1.8 V to +5 V
VLC
TST_OUT
0.1 µF
Note: Necessary for I 2C
control port operation
GND
5
Pins: 23, 26, 27,
30, 33, 36, 37, 40
GND TST*
31
*Pins:
10, 12
Figure 7. Typical Connection Diagram, Software Mode
18
DS620F1
CS4384
+2.5 V
+5 V
1 µF
+
0.1 µF
0.1 µF
AOUT1
6
7
PCM
Digital
Audio
Source
9
8
11
13
14
1 µF
32
VA
4
VD
220 Ω
+
MCLK
AOUT2
39
Analog Conditioning
and Muting
38
Analog Conditioning
and Muting
35
Analog Conditioning
and Muting
34
Analog Conditioning
and Muting
29
Analog Conditioning
and Muting
28
Analog Conditioning
and Muting
25
Analog Conditioning
and Muting
24
Analog Conditioning
and Muting
LRCK
SCLK
SDIN1
AOUT3
SDIN2
SDIN3
AOUT4
SDIN4
470 Ω
43
+1.8 V to +5 V
VLS
0.1 µF
470 Ω
3
2
1
48
DSD
Audio
Source
47
46
45
44
42
Optional
47 K Ω
DSDA1
AOUT6
DSDB1
DSDA2
DSDB2
AOUT7
DSDA3
DSDB3
AOUT8
DSDA4
DSDB4
DSD_SCLK
MUTEC1
MUTEC234
10
12
Stand-Alone
Mode
Configuration
AOUT5
CS4384
22
Mute
Drive
M4
M3
15
M2
16
M1
17
19
41
FILT+ 20
M0
VQ
RST
+
21
0.1 µF + 1 µF
+1.8 V to +5 V
18
0.1 µF
47 µF
VLC
0.1 µF
TST_OUT
GND
5
Pins: 23, 26, 27,
30, 33, 36, 37, 40
GND
31
Figure 8. Typical Connection Diagram, Hardware Mode
DS620F1
19
CS4384
4. APPLICATIONS
The CS4384 serially accepts twos complement formatted PCM data at standard audio sample rates including 48,
44.1 and 32 kHz in SSM, 96, 88.2 and 64 kHz in DSM, and 192, 176.4 and 128 kHz in QSM. Audio data is input via
the serial data input pins (SDINx). The Left/Right Clock (LRCK) determines which channel is currently being input
on SDINx, and the Serial Clock (SCLK) clocks audio data into the input data buffer. For more information on serial
audio interfaces see AN282 “The 2-Channel Serial Audio Interface: A Tutorial”.
The CS4384 can be configured in Hardware Mode by the M0, M1, M2, M3 and M4 pins and in Software Mode
through I²C or SPI.
4.1
Master Clock
MCLK/LRCK must be an integer ratio as shown in Tables 1 - 3. The LRCK frequency is equal to Fs, the
frequency at which words for each channel are input to the device. The MCLK-to-LRCK frequency ratio and
speed mode is detected automatically during the initialization sequence by counting the number of MCLK
transitions during a single LRCK period and by detecting the absolute speed of MCLK. Internal dividers are
then set to generate the proper internal clocks. Tables 1 - 3 illustrate several standard audio sample rates
and the required MCLK and LRCK frequencies. Please note there is no required phase relationship, but
MCLK, LRCK and SCLK must be synchronous.
Sample Rate
(kHz)
MCLK (MHz)
256x
384x
512x
768x
1024x
1152x
32
44.1
48
8.1920
11.2896
12.2880
12.2880
16.9344
18.4320
16.3840
22.5792
24.5760
24.5760
33.8688
36.8640
32.7680
45.1584
49.1520
36.8640
Table 1. Single-Speed Mode Standard Frequencies
Sample Rate
(kHz)
MCLK (MHz)
128x
192x
256x
384x
512x
64
88.2
96
8.1920
11.2896
12.2880
12.2880
16.9344
18.4320
16.3840
22.5792
24.5760
24.5760
33.8688
36.8640
32.7680
45.1584
49.1520
Table 2. Double-Speed Mode Standard Frequencies
Sample Rate
(kHz)
MCLK (MHz)
64x
96x
128x
192x
256x
176.4
192
11.2896
12.2880
16.9344
18.4320
22.5792
24.5760
33.8688
36.8640
45.1584
49.1520
Table 3. Quad-Speed Mode Standard Frequencies
= Denotes clock ratio and sample rate combinations which are NOT supported under auto
speed-mode detection. Please see “Switching Characteristics - PCM” on page 14.
20
DS620F1
CS4384
4.2
Mode Select
In Hardware Mode, operation is determined by the Mode Select pins. The states of these pins are continually scanned for any changes; however, the mode should only be changed while the device is in reset
(RST pin low) to ensure proper switching from one mode to another. These pins require connection to supply or ground as outlined in Figure 8. For M0, M1, and M2, supply is VLC. For M3 and M4, supply is VLS.
Tables 4 - 6 show the decode of these pins.
In Software Mode, the operational mode and data format are set in the FM and DIF registers. See “PCM
Control (Address 03h)” on page 36.
M1
(DIF1)
M0
(DIF0)
0
0
0
1
1
1
0
1
DESCRIPTION
FORMAT
FIGURE
0
1
9
10
2
3
11
12
Left Justified, up to 24-bit data
I2S,
up to 24-bit data
Right Justified, 16-bit Data
Right Justified, 24-bit Data
Table 4. PCM Digital Interface Format, Hardware Mode Options
M4
M3
M2
(DEM)
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
M1
M0
Table 4
Table 6
DESCRIPTION
Single-Speed without De-Emphasis (4 kHz to 50 kHz sample rates)
Single-Speed with 44.1 kHz De-Emphasis; see Figure 20
Double-Speed (50 kHz to 100 kHz sample rates)
Quad-Speed (100 kHz to 200 kHz sample rates)
Auto Speed-Mode Detect (32 kHz to 200 kHz sample rates)
Auto Speed-Mode Detect with 44.1 kHz De-Emphasis; see Figure 20
DSD Processor Mode
Table 5. Mode Selection, Hardware Mode Options
M2
M1
M0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
DESCRIPTION
64x oversampled DSD data with a 4x MCLK to DSD data rate
64x oversampled DSD data with a 6x MCLK to DSD data rate
64x oversampled DSD data with a 8x MCLK to DSD data rate
64x oversampled DSD data with a 12x MCLK to DSD data rate
128x oversampled DSD data with a 2x MCLK to DSD data rate
128x oversampled DSD data with a 3x MCLK to DSD data rate
128x oversampled DSD data with a 4x MCLK to DSD data rate
128x oversampled DSD data with a 6x MCLK to DSD data rate
Table 6. Direct Stream Digital (DSD), Hardware Mode Options
DS620F1
21
CS4384
4.3
Digital Interface Formats
The serial port operates as a slave and supports the I²S, Left-Justified, Right-Justified, One-Line Mode
(OLM) and TDM digital interface formats with varying bit depths from 16 to 32 as shown in Figures 9-19.
Data is clocked into the DAC on the rising edge. OLM and TDM configurations are only supported in Software Mode.
