NTE904 Integrated Circuit General Purpose Transistor Array (Two Isolated Transistors and a Darlington Connected Transistor Pair) Description: The NTE904 consists of four general purpose silicon NPN transistors on a common monolithic substrate in a 12–Lead TO5 type metal can. Two of the four transistors are connected in the Darlington configuration. The substrate is connected to a separate terminal for maximum flexibility. The transistors of the NTE904 are well suited to a wide variety of applications in low power systems in the DC through VHF range. They may be used as discrete transistors in conventional circuits but in addition they provide the advantages of close electrical and thermal matching inherent in integrated circuit construction. Features: D Matched Monolithic General Purpose Transistors D Current Gain Matched to ±10% D Base–Emitter Voltage Matched to ±2mV D Operation from DC to 120MHz D Wide Operating Current Range D Low Noise Figure Applications: D General use in Signal Processing Systems in DC through VHF Range D Custom Designed Differential Amplifiers D Temperature Compenstaed Amplifiers Absolute Maximum Ratings: (TA = +25°C unless otherwise specified) Collector–Emitter Voltage (Each Transistor), VCEO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15V Collector–Base Voltage (Each Transistor), VCBO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30V Collector–Substrate Voltage (Each Transistor, Note 1), VCIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40V Emitter–Base Voltage (Each Transistor), VEBO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V Collector Current (Each Transistor), IC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50mA Power Dissipation, PD Any One Transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300mW Total package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450mW Derate Above 85°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mW/°C Operating Temperature Range, Topr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –55° to +125°C Storage Temperature Range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65° to +150°C Note 1. The collector of each transistor is isolated from the substrate by an integral diode. The substrate (Pin10) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action. Electrical Characteristics: (TA = +25°C unless otherwise specified) Parameter Symbol Test Conditions Min Typ Max Unit Static Characteristics Collector Cutoff Current Collector Cutoff Current (Darlington Pair) ICBO VCB = 10V, IE = 0 – 0.002 – nA ICEO VCE = 10V, IB = 0 – – 0.5 µA ICEOD VCE = 10V, IB = 0 – – 5 µA Collector–Emitter Breakdown Voltage V(BR)CEO IC = 1mA, IB = 0 15 24 – V Collector–Base Breakdown Voltage V(BR)CBO IC = 10µA, IE = 0 30 60 – V Emitter–Base Breakdown Voltage V(BR)EBO IE = 10µA, IC = 0 5 7 – V Collector–Substrate Breakdown Voltage V(BR)CIO IC = 10µA, IC1 = 0 40 60 – V Collector–Emitter Saturation Voltage VCE(sat) IC = 10mA, IB = 1mA – 0.23 0.5 V Static Forward Current Transfer Ratio hFE VCE = 3V, IC = 10mA 50 100 – VCE = 3V, IC = 1mA 60 100 200 VCE = 3V, IC = 10µA 54 – – VCE = 3V, IC1 = IC2 = 1mA 0.9 0.97 – VCE = 3V, IC = 1mA 2000 5400 – VCE = 3V, IC = 10µA 1000 2800 – VCE = 3V, IE = 1mA 0.600 0.715 0.800 Magnitude of Static–Beta Ratio (Isolated Transistors Q1 and Q2) Static Forward Current Transfer Ratio (Darlington Pair Q3 and Q4) hFED Base–Emitter Voltage VBE V VCE = 3V, IE = 10mA – 0.800 0.900 Input Offset Voltage VCE = 3V, IE = 1mA – 0.48 2.0 mV Temperature Coefficient of Base–Emitter Voltage (Q1 – Q2) VCE = 3V, IE = 1mA – 1.9 – mV/°C VCE = 3V, IE = 10mA – 1.46 1.60 V VCE = 3V, IE = 1mA 1.10 1.32 1.50 V Temperature Coefficient of Base–Emitter Voltage (Darlington Pair Q3–Q4) VCE = 3V, IE = 1mA – 4.4 – mV/°C Temperature Coefficient of Magnitude of Input Offset Voltage VCC = 6V, VEE = –6V, IC1 = IC2 = 1mA – 10 – µV/°C VCE = 3V, IC = 100µA, f = 1kHz, RS = 1kΩ – 3.25 – dB – 110 – Base (Q3)–Emitter (Q4) Voltage Darlington Pair Low Frequency Noise Figure VBED NF V Low Frequency, Small–Signal Equivalent Circuit Characteristics Forward Current Transfer Ratio hfe VCE = 3V, IC = 1mA, f = 1kHz Short–Circuit Input Impedance hie – 3.5 – kΩ Open–Circuit Output Impedance hoe – 15.6 – µmhos Open–Circuit Reverse Voltage Transfer Ratio hre 1.8 x 104 (Typ) Admittance Characteristics Forward Transfer Admittance Yfe Input Admittance Yie Output Admittance Yoe Gain–Bandwidth Product fT VCE = 3V, IC = 1mA, f = 1kHz VCE = 3V, IC = 3mA 31–j1.5 (Typ) mmho 0.3+j0.04 (Typ) mmho 0.001+j0.03 (Typ) mmho 300 500 – MHz Emitter–Base Capacitance CEB VEB = 3V, IE =0 – 0.6 – pF Collector–Base Capacitance CCB VCB = 3V, IC = 0 – 0.58 – pF Collector–Substrate Capacitance CCI VCI = 3V, IC = 0 – 2.8 – pF Pin Connection Diagram (Top View) Collector Q1 8 Base Q3 9 67 Emitter Q1 6 Base Q1 Substrate/Case 10 Collector Q3 11 5 Collector Q2 4 Emitter Q 2 12 Collector Q4 Emitter Q4 1 3 Base Q 2 12 Emitter Q3/Base Q4 .370 (9.4) Dia Max .335 (8.5) Dia Max .180 (4.57) Max .500 (12.7) Min .018 (0.48) Dia Typ .245 (6.23) Dia 4 3 5 2 6 7 1 8 12 11 10 9