TPS65930/TPS65920 Integrated Power Management \Audio Codec (TPS65930 Only) Silicon Revision 1.2 Data Manual PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Literature Number: SWCS037G May 2008 – Revised April 2011 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Contents 1 2 3 4 2 ........................................................................................................................ 9 1.1 Features .................................................................................................................... 10 1.2 TPS65920 and TPS65930 Device Block Diagrams ................................................................... 11 Terminal Description .......................................................................................................... 13 2.1 Ball Characteristics ........................................................................................................ 13 2.2 Signal Description ......................................................................................................... 17 Electrical Characteristics .................................................................................................... 23 3.1 Absolute Maximum Ratings .............................................................................................. 23 3.2 Minimum Voltages and Associated Currents .......................................................................... 23 3.3 Recommended Operating Conditions .................................................................................. 24 3.4 Digital I/O Electrical Characteristics ..................................................................................... 24 Power Module ................................................................................................................... 27 4.1 Power Providers ........................................................................................................... 28 4.1.1 VDD1 dc-dc Regulator ......................................................................................... 29 4.1.1.1 VDD1 dc-dc Regulator Characteristics .......................................................... 29 4.1.1.2 External Components and Application Schematics ........................................... 30 4.1.2 VDD2 dc-dc Regulator ......................................................................................... 32 4.1.2.1 VDD2 dc-dc Regulator Characteristics .......................................................... 32 4.1.2.2 External Components and Application Schematics ........................................... 33 4.1.3 VIO dc-dc Regulator ............................................................................................ 35 4.1.3.1 VIO dc-dc Regulator Characteristics ............................................................ 35 4.1.3.2 External Components and Application Schematics ........................................... 36 4.1.4 VDAC LDO Regulator .......................................................................................... 38 4.1.5 VPLL1 LDO Regulator ......................................................................................... 39 4.1.6 VMMC1 LDO Regulator ....................................................................................... 40 4.1.7 VAUX2 LDO Regulator ........................................................................................ 41 4.1.8 Output Load Conditions ........................................................................................ 42 4.1.9 Charge Pump ................................................................................................... 43 4.1.10 USB LDO Short-Circuit Protection Scheme ................................................................. 44 4.2 Power References ......................................................................................................... 45 4.3 Power Control .............................................................................................................. 45 4.3.1 Backup Battery Charger ....................................................................................... 45 4.3.2 Battery Monitoring and Threshold Detection ................................................................ 46 4.3.2.1 Power On/Power Off and Backup Conditions .................................................. 46 4.3.3 VRRTC LDO Regulator ........................................................................................ 46 4.4 Power Consumption ....................................................................................................... 47 4.5 Power Management ....................................................................................................... 49 4.5.1 Boot Modes ...................................................................................................... 49 4.5.2 Process Modes .................................................................................................. 49 4.5.2.1 MC021 Mode ....................................................................................... 49 4.5.3 Power-On Sequence ........................................................................................... 49 4.5.3.1 Timing Before Sequence_Start .................................................................. 49 4.5.3.2 Power-On Sequence .............................................................................. 51 4.5.3.3 Power On in Slave_C021 Mode ................................................................. 51 4.5.4 Power-Off Sequence ........................................................................................... 53 4.5.4.1 Power-Off Sequence .............................................................................. 53 Introduction Contents Copyright © 2008–2011, Texas Instruments Incorporated TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 5 6 7 8 9 10 11 ................................................................. ......................................................................................................................... 5.1.1 Backup Battery .................................................................................................. 5.2 EPC ......................................................................................................................... Audio/Voice Module (TPS65930 Device Only) ........................................................................ 6.1 Audio/Voice Downlink (RX) Module ..................................................................................... 6.1.1 Predriver for External Class-D Amplifier ..................................................................... 6.1.1.1 Predriver Output Characteristics ................................................................. 