Left Channel
LRCK
Right Channel
SCLK
SDINx
MSB
-1 -2 -3 -4 -5
+5 +4 +3 +2 +1
LSB
MSB
-1 -2 -3 -4
+5 +4 +3 +2 +1
LSB
Figure 9. Format 0 - Left-Justified up to 24-bit Data
Left Channel
LRCK
Right Channel
SCLK
SDINx
MSB
-1 -2 -3 -4 -5
+5 +4 +3 +2 +1
LSB
MSB
-1 -2 -3 -4
+5 +4 +3 +2 +1 LSB
Figure 10. Format 1 - I²S up to 24-bit Data
LRCK
Right Channel
Left Channel
SCLK
SDINx
15 14 13 12 11 10 9 8
32 clocks
LRCK
7
6
5
4
3
2 1
0
15 14 13 12 11 10 9
8
7
6
5
4
3
2 1
0
7
6
5
4
3
2 1
0
2
0
Figure 11. Format 2 - Right-Justified 16-bit Data
Right Channel
Left Channel
SCLK
SDINx
0
32 clocks
LRCK
7
23 22 21 20 19 18
6
5
4
3
2 1
0
23 22 21 20 19 18
Figure 12. Format 3 - Right-Justified 24-bit Data
Right Channel
Left Channel
SCLK
SDINx
1 0
19 18 17 16 15 14 13 12 11 10 9
Figure
32 clocks
22
8
7
6
5
4 3
2
1
0
19 18 17 16 15 14 13 12 11 10 9
8
7
6
5
4
3
1
13. Format 4 - Right-Justified 20-bit Data
DS620F1
CS4384
LRCK
Right Channel
Left Channel
SCLK
SDINx
1 0
17 16 15 14 13 12 11 10 9
8
7 6
5
4 3
2
1
0
17 16 15 14 13 12 11 10 9 8
7
6
5
4 3
2
1
0
32 clocks
Figure 14. Format 5 - Right-Justified 18-bit Data
4.3.1
OLM #1
OLM #1 serial audio interface format operates in Single-, Double-, or Quad-Speed Mode and will slave to
SCLK at 128 Fs. Six channels of MSB first 20-bit PCM data are input on SDIN1. The last two channels
are input on SDIN4.
LRCK
64 clks
64 clks
Left Channel
Right Channel
SCLK
SDIN1
MSB
LSB MSB
DAC_A1
LSB MSB
LSB
LSB MSB
LSB MSB
LSB
DAC_A2
DAC_A3
DAC_B1
DAC_B2
DAC_B3
20 clks
20 clks
20 clks
20 clks
20 clks
20 clks
DAC_A4
SDIN4
MSB
MSB
DAC_B4
20 clks
20 clks
Figure 15. Format 8 - One Line Mode 1
4.3.2
OLM #2
OLM #2 serial audio interface format operates in Single-, Double-, or Quad-Speed Mode and will slave to
SCLK at 256 Fs. Six channels of MSB first 24-bit PCM data are input on SDIN1. The last two channels
are input on SDIN4.
LRCK
128 clks
128 clks
Left Channel
Right Channel
SCLK
SDIN1
SDIN4
MSB
LSB MSB
LSB MSB
LSB
MSB
LSB MSB
LSB MSB
LSB
DAC_A1
DAC_A2
DAC_A3
DAC_B1
DAC_B2
DAC_B3
24 clks
24 clks
24 clks
24 clks
24 clks
24 clks
DAC_A4
24 clks
MSB
DAC_B4
24 clks
Figure 16. Format 9 - One Line Mode 2
DS620F1
23
CS4384
4.3.3
OLM #3
OLM #3 serial audio interface format operates in Single-, Double-, or Quad-Speed Mode and will slave to
SCLK at 256 Fs. Eight channels of MSB first 20-bit PCM data are input on SDIN1.
LRCK
128 clks
128 clks
Left Channel
Right Channel
SCLK
SDIN1
MSB
LSB MSB
LSB MSB
LSB MSB
LSB
MSB
LSB MSB
LSB MSB
LSB MSB
LSB
DAC_A1
DAC_A2
DAC_A3
DAC_A4
DAC_B1
DAC_B2
DAC_B3
DAC_B4
20 clks
20 clks
20 clks
20 clks
20 clks
20 clks
20 clks
20 clks
MSB
Figure 17. Format 10 - One Line Mode 3
4.3.4
OLM #4
OLM #4 serial audio interface format operates in Single-, Double-, or Quad-Speed Mode and will slave to
SCLK at 256 Fs. Eight channels of MSB first 24-bit PCM data are input on SDIN1.
LRCK
128 clks
128 clks
Left Channel
Right Channel
SCLK
SDIN1
MSB
LSB MSB
LSB MSB
LSB MSB
LSB
MSB
LSB MSB
LSB MSB
LSB MSB
LSB
DAC_A1
DAC_A2
DAC_A3
DAC_A4
DAC_B1
DAC_B2
DAC_B3
DAC_B4
24 clks
24 clks
24 clks
24 clks
24 clks
24 clks
24 clks
24 clks
MSB
Figure 18. Format 11 - One Line Mode 4
4.3.5
TDM
The TDM serial audio interface format operates in Single-, Double-, or Quad-Speed Mode and will slave
to SCLK at 256 Fs. Data is received most significant bit first on the first SCLK after an LRCK transition
and is valid on the rising edge of SCLK. LRCK identifies the start of a new frame and is equal to the sample
rate, Fs. LRCK is sampled as valid on the rising SCLK edge preceding the most significant bit of the first
data sample and must be held valid for one SCLK period. Each time slot is 32 bits wide, with the valid data
sample left justified within the time slot with the remaining bits being zero padded.
256 clks
LRCK
SCLK
SDIN1
LSB MSB
LSB MSB
LSB MSB
LSB MSB
LSB MSB
LSB MSB
LSB MSB
LSB MSB
LSB
DAC_A1
DAC_B1
DAC_A2
DAC_B2
DAC_A3
DAC_B3
DAC_A4
DAC_B4
32 clks
32 clks
32 clks
32 clks
32 clks
32 clks
32 clks
32 clks
Data
MSB
LSB
zero
Figure 19. Format 12 - TDM Mode
24
DS620F1
CS4384
4.4
Oversampling Modes
The CS4384 operates in one of three oversampling modes based on the input sample rate. Mode selection
is determined by the M4, M3 and M2 pins in Hardware Mode or the FM bits in Software Mode. Single-Speed
Mode supports input sample rates up to 50 kHz and uses a 128x oversampling ratio. Double-Speed Mode
supports input sample rates up to 100 kHz and uses an oversampling ratio of 64x. Quad-Speed Mode supports input sample rates up to 200 kHz and uses an oversampling ratio of 32x.
The auto speed-mode detect feature allows for the automatic selection of speed mode based off of the incoming sample rate. This allows the CS4384 to accept a wide range of sample rates with no external intervention necessary. The auto speed-mode detect feature is available in both Hardware and Software Mode.
4.5
Interpolation Filter
To accommodate the increasingly complex requirements of digital audio systems, the CS4384 incorporates
selectable interpolation filters for each mode of operation. A “fast” and a “slow” roll-off filter is available in
each of Single-, Double-, or Quad-Speed Modes. These filters have been designed to accommodate a variety of musical tastes and styles. The FILT_SEL bit is used to select which filter is used (see the “Parameter
Definitions” on page 49 for more details).
When in Hardware Mode, only the “fast” roll-off filter is available.
Filter specifications can be found in Section 2, and filter response plots can be found in Figures 28 to 51.
4.6
De-Emphasis
The CS4384 includes on-chip digital de-emphasis filters. The de-emphasis feature is included to accommodate older audio recordings that utilize pre-emphasis equalization as a means of noise reduction. Figure 20
shows the de-emphasis curve. The frequency response of the de-emphasis curve will scale proportionally
with changes in sample rate, Fs if the input sample rate does not match the coefficient which has been selected.
In Software Mode the required de-emphasis filter coefficients for 32 kHz, 44.1 kHz, or 48 kHz are selected
via the de-emphasis control bits.
In Hardware Mode only the 44.1 kHz coefficient is available (enabled through the M2 pin). If the input sample rate is not 44.1 kHz and de-emphasis has been selected then the corner frequencies of the de-emphasis
filter will be scaled by a factor of the actual Fs over 44,100.
Gain
dB
T1=50 µs
0dB
T2 = 15 µs
-10dB
F1
3.183 kHz
F2
Frequency
10.61 kHz
Figure 20. De-Emphasis Curve
DS620F1
25
CS4384
4.7
ATAPI Specification
The CS4384 implements the channel mixing functions of the ATAPI CD-ROM specification. The
ATAPI functions are applied per A-B pair. Refer to Table 9 on page 43 and Figure 21 for additional information.
A Channel
Volume
Control
Left Channel
Audio Data
Σ
SDINx
Right Channel
Audio Data
MUTE
Aout Ax
MUTE
AoutBx
Σ
B Channel
Volume
Control
Figure 21. ATAPI Block Diagram (x = channel pair 1, 2, 3, or 4)
4.8
Direct Stream Digital (DSD) Mode
In Software Mode the DSD/PCM bits (Reg. 02h) are used to configure the device for DSD mode. The
DSD_DIF bits (Reg 04h) then control the expected DSD rate and MCLK ratio.
