HB52R1289E22-A6B/B6B 1 GB Registered SDRAM DIMM 128-Mword × 72-bit, 100 MHz Memory Bus, 2-Bank Module (36 pcs of 64 M × 4 Components) PC100 SDRAM E0017H20 (Ver. 2.0) Aug. 20, 2001 (K) Description The HB52R1289E22 belongs to 8-byte DIMM (Dual In-line Memory Module) family, and has been developed as an optimized main memory solution for 8-byte processor applications. The HB52R1289E22 is a 64M × 72 × 2-bank Synchronous Dynamic RAM Module, mounted 36 pieces of 256-Mbit SDRAM (HM5225405BTB) sealed in TCP package, 1 piece of PLL clock driver, 3 pieces register driver and 1 piece of serial EEPROM (2-kbit) for Presence Detect (PD). An outline of the HB52R1289E22 is 168-pin socket type package (dual lead out). Therefore, the HB52R1289E22 makes high density mounting possible without surface mount technology. The HB52R1289E22 provides common data inputs and outputs. Decoupling capacitors are mounted beside TCP on the module board. Note: Do not push the cover or drop the modules in order to protect from mechanical defects, which would be electrical defects. Features • Fully compatible with : JEDEC standard outline 8-byte DIMM : Intel PCB Reference design (Rev. 1.2) • 168-pin socket type package (dual lead out) Outline: 133.37 mm (length) × 38.10 mm (Height) × 4.80 mm (Thickness) Lead pitch: 1.27 mm • 3.3 V power supply • Clock frequency: 100 MHz (max) • LVTTL interface • Data bus width: × 72 ECC • Single pulsed RAS • 4 Banks can operates simultaneously and independently • Burst read/write operation and burst read/single write operation capability • Programmable burst length: 1/2/4/8 Elpida Memory, Inc. is a joint venture DRAM company of NEC Corporation and Hitachi, Ltd. HB52R1289E22-A6B/B6B • 2 variations of burst sequence Sequential Interleave • Programmable CE latency : 3/4 (HB52R1289E22-A6B) : 4 (HB52R1289E22-B6B) • Byte control by DQMB • Refresh cycles: 8192 refresh cycles/64 ms • 2 variations of refresh Auto refresh Self refresh Ordering Information Type No. Frequency CE latency Package HB52R1289E22-A6B 100 MHz 3/4 168-pin dual lead out socket type Gold HB52R1289E22-B6B 100 MHz 4 Contact pad Pin Arrangement 1 pin 10 pin 11 pin 40 pin 41 pin 85 pin 94 pin 95 pin 124 pin 125 pin Data Sheet E0017H20 2 84 pin 168 pin HB52R1289E22-A6B/B6B Pin No. Pin name Pin No. Pin name Pin No. Pin name Pin No. Pin name 1 VSS 43 VSS 85 VSS 127 VSS 2 DQ0 44 NC 86 DQ32 128 CKE0 3 DQ1 45 S2 87 DQ33 129 S3 4 DQ2 46 DQMB2 88 DQ34 130 DQMB6 5 DQ3 47 DQMB3 89 DQ35 131 DQMB7 6 VCC 48 NC 90 VCC 132 NC 7 DQ4 49 VCC 91 DQ36 133 VCC 8 DQ5 50 NC 92 DQ37 134 NC 9 DQ6 51 NC 93 DQ38 135 NC 10 DQ7 52 CB2 94 DQ39 136 CB6 11 DQ8 53 CB3 95 DQ40 137 CB7 12 VSS 54 VSS 96 VSS 138 VSS 13 DQ9 55 DQ16 97 DQ41 139 DQ48 14 DQ10 56 DQ17 98 DQ42 140 DQ49 15 DQ11 57 DQ18 99 DQ43 141 DQ50 16 DQ12 58 DQ19 100 DQ44 142 DQ51 17 DQ13 59 VCC 101 DQ45 143 VCC 18 VCC 60 DQ20 102 VCC 144 DQ52 