EMC EPVP6800

ePVP6800
VFD Controller
Product
Specification
VERSION
1.23
ELAN MICROELECTRONICS CORP.
Nov 2004
Trademark Acknowledgments
IBM is a registered trademark and PS/2 is a trademark of IBM.
Microsoft, MS, MS-DOS, and Windows are registered trademarks of Microsoft Corporation.
© 2004 ELAN Microelectronics Corporation
All Rights Reserved
Printed in Taiwan, ROC, 05/27/2004 (Version 1.0)
The contents of in this specification are subject to change without notice. ELAN Microelectronics assumes no
responsibility for errors that may appear in this specification. ELAN Microelectronics makes no commitment to update,
or to keep current, the information contained in this specification. The software (if any) described in this specification is
furnished under a license or nondisclosure agreement, and may be used or copied only in accordance with the terms of the
agreement.
ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of ELAN
Microelectronics products in such application is not supported and is prohibited.
NO PART OF THIS SPECIFICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY
MEANS WITHOUT THE EXPRESS WRITTEN PERMISSION OF ELAN MICROELECTRONICS.
Specification Revision History
Version
1.0
1.1
Revision Description
Initial version
ADD Relevant Pins assigment
Revices DC Electrical Characteristic
1.2
additional
remark Application notes
1.21
Revised CONT register describe
Updata Pckage Information
1.22
IC Name change
1.23
additional
remark Application notes
Revised Operation Voltage VS PLL Operation frequency
ii
Date
2004/5/27
2004/06/01
2004/9/16
2004/9/24
2004/11/4
2004/11/28
ePVP6800 Specification
Contents
Read Me First! ..............................................................................................................vi
1
General Description...............................................................................................1
2.
Feature....................................................................................................................1
2.1
2.2
2.3
2.4
2.5
3
CPU ........................................................................................................................................ 1
GPIO....................................................................................................................................... 1
VFD ........................................................................................................................................ 1
POR........................................................................................................................................ 2
PACKAGE .............................................................................................................................. 2
Application .............................................................................................................2
VFD controller ..................................................................................................................................... 2
4
Pin Configuration...................................................................................................3
5
Functional Block Diagram.....................................................................................4
5.1
Ports Mapping for HV and GPIO ............................................................................................ 5
5.1.1 HV Port Mapping ................................................................................................5
5.1.2 GPIO Port Mapping ............................................................................................5
5.2
Relevant Pins for programming mode .............................................................5
6
Pin Descriptions ....................................................................................................6
7
Function Descriptions ...........................................................................................7
7.1
7.2
Operation Registers Configuration......................................................................................... 7
Operation Registers Description ............................................................................................ 8
7.2.1 R0 (Indirect Address Register) ................................................................................... 8
7.2.2 R1 (TCC) .................................................................................................................... 8
7.2.3 R2 (Program Counter) ................................................................................................ 8
7.2.4 R3 (Status, Page Selection) ..................................................................................... 10
7.2.5 R4 (RAM Selection For Common Registers R20 ~ R3F))........................................ 11
7.2.6 R5 (PORT5 Output Data, Program Page Selection) ................................................ 11
7.2.7 R6 (PORT6 Output Data) ......................................................................................... 12
7.2.8 R7 (PORT7 Output Data , Counter1 Data ................................................................ 12
7.2.9 R8 (PORT8 Output data, Data RAM address) , Counter2_LB data ......................... 12
7.2.10 R9 (PORT9 I/O Data, Data RAM Data Buffer),
Counter2_HB Data ................................................................................................... 13
e PV6800 Specification
iii
7.3
7.4
7.5
7.6
7.7
7.8
7.9
8
Segment Data Buffers .........................................................................................31
8.1
iv
7.2.11 RA (PLL, Main Clock Selection, Watchdog Timer),
Counter3 Data .......................................................................................................... 14
7.2.12 RB (PORTB I/O Data Buffer, PORT9 Switches)....................................................... 16
7.2.13 RC (PORTC I/O Data , Counter5 Data).................................................................... 17
7.2.14 RD (Interrupt Flag,).................................................................................................. 18
7.2.15 RE (Wake-up) .......................................................................................................... 18
7.2.16 RF (Interrupt Flags) .................................................................................................. 18
7.2.17 R10~R3F (General Purpose Registers) ................................................................... 19
Special Purpose Registers ................................................................................................... 22
7.3.1 A (Accumulator) ........................................................................................................ 19
7.3.2 CONT (Control Register) .......................................................................................... 19
7.3.3 IOC 5 (PORT5 Switches) ......................................................................................... 21
7.3.4 IOC 8 ........................................................................................................................ 21
7.3.5 IOC9 (PORT9 I/O Control) ....................................................................................... 22
7.3.6 IOCA ......................................................................................................................... 23
7.3.7 IOCC (PORTC I/O Control) ...................................................................................... 23
7.3.9 IOCD (Interrupt Mask, Prescaler of CN3 ~ CN5) ..................................................... 23
7.3.10 IOCF (Interrupt Mask)............................................................................................... 24
Application notes
I/O Port ................................................................................................................................. 26
RESET ................................................................................................................................. 26
Wake Up............................................................................................................................... 27
7.6.1 SLEEP Mode, RA(6 ;7) = 0 + "SLEP" Instruction..................................................... 27
7.6.2 IDLE mode, RA(6 ;7) = 1 + "SLEP" Instruction. ....................................................... 27
7.6.3 Wake-up from SLEEP Mode..................................................................................... 27
7.6.4 Wake-up from IDLE Mode ........................................................................................ 28
Interrupts .............................................................................................................................. 28
Instruction Set ...................................................................................................................... 28
Commands ........................................................................................................................... 33
8.1.1 Display Mode Setting Command [00]....................................................................... 34
8.1.2 Data Setting Command [01] ..................................................................................... 34
8.1.3 Display Control Command [10] ................................................................................ 35
8.1.4 Address Setting Command [11]................................................................................ 35
ePVP6800 Specification
9
RC/Crystal OSC....................................................................................................36
9.1
9.2
9.3
9.4
9.5
9.6
General Description.............................................................................................................. 36
Features ............................................................................................................................... 36
Block Diagram ...................................................................................................................... 36
Pin Description ..................................................................................................................... 36
Electrical ............................................................................................................................... 36
Macro Area ........................................................................................................................... 36
10 Absolute Operation Maximum Ratings ..............................................................37
11 DC Electrical Characteristic................................................................................37
12 AC Electrical Characteristic................................................................................38
12.1
CPU Instruction Timing (Ta = -20°C ~ 70°C, VDD=5V, VSS=0V) ....................................... 38
12.2
12.3
12.4
AC Timing Characteristic (VDD=5V, Ta=+25°C) .................................................................. 39
ePVP6800 Operating Voltage (X Axis
Min VDD ; Y Axis
Main CLK) ......................... 39
AC Timing Diagrams ........................................................................................................... 40
13 Key & Switch Scanning and Display Timing .....................................................41
14 Switching Characteristic Waveform ...................................................................41
14.1
Switching Characteristics (Ta = - 20 to + 70°C, VDD = 4.5 to 5.5V, VEE = VDD - 45V) .... 42
e PV6800 Specification
v
Read Me First!
Before using the chip, spare a few minutes to take a look at the following important notes.
1. Some bits in the registers are undefined. The values in these bits are unknown and
should not be used. These bits are designated with a dash “–” symbol as its bit name in this
specification.
2. The following table shows the definitions of the various register designations used to
identify bit types, bit name, and bit number. Some definitions will appear quite frequently in
the specification.
RA
PAGE0
7
6
5
4
3
2
RAB7
RAB6
BAB5
RAB4
-
RAB2
1
RAB1
RAB0
R/W -0
R/W -0
R-1
R/W -1
R
R-0
R/W
Bit type
read/write
(default value=0)
read/write
(default value=1)
read only
(w/o default value)
0
read/write
(w/o default value)
Bit name
Bit number
Register name and its page
vi
(undefined) not allowed to use
read only
(default value=1)
read only
(default value=0)
ePVP6800 Specification
ePVP6800
VFD Controller
1
General Description
The ePVP6800 is an 8-bit RISC type vacuum fluorescent display (VFD) controller equipped with low
power consumption and high speed CMOS technology. This integrated single chip features on_chip
watchdog timer (WDT), one time programming ROM (OTP), data RAM, programmable real time
clock/counter, internal interrupt, power down mode, IR detector, and high voltage output for VFD
application.
2. Feature
2.1 CPU
Crystal Oscillator (32.768KHz): with a external crystal
2k x 13 on chip Program ROM.
144 x 8 general purpose registers
128 x 8 on chip data RAM
16 level stack for subroutine nesting
5 channel 8-bit counters: real time clock/counter (TCC) ,COUNTER1, COUNTER3,
COUNTER4, COUNTER5
1 channel 16-bit counter: COUNTER2
On-chip watchdog timer (WDT)
99.9% single instruction cycle commands
Four operation modes (
Mode
CPU Status
Main Clock
32.768kHz Clock Status
Sleep mode
Turn off
Turn off
Turn off
Idle mode
Turn off
Turn off
Turn on
Green mode
Turn on
Turn off
Turn on
Normal mode
Turn on
Turn on
Turn on
* Main clock can be programmed from 447.829k to 17.91MH by internal PLL
* 8 main clocks: 447.829K, 895.658K, 1.791M , 3.582M , 7.165M ,1 0.747M ,
14.331M and 17.91MHz
11 interrupt source, 5 external (IR , INT1~INT4 ), 6 internal (TCC, COUNTER1~5)
2.2 GPIO
GPIO 9 Port(8 bit): general purpose input/output; LED output ;interrupt function
GPIO C Port(4 bit): general purpose input/output for switch and key scanning 4x4 matrix)
2.3 VFD
Multiple display modes (6-segment & 11-digit to 8-segment & 9-digit)
External resistor not necessary for driver outputs.(P-ch open-drain + pull-down resistor output)
This specification is subject to change without further notice.
