HARRIS CA3018A

[ /Title
()
/Subject ()
/Autho
r ()
/Keywords
()
/Creator ()
/DOCI
NFO
pdfmark
[
/PageMode
/UseOutlines
/DOCVIEW
pdfmark
Semiconductor
CT
T
ODU CEMEN 7
R
P
E
A
74
T
L
7
E
OL
REP 00-442OBS ENDED
8
1
m
s.co
MM
ions
ECO pplicat p@harri
R
O
N
ral A centap
Cent
:
Call or email
CA3018, CA3018A
January 1999
File Number 338.5
General Purpose Transistor Arrays
Features
The CA3018 and CA3018A consist of four general purpose
silicon NPN transistors on a common monolithic substrate.
• Matched Monolithic General Purpose Transistors
Two of the four transistors are connected in the Darlington
configuration. The substrate is connected to a separate
terminal for maximum flexibility.
• VBE Matched
- CA3018A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2mV
- CA3018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5mV
The transistors of the CA3018 and the CA3018A are well
suited to a wide variety of applications in low power systems
in the DC through VHF range. They may be used as discrete
transistors in conventional circuits but in addition they
provide the advantages of close electrical and thermal
matching inherent in integrated circuit construction.
• Operation From DC to 120MHz
The CA3018A is similar to the CA3018 but features tighter
control of current gain, leakage, and offset parameters
making it suitable for more critical applications requiring
premium performance.
• Full Military Temperature Range . . . . . . . -55oC to 125oC
• hFE Matched . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±10%
• Wide Operating Current Range
• CA3018A Performance Characteristics Controlled from
10µA to 10mA
• Low Noise Figure . . . . . . . . . . . . . . . . 3.2dB (Typ) at 1kHz
Applications
• Two Isolated Transistors and a Darlington Connected
Transistor Pair for Low Power Applications at Frequencies
from DC through the VHF Range
Part Number Information
PART NUMBER
TEMP.
RANGE (oC)
PACKAGE
PKG.
NO.
CA3018 (obsolete)
-55 to 125
12 Pin Metal Can
T12.B
• Temperature Compensated Amplifiers
CA3018A
-55 to 125
12 Pin Metal Can
T12.B
• See Application Note, AN5296 “Application of the CA3018
Integrated Circuit Transistor Array” for Suggested Applications
• Custom Designed Differential Amplifiers
Pinout
CA3018, CA3018A
(METAL CAN)
TOP VIEW
12
1
Q4
11
10
2
3
9
Q3
4
Q1
Q2
5
SUBSTRATE
8
7
6
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
Copyright © Harris Corporation 1999
CA3018, CA3018A
Absolute Maximum Ratings
Thermal Information
CA3018
Collector-to-Emitter Voltage, VCEO . . . . . . . . . . 15V
Collector-to-Base Voltage, VCBO . . . . . . . . . . . . 20V
Collector-to-Substrate Voltage, VCIO (Note 1) . . 20V
Emitter-to-Base Voltage, VEBO . . . . . . . . . . . . . 5V
Collector Current, IC . . . . . . . . . . . . . . . . . . . . . 50mA
Thermal Resistance (Typical, Note 2)
θJA (oC/W) θJC (oC/W)
Metal Can Package . . . . . . . . . . . . . . .
200
120
Maximum Power Dissipation (Any One Transistor) . . . . . . . 300mW
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . .175oC
Maximum Storage Temperature Range . . . . . . . . . . -65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC
CA3018A
15V
30V
40V
5V
50mA
Operating Conditions
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. The collector of each transistor of the CA3018 and CA3018A is isolated from the substrate by an integral diode. The substrate (Terminal 10) must
be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.
2. θJA is measured with the component mounted on an evaluation PC board in free air.