The DIR_DSD bit (Reg 04h) selects between two proprietary methods for DSD to analog conversion. The
first method uses a decimation free DSD processing technique which allows for features such as matched
PCM level output, DSD volume control, and 50kHz on chip filter. The second method sends the DSD data
directly to the on-chip switched-capacitor filter for conversion (without the above mentioned features).
The DSD_PM_EN bit (Reg. 04h) selects Phase Modulation (data plus data inverted) as the style of data
input. In this mode the DSD_PM_Mode bit selects whether a 128Fs or 64x clock is used for phase modulated 64x data (see Figure 22). Use of Phase Modulation Mode may not directly effect the performance of
the CS4384, but may lower the sensitivity to board level routing of the DSD data signals.
The CS4384 can detect errors in the DSD data which does not comply with the SACD specification. The
STATIC_DSD and INVALID_DSD bits (Reg. 04h) allow the CS4384 to alter the incoming invalid DSD data.
Depending on the error, the data may either be attenuated or replaced with a muted DSD signal (the
MUTEC pins would be set according to the DAMUTE bit (Reg. 08h)).
More information for any of these register bits can be found in the “Parameter Definitions” on page 49.
The DSD input structure and analog outputs are designed to handle a nominal 0 dB-SACD (50% modulation
index) at full rated performance. Signals of +3 dB-SACD may be applied for brief periods of time however,
performance at these levels is not guaranteed. If sustained +3 dB-SACD levels are required, the digital volume control should be set to -3.0 dB. This same volume control register affects PCM output levels. There
is no need to change the volume control setting between PCM and DSD in order to have the 0 dB output
levels match (both 0 dBFS and 0 dB-SACD will output at -3 dB in this case).
26
DS620F1
CS4384
DSD Phase
Modulation Mode
DSD Normal Mode
BCKA
(64Fs)
Not Used
DSD_SCLK
BCKA
(128Fs)
DSD_SCLK
DSD_SCLK
BCKD
(64Fs)
Not Used
DSDAx,
DSDBx
D0
D1
D1
D0
D1
D2
D2
DSDAx,
DSDBx
Not Used
Figure 22. DSD Phase Modulation Mode Diagram
4.9
Grounding and Power Supply Arrangements
As with any high resolution converter, the CS4384 requires careful attention to power supply and grounding
arrangements if its potential performance is to be realized. The Typical Connection Diagram shows the recommended power arrangements, with VA, VD, VLC, and VLS connected to clean supplies. If the ground
planes are split between digital ground and analog ground, the GND pins of the CS4384 should be connected to the analog ground plane.
All signals, especially clocks, should be kept away from the FILT+ and VQ pins in order to avoid unwanted
coupling into the DAC.
4.9.1
Capacitor Placement
Decoupling capacitors should be placed as close to the DAC as possible, with the low value ceramic capacitor being the closest. To further minimize impedance, these capacitors should be located on the same
layer as the DAC. If desired, all supply pins with similar voltage ratings may be connected to the same
supply, but a decoupling capacitor should still be placed on each supply pin.
Note:
All decoupling capacitors should be referenced to analog ground.
The CDB4384 evaluation board demonstrates the optimum layout and power supply arrangements.
4.10
Analog Output and Filtering
The CS4384 does not include phase or amplitude compensation for an external filter. Therefore, the DAC
system phase and amplitude response will be dependent on the external analog circuitry.
Figure 23 shows how the full-scale analog output level specification is derived.
Figure 24 shows how the recommended output filtering with location for optional mute circuit.
DS620F1
27
CS4384
4.175 V
2.5 V
AOUT
0.825 V
Full-Scale Output Level= AOUT= 3.35 Vpp
Figure 23. Full-Scale Output
Figure 24. Recommended Output Filter
4.11
The MUTEC Outputs
The MUTEC1 and MUTEC234 pins have an auto-polarity detect feature. The MUTEC output pins are high
impedance at the time of reset. The external mute circuitry needs to be self biased into an active state in
order to be muted during reset. Upon release of reset, the CS4384 will detect the status of the MUTEC pins
(high or low) and will then select that state as the polarity to drive when the mutes become active. The external-bias voltage level that the MUTEC pins see at the time of release of reset must meet the “MUTEC
auto detect input high/low voltage” specs as outlined in the Digital Characteristics section.
Figure 25 shows a single example of both an active high and an active low mute drive circuit. In these designs, the pull-up and pull-down resistors have been especially chosen to meet the input high/low threshold
when used with the MMUN2111 and MMUN2211 internal bias resistances of 10 kΩ.
Use of the Mute Control function is not mandatory but recommended for designs requiring the absolute minimum in extraneous clicks and pops. Also, use of the Mute Control function can enable the system designer
to achieve idle channel noise/signal-to-noise ratios which are only limited by the external mute circuit.
28
DS620F1
CS4384
Figure 25. Recommended Mute Circuitry
4.12
Recommended Power-Up Sequence
4.12.1 Hardware Mode
1. Hold RST low until the power supplies and configuration pins are stable, and the master and left/right
clocks are locked to the appropriate frequencies, as discussed in Section 4.1. In this state, the
registers are reset to the default settings, FILT+ will remain low, and VQ will be connected to VA/2.
If RST can not be held low long enough the SDINx pins should remain static low until all other clocks
are stable, and if possible the RST should be toggled low again once the system is stable.
2. Bring RST high. The device will remain in a low power state with FILT+ low and will initiate the
Hardware power-up sequence after approximately 512 LRCK cycles in Single-Speed Mode (1024
LRCK cycles in Double-Speed Mode, and 2048 LRCK cycles in Quad-Speed Mode).
4.12.2 Software Mode
1. Hold RST low until the power supply is stable, and the master and left/right clocks are locked to the
appropriate frequencies, as discussed in Section 4.1. In this state, the registers are reset to the default
settings, FILT+ will remain low, and VQ will be connected to VA/2.
2. Bring RST high. The device will remain in a low power state with FILT+ low for 512 LRCK cycles in
Single-Speed Mode (1024 LRCK cycles in Double-Speed Mode, and 2048 LRCK cycles in QuadSpeed Mode).
3. In order to reduce the chances of clicks and pops, perform a write to the CP_EN bit prior to the
completion of approximately 512 LRCK cycles in Single-Speed Mode (1024 LRCK cycles in DoubleSpeed Mode, and 2048 LRCK cycles in Quad-Speed Mode). The desired register settings can be
loaded while keeping the PDN bit set to 1. Set the RMP_UP and RMP_DN bits to 1, then set the
format and mode control bits to the desired settings.
If more than the stated number of LRCK cycles passes before CPEN bit is written then the chip will
enter Hardware Mode and begin to operate with the M0-M4 as the mode settings. CPEN bit may be
written at anytime, even after the Hardware sequence has begun. It is advised that if the CPEN bit
can not be set in time then the SDINx pins should remain static low (this way no audio data can be
DS620F1
29
CS4384
converted incorrectly by the Hardware Mode settings).
4. Set the PDN bit to 0. This will initiate the power-up sequence, which lasts approximately 50 µs.
4.13
Recommended Procedure for Switching Operational Modes
For systems where the absolute minimum in clicks and pops is required, it is recommended that the MUTE
bits are set prior to changing significant DAC functions (such as changing sample rates or clock sources).
The mute bits may then be released after clocks have settled and the proper modes have been set.
It is required to have the device held in reset if the minimum high/low time specs of MCLK can not be met
during clock source changes.
4.14
Control Port Interface
The control port is used to load all the internal register settings in order to operate in Software Mode (see
the “Parameter Definitions” on page 49). The operation of the control port may be completely asynchronous
with the audio sample rate. However, to avoid potential interference problems, the control port pins should
remain static if no operation is required.
The control port operates in one of two modes: I²C or SPI.
4.14.1 MAP Auto Increment
The device has MAP (memory address pointer) auto increment capability enabled by the INCR bit (also
the MSB) of the MAP. If INCR is set to 0, MAP will stay constant for successive I²C writes or reads and
SPI writes. If INCR is set to 1, MAP will auto increment after each byte is written, allowing block reads or
writes of successive registers.