11.28.2004 (V123) 1 of 47
ePVP6800
VFD Controller
2.4 POR
2.0V Power-on voltage detector reset
2.5 PACKAGE
32-pin DIP
3 Application
VFD controller
4 Pin Configuration
GR1
1
32
VDD
GR2
2
31
VSS
GR3
3
30
OSCO
GR4
4
29
OSCI
GR5
5
28
PLLC
GR6
6
27 GPIOC3
GR7
7
26 GPIOC2
GR8
8
GR9
9
ePVP6800
DIP 32
25 GPIOC1
24 GPIOC0
GR10/SG8 10
23 GPIO93
GR11/SG7 11
22 GPIO92
SG6 12
21 GPIO91
SG5 13
20 GPIO90
SG4/KS4 14
19 /RESET
SG3/KS3 15
18 VEE
SG2/KS2 16
17
SG1/KS1
Fig. 1 Pin Assignment
2 of 47
11. 28.2004 (V1.23)
This specification is subject to change without further notice.
ePVP6800
VFD Controller
5 Functional Block Diagram
MCU
5
OSCI
4
OSC
OSCO
OTP
4
High Breakdown
Driver
Data RAM
8
P77~P76 (GR6~GR7)
…
P73~P72 (GR8~GR9)
Segment Driver/
Grid Driver/
GPIO9[0:4]
P87 (GR1)
…
P82 (GR5)
4
P66~P67
(GR11/SG7~GR10/SG8)
…
P62~P63 (SG5~SG6)
P57 (SG4/KS4)
…
P54 (SG1/KS1)
Timer
GPIO
GPIOC[0:4]
4
PLL
IR
Real Time Clock
/RESET
PLLC
VDD
VSS
VEE
Fig. 2a Block Diagram
XIN XOUT PLLC
WDT
Timer
Oscillator
Timing Control
R2
ROM
STACK
Prescaler
R1(TCC)
Interrupt
Control
Data
RAM
Instruction
Register
ALU
R3
General
RAM
Control Sleep
And Wakeup
On I/O port
R5
Instruction
Decoder
R4
Data & Control Bus
IOC5
IOC6
IOC7
IOC8
IOC9
R5
R6
R7
R8
R9
IOCC
RC
Port5
(HV)
Port6
(HV)
Port7
(HV)
Port8
(HV)
Port9
PortC
RB
Fig. 2b Block Diagram
This specification is subject to change without further notice.
11.28.2004 (V123) 3 of 47
ePVP6800
VFD Controller
5.1
Ports Mapping for HV and GPIO
5.1.1 HV Port Mapping
Port
HV
Port
HV
Port
HV
Port
HV
-
P60
-
P70
-
P80
-
-
P61
-
P71
-
P81
-
-
P62
SG5
P72
GR9
P82
GR5
-
P63
SG6
P73
GR8
P83
GR4
P54
SG1/KS1
P64
-
P74
-
P84
-
P55
SG2/KS2
P65
-
P75
-
P85
GR3
P56
SG3/KS3
P66
GR11/SG7
P76
GR7
P86
GR2
P57
SG4/KS4
P67
GR10/SG8
P77
GR6
P87
GR1
5.1.2 GPIO Port Mapping
Port
GPIO
Port
P90
GPIO90/LED0/IR
PC0
GPIOC0/Key1
P91
GPIO91/LED1/INT1 PC1
GPIOC1/Key2
P92
GPIO92/LED2/INT2 PC2
GPIOC2/Key3
P93
GPIO93/LED3/INT3 PC3
GPIOC3/Key4
P94
PC4
P95
PC5
P96
PC6
P97
PC7
5.2
Relevant Pins for programming mode
OTP PIN NAME
VDD
VPP
DINCK
ACLK
PGMB
OEB
DATA
GND
4 of 47
GPIO
11. 28.2004 (V1.23)
MASK ROM PIN NAME
AVDD
/RESTER
PC3
PC2
P92
P91
P90
GND
This specification is subject to change without further notice.
ePVP6800
VFD Controller
6 Pin Descriptions
Pin No.
Pin Name
32
VDD
I/O #
-
1
Description
Note
Logic power supply
General Purpose I/O pins:
24 – 27
GPIOC0 – GPIOC3
I/O 4
1. Key data input to these pins is latched at the end of display
cycle.
Schmitt
2. These pins constitute 4-bit general-purpose input/output port.
Pull-up
3. Programmable Internal Pull-High
4. Wake-up Function
1-9
(B Cell)
10-11
(B Cell)
12-13
(A Cell)
14-17
(C Cell)
GR1 – GR9
O 9
GR10/SG8 – GR1 /SG7 O 2
SG6 – SG5
O 2
∼
1. High voltage grid output
1. High voltage grid output
2. High voltage segment output
1. High voltage grid output
2. High voltage segment output
1. High voltage segment output
SG4/KS4 – SG1/KS1
I/O 4
2. Matrix key scan output
3. General Purpose Input pins: p54~p57
1. General Purpose I/O pins
20 – 23
GPIO90/LED0 –
GPIO93/LED3
2. LED output pin (20mA)
I/O 4
Schmitt
3. IR Detector
Pull-up
4. Interrupt Function
5. Programmable Internal Pull-High
28
PLLC
I
1
Phase Lock Loop Capacitor (connect a Capacitor 0.01 to 0.047u
to the Ground).
29
OSCI
I
1
Crystal Oscillator input pin (32, 768Hz)
30
OSCO
O 1
Crystal Oscillator output pin (32, 768Hz)
31
VSS
-
1
Connect this pin to GND of the system
19
/RESET
I
1
Low active RESET signal input
18
VEE
-
1
Pull-down level (VDD-(-40V)max)
This specification is subject to change without further notice.
Schmitt
11.28.2004 (V123) 5 of 47
ePVP6800
VFD Controller
7、Function Descriptions
7.1 Operation Registers Configuration
R PAGE Registers
Addr
00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
R PAGE0
Indirect addressing
TCC
PC
Page, Status
RAM bank, RSR
Port5 Output data
Port6 Output data
Port7 Output data
Port8 Output data
Port9 I/O data
PLL, Main clock,WDTE
PortC I/O data
Interrupt flag
Interrupt flag, Wake-up control
Interrupt flag
10
:
1F
16 bytes
Common registers
20
:
3F
Bank0 ~ Bank3
Common registers
(32x8 for each bank)
00
01
02
03
04
05
06
07
Port9 I/O control
0A
6 of 47
Program ROM page
Data RAM address
Data RAM data buffer
ADC output data buffer
Port9 pull high
PortC pull high
Counter1 data
Counter2 LB data
Counter2 HB data
Counter3 data
Counter4 data
Counter5 data
Port5 switch
08
0B
0C
0D
0E
0F
R PAGE2
IOC PAGE Registers
IOC PAGE0
IOC PAGE1
Addr
09
R PAGE1
Clock source (CN2,CN1)
Prescaler (CN2,CN1)
Clock source (CN4,CN3)
Prescaler (CN4,CN3)
Clock source (CN5)
Prescaler (CN5)
PortC I/O control
Interrupt mask
Interrupt mask
Interrupt mask
11. 28.2004 (V1.23)
This specification is subject to change without further notice.
ePVP6800
VFD Controller
7.2
Operation Registers Description
7.2.1 R0 (Indirect Address Register)
R0 is not a physically implemented register. It is used as indirect address pointer. Any instruction
using R0 as register actually accesses data pointed by the RAM Select Register (R4).
Example:
Mov A, @0x20
Mov 0x04, A
Mov A, @0xAA
Mov 0x00, A
;store an address at R4 for indirect address
;write data 0xAA to R20 at Bank0 through R0
7.2.2 R1 (TCC)
TCC data buffer. Increased by 16.384KHz or by the instruction cycle clock (controlled by CONT
register).
Written and read by the program as any other register.
7.2.3 R2 (Program Counter)
The structure is depicted in Fig.3 below.
Generates 2k × 13 external ROM addresses to the relative programming instruction codes.
"JMP" instruction allows the direct loading of the low 10 program counter bits.
"CALL" instruction loads the low 10 bits of the PC, PC+1, and then push into the stack.
"RET'' ("RETL k," "RETI") instruction loads the program counter with the contents at the top of stack.
"MOV R2, A" allows the loading of an address from the A register to the PC, and the ninth and tenth
bits are cleared to "0''.
"ADD R2, A" allows a relative address to be added to the current PC, and contents of the ninth and
tenth bits are cleared to "0''.
R5(PAGE)
PC
CALL and
INTERRUPT
A13 A12 A11 A10
A9 A8
A7~A0
0000
PAGE0 0000~03FF
0001
PAGE1 0400~07FF
RET
RETL
RETI
STACK1
STACK2
STACK3
STACK4
STACK5
STACK6
STACK7
STACK8
STACK9
STACK10
STACK11
STACK12
STACK13
STACK14
STACK15
STACK16
INTERRUPT
ACC,R3,R5(PAGE)
restore
store
3 bytes register
Fig. 3 Program Counter Organization
"TBL" allows a relative address to be added to the current PC, and the contents of the ninth and tenth
bits do not change. The most significant bit (A10~A13) will be loaded with the contents of bit
This specification is subject to change without further notice.
11.28.2004 (V123) 7 of 47
ePVP6800
VFD Controller
PS0~PS3 in the status register (R5 PAGE 1) upon execution of a "JMP,” "CALL,” "ADD R2, A.” or
"MOV R2, A'' instruction.
If an interrupt is triggered, PROGRAM ROM will jump to address 0x08 at Page0. The CPU will
automatically store ACC, R3 status, and R5 PAGE 1, and they will be restored after execution of
instruction RETI.