TA = 25oC
Electrical Specifications
CA3018
PARAMETER
SYMBOL
TEST CONDITIONS
CA3018A
MIN
TYP
MAX
MIN
TYP
MAX
UNITS
DC CHARACTERISTICS
Collector Cutoff Current (Figure 1)
ICBO
VCB = 10V, IE = 0
-
0.002
100
-
0.002
40
nA
Collector Cutoff Current (Figure 2)
ICEO
VCE = 10V, IB = 0
-
See
Fig. 2
5
-
See
Fig. 2
0.5
µA
Collector Cutoff Current Darlington Pair
ICEOD
VCE = 10V, IB = 0
-
-
-
-
-
5
µA
Collector-to-Emitter Breakdown Voltage
V(BR)CEO
IC = 1mA, IB = 0
15
24
-
15
24
-
V
Collector-to-Base Breakdown Voltage
V(BR)CBO
IC = 10µA, IE = 0
20
60
-
30
60
-
V
Emitter-to-Base Breakdown Voltage
V(BR)EBO
IE = 10µA, IC = 0
5
7
-
5
7
-
V
Collector-to-Substrate Breakdown Voltage
V(BR)CIO
IC = 10µA, ICI = 0
20
60
-
40
60
-
V
IB = 1mA, IC = 10mA
-
0.23
-
-
0.23
0.5
V
VCE = 3V
IC = 10mA
-
100
-
50
100
-
-
IC = 1mA
30
100
200
60
100
200
-
IC = 10µA
-
54
-
30
54
-
-
0.9
0.97
-
0.9
0.97
-
-
1500
5400
-
2000
5400
-
-
IC = 100µA
-
-
-
1000
2800
-
-
IE = 1mA
-
0.715
-
0.600
0.715
0.800
V
IE = 10mA
-
0.800
-
-
0.800
0.900
V
VCE = 3V, IE = 1mA
-
0.48
5
-
0.48
2
mV
VCE = 3V, IE = 1mA
-
-1.9
-
-
-1.9
-
mV/oC
Collector-to-Emitter Saturation Voltage
Forward Current Transfer Ratio (Note 3)
(Figure 3)
VCES
hFE
Magnitude of Static-Beta Ratio (Isolated
Transistors Q1 and Q2) (Figure 3)
VCE = 3V,
IC1 = IC2 = 1mA
Forward Current Transfer Ratio Darlington Pair (Q3 and Q4) (Figure 4)
hFED
Base-to-Emitter Voltage (Figure 5)
VBE
Input Offset Voltage (Figures 5, 7)
V BE1
VCE = 3V
VCE = 3V
IC = 1mA
– V BE2
Temperature Coefficient: Base-to-Emitter
Voltage Q1, Q2 (Figure 6)
2
∆V BE
-----------------∆T
CA3018, CA3018A
TA = 25oC (Continued)
Electrical Specifications
CA3018
PARAMETER
SYMBOL
Base (Q3)-to-Emitter (Q4) Voltage Darlington Pair (Figure 8)
Temperature Coefficient: Base-to-Emitter
Voltage Darlington Pair (Q3 and Q4)
(Figure 9)
Temperature Coefficient: Magnitude
of Input Offset Voltage
VBED (V9-1)
∆V BED
---------------------∆T
TEST CONDITIONS
VCE = 3V
CA3018A
MIN
TYP
MAX
MIN
TYP
MAX
UNITS
IE = 10mA
-
1.46
-
-
1.46
1.60
V
IE = 1mA
-
1.32
-
1.10
1.32
1.50
V
-
4.4
-
-
4.4
-
mV/oC
-
10
-
-
10
-
µV/oC
VCE = 3V, IE = 1mA
V BE1 – V BE2 VCC = 6V, VEE = -6V,
------------------------------------- I = I = 1mA
∆T
C1
C2
DYNAMIC CHARACTERISTICS
Low Frequency Noise Figure
(Figures 10 - 12)
NF
f = 1kHz, VCE = 3V,
IC = 100µA, Source
Resistance = 1kΩ
-
3.25
-
-
3.25
-
dB
Forward Current Transfer Ratio
(Figure 13)
hFE
f = 1kHz, VCE = 3V,
IC = 1mA
-
110
-
-
110
-
-
Short Circuit Input Impedance
(Figure 13)
hIE
f = 1kHz, VCE = 3V,
IC = 1mA
-
3.5
-
-
3.5
-
kΩ
Open Circuit Output Impedance
(Figure 13)
hOE
f = 1kHz, VCE = 3V,
IC = 1mA
-
15.6
-
-
15.6
-
µS
Open Circuit Reverse Voltage
Transfer Ratio (Figure 13)
hRE
f = 1kHz, VCE = 3V,
IC = 1mA
-
1.8 x
10-4
-
-
1.8 x
10-4
-
-
Forward Transfer Admittance
(Figure 14)
YFE
f = 1MHz, VCE = 3V,
IC = 1mA
-
31 j1.5
-
-
31 j1.5
-
mS
Input Admittance (Figure 15)
YIE
f = 1MHz, VCE = 3V,
IC = 1mA
-
0.3 +
j0.04
-
-
0.3 +
j0.04
-
mS
Output Admittance (Figure 16)
YOE
f = 1MHz, VCE = 3V,
IC = 1mA
-
0.001
+ j0.03
-
-
0.001
+ j0.03
-
mS
Reverse Transfer Admittance
(Figure 17)
YRE
f = 1MHz, VCE = 3V,
IC = 1mA
Gain Bandwidth Product (Figure 18)
fT
VCE = 3V, IC = 3mA
Low Frequency, Small Signal Equivalent
Circuit Characteristics
Admittance Characteristics
See Figure 17
mS
300
500
-
300
500
-
MHz
Emitter-to-Base Capacitance
CEB
VEB = 3V, IE = 0
-
0.6
-
-
0.6
-
pF
Collector-to-Base Capacitance
CCB
VCB = 3V, IC = 0
-
0.58
-
-
0.58
-
pF
Collector-to-Substrate Capacitance
CCI
VCI = 3V, IC = 0
-
2.8
-
-
2.8
-
pF
NOTE:
