[ /Title () /Subject () /Autho r () /Keywords () /Creator () /DOCI NFO pdfmark [ /PageMode /UseOutlines /DOCVIEW pdfmark Semiconductor CT T ODU CEMEN 7 R P E A 74 T L 7 E OL REP 00-442OBS ENDED 8 1 m s.co MM ions ECO pplicat p@harri R O N ral A centap Cent : Call or email CA3018, CA3018A January 1999 File Number 338.5 General Purpose Transistor Arrays Features The CA3018 and CA3018A consist of four general purpose silicon NPN transistors on a common monolithic substrate. • Matched Monolithic General Purpose Transistors Two of the four transistors are connected in the Darlington configuration. The substrate is connected to a separate terminal for maximum flexibility. • VBE Matched - CA3018A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2mV - CA3018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5mV The transistors of the CA3018 and the CA3018A are well suited to a wide variety of applications in low power systems in the DC through VHF range. They may be used as discrete transistors in conventional circuits but in addition they provide the advantages of close electrical and thermal matching inherent in integrated circuit construction. • Operation From DC to 120MHz The CA3018A is similar to the CA3018 but features tighter control of current gain, leakage, and offset parameters making it suitable for more critical applications requiring premium performance. • Full Military Temperature Range . . . . . . . -55oC to 125oC • hFE Matched . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±10% • Wide Operating Current Range • CA3018A Performance Characteristics Controlled from 10µA to 10mA • Low Noise Figure . . . . . . . . . . . . . . . . 3.2dB (Typ) at 1kHz Applications • Two Isolated Transistors and a Darlington Connected Transistor Pair for Low Power Applications at Frequencies from DC through the VHF Range Part Number Information PART NUMBER TEMP. RANGE (oC) PACKAGE PKG. NO. CA3018 (obsolete) -55 to 125 12 Pin Metal Can T12.B • Temperature Compensated Amplifiers CA3018A -55 to 125 12 Pin Metal Can T12.B • See Application Note, AN5296 “Application of the CA3018 Integrated Circuit Transistor Array” for Suggested Applications • Custom Designed Differential Amplifiers Pinout CA3018, CA3018A (METAL CAN) TOP VIEW 12 1 Q4 11 10 2 3 9 Q3 4 Q1 Q2 5 SUBSTRATE 8 7 6 1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Copyright © Harris Corporation 1999 CA3018, CA3018A Absolute Maximum Ratings Thermal Information CA3018 Collector-to-Emitter Voltage, VCEO . . . . . . . . . . 15V Collector-to-Base Voltage, VCBO . . . . . . . . . . . . 20V Collector-to-Substrate Voltage, VCIO (Note 1) . . 20V Emitter-to-Base Voltage, VEBO . . . . . . . . . . . . . 5V Collector Current, IC . . . . . . . . . . . . . . . . . . . . . 50mA Thermal Resistance (Typical, Note 2) θJA (oC/W) θJC (oC/W) Metal Can Package . . . . . . . . . . . . . . . 