7.2.4 R3 (Status, Page Selection)
(Status Flag, Page Selection Bits)
Bit 7
RPAGE1
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
T
P
Z
DC
C
RPAGE0 IOCPAGE
R/W-0
R/W-0
R/W-0
R
R
R/W
R/W
R/W
R/W-0
R/W-0
R/W-0
R
R
R/W
R/W
R/W
Bit 0 (C) : Carry flag
The carry flag is affected by following operation :
a. Addition : CF as a carry out indicator, when the addition operation has a carry-out, CF will
be "1", in
another word, if the operation has no carry-out, CF will be "0".
b. Subtraction : CF as a borrow-in indicator, when the subtraction operation must has a
borrow-in, the CF
will be "0", in another word, if no borrow-in, CF will be "1".
c. Comparision : CF is as a borrow-in indicator for Comparision operation as the same as
subtraction
operation.
d. Rotation : CF shifts into the empty bit of accumulator for the rotation and holds the shift out
data after
rotation.
Bit 1 (DC) : Auxiliary carry flag
Bit 2 (Z) :
Zero flag
ZF is affected by the result of ALU, if the ALU operation generate a "0" result, the ZF will be
"1", otherwise, the ZF will be "0".
8 of 47
Bit 3 (P) :
Power down bit
Set to 1 during power on or by a "WDTC" command and reset to 0 by a "SLEP" command.
Bit 4 (T) :
Time-out bit
Set to 1 by the "SLEP" and "WDTC" command, or during power up and reset to 0 by WDT
timeout.
11. 28.2004 (V1.23)
Event
T
P
WDT wake up from sleep mode
0
0
WDT time out (not sleep mode)
0
1
/RESET wake up from sleep
1
0
Power up
1
1
Low pulse on /RESET
x
X
Remarks
x : don't care
This specification is subject to change without further notice.
ePVP6800
VFD Controller
Bit 5 (IOCPAGE) : Change IOC5 ~ IOCE to another page
0/1
IOC page0 / IOC page1
Bit 6 (RPAGE0 ~ RPAGE1) : Change R5 ~ RC to another page (see Section 7.1 Operation Registers
Configuration for details.)
(RPAGE1, RPAGE0)
R page # selected
(0,0)
R page 0
(0,1)
R page 1
(1,x)
R page 2
This specification is subject to change without further notice.
11.28.2004 (V123) 9 of 47
ePVP6800
VFD Controller
7.2.5 R4 (RAM Selection For Common Registers R20 ~ R3F))
(RAM Selection Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
RB1
RB0
RSR5
RSR4
RSR3
RSR2
RSR1
RSR0
R/W-0
R/W-0
R/W
R/W
R/W
R/W
R/W
R/W
Bit 0 ~ Bit 5 (RSR0 ~ RSR5) : Indirect address for common Registers R20 ~ R3F.
RSR bits are used to select up to 32 registers (R20 to R3F) in the
indirect address mode.
Bit 6 ~ Bit 7 (RB0 ~ RB1) :
Bank selection bits for common Registers R20 ~ R3F.
These selection bits are used to determine which bank is activated
among the 4 banks for 32 register (R20 to R3F).
Refer to Section 7.1 Operation Registers Configuration for details.
7.2.6 R5 (PORT5 Output Data, Program Page Selection)
a) PAGE 0 (PORT5 Output Data Register for HV or General Purpose Input pins:
p54~p57)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
P57
P56
P55
P54
-
-
-
-
W-0
W-0
W-0
W-0
-
-
-
-
b) PAGE 1 (Program ROM Page Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
-
-
-
-
-
PS1
PS0
-
-
-
-
-
-
R/W-0
R/W-0
Bit 0 ~ Bit 3 (PS0 ~ PS3) : Program page selection bits
PS1 PS0
Program Memory
Page (Address)
0
0
Page 0
0
1
Page 1
PAGE instruction is used to select the program page to be accessed. The selected program page is
maintained by Elan compiler. PAGE instruction will change your program by inserting the instruction
within program.
10 of 47
11. 28.2004 (V1.23)
This specification is subject to change without further notice.
ePVP6800
VFD Controller
7.2.7 R6 (PORT6 Output Data, SPI Data Buffer)
a) PAGE 0 (PORT6 Output Data Register for HV)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
P67
P66
P65
P64
P63
P62
P61
P60
W-0
W-0
W-0
W-0
W-0
W-0
W-0
W-0
7.2.8 R7 (PORT7 Output Data, Counter1 Data
a) PAGE 0 (PORT7 Output Data Register for HV)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
P77
P76
P75
P74
P73
P72
P71
P70
W-0
W-0
W-0
W-0
W-0
W-0
W-0
W-0
c) PAGE 2 (Counter 1 Data Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
CN17
CN16
CN15
CN14
CN13
CN12
CN11
CN10
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
Bit 0 ~ Bit 7 (CN10 ~ CN17) : Counter1 buffer that you can read and write.
Counter1 is an 8-bit up-counter with 8-bit prescaler that allows you to
use R7 PAGE2 to preset and read the counter (write
preset). After
an interruption, it will reload the preset value.
7.2.9 R8 (PORT8 Output data, Data RAM address) , Counter2_LB data
a) PAGE 0 (PORT8 Output Data Register for HV)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
P87
P86
P85
P84
P83
P82
P81
P80
W-0
W-0
W-0
W-0
W-0
W-0
W-0
W-0
b) PAGE 1 (Data RAM Address Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
RAM_A7
RAM_A6
RAM_A5
RAM_A4
RAM_A3
RAM_A2
RAM_A1
RAM_A0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
Bit 0 ~ Bit 7 (RAM_A0 ~ RAM_A7) : data RAM address
c) PAGE 2 (Counter2 Low Byte Data Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
CN27
CN26
CN25
CN24
CN23
CN22
CN21
CN20
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Bit 0 ~ Bit 7 (CN20 ~ CN27) : Counter2_LB's buffer that you can read and write.
Counter2 is a 16-bit up-counter with 8-bit prescaler that allows you to
use R8 PAGE2 to preset and read the counter.(write
preset). After
an interruption, it will reload the preset value.
This specification is subject to change without further notice.
11.28.2004 (V123) 11 of 47
ePVP6800
VFD Controller
7.2.10 R9 (PORT9 I/O Data, Data RAM Data Buffer) ,Counter2_HB Data
a) PAGE 0 (PORT9 I/O Data Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
-
-
-
P93
P92
P91
P90
-
-
-
-
R/W
R/W
R/W
R/W
Bit 0 ~ Bit 7 (P90 ~ P97) : 8-bit PORT9(0~7) I/O data register
You can use IOC register to define input or output each bit, and to define
the pull high condition.
Bit 0:
1. P90
: can be defined as Input/Output
2. LED0
: can be defined as Output
3. IR Input
: can be defined as Input and IR is enabled
(when IOCF Bit7 is set to 1)
Bit 1 ~ Bit3:
1. P91~P93
: can be defined as Input/Output
2. LED1~LED3 : can be defined as Output
3. INT1~INT3
: can be defined as Input
b) PAGE 1 (Data RAM Data Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
RAM_D7
RAM_D6
RAM_D5
RAM_D4
RAM_D3
RAM_D2
RAM_D1
RAM_D0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Bit 0 ~ Bit 7 (RAM_D0 ~ RAM_D7) : Data RAM’s data
c) PAGE 2 (Counter2 High Byte Data Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
CN215
CN214
CN213
CN212
CN211
CN210
CN29
CN28
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Bit 0 ~ Bit 7 (CN28 ~ CN215) : Counter2_HB's buffer that you can read and write.
Counter2 is a 16-bit up-counter with 8-bit prescaler that allows you to
use R9 PAGE2 to preset and read the counter (write
preset). After
an interruption, it will reload the preset value.
12 of 47
11. 28.2004 (V1.23)
This specification is subject to change without further notice.
ePVP6800
VFD Controller
7.2.11 RA (PLL, Main Clock Selection, Watchdog Timer),
ADC Output Data Buffer , Counter3 Data
a) PAGE 0 (PLL Enable Bit, Main Clock Selection Bits,
Watchdog Timer Enable Bit)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
IDLE
PLLEN
CLK2
CLK1
CLK0
-
-
WDTEN
R/W-0
R/W-0
R/W-0
R/W-1
R/W-1
R/W-0
Bit 0 (WDTEN) : Watch dog control bit
You can use WDTC instruction to clear watch dog counter. The counter clock
source is 32768/2 Hz. If the prescaler is assigned to TCC, Watch dog will time out
by (1/32768 )*2 * 256 = 15.616mS. If the prescaler is assigned to WDT, the time out
interval will be longer depending on the prescaler. Ratio.
0/1
disable/enable
Bit 1~Bit 2 : Unused
Bit 3 ~ Bit 5 (CLK0 ~ CLK2) : MAIN clock selection bits
You can select different frequencies for the main clock with CLK1 and CLK2. All the
available clock selections are listed below.
PLLEN
CLK2
CLK1
CLK0
Sub clock
MAIN clock
1
0
0
0
32.768kHz
447.829kHz
447.829kHz (Normal mode)
1
0
0
1
32.768kHz
895.658kHz
895.658kHz (Normal mode)
1
0
1
0
32.768kHz
1.791MHz
1.791MHz (Normal mode)
1
0
1
1
32.768kHz
3.582MHz
3.582MHz (Normal mode)
1
1
0
0
32.768kHz
7.165MHz
7.165MHz (Normal mode)
1
1
0
1
32.768kHz
10.747MHz
10.747MHz (Normal mode)
1
1
1
0
32.768kHz
14.331MHz
14.331MHz (Normal mode)
1
1
1
1
32.768kHz
17.91MHz
17.91MHz (Normal mode)
32.768kHz
Don’t care
32.768kHz (Green mode)
0
Don’t care Don’t care Don’t care
Bit 6 (PLLEN) :
CPU clock
PLL's power control bit which is CPU mode control register
0/1
disable PLL/enable PLL
If PLL is enabled, CPU will operate at normal mode (high frequency). Otherwise, it
will run at green mode (low frequency, 32768 Hz).