6.1.1.2 External Components and Application Schematics ........................................... 6.1.2 Vibrator H-Bridge ............................................................................................... 6.1.2.1 Vibrator H-Bridge Output Characteristics ....................................................... 6.1.2.2 External Components and Application Schematics ........................................... 6.1.3 Carkit Output .................................................................................................... 6.1.4 Digital Audio Filter Module .................................................................................... 6.1.5 Boost Stage ..................................................................................................... 6.2 Audio Uplink (TX) Module ................................................................................................ 6.2.1 Microphone Bias Module ...................................................................................... 6.2.1.1 Analog Microphone Bias Module Characteristics .............................................. 6.2.1.2 Silicon Microphone Module Characteristics .................................................... 6.2.2 FM Radio/Auxiliary Input ....................................................................................... 6.2.2.1 External Components ............................................................................. 6.2.3 Uplink Characteristics .......................................................................................... 6.2.4 Microphone Amplification Stage .............................................................................. 6.2.5 Carkit Input ...................................................................................................... 6.2.6 Digital Audio Filter Module .................................................................................... USB Transceiver ............................................................................................................... 7.1 USB Transceiver ........................................................................................................... 7.1.1 Features ......................................................................................................... 7.1.2 HS USB Port Timing ........................................................................................... 7.1.3 USB-CEA Carkit Port Timing .................................................................................. 7.1.4 PHY Electrical Characteristics ................................................................................ 7.1.4.1 HS Differential Receiver ........................................................................... 7.1.4.2 HS Differential Transmitter ........................................................................ 7.1.4.3 CEA/UART Driver .................................................................................. 7.1.4.4 Pullup/Pulldown Resistors ........................................................................ 7.1.5 OTG Electrical Characteristics ................................................................................ 7.1.5.1 OTG VBUS Electrical Characteristics ........................................................... 7.1.5.2 OTG ID Electrical Characteristics ................................................................ MADC ............................................................................................................................... 8.1 General Description ....................................................................................................... 8.2 MADC Electrical Characteristics ......................................................................................... 8.3 Channel Voltage Input Range ........................................................................................... 8.3.1 Sequence Conversion Time (Real-Time or Nonaborted Asynchronous) ................................ LED Drivers ...................................................................................................................... 9.1 General Description ....................................................................................................... Keyboard .......................................................................................................................... 10.1 Keyboard Connection ..................................................................................................... Clock Specifications .......................................................................................................... Real-Time Clock and Embedded Power Controller 54 5.1 54 RTC Copyright © 2008–2011, Texas Instruments Incorporated Contents 54 54 55 55 55 56 56 57 57 57 58 59 59 61 61 61 63 65 65 65 66 67 68 69 69 69 70 71 73 73 74 75 75 75 76 76 78 78 78 79 79 81 81 82 82 83 3 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 11.1 11.2 www.ti.com Clock Features ............................................................................................................. 83 Input Clock Specifications ................................................................................................ 84 16 .................................................................................. 84 11.2.2 HFCLKIN ......................................................................................................... 84 11.2.3 32-kHz Input Clock ............................................................................................. 86 11.2.3.1 External Crystal Description ...................................................................... 87 11.2.3.2 External Clock Description ........................................................................ 88 11.3 Output Clock Specifications .............................................................................................. 91 11.3.1 32KCLKOUT Output Clock .................................................................................... 91 11.3.2 HFCLKOUT Output Clock ..................................................................................... 92 11.3.3 Output Clock Stabilization Time .............................................................................. 93 Timing Requirements and Switching Characteristics ............................................................. 94 12.1 Timing Parameters ........................................................................................................ 94 12.2 Target Frequencies ........................................................................................................ 