PF110-10 SCI7661COA/MOA DC-DC Converter ge lta o V n w tio Lo pera cts O rodu P ● 95% Typical Power Efficiency ● Doubled or Tripled Output Voltage ● Internal Voltage Regulator ■ DESCRIPTION The SCI7661COA/MOACMOS DC-DC Converter features high operational performance with low power dissipation. It consists of two major parts: the booster circuitry and the regulator circuitry. The booster generates a doubled output voltage (–2.4 to –12V) or tripled output voltage (–3.6 to –18V) from the input (–1.2 to –6V). The regulator is capable of setting the output to any desired voltage. The regulated voltage can be given one of the three threshold temperature gradients. ■ FEATURES ● High performance with low power dissipation ● Simple conversion of VIN (–5V) to |VIN| (+5V), 2 |VIN| (+10V), 2VIN (–10V) or 3VIN (–15V) ● On-chip output voltage regulator ● Power conversion efficiency–Typ. 95% ● Temperature gradient for LCD power supply – 0.1% / °C, 0.4%/°C or 0.6%/ °C ● Power off by external signals – Stationary current at power off – Max. 2 µA ● Cascade connection–two device connected: VIN=–5V, VOUT=–20V ● On-chip C'–R oscillator ● Package .................................... SCI7661C0A: DIP-14pin (plastic) SCI7661M0A: SOP5-14pin (plastic) SCI7661MAA: SSOP2-16pin (plastic) ■ BLOCK DIAGRAM VIN Voltage Converter (I) CAP2– CAP2+ Voltage Converter (II) T CAP1– CAP1+ Temperature Gradient Select Circuit CR Oscillator Voltage Regulator OSC1 OSC2 Reference Voltage Generator VDD TC1 TC2 Poff RV Vreg Vout Booster Regurator SCI7661COA/MOA ■ PIN CONFIGURATION ■ PIN DESCRIPTION CAP1+ 1 14 VDD CAP1- 2 13 OSC1 CAP2+ 3 12 OSC2 CAP2- 4 11 Poff TC1 5 10 RV TC2 6 9 Vreg VIN 7 8 Vout Pin name CAP1+, CAP1CAP2+, CAP2TC1, TC2 VIN No. 1, 2 3, 4 5, 6 7 Terminal for connection of capacitor for doubler Terminal for connection of capacitor for tripler Temperature gradient selection terminal Power supply terminal(negative, system supply GND) 8 Output terminal at tripling 9 Regulated voltage output terminal 10 Regulated voltage control terminal 11 Vreg output ON/OFF control terminal 12, 13 Oscillation resistor connection terminal 14 Power supply terminal(positive system supply VCC) VOUT Vreg RV Poff OSC2, OSC1 VDD The same pin configuration in DIP and SOP Function ■ ABSOLUTE MAXIMUM RATINGS Rating (VDD=0V) Min. Symbol Input supply voltage VI Input terminal voltage VI Output voltage VO Allowable loss Pd Remark Unit Max. -20/N 0.5 V N=2 : Doubler N=3 : Tripler VIN-0.5 0.5 V OSC1, Poff VOUT-0.5 -20.0 0.5 V V TC1, TC2, RV 300 mW Operating temperature Topr -30 85 °C Storage temperature Tstg -55 150 °C Soldering temperature and time Tsol 260°C, 10s(at lead) Plastic package - Note: When this IC is soldered in the solder-reflow process, be sure to maintain the reflow furnace at the