3. Actual forcing current is via the emitter for this test.
3
CA3018, CA3018A
Typical Performance Curves
103
IE = 0
COLLECTOR CUTOFF CURRENT (nA)
COLLECTOR CUTOFF CURRENT (nA)
102
10
VCB = 15V
VCB = 10V
VCB = 5V
1
10-1
10-2
10-3
10-4
102
VCE = 10V
10
VCE = 5V
1
10-1
10-2
10-3
25
50
75
100
AMBIENT TEMPERATURE (oC)
FIGURE 1. TYPICAL COLLECTOR-TO-BASE CUTOFF CURRENT
vs TEMPERATURE
1.1
120
110
VCE = 3V
TA = 25oC
hFE
100
h FE1
h FE2
------------- OR ------------h FE2
80
h FE1
0.9
BETA RATIO
1
90
70
60
0.8
50
0.01
0.1
1
0
125
25
50
75
100
AMBIENT TEMPERATURE (oC)
8000
7000
VCE = 3V
TA = 25oC
6000
5000
4000
3000
2000
1000
0
0.1
10
1
BASE-TO-EMITTER VOLTAGE (V)
VCE = 3V
TA = 25oC
3
0.7
VBE
0.6
2
0.5
1
VIO = |VBE1 - VBE2|
0
10
FIGURE 5. TYPICAL STATIC BASE-TO-EMITTER VOLTAGE
CHARACTERISTIC AND INPUT OFFSET VOLTAGE
FOR Q1 AND Q2 vs EMITTER CURRENT
4
FIGURE 4. TYPICAL STATIC FORWARD CURRENT - TRANSFER
RATIO FOR DARLINGTON CONNECTED
TRANSISTORS Q3 AND Q4 vs EMITTER CURRENT
VCE = 3V
1.0
BASE-TO-EMITTER VOLTAGE (V)
4
0.8
INPUT OFFSET VOLTAGE Q1 AND Q2 (mV)
FIGURE 3. TYPICAL STATIC FORWARD CURRENT TRANSFER
RATIO AND BETA RATIO FOR TRANSISTORS Q1
AND Q2 vs EMITTER CURRENT
0.1
1.0
EMITTER CURRENT (mA)
10
EMITTER CURRENT (mA)
EMITTER CURRENT (mA)
0.4
0.01
125
FIGURE 2. TYPICAL COLLECTOR-TO-EMITTER CUTOFF
CURRENT vs TEMPERATURE
STATIC FORWARD CURRENT TRANSFER
RATIO FOR DARLINGTON PAIR (hFED)
0
STATIC FORWARD CURRENT
TRANSFER RATIO (hFE)
IB = 0
0.9
0.8
0.7
IE = 3mA
0.6
IE = 1mA
IE = 0.5mA
0.5
0.4
-75
-50
-25
0
25
50
75
100
AMBIENT TEMPERATURE (oC)
125
FIGURE 6. TYPICAL BASE-TO-EMITTER VOLTAGE
CHARACTERISTIC FOR EACH TRANSISTOR vs
TEMPERATURE
CA3018, CA3018A
Typical Performance Curves
(Continued)
1.7
5
VCE = 3V
TA = 25oC
VCE = 3V
IE = 10mA
BASE-TO-EMITTER VOLTAGE
FOR DARLINGTON PAIR (V)
OFFSET VOLTAGE (mV)
4
3
2
0.75
IE = 1mA
0.50
IE = 0.1mA
0.25
0
-75
1.6
1.5
1.4
1.3
1.2
-50
-25
0
25
50
75
100
125
0.1
1
EMITTER CURRENT (mA)
AMBIENT TEMPERATURE (oC)
FIGURE 7. TYPICAL OFFSET VOLTAGE CHARACTERISTIC vs
TEMPERATURE
FIGURE 8. TYPICAL STATIC INPUT VOLTAGE CHARACTERISTIC
FOR DARLINGTON PAIR (Q3 AND Q4) vs EMITTER
CURRENT
2
IE = 3mA
20
VCE = 3V
RS = 500Ω