95 12.3 I2C Timing .................................................................................................................. 96 12.4 Audio Interface: TDM/I2S Protocol ...................................................................................... 97 12.4.1 I2S Right- and Left-Justified Data Format ................................................................... 98 12.4.2 TDM Data Format ............................................................................................. 100 12.5 JTAG Interfaces .......................................................................................................... 101 Debouncing Time ............................................................................................................. 103 External Components ....................................................................................................... 104 TPS65920/TPS65930 Package ............................................................................................ 107 15.1 TPS65920/TPS65930 Standard Package Symbols ................................................................. 107 15.2 Package Thermal Resistance Characteristics ....................................................................... 107 15.3 Mechanical Data ......................................................................................................... 108 15.4 ESD Specifications ...................................................................................................... 109 Glossary ......................................................................................................................... 110 4 Contents 11.2.1 12 13 14 15 Clock Source Requirements Copyright © 2008–2011, Texas Instruments Incorporated TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com List of Figures 1-1 TPS65920 Block Diagram ....................................................................................................... 12 1-2 TPS65930 Block Diagram ....................................................................................................... 12 2-1 PBGA Bottom View .............................................................................................................. 13 4-1 Power Provider Block Diagram ................................................................................................. 27 4-2 VDD1 dc-dc Regulator Efficiency .............................................................................................. 30 4-3 VDD1 dc-dc Application Schematic ............................................................................................ 31 4-4 VDD2 dc-dc Regulator Efficiency .............................................................................................. 33 4-5 VDD2 dc-dc Application Schematic ............................................................................................ 34 4-6 VIO dc-dc Regulator Efficiency ................................................................................................. 36 4-7 VIO dc-dc Application Schematic .............................................................................................. 37 4-8 Timing Before Sequence Start 4-9 Timings–Power On in OMAP3 Mode .......................................................................................... 51 ................................................................................................. 50 4-10 Timings—Power On in Slave_C021 Mode .................................................................................... 52 4-11 Power-Off Sequence in Master Modes 6-1 6-2 6-3 6-4 6-5 6-6 6-7 6-8 6-9 6-10 6-11 6-12 7-1 7-2 7-3 7-4 7-5 8-1 9-1 10-1 11-1 11-2 11-3 11-4 11-5 11-6 11-7 11-8 11-9 11-10 11-11 11-12 11-13 ....................................................................................... Audio/Voice Module Block Diagram ........................................................................................... Predriver for External Class D .................................................................................................. Vibrator H-Bridge ................................................................................................................. Carkit Output Downlink Path Characteristics ................................................................................. Digital Audio Filter Downlink Path Characteristics ........................................................................... Analog Microphone Pseudodifferential ........................................................................................ Analog Microphone Differential ................................................................................................. Silicon Microphone ............................................................................................................... Audio Auxiliary Input ............................................................................................................. Uplink Amplifier ................................................................................................................... Carkit Input Uplink Path Characteristics ...................................................................................... Digital Audio Filter Uplink Path Characteristics .............................................................................. USB 2.0 PHY Block Diagram ................................................................................................... USB System Application Schematic ........................................................................................... HS-USB Interface—Transmit and Receive Modes (ULPI 8-bit) ............................................................ USB-CEA Carkit UART Data Flow ............................................................................................. USB-CEA Carkit UART Timings................................................................................................ Conversion Sequence General Timing Diagram ............................................................................. LED Driver Block Diagram ...................................................................................................... Keyboard Connection ............................................................................................................ Clock Overview ................................................................................................................... HFCLKIN Clock Distribution .................................................................................................... Example of Wired-OR Clock Request ......................................................................................... HFCLKIN Squared Input Clock ................................................................................................. 