19 DQ14 61 NC 103 DQ46 145 NC 20 DQ15 62 NC 104 DQ47 146 NC 21 CB0 63 NC 105 CB4 147 REGE 22 CB1 64 VSS 106 CB5 148 VSS 23 VSS 65 DQ21 107 VSS 149 DQ53 24 NC 66 DQ22 108 NC 150 DQ54 25 NC 67 DQ23 109 NC 151 DQ55 26 VCC 68 VSS 110 VCC 152 VSS 27 W 69 DQ24 111 CE 153 DQ56 28 DQMB0 70 DQ25 112 DQMB4 154 DQ57 29 DQMB1 71 DQ26 113 DQMB5 155 DQ58 30 S0 72 DQ27 114 S1 156 DQ59 31 NC 73 VCC 115 RE 157 VCC 32 VSS 74 DQ28 116 VSS 158 DQ60 33 A0 75 DQ29 117 A1 159 DQ61 34 A2 76 DQ30 118 A3 160 DQ62 35 A4 77 DQ31 119 A5 161 DQ63 Data Sheet E0017H20 3 HB52R1289E22-A6B/B6B Pin No. Pin name Pin No. Pin name Pin No. Pin name Pin No. Pin name 36 A6 78 VSS 120 A7 162 VSS 37 A8 79 CK2 121 A9 163 CK3 38 A10 (AP) 80 NC 122 BA0 164 NC 39 BA1 81 WP 123 A11 165 SA0 40 VCC 82 SDA 124 VCC 166 SA1 41 VCC 83 SCL 125 CK1 167 SA2 42 CK0 84 VCC 126 A12 168 VCC Pin Description Pin name Function A0 to A12 Address input Row address A0 to A12 Column address A0 to A9, A11 BA0/BA1 Bank select address DQ0 to DQ63 Data input/output CB0 to CB7 Check bit (Data input/output) S0 to S3 Chip select input RE Row enable (RAS) input CE Column enable (CAS) input W Write enable input DQMB0 to DQMB7 Byte data mask CK0 to CK3 Clock input CKE0 Clock enable input WP BA0/BA1 Write protect for serial PD 1 REGE* Register/Buffer enable SDA Data input/output for serial PD SCL Clock input for serial PD SA0 to SA2 Serial address input VCC Primary positive power supply VSS Ground NC No connection Note: 1. REGE ≥ V IH: Register mode. REGE ≤ V IL: Buffer mode. Data Sheet E0017H20 4 HB52R1289E22-A6B/B6B Serial PD Matrix*1 Byte No. Function described Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value Comments 0 Number of bytes used by module manufacturer 1 0 0 0 0 0 0 0 80 128 1 Total SPD memory size 0 0 0 0 1 0 0 0 08 256 byte 2 Memory type 0 0 0 0 0 1 0 0 04 SDRAM 3 Number of row addresses bits 0 0 0 0 1 1 0 1 0D 13 4 Number of column addresses bits 0 0 0 0 1 0 1 1 0B 11 5 Number of banks 0 0 0 0 0 0 1 0 02 2 6 Module data width 0 1 0 0 1 0 0 0 48 72 bit 7 Module data width (continued) 0 0 0 0 0 0 0 0 00 0 (+) 8 Module interface signal levels 0 0 0 0 0 0 0 1 01 LVTTL 9 SDRAM cycle time (highest CE latency) 10 ns 1 0 1 0 0 0 0 0 A0 CL = 3 10 SDRAM access from Clock (highest CE latency) 6 ns 0 1 1 0 0 0 0 0 60 *3 11 Module configuration type 0 0 0 0 0 0 1 0 02 ECC 12 Refresh rate/type 1 0 0 0 0 0 1 0 82 Normal (7.8125 µs) Self refresh 13 SDRAM width 0 0 0 0 0 1 0 0 04 64M × 4 14 Error checking SDRAM width 0 0 0 0 0 1 0 0 04 ×4 15 SDRAM device attributes: 0 minimum clock delay for back-toback random column addresses 0 0 0 0 0 0 1 01 1 CLK 16 SDRAM device attributes: Burst lengths supported 0 0 0 0 1 1 1 1 0F 1, 2, 4, 8 17 SDRAM device attributes: number of banks on SDRAM device 0 0 0 0 0 1 0 0 04 4 18 SDRAM device attributes: CE latency (-A6B) 0 0 0 0 0 1 1 0 06 2/3 0 0 0 0 0 1 0 0 04 