DALLAS DS4802

PRELIMINARY
DS4802
Low Voltage, Micro Power, High
Performance, Rail-To-Rail Dual Op-Amp
www.dalsemi.com
FEATURES
PACKAGES/PINOUTS
Very low operating power:
12 µA typical per amplifier
High output sink/source capability
Supply Voltage Range 1.8 to 5.5V
Rail-to-Rail Output Swing
Input offset voltage: 0.95 mV max.
AOUT
AIN-
1
8
2
7
A
AIN+
GND
3
4
ORDERING INFORMATION
Part Number
Description
DS4802
8-pin DIP
DS4802S
8-pin SOIC
DS4802U
8-pin µ-SOP
DS4802X
- +
B
+ -
6
5
VDD
BOUT
BIN-
BIN+
300-mil DIP
150-mil SOIC
118-mil µ-SOP
VDD
6
1
4
BOUT
AOUT
8-bump Flip-Chip
2
For mechanical dimensions see website.
AIN-
A
- +
B
+ -
7
5
8
BINBIN+
AIN+
3
GND
8-bump Flip-Chip
DESCRIPTION
The DS4802 BiCMOS dual operational amplifier combines low input offset voltage, very low power
consumption, rail-to-rail output swing, and excellent DC precision. With a maximum input offset voltage
of 0.95 mV, a maximum IDD of 25 µA/amplifier, and 10 pA typical input bias current, the DS4802 is ideal
for measurement, medical, and industrial applications. The DS4802 is also ideal for portable applications
with 1.8 volt to 5.5 volt single supply voltage operation and low power consumption.
1 of 19
081000
DS4802
ABSOLUTE MAXIMUM RATINGS
Supply Voltage, VDD (see Note 1)
5.5V
Differential Input Voltage (see Note 2)
± VDD
Input Voltage Range, VI (see Note 1)
-0.3V to VDD
Input Current, IDD
± 4 mA
Output Current, IO
± 50 mA
Total current into VDD
± 50 mA
Total current out of GND
± 50 mA
Duration of short-circuit current (See Note 3)
unlimited
Operating Temperature
0oC to 70oC
Storage Temperature
-55oC to +125oC
Soldering Temperature
260oC for 10 seconds
Notes:
1. Relative to GND.
2. Non-inverting input relative to inverting input. Excessive current flows when input is brought below
GND - 0.3V.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to
ensure that the maximum dissipation rating is not exceeded.
RECOMMENDED OPERATING CONDITIONS
PARAMETER
SYMBOL
MIN
Supply Voltage
VDD
Input Voltage Range
MAX
UNITS
NOTES
1.8
5.5
V
1
VI
GND
VDD - 1.0
V
1
Common-Mode Input Voltage
VIC
GND
VDD - 1.0
V
Free-Air Operating Temperature
TA
0
70
Notes:
1. Voltage referenced to GND.
2 of 19
TYP
o
C
DS4802
ELECTRICAL CHARACTERISTICS
PARAMETER
Input Offset Voltage
(VIC = 0.5V, RS = 50Ω, VOUT = VDD/2)
Temperature Coefficient of Input
Offset Voltage
(VIC = 0.5V, RS = 50Ω, VOUT = VDD/2)
Input Offset Current
(RS = 50Ω)
Input Bias Current
(RS = 50Ω)
Common-mode Input Voltage Range
(|VIO| ≤ 5 mV, RS = 50Ω)
High Level Output Voltage
(IOH = -50 µA)
(IOH = -500 µA)
Low Level Output Voltage
(IOL = 50 µA)
(IOL = 500 µA)
Large Signal Differential Voltage
Amplification
(VIC = 0.5V, 0.4V ≤ VO ≤ 1.4V) RL =
100 kΩ
(VIC = 0.5V, 0.4V ≤ VO ≤ 1.4V) RL =
10 kΩ
Input Resistance
Common Mode Input Capacitance
Common Mode Rejection Ratio
(0V ≤ VIC ≤ 0.8V, RS = 50Ω, VO =
VDD/2)
Supply Voltage Rejection Ratio