4.14.2 I²C Mode
In the I²C Mode, data is clocked into and out of the bi-directional serial control data line, SDA, by the serial
control port clock, SCL (see Figure 26 for the clock to data relationship). There is no CS pin. Pin AD0 enables the user to alter the chip address (001100[AD0][R/W]) and should be tied to VLC or GND as required, before powering up the device. If the device ever detects a high to low transition on the AD0/CS
pin after power-up, SPI Mode will be selected.
4.14.2.1 I²C Write
To write to the device, follow the procedure below while adhering to the control port Switching Specifications in Section 2.
30
1.
Initiate a START condition to the I²C bus followed by the address byte. The upper 6 bits must be
001100. The seventh bit must match the setting of the AD0 pin, and the eighth must be 0. The eighth
bit of the address byte is the R/W bit.
2.
Wait for an acknowledge (ACK) from the part, then write to the memory address pointer, MAP. This
byte points to the register to be written.
3.
Wait for an acknowledge (ACK) from the part, then write the desired data to the register pointed to by
the MAP.
4.
If the INCR bit (see Section 4.14.1) is set to 1, repeat the previous step until all the desired registers
are written, then initiate a STOP condition to the bus.
5.
If the INCR bit is set to 0 and further I²C writes to other registers are desired, it is necessary to initiate
a repeated START condition and follow the procedure detailed from step 1. If no further writes to other
registers are desired, initiate a STOP condition to the bus.
DS620F1
CS4384
4.14.2.2 I²C Read
To read from the device, follow the procedure below while adhering to the control port Switching Specifications.
1.
Initiate a START condition to the I²C bus followed by the address byte. The upper 6 bits must be
001100. The seventh bit must match the setting of the AD0 pin, and the eighth must be 1. The eighth
bit of the address byte is the R/W bit.
2.
After transmitting an acknowledge (ACK), the device will then transmit the contents of the register
pointed to by the MAP. The MAP register will contain the address of the last register written to the
MAP, or the default address (see Section 4.14.1) if an I²C read is the first operation performed on the
device.
3.
Once the device has transmitted the contents of the register pointed to by the MAP, issue an ACK.
4.
If the INCR bit is set to 1, the device will continue to transmit the contents of successive registers. Continue providing a clock and issue an ACK after each byte until all the desired registers are read, then
initiate a STOP condition to the bus.
5.
If the INCR bit is set to 0 and further I²C reads from other registers are desired, it is necessary to initiate
a repeated START condition and follow the procedure detailed from steps 1 and 2 from the I²C Write
instructions followed by step 1 of the I²C Read section. If no further reads from other registers are desired, initiate a STOP condition to the bus.
N o te 1
SDA
0 01 1 00
ADDR
AD 0
R /W
ACK
D AT A
1-8
ACK
D A TA
1-8
ACK
SCL
S ta rt
S top
N o te : If o p e ra tio n is a w rite , th is b y te c o n ta in s th e M e m o ry A d d re s s P o in te r, M A P .
Figure 26. Control Port Timing, I²C Mode
4.14.3 SPI Mode
In SPI Mode, data is clocked into the serial control data line, CDIN, by the serial control port clock, CCLK
(see Figure 27 for the clock to data relationship). There is no AD0 pin. Pin CS is the chip select signal and
is used to control SPI writes to the control port. When the device detects a high to low transition on the
AD0/CS pin after power-up, SPI Mode will be selected. All signals are inputs and data is clocked in on the
rising edge of CCLK.
4.14.3.1 SPI Write
To write to the device, follow the procedure below while adhering to the control port Switching Specifications in Section 2.
1.
Bring CS low.
2.
The address byte on the CDIN pin must then be 00110000.
3.
Write to the memory address pointer, MAP. This byte points to the register to be written.
4.
Write the desired data to the register pointed to by the MAP.
5.
If the INCR bit (see Section 4.14.1) is set to 1, repeat the previous step until all the desired registers
are written, then bring CS high.
DS620F1
31
CS4384
6.
If the INCR bit is set to 0 and further SPI writes to other registers are desired, it is necessary to bring
CS high, and follow the procedure detailed from step 1. If no further writes to other registers are desired, bring CS high.
CS
C C LK
C H IP
ADDRESS
C DIN
0011000
MAP
D A TA
LSB
MSB
R /W
b yte 1
byte n
M A P = M e m ory A d dress P oin te r
Figure 27. Control Port Timing, SPI Mode
4.15
Memory Address Pointer (MAP)
7
INCR
0
6
Reserved
0
5
Reserved
0
4
MAP4
0
3
MAP3
0
2
MAP2
0
1
MAP1
0
0
MAP0
0
4.15.1 INCR (Auto Map Increment Enable)
Default = ‘0’
0 - Disabled
1 - Enabled
4.15.2 MAP4-0 (Memory Address Pointer)
Default = ‘00000’
32
DS620F1
CS4384
5. REGISTER QUICK REFERENCE
Addr
Function
01h
Chip Revision
02h
Mode Control
default
default
03h
PCM Control
default
04h
DSD Control
05h
Filter Control
06h
Invert Control
07h
Group Control
08h
Ramp and Mute
09h
Mute Control
default
default
default
default
default
default
0Ah Mixing Control
Pair 1 (AOUTx1)
default
0Bh Vol. Control A1
default
0Ch Vol. Control B1
default
0Dh Mixing Control
Pair 2 (AOUTx1)
default
0Eh Vol. Control A2
default
0Fh
Vol. Control B2
default
10h
Mixing Control
Pair 3 (AOUTx1)
11h
Vol. Control A3
12h
Vol. Control B3
default
default
default
13h
Mixing Control
Pair 4 (AOUTx1)
default
DS620F1
7
6
5
4
3
2
1
0
PART4
PART3
PART2
PART1
PART0
REV2
REV1
REV0
0
0
0
x
x
0
0
CPEN
FREEZE
0
0
0
0
0
0
0
1
DIF3
DIF2
DIF1
DIF0
Reserved
Reserved
FM1
FM0
0
0
0
0
0
0
1
1
DSD/PCM DAC4_DIS DAC3_DIS DAC2_DIS DAC1_DIS
DSD_DIF2 DSD_DIF1 DSD_DIF0 DIR_DSD
x
PDN
STATIC_D INVALID_D DSD_PM_ DSD_PM_
SD
SD
MD
EN
0
0
0
0
1
0
0
0
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
FILT_SEL
0
0
0
0
0
0
0
0
INV_B4
INV_A4
INV_B3
INV_A3
INV_B2
INV_A2
INV_B1
INV_A1
0
0
0
0
0
0
0
0
Reserved
MUTEC
Reserved
P1_A=B
P2_A=B
P3_A=B
P4_A=B
SNGLVOL
0
0
0
0
0
0
0
0
SZC1
SZC0
RMP_UP
RMP_DN
PAMUTE
DAMUTE
MUTE_P1
MUTE_P0
1
0
1
1
1
MUTE_B4 MUTE_A4 MUTE_B3 MUTE_A3 MUTE_B2
1
0
0
MUTE_A2
MUTE_B1
MUTE_A1
0
0
0
0
0
0
0
0
Reserved
P1_DEM1
P1_DEM0
P1ATAPI4
P1ATAPI3
P1ATAPI2
P1ATAPI1
P1ATAPI0
0
0
0
0
1
0
0
1
A1_VOL7
A1_VOL6
A1_VOL5
A1_VOL4
A1_VOL3
A1_VOL2
A1_VOL1
A1_VOL0
0
0
0
0
0
0
0
0
B1_VOL7
B1_VOL6
B1_VOL5
B1_VOL4
B1_VOL3
B1_VOL2
B1_VOL1
B1_VOL0
0
0
0
0
0
0
0
0
Reserved
P2_DEM1
P2_DEM0
P2ATAPI4
P2ATAPI3
P2ATAPI2
P2ATAPI1
P2ATAPI0
0
0
0
0
1
0
0
1
A2_VOL7
A2_VOL6
A2_VOL5
A2_VOL4
A2_VOL3
A2_VOL2
A2_VOL1
A2_VOL0
0
0
0
0
0
0
0
0
B2_VOL7
B2_VOL6
B2_VOL5
B2_VOL4
B2_VOL3
B2_VOL2
B2_VOL1
B2_VOL0
0
0
0
0
0
0
0
0
Reserved
P3_DEM1
P3_DEM0
P3ATAPI4
P3ATAPI3
P3ATAPI2
P3ATAPI1
P3ATAPI0
0
0
0
0
1
0
0
1
A3_VOL7
A3_VOL6
A3_VOL5
A3_VOL4
A3_VOL3
A3_VOL2
A3_VOL1
A3_VOL0
0
0
0
0
0
0
0
0
B3_VOL7
B3_VOL6
B3_VOL5
B3_VOL4
B3_VOL3
B3_VOL2
B3_VOL1
B3_VOL0
0
0
0
0
0
0
0
0
Reserved
P4_DEM1
P4_DEM0
P4ATAPI4
P4ATAPI3
P4ATAPI2
P4ATAPI1
P4ATAPI0
0
0
0
0
1
0
0
1
33
CS4384
Addr
Function
7
6
5
4
3
2
1
0
A4_VOL7
A4_VOL6
A4_VOL5
A4_VOL4
A4_VOL3
A4_VOL2
A4_VOL1
A4_VOL0
14h
Vol. Control A4
15h
Vol. Control B4
16h
PCM clock mode Reserved
default
default
default
34
0
0
0
0
0
0
0
0
B4_VOL7
B4_VOL6
B4_VOL5
B4_VOL4
B4_VOL3
B4_VOL2
B4_VOL1
B4_VOL0
0
0
0
0
0
0
0
0
0
Reserved
MCLKDIV
Reserved
Reserved
Reserved
Reserved
Reserved
0
0
0
0
0
0
0
DS620F1
CS4384
6. REGISTER DESCRIPTION
Note:
All registers are read/write in I²C Mode and write only in SPI, unless otherwise noted.
