HD151015 9 bit Level Shifter/Transceiver With 3 State Outputs ADE-205-039C (Z) 3rd. Edition Jun. 1993 Description The HD151015 is an IC which consists of 9 bus transceivers (three state output) in a 24 pin package. Signals are transmitter from A to B when the direction control input (DiR) is at a high level, and from B to A when DiR is at a low level. When the enable input (G) is high, A and B are isolated. And this product has two terminals (V CCA, VCCB), VCCA is connected with control input and A bus side, VCCB is connected with B bus side. VCCA and V CCB are isolated. Consequently, it is best to change the level in case of two supply voltage coexist on one board and application of power management. Features • This product function as level shift transceiver that change VCCA input level to VCCB output level, VCCB input level to VCCA output level by providing different supply voltages to VCCA and VCCB. • This product is able to the power management : Turn on and off the supply on VCCB side with providing the supply of VCCA. (Enable input (G) : High level) • Inputs and outputs are CMOS level, and the power dissipation is the same as CMOS standard logic. • Wide operating supply voltage range: VCCA = VCCB = 2 to 6 V (VCCB V CCA – 0.5 V) • Wide operating temperature range: Ta = –40 to 85°C HD151015 Pin Arrangement V CCA 1 24 VCCB DIR 2 23 G A0 3 22 B0 A1 4 21 B1 A2 5 20 B2 A3 6 19 B3 A4 7 18 B4 A5 8 17 B5 A6 9 16 B6 A7 10 15 B7 A8 11 14 B8 GND 12 13 GND (Top view) Function Table Inputs G DIR Outputs L L B data to A bus L H A data to B bus H X Z H L Z X 2 : : : : High level Low level High Impedance Immaterial HD151015 Absolute Maximum Ratings Item Symbol Rating Unit Conditions Supply Voltage VCCA , VCCB –0.5 to +7.0 V Input Diode Current I IK –20 mA VI = –0.5 20 mA VI = VCC + 0.5 Input Voltage VIN –0.5 to VCC + 0.5 V Output Diode Current I OK –50 mA VO = –0.5 50 mA VO = VCC + 0.5 Output Voltage VOUT –0.5 to VCC + 0.5 V Output Current IO ±50 mA VCC or Ground Current I CC or IGND ±50 mA Storage Temperature Tstg –65 to + 150 °C Note: per output pin 1. The absolute maximum ratings are values which must not individually be exceeded, and furthermore, no two of which may be realized at the same time. Recommended Operating Conditions Item Symbol Rating Unit Conditions Supply voltage VCCA, B 2.0 to 6.0 V VCCB ≥ VCCA – 0.5 V Input voltage VIN 0 to V CC V Output voltage VOUT 0 to V CC V TA –40 to +85 °C t r, t f 8 ns/V Operating Temperature 1 Input Rise and Fall Time* [email protected] V (Input DiR, G, A) [email protected] V (Input B) [email protected] V (Input B) Note: 1. The item guarantees maximum limit when one input switches. Waveform: Refer to test circuit of switching characteristics. 3 HD151015 Logick Diagram DIR Transceiver(1/9) A G B VCCA System Level Change System VCCB System Electrical Characteristics Ta = –40 to 85°C Sym- VCCA VCCB Ta = 25°C Item bol Typ Max Min Max Unit Conditions 3.0 3.0 2.1 1.5 — 2.1 — V VOUT = 0.1 V or VCC – 0.1 V 4.5 4.5 3.15 2.25 — 3.15 — 5.5 5.5 3.85 2.75 — 3.85 — 3.0 3.0 — 1.5 0.9 — 0.9 V VOUT = 0.1 V or VCC – 0.1 V 4.5 4.5 — 2.25 1.35 — 1.35 5.5 5.5 — 2.75 1.65 — 1.65 2.7 4.5 2.6 2.69 — 2.6 — V VIN = VIL or VIH, IOH = –50 µA A* 