(1.8V ≤ VDD ≤ 3.6V, VIC = VDD/2, no
load)
Amplifier Supply Current (per
channel)
(VO = VDD/2, no load)
Slew Rate at Unity Gain
(RL = 100 kΩ, CL = 100 pF tied to
VDD/2)
(TA: 0°C – 70°C. VDD = 1.8V)
SYMBOL
TYP
MAX
UNITS
VIO
0.1
0.95
mV
αVIO
2
IIO
5
500
pA
IIB
10
500
pA
VICR
MIN
0 to 1
VOH
1.5
VOL
-0.3 to
1.2
V
1.785
1.65
V
10
100
mV
200
75
65
dB
RIN
>1012
Ω
ci(c)
24.0
pF
AVD
65
55
µV/°C
CMRR
60
75
dB
kSVR
70
85
dB
12
IDD
SR
3 of 19
10
15
25
µA
V/ms
NOTES
DS4802
PARAMETER
Equivalent Input Noise Voltage
(f = 10 Hz)
(f = 1 kHz)
Unity Gain Bandwidth Product
(RL = 100 kΩ, CL = 100 pF tied to
VDD/2)
Phase Margin at Unity Gain
(RL = 100 kΩ, CL = 100 pF tied to
VDD/2)
Gain Margin
(RL = 100 kΩ, CL = 100 pF tied to
VDD/2)
SYMBOL
MIN
Input Offset Voltage
(VIC = 1.5V, RS = 50Ω, VOUT = VDD/2)
Temperature Coefficient of Input
Offset Voltage
(VIC = 1.5V, RS = 50Ω, VOUT = VDD/2)
Input Offset Current
(RS = 50Ω)
Input Bias Current
(RS = 50Ω)
Common-mode Input Voltage Range
(|VIO| ≤ 5 mV, RS = 50Ω)
High Level Output Voltage
(IOH = -200 µA)
(IOH = -2 mA)
Low Level Output Voltage
(VIC = 1.5V, IOL = 200 µA)
(VIC = 1.5V, IOL = 2 mA)
Large Signal Differential Voltage
Amplification
(VIC = 1.5V, 0.5V ≤ VO ≤ 2.5V) RL =
100 kΩ
(VIC = 1.5V, 0.5V ≤ VO ≤ 2.5V) RL =
10kΩ
Input Resistance
Common Mode Input Capacitance
Common Mode Rejection Ratio
MAX
UNITS
VN
120
60
nV/√Hz
UGBW
31
kHz
φM
60
Degree
17
dB
ELECTRICAL CHARACTERISTICS cont.
PARAMETER
TYP
SYMBOL
(TA: 0°C – 70°C. VDD = 3.0V)
TYP
MAX
UNITS
VIO
0.1
0.95
mV
αVIO
2
IIO
5
500
pA
IIB
10
500
pA
VICR
MIN
0 to 2
VOH
2.4
VOL
-0.3 to
2.2
V
2.97
2.7
V
24
240
mV
500
dB
RIN
>1012
Ω
cI(c)
CMRR
24.0
80
pF
dB
4 of 19
70
60
µV/°C
80
70
AVD
NOTES
65
NOTES
DS4802
PARAMETER
(0V ≤ VIC ≤ 2V, RS = 50Ω, VO =
VDD/2)
Supply Voltage Rejection Ratio
(1.8V ≤ VDD ≤ 3.6V, VIC = VDD/2, no
load)
Amplifier Supply Current (per
channel)
(VO = VDD/2, no load)
Slew Rate at Unity Gain
(RL = 100 kΩ, CL = 100 pF tied to
VDD/2)
Equivalent Input Noise Voltage
(f = 10 Hz)
(f = 1 kHz)
Unity Gain Bandwidth Product
(RL = 100 kΩ, CL = 100 pF tied to
VDD/2)
Phase Margin at Unity Gain
(RL = 100 kΩ, CL = 100 pF tied to
VDD/2)
Gain Margin
(RL = 100 kΩ, CL = 100 pF tied to
VDD/2)
SYMBOL
MIN
TYP
kSVR
70
85
IDD
SR
12
UNITS
dB
25
µA
15
V/ms
VN
120
60
nV/√Hz
UGBW
35
kHz
φM
60
Degree
17
dB
5 of 19
10
MAX
NOTES
DS4802
DISTRIBUTION OF DS4802
INPUT OFFSET VOLTAGE
Percentage of Amplifiers - %
35
V DD = 1.8 V
30
RL = 10K
TA = 25oC
25
20
15
10
5
0
-1000
-800
-600
-400
-200
0
200
400
600
800
1000
VIO - Input Offset Voltage - uV
Figure 1.0
DISTRIBUTION OF DS4802
INPUT OFFSET VOLTAGE
Percentage of Amplifiers - %
35
VDD = 3.0 V
30
RL = 10K
TA = 25oC
25
20
15
10
5
0
-1000
-800
-600
-400
-200
0
200
400
VIO - Input Offset Voltage - uV
Figure 2.0
6 of 19
600
800
1000
DS4802
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
VIO - Input Offset Voltage - mV
2
V DD = 1.8 V
TA = 25oC
1
0
-1
-0.5
0
0.5
1
1.5
2