447.8293kHz ~17.9132M Hz
CLK2 ~ CLK0
PLL circuit
1
switch
ENPLL
System clock
0
Sub-clock
32.768kHz
Fig. 4 The Relation Between 32.768kHz and PLL
This specification is subject to change without further notice.
11.28.2004 (V123) 13 of 47
ePVP6800
VFD Controller
Bit 7 (IDLE) : SLEEP or IDLE mode control as set by SLEP instruction.
0/1
SLEEP mode/IDLE mode.
This bit allows SLEP instruction to decide which power saving mode to execute. The
status after wake-up and the wake-up source list is as the shown below.
Wakeup Signal
SLEEP Mode
IDLE Mode
RA(7,6)=(0,0)
+ SLEP
RA(7,6)=(1,0)
+ SLEP
TCC time out
IOCF Bit0=1
No function
1) Wake-up
2) Jump to next instruction after SLEP
COUNTER1 time out
IOCF Bit1=1
No function
1) Wake-up
2) Jump to next instruction after SLEP
COUNTER2 time out
IOCF Bit2=1
No function
1) Wake-up
2) Jump to next instruction after SLEP
COUNTER3 time out
IOCD Bit0=1
No function
1) Wake-up
2) Jump to next instruction after SLEP
COUNTER4 time out
IOCD Bit1=1
No function
1) Wake-up
2) Jump to next instruction after SLEP
COUNTER5 time out
IOCD Bit2=1
No function
1) Wake-up
2) Jump to next instruction after SLEP
PORT90(IR function)
IOCF Bit3=1
Reset and jump 1) Wake-up
to Address 0
2) Jump to next instruction after SLEP
WDT time out
Reset and jump 1) Wake-up
to Address 0
2) Next instruction
PORTC(0~3)(Key1~Key4)
Reset and Jump 1) Wake-up
2) Jump to next instruction after SLEP
RE PAGE0 Bit3 or Bit4 or Bit5 or Bit6 = 1 to Address 0
PORT9(1~4)
IOCF Bit4 or Bit5 or Bit6 =1 or Bit7=1
Reset and Jump 1) Wake-up
to Address 0
2) Jump to next instruction after SLEP
NOTES: 1 PORT90 wakeup function is controlled by IOCF Bit 3. It is a falling edge or rising edge trigger
(controlled by CONT register Bit7).
2. PORT91 wakeup function is controlled by IOCF Bit 4. It is a falling edge trigger.
3. PORT92 ~ PORT94 wakeup functions are controlled by IOCF. They are falling edge triggers.
4. PORTC0 ~ PORTC3 wakeup functions are controlled by RE PAGE0 Bit 0 ~ Bit 3. They are falling
edge triggers.
14 of 47
11. 28.2004 (V1.23)
This specification is subject to change without further notice.
ePVP6800
VFD Controller
B) PAGE 2 (Counter3 Data Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
CN37
CN36
CN35
CN34
CN33
CN32
CN31
CN30
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
Bit 0 ~ Bit 7 (CN30 ~ CN37) : Counter3's buffer that you can read and write.
Counter3 is an 8-bit up-counter with 8-bit prescaler that allows you to
use RA PAGE2 to preset and read the counter (write
preset). After
an interruption, it will reload the preset value.
7.2.12 RB (PORT9 Switches)
a) PAGE 1 (PORT9, Pull High)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
-
-
-
PH93
PH92
PH91
PH90
-
-
-
-
R/W-0
R/W-0
R/W-0
R/W-0
Bit 0 ~ Bit 3 (PH90 ~ PH93) : PORT9 Bit0 ~ Bit3 pull high control register
0
disable pull high function.
1
enable pull high function
b) PAGE 2 (Counter4 Data Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
CN47
CN46
CN45
CN44
CN43
CN42
CN41
CN40
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
Bit 0 ~ Bit 7 (CN40 ~ CN47) : Counter4 buffer that you can read and write.
Counter 4 is an 8-bit up-counter with 8-bit prescaler that allows you to
use RB PAGE2 to preset and read the counter.(write
preset). After
an interruption, it will reload the preset value.
This specification is subject to change without further notice.
11.28.2004 (V123) 15 of 47
ePVP6800
VFD Controller
7.2.13 RC (PORTC I/O Data , Counter5 Data)
a) PAGE 0 I/O Data Buffer/Serial Signal
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
-
-
-
PC3
PC2
PC1
PC0
-
-
-
-
R/W
R/W
R/W
R/W
Bit 0 ~ Bit 3 :1. PC0 ~ PC3 are defined as Input/Output
2. KEY1 ~ KEY4 are defined as Keyscan Input
b) PAGE 1 (PORTC, Pull High)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
-
-
-
PHC3
PHC2
PHC1
PHC0
-
-
-
-
R/W-0
R/W-0
R/W-0
R/W-0
Bit 0 ~ Bit 3 (PHC0 ~ PHC3) : PORTC Bit0 ~ Bit3 pull high control register
0
disable pull high function.
1
enable pull high function
d) PAGE 2 (Counter5 Data Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
CN57
CN56
CN55
CN54
CN53
CN52
CN51
CN50
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
Bit 0 ~ Bit 7 (CN50 ~ CN57) : Counter5 buffer that you can read and write.
Counter5 is an 8-bit up-counter with 8-bit prescaler that allows you to
use RC PAGE2 to preset and read the counter (write
preset). After
an interruption, it will reload the preset value.
7.2.14 RD (Interrupt Flag,)
a) PAGE 0 (Interrupt Flags Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
-
-
-
-
CNT5
CNT4
CNT3
-
-
-
-
-
R/W-0
R/W-0
R/W-0
NOTE: "1" means interrupt request, "0" means non-interrupt
Bit 0 (CNT3) : Counter3 timer overflow interrupt flag. Set when counter3 timer overflows.
Bit 1 (CNT4) : Counter4 timer overflow interrupt flag. Set when counter4 timer overflows.
Bit 2 (CNT5) : Counter5 timer overflow interrupt flag. Set when counter5 timer overflows.
16 of 47
11. 28.2004 (V1.23)
This specification is subject to change without further notice.
ePVP6800
VFD Controller
7.2.15 RE (Interrupt Flags, Wake-up)
a) PAGE 0 (Interrupt Flags, Wake-up Control Bits)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
-
-
-
/WUPC3
/WUPC2
/WUPC1
/WUPC0
-
-
-
-
R/W-0
R/W-0
R/W-0
R/W-0
Bit 0 (/WUPC0) : PORTC0 wake-up control,
0/1
disable/enable PC0 pin wake-up function
Bit 1 (/WUPC1) : PORTC1 wake-up control, 0/1
disable/enable PC1 pin wake-up function
Bit 2 (/WUPC2) : PORTC2 wake-up control,
0/1
disable/enable PC2 pin wake-up function
Bit 3 (/WUPC3) : PORTC3 wake-up control,
0/1
disable/enable PC3 pin wake-up function
Bit 4 (-)
: Not used
Bit 5 (-)
: Not used
Bit 6 (-)
: Not used
Bit 7(-)
: Not used
7.2.16 RF (Interrupt Flags)
a) PAGE 0 (Interrupt Status Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
INT4
INT3
INT2
INT1
IR
CNT2
CNT1
TCIF
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
NOTE: "1" means interrupt request, "0" means non-interrupt
Bit 0 (TCIF)
: TCC timer overflow interrupt flag, Set when TCC timer overflows.
Bit 1 (CNT1)
: Counter1 timer overflow interrupt flag. Set when Counter1 timer overflows.
Bit 2 (CNT2)
: Counter2 timer overflow interrupt flag. Set when Counter2 timer overflows.
Bit 3 (IR)
: External INT pin interrupt flag. If PORT90 contains a falling /rising edge
(controlled by CONT register) trigger signal, CPU will set this bit.
Bit 4 (INT1)
: External INT1 pin interrupt flag, If PORT91 contains a falling edge trigger
signal, CPU will set this bit.
Bit 5(INT2)
: External INT2 pin interrupt flag. If PORT92 has a falling edge trigger
signal, CPU will set this bit.
Bit 6 : (INT3)
: External INT3 pin interrupt flag. If PORT93 has a falling edge trigger
signal, CPU will set this bit.
Bit 7(INT4)
: External IR interrupt flag. If PORT94 has a falling edge trigger signal, CPU
will set this bit.
This specification is subject to change without further notice.
11.28.2004 (V123) 17 of 47
ePVP6800
VFD Controller
Trigger edge is as shown below:
Signal
Trigger
TCC
Time out
COUNTER1
Time out
COUNTER2
Time out
COUNTER3
Time out
COUNTER4
Time out
COUNTER5
Time out
IR
Falling
Rising edge
INT1
Falling edge
INT2
Falling edge
INT3
Falling edge
7.2.17 R10~R3F (General Purpose Registers)
R10 ~ R1F, R20 ~ R3F (Banks 0 ~ 3) : all are general purpose registers.
7.3Special Purpose Registers
7.3.1 A (Accumulator)
Internal data transfer, or instruction operand holding. It is not an addressable register.
7.3.2 CONT (Control Register)
CONT register is readable (CONTR) and writable (CONTW).