3 0 0 0 0 0 0 0 1 01 0 (-B6B) 19 SDRAM device attributes: S latency Data Sheet E0017H20 5 HB52R1289E22-A6B/B6B Byte No. Function described Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value Comments 20 SDRAM device attributes: W latency 0 0 0 0 0 0 0 1 01 0 21 SDRAM device attributes 0 0 0 1 1 1 1 1 1F Registered 22 SDRAM device attributes: General 0 0 0 0 1 1 1 0 0E VCC ± 10% 23 SDRAM cycle time (2nd highest CE latency) (-A6B) 10 ns 1 0 1 0 0 0 0 0 A0 CL = 2 0 0 0 0 0 0 0 0 00 0 1 1 0 0 0 0 0 60 0 0 0 0 0 0 0 0 00 (-B6B) Undefined 24 SDRAM access from Clock (2nd highest CE latency) (-A6B) 6 ns (-B6B) Undefined 25 SDRAM cycle time (3rd highest CE latency) Undefined 0 0 0 0 0 0 0 0 00 26 SDRAM access from Clock (3rd highest CE latency) Undefined 0 0 0 0 0 0 0 0 00 27 Minimum row precharge time 0 0 0 1 0 1 0 0 14 20 ns 28 Row active to row active min 0 0 0 1 0 1 0 0 14 20 ns 29 RE to CE delay min 0 0 0 1 0 1 0 0 14 20 ns 30 Minimum RE pulse width 0 0 1 1 0 0 1 0 32 50 ns 31 Density of each bank on module 1 0 0 0 0 0 0 0 80 2 bank 512M byte 32 Address and command signal input setup time 0 0 1 0 0 0 0 0 20 2 ns* 3 33 Address and command signal input hold time 0 0 0 1 0 0 0 0 10 1 ns* 3 34 Data signal input setup time 0 0 1 0 0 0 0 0 20 2 ns* 3 35 Data signal input hold time 0 0 0 1 0 0 0 0 10 1 ns* 3 36 to 61 Superset information 0 0 0 0 0 0 0 0 00 Future use 62 SPD data revision code 0 0 0 1 0 0 1 0 12 Rev. 1.2A 63 Checksum for bytes 0 to 62 (-A6B) 0 0 1 0 0 1 0 0 24 36 0 0 1 0 0 0 1 0 22 34 Manufacturer’s JEDEC ID code 0 0 0 0 0 1 1 1 07 HITACHI 65 to 71 Manufacturer’s JEDEC ID code 0 0 0 0 0 0 0 0 00 72 × × × × × × × × ×× (-B6B) 64 Manufacturing location Data Sheet E0017H20 6 * 4 (ASCII8bit code) HB52R1289E22-A6B/B6B Byte No. Function described Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value Comments 73 Manufacturer’s part number 0 1 0 0 1 0 0 0 48 H 74 Manufacturer’s part number 0 1 0 0 0 0 1 0 42 B 75 Manufacturer’s part number 0 0 1 1 0 1 0 1 35 5 76 Manufacturer’s part number 0 0 1 1 0 0 1 0 32 2 77 Manufacturer’s part number 0 1 0 1 0 0 1 0 52 R 78 Manufacturer’s part number 0 0 1 1 0 0 0 1 31 1 79 Manufacturer’s part 0 0 1 1 0 0 1 0 32 2 80 Manufacturer’s part number 0 0 1 1 1 0 0 0 38 8 81 Manufacturer’s part number 0 0 1 1 1 0 0 1 39 9 82 Manufacturer’s part number 0 1 0 0 0 1 0 1 45 E 83 Manufacturer’s part number 0 0 1 1 0 0 1 0 32 2 84 Manufacturer’s part number 0 0 1 1 0 0 1 0 32 2 85 Manufacture’s part number 0 0 1 0 1 1 0 1 2D — 86 Manufacturer’s part number (-A6B) 0 1 0 0 0 0 0 1 41 A 0 1 0 0 0 0 1 0 42 B (-B6B) 87 Manufacturer’s part number 0 0 1 1 0 1 1 0 36 6 88 Manufacturer’s part number 0 1 0 0 0 0 1 0 42 B 89 Manufacturer’s part number 0 0 1 0 0 0 0 0 20 (Space) 90 Manufacturer’s part number 0 0 1 0 0 0 0 0 20 (Space) 91 Revision code 0 0 1 1 0 0 0 0 30 Initial 92 Revision code 0 0 1 0 0 0 0 