200 120 Maximum Power Dissipation (Any One Transistor) . . . . . . . 300mW Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . .175oC Maximum Storage Temperature Range . . . . . . . . . . -65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC CA3018A 15V 30V 40V 5V 50mA Operating Conditions Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTES: 1. The collector of each transistor of the CA3018 and CA3018A is isolated from the substrate by an integral diode. The substrate (Terminal 10) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action. 2. θJA is measured with the component mounted on an evaluation PC board in free air. TA = 25oC Electrical Specifications CA3018 PARAMETER SYMBOL TEST CONDITIONS CA3018A MIN TYP MAX MIN TYP MAX UNITS DC CHARACTERISTICS Collector Cutoff Current (Figure 1) ICBO VCB = 10V, IE = 0 - 0.002 100 - 0.002 40 nA Collector Cutoff Current (Figure 2) ICEO VCE = 10V, IB = 0 - See Fig. 2 5 - See Fig. 2 0.5 µA Collector Cutoff Current Darlington Pair ICEOD VCE = 10V, IB = 0 - - - - - 5 µA Collector-to-Emitter Breakdown Voltage V(BR)CEO IC = 1mA, IB = 0 15 24 - 15 24 - V Collector-to-Base Breakdown Voltage V(BR)CBO IC = 10µA, IE = 0 20 60 - 30 60 - V Emitter-to-Base Breakdown Voltage V(BR)EBO IE = 10µA, IC = 0 5 7 - 5 7 - V Collector-to-Substrate Breakdown Voltage V(BR)CIO IC = 10µA, ICI = 0 20 60 - 40 60 - V IB = 1mA, IC = 10mA - 0.23 - - 0.23 0.5 V VCE = 3V IC = 10mA - 100 - 50 100 - - IC = 1mA 30 100 200 60 100 200 - IC = 10µA - 54 - 30 54 - - 0.9 0.97 - 0.9 0.97 - - 1500 5400 - 2000 5400 - - IC = 100µA - - - 1000 2800 - - IE = 1mA - 0.715 - 0.600 0.715 0.800 V IE = 10mA - 0.800 - - 0.800 0.900 V VCE = 3V, IE = 1mA - 0.48 5 - 0.48 2 mV VCE = 3V, IE = 1mA - -1.9 - - -1.9 - mV/oC Collector-to-Emitter Saturation Voltage Forward Current Transfer Ratio (Note 3) (Figure 3) VCES hFE Magnitude of Static-Beta Ratio (Isolated Transistors Q1 and Q2) (Figure 3) VCE = 3V, IC1 = IC2 = 1mA Forward Current Transfer Ratio Darlington Pair (Q3 and Q4) (Figure 4) hFED Base-to-Emitter Voltage (Figure 5) VBE Input Offset Voltage (Figures 5, 7) V BE1 VCE = 3V VCE = 3V IC = 1mA – V BE2 Temperature Coefficient: Base-to-Emitter Voltage Q1, Q2 (Figure 6) 2 ∆V BE -----------------∆T CA3018, CA3018A TA = 25oC (Continued) Electrical Specifications CA3018 PARAMETER SYMBOL Base (Q3)-to-Emitter (Q4) Voltage Darlington Pair (Figure 8) Temperature Coefficient: Base-to-Emitter Voltage Darlington Pair (Q3 and Q4) (Figure 9) Temperature Coefficient: Magnitude of Input Offset Voltage VBED (V9-1) ∆V BED ---------------------∆T TEST CONDITIONS VCE = 3V CA3018A MIN TYP MAX MIN TYP MAX UNITS IE = 10mA - 1.46 - - 1.46 1.60 V IE = 1mA - 1.32 - 1.10 1.32 1.50 V - 4.4 - - 4.4 - mV/oC - 10 - - 10 - µV/oC VCE = 3V, IE = 1mA V BE1 – V BE2 VCC = 6V, VEE = -6V, ------------------------------------- I = I = 1mA ∆T C1 C2 DYNAMIC CHARACTERISTICS Low Frequency Noise Figure (Figures 10 - 12) NF f = 1kHz, VCE = 3V, IC = 100µA, Source Resistance = 1kΩ - 3.25 - - 3.25 - dB Forward Current Transfer Ratio (Figure 13) hFE f = 1kHz, VCE = 3V, IC = 1mA - 110 - - 110 - - Short Circuit Input Impedance (Figure 13) hIE f = 1kHz, VCE = 3V, IC = 1mA - 3.5 - - 3.5 - kΩ Open Circuit Output Impedance (Figure 13) hOE f = 1kHz, VCE = 3V, IC = 1mA - 15.6 - - 15.6 - µS Open Circuit Reverse Voltage Transfer Ratio (Figure 13) hRE f = 1kHz, VCE = 3V, IC = 1mA - 1.8 x 10-4 - - 1.8 x 10-4 - - Forward Transfer Admittance (Figure 14) YFE f = 1MHz, VCE = 3V, IC = 1mA - 31 j1.5 - - 31 j1.5 - mS Input Admittance (Figure 15) YIE f = 1MHz, VCE = 3V, IC = 1mA - 0.3 + j0.04 - - 0.3 + j0.04 - mS Output Admittance (Figure 16) YOE f = 1MHz, VCE = 3V, IC = 1mA - 0.001 + j0.03 - - 0.001 + j0.03 - mS Reverse Transfer Admittance (Figure 17) YRE f = 1MHz, VCE = 3V, IC = 1mA Gain Bandwidth Product (Figure 18) fT VCE = 3V, IC = 3mA Low Frequency, Small Signal Equivalent Circuit Characteristics Admittance Characteristics See Figure 17 mS 300 500 - 300 500 - MHz Emitter-to-Base Capacitance CEB VEB = 3V, IE = 0 - 0.6 - - 0.6 - pF Collector-to-Base Capacitance CCB VCB = 3V, IC = 0 - 0.58 - - 0.58 - pF Collector-to-Substrate Capacitance CCI VCI = 3V, IC = 0 - 2.8 - - 2.8 - pF NOTE: 3. Actual forcing current is via the emitter for this test. 3 CA3018, CA3018A Typical Performance Curves 103 IE = 0 COLLECTOR CUTOFF CURRENT (nA) COLLECTOR CUTOFF CURRENT (nA) 102 10 VCB = 15V VCB = 10V VCB = 5V 1 10-1 10-2 10-3 10-4 102 VCE = 10V 10 VCE = 5V 1 10-1 10-2 10-3 25 50 75 100 AMBIENT TEMPERATURE (oC) FIGURE 1. TYPICAL COLLECTOR-TO-BASE CUTOFF CURRENT vs TEMPERATURE 1.1 120 110 VCE = 3V TA = 25oC hFE 100 h FE1 h FE2 ------------- OR ------------h FE2 80 h FE1 0.9 BETA RATIO 1 90 70 60 0.8 50 0.01 0.1 1 0 125 25 50 75 100 AMBIENT TEMPERATURE (oC) 8000 7000 VCE = 3V TA = 25oC 6000 5000 4000 3000 2000 1000 0 0.1 10 1 BASE-TO-EMITTER VOLTAGE (V) VCE = 3V TA = 25oC 3 0.7 VBE 0.6 2 0.5 1 VIO = |VBE1 - VBE2| 0 10 FIGURE 5. TYPICAL STATIC BASE-TO-EMITTER VOLTAGE CHARACTERISTIC AND INPUT OFFSET VOLTAGE FOR Q1 AND Q2 vs EMITTER CURRENT 4 FIGURE 4. TYPICAL STATIC FORWARD CURRENT - TRANSFER RATIO FOR DARLINGTON CONNECTED TRANSISTORS Q3 AND Q4 vs EMITTER CURRENT VCE = 3V 1.0 BASE-TO-EMITTER VOLTAGE (V) 4 0.8 INPUT OFFSET VOLTAGE Q1 AND Q2 (mV) FIGURE 3. TYPICAL STATIC FORWARD CURRENT TRANSFER RATIO AND BETA RATIO FOR TRANSISTORS Q1 AND Q2 vs EMITTER CURRENT 0.1 1.0 EMITTER CURRENT (mA) 10 EMITTER CURRENT (mA) EMITTER CURRENT (mA) 0.4 0.01 125 FIGURE 2. TYPICAL COLLECTOR-TO-EMITTER CUTOFF CURRENT vs TEMPERATURE STATIC FORWARD CURRENT TRANSFER RATIO FOR DARLINGTON PAIR (hFED) 0 STATIC FORWARD CURRENT TRANSFER RATIO (hFE) IB = 0 0.9 0.8 0.7 IE = 3mA 0.6 IE = 1mA IE = 