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
P90EG
INT
TS
RETBK
PAB
PSR2
PSR1
PSR0
Bit 0 ~ Bit 2 (PSR0 ~ PSR2) : TCC/WDT prescaler bits
18 of 47
PSR2
PSR1
PSR0
TCC Rate
WDT Rate
0
0
0
1:2
1:1
0
0
1
1:4
1:2
0
1
0
1:8
1:4
0
1
1
1:16
1:8
1
0
0
1:32
1:16
1
0
1
1:64
1:32
1
1
0
1:128
1:64
1
1
1
1:256
1:128
11. 28.2004 (V1.23)
This specification is subject to change without further notice.
ePVP6800
VFD Controller
Bit 3 (PAB)
: Prescaler assignment bit
0/1
TCC/WDT
When in WDT mode (Bit 3 = 1), the prescaler is cleared by the WDTC and SLEP
instructions. Likewise, when in TCC mode (Bit 3 = 0), the prescaler will can NOT be
cleared by SLEP instructions.
An 8-bit counter is provided as prescaler for the TCC or WDT. The prescaler is
available for the TCC only or for the WDT only at a given time.
An 8 bit counter is made available for TCC or WDT as determined by the status of
Bit 3 (PAB) of the CONT register.
Both TCC and prescaler are cleared each time a write to TCC instruction is
executed. (See the table above for the prescaler ratio under CONT register and
Fig.5 below for the TCC/WDT block diagram.)
Bit 4 (RETBK)
: Return value backup control for interrupt routine
0/1
disable/enable
When this bit is set to 1, the CPU will store ACC, R3 status, and R5 PAGE 1
automatically after an interrupt is triggered. It will be restored after instruction RETI.
When this bit is set to 0, you need to store ACC, R3, and R5 PAGE 1 in you
program.
Bit 5 (TS)
: TCC signal source
0
internal instruction cycle clock
timing = ( 2 / system clock) * prescaler* (256 – count vaule)
1
16.384kHz
timing = ( 1 /16.384k) * prescaler * (256 – count vaule)
timing = (2/Fosc) * Prescaler * (256 – count vaule)
Bit 6 (INT)
Bit 7 (P90EG)
: INT enable flag
0
interrupt masked by DISI or hardware interrupt
1
interrupt enabled by ENI/RETI instructions
: Interrupt edge type of P90
0
P90 interruption source is a rising edge signal.
1
P90 interruption source is a falling edge signal.
This specification is subject to change without further notice.
11.28.2004 (V123) 19 of 47
ePVP6800
VFD Controller
16.38KHz
Fig. 5 TCC & WDT Block Diagram
20 of 47
11. 28.2004 (V1.23)
This specification is subject to change without further notice.
ePVP6800
VFD Controller
7.3.3 IOC 5 (PORT5 Switches)
a) Page 1
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
P57S
P56S
P55S
P54S
R/W-0
R/W-0
R/W-0
R/W-0
Bit 2
Bit 1
Bit 0
Bit 4 ~ Bit 7 (P54S~P57S) : Port5 I/O direction control register
0
set the relative I/O pin as output HV
1
set the relative I/O pin into high impedance
7.3.4 IOC 8
a) PAGE 1 (Clock Source and Prescaler for COUNTER1 and COUNTER2)
Bit 7
CNT2S
R/W-0
Bit 6
Bit 5
Bit 4
Bit 3
C2_PSC2 C2_PSC1 C2_PSC0
R/W-0
R/W-0
R/W-0
CNT1S
R/W-0
Bit 2
Bit 1
Bit 0
C1_PSC2 C1_PSC1 C1_PSC0
R/W-0
R/W-0
R/W-0
Bit 0 ~ Bit 2 (C1_PSC0 ~ C1_PSC2) : COUNTER1 prescaler ratio
COUNTER1
C1_PSC2
C1_PSC1
C1_PSC0
0
0
0
1:2
0
0
1
1:4
0
1
0
1:8
0
1
1
1:16
1
0
0
1:32
1
0
1
1:64
1
1
0
1:128
1
1
1
1:256
Bit 3 (CNT1S) : COUNTER1 clock source
0
16.384kHz
timing = ( 1 /16.384k) * prescaler * (256 – count vaule)
1
system clock
timing = ( 2 / system clock) * prescaler* (256 – count vaule)
This specification is subject to change without further notice.
11.28.2004 (V123) 21 of 47
ePVP6800
VFD Controller
Bit 4 ~ Bit 6 (C2_PSC0 ~ C2_PSC2) : COUNTER2 prescaler ratio
C2_PSC2
C2_PSC1
C2_PSC0 COUNTER2
0
0
0
1:2
0
0
1
1:4
0
1
0
1:8
0
1
1
1:16
1
0
0
1:32
1
0
1
1:64
1
1
0
1:128
1
1
1
1:256
Bit 7 (CNT2S) : COUNTER2 clock source
0
16.384kHz
timing = ( 1 /16.384k) * prescaler * (256 – count vaule)
1
system clock
timing = ( 2 / system clock) * prescaler* (256 – count vaule)
7.3.5 IOC9 (PORT9 I/O Control)
a) PAGE 0 (PORT9 I/O Control Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
IOC97
IOC96
IOC95
IOC94
IOC93
IOC92
IOC91
IOC90
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
Bit 0 ~ Bit 7 (IOC90 ~ IOC97) : PORT9 (0~7) I/O direction control register
0
set the relative I/O pin as output
1
set the relative I/O pin into high impedance
b) PAGE 1 ( Clock Source and Prescaler for COUNTER3 and COUNTER4)
Bit 7
CNT4S
R/W-0
Bit 6
Bit 5
Bit 4
Bit 3
C4_PSC2 C4_PSC1 C4_PSC0
R/W-0
R/W-0
R/W-0
CNT3S
R/W-0
Bit 2
Bit 1
Bit 0
C3_PSC2 C3_PSC1 C3_PSC0
R/W-0
R/W-0
R/W-0
Bit 0 ~ Bit 2 (C3_PSC0 ~ C3_PSC2) : COUNTER3 prescaler ratio
22 of 47
COUNTER3
C3_PSC2
C3_PSC1
C3_PSC0
0
0
0
1:2
0
0
1
1:4
0
1
0
1:8
0
1
1
1:16
1
0
0
1:32
1
0
1
1:64
1
1
0
1:128
1
1
1
1:256
11. 28.2004 (V1.23)
This specification is subject to change without further notice.
ePVP6800
VFD Controller
Bit 3 (CNT3S) : COUNTER3 clock source
0
16.384kHz
timing = ( 1 /16.384k) * prescaler * (256 – count vaule)
1
system clock
timing = ( 2 / system clock) * prescaler* (256 – count vaule)
Bit 4 ~ Bit 6 (C4_PSC0 ~ C4_PSC2) : COUNTER4 prescaler ratio
COUNTER4
C4_PSC2
C4_PSC1
C4_PSC0
0
0
0
1:2
0
0
1
1:4
0
1
0
1:8
0
1
1
1:16
1
0
0
1:32
1
0
1
1:64
1
1
0
1:128
1
1
1
1:256
Bit 7 (CNT4S) : COUNTER4 clock source
0
16.384kHz
timing = ( 1 /16.384k) * prescaler * (256 – count vaule)
1
system clock
timing = ( 2 / system clock) * prescaler* (256 – count vaule)
7.3.6 IOCA
a) PAGE 1 (Clock Source and Prescaler for COUNTER5 )
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
-
-
-
-
CNT5S
-
-
-
-
R/W-0
Bit 2
Bit 1
Bit 0
C5_PSC2 C5_PSC1 C5_PSC0
R/W-0
R/W-0
R/W-0
Bit 0 ~ Bit 2 (C5_PSC0 ~ C5_PSC2) : COUNTER5 prescaler ratio
COUNTER4
C5_PSC2
C5_PSC1
C5_PSC0
0
0
0
1:2
0
0
1
1:4
0
1
0
1:8
0
1
1
1:16
1
0
0
1:32
1
0
1
1:64
1
1
0
1:128
1
1
1
1:256
Bit 3 (CNT5S) : COUNTER5 clock source
0
16.384kHz
timing = ( 1 /16.384k) * prescaler * (256 – count vaule)
1
system clock
timing = ( 2 / system clock) * prescaler* (256 – count vaule)
This specification is subject to change without further notice.
11.28.2004 (V123) 23 of 47
ePVP6800
VFD Controller
7.3.7 IOCC (PORTC I/O Control)
a) PAGE 0 (PORTC I/O Control Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
-
-
-
IOCC3
IOCC2
IOCC1
IOCC0
-
-
-
-
R/W-1
R/W-1
R/W-1
R/W-1
Bit 0 ~ Bit 3 (IOCC0 ~ IOCC3) : PORTC(0~3) I/O direction control register
0
set the relative I/O pin as output
1
set the relative I/O pin into high impedance
0
PC6 (I/O PORTC6) pin is selected
1
DOUT pin is selected (N-channel,Open-Drain)
7.3.8 IOCD (Interrupt Mask, Prescaler of CN3 ~ CN5)
a) PAGE 0 (Interrupt Mask)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
-
-
-
-
CNT5
CNT4
CNT3
-
-
-
-
-
R/W-0
R/W-0
R/W-0
Bit 0 ~ 3 : Interrupt enable bit
0
disable interrupt
1
enable interrupt
7.3.9
IOCF (Interrupt Mask )
a) PAGE 0 (Interrupt Mask Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
INT4
INT3
INT2
INT1
IR
CNT2
CNT1
TCIF
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
Bit 0 ~ 7: Interrupt enable bit
0
disable interrupt
1
enable interrupt
The status after interrupt and the interrupt source lists are as shown in the table below.
