HITACHI HD151015

HD151015
9 bit Level Shifter/Transceiver With 3 State Outputs
ADE-205-039C (Z)
3rd. Edition
Jun. 1993
Description
The HD151015 is an IC which consists of 9 bus transceivers (three state output) in a 24 pin package.
Signals are transmitter from A to B when the direction control input (DiR) is at a high level, and from B to
A when DiR is at a low level. When the enable input (G) is high, A and B are isolated. And this product
has two terminals (V CCA, VCCB), VCCA is connected with control input and A bus side, VCCB is connected
with B bus side. VCCA and V CCB are isolated. Consequently, it is best to change the level in case of two
supply voltage coexist on one board and application of power management.
Features
• This product function as level shift transceiver that change VCCA input level to VCCB output level, VCCB
input level to VCCA output level by providing different supply voltages to VCCA and VCCB.
• This product is able to the power management : Turn on and off the supply on VCCB side with providing
the supply of VCCA.
(Enable input (G) : High level)
• Inputs and outputs are CMOS level, and the power dissipation is the same as CMOS standard logic.
• Wide operating supply voltage range:
VCCA = VCCB = 2 to 6 V (VCCB V CCA – 0.5 V)
• Wide operating temperature range: Ta = –40 to 85°C
HD151015
Pin Arrangement
V CCA 1
24 VCCB
DIR 2
23 G
A0 3
22 B0
A1 4
21 B1
A2 5
20 B2
A3 6
19 B3
A4 7
18 B4
A5 8
17 B5
A6 9
16 B6
A7 10
15 B7
A8 11
14 B8
GND 12
13 GND
(Top view)
Function Table
Inputs
G
DIR
Outputs
L
L
B data to A bus
L
H
A data to B bus
H
X
Z
H
L
Z
X
2
:
:
:
:
High level
Low level
High Impedance
Immaterial
HD151015
Absolute Maximum Ratings
Item
Symbol
Rating
Unit
Conditions
Supply Voltage
VCCA , VCCB
–0.5 to +7.0
V
Input Diode Current
I IK
–20
mA
VI = –0.5
20
mA
VI = VCC + 0.5
Input Voltage
VIN
–0.5 to VCC + 0.5
V
Output Diode Current
I OK
–50
mA
VO = –0.5
50
mA
VO = VCC + 0.5
Output Voltage
VOUT
–0.5 to VCC + 0.5
V
Output Current
IO
±50
mA
VCC or Ground Current
I CC or IGND
±50
mA
Storage Temperature
Tstg
–65 to + 150
°C
Note:
per output pin
1. The absolute maximum ratings are values which must not individually be exceeded, and
furthermore, no two of which may be realized at the same time.
Recommended Operating Conditions
Item
Symbol
Rating
Unit
Conditions
Supply voltage
VCCA, B
2.0 to 6.0
V
VCCB ≥ VCCA – 0.5 V
Input voltage
VIN
0 to V CC
V
Output voltage
VOUT
0 to V CC
V
TA
–40 to +85
°C
t r, t f
8
ns/V
Operating Temperature
1
Input Rise and Fall Time*
[email protected] V (Input DiR, G, A)
[email protected] V (Input B)
[email protected] V (Input B)
Note:
1. The item guarantees maximum limit when one input switches.
Waveform: Refer to test circuit of switching characteristics.