TA = 25oC
IE = 1mA
1.50
NOISE FIGURE (dB)
BASE-TO-EMITTER VOLTAGE
FOR DARLINGTON PAIR (V)
VCE = 3V
1.75
IE = 0.5mA
1.25
1
10
f = 0.1kHz
15
f = 1kHz
10
f = 10kHz
5
0.75
-75
-50
-25
0
25
50
75
100
0
0.01
125
AMBIENT TEMPERATURE (oC)
FIGURE 9. TYPICAL STATIC INPUT VOLTAGE CHARACTERISTIC
FOR DARLINGTON PAIR (Q3 AND Q4) vs
TEMPERATURE
30
VCE = 3V
RS = 1000Ω
TA = 25oC
25
f = 0.1kHz
15
1
FIGURE 10. NOISE FIGURE vs COLLECTOR CURRENT
NOISE FIGURE (dB)
NOISE FIGURE (dB)
20
0.1
COLLECTOR CURRENT (mA)
f = 1kHz
10
f = 10kHz
VCE = 3V
RS = 10000Ω
TA = 25oC
20
f = 0.1kHz
15
f = 1kHz
10
f = 10kHz
5
5
0
0.01
0.1
COLLECTOR CURRENT (mA)
FIGURE 11. NOISE FIGURE vs COLLECTOR CURRENT
5
1
0
0.01
0.1
COLLECTOR CURRENT (mA)
FIGURE 12. NOISE FIGURE vs COLLECTOR CURRENT
1
CA3018, CA3018A
Typical Performance Curves
VCE = 3V
f = 1kHz
TA = 25oC
hFE = 110
hIE = 3.5kΩ
hRE = 1.88 x 10-4
hOE = 15.6µS
hIE
10
hOE
AT
1mA
hRE
hFE
1.0
hRE
hIE
0.1
0.01
0.1
1.0
COLLECTOR CURRENT (mA)
FORWARD TRANSFER CONDUCTANCE (gFE)
OR SUSCEPTANCE (bFE) (mS)
NORMALIZED h PARAMETERS
100
(Continued)
COMMON EMITTER CIRCUIT, BASE INPUT
TA = 25oC, VCE = 3V, IC = 1mA
40
30
gFE
20
10
0
bFE
-10
-20
FIGURE 13. h PARAMETERS vs COLLECTOR CURRENT
4
3
bIE
2
1
gIE
5
4
bOE
3
2
1
gOE
0
0
0.1
1
10
FREQUENCY (MHz)
0.1
100
10
100
gRE IS SMALL AT FREQUENCIES
LESS THAN 500MHz
0
bRE
-1.0
-1.5
GAIN BANDWIDTH PRODUCT (MHz)
FIGURE 16. OUTPUT ADMITTANCE (YOE)
COMMON EMITTER CIRCUIT, BASE INPUT
TA = 25oC, VCE = 3V, IC = 1mA
-0.5
1
FREQUENCY (MHz)
FIGURE 15. INPUT ADMITTANCE (YIE)
REVERSE TRANSFER CONDUCTANCE (gRE)
OR SUSCEPTANCE (bRE) (mS)
100
COMMON EMITTER CIRCUIT, BASE INPUT
TA = 25oC, VCE = 3V, IC = 1mA
6
OUTPUT CONDUCTANCE (gOE)
OR SUSCEPTANCE (bOE) (mS)
INPUT CONDUCTANCE (gIE)
OR SUSCEPTANCE (bIE) (mS)
5
10
FREQUENCY (MHz)
FIGURE 14. FORWARD TRANSFER ADMITTANCE (YFE)
6
COMMON EMITTER CIRCUIT, BASE INPUT
TA = 25oC, VCE = 3V, IC = 1mA
1
0.1
10
VCE = 3V
TA = 25oC
1000
900
800
700
600
500
400
300
200
100
-2.0
1
10
100
FREQUENCY (MHz)
FIGURE 17. REVERSE TRANSFER ADMITTANCE (YRE)
6
0
1
2
3
4
5 6
7
8 9 10 11
COLLECTOR CURRENT (mA)
12 13 14
FIGURE 18. TYPICAL GAIN BANDWIDTH PRODUCT (fT) vs
COLLECTOR CURRENT