6.1
Chip Revision (Address 01h)
7
PART4
0
6.1.1
6
PART3
0
5
PART2
0
4
PART1
0
3
PART0
0
2
REV2
-
1
REV1
-
0
REV0
-
Part Number ID (PART) [Read Only]
00000- CS4384
6.1.2
Revision ID (REV) [Read Only]
000 - Revision A0
001 - Revision B0
Function:
This read-only register can be used to identify the model and revision number of the device.
6.2
Mode Control 1 (Address 02h)
7
6
5
4
3
2
1
0
CPEN
FREEZE
DSD/PCM
DAC4_DIS
DAC3_DIS
DAC2_DIS
DAC1_DIS
PDN
0
0
0
0
0
0
0
1
6.2.1
Control Port Enable (CPEN)
Default = 0
0 - Disabled
1 - Enabled
Function:
This bit defaults to 0, allowing the device to power-up in Stand-Alone Mode. The Control Port Mode can
be accessed by setting this bit to 1. This will allow the operation of the device to be controlled by the registers and the pin definitions will conform to Control Port Mode. To accomplish a clean power-up, the user
should write this bit within 10 ms following the release of Reset.
6.2.2
Freeze Controls (FREEZE)
Default = 0
0 - Disabled
1 - Enabled
Function:
This function allows modifications to be made to the registers without the changes taking effect until the
FREEZE is disabled. To make multiple changes in the Control port registers take effect simultaneously,
enable the FREEZE Bit, make all register changes, then Disable the FREEZE bit.
DS620F1
35
CS4384
6.2.3
PCM/DSD Selection (DSD/PCM)
Default = 0
0 - PCM
1 - DSD
Function:
This function selects DSD or PCM Mode. The appropriate data and clocks should be present before
changing modes, or else MUTE should be selected.
6.2.4
DAC Pair Disable (DACx_DIS)
Default = 0
0 - DAC Pair x Enabled
1 - DAC Pair x Disabled
Function:
When the bit is set, the respective DAC channel pair (AOUTAx and AOUTBx) will remain in a reset state.
It is advised that changes to these bits be made while the power-down (PDN) bit is enabled to eliminate
the possibility of audible artifacts.
Note: When the device is configured in TDM Mode by setting DIF[3:0] to 1100 (see Digital Interface
Format (DIF)), this function is not available and these bits must be set to 0 for proper operation.
6.2.5
Power Down (PDN)
Default = 1
0 - Disabled
1 - Enabled
Function:
The entire device will enter a low-power state when this function is enabled, and the contents of the control
registers are retained in this mode. The power-down bit defaults to ‘enabled’ on power-up and must be
disabled before normal operation in Control Port Mode can occur.
6.3
PCM Control (Address 03h)
7
DIF3
0
6.3.1
6
DIF2
0
5
DIF1
0
4
DIF0
0
3
Reserved
0
2
Reserved
0
1
FM1
1
0
FM0
1
Digital Interface Format (DIF)
Default = 0000 - Format 0 (Left Justified, up to 24-bit data)
Function:
These bits select the interface format for the serial audio input. The DSD/PCM bit determines whether
PCM or DSD Mode is selected.
The required relationship between the Left/Right clock, serial clock and serial data is defined by the Digital
Interface Format and the options are detailed in Figures 9-19.
Note: While in PCM Mode, the DIF bits should only be changed when the power-down (PDN) bit is set
to ensure proper switching from one mode to another.
36
DS620F1
CS4384
DIF3
DIF2
DIF1
DIF0
0
0
0
0
0
0
1
1
1
1
1
X
0
0
0
0
1
1
0
0
0
0
1
X
0
0
1
1
0
0
0
0
1
1
0
X
0
1
0
1
0
1
0
1
0
1
0
X
DESCRIPTION
Left Justified, up to 24-bit data
I2S, up to 24-bit data
Right Justified, 16-bit data
Right Justified, 24-bit data
Right Justified, 20-bit data
Right Justified, 18-bit data
One-line Mode 1, 24-bit Data +SDIN4
One-line Mode 2, 20-bit Data +SDIN4
One-line Mode 3, 24-bit 6-channel
One-line Mode 4, 20-bit 6-channel
TDM
All other combinations are Reserved
Format
FIGURE
0
1
2
3
4
5
8
9
10
11
12
9
10
11
12
13
14
15
16
17
18
19
Table 7. Digital Interface Formats - PCM Mode
6.3.2
Functional Mode (FM)
Default = 11
00 - Single-Speed Mode (4 to 50 kHz sample rates)
01 - Double-Speed Mode (50 to 100 kHz sample rates)
10 - Quad-Speed Mode (100 to 200 kHz sample rates)
11 - Auto Speed Mode detect (32 kHz to 200 kHz sample rates)
Function:
Selects the required range of input sample rates or Auto Speed Mode.
6.4
DSD Control (Address 04h)
7
DSD_DIF2
0
6.4.1
6
DSD_DIF1
0
5
DSD_DIF0
0
4
DIR_DSD
0
3
STATIC_DSD
1
2
INVALID_DSD
1
1
DSD_PM_MD
0
0
DSD_PM_EN
0
DSD Mode Digital Interface Format (DSD_DIF)
Default = 000 - Format 0 (64x oversampled DSD data with a 4x MCLK to DSD data rate)
Function:
The relationship between the oversampling ratio of the DSD audio data and the required Master clock to
DSD data rate is defined by the Digital Interface Format pins.
The DSD/PCM bit determines whether PCM or DSD Mode is selected.
DIF2
DIF1
DIFO
DESCRIPTION
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
64x oversampled DSD data with a 4x MCLK to DSD data rate
64x oversampled DSD data with a 6x MCLK to DSD data rate
64x oversampled DSD data with a 8x MCLK to DSD data rate
64x oversampled DSD data with a 12x MCLK to DSD data rate
128x oversampled DSD data with a 2x MCLK to DSD data rate.
128x oversampled DSD data with a 3x MCLK to DSD data rate.
128x oversampled DSD data with a 4x MCLK to DSD data rate.
128x oversampled DSD data with a 6x MCLK to DSD data rate.
Table 8. Digital Interface Formats - DSD Mode
DS620F1
37
CS4384
6.4.2
Direct DSD Conversion (DIR_DSD)
Function:
When set to 0 (default), DSD input data is sent to the DSD processor for filtering and volume control functions.