curve shown in "Fig. 1-5 Reflow Furnace Temperature Curve" of this DATA BOOK. And this IC can not be exposed to high temperature of the solder dipping. ■ ELECTRICAL CHARACTERISTICS (VDD = 0V, VIN=-5V, Ta=-30 to 85°C) Characteristic Symbol Min. VI -6.0 VO -18.0 Vreg -18 -2.6 V Regulator operating voltage VOUT -18.0 -3.2 V Booster current consumption Iopr1 100 µA RL=∞, ROSC=1MΩ 12.0 µA RL=∞, RRV=1MΩ VOUT=-15V 2.0 µA TC2=TC1=VOUT, RL=∞ 20 24 kHz ROSC=1MΩ 150 200 Ω IOUT=10mA Input supply voltage Typ. Max. Unit -1.2 V V Output voltage Regulator current consumption Iopr2 Stationary current IQ Oscillation frequency 2 fosc Output impedance ROUT Booster power conversion efficiency Peff Regulated output voltage fluctuation ∆Vreg ∆VOUT•Vreg 60 50 16 90 Condition 95 % 0.2 %/V RL=∞, RRV=1MΩ, VO=-18V IOUT=5mA -18V<VOUT<-8V, Vreg=-8V, RL=∞, Ta=25°C SCI7661COA/MOA Characteristic Symbol Min. Typ. Max. Unit Condition ∆Vreg ∆IOUT 5 Ω VOUT=-15V, Vreg=-8V, Ta=25°C 0<IOUT<10mA, TC1=VDD TC2=VOUT Regulated output saturation resistance RSAT 5 Ω RSAT=D(Vreg—VOUT)/DIOUT 0<IOUT<10mA, RV=VDD, Ta=25°C Reference voltage VRV0 VRV1 VRV2 -2.3 -1.7 -1.1 -1.5 -1.3 -0.9 -1.0 -1.1 -0.8 V V V TC2=VOUT, TC1=VDD, Ta=25°C TC2=TC1=VOUT, Ta=25∞C TC2=VDD, TC1=VOUT, Ta=25°C Temperature Gradient CT0 CT4 CT2 -0.25 -0.5 -0.7 -0.1 -0.4 -0.6 -0.06 -0.3 -0.5 %/°C %/°C %/°C 2.0 µA Regulated output load fluctuation IL Input leakage current | Vreg(50°C) | - | Vreg(0°C) | 50°C-0°C 1 ×100 | Vreg(25°C) | CT = × Poff, TC1, TC2, OSC1, RV pins ■ RECOMMENDED OPERATING CONDITIONS Condition Symbol Min. (Ta=-30 to 85°C) Max. Unit V Remark ROSC=1MΩ, C3≥10µF*1 CL/C3≤1/20, Ta=-20 to 85°C ROSC=1MΩ -1.2 V -1.2 -2.2 V ROSC=1MΩ Min.*2 Ω VSTA1 Booster start voltage VSTA2 VSTP Booster stop voltage RL Output load resistance RL Output load current IOUT 20 mA Oscillation frequency Extarnal resistance for oscillation Capasitor for booster Regulated output adjustable resistance fOSC 10 30 kHz ROSC 680 2000 kΩ C1, C2, C3 3.3 RRV 100 µF 1000 *1: Recommended circuity in low voltage operation is shown below. kΩ *2: RL Min. depends on input voltage as shown below. (VIN=-1.2V ~ -2.2V) 5 + 1 - 14 13 12 11 10 9 8 2 + 3 4 C2=10µF 5 6 7 VSTA2 VSTA1 4 ROSC= 1MΩ RL CL RL Min.(kΩ) =C1=10µF 3 2 1 Triple + C3=22µF D1(VF(IF=1mA)) 0 ≤ 0.6v Double 0 1.5 2 3 4 5 6 VIN(V) 3 SCI7661COA/MOA ■ PERFORMANCE CURVES fOSC(kHz) fOSC(kHz) VIN=-5V VIN=-3V VIN=-1.5V 100 30 20 10 1 10K 100K 680K1M 150 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 –30 10M Ta=25°C fOSC=40kHz VIN=-5V 100 Iopr1(µA) 1000 VIN=-3V fOSC=20kHz VIN=-1.5V 50 fOSC=10kHz 50 0 100 150 0 1 2 3 Ta(°C) ROSC(Ω) Fig.1 Oscillation Frequency(fOSC)vs. External-Resistance(ROSC) Fig.2 Oscillation Frequency(fOSC)vs. Temperature(Ta) 4 5 VIN(V) 6 7 Fig.3 Input Voltage(VIN)vs. Booster