3
HD151015
Logick Diagram
DIR
Transceiver(1/9)
A
G
B
VCCA System
Level
Change
System
VCCB System
Electrical Characteristics
Ta = –40 to
85°C
Sym- VCCA VCCB Ta = 25°C
Item
bol
Typ
Max
Min
Max
Unit
Conditions
3.0 3.0 2.1
1.5
—
2.1
—
V
VOUT = 0.1 V or VCC – 0.1 V
4.5 4.5 3.15
2.25
—
3.15
—
5.5 5.5 3.85
2.75
—
3.85
—
3.0 3.0 —
1.5
0.9
—
0.9
V
VOUT = 0.1 V or VCC – 0.1 V
4.5 4.5 —
2.25
1.35
—
1.35
5.5 5.5 —
2.75
1.65
—
1.65
2.7 4.5 2.6
2.69
—
2.6
—
V
VIN = VIL or VIH, IOH = –50 µA A* 1
2.7 4.5 4.4
4.49
—
4.4
—
2.7 4.5 2.3
—
—
2.2
—
2.7 4.5 3.9
—
—
3.8
—
2.7 4.5 —
0.001 0.1
—
0.1
V
VIN = VIL or VIH, IOL = 50 µA
2.7 4.5 —
—
0.32
—
0.37
V
VIN = VIL or VIH, IOL = 12 mA A.B
Input Current I IN
3.3 5.5 —
—
±0.1
—
±1.0
µA
VIN = VCC or GND
Off State
Output
Current
I OZ
3.3 5.5 —
—
±0.5
—
±5.0
µA
VIN(G) = VIH, VIN = VCC or GND,
VOUT = VCC or GND
Supply
I CCA.B
3.3 5.5 —
—
8.0
—
80
µA
VIN = VCC or GND
Current
I CCA
5.5 0
—
8.0
—
80
µA
VIN = VCC or GND, B Input OPEN
Input Voltage VIH
VIL
Output
VOH
Voltage
VOL
Note:
4
(V) (V)
Min
—
1. A: Output A, B: Output B, A.B: Output A.B
VIN = VIL or VIH, IOH = –50 µA B
V
VIN =
I OH = –4 mA
A
VIL or VIH
I OH = –12 mA B
A.B
HD151015
Switching Characteristics
Ta = 25°C
Ta = –40 to 85°C
VCCA = 3.0 V, VCCB = 5.0 V VCC = 2.7 V, VCCB = 4.5 V
Item
Symbol
Propagation Delay Time t PLH
t PHL
Output Enable Time
t ZH
t ZL
Output Disable Time
t HZ
t LZ
Min
Typ
Max
Min
Max
Unit
Conditions
1.0
5.0
10.0
1.0
12.0
ns
B→A
1.0
5.0
10.0
1.0
12.0
1.0
5.0
10.0
1.0
12.0
1.0
5.0
10.0
1.0
12.0
1.0
8.0
16.0
1.0
20.0
1.0
8.0
16.0
1.0
20.0
1.0
9.0
16.0
1.0
20.0
1.0
9.0
16.0
1.0
20.0
1.0
9.0
16.0
1.0
20.0
1.0
9.0
16.0
1.0
20.0
1.0
8.0
16.0
1.0
20.0
1.0
8.0
16.0
1.0
20.0
A→B
B→A
ns
A→B
G→A
ns
G→B
G→A
ns
G→A
G→A
ns
G→B
G→A
ns
G→B
Input and Output Equivalent Circuit
BUS A
BUS B
VCCB
VCCA
A
B
Input DIR,G
VCCA
DIR
G
5
HD151015
Switching Time Test Method
Test Circuit
VCC
VCCA VCCB
G
Pulse
Generator
Zout = 50 Ω
Output
See Function Table
Input
A0
*4
S1
500 Ω
B0
450 Ω
CL =
50 pF
50 Ω Scope
OPEN
2 × VCCA
or
2 × VCCB
DIR
Notes:
6
1.
2.
3.
4.
CL includes probe and jig capacitance.
A1-B1, A2-B2, A3-B3, A4-B4, A5-B5, A6-B6, A7-B7, A8-B8 are identical to above circuit.
S1 is a input/output switch.
When A → B: 2 × V CCB , B → A: 2 ¥ VCCA
HD151015
Waveforms-1
tf
tr
90 %
50 %
10 %
Input
*5
VCCA
or VCCB
90 %
50 %
10 %
GND
t PHL
t PLH
VOH
50 %
50 %
Output
VOL
Waveforms-2
tf
G
tr
90 %
50 %
10 %
t ZL
90 %
50 %
10 %
t LZ
t ZH
t HZ
VCCA
GND
VCCA
or VCCB
Waveform – a
10 %
Waveform – b
90 %
*6
VOL
VOH
50 %
GND
Notes:
1.
2.
3.
4.
5.
6.
t r = tf = 2.5 ns.
Input Waveform: PRR = 1 MHz, duty cycle 50%
Waveform-a is set as outputs are “Low” when enable input is “Low”.
Waveform-b is set as outputs are “High” when enable input is “Low”.