Interrupt Signal
GREEN Mode
NORMAL Mode
RA(7,6)=(1,0)
RA(7,6)=(x,0)
RA(7,6)=(x,1)
+ SLEP
no SLEP
no SLEP
Interrupt
Interrupt
(jump to Address 8
on Page0)
(jump to Address 8
on Page0)
1) Wake-up
COUNTER1 time out 2) Interrupt (jump to Address 8 on
IOCF bit1=1
Page0)
3) After RETI instruction, jump to
And "ENI"
SLEP Next instruction
Interrupt
(jump to Address 8
on Page0)
Interrupt
(jump to Address 8
on Page0)
COUNTER2 time out 1) Wake-up
Interrupt
Interrupt
TCC time out
IOCF bit0=1
And "ENI"
24 of 47
IDLE Mode
11. 28.2004 (V1.23)
1) Wake-up
2) Interrupt (jump to Address 8 on
Page0)
3) After RETI instruction, jump to
SLEP Next instruction
This specification is subject to change without further notice.
ePVP6800
VFD Controller
IOCF bit2=2
And "ENI"
2) Interrupt (jump to Address 8 on
Page0)
(jump to Address 8
on Page0)
(jump to Address 8
on Page0)
Interrupt
Interrupt
(jump to Address 8
on Page0)
(jump to Address 8
on Page0)
Interrupt
Interrupt
(jump to Address 8
on Page0)
(jump to Address 8
on Page0)
Interrupt
Interrupt
(jump to Address 8
on Page0)
(jump to Address 8
on Page0)
Interrupt
Interrupt
(jump to Address 8
on Page0)
(jump to Address 8
on Page0)
Interrupt
Interrupt
(jump to Address 8
on Page0)
(jump to Address 8
on Page0)
3) After RETI instruction, jump to
SLEP Next instruction
1) Wake-up
COUNTER3 time out 2) Interrupt (jump to Address 8 on
IOCD bit0=1
Page0)
And "ENI"
3) After RETI instruction, jump to
SLEP Next instruction
1) Wake-up
COUNTER4 time out 2) Interrupt (jump to Address 8 on
IOCD bit1=1
Page0)
And "ENI"
3) After RETI instruction, jump to
SLEP Next instruction
1) Wake-up
COUNTER5 time out 2) Interrupt (jump to Address 8 on
IOCD bit2=1
Page0)
And "ENI"
3) After RETI instruction, jump to
SLEP Next instruction
1) Wake-up
INT1~3
2)Interrupt (jump to Address 8 on
IOCF bit4=1 or IOCF
Page0)
bit5=1 IOCF bit6 = 1
3) after RETI instruction, jump to
And “ENI
SLEP Next instruction
1) Wake-up
IR
IOCF bit3= 1
And “ENI
2) Interrupt (jump to Address 8 on
Page0)
3) After RETI instruction, jump to
SLEP Next instruction
NOTES: 1. PORT90 interrupt function is controlled by IOCF Bit 3. It is a falling edge or rising edge trigger
(controlled by CONT register Bit7).
2. PORT9 (1~3) interrupt functions are controlled by IOCF Bits 4, 5, 6). They are falling edge triggers.
7.4 Application notes
1、Call-table instruction::
Because the call-table instruction can only change the Program Counter's bit7 ~ bit0 at each time,
only 256 addresses can be searched once.
But each program page contains 1024 addresses, if call each 256 addresses as a zone, Then each
page constitutes by four zones.
When a table overlaps two zones, a bug would occur during address searching.
So the member of program must examine the .LST file at any time, the .LST file will jot down the
information that Assembler generated, for example source code, the coding of instruction ,
instruction address, error message etc.
2、Operation requirement for the CPU:
The system frequency must adds a latency time ( 14.33 MHz about 250 ms ;17.91 MHz about
450 ms.). After RA register was setting, it will offer the stable system frequency for the operation
This specification is subject to change without further notice.
11.28.2004 (V123) 25 of 47
ePVP6800
VFD Controller
3、The register initial sets to suggest
The register 0X09 and 0X0C of IOC page 0 & page 1 initial sets suggestion as
follows:0X09 and 0x0C register value = 0B0000xxxx
The register 0x09 and 0X0C of R page 0 & page 1 initial sets suggestion as follows
0X09 and 0x0C register value =0B0000xxxx
7.5 I/O Port
The I/O registers are bi-directional tri-state I/O ports. The I/O ports can be defined as "input" or
"output" pins by the I/O control registers under program control. The I/O data registers and I/O control
registers are both readable and writable. The I/O interface circuit is shown in Fig.6
PCRD
PORT
Q
P
R
Q
C
L
Q
P
R
Q
C
L
D
CLK
PCWR
D
CLK
IOD
PDWR
PDRD
0
1
M
U
X
Fig. 6 The Circuit of I/O Port and I/O Control Register
7.6 RESET
A RESET can be caused by any of the following:
1. Power on reset
2. WDT timeout (if enabled and in GREEN or NORMAL mode)
3. /RESET pin pull low
Once a RESET occurs, the following functions are performed.
The oscillator is running, or will be started.
The Program Counter (R2) is set to all "0".
When power on, the upper 3 bits of R3 and the upper 2 bits of R4 are cleared.
The Watchdog timer and prescaler counter are cleared.
The Watchdog timer is disabled.
The CONT register is set to all "1"
26 of 47
11. 28.2004 (V1.23)
This specification is subject to change without further notice.
ePVP6800
VFD Controller
The other registers’ (Bit 7 ~ Bit 0) default values are as follows
Address
R Register
PAGE 0
R Register
PAGE 1
R Register
PAGE 2
xxxx0000
00000000
R Register IOC Register IOC Register
PAGE 3
PAGE 0
PAGE 1
0x4
00xxxxxx
0x5
0000xxxx
0x6
00000000
0x7
00000000
00000000
xxxxxxxx
0x8
00000000
00000000
xxxxxxxx
0x9
xxxx0000
xxxxxxxx
xxxxxxxx
0xA
00011xx0
xxxxxxxx
xxxxxxxx
0xB
xxxxxxxx
00000000
xxxxxxxx
x1111111
x0000000
0xC
xxxxxxxx
00000000
xxxxxxxx
1111xxxx
1111xxxx
0xD
xxxxx000
xxxxx000
0xE
X0000000
x000xxxx
0xF
00000000
00000000
xxxxxxxx
00000000
11111111
00000000
00000000
7.7 Wake Up
The controller features two types of sleep mode for power saving:
7.7.1 SLEEP Mode, RA(6 ;7) = 0 + "SLEP" Instruction
Under this mode, the controller turns off all the CPU and crystal. However, other circuits with power
control like key tone control or PLL control (with register enabled), has to be turned off through
software.
7.7.2 IDLE mode, RA(6 ;7) = 1 + "SLEP" Instruction.
With this mode, the controller only turns the CPU off. The crystal remains running.
7.7.3 Wake-up from SLEEP Mode
1. WDT time out
2. External interrupt
3. /RESET pull low
Any of these cases will reset the controller and run the program from address zero. The status is just
like the power-on-reset condition. Be sure to enable circuit after cases 1 or 2 occurs.
This specification is subject to change without further notice.
11.28.2004 (V123) 27 of 47
ePVP6800
VFD Controller
7.7.4 Wake-up from IDLE Mode
1. WDT time out
2. External interrupt
3. Internal interrupt like counters
All these cases requires you to enable the circuit before entering IDLE mode. All the registers values
are preserved when "SLEP" instruction is executed and restored after wake-up.
During execution of case 2 or 3, controller will wake up and jump to address 0x08 for interruption
sub-routine. After performing the sub-routine ("RETI" instruction), the program will jump to the next
instruction following the "SLEP" instruction.
7.8 Interrupts
RD, RF are the interrupt status registers which record the interrupt request in flag bit. IOCD,& IOCF
are their interrupt mask registers respectively. Global interrupt is enabled by ENI instruction and is
disabled by DISI instruction. When one of the interrupts (when enabled) is generated, it will cause the
next instruction to be fetched from address 008H. Once in the interrupt service routine, the source of
the interrupt can be determined by polling the flag bits in their respective (RD, RE, and RF) registers.
The interrupt flag bit must be cleared in the software before leaving the interrupt service routine and
enabling interrupts to avoid recursive interrupts.
7.9 Instruction Set
The Instruction set has the following features:
1. Every bit of any register can be set, cleared, or tested directly.
2. The I/O register can be treated as a general register. That is, the same instruction can operates on
I/O register.
The symbol "R" represents a register designator which specifies which one of the 64 registers
(including operational registers and general purpose registers) is to be utilized by the instruction. Bits
6 and 7 in R4 determine the selected register bank. "b'' represents a bit field designator which selects
the number of the bit located in the Register "R,” and affected by the operation. "k'' represents an 8 or
10-bit constant or literal value.