Current Consumption(Iopr1) 400 0 Ta=25°C VIN=-5V 300 VOUT(V) -2 Double -3 -5 Triple -6 Triple 0 1 2 3 4 5 6 7 8 9 10 0 0 50 Fig.4 Output Voltage(VOUT)vs. Output Current(IOUT) Fig.5 Output Voltage(VOUT)vs. Output Current(IOUT) 100 100 100 90 90 90 80 80 Double Peff 70 80 60 60 50 50 Triple IIN 40 Triple Peff 30 Double IIN 20 10 0 0 10 20 30 IOUT(mA) 40 40 30 30 20 20 10 10 0 0 50 24 60 I =20mA OUT 32 Triple Peff Ta=25°C VIN=-2.0V 50 40 28 IOUT= 2mA 90 I = OUT 5mA 80 IOUT=10mA 70 36 70 Peff(%) 70 Ta=25°C VIN=-5.0V 60 20 Triple IIN Double IIN 0 1 2 3 4 5 6 7 8 1 2 3 6 7 IOUT=30mA 50 16 40 12 30 8 20 4 10 VIN=-5.0V 0 103 0 9 10 104 IOUT(mA) 105 106 fOSC(Hz) Fig.9 Power Conversion Efficiency (Peff)vs. Oscillation Frequency (fOSC) Fig.8 Power Conversion Efficiency (Peff)/Input Current(IIN)vs. Output Current(IOUT) Fig.7 Power Conversion Efficiency (Peff)/Input Current(IIN)vs. Output Current(IOUT) 4 5 VIN(V) 100 40 Double Peff Ta=25°C Fig.6 Output Inpedance(ROUT)vs. Input Voltage(VIN) Peff(%) 40 IIN(mA) 20 30 IOUT(mA) IIN(mA) Peff(%) 10 Double 100 IOUT(mA) -15 0 Triple 200 -4 Double -10 Ta=25°C VIN=-5V -1 ROUT(Ω) VOUT(V) 0 -5 100 IOUT= 0.5mA IOUT= 80 1mA IOUT= 2mA 70 -8.000 -7.950 60 VOUT=-15V Ta=25°C -2.950 IOUT=4mA 40 -7.900 30 VOUT=-6V Ta=25°C Vreg(V) 50 -3.000 Vreg(V) Peff(%) 90 -2.900 VIN=-1.5V 20 10 0 3 10 104 105 106 fOSC(Hz) Fig.10 Power Conversion Efficiency(Peff) vs.Oscillation Frequency(fOSC) 4 -7.850 10-4 10-3 10-2 IOUT(A) Fig.11 Output Voltage(Vreg)vs. Output Current(IOUT) 10-1 -2.850 10-4 10-3 10-2 IOUT(A) Fig.12 Output Voltage(Vreg)vs. Output Current(IOUT) 10-1 SCI7661COA/MOA ×100(%) 0.30 0.25 VOUT= -10V 0.15 0.10 VOUT= -15V 0.05 0.00 0 5 10 IOUT(mA) 15 | Vreg(25°C) | 50 Vreg(Ta) | - | Vreg(25°C) | Vreg-VOUT (V) VOUT= -5V 0.20 0 -50 -50 CT: -0.1%/°C CT: -0.4%/°C 0 50 100 Ta(°C) CT: -0.6%/°C 20 Fig:13 Regulated Output Saturation Resistance(RSAT)Vreg—VOUT —IOUT Fig:14 Output Voltage(vreg)vs. Temperature(Ta) ■ CIRCUIT DESCRIPTION ● C-R Oscillator The SCI7661C/M contains a C-R oscillator for internal oscillation. It consists of an external resistor R OSC connected between the OSC1 pin and OSC2 pin. Osc1 Osc1 External Clock ROSC Osc2 Open Osc2 C-R Oscillation External Clock Operation ● Voltage Converters The voltage converters doubleÅ^triple the input supply voltage (VIN) using clocks generated by the C-R oscillator VDD=0V VCC (+5V) VDD=0V GND VIN=-5V VIN=-5V (-5V) CAP2=2VIN=-10V VOUT=3VIN=-15V Typical Doubled Voltage Relations Typical Tripled Voltage Relations ●Reference Voltage Generator and Voltage Regulator The reference voltage generator produces reference voltage needed for operation of regulator circuit. The voltage regulator is used to regulate a boosted output voltage and its circuit contains a power-off function which uses signals from the system for on-off control of the Vreg output. VDD Control signal Poff RV RRV = 100kΩ to 1MΩ Vreg Voltage Regulator ● Temperature Gradient Selector Circut The SCI7661C/M provides the Vreg output with a temperature gradient suitable for LCD driving. 