When set to 1, DSD input data is sent directly to the switched capacitor DACs for a pure DSD conversion.
In this mode, the full-scale DSD and PCM levels will not be matched (see Section 2), the dynamic range
performance may be reduced, the volume control is inactive, and the 50 kHz low-pass filter is not available
(see Section 2 for filter specifications).
6.4.3
Static DSD Detect (STATIC_DSD)
Function:
When set to 1 (default), the DSD processor checks for 28 consecutive zeroes or ones and, if detected,
sends a mute signal to the DACs. The MUTEC pins will eventually go active according to the DAMUTE
register.
When set to 0, this function is disabled.
6.4.4
Invalid DSD Detect (INVALID_DSD)
Function:
When set to 1, the DSD processor checks for greater than 24 out of 28 bits of the same value and, if detected, will attenuate the data sent to the DACs. The MUTEC pins go active according to the DAMUTE
register.
When set to 0 (default), this function is disabled.
6.4.5
DSD Phase Modulation Mode Select (DSD_PM_MODE)
Function:
When set to 0 (default), the 128Fs (BCKA) clock should be input to DSD_SCLK for Phase Modulation
Mode. (See Figure 20 on page 25.)
When set to 1, the 64Fs (BCKD) clock should be input to DSD_SCLK for Phase Modulation Mode.
6.4.6
DSD Phase Modulation Mode Enable (DSD_PM_EN)
Function:
When set to 1, DSD Phase Modulation Input Mode is enabled and the DSD_PM_MODE bit should be set
accordingly.
When set to 0 (default), this function is disabled (DSD normal mode).
38
DS620F1
CS4384
6.5
Filter Control (Address 05h)
7
Reserved
0
6.5.1
6
Reserved
0
5
Reserved
0
4
Reserved
0
3
Reserved
0
2
Reserved
0
1
Reserved
0
0
FILT_SEL
0
Interpolation Filter Select (FILT_SEL)
Function:
When set to 0 (default), the Interpolation Filter has a fast roll off.
When set to 1, the Interpolation Filter has a slow roll off.
The specifications for each filter can be found in the Analog characteristics table, and response plots can
be found in Figures 26 to 49.
6.6
Invert Control (Address 06h)
7
INV_B4
0
6.6.1
6
INV_A4
0
5
INV_B3
0
4
INV_A3
0
3
INV_B2
0
2
INV_A2
0
1
INV_B1
0
0
INV_A1
0
2
P3_A=B
0
1
P4_A=B
0
0
SNGLVOL
0
Invert Signal Polarity (INV_xx)
Function:
When set to 1, this bit inverts the signal polarity of channel xx.
When set to 0 (default), this function is disabled.
6.7
Group Control (Address 07h)
7
Reserved
0
6.7.1
6
MUTEC
0
5
Reserved
0
4
P1_A=B
0
3
P2_A=B
0
Mutec Pin Control (MUTEC)
Default = 0
0 - Two Mute control signals
1 - Single mute control signal on MUTEC1
Function:
Selects how the internal mute signals are routed to the MUTEC1 and MUTEC234 pins. When set to ‘0’,
a logical AND of DAC pair 1 mute control signals are output on MUTEC1 and a logical AND of the mute
control signals of DAC pairs 2, 3, and 4 are output on MUTEC234. When set to ‘1’, a logical AND of all
DAC pair mute control signals is output on the MUTEC1 pin, MUTEC234 will remain static. For more information on the use of the mute control function see the MUTEC1 and MUTEC234 pins in Section 4.11.
6.7.2
Channel A Volume = Channel B Volume (Px_A=B)
Default = 0
0 - Disabled
1 - Enabled
Function:
DS620F1
39
CS4384
The AOUTAx and AOUTBx volume levels are independently controlled by the A and the B Channel Volume Control Bytes when this function is disabled. The volume on both AOUTAx and AOUTBx are determined by the A Channel Attenuation and Volume Control Bytes (per A-B pair), and the B Channel Bytes
are ignored when this function is enabled.
6.7.3
Single Volume Control (SNGLVOL)
Default = 0
0 - Disabled
1 - Enabled
Function:
The individual channel volume levels are independently controlled by their respective Volume Control
Bytes when this function is disabled. The volume on all channels is determined by the A1 Channel Volume
Control Byte, and the other Volume Control Bytes are ignored when this function is enabled.
6.8
Ramp and Mute (Address 08h)
7
SZC1
1
6.8.1
6
SZC0
0
5
RMP_UP
1
4
RMP_DN
1
3
PAMUTE
1
2
DAMUTE
1
1
MUTE_P1
0
0
MUTE_P0
0
Soft Ramp and Zero Cross Control (SZC)
Default = 10
00 - Immediate Change
01 - Zero Cross
10 - Soft Ramp
11 - Soft Ramp on Zero Crossings
Function:
Immediate Change
When Immediate Change is selected all level changes will take effect immediately in one step.
Zero Cross
Zero Cross Enable dictates that signal level changes, either by attenuation changes or muting, will occur
on a signal zero crossing to minimize audible artifacts. The requested level change will occur after a timeout period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample rate) if the signal
does not encounter a zero crossing. The zero cross function is independently monitored and implemented
for each channel.
Soft Ramp
Soft Ramp allows level changes, both muting and attenuation, to be implemented by incrementally ramping, in 1/8 dB steps, from the current level to the new level at a rate of 1 dB per 8 left/right clock periods.
Soft Ramp on Zero Crossing
Soft Ramp and Zero Cross Enable dictates that signal level changes, either by attenuation changes or
muting, will occur in 1/8 dB steps and be implemented on a signal zero crossing. The 1/8 dB level change
will occur after a time-out period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz
sample rate) if the signal does not encounter a zero crossing. The zero cross function is independently
monitored and implemented for each channel.
40
DS620F1
CS4384
6.8.2
Soft Volume Ramp-Up After Error (RMP_UP)
Function:
An un-mute will be performed after executing an LRCK/MCLK ratio change or error, and after changing
the Functional Mode.
When set to 1 (default), this un-mute is effected, similar to attenuation changes, by the Soft and Zero
Cross bits in the Volume and Mixing Control register.
When set to 0, an immediate un-mute is performed in these instances.
Note:
6.8.3
For best results, it is recommended that this feature be used in conjunction with the RMP_DN bit.
Soft Ramp-Down Before Filter Mode Change (RMP_DN)
Function:
If either the FILT_SEL or DEM bits are changed the DAC will stop conversion for a period of time to
change its filter values. This bit selects how the data is effected prior to and after the change of the filter
values.
When set to 1 (default), a mute will be performed prior to executing a filter mode change and an un-mute
will be performed after executing the filter mode change. This mute and un-mute are effected, similar to
attenuation changes, by the Soft and Zero Cross bits in the Volume and Mixing Control register.
When set to 0, an immediate mute is performed prior to executing a filter mode change.
Note:
6.8.4
For best results, it is recommended that this feature be used in conjunction with the RMP_UP bit.
PCM Auto-Mute (PAMUTE)
Function:
When set to 1 (default) the Digital-to-Analog converter output will mute following the reception of 8192
consecutive audio samples of static 0 or -1. A single sample of non-static data will release the mute. Detection and muting is done independently for each channel. The quiescent voltage on the output will be
retained and the Mute Control pin will go active during the mute period.
When set to 0 this function is disabled.
6.8.5
DSD Auto-Mute (DAMUTE)
Function:
When set to 1 (default) the Digital-to-Analog converter output will mute following the reception of 256 repeated 8-bit DSD mute patterns (as defined in the SACD specification).
A single bit not fitting the repeated mute pattern (mentioned above) will release the mute. Detection and
muting is done independently for each channel. The quiescent voltage on the output will be retained and
the Mute Control pin will go active during the mute period.
6.8.6
MUTE Polarity and DETECT (MUTEP1:0)
Default = 00
00 - Auto polarity detect, selected from MUTEC1 pin
01 - Reserved
10 - Active low mute polarity
11 - Active high mute polarity
DS620F1
41
CS4384
Function:
Auto mute polarity detect (00)
See Section 4.11 on page 28 for the description.