Instruction Binary
HEX
Mnemonic
Operation
Status
Affected
Instruction
Cycle
0 0000 0000 0000
0000
NOP
No Operation
None
1
0 0000 0000 0001
0001
DAA
Decimal Adjust A
C
1
0 0000 0000 0010
0002
CONTW
A → CONT
None
1
0 0000 0000 0011
0003
SLEP
0 → WDT, Stop oscillator
T,P
1
0 0000 0000 0100
0004
WDTC
0 → WDT
T,P
1
0 0000 0000 rrrr
000r
IOW R
A → IOCR
None
1
0 0000 0001 0000
0010
ENI
Enable Interrupt
None
1
0 0000 0001 0001
0011
DISI
Disable Interrupt
None
1
28 of 47
11. 28.2004 (V1.23)
This specification is subject to change without further notice.
ePVP6800
VFD Controller
0 0000 0001 0010
0012
RET
[Top of Stack] → PC
None
2
0 0000 0001 0011
0013
RETI
[Top of Stack] → PC
Enable Interrupt
None
2
0 0000 0001 0100
0014
CONTR
CONT → A
None
1
0 0000 0001 rrrr
001r
IOR R
IOCR → A
None
1
0 0000 0010 0000
0020
TBL
R2+A → R2 bits 9,10 do not clear Z,C,DC
2
0 0000 01rr rrrr
00rr
MOV R,A
A→R
None
1
0 0000 1000 0000
0080
CLRA
0→A
Z
1
0 0000 11rr rrrr
00rr
CLR R
0→R
Z
1
0 0001 00rr rrrr
01rr
SUB A,R
R-A → A
Z,C,DC
1
0 0001 01rr rrrr
01rr
SUB R,A
R-A → R
Z,C,DC
1
0 0001 10rr rrrr
01rr
DECA R
R-1 → A
Z
1
0 0001 11rr rrrr
01rr
DEC R
R-1 → R
Z
1
0 0010 00rr rrrr
02rr
OR A,R
A∨R→A
Z
1
0 0010 01rr rrrr
02rr
OR R,A
A∨R→R
Z
1
0 0010 10rr rrrr
02rr
AND A,R
A&R→A
Z
1
0 0010 11rr rrrr
02rr
AND R,A
A&R→R
Z
1
0 0011 00rr rrrr
03rr
XOR A,R
A⊕R→A
Z
1
0 0011 01rr rrrr
03rr
XOR R,A
A⊕R→R
Z
1
0 0011 10rr rrrr
03rr
ADD A,R
A+R→A
Z,C,DC
1
0 0011 11rr rrrr
03rr
ADD R,A
A+R→R
Z,C,DC
1
0 0100 00rr rrrr
04rr
MOV A,R
R→A
Z
1
0 0100 01rr rrrr
04rr
MOV R,R
R→R
Z
1
0 0100 10rr rrrr
04rr
COMA R
/R → A
Z
1
0 0100 11rr rrrr
04rr
COM R
/R → R
Z
1
0 0101 00rr rrrr
05rr
INCA R
R+1 → A
Z
1
0 0101 01rr rrrr
05rr
INC R
R+1 → R
Z
1
0 0101 10rr rrrr
05rr
DJZA R
R-1 → A, skip if zero
None
2 if skip
0 0101 11rr rrrr
05rr
DJZ R
R-1 → R, skip if zero
None
2 if skip
0 0110 00rr rrrr
06rr
RRCA R
R(n) → A(n-1)
R(0) → C, C → A(7)
C
1
0 0110 01rr rrrr
06rr
RRC R
R(n) → R(n-1)
R(0) → C, C → R(7)
C
1
0 0110 10rr rrrr
06rr
RLCA R
R(n) → A(n+1)
R(7) → C, C → A(0)
C
1
0 0110 11rr rrrr
06rr
RLC R
R(n) → R(n+1)
R(7) → C, C → R(0)
C
1
0 0111 00rr rrrr
07rr
SWAPA R
R(0-3) → A(4-7)
R(4-7) → A(0-3)
None
1
0 0111 01rr rrrr
07rr
SWAP R
R(0-3) ↔ R(4-7)
None
1
0 0111 10rr rrrr
07rr
JZA R
R+1 → A, skip if zero
None
2 if skip
This specification is subject to change without further notice.
11.28.2004 (V123) 29 of 47
ePVP6800
VFD Controller
0 0111 11rr rrrr
07rr
JZ R
R+1 → R, skip if zero
None
2 if skip
0 100b bbrr rrrr
0xxx
BC R,b
0 → R(b)
None
1
0 101b bbrr rrrr
0xxx
BS R,b
1 → R(b)
None
1
0 110b bbrr rrrr
0xxx
JBC R,b
if R(b)=0, skip
None
2 if skip
0 111b bbrr rrrr
0xxx
JBS R,b
if R(b)=1, skip
None
2 if skip
1 00kk kkkk kkkk
1kkk
CALL k
PC+1 → [SP]
(Page, k) → PC
None
2
1 01kk kkkk kkkk
1kkk
JMP k
(Page, k) → PC
None
2
1 1000 kkkk kkkk
18kk
MOV A,k
k→A
None
1
1 1001 kkkk kkkk
19kk
OR A,k
A∨k→A
Z
1
1 1010 kkkk kkkk
1Akk
AND A,k
A&k→A
Z
1
1 1011 kkkk kkkk
1Bkk
XOR A,k
A⊕k→A
Z
1
1 1100 kkkk kkkk
1Ckk
RETL k
k → A, [Top of Stack] → PC
None
2
1 1101 kkkk kkkk
1Dkk
SUB A,k
k-A → A
Z,C,DC
1
1 1110 0000 0001
1E01
INT
PC+1 → [SP]
001H → PC
None
1
1 1110 100k kkkk
1E8k
PAGE k
K->R5(4:0)
None
1
1 1111 kkkk kkkk
1Fkk
ADD A,k
k+A → A
Z,C,DC
1
8
Segment Data Buffers
The ePVP6800 chip provides a total of 128 bytes data RAM. On the other hand, display Segment
Data Buffers can be stored either in the data RAM of 128 bytes sizes (00h~40h) or in the common
registers of Bank 2 and Bank 3 (20h~3Fh).
a) Data RAM Address
00h~38h
57X8 Segment Data Buffers
39h~3Eh
6X8 Key Scanning Data Buffers
3Fh
SW data register
40h
LED data register
b) Common Registers Address
20
Bank0~Bank3
:
Common registers
3F
(32x8 for each bank)
These buffers store display RAM. The display RAM stores the data transmitted from an external
device to the ePVP6800 through the serial interface and is assigned addresses as follows, in units of 8
bits:
30 of 47
11. 28.2004 (V1.23)
This specification is subject to change without further notice.
ePVP6800
VFD Controller
b0
b3 b4
b7
X X HL
X X HU
Lower 4 bits
Higher 4 bits
Only the lower 4 bits of the addresses assigned to SEG17 through SEG20 are valid and the higher 4
bits are ignored.
c) Display Memory Addresses:
Seg1
Seg4 Seg5
Seg8
00 HL
00 HU
DIG1
01 HL
01 HU
DIG2
02 HL
02 HU
DIG3
03 HL
03 HU
DIG4
04 HL
04 HU
DIG5
05 HL
06 HU
DIG6
07 HL
07 HU
DIG7
08 HL
08 HU
DIG8
09 HL
09 HU
DIG9
0A HL
0A HU
DIG10
0B HL
0B HU
DIG11
b) Key Scanning Data Buffers:
Fig. 7 4 x 4 Configuration Key Matrix
The key matrix is of 4 x 4 configuration is as shown in the above figure.
The data of each key is stored as illustrated below, and is read by a read command, starting from the
least significant bit.
This specification is subject to change without further notice.
11.28.2004 (V123) 31 of 47
ePVP6800
VFD Controller
KEY1….KEY4
KEY1….KEY4
SEG1/KS1
SEG2/KS2
SEG3/KS3
SEG4/KS4
b0 -- -- b3
b4 -- -- b7
When the most significant bit of data (SEG4, b7) has been read, the least significant bit of the next
data (SEG1, b0) is read.
8.1 Commands
A command sets the display mode and status of the VFD driver.
The first 1 byte (b0 to b7) inputted to the ePVP6800 through the DIN pin after the STB pin has fallen,
is regarded as a command. Interrupt event will occur when STB pin is falling.
If STB mode is high while a command/data are being transmitted, serial communication is initialized,
and the command/data being transmitted is invalidated (however, the command/data already
transmitted remain valid).
8.1.1 Display Mode Setting Command [00]
This command initializes the ePVP6800 and selects Display mode number of segments and grids (1/4
to 1/11-duty, 6 segments to 8 segments) as illustrated below.
When Display Mode command is executed, display is forcibly turned off, and key scanning is also
stopped. To resume display, a display ON command must be executed. If the same Display mode is
selected, nothing is performed.
When power is turned “ON,” default Display mode is “9-digit, 8-segment.”
MSB
b7
b6
b5
b4
b3
b2
b1
b0
0
0
0
0
0
1
1
1
LSB
Initial value
Display mode
Not Relevant
000 : 4 digits, 8 segments.
001 : 5 digits, 8 segments.
010 : 6 digits, 8 segments.
011 : 7 digits, 8 segments.
100 : 8 digits, 8 segments.
Default setting
101 : 9 digits, 8 segments.
110 : 10 digits, 7 segments.
111 : 11 digits, 6 segments.
Fig. 8 Display Mode Setting Command Selection
32 of 47
11. 28.2004 (V1.23)
This specification is subject to change without further notice.
ePVP6800
VFD Controller
8.1.2 Data Setting Command [01]
This command sets data write and data read modes. The default settings at power “ON” are:
Address Increment Mode: “Address increment mode.”
Test Mode: “Normal operation mode.”
MSB b7
b6
b5
b4
b3
b2
b1
b0
0
1
0
0
0
0
0
0
LSB
Initial value
Not Relevant
00 : Write data to display memory.
01 : Write data to LED port.
10 : Read key port switch data
11 : Read switch status.
Sets address increment mode (display memory)
0 : Increments address after data has been written.
1 : Fixes address.
Fig. 9 Data Setting Command Selection
8.1.3 Display Control Command [10]
When power is turned “ON,” the following default conditions prevails:
4/64-pulse width is set and the display is turned off
Key & switch scanning is stopped
MSB
b7
b6
b5
b4
b3
b2
b1
b0
1
0
0
0
0
0
0
0
Turns on/off display.
0 : Display off (key & switch scan continues)
1 : Display on.
LSB
Initial value
Sets dimming
000 : Sets pulse width to 1/16
001 : Sets pulse width to 2/16
010 : Sets pulse width to 4/16
011 : Sets pulse width to 10/16
100 : Sets pulse width to 11/16
101 : Sets pulse width to 12/16
110 : Sets pulse width to 13/16
111 : Sets pulse width to 14/16
Fig. 10 Display Control Command Selection
This specification is subject to change without further notice.
11.28.2004 (V123) 33 of 47
ePVP6800
VFD Controller
8.1.4 Address Setting Command [11]
This command sets an address of the display memory. When power is turned “ON”, the default
address is set to 00H.