When A → B: VCCA , B → A : VCCB
When G → A: VCCA , G → B : VCCB
7
HD151015
Typical Characteristic Curves
Propagation Delay Times vs Power Supply (VCCA, VCCB)
t PLH
(B to A)
20
20
Ta = 25 ˚C
V CCA = 2 V
=3V
=4V
=5V
15
t PLH
(B to A)
(ns)
t PHL
(B to A)
10
15
t PHL
(B to A)
(ns)
5
0
2
3
4
5
2
3
4
5
VCCB (V)
t PLH
(A to B)
t PHL
(A to B)
20
Ta = 25 ˚C
V CCA = 2 V
=3V
=4V
10
t PHL
(A to B)
(ns)
=5V
6
Ta = 25 ˚C
V CCA = 2 V
=3V
=4V
=5V
15
5
10
5
2
3
4
VCCB (V)
8
0
6
VCCB (V)
15
0
10
5
20
t PLH
(A to B)
(ns)
Ta = 25 ˚C
V CCA = 2 V
=3V
=4V
=5V
5
6
0
2
3
4
VCCB (V)
5
6
HD151015
Output Voltage vs Output Current
VOH
VOL
(A)
(A)
*1
1.0
5
Ta = 25 ˚C
Ta = 25 ˚C
V CCA = 5 V
4
VCCB = 2 V
0.8
V CCA = 4 V
VOH
(V)
3
VOL 0.6
V CCA = 3 V
(V)
2
VCCB = 4 V
0.4
V CCA = 2 V
1
VCCB = 3 V
0.2
VCCB = 5 V
0
0
-3
-9
-6
-12
0
-15
0
3
6
9
12
I OH (mA)
I OL (mA)
VOH
VOL
(B)
(B)
15
1.0
5
Ta = 25 ˚C
Ta = 25 ˚C
VCCB = 5 V
4
VCCB = 2 V
0.8
VCCB = 4 V
VOH
(V)
3
VOL 0.6
VCCB = 3 V
(V)
2
VCCB = 4 V
0.4
VCCB = 2 V
1
VCCB = 3 V
0.2
VCCB = 5 V
0
0
-3
-6
-9
I OH (mA)
-12
-15
0
0
3
6
9
12
15
I OL (mA)
9
HD151015
Application
For power management system (1)
VCCB system
VCCA system
VCCA
V CCB
Be able to set up
variable power
supply voltage
from 2 V to 6 V
HD151015
Be able to set up
variable power
supply voltage
from 2 V to 6 V
Note:
Be able to turn
on and off
HD151015 is also used for power management system. We show some Examples.
1. For VCCA side
Be able to switch fast mode (V CCA = 5 V) and power save mode (VCCA = 3 V)
2. For VCCB side
Be able to switch normal mode (V CCB = 5 V) and suspend mode (VCCB = 0 V)
3. For both side
Be able to switch fast mode (V CCA = 5 V) and power save mode (VCCA = 3 V)
(When VCCA = VCCB, in this case, please switch V CCA and VCCB simulteneously.)
For power management system (2) (Common bus line in different power system)
VCCA system
VCCB system
VCCB = 0 V
HD151015
VCCB
=0V
HD151015
i
*1
"H"
X
*2
"H"
VCCB' system
HD151015 uses conventional CMOS input circuit. So, you have to care of designing in case of common bus
line in different power block. We show one example.
In this case, if V CCB become turn off, current flows from bus line to V CCB . (refer to *1)
This is cause of malfunction. In order to prevent this problem, I recommend using this device for interface to
each power block. (refer to * 2)
10
HD151015
[Cautions on using]
Please use this IC on condition of V CCA usually ON, because if you use it on condition of VCCA being OFF,
VCCB being ON, it will be troubled.
11
HD151015
Package Dimensions
Unit: mm
30.4
31.75 Max
13
6.6
7.0 Max
24
1
12
1.3
0.88
7.62
0.48 ± 0.10
2.54 Min
2.54 ± 0.25
0.51 Min
5.08 Max
1.90 Max
+ 0.11
0.25 – 0.05
0° – 15°
Hitachi Code
JEDEC
EIAJ
Mass (reference value)
DP-24N
—
Conforms
1.84 g
Unit: mm
7.80
8.10 Max
13
1
12
4.40
24
0.65
0.20 ± 0.06
1.0
0.13 M
6.40 ± 0.20
0.10
*Dimension including the plating thickness
Base material dimension
12
*0.17 ± 0.05
0.15 ± 0.04
1.10 Max
0.65 Max
0.07 +0.03
–0.04
*0.22+0.08
–0.07
0° – 8° 0.50 ± 0.10
Hitachi Code
JEDEC
EIAJ
Mass (reference value)
TTP-24DB
—
—
0.08 g
HD151015
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica
Europe
Asia
Japan
:
:
:
:
http://semiconductor.hitachi.com/
http://www.hitachi-eu.com/hel/ecg
http://sicapac.hitachi-asia.com
http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe GmbH
Electronic Components Group
Dornacher Straβe 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Asia Ltd.
Hitachi Tower
16 Collyer Quay #20-00,
Singapore 049318
Tel : <65>-538-6533/538-8577
Fax : <65>-538-6933/538-3877
URL : http://www.hitachi.com.sg
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 585160
Hitachi Asia Ltd.
(Taipei Branch Office)
4/F, No. 167, Tun Hwa North Road,
Hung-Kuo Building,
Taipei (105), Taiwan
Tel : <886>-(2)-2718-3666
Fax : <886>-(2)-2718-8180
Telex : 23222 HAS-TP
URL : http://www.hitachi.com.tw
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower,
World Finance Centre,
Harbour City, Canton Road
Tsim Sha Tsui, Kowloon,
Hong Kong
Tel : <852>-(2)-735-9218
Fax : <852>-(2)-730-0281
URL : http://www.hitachi.com.hk
Copyright  Hitachi, Ltd., 2000. All rights reserved. Printed in Japan.
Colophon 2.0
13