0 20 (Space) 93 Manufacturing date × × × × × × × × ×× Year code (BCD)*5 94 Manufacturing date × × × × × × × × ×× Week code (BCD) *5 95 to 98 Assembly serial number *7 99 to 125 Manufacturer specific data — — — — — — — — — *6 126 Intel specification frequency 0 1 1 0 0 1 0 0 64 100 MHz 127 Intel specification CE# latency support (-A6B) 1 0 0 0 0 1 1 1 87 CL = 2/3 1 0 0 0 0 1 0 1 85 CL = 3 (-B6B) Notes: 1. All serial PD data are not protected. 0: Serial data, “driven Low”, 1: Serial data, “driven High” These SPD are based on Intel specification (Rev.1.2A). 2. Regarding byte32 to 35, based on JEDEC Committee Ballot JC42.5-97-119. 3. Byte10, 23, 24, 32 through 35 are component spec. 4. Byte72 is manufacturing location code. (ex: In case of Japan, byte72 is 4AH. 4AH shows “J” on ASCII code.) Data Sheet E0017H20 7 HB52R1289E22-A6B/B6B 5. Regarding byte93 and 94, based on JEDEC Committee Ballot JC42.5-97-135. BCD is “Binary Coded Decimal”. 6. All bits of 99 through 125 are not defined (“1” or “0”). 7. Bytes 95 through 98 are assembly serial number. Data Sheet E0017H20 8 HB52R1289E22-A6B/B6B Block Diagram RS0 RS1 RDQMB0 RDQMB4 DQMB CS 4 10 Ω DQ0 to DQ3 I/O0 to I/O3 D0 DQMB CS 4 10 Ω DQ4 to DQ7 I/O0 to I/O3 D1 DQMB CS I/O0 to I/O3 4 10 Ω 4 10 Ω 4 10 Ω 4 10 Ω 4 10 Ω 4 10 Ω 4 10 Ω 4 10 Ω I/O0 to I/O3 D9 4 10 Ω DQ8 to DQ11 I/O0 to I/O3 D2 DQMB CS 4 10 Ω DQ12 to DQ15 I/O0 to I/O3 D3 DQMB CS DQ36 to DQ39 I/O0 to I/O3 D27 DQMB CS DQMB CS D19 D10 I/O0 to I/O3 4 10 Ω I/O0 to I/O3 D4 DQMB CS DQMB CS D20 I/O0 to I/O3 DQ40 to DQ43 D28 D21 I/O0 to I/O3 DQ44 to DQ47 I/O0 to I/O3 I/O0 to I/O3 D22 CB4 to CB7 I/O0 to I/O3 D29 DQMB CS D12 I/O0 to I/O3 DQMB CS DQMB CS I/O0 to I/O3 I/O0 to I/O3 DQMB CS D11 DQMB CS DQMB CS RS2 RS3 RDQMB2 D30 DQMB CS D13 I/O0 to I/O3 D31 RDQMB6 DQMB CS 4 10 Ω DQ16 to DQ19 I/O0 to I/O3 D5 DQMB CS 4 10 Ω I/O0 to I/O3 D6 DQMB CS I/O0 to I/O3 DQ48 to DQ51 I/O0 to I/O3 D14 I/O0 to I/O3 DQMB CS DQMB CS I/O0 to I/O3 DQMB CS DQMB CS D23 D24 DQ52 to DQ55 RDQMB3 I/O0 to I/O3 D32 DQMB CS D15 I/O0 to I/O3 D33 RDQMB7 DQMB CS 4 10 Ω DQ24 to DQ27 I/O0 to I/O3 D7 DQMB CS 4 10 Ω DQ28 to DQ31 I/O0 to I/O3 D8 DQMB CS I/O0 to I/O3 DQ56 to DQ59 I/O0 to I/O3 D16 R E G I S T E R 10k D26 DQ60 to DQ63 RS0, RS1, RS2, RS3 RDQMB0 to RDQMB7 RBA0 to RBA1 -> BA0 to BA1: SDRAMs D0 to D35 CK1 RA0 to RA12 -> A0 to A12: SDRAMs D0 to D35 to CK3 RRAS -> RAS: SDRAMs D0 to D35 RCAS -> CAS: SDRAMs D0 to D35 VCC RCKE0 -> CKE: SDRAMs D0 to D35 0.0022 µF × 26 pcs RW -> WE: SDRAMs D0 to D35 VSS Serial PD SCL SCL SDA U0 A0 A1 I/O0 to I/O3 DQMB CS DQMB CS I/O0 to I/O3 DQMB CS DQMB CS D25 SDA WP A2 D34 DQMB CS D17 I/O0 to I/O3 R1 CK0 S0, S1, S2, S3 DQMB0 to DQMB7 BA0 to BA1 A0 to A12 RE CE CKE0 W VCC REGE PLL CK I/O0 to I/O3 RDQMB5 DQMB CS DQ20 to DQ23 10 Ω DQMB CS RDQMB1 CB0 to CB3 4 DQ32 to DQ35 I/O0 to I/O3 DQMB CS DQMB CS D18 I/O0 to I/O3 D35 PLL 12 pF CK : SDRAMs (D0 to D35) Register R2 to R4 VSS 12 pF VCC (D0 to D35, U0) 0.22 µF × 19 pcs VSS (D0 to D35, U0) * D0 to D35: HM5225405 PLL: 2510 Register: 162835 U0: 2-kbit EEPROM 47 kΩ SA0 SA1 SA2 VSS Notes: 1. The SDA pull-up resistor is required due to the open-drain/open-collector output. 