32-kHz Oscillator Block Diagram In Master Mode With Crystal ............................................................ 32-kHz Crystal Input ............................................................................................................. 32-kHz Oscillator Block Diagram Without Crystal Option 1................................................................. 32-kHz Oscillator Block Diagram Without Crystal Option 2................................................................. 32-kHz Oscillator in Bypass Mode Block Diagram Without Crystal Option 3 ............................................ 32-kHz Square- or Sine-Wave Input Clock ................................................................................... 32.768-kHz Clock Output Block Diagram ..................................................................................... 32KCLKOUT Output Clock...................................................................................................... HFCLKOUT Output Clock ....................................................................................................... Copyright © 2008–2011, Texas Instruments Incorporated List of Figures 53 55 57 58 58 59 62 63 64 65 65 67 68 69 70 71 72 73 80 81 82 83 84 85 86 87 88 89 90 90 91 91 92 93 5 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 11-14 32KCLKOUT and HFCLKOUT Clock Stabilization Time .................................................................... 93 11-15 ........................................................................................................... I C Interface—Transmit and Receive in Slave Mode ........................................................................ I2S Interface—I2S Master ModeI .............................................................................................. I2S Interface—I2S Slave Mode................................................................................................. TDM Interface—TDM Master Mode .......................................................................................... JTAG Interface Timing ......................................................................................................... Debouncing Sequence Chronogram Example .............................................................................. Printed Device Reference ..................................................................................................... TPS65920/TPS65930 Mechanical Package Bottom View ................................................................ Ball Size .......................................................................................................................... 12-1 12-2 12-3 12-4 12-5 13-1 15-1 15-2 15-3 6 HFCLKOUT Behavior 2 List of Figures 93 96 98 98 100 102 103 107 108 108 Copyright © 2008–2011, Texas Instruments Incorporated TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com List of Tables 2-1 Ball Characteristics ............................................................................................................... 13 2-2 Signal Description ................................................................................................................ 17 3-1 Absolute Maximum Ratings ..................................................................................................... 23 3-2 VBAT Minimum Required Per VBAT Ball and Associated Maximum Current 3-3 3-4 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 4-11 4-12 4-13 4-14 4-15 4-16 4-17 4-18 4-19 5-1 6-1 6-2 6-3 6-4 6-5 6-6 6-7 6-8 6-9 6-10 6-11 6-12 7-1 7-2 7-3 7-4 7-5 7-6 7-7 7-8 7-9 ........................................... Recommended Operating Maximum Ratings ................................................................................ Digital I/O Electrical Characteristics ........................................................................................... Summary of the Power Providers .............................................................................................. Part Names With Corresponding VDD1 Current Support ................................................................... VDD1 dc-dc Regulator Characteristics ........................................................................................ VDD2 dc-dc Regulator Characteristics ........................................................................................ VIO dc-dc Regulator Characteristics........................................................................................... VDAC LDO Regulator Characteristics ......................................................................................... VPLL1 LDO Regulator Characteristics ........................................................................................ VMMC1 LDO Regulator Characteristics....................................................................................... VAUX2 LDO Regulator Characteristics ....................................................................................... Output Load Conditions ......................................................................................................... Charge Pump Output Load Conditions ........................................................................................ Voltage Reference Characteristics ............................................................................................. Backup Battery Charger Characteristics ...................................................................................... Battery Threshold Levels ........................................................................................................ VRRTC LDO Regulator Characteristics ....................................................................................... Power Consumption ............................................................................................................. Regulator State Depending on Use Case ..................................................................................... BOOT Mode Description ........................................................................................................ MC021 Mode...................................................................................................................... System States .................................................................................................................... Predriver Output Characteristics ............................................................................................... Vibrator H-Bridge Output Characteristics ..................................................................................... USB-CEA Carkit Audio Downlink Electrical Characteristics ................................................................ Digital Audio Filter RX Electrical Characteristics ............................................................................. Boost Electrical Characteristics Versus FS Frequency (FS ≤ 22.05 kHz) ................................................. Boost Electrical Characteristics Versus FS Frequency (FS ≥ 24 kHz) ..................................................... Analog Microphone Bias Module Characteristics With Bias Resistor ..................................................... Analog Microphone Bias Module Characteristics With Bias Resistor ..................................................... Silicon Microphone Module Characteristics ................................................................................... Uplink Characteristics ............................................................................................................ USB-CEA Carkit Audio Uplink Electrical Characteristics.................................................................... Digital Audio Filter TX Electrical Characteristics ............................................................................. HS-USB Interface Timing Requirements ...................................................................................... HS-USB Interface Switching Requirements .................................................................................. USB-CEA Carkit Interface Timing Parameters ............................................................................... USB-CEA Carkit UART Timings................................................................................................ HS Differential Receiver ......................................................................................................... HS Differential Transmitter ...................................................................................................... CEA/UART Driver ................................................................................................................ Pullup/Pulldown Resistors....................................................................................................... OTG VBUS Electrical Characteristics ......................................................................................... Copyright © 2008–2011, Texas Instruments Incorporated List of Tables 23 24 24 28 29 29 32 35 38 39 40 41 42 43 45 45 46 46 47 48 49 49 54 56 57 58 59 60 60 61 61 64 65 67 68 71 71 72 73 74 74 75 75 76 7 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 7-10 OTG ID Electrical Characteristics .............................................................................................. 76 8-1 MADC Electrical Characteristics 8-2 8-3 9-1 11-1 11-2 11-3 11-4 11-5 11-6 11-7 11-8 11-9 11-10 11-11 11-12 12-1 12-2 12-3 12-4 12-5 12-6 12-7 12-8 12-9 12-10 13-1 14-1 15-1 15-2 15-3 8 ............................................................................................... Analog Input Voltage Range .................................................................................................... Sequence Conversion Timing Characteristics ................................................................................ LED Driver Electrical Characteristics .......................................................................................... TPS65920/TPS65930 Input Clock Source Requirements .................................................................. HFCLKIN Input Clock Electrical Characteristics ............................................................................. HFCLKIN Square Input Clock Timing Requirements with Slicer in Bypass .............................................. Crystal Electrical Characteristics ............................................................................................... Base Oscillator Switching Characteristics..................................................................................... 32-kHz Crystal Input Clock Timing Requirements ........................................................................... 32-kHz Input Square- or Sine-Wave Clock Source Electrical Characteristics............................................ 32-kHz Square-Wave Input Clock Source Timing Requirements .......................................................... 32KCLKOUT Output Clock Electrical Characteristics ....................................................................... 32KCLKOUT Output Clock Switching Characteristics....................................................................... HFCLKOUT Output Clock Electrical Characteristics ........................................................................ HFCLKOUT Output Clock Switching Characteristics ........................................................................ Timing Parameters ............................................................................................................... TPS65920/TPS65930 Interface Target Frequencies ........................................................................ I2C Interface—Timing Requirements .......................................................................................... I2C Interface—Switching Requirements ...................................................................................... I2S Interface—Timing Requirements .......................................................................................... I2S Interface—Switching Characteristics...................................................................................... TDM Interface Master Mode—Timing Requirements ...................................................................... TDM Interface Master Mode—Switching Characteristics ................................................................. JTAG Interface—Timing Requirements ...................................................................................... JTAG Interface—Switching Characteristics ................................................................................. Debouncing ...................................................................................................................... TPS65920/TPS65930 External Components ............................................................................... TPS65920/TPS65930 Nomenclature Description .......................................................................... TPS65920 Thermal Resistance Characteristics ............................................................................ TPS65930 Thermal Resistance Characteristics ............................................................................ List of Tables 78 79 79 81 84 86 86 87 88 88 90 90 92 92 92 92 94 95 96 97 99 99 101 101 102 102 103 104 107 107 107 Copyright © 2008–2011, Texas Instruments Incorporated TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Integrated Power Management \Audio Codec (TPS65930 Only) Check for Samples: TPS65930/TPS65920 1 Introduction The TPS65920/TPS65930 devices are power-management ICs for OMAP™ and other mobile applications. The devices include power-management, a universal serial bus (USB) high-speed (HS) transceiver, light -emitting diode (LED) drivers, an analog-to-digital converter (ADC), a real-time clock (RTC), and embedded power control (EPC). In addition, the TPS65930 includes a full audio codec with two digital-to-analog converters (DACs) and two ADCs to implement dual voice channels, and a stereo downlink channel that can play all standard audio sample rates through a multiple format inter-integrated sound (I2S™)/time division multiplexing (TDM) interface. These optimized devices support the power and peripheral requirements of the OMAP application processors. The power portion of the devices contains three buck converters, two controllable by a dedicated SmartReflex™ class-3 interface, multiple low dropout (LDO) regulators, an EPC to manage the power sequencing requirements of OMAP, and an RTC and backup module. The RTC can be powered by a backup battery when the main supply is not present, and the devices include a coin-cell charger to recharge the backup battery as needed. The USB module provides a HS 2.0 OTG transceiver suitable for direct connection to the OMAP UTMI+ low pin interface (ULPI), with an integrated charge pump and full support for the carkit CEA-936A specification. An ADC is provided for monitoring signals, such as supply voltage, entering the device, and two additional external ADC inputs are provided for system use. The devices provide driver circuitry to power two LED circuits that can illuminate a panel or provide user indicators. The drivers also provide pulse width modulation (PWM) circuits to control the illumination levels of the LEDs. A keypad interface implements a built-in scanning algorithm to decode hardware-based key presses and reduce software use, with multiple additional general-purpose input/output devices (GPIOs) that can be used as interrupts when configured as inputs. This TPS65920/TPS65930 data manual presents the electrical and mechanical specifications for the TPS65920 and TPS65930 devices . It covers the following topics: • TPS65920/TPS65930 terminals: Assignment, multiplexing, electrical characteristics, and functional description (see Section 2, Terminal Description) • Electrical characteristic requirements: Maximum and recommended operating conditions, digital input/output (I/O) characteristics (see Section 3, Electrical Characteristics) • Power module: Power provider, power references, power control, power consumption, and power management, with the on and off sequence (see Section 4, Power Module) • RTC and EPC (see Section 5, Real-Time Clock and Embedded Power Controller) • Audio/voice module (TPS65930 device only): Electrical characteristics and application schematics for the downlink and uplink paths (see Section 6, Audio/Voice Module (TPS65930 Device Only)) • Various modules: USB transceiver, monitoring analog-to-digital converter (MADC), LED drivers, and keyboard (see Section 8, MADC, Section 9, LED Driver, and Section 10, Keyboard) • Clock specifications: Clock slicer; input and output clocks (see Section 11, Clock Specifications) • Timing requirements and switching characteristics (ac timings) of the interfaces (see Section 12, Timing Requirements and Switching Characteristics) • Debouncing time (see Section 13, Debouncing Time) • External components for the application schematics (see Section 14, External Components) • Thermal resistance characteristics, device nomenclature, and mechanical data about the available packaging (see Section 15, TPS65920/TPS65930 Package ) PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2008–2011, Texas Instruments Incorporated TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 • 1.1 1 www.ti.com Glossary of acronyms and abbreviations used in this data manual (see Section 16, Glossary) Features The TPS65930 and TPS65920 devices offer the following features: • Power: – Three efficient stepdown converters – Four external linear LDOs for clocks and peripherals – SmartReflex dynamic voltage management • Audio (TPS65930 device only): – Differential input main microphones – Mono auxiliary/FM input – External predrivers for class D (stereo) – TDM interface – Automatic level control (ALC) – Digital and analog mixing – 16-bit linear audio stereo DAC (96, 48, 44.1, and 32 kHz and derivatives) – 16-bit linear audio stereo ADC (48, 44.1, and 32 kHz and derivatives) – Carkit • USB: – USB 2.0 on-the-go (OTG)-compliant HS transceivers – 12-bit universal transceiver macro interface ULPI – USB power supply (5-V charge pump for VBUS) – Consumer Electronics Association (CEA)-2011: OTG transceiver interface specification – CEA-936A: Mini-USB analog carkit specification • Additional Features: – LED driver circuit for two external LEDs – Two external 10-bit MADC inputs – Real-time clock (RTC) and retention modules – HS I2C serial control – Thermal shutdown and hot-die detection – Keypad Interface (up to 6 × 6) – External vibrator control – 15 GPIOs – 0.65 mm pitch, 139 pin, 10 × 10 mm package • Charger: – Backup battery charger 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. 10 Introduction Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 1.2 TPS65920 and TPS65930 Device Block Diagrams TPS65920 Interface subchip (D) Digital signal(s) Analog signal(s) PIH I2C A pad Clock generator I2C B pad TAP OCP Clk In/Out Card Det1 GPIO pad GPIO SIH Card Det2 TAP SIH_INT TAP Clocks OCP OCP SR TAP OCP Clocks Clocks SIH_INT OCP PMC slave Smart Reflex RFIDEN Vibrator control (D) Clock slicer Power control (BBS-backup VRRTC-UVLO) USB power supply USB subchip (A-D) ULPI(12) UART(2) BERCLK BERDATA Auxiliary subchip (A-D) Power digital Keypad (D) Power analog RTC 32 kHz TAP Shundan RTC Clocks SIH OCP PMC master SIH_INT SIH_INT OTG module USB 2.0 transceiver USB digital (ULPI regist ers, interr upts, Thermal monitor system MADC digital state-machine MADC analog (SAR-Vref) MADCTOP Rc oscillator LEDTOP Power provider (LDOs-DcDcs) Power references (Vref-Iref-bandgap) LED digital LED analog Power subchip (A-D) LedSync Figure 1-1. TPS65920 Block Diagram Introduction Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 11 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com TPS65930 Digital signal(s) Interface subchip (D) Audio PLL I2C A pad PIH AUDIO analog Audio RX amplifiers Mic amplifiers Analog volume control D/A converters A/D converters Differential vibrator Carkit