1 2.7 4.5 4.4 4.49 — 4.4 — 2.7 4.5 2.3 — — 2.2 — 2.7 4.5 3.9 — — 3.8 — 2.7 4.5 — 0.001 0.1 — 0.1 V VIN = VIL or VIH, IOL = 50 µA 2.7 4.5 — — 0.32 — 0.37 V VIN = VIL or VIH, IOL = 12 mA A.B Input Current I IN 3.3 5.5 — — ±0.1 — ±1.0 µA VIN = VCC or GND Off State Output Current I OZ 3.3 5.5 — — ±0.5 — ±5.0 µA VIN(G) = VIH, VIN = VCC or GND, VOUT = VCC or GND Supply I CCA.B 3.3 5.5 — — 8.0 — 80 µA VIN = VCC or GND Current I CCA 5.5 0 — 8.0 — 80 µA VIN = VCC or GND, B Input OPEN Input Voltage VIH VIL Output VOH Voltage VOL Note: 4 (V) (V) Min — 1. A: Output A, B: Output B, A.B: Output A.B VIN = VIL or VIH, IOH = –50 µA B V VIN = I OH = –4 mA A VIL or VIH I OH = –12 mA B A.B HD151015 Switching Characteristics Ta = 25°C Ta = –40 to 85°C VCCA = 3.0 V, VCCB = 5.0 V VCC = 2.7 V, VCCB = 4.5 V Item Symbol Propagation Delay Time t PLH t PHL Output Enable Time t ZH t ZL Output Disable Time t HZ t LZ Min Typ Max Min Max Unit Conditions 1.0 5.0 10.0 1.0 12.0 ns B→A 1.0 5.0 10.0 1.0 12.0 1.0 5.0 10.0 1.0 12.0 1.0 5.0 10.0 1.0 12.0 1.0 8.0 16.0 1.0 20.0 1.0 8.0 16.0 1.0 20.0 1.0 9.0 16.0 1.0 20.0 1.0 9.0 16.0 1.0 20.0 1.0 9.0 16.0 1.0 20.0 1.0 9.0 16.0 1.0 20.0 1.0 8.0 16.0 1.0 20.0 1.0 8.0 16.0 1.0 20.0 A→B B→A ns A→B G→A ns G→B G→A ns G→A G→A ns G→B G→A ns G→B Input and Output Equivalent Circuit BUS A BUS B VCCB VCCA A B Input DIR,G VCCA DIR G 5 HD151015 Switching Time Test Method Test Circuit VCC VCCA VCCB G Pulse Generator Zout = 50 Ω Output See Function Table Input A0 *4 S1 500 Ω B0 450 Ω CL = 50 pF 50 Ω Scope OPEN 2 × VCCA or 2 × VCCB DIR Notes: 6 1. 2. 3. 4. CL includes probe and jig capacitance. A1-B1, A2-B2, A3-B3, A4-B4, A5-B5, A6-B6, A7-B7, A8-B8 are identical to above circuit. S1 is a input/output switch. When A → B: 2 × V CCB , B → A: 2 ¥ VCCA HD151015 Waveforms-1 tf tr 90 % 50 % 10 % Input *5 VCCA or VCCB 90 % 50 % 10 % GND t PHL t PLH VOH 50 % 50 % Output VOL Waveforms-2 tf G tr 90 % 50 % 10 % t ZL 90 % 50 % 10 % t LZ t ZH t HZ VCCA GND VCCA or VCCB Waveform – a 10 % Waveform – b 90 % *6 VOL VOH 50 % GND Notes: 1. 2. 3. 4. 5. 6. t r = tf = 2.5 ns. Input Waveform: PRR = 1 MHz, duty cycle 50% Waveform-a is set as outputs are “Low” when enable input is “Low”. Waveform-b is set as outputs are “High” when enable input is “Low”. When A → B: VCCA , B → A : VCCB When G → A: VCCA , G → B : VCCB 7 HD151015 Typical Characteristic Curves Propagation Delay Times vs Power Supply (VCCA, VCCB) t PLH (B to A) 20 20 Ta = 25 ˚C V CCA = 2 V =3V =4V =5V 15 t PLH (B to A) (ns) t PHL (B to A) 10 15 t PHL (B to A) (ns) 5 0 2 3 4 5 2 3 4 5 VCCB (V) t PLH (A to B) t PHL (A to B) 20 Ta = 25 ˚C V CCA = 2 V =3V =4V 10 t PHL (A to B) (ns) =5V 6 Ta = 25 ˚C V CCA = 2 V =3V =4V =5V 15 5 10 5 2 3 4 VCCB (V) 8 0 6 VCCB (V) 15 0 10 5 20 t PLH (A to B) (ns) Ta = 25 ˚C V CCA = 2 V =3V =4V =5V 5 6 0 2 3 4 VCCB (V) 5 6 HD151015 Output Voltage vs Output Current VOH VOL (A) (A) *1 1.0 5 Ta = 25 ˚C Ta = 25 ˚C V CCA = 5 V 4 VCCB = 2 V 0.8 V CCA = 4 V VOH (V) 3 VOL 0.6 V CCA = 3 V (V) 2 VCCB = 4 V 0.4 V CCA = 2 V 1 VCCB = 3 V 0.2 VCCB = 5 V 0 0 -3 -9 -6 -12 0 -15 0 3 6 9 12 I OH (mA) I OL (mA) VOH VOL (B) (B) 15 1.0 5 Ta = 25 ˚C Ta = 25 ˚C VCCB = 5 V 4 VCCB = 2 V 0.8 VCCB = 4 V VOH (V) 3 VOL 0.6 VCCB = 3 V (V) 2 VCCB = 4 V 0.4 VCCB = 2 V 1 VCCB = 3 V 0.2 VCCB = 5 V 0 0 -3 -6 -9 I OH (mA) -12 -15 0 0 3 6 9 12 15 I OL (mA) 9 HD151015 Application For power management system (1) VCCB system VCCA system VCCA V CCB Be able to set up variable power supply voltage from 2 V to 6 V HD151015 Be able to set up variable power supply voltage from 2 V to 6 V Note: Be able to turn on and off HD151015 is also used for power management system. We show some Examples. 