2. The SCL pull-up resistor is recommended because of the normal SCL line inacitve "high" state. Data Sheet E0017H20 9 HB52R1289E22-A6B/B6B Absolute Maximum Ratings Parameter Symbol Value Unit Note Voltage on any pin relative to V SS VT –0.5 to VCC + 0.5 (≤ 4.6 (max)) V 1 Supply voltage relative to VSS VCC –0.5 to +4.6 V 1 Short circuit output current Iout 50 mA Power dissipation PT 18.0 W Operating temperature Topr 0 to +55 °C Storage temperature Tstg –50 to +100 °C Note: 1. Respect to V SS DC Operating Conditions (Ta = 0 to +55°C) Parameter Symbol Min Max Unit Notes Supply voltage VCC 3.0 3.6 V 1, 2 VSS 0 0 V 3 Input high voltage VIH 2.0 VCC V 1, 4 Input low voltage VIL 0 0.8 V 1, 5 Ambient illuminance — — 100 lx Notes: 1. 2. 3. 4. 5. All voltage referred to VSS The supply voltage with all VCC and V CCQ pins must be on the same level. The supply voltage with all VSS and VSS Q pins must be on the same level. VIH (max) = VCC + 2.0 V for pulse width ≤ 3 ns at VCC. VIL (min) = VSS – 2.0 V for pulse width ≤ 3 ns at VSS . Data Sheet E0017H20 10 HB52R1289E22-A6B/B6B DC Characteristics (Ta = 0 to 55°C, VCC = 3.3 V ± 0.3 V, VSS = 0 V) HB52R1289E22 -A6B -B6B Parameter Symbol Min Max Min Max Unit Test conditions Notes Operating current (CE latency = 3) — 2945 — — mA Burst length = 1 t RC = min 1, 2, 3 I CC1 (CE latency = 4) I CC1 — 2945 — 2945 mA Standby current in power I CC2P down — 803 — 803 mA CKE = VIL, t CK = 12 ns 6 Standby current in power I CC2PS down (input signal stable) — 767 — 767 mA CKE = VIL, t CK = ∞ 7 Standby current in non power down I CC2N — 1415 — 1415 mA CKE, S = VIH, t CK = 12 ns 4 Active standby current in power down I CC3P — 839 — 839 mA CKE = VIL, t CK = 12 ns 1, 2, 6 Active standby current in non power down I CC3N — 1775 — 1775 mA CKE, S = VIH, t CK = 12 ns 1, 2, 4 t CK = min, BL = 4 1, 2, 5 I CC4 — 2945 — — mA (CE latency = 4) I CC4 — 2945 — 2945 mA Refresh current (CE latency = 3) t RC = min 3 I CC5 — 5195 — — mA (CE latency = 4) I CC5 — 5195 — 5195 mA Self refresh current I CC6 — 803 — 803 mA VIH ≥ VCC – 0.2 V VIL ≤ 0.2 V 8 Input leakage current I LI –10 10 –10 10 µA 0 ≤ Vin ≤ VCC Output leakage current I LO –10 10 –10 10 µA 0 ≤ Vout ≤ VCC DQ = disable Output high voltage VOH 2.4 — 2.4 — V I OH = –4 mA Output low voltage VOL — 0.4 — 0.4 V I OL = 4 mA Burst operating current (CE latency = 3) Notes: 1. I CC depends on output load condition when the device is selected. ICC (max) is specified at the output open condition. 2. One bank operation. 3. Input signals are changed once per one clock. 4. Input signals are changed once per two clocks. 