MSB b7
b6
b5
b4
b3
b2
b1
b0
1
1
0
0
0
0
0
0
LSB
Initial value
Address ( 00H – 0BH )
Fig. 11 Address Setting Command Selection
If address 39H or higher is set, the data is ignored until a correct address is set.
34 of 47
11. 28.2004 (V1.23)
This specification is subject to change without further notice.
ePVP6800
VFD Controller
9
RC/Crystal OSC
9.1General Description
This oscillator is designed for the ePVP6800 chip as clock source.
9.2Features
RC oscillator: 32.768K Hz
Operating voltage: 2.2~5.5V.
o
o
Operating temperature: -20 C ~ 70 C
9.3Block Diagram
27pf
OSCI
27pf
OSCO
VSS
Fig. 12 RC/Crystal OSC Block Diagram
9.4Pin Description
Name
I/O Type
Description
Remarks
XIN
I
Crystal or RC oscillator connection pin
XOUT
O
Crystal oscillator output pin
VDD
-
Power supply (+) pin
VSS
-
Power supply (–) pin
9.5Electrical
(Condition : VDD = 4.5 to 5.5V, Ta = -20°C to 70°C )
Parameters
Sym.
Min.
Typ.
Max.
Unit
Starting oscillation voltage
Vs
-
2.0
3.2
V
Stable time
Ts
-
5
10
clk
Vdd = 5.0V
Current consumption
Idd
-
2
3
mA
Vdd = 5.0V
45
50
55
%
∂f/∂V
-
1
1.5
%
∆f
-
1
2
%
-
±6
±10
%
Duty cycle
Frequency/Voltage deviation
Frequency/Temperature deviation
Frequency vs. Process deviation
This specification is subject to change without further notice.
Conditions
11.28.2004 (V123) 35 of 47
ePVP6800
VFD Controller
10 Absolute Operation Maximum Ratings
Absolute maximum ratings (Ta = 25°C, Vss = 0 V)
Parameter
Symbol
Ratings
Unit
Logic supply voltage
VDD
-0.5 to + 6
V
Driver supply voltage
VEE
VDD +0.5 to VDD - 45
V
Logic input voltage
VI
-0.5 to VDD +0.5
V
VFD driver output voltage
VO
VEE -0.5 to VDD +0.5
V
LED driver output current
IO1
+25
mA
VFD driver output current
IO2
-40 (Grid)
mA
-15 (Segment)
Operating ambient temperature
Topt
-40 to +85
°C
Storage temperature
Tstg
-65 to +150
°C
11 DC Electrical Characteristic
(Ta = -20 to +70°C, VDD = 4.5 to 5.5V, Vss = 0V, VEE = VDD - 45V)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Test conditions
Schmitt Trigger Negative
Going Threshold Voltage
VT-
1.5
1.8
2.1
Schmitt Trigger Positive
Going Threshold Voltage
VT+
2.9
3.2
3.5
V
Pull Up Resister
RPU
50
75
100
KΩ
Digital Output Voltage High
VOH
0.8VDD
-
VDD
V
Digital Output Voltage Low
VOL
VSS
-
0.2VDD
V
Digital Output High Current
IOH1
-2
-4
-5
mA
VOH=2.4V / GPIOC
Digital Output Low Current
IOL1
2
4
5
mA
VOL=0.4V / GPIOC
Digital Output High Current
IOH2
-15
-18
-25
mA
VOH=2.4V / GPIO9
Digital Output Low Current
IOL2
15
18
25
mA
VOL=0.4V / GPIO9
HV Output Current
IOH1
-6
-4
-3
mA
GPIOC, GPO9, and /RESET
GPIOC, GPO9, /RESET @ VDD=5V
GPIOC
Vo = VDD –2V,(VDD=5V)
SEG1/KS1 to SEG4/KS4,
SG5 to SG6
Vo = VDD –2V,(VDD=5V)
HV Output Current
IOH2
-15
-13
-11
mA
GR1 to GR9
GR10/SG8 to GR11/SG7
HV leakage current
HV Output pull-down
resistor
IHVLEAK
5
8
10
uA
Vo = VDD –45V, driver off
RL
40
80
120
KΩ
Driver output (VEE= -25V)
-
1.5
µA
VDD =5V ,All input and I/O pin at
VDD, output pin floating, WDT
disabled
Power down current
(SLEEP mode)
Crystal oscillation operating
36 of 47
11. 28.2004 (V1.23)
ISB1
This specification is subject to change without further notice.
ePVP6800
VFD Controller
mode
Low clock current
(GREEN mode)
Crystal oscillation
operating mode
60
µA
VDD =3V CLK=32.768KHz, all
analog circuits disabled, all input and
I/O pin at VDD, output pin floating
65
90
µA
VDD =5V CLK=32.768KHz, all
analog circuits disabled, all input and
I/O pin at VDD, output pin floating
30
45
µA
VDD =3V CLK=32.768KHz, all
analog circuits disabled, all input and
I/O pin at VDD, output pin floating
45
60
µA
VDD =5V CLK=32.768KHz, all
analog circuits disabled, all input and
I/O pin at VDD, output pin floating
1.3
2
mA
/RESET=High, CLK=3.582MHz, all
analog circuits disabled, output pin
floating
ISB2
Low clock current
(IDLE mode)
30
ISB3
Crystal oscillation operating
mode
Operating supply current
(Normal mode)
ICC
Crystal oscillation operating
mode
12 AC Electrical Characteristic
12.1 CPU Instruction Timing
(Ta = -20°C ~ 70°C, VDD=5V, VSS=0V)
Parameter
Symbol
Condition
Input CLK duty cycle
Dclk
Instruction cycle time
Tins
Device delay hold time
Tdrh
TCC input period
Ttcc
Note 1
Watchdog timer period
Twdt
Ta = 25°C
Min
Typ
Max
Unit
45
50
55
%
32.768kHz
60
us
3.582MHz
550
ns
16
ms
(Tins+20)/N
ns
16
ms
NOTE: N= selected prescaler ratio
This specification is subject to change without further notice.
11.28.2004 (V123) 37 of 47
ePVP6800
VFD Controller
12.2 AC Timing Characteristic (VDD=5V, Ta=+25°C)
Description
Symbol
Min
Tosc
400
Typ
Max
Unit
1500
ms
10
us
Oscillator timing characteristic
32.768kHz
OSC start up
3.579MHz PLL
5
12.3 ePVP6800 Operating Voltage (X Axis
Y Axis
Main CLK)
Min VDD ;
MHz
17.91
14.33
10.74
7.16
3.58
1.79
2.2
3
3.3
4
5
5.5
V
Fig. 13 Operation Voltage XY Axis
38 of 47
11. 28.2004 (V1.23)
This specification is subject to change without further notice.
ePVP6800
VFD Controller
12.4 AC Timing Diagrams
Fig. 14a A/C Test Input/Output Waveform
Fig. 14b RESET Timing Diagram
ins
Fig. 14c TCC Input Timing Diagram
This specification is subject to change without further notice.
11.28.2004 (V123) 39 of 47
ePVP6800
VFD Controller
13 Key & Switch Scanning and Display Timing
The key & switch scanning and display timing diagram is given below. One cycle of key & switch
scanning consists of 2 frames. The data of the 4 x 4 matrix is stored in the RAM.
31.25 us
470 us
500 us
GRID 1
output
1/16
4/16
6/16
8/16
10/16
12/16
14/16
16/16
GRID 2
output
SEG 1
output
SEG 2
output
SEG 3
output
DISP ≒ 500us
Key & Switch scan data
GRID 1
GRID 1
output
GRID 2
output
GRID 3
output
GRID n
output
SEG1
output
1/16
4/16
10/16
GRID 2
GRID 3
GRID n
DIG1
2/16
14/16
SEG2
output
2/16
SEG3
output
SEGn
output
1 frame = TDISP * (n+1)
Fig. 15 Key & Switch Scanning and Display Timing Diagram
40 of 47
11. 28.2004 (V1.23)
This specification is subject to change without further notice.
ePVP6800
VFD Controller
14 Switching Characteristic Waveform
f OSC
OSC
50 %
Fig. 16 Switching Characteristic Waveform
14.1 Switching Characteristics (Ta = - 20 to + 70°C,
VDD = 4.5 to 5.5V, VEE = VDD - 45V)
Parameter
Oscillation
frequency
Propagation
delay
time
Symbol
Min.
Typ.
Max.
Unit
tOSC
-
32.768
-
KHz
tPLZ
-
-
300
ns
tPZL
-
-
100
ns
2
us
tTZH1
Test Conditions
CLK→DOUT
CL = 15pF, RL = 10KΩ
CL = 100pF
Rise time
tTZH2
Fall time
tTHZ
100
110
0.5
µs
120
µs
VEE=-25V
SEG1/KS1 to
SEG4/KS4,
GR1 to GR8\9
GR10/SG8 to
GR11/SG7,
CL = 100pF, VEE=-25V ,SEGn, GRIDn
OSCI
OSCO
application circuit
U2
CRYSTAL1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
ePVP6800
GRID1
VDD
GRID2
VSS
GRID3
OSCO
GRID4
OSCI
GRID5
PLLC
GRID6
GPIOC3
GRID7
GPIOC2
GRID8
GPIOC1
GRID9
GPIOC0
GRID10/SG10
GPIO93
GRID11/SEG8
GPIO92
SEG6
GPIO91
SEG5
GPIO90
SEG4/KS4
/RESET
SEG3/KS3
VEE
SEG2/KS2
SEG1/KS1
This specification is subject to change without further notice.
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
C4
0.01uf
C1
VSS
27pf
VDD
/RESET
32.768KHz
C2
27pf
VSS
D1
1N4148
R1
470k
/RESET
C3
0.1uf
11.28.2004 (V123) 41 of 47
VSS