Active low mute polarity (10)
When RST is low the outputs are high impedance and will need to be biased active. Once reset has been
released and after this bit is set, the MUTEC output pins will be active low polarity.
Active high mute polarity (11)
At reset time the outputs are high impedance and will need to be biased active. Once reset has been released and after this bit is set, the MUTEC output pins will be active high polarity.
6.9
Mute Control (Address 09h)
7
MUTE_B4
0
6.9.1
6
MUTE_A4
0
5
MUTE_B3
0
4
MUTE_A3
0
3
MUTE_B2
0
2
MUTE_A2
0
1
MUTE_B1
0
0
MUTE_A1
0
Mute (MUTE_xx)
Default = 0
0 - Disabled
1 - Enabled
Function:
The Digital-to-Analog converter output will mute when enabled. The quiescent voltage on the output will
be retained. The muting function is affected, similarly to attenuation changes, by the Soft and Zero Cross
bits. The MUTE pins will go active during the mute period according to the MUTEC bit.
6.10
Mixing Control (Address 0Ah, 0Dh, 10h, 13h)
7
Reserved
0
6
Px_DEM1
0
5
Px_DEM0
0
4
PxATAPI4
0
3
PxATAPI3
1
2
PxATAPI2
0
1
PxATAPI1
0
0
PxATAPI0
1
6.10.1 De-Emphasis Control (PX_DEM1:0)
Default = 00
00 - Disabled
01 - 44.1 kHz
10 - 48 kHz
11 - 32 kHz
Function:
Selects the appropriate digital filter to maintain the standard 15 µs/50 µs digital de-emphasis filter response at 32, 44.1 or 48 kHz sample rates. (Figure 20 on page 25)
De-emphasis is only available in Single-Speed Mode.
42
DS620F1
CS4384
6.10.2 ATAPI Channel Mixing and Muting (ATAPI)
Default = 01001 - AOUTAx=aL, AOUTBx=bR (Stereo)
Function:
The CS4384 implements the channel mixing functions of the ATAPI CD-ROM specification. The ATAPI
functions are applied per A-B pair. Refer to Table 9 and Figure 21 for additional information.
ATAPI4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
ATAPI3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
ATAPI2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
ATAPI1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
ATAPI0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
AOUTAx
MUTE
MUTE
MUTE
MUTE
aR
aR
aR
aR
aL
aL
aL
aL
a[(L+R)/2]
a[(L+R)/2]
a[(L+R)/2]
a[(L+R)/2]
MUTE
MUTE
MUTE
MUTE
aR
aR
aR
aR
aL
aL
aL
aL
[(aL+bR)/2]
[(aL+bR)/2]
[(bL+aR)/2]
[(aL+bR)/2]
AOUTBx
MUTE
bR
bL
b[(L+R)/2]
MUTE
bR
bL
b[(L+R)/2]
MUTE
bR
bL
b[(L+R)/2]
MUTE
bR
bL
b[(L+R)/2]
MUTE
bR
bL
[(bL+aR)/2]
MUTE
bR
bL
[(aL+bR)/2]
MUTE
bR
bL
[(aL+bR)/2]
MUTE
bR
bL
[(aL+bR)/2]
Table 9. ATAPI Decode
DS620F1
43
CS4384
6.11
Volume Control (Address 0Bh, 0Ch, 0Eh, 0Fh, 11h, 12h, 14h, 15h)
7
xx_VOL7
0
6
xx_VOL6
0
5
xx_VOL5
0
4
xx_VOL4
0
3
xx_VOL3
0
2
xx_VOL2
0
1
xx_VOL1
0
0
xx_VOL0
0
These eight registers provide individual volume and mute control for each of the eight channels.
The values for “xx” in the bit fields above are as follows:
Register address 0Bh - xx = A1
Register address 0Ch - xx = B1
Register address 0Eh - xx = A2
Register address 0Fh - xx = B2
Register address 11h - xx = A3
Register address 12h - xx = B3
Register address 14h - xx = A4
Register address 15h - xx = B4
6.11.1
Digital Volume Control (xx_VOL7:0)
Default = 00h (0 dB)
Function:
The Digital Volume Control registers allow independent control of the signal levels in 1/2 dB increments
from 0 to -127.5 dB. Volume settings are decoded as shown in Table 10. The volume changes are implemented as dictated by the Soft and Zero Cross bits in the Power and Muting Control register. Note that
the values in the volume setting column in Table 10 are approximate. The actual attenuation is determined
by taking the decimal value of the volume register and multiplying by 6.02/12.
Binary Code
Decimal Value
Volume Setting
00000000
00000001
00000110
11111111
0
1
6
255
0 dB
-0.5 dB
-3.0 dB
-127.5 dB
Table 10. Example Digital Volume Settings
6.12
PCM Clock Mode (Address 16h)
7
Reserved
0
6
Reserved
0
5
MCLKDIV
0
4
Reserved
0
3
Reserved
0
2
Reserved
0
1
Reserved
0
0
Reserved
0
6.12.1 Master Clock Divide by 2 Enable (MCLKDIV)
Function:
When set to 1, the MCLKDIV bit enables a circuit which divides the externally applied MCLK signal by 2
prior to all other internal circuitry.
When set to 0 (default), MCLK is unchanged.
44
DS620F1
CS4384
0
0
−20
−20
−40
−40
Amplitude (dB)
Amplitude (dB)
7. FILTER RESPONSE PLOTS
−60
−60
−80
−80
−100
−100
−120
0.4
0.5
0.6
0.7
0.8
Frequency(normalized to Fs)
0.9
−120
0.4
1
Figure 28. Single-Speed (fast) Stopband Rejection
0.42
0.44
0.46
0.48
0.5
0.52
Frequency(normalized to Fs)
0.54
0.56
0.58
0.6
Figure 29. Single-Speed (fast) Transition Band
0.02
0
−1
0.015
−2
0.01
0.005
−4
Amplitude (dB)
Amplitude (dB)
−3
−5
−6
0
−0.005
−7
−0.01
−8
−0.015
−9
−10
0.45
0.46
0.47
0.48
0.49
0.5
0.51
Frequency(normalized to Fs)
0.52
0.53
0.54
−0.02
0.55
0
0
−20
−20
−40
−40
−60
−80
−100
−100
0.5
0.6
0.7
0.8
Frequency(normalized to Fs)
0.9
1
Figure 32. Single-Speed (slow) Stopband Rejection
DS620F1
0.1
0.15
0.2
0.25
0.3
Frequency(normalized to Fs)
0.35
0.4
0.45
0.5
−60
−80
−120
0.4
0.05
Figure 31. Single-Speed (fast) Passband Ripple
Amplitude (dB)
Amplitude (dB)
Figure 30. Single-Speed (fast) Transition Band (detail)
0
−120
0.4
0.42
0.44
0.46
0.48
0.5
0.52
Frequency(normalized to Fs)
0.54
0.56
0.58
0.6
Figure 33. Single-Speed (slow) Transition Band
45
CS4384
0.02
0
−1
0.015
−2
0.01
0.005
−4
Amplitude (dB)
Amplitude (dB)
−3
−5
−6
0
−0.005
−7
−0.01
−8
−0.015
−9
−10
0.45
0.46
0.47
0.48
0.49
0.5
0.51
Frequency(normalized to Fs)
0.52
0.53
0.54
−0.02
0.55
Figure 34. Single-Speed (slow) Transition Band (detail)
0.1
0.15
0.2
0.25
0.3
Frequency(normalized to Fs)
0.35
0.4
0.45
0.5
0
20
20
40
40
Amplitude (dB)
Amplitude (dB)
0.05
Figure 35. Single-Speed (slow) Passband Ripple
0
60
60
80
80
100
100
120
0
120
0.4
0.5
0.6
0.7
0.8
Frequency(normalized to Fs)
0.9
1
Figure 36. Double-Speed (fast) Stopband Rejection
0.4
0.42
0.44
0.46
0.48
0.5
0.52
Frequency(normalized to Fs)
0.54
0.56
0.58
0.6
Figure 37. Double-Speed (fast) Transition Band
0
0.02
1
0.015
2
0.01
0.005
4
Amplitude (dB)
Amplitude (dB)
3
5
6
0
0.005
7
0.01
8
0.015
9
10
0.45
0.46
0.47
0.48
0.49
0.5
0.51
Frequency(normalized to Fs)
0.52
0.53
0.54
0.55
Figure 38. Double-Speed (fast) Transition Band (detail)
46
0.02
0
0.05
0.1
0.15
0.2
0.25
0.3
Frequency(normalized to Fs)
0.35
0.4
0.45
0.5
Figure 39. Double-Speed (fast) Passband Ripple
DS620F1