5. Input signals are changed once per four clocks. 6. After power down mode, CK operating current. 7. After power down mode, no CK operating current. 8. After self refresh mode set, self refresh current. Data Sheet E0017H20 11 HB52R1289E22-A6B/B6B Capacitance (Ta = 25°C, VCC = 3.3 V ± 0.3 V) Parameter Symbol Max Unit Notes Input capacitance (Address) CI1 25 pF 1, 2, 4 Input capacitance (RE, CE, W) CI2 25 pF 1, 2, 4 Input capacitance (CKE) CI3 45 pF 1, 2, 4 Input capacitance (S) CI4 20 pF 1, 2, 4 Input capacitance (CK) CI5 45 pF 1, 2, 4 Input capacitance (DQMB) CI6 20 pF 1, 2, 4 Input/Output capacitance (DQ) CI/O1 25 pF 1, 2, 3, 4 Notes: 1. 2. 3. 4. Capacitance measured with Boonton Meter or effective capacitance measuring method. Measurement condition: f = 1 MHz, 1.4 V bias, 200 mV swing. DQMB = VIH to disable Data-out. This parameter is sampled and not 100% tested. AC Characteristics (Ta = 0 to 55°C, VCC = 3.3 V ± 0.3 V, VSS = 0 V) HB52R1289E22 -A6B/B6B Parameter Symbol PC100 Symbol Min Max Unit Notes System clock cycle time (CE latency = 3) t CK Tclk 10 — ns 1 (CE latency = 4) t CK Tclk 10 — ns CK high pulse width t CKH Tch 4 — ns 1 CK low pulse width t CKL Tcl 4 — ns 1 Access time from CK (CE latency = 3) t AC Tac — 7.5 ns 1, 2 (CE latency = 4) t AC Tac — 7.5 ns Data-out hold time t OH Toh 2.1 — ns 1, 2 CK to Data-out low impedance t LZ 1.1 — ns 1, 2, 3 CK to Data-out high impedance t HZ — 7.5 ns 1, 4 Data-in setup time t DS Tsi 2.9 — ns 1 Data in hold time t DH Thi 3.4 — ns 1 Address setup time t AS Tsi 2.6 — ns 1 Address hold time t AH Thi 3.0 — ns 1, 5 CKE setup time t CES Tsi 2.6 — ns 1, 5 CKE setup time for power down exit t CESP Tpde 2.6 — ns 1 Data Sheet E0017H20 12 HB52R1289E22-A6B/B6B AC Characteristics (Ta = 0 to 55°C, VCC = 3.3 V ± 0.3 V, VSS = 0 V) (cont) HB52R1289E22 -A6B/B6B Parameter Symbol PC100 Symbol Min Max Unit Notes CKE hold time t CEH Thi 3.0 — ns 1 Command setup time t CS Tsi 2.6 — ns 1 Command hold time t CH Thi 3.0 — ns 1 Ref/Active to Ref/Active command period t RC Trc 70 — ns 1 Active to precharge command period t RAS Tras 50 120000 ns 1 Active command to column command (same bank) t RCD Trcd 20 — ns 1 Precharge to active command period t RP Trp 20 — ns 1 Write recovery or data-in to precharge lead time t DPL Tdpl 20 — ns 1 Active (a) to Active (b) command period t RRD Trrd 20 — ns 1 Transition time (rise to fall) tT 1 5 ns Refresh period t REF — 64 ms Notes: 1. 2. 3. 4. 