VIC - Common-Mode Input Voltage - V
Figure 3.0
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
VIO - Input Offset Voltage - mV
2
V DD = 3.0 V
TA = 25oC
1
0
-1
-0.5
0
0.5
1
1.5
VIC - Common-Mode Input Voltage - V
Figure 4.0
7 of 19
2
2.5
DS4802
DISTRIBUTION OF DS4802
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
25%
VDD = 1.8 V
RL = 10K
20%
o
TA = 25 C
15%
10%
5%
0%
-20
-15
-10
-5
0
5
10
15
20
αVIO - Temperature Coefficient - uV/oC
Figure 5.0
DISTRIBUTION OF DS4802
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
18%
VDD = 3.0 V
RL = 10K
16%
14%
o
TA = 25 C
12%
10%
8%
6%
4%
2%
0%
-20
-15
-10
-5
0
5
αVIO - Temperature Coefficient - uV/oC
Figure 6.0
8 of 19
10
15
20
DS4802
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
VOH - High-Level Output Voltage - V
2
VDD = 1.8 V
1.8
1.6
o
-40 C
1.4
1.2
o
0C
1
0.8
o
85 C
o
25 C
0.6
0.4
o
125 C
0.2
0
0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
IOH - High-Level Output Current - mA
Figure 7.0
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
VOH - High-Level Output Voltage - V
3.5
VDD = 3.0 V
3
o
2.5
-40 C
2
o
0C
1.5
o
o
85 C
25 C
1
o
125 C
0.5
0
0.00
1.00
2.00
3.00
4.00
5.00
IOH - High-Level Output Current - mA
Figure 8.0
9 of 19
6.00
7.00
8.00
DS4802
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
1.8
VOL - Low-Level Output Voltage - V
VDD = 1.8 V
1.6
o
125 C
1.4
o
85 C
1.2
o
25 C
1.0
0.8
o
0C
0.6
0.4
o
-40 C
0.2
0.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
IOL - Low-Level Output Current - mA
Figure 9.0
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
VOL - Low-Level Output Voltage - V
3.0
o
125 C
VDD = 3.0 V
o
25 C
2.5
o
85 C
2.0
1.5
o
0C
1.0
o
-40 C
0.5
0.0
0
2
4
6
8
IOL - Low-Level Output Current - mA
Figure 10.0
10 of 19
10
12
DS4802
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
IOS - Short-Circuit Output Current - mA
3
2
IOSL
1
VDD = 1.8 V
0
-1
IOSH
-2
-50
-25
0
25
50
75
100
125
75
100
125
o
TA - Free-Air Temperature - C
Figure 11.0
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
IOS - Short-Circuit Output Current - mA
12
8
IOSL
4
VDD = 3.0 V
0
IOSH
-4
-8
-50
-25
0
25
50
o
TA - Free-Air Temperature - C
Figure 12.0
11 of 19
DS4802
LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION
AND PHASE MARGIN
vs
FREQUENCY
90
40
V DD = 1.8 V
TA = 25oC
20
45
RL = 100K
CL = 100pF
AVD
0
0
-20
-45
-40
-90
1K
10K
100K
Phase Margin - degrees
AVD - Gain Margin - dB
Phase
1M
f - Frequency - Hz
Figure 13.0
LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION
AND PHASE MARGIN
vs
FREQUENCY
90
40
VDD = 3.0 V
TA = 25oC
20
45
RL = 100K
CL = 100pF
AVD
0
0
-20
-45
-40
-90
1K
10K
100K
f - Frequency - Hz
Figure 14.0
12 of 19
1M
Phase Margin - degrees
AVD - Gain Margin - dB
Phase
DS4802
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
100
V DD = 3.0 V
CMRR - Common-Mode Rejection Ratio - dB
80
60
VDD = 1.8 V
40
20
0
10
100
1K
10K
100K
f - Frequency - Hz
Figure 15.0