5 SCI7661COA/MOA ● Temperature Gradient Assignment Vreg Output Temp. Gradient CR oscillation TC1 TC2 Poff ON -0.4%/°C ON 1(VDD) L(VOUT) L(VOUT) ON -0.1%/°C ON 1 L H(VDD) ON -0.6%/°C ON 1 H(VDD) L ON -0.6%/°C OFF 1 H H OFF(Hi-Z) OFF 0(VIN) L L OFF(Hi-Z) OFF H L 0 OFF(Hi-Z) OFF L H 0 OFF(Hi-Z) ON H H 0 NOTE: The potential at Low level is different between the Poff pin and the TC1/TC2 pin. Remarks Cascade connection Without regulation ■ BASIC EXTERNAL CONNECTION ● Voltage Tripler+Regulator Vreg output is given a temperature gradient, after boosted output VOUT regulated. In this connection, both VOUT and Vreg can be taken out at the same time. ● Voltage Doubler and Tripler A doubled voltage can be obtained at VOUT(CAP2-) by disconnecting capacitor C 2 from the tripler configuration and shorting CAP2-- (pin4) and VOUT (pin 8). 5V C1 10µF + C2 10µF + − − VIN=-5V 1 2 3 14 13 12 4 5 6 7 11 10 9 8 + C1 10µF C2 10µF ROSC 1MΩ 5V + 1 2 3 4 5 6 7 − + − + VIN=-5V VOUT=-15V – 14 R OSC R1 RRV+ C4 13 − 10µF 12 R2 1MΩ 100kΩ 11 ~1MΩ 10 Shield wire 9 Vreg=-8V= 8 VOUT=-15V RRV − R VRV 1 C3 10µF C3 10µF Tripler+Regulator (-0.4%/°C selected as temperature gradient) Voltage Tripler ● Parallel Connection Parallel connection of n circuits can reduce ROUT to about 1/n, that output impedance R OUT can be reduced by connecting serial configuraiton. A single smoothing capacitor C3 can be used commonly for all parallely connected circuit. In parallely connection, a regulated output can be obtained by applying the regulation circuit to only one of the n parallely connected circuit. 5V C1 + 10µF − + C2 − 10µF 1 2 3 4 5 6 7 C1 10µF C2 10µF 14 13 ROSC 12 1MΩ 11 10 9 8 + − + − VIN=-5V + − 1 2 3 4 5 6 7 14 C4 + 13 ROSC 10µF − 12 RRV 1MΩ 11 100kΩ 10 ~1MΩ 9 8 Vreg=-10V VOUT=-15V C3 10µF Parallel Connection ● Cascade Connection Cascade connection of SCI7661C/M (by connecting VIN and VOUT of one stage to VDD and VIN respectively of the next stage) further increase the output voltage. Note, however, that the serial connection increases the output impedance. V'DD=VIN=-15V + − 5V 1 2 3 14 13 12 4 5 11 10 6 7 VIN=-5V 10µF + − 10µF + − 1MΩ 10µF + − 9 VOUT=-10V =VIN' 8 + − 1 2 3 14 13 12 4 5 11 10 6 9 7 8 + 10µF − 100kΩ ~ 10µF 1MΩ V'reg=-15V V'OUT=-20V 10µF Serial Connection 6 SCI7661COA/MOA ● Positive Voltage Conversion The input voltage can be doubled or tripled toward the positive side. (In the doubler configuration, capacitor C2 and diode D3 are disconnected and the diode D3 shorted at the both ends.) In