5. AC measurement assumes t T = 1 ns. Reference level for timing of input signals is 1.5 V. Access time is measured at 1.5 V. Load condition is C L = 50 pF. t LZ (min) defines the time at which the outputs achieves the low impedance state. t HZ (max) defines the time at which the outputs achieves the high impedance state. t CES defines CKE setup time to CK rising edge except power down exit command. Test Conditions • Input and output timing reference levels: 1.5 V • Input waveform and output load: See following figures • Ambient illuminance: Under 100 lx 2.4 V input 0.4 V DQ 2.0 V 0.8 V CL t T tT Data Sheet E0017H20 13 HB52R1289E22-A6B/B6B Relationship Between Frequency and Minimum Latency Parameter HB52R1289E22 Frequency (MHz) -A6B/B6B tCK (ns) PC100 Symbol Symbol 10 Notes Active command to column command (same bank) I RCD 2 1 Active command to active command (same bank) I RC 7 = [IRAS + IRP] 1 Active command to precharge command (same bank) I RAS 5 1 Precharge command to active command (same bank) I RP 2 1 Write recovery or data-in to precharge command (same bank) I DPL 2 1 Active command to active command (different bank) I RRD 2 1 Self refresh exit time I SREX Tsrx 2 2 Last data in to active command (Auto precharge, same bank) I APW Tdal 4 = [IDPL + IRP] Self refresh exit to command input I SEC 7 = [IRC] 3 Precharge command to high impedance (CE latency = 3) I HZP Troh 3 I HZP Troh 4 (CE latency = 4) Tdpl Last data out to active command (auto precharge) (same bank) I APR 0 Last data out to precharge (early precharge) (CE latency = 3) I EP –2 I EP –3 (CE latency = 4) Column command to column command I CCD Tccd 1 Write command to data in latency I WCD Tdwd 1 DQMB to data in I DID Tdqm 1 DQMB to data out I DOD Tdqz 3 CKE to CK disable I CLE Tcke 2 Register set to active command I RSA Tmrd 1 S to command disable I CDD 0 Power down exit to command input I PEC 1 Burst stop to output valid data hold (CE latency = 3) I BSR 2 I BSR 3 (CE latency = 4) Data Sheet E0017H20 14 HB52R1289E22-A6B/B6B Parameter HB52R1289E22 Frequency (MHz) -A6B/B6B tCK (ns) Burst stop to output high impedance (CE latency = 3) (CE latency = 4) Burst stop to write data ignore PC100 Symbol Symbol 10 I BSH 3 I BSH 4 I BSW 1 Notes Notes: 1. I RCD to IRRD are recommended value. 2. Be valid [DESL] or [NOP] at next command of self refresh exit. 3. Except [DEDL] and [NOP] Data Sheet E0017H20 15 HB52R1289E22-A6B/B6B Pin Functions CK0 to CK3 (input pin): CK is the master clock input to this pin. The other input signals are referred at CK rising edge. S0 to S3 (input pin): When S is Low, the command input cycle becomes valid. When S is High, all inputs are ignored. However, internal operations (bank active, burst operations, etc.) are held. RE, CE and W (input pins): Although these pin names are the same as those of conventional DRAMs, they function in a different way. These pins define operation commands (read, write, etc.) depending on the combination of their voltage levels. For details, refer to the command operation section. A0 to A12 (input pins): Row address (AX0 to AX12) is determined by A0 to A12 level at the bank active command cycle CK rising edge. Column address (AY0 to AY9, AY11) is determined by A0 to A9, A11 level at the read or write command cycle CK rising edge. And this