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
100
kSVR - Supply-Voltage Rejection Ratio - dB
80
kSVR +
60
40
kSVR 20
0
-20
100
1K
10K
f - Frequency - Hz
Figure 16.0
13 of 19
100K
DS4802
VOLTAGE-FOLLOWER
SMALL-SIGNAL PULSE RESPONSE
0.600
VDD = 1.8 V
VO - Output Voltage - V
0.580
AV = +1
0.560
RL = 100K
0.540
CL = 100pF
0.520
TA = 25oC
0.500
0.480
0.460
0.440
0.420
0.400
0
200
400
600
800
1000
t - Time - us
Figure 17.0
VOLTAGE-FOLLOWER
SMALL-SIGNAL PULSE RESPONSE
1.100
VDD = 3.0 V
VO - Output Voltage - V
AV = +1
RL = 100K
1.050
CL = 100pF
TA = 25oC
1.000
0.950
0.900
0
200
400
600
t - Time - us
Figure 18.0
14 of 19
800
1000
DS4802
VOLTAGE-FOLLOWER
LARGE-SIGNAL PULSE RESPONSE
1.000
VDD = 1.8 V
VO - Output Voltage - V
0.900
AV = +1
0.800
RL = 100K
0.700
CL = 100pF
0.600
TA = 25oC
0.500
0.400
0.300
0.200
0.100
0.000
0
200
400
600
800
1000
800
1000
t - Time - us
Figure 19.0
VOLTAGE-FOLLOWER
LARGE-SIGNAL PULSE RESPONSE
2.000
V DD = 3.0 V
VO - Output Voltage - V
1.750
A V = +1
RL = 100K
1.500
CL = 100pF
TA = 25oC
1.250
1.000
0.750
0.500
0.250
0
200
400
600
t - Time - us
Figure 20.0
15 of 19
DS4802
INVERTING SMALL-SIGNAL
PULSE RESPONSE
0.600
VDD = 1.8 V
VO - Output Voltage - V
0.580
AV = -1
0.560
RL = 100K
0.540
CL = 100pF
TA = 25oC
0.520
0.500
0.480
0.460
0.440
0.420
0.400
0
200
400
600
800
1000
t - Time - us
Figure 21.0
INVERTING SMALL-SIGNAL
PULSE RESPONSE
1.100
VDD = 3.0 V
VO - Output Voltage - V
AV = -1
RL = 100K
1.050
CL = 100pF
TA = 25oC
1.000
0.950
0.900
0
200
400
600
t - Time - us
Figure 22.0
16 of 19
800
1000
DS4802
INVERTING LARGE-SIGNAL
PULSE RESPONSE
1.000
V DD = 1.8 V
VO - Output Voltage - V
0.900
A V = -1
0.800
RL = 100K
CL = 100pF
0.700
TA = 25oC
0.600
0.500
0.400
0.300
0.200
0.100
0.000
0
200
400
600
800
1000
t - Time - us
Figure 23.0
INVERTING LARGE-SIGNAL
PULSE RESPONSE
2.000
VDD = 3.0 V
VO - Output Voltage - V
1.750
AV = -1
RL = 100K
1.500
CL = 100pF
TA = 25oC
1.250
1.000
0.750
0.500
0.250
0
200
400
600
t - Time - us
Figure 24.0
17 of 19
800
1000
DS4802
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
40
o
IDD - Supply Current - uA
V IC = 30% V DD
o
125 C
85 C
30
20
o
0C
o
-40 C
10
o
25 C
0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
VDD - Suplly Voltage - V
Figure 25.0
UNITY-GAIN BANDWIDTH
vs
LOAD CAPACITANCE
40
VDD = 3.0 V
RL = 100K
35
o
TA = 25 C
30
25
20
15
10
5
0
10
100
1K
CL - Load Capacitance - pF
Figure 26.0
18 of 19
10K
DS4802
PHASE MARGIN
vs
LOAD CAPACITANCE
Phase Margin - degrees
70
Rnull = 10K
60
Rnull = 4.7K
VDD = 3.0 V
RL = 100K
50
TA = 25oC
40
+VDD/2
30
AC
+
20
10
Rnull = 2.2K
RNULL
-
RLOAD
CLOAD
Rnull = 0
-VDD/2
0
10
100
1K
CL - Load Capacitance - pF
Figure 27.0
GAIN MARGIN
vs
LOAD CAPACITANCE
25
V DD = 3.0 V
Rnull = 10K
RL = 100K
Gain Margin - dB
20
Rnull = 4.7K
TA = 25oC
15
Rnull = 2.2K
+VDD/2
10
Rnull = 0
AC
+
-
5
RNULL
RLOAD
CLOAD
-VDD/2
0
10
100
CL - Load Capacitance - pF
Figure 28.0
19 of 19
1K