this case, however, the output voltage decrease by VF(forward voltage) For example VDD=0V, VIN=–5V and VF=0.6V, then VOUT=10V– 3×0.6V=8.2 V (if doubled, 5V–2×0.6V=3.8V) VDD=0V C1 10µF + − D1 D2 C2 10µF + − 5V D3 VOUT=8.2V C3 10µF + − 1 14 2 13 3 12 4 11 5 10 6 9 8 7 ROSC 1MΩ VIN= -5V Positive Voltage Conversion D1, D2, D3,: Shottky diodes with small VF are recommended. ● Negative Voltage Conversion + Positive VDD=0V + Voltage Conversion − 10µF + This circuit produces outputs of –15V and +8.2V from the –5V input. Note that this configuration causes higher output impedance than in a single function (negative or positive voltage converter). VOUT2=13.2V 10µF − 10µF 5V VOUT2= 8.2V 10µF + + − − + − 1 2 3 4 5 6 7 14 VDD=5V 13 1MΩ 12 VDD=0V 11 10 9 VOUT1=-15V 8 + VIN= -5V VOUT1=-10V − 10µF Negative Voltage Convertion +Positive Voltage Conversion ● Changing the Temperature Gradient through Use of External Temperature Sensor (Thermistor) The SCI7661C/M has a temperature gradient selector circuit in its regulator. It selects any one of the three gradients: –0.1% / °C, –0.4% / °C and –0.6% / °C. It is necessary that the temperature gradient can be changed to any other value by connecting a thermistor in series to the output voltage control resistor RRV. 1 14 2 13 4 12 + − 11 5 10 6 9 7 8 3 VDD R1 10µF RRV RT RP Vreg Example of Change of Temperature Gradient ■ PACKAGE DIMENSIONS 19.7max Plastic DIP-14pin (0.775max) 19±0.1 (0.748±0.003) 8 6.3±0.1 (0.248±0.003) 14 1 7 1.5 0.8±0.1 +0.004 (0.031 –0.003 ) 3min 4.4±0.1 +0.004 (0.119min) (0.173 –0.003 ) (0.059) +0.03 .01 0.25 –0 +0.001 2.54 (0.1) ±0.1 0.46+0.004 (0.018 –0.003 ) 0° 15° 7.62 (0.3) (0.01 –0 ) Unit: mm (inch) 7 SCI7661COA/MOA Plastic SOP5-14pin 10.5max (0.413max) ±0.2 10.2+0.007 (0.402 –0.008 ) 7 0.4±0.1 +0.003 (0.016 –0.004 ) 0.1±0.08 1.27±0.1 (0.05±0.003) (0.004±0.003) 2.3 (0.09) 2.2max 1 8±0.3 INDEX (0.315±0.011) 5.5±0.2 +0.007 (0.217 –0.008 ) 8 (0.086max) 14 ±0.1 0.15+0.003 (0.006 –0.004) 0.4 (0.016) 1.25 (0.049) Unit: mm (inch) 8 SCI7661COA/MOA NOTICE No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Control Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency. All product names mentioned herein are trademarks and/or registered trademarks of their respective companies. ©Seiko Epson Corporation 1998 All rights reserved. ELECTRONIC DEVICES MARKETING DIVISION Electronic Device Marketing Department IC Marketing & Engineering Group 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624 ED International Marketing Department I (Europe & U.S.A.) 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564 ED International Marketing Department II (Asia) 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110 Electric Device Information of EPSON WWW server http://www.epson.co.jp 9