0.5mA 0.5 0.4 -75 -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE (oC) 125 FIGURE 6. TYPICAL BASE-TO-EMITTER VOLTAGE CHARACTERISTIC FOR EACH TRANSISTOR vs TEMPERATURE CA3018, CA3018A Typical Performance Curves (Continued) 1.7 5 VCE = 3V TA = 25oC VCE = 3V IE = 10mA BASE-TO-EMITTER VOLTAGE FOR DARLINGTON PAIR (V) OFFSET VOLTAGE (mV) 4 3 2 0.75 IE = 1mA 0.50 IE = 0.1mA 0.25 0 -75 1.6 1.5 1.4 1.3 1.2 -50 -25 0 25 50 75 100 125 0.1 1 EMITTER CURRENT (mA) AMBIENT TEMPERATURE (oC) FIGURE 7. TYPICAL OFFSET VOLTAGE CHARACTERISTIC vs TEMPERATURE FIGURE 8. TYPICAL STATIC INPUT VOLTAGE CHARACTERISTIC FOR DARLINGTON PAIR (Q3 AND Q4) vs EMITTER CURRENT 2 IE = 3mA 20 VCE = 3V RS = 500Ω TA = 25oC IE = 1mA 1.50 NOISE FIGURE (dB) BASE-TO-EMITTER VOLTAGE FOR DARLINGTON PAIR (V) VCE = 3V 1.75 IE = 0.5mA 1.25 1 10 f = 0.1kHz 15 f = 1kHz 10 f = 10kHz 5 0.75 -75 -50 -25 0 25 50 75 100 0 0.01 125 AMBIENT TEMPERATURE (oC) FIGURE 9. TYPICAL STATIC INPUT VOLTAGE CHARACTERISTIC FOR DARLINGTON PAIR (Q3 AND Q4) vs TEMPERATURE 30 VCE = 3V RS = 1000Ω TA = 25oC 25 f = 0.1kHz 15 1 FIGURE 10. NOISE FIGURE vs COLLECTOR CURRENT NOISE FIGURE (dB) NOISE FIGURE (dB) 20 0.1 COLLECTOR CURRENT (mA) f = 1kHz 10 f = 10kHz VCE = 3V RS = 10000Ω TA = 25oC 20 f = 0.1kHz 15 f = 1kHz 10 f = 10kHz 5 5 0 0.01 0.1 COLLECTOR CURRENT (mA) FIGURE 11. NOISE FIGURE vs COLLECTOR CURRENT 5 1 0 0.01 0.1 COLLECTOR CURRENT (mA) FIGURE 12. NOISE FIGURE vs COLLECTOR CURRENT 1 CA3018, CA3018A Typical Performance Curves VCE = 3V f = 1kHz TA = 25oC hFE = 110 hIE = 3.5kΩ hRE = 1.88 x 10-4 hOE = 15.6µS hIE 10 hOE AT 1mA hRE hFE 1.0 hRE hIE 0.1 0.01 0.1 1.0 COLLECTOR CURRENT (mA) FORWARD TRANSFER CONDUCTANCE (gFE) OR SUSCEPTANCE (bFE) (mS) NORMALIZED h PARAMETERS 100 (Continued) COMMON EMITTER CIRCUIT, BASE INPUT TA = 25oC, VCE = 3V, IC = 1mA 40 30 gFE 20 10 0 bFE -10 -20 FIGURE 13. h PARAMETERS vs COLLECTOR CURRENT 4 3 bIE 2 1 gIE 5 4 bOE 3 2 1 gOE 0 0 0.1 1 10 FREQUENCY (MHz) 0.1 100 10 100 gRE IS SMALL AT FREQUENCIES LESS THAN 500MHz 0 bRE -1.0 -1.5 GAIN BANDWIDTH PRODUCT (MHz) FIGURE 16. OUTPUT ADMITTANCE (YOE) COMMON EMITTER CIRCUIT, BASE INPUT TA = 25oC, VCE = 3V, IC = 1mA -0.5 1 FREQUENCY (MHz) FIGURE 15. INPUT ADMITTANCE (YIE) REVERSE TRANSFER CONDUCTANCE (gRE) OR SUSCEPTANCE (bRE) (mS) 100 COMMON EMITTER CIRCUIT, BASE INPUT TA = 25oC, VCE = 3V, IC = 1mA 6 OUTPUT CONDUCTANCE (gOE) OR SUSCEPTANCE (bOE) (mS) INPUT CONDUCTANCE (gIE) OR SUSCEPTANCE (bIE) (mS) 5 10 FREQUENCY (MHz) FIGURE 14. FORWARD TRANSFER ADMITTANCE (YFE) 6 COMMON EMITTER CIRCUIT, BASE INPUT TA = 25oC, VCE = 3V, IC = 1mA 1 0.1 10 VCE = 3V TA = 25oC 1000 900 800 700 600 500 400 300 200 100 -2.0 1 10 100 FREQUENCY (MHz) FIGURE 17. REVERSE TRANSFER ADMITTANCE (YRE) 6 0 1 2 3 4 5 6 7 8 9 10 11 COLLECTOR CURRENT (mA) 12 13 14 FIGURE 18. TYPICAL GAIN BANDWIDTH PRODUCT (fT) vs COLLECTOR CURRENT