1. For VCCA side Be able to switch fast mode (V CCA = 5 V) and power save mode (VCCA = 3 V) 2. For VCCB side Be able to switch normal mode (V CCB = 5 V) and suspend mode (VCCB = 0 V) 3. For both side Be able to switch fast mode (V CCA = 5 V) and power save mode (VCCA = 3 V) (When VCCA = VCCB, in this case, please switch V CCA and VCCB simulteneously.) For power management system (2) (Common bus line in different power system) VCCA system VCCB system VCCB = 0 V HD151015 VCCB =0V HD151015 i *1 "H" X *2 "H" VCCB' system HD151015 uses conventional CMOS input circuit. So, you have to care of designing in case of common bus line in different power block. We show one example. In this case, if V CCB become turn off, current flows from bus line to V CCB . (refer to *1) This is cause of malfunction. In order to prevent this problem, I recommend using this device for interface to each power block. (refer to * 2) 10 HD151015 [Cautions on using] Please use this IC on condition of V CCA usually ON, because if you use it on condition of VCCA being OFF, VCCB being ON, it will be troubled. 11 HD151015 Package Dimensions Unit: mm 30.4 31.75 Max 13 6.6 7.0 Max 24 1 12 1.3 0.88 7.62 0.48 ± 0.10 2.54 Min 2.54 ± 0.25 0.51 Min 5.08 Max 1.90 Max + 0.11 0.25 – 0.05 0° – 15° Hitachi Code JEDEC EIAJ Mass (reference value) DP-24N — Conforms 1.84 g Unit: mm 7.80 8.10 Max 13 1 12 4.40 24 0.65 0.20 ± 0.06 1.0 0.13 M 6.40 ± 0.20 0.10 *Dimension including the plating thickness Base material dimension 12 *0.17 ± 0.05 0.15 ± 0.04 1.10 Max 0.65 Max 0.07 +0.03 –0.04 *0.22+0.08 –0.07 0° – 8° 0.50 ± 0.10 Hitachi Code JEDEC EIAJ Mass (reference value) TTP-24DB — — 0.08 g HD151015 Cautions 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Hitachi, Ltd. Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica Europe Asia Japan : : : : http://semiconductor.hitachi.com/ http://www.hitachi-eu.com/hel/ecg http://sicapac.hitachi-asia.com http://www.hitachi.co.jp/Sicd/indx.htm For further information write to: Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic Components Group Dornacher Straβe 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00, Singapore 049318 Tel : <65>-538-6533/538-8577 Fax : <65>-538-6933/538-3877 URL : http://www.hitachi.com.sg Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 585160 Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road, Hung-Kuo Building, Taipei (105), Taiwan Tel : <886>-(2)-2718-3666 Fax : <886>-(2)-2718-8180 Telex : 23222 HAS-TP URL : http://www.hitachi.com.tw Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon, Hong Kong Tel : <852>-(2)-735-9218 Fax : <852>-(2)-730-0281 URL : http://www.hitachi.com.hk Copyright Hitachi, Ltd., 2000. All rights reserved. Printed in Japan. Colophon 2.0 13