preamplifiers Analog signal(s) Analog and mic bias Clocks Clock generator I2C B pad Clk In/ Out GPIO pad TAP OCP Wrapper digital Card Det1 GPIO SIH Audio filters (RX and TX paths) and vibrator control TDM/I2S interface TDM Card Det2 AUDIO digital TAP Audio subchip (A-D) TAP Clocks OCP OCP SR SIH_INT TAP TAP OCP Clocks Clocks SIH_INT OCP RFIDEN Vibrator control (D) PMC slave Smart Reflex Clock slicer Power control (BBS-backup VRRTC-UVLO) USB power supply USB subchip (A-D) ULPI(12) UART(2) BERCLK BERDATA Auxiliary subchip (A-D) Power digital Keypad (D) Power analog RTC 32 kHz TAP Shundan RTC Clocks SIH OCP PMC master SIH_INT SIH_INT USB digital ULPI/ registers interrupts CEA and carkit Analog carkit interfaces OTG module USB 2.0 transceiver Thermal monitor system MADC digital state-machine MADC analog (SAR-Vref) MADCTOP Rc oscillator LEDTOP Power provider (LDOs-DcDcs) Power references (Vref-Iref-bandgap) LED digital LED analog Power subchip (A-D) LedSync 037-002 Figure 1-2. TPS65930 Block Diagram 12 Introduction Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 2 Terminal Description Figure 2-1 shows the ball locations for the 139 -ball plastic ball grid array (PBGA) package. Use this array with Table 2-1 to locate signal names and ball grid numbers. 037-003 Figure 2-1. PBGA Bottom View 2.1 Ball Characteristics Table 2-1 describes the terminal characteristics and the signals multiplexed on each pin. The following list describes the table column headers: 1. Ball: Ball number(s) associated with each signal(s) 2. Pin Name: The names of all the signals that are multiplexed on each ball 3. A/D: Analog or digital signal 4. Type: The terminal type when a particular signal is multiplexed on the terminal: – I = Input – O = Output 5. Reference Level: See the power module chapter for values. 6. PU/PD: Denotes the presence of an internal pullup or pulldown. Pullups and pulldowns can be enabled or disabled by software. 7. Buffer Strength: Drive strength of the associated output buffer Table 2-1. Ball Characteristics TPS65920 Ball[1] TPS65930 Ball[1] H2 H2 F2 F2 M5 A/D [3] Type[4] ADCIN0 A I/O VINTANA1.OUT ADCIN2 A I VINTANA2.OUT M5 PCHGAC A I VACCHARGER N1 N1 VPRECH A O VPRECH N5 N5 VBAT A Power VBAT GPIO0/CD1 D I/O IO_1P8 JTAG.TDO D I/O IO_1P8 F7 Pin Name[2] Reference Level RL[5] F7 PU[6] (kΩ) PD[6] (kΩ) Min Typ Max Min Typ Max 75 100 202 59 100 144 Buffer Strength (mA)[7] 8 8 Terminal Description Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 13 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Table 2-1. Ball Characteristics (continued) TPS65920 Ball[1] TPS65930 Ball[1] E7 E7 P2 Pin Name[2] Reference Level RL[5] L5 J7 Buffer Strength (mA)[7] GPIO1 D I/O IO_1P8 JTAG.TMS D I IO_1P8 GPIO2 D I/O IO_1P8 TEST1 D I/O IO_1P8 GPIO15 D I/O IO_1P8 TEST2 D I/O IO_1P8 GPIO6 D I/O IO_1P8 PWM0 D O IO_1P8 TEST3 D I/O IO_1P8 2 GPIO7 D I/O IO_1P8 2 VIBRA.SYNC D I IO_1P8 PWM1 D O IO_1P8 TEST4 D I/O IO_1P8 P13 L5 PD[6] (kΩ) Type[4] P2 P13 PU[6] (kΩ) A/D [3] Min Typ Max Min Typ Max 75 100 202 59 100 144 156 220 450 59 100 144 2 2 2 2 156 J7 220 450 59 100 144 2 2 75 75 100 100 202 202 59 59 100 100 144 4 144 4 2 D8 D8 SYSEN D Open drain/I IO_1P8 A4 A4 CLKEN D O IO_1P8 B13 B13 CLKREQ D I IO_1P8 C10 C10 INT1 D O IO_1P8 2 C8 C8 NRESPWRON D O IO_1P8 2 B9 B9 NRESWARM D I IO_1P8 2 D10 D10 PWRON D I VBAT G5 G5 NSLEEP1 D I IO_1P8 E10 E10 CLK256FS (1) D O IO_1P8 E4 E4 VMODE1 D I IO_1P8 E8 E8 BOOT0 A/D I/O VBAT D7 D7 BOOT1 A/D I/O VBAT B8 B8 REGEN D Open drain VBAT H4 H4 MSECURE D I IO_1P8 L13 L13 VREF A Power VREF A Power ground (GND) GND I2C.SR.SDA D I/O IO_1P8 VMODE2 D I IO_1P8 I2C.SR.SCL D I/O K13 K13 B3 B3 AGND 4.7 7.35 10 2 2 60 100 146 2 5.5 8 12 2 2.5 3.4 12 IO_1P8 2.5 3.4 12 N.C. C5 C3 C3 I2C.CNTL.SDA D I/O IO_1P8 2.5 3.4 12 B4 B4 I2C.CNTL.SCL D I IO_1P8 2.5 3.4 12 See (2) H3 I2S.CLK D I/O IO_1P8 2 See (2) K2 I2S.SYNC D I/O IO_1P8 2 See (2) K4 I2S.DIN D I IO_1P8 2 See (2) K3 I2S.DOUT D O IO_1P8 2 See (2) D1 MIC.MAIN.P A I MICBIAS1.OUT See (2) E1 MIC.MAIN.M A I MICBIAS1.OUT A10 VBAT.RIGHT A Power VBAT PreDriv.LEFT A O VINTANA2.OUT VMID A Power VINTANA2.OUT PreDriv.RIGHT A O VINTANA2.OUT ADCIN7 A I VINTANA2.OUT AUXR A I VINTANA2.OUT MICBIAS1.OUT A Power VINTANA2.OUT VMIC1.OUT A Power VINTANA2.OUT Power GND GND A10 See (2) See (2) See See See (1) (2) 14 2 C5 (2) (2) (2) A7 A8 G1 E2 D2 MICBIAS.GND To avoid reflection on this pin as a result of impedance mismatch, a serial resistance of 33 Ω must be added. This clock output is available in TPS65920 also. Can be used as a clock source, if required. Balls A7, A8, D1, D2, E1, E2, G1, H3, K2, K3, and K4 are present on TPS65920 package. However, there is no function associated with these pins. These can be left floating. Terminal Description Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Table 2-1. Ball Characteristics (continued) TPS65920 Ball[1] TPS65930 Ball[1] G2 G2 L7 L7 N14 Pin Name[2] A/D [3] Type[4] Reference Level RL[5] AVSS1 A Power GND GND AVSS2 A Power GND GND N14 AVSS3 A Power GND GND C7 C7 AVSS4 A Power GND GND M10 M10 32KCLKOUT D O IO_1P8 PU[6] (kΩ) Min Typ PD[6] (kΩ) Max Min Typ Max Buffer Strength (mA)[7] L14 L14 32KXIN A I IO_1P8 K14 K14 32KXOUT A O IO_1P8 A11 A11 HFCLKIN A I IO_1P8 M11 M11 HFCLKOUT D O IO_1P8 P8 P8 VBUS A Power VBUS N10 N10 DP/UART3.RXD A I/O VBUS 2 P10 P10 DN/UART3.TXD A I/O VBUS 2 G6 G6 ID A I/O VBUS 2 K11 K11 UCLK D I IO_1P8 16 STP D I IO_1P8 H12 H12 GPIO9 D I/O IO_1P8 2 DIR D O IO_1P8 16 GPIO10 D I/O IO_1P8 2 NXT D O IO_1P8 16 GPIO11 D I/O IO_1P8 2 DATA0 D I/O IO_1P8 16 UART4.TXD D I IO_1P8 DATA1 D I/O IO_1P8 UART4.RXD D O IO_1P8 2 DATA2 D I/O IO_1P8 16 UART4.RTSI D I IO_1P8 DATA3 D I/O IO_1P8 UART4.CTSO D O IO_1P8 GPIO12 D I/O IO_1P8 DATA4 D I/O IO_1P8 GPIO14 D I/O IO_1P8 2 DATA5 D I/O IO_1P8 16 GPIO3 D I/O IO_1P8 2 DATA6 D I/O IO_1P8 16 GPIO4 D I/O IO_1P8 2 DATA7 D I/O IO_1P8 16 GPIO5 D I/O IO_1P8 A/D I VBAT H11 J8 L10 K10 G11 G10 E12 G9 G12 E11 P14 H11 75 J8 75 100 100 202 202 202 59 59 59 100 100 100 144 144 144 16 K10 G11 G10 E12 G9 16 60 100 140 60 100 140 75 100 202 59 100 144 75 100 202 59 100 144 16 G12 75 E11 75 P14 TEST.RESET P1 TESTV1 A I/O VBAT A14 TESTV2 A I/O VINTANA2.OUT A1 A1 TEST D I IO_1P8 A13 JTAG.TDI/ BERDATA D I IO_1P8 B14 JTAG.TCK/ BERCLK D I IO_1P8 VBAT/VBUS P7 P7 CP.IN A Power N7 N7 CP.CAPP A O CP.CAPP N6 N6 CP.CAPM A O CP.CAPM P5 P5 CP.GND A Power GND GND N9 N9 VBAT.USB A Power VBAT M8 M8 VUSB.3P1 A Power VUSB.3P1 L1 L1 VAUX12S.IN A Power VBAT N2 N2 VAUX2.OUT A Power VAUX2.OUT H14 H14 VPLLA3R.IN A Power VBAT K12 K12 VRTC.OUT A Power VRTC.OUT 16 16 75 P1 B14 100 L10 A14 A13 16 75 100 100 100 202 202 202 59 59 100 100 144 144 59 100 144 30 50 70 60 100 146 2 Terminal Description Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 15 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Table 