column address becomes burst access start address. A10 defines the precharge mode. When A10 = High at the precharge command cycle, all banks are precharged. But when A10 = Low at the precharge command cycle, only the bank that is selected by BA0/BA1 (BA) is precharged. BA0/BA1 (input pin): BA0/BA1 are bank select signal (BA). The memory array is divided into bank 0, bank 1, bank 2 and bank 3. If BA0 is Low and BA1 is Low, bank 0 is selected. If BA0 is High and BA1 is Low, bank 1 is selected. If BA0 is Low and BA1 is High, bank 2 is selected. If BA0 is High and BA1 is High, bank 3 is selected. CKE0 (input pin): This pin determines whether or not the next CK is valid. If CKE is High, the next CK rising edge is valid. If CKE is Low, the next CK rising edge is invalid. This pin is used for power-down and clock suspend modes. DQMB0 to DQMB7 (input pins): Read operation: If DQMB is High, the output buffer becomes High-Z. If the DQMB is Low, the output buffer becomes Low-Z. Write operation: If DQMB is High, the previous data is held (the new data is not written). If DQMB is Low, the data is written. DQ0 to DQ63, CB0 to CB7 (input/output pins): Data is input to and output from these pins. VCC (power supply pins): 3.3 V is applied. VSS (power supply pins): Ground is connected. REGE (input pins): If REGE is High, the register is ″registered″ mode. If REGE is Low, the register is ″buffered″ mode. Detailed Operaion Part Refer to the HM5225165B/HM5225805B/HM5225405B-75/A6/B6 datasheet (E0082H). Data Sheet E0017H20 16 HB52R1289E22-A6B/B6B Physical Outline Unit: mm Front side 133.37 4.80 3.00 4.00 min 127.35 3.00 Component area (Front) 1 84 B C 11.43 8.89 A 36.83 1.27 ± 0.10 54.61 Back side 2 – φ 3.00 38.10 FULL R FULL R 4.175 3.175 6.35 6.35 2.00 ± 0.10 3.125 ± 0.125 1.27 Detail C 3.125 ± 0.125 1.00 ± 0.05 Detail B 0.20 ± 0.15 2.50 ± 0.20 Detail A 17.80 85 4.00 168 Component area (Back) 2.00 ± 0.10 Note: Tolerance on all dimensions ± 0.15 unless otherwise specified. Data Sheet E0017H20 17 HB52R1289E22-A6B/B6B Cautions 1. Elpida Memory, Inc. neither warrants nor grants licenses of any rights of Elpida Memory, Inc.’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Elpida Memory, Inc. bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability. However, contact Elpida Memory, Inc. before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Elpida Memory, Inc. particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Elpida Memory, Inc. bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Elpida Memory, Inc. product does not cause bodily injury, fire or other consequential damage due to operation of the Elpida Memory, Inc. product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Elpida Memory, Inc.. 7. Contact Elpida Memory, Inc. for any questions regarding this document or Elpida Memory, Inc. semiconductor products. Data Sheet E0017H20 18