CS4384
0
20
20
40
40
Amplitude (dB)
Amplitude (dB)
0
60
60
80
80
100
100
120
120
0.2
0.3
0.4
0.5
0.6
0.7
Frequency(normalized to Fs)
0.8
0.9
1
Figure 40. Double-Speed (slow) Stopband Rejection
0.2
0.3
0.4
0.5
0.6
Frequency(normalized to Fs)
0.7
0.8
Figure 41. Double-Speed (slow) Transition Band
0
0.02
1
0.015
2
0.01
0.005
4
Amplitude (dB)
Amplitude (dB)
3
5
6
0
0.005
7
0.01
8
0.015
9
10
0.45
0.46
0.47
0.48
0.49
0.5
0.51
Frequency(normalized to Fs)
0.52
0.53
0.54
0.02
0.55
Figure 42. Double-Speed (slow) Transition Band (detail)
40
40
Amplitude (dB)
Amplitude (dB)
20
60
0.15
0.2
Frequency(normalized to Fs)
0.25
0.3
0.35
60
80
80
100
100
120
0.3
0.4
0.5
0.6
0.7
Frequency(normalized to Fs)
0.8
0.9
1
Figure 44. Quad-Speed (fast) Stopband Rejection
DS620F1
0.1
0
20
0.2
0.05
Figure 43. Double-Speed (slow) Passband Ripple
0
120
0
0.2
0.3
0.4
0.5
0.6
Frequency(normalized to Fs)
0.7
0.8
Figure 45. Quad-Speed (fast) Transition Band
47
CS4384
0.2
0
1
0.15
2
0.1
3
Amplitude (dB)
Amplitude (dB)
0.05
4
5
6
0
0.05
7
0.1
8
0.15
9
10
0.45
0.2
0.46
0.47
0.48
0.49
0.5
0.51
Frequency(normalized to Fs)
0.52
0.53
0.54
0.55
Figure 46. Quad-Speed (fast) Transition Band (detail)
0
0.05
0.1
0.15
Frequency(normalized to Fs)
0.2
0.25
Figure 47. Quad-Speed (fast) Passband Ripple
0
0
20
40
40
Amplitude (dB)
Amplitude (dB)
20
60
60
80
80
100
100
120
120
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Frequency(normalized to Fs)
0.8
0.9
1
Figure 48. Quad-Speed (slow) Stopband Rejection
0.1
0.2
0.3
0.4
0.5
0.6
Frequency(normalized to Fs)
0.7
0.8
0.9
Figure 49. Quad-Speed (slow) Transition Band
0.02
0
1
0.015
2
0.01
0.005
4
Amplitude (dB)
Amplitude (dB)
3
5
6
0
0.005
7
0.01
8
0.015
9
10
0.45
0.46
0.47
0.48
0.49
0.5
0.51
Frequency(normalized to Fs)
0.52
0.53
0.54
0.55
Figure 50. Quad-Speed (slow) Transition Band (detail)
48
0.02
0
0.02
0.04
0.06
0.08
Frequency(normalized to Fs)
0.1
0.12
Figure 51. Quad-Speed (slow) Passband Ripple
DS620F1
CS4384
8. REFERENCES
1. How to Achieve Optimum Performance from Delta-Sigma A/D & D/A Converters, by Steven Harris. Paper
presented at the 93rd Convention of the Audio Engineering Society, October 1992.
2. CDB4364 data sheet, available at http://www.cirrus.com.
3. Design Notes for a 2-Pole Filter with Differential Input, by Steven Green. Cirrus Logic Application Note AN48
4. The I²C-Bus Specification: Version 2.0, Philips Semiconductors, December 1998.
http://www.semiconductors.philips.com
5. AN282 “The 2-Channel Serial Audio Interface: A Tutorial”
9. PARAMETER DEFINITIONS
Total Harmonic Distortion + Noise (THD+N)
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified
bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels.
Dynamic Range
The ratio of the full-scale rms value of the signal to the rms sum of all other spectral components over the
specified bandwidth. Dynamic range is a signal-to-noise measurement over the specified bandwidth made
with a -60 dBFS signal. 60 dB is then added to the resulting measurement to refer the measurement to full
scale. This technique ensures that the distortion components are below the noise level and do not affect the
measurement. This measurement technique has been accepted by the Audio Engineering Society, AES171991, and the Electronic Industries Association of Japan, EIAJ CP-307.
Interchannel Isolation
A measure of crosstalk between the left and right channels. Measured for each channel at the converter's
output with all zeros to the input under test and a full-scale signal applied to the other channel. Units in decibels.
Interchannel Gain Mismatch
The gain difference between left and right channels. Units in decibels.
Gain Error
The deviation from the nominal full-scale analog output for a full-scale digital input.
Gain Drift
The change in gain value with temperature. Units in ppm/°C.
DS620F1
49
CS4384
10.PACKAGE DIMENSIONS
48L LQFP PACKAGE DRAWING
E
E1
D D1
1
e
B
∝
A
A1
L
DIM
MIN
INCHES
NOM
MAX
MIN
MILLIMETERS
NOM
MAX
A
A1
B
D
D1
E
E1
e*
L
--0.002
0.007
0.343
0.272
0.343
0.272
0.016
0.018
0.000°
0.055
0.004
0.009
0.354
0.28
0.354
0.28
0.020
0.24
4°
0.063
0.006
0.011
0.366
0.280
0.366
0.280
0.024
0.030
7.000°
--0.05
0.17
8.70
6.90
8.70
6.90
0.40
0.45
0.00°
1.40
0.10
0.22
9.0 BSC
7.0 BSC
9.0 BSC
7.0 BSC
0.50 BSC
0.60
4°
1.60
0.15
0.27
9.30
7.10
9.30
7.10
0.60
0.75
7.00°
∝
* Nominal pin pitch is 0.50 mm
Controlling dimension is mm.
JEDEC Designation: MS022
50
DS620F1
CS4384
11.ORDERING INFORMATION
Product
CS4384
CDB4384
Description
Package
114 dB, 192 kHz 848-pin
channel D/A Converter
LQFP
CS4384 Evaluation Board
Pb-Free
Grade
Temp Range
YES
Commercial
-40° to +85° C
-
-
-
Container
Tray
Tape & Reel
-
Order #
CS4384-CQZ
CS4384-CQZR
CDB4384
12.REVISION HISTORY
Release
Changes
A1
Initial Release
Corrected DAC Pair Disable register description in “DAC Pair Disable (DACx_DIS)” on page 36
Added note to Digital Interface Format register description in “Digital Interface Format (DIF)” on page 36
Removed Automotive Grade
Added PCM mode format changeable in reset only to “Mode Select” on page 21
Updated ambient operating temperature range for commercial grade
Updated Full Scale Differential Output Voltage in “DAC Analog Characteristics” on page 9
Updated VD power supply current and package thermal resistance in Power and Thermal Characteristics
Updated “Digital Characteristics” on page 13
Updated Legal Information under “IMPORTANT NOTICE” on page 51
F1
Contacting Cirrus Logic Support
For all product questions and inquiries, contact a Cirrus Logic Sales Representative.
To find one nearest you, go to www.cirrus.com.
IMPORTANT NOTICE
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject
to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE
IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND
CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR
CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO
FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks
or service marks of their respective owners.
I²C is a registered trademark of Philips Semiconductor.
SPI is a trademark of Motorola, Inc.
Direct Stream Digital is a registered trademark of Sony Kabushiki Kaisha TA Sony Corporation.
DSD is a trademark of Sony Kabushiki Kaisha TA Sony Corporation.
DS620F1
51
CS4384
52
DS620F1