2-1. Ball Characteristics (continued) TPS65920 Ball[1] TPS65930 Ball[1] G14 G14 A2 A2 B1 A/D [3] Type[4] VPLL1.OUT A Power VMMC1.IN A Power VBAT B1 VMMC1.OUT A Power VMMC1.OUT M7 M7 VINTUSB1P5. OUT A Power VINTUSB1P5.OUT N8 N8 VINTUSB1P8. OUT A Power VINTUSB1P8.OUT K1 K1 VDAC.IN A Power VBAT L2 L2 VDAC.OUT A Power VDAC.OUT H13 H13 VINT.IN A Power VBAT H1 H1 VINTANA1.OUT A Power VINTANA1.OUT Reference Level RL[5] J2 J2 VINTANA2.OUT A Power VINTANA2.OUT A5 VINTANA2.OUT A Power VINTANA2.OUT J13 J13 VINTDIG.OUT A Power VINTDIG.OUT D13 D13 VDD1.IN A Power VBAT D12 D12 VDD1.IN A Power VBAT D14 D14 VDD1.IN A Power VBAT C11 C11 VDD1.SW A O VBAT C12 C12 VDD1.SW A O VBAT C13 C13 VDD1.SW A O VBAT E14 E14 VDD1.FB A I A12 A12 VDD1.GND A Power GND GND B11 B11 VDD1.GND A Power GND GND B12 B12 VDD1.GND A Power GND GND M13 M13 VDD2.IN A Power VBAT M12 M12 VDD2.IN A Power VBAT N13 N13 VDD2.FB A I N11 N11 VDD2.SW A O VBAT P11 P11 VDD2.SW A O VBAT N12 N12 VDD2.GND A Power GND GND P12 P12 VDD2.GND A Power GND GND M2 M2 VIO.IN A Power VBAT M3 M3 VIO.IN A Power VBAT M4 M4 VIO.FB A I N4 N4 VIO.SW A O VBAT P4 P4 VIO.SW A O VBAT N3 N3 VIO.GND A Power GND GND P3 P3 VIO.GND A Power GND GND H9 H9 BKBAT A Power VBACK B7 B7 IO.1P8 A Power IO_1P8 H10 H10 DGND A Power GND GND F13 F13 LEDGND A Power GND GND GPIO13 D I/O IO_1P8 LEDSYNC D I IO_1P8 LEDA A Open drain VBAT VIBRA.P A Open drain VBAT LEDB A Open drain VBAT VIBRA.M A Open drain VBAT E13 G13 PU[6] (kΩ) PD[6] (kΩ) Min Typ Max Min Typ Max 75 100 202 59 100 144 8 10 12 Buffer Strength (mA)[7] VPLL1.OUT A5 B10 16 Pin Name[2] B10 E13 G13 G4 G4 KPD.C0 D Open drain IO_1P8 G3 G3 KPD.C1 D Open drain IO_1P8 E5 E5 KPD.C2 D Open drain IO_1P8 B2 B2 KPD.C3 D Open drain IO_1P8 E3 E3 KPD.C4 D Open drain IO_1P8 D5 D5 KPD.C5 D Open drain IO_1P8 K7 K7 KPD.R0 D I IO_1P8 Terminal Description Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Table 2-1. Ball Characteristics (continued) TPS65920 Ball[1] TPS65930 Ball[1] H5 H5 K5 K5 H6 A/D [3] Type[4] KPD.R1 D KPD.R2 D H6 KPD.R3 K8 K8 L8 L8 2.2 Pin Name[2] PU[6] (kΩ) PD[6] (kΩ) Reference Level RL[5] Min Typ Max I IO_1P8 8 10 12 I IO_1P8 8 10 12 D I IO_1P8 8 10 12 KPD.R4 D I IO_1P8 8 10 12 KPD.R5 D I IO_1P8 8 10 12 Min Typ Max Buffer Strength (mA)[7] Signal Description Table 2-2 describes the signals on the TPS65920 and TPS65930 devices; some signals are available on multiple pins. Table 2-2. Signal Description Module ADC Charger GPIOs/ JTAG Signal Name Description Type TPS65920 Ball TPS65930 Ball Default Configuration After Reset Released Signal Internal Pull or Not Type Features Not Used (1) ADCIN0 Battery type I/O H2 H2 ADCIN0 ADCIN2 General-purpose ADC input I F2 F2 ADCIN2 I GND PCHGAC AC precharge sense signal. Also used for EEPROM. I M5 M5 PCHGAC I GND VPRECH Precharge regulator output O N1 N1 VPRECH O Cap to GND(2) VBAT Battery voltage sensing Power N5 N5 VBAT Power VBAT GPIO0/CD1 GPIO0/card detection 1 I/O JTAG.TDO JTAG test data output I/O F7 F7 GPIO0 I PD Floating GPIO1 GPIO1 I/O JTAG.TMS JTAG test mode state E7 E7 GPIO1 I PD Floating GPIO2 GPIO2 I/O TEST1 TEST1 pin used in test mode only I/O P2 P2 GPIO2 I PD Floating GPIO15 GPIO15 I/O TEST2 TEST2 pin used in test mode only I/O P13 P13 GPIO15 I PD Floating GPIO6 GPIO6 I/O PWM0 Pulse width driver 0 O L5 L5 GPIO6 I PD Floating TEST3 TEST3 pin used in test mode only (controlled by JTAG) I/O GPIO7 GPIO7 I/O VIBRA.SYNC Vibrator on-off synchronization I PWM1 Pulse width driver O J7 J7 GPIO7 I PD Floating TEST4 TEST4 pin used in test mode only (controlled by JTAG) I/O I GND Terminal Description Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 17 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Table 2-2. Signal Description (continued) Signal Name Module CONTROL Description Type Open drain/I 2 IC Smart Reflex I2C TDM ANA.MIC HandsFree AUX Input 18 D8 D8 Default Configuration After Reset Released Type Internal Pull or Not SYSEN OD PU Signal Features Not Used (1) System enable output CLKEN Clock enable O A4 A4 CLKEN O CLKREQ Clock request I B13 B13 CLKREQ I INT1 Output interrupt line 1 O C10 C10 INT1 O Floating NRESPWRON Output control the NRESPWRON of the application processor O C8 C8 NRESPWRON O Floating NRESWARM Input; detect user action on the reset button I B9 B9 NRESWARM I GND PWRON Input; detect a control command to start or stop the system I D10 D10 PWRON I VBAT NSLEEP1 Sleep request from device 1 Floating Floating PD GND I G5 G5 NSLEEP1 I GND O E10 E10 CLK256FS O Floating E4 E4 VMODE1 I GND VMODE1 Digital voltage scaling linked with VDD1 I BOOT0 Boot pin 0 I E8 E8 BOOT0 I PD N/A BOOT1 Boot pin 1 I D7 D7 BOOT1 I PD N/A Open drain B8 B8 REGEN OD PU Floating I H4 H4 MSECURE L13 L13 REGEN Enable signal for external LDO MSECURE Security and digital rights management VREF Reference voltage Power AGND Analog ground for reference voltage Power GND N.C. Not connected I2C.SR.SDA SmartReflex I2C data VMODE2 Digital voltage scaling linked with VDD2 I2C.SR.SCL SmartReflex I2C data I/O I2C.CNTL.SDA General-purpose I2C data I2C.CNTL.SCL General-purpose I2C clock I2S.CLK Clock signal (audio port) I2S.SYNC Synchronization signal (audio port) I2S.DIN I2S.DOUT I N/A VREF Power N/A Power GND GND K13 K13 AGND B3 B3 Signal not functional(3) C5 C5 VMODE2 I/O C3 C3 I2C.CNTL.SDA I/O PU I/O B4 B4 I2C.CNTL.SCL I/O PU I/O H3 I2S.CLK I/O Floating I/O K2 I2S.SYNC I/O Floating Data receive (audio port) I K4 I2S.DIN I GND Data transmit (audio port) O K3 I2S.DOUT O Floating MIC.MAIN.P Main microphone left input (P) I D1 MIC.MAIN.P I Cap to GND MIC.MAIN.M Main microphone left input (M) I E1 MIC.MAIN.M I Cap to GND VBAT.RIGHT Battery voltage input A10 VBAT.RIGHT Power VBAT PreDriv.LEFT Predriver output left P for external class-D amplifier A7 VMID Power Floating A8 ADCIN7 I GND G1 AUXR I Cap to GND I/O Floating I Power O VMID Headset TPS65930 Ball SYSEN CLK256FS VREF TPS65920 Ball A10 I GND N/A N/A Power PreDriv.RIGHT Predriver output right P for external class-D amplifier O ADCIN7 General-purpose ADC input 7 I AUXR Auxiliary audio input right I Terminal Description Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Table 2-2. Signal Description (continued) Signal Name Module VMIC BIAS Description Type MICBIAS1. OUT Analog microphone bias 1 Power VMIC1.OUT Digital microphone power supply 1 Power MICBIAS.GND Dedicated ground for microphones Power GND Default Configuration After Reset Released E2 MICBIAS1.OUT Power Floating D2 MICBIAS.GND Power GND GND Power GND GND O Floating G2 AVSS1 L7 L7 AVSS2 N14 N14 AVSS3 C7 C7 AVSS4 M10 M10 32KCLKOUT Power GND Features Not Used (1) Type G2 Analog ground Internal Pull or Not Signal AVSS2 AVSS4 32KCLKOUT Buffered output of the 32-kHz digital clock 32KXIN Input of the 32-kHz oscillator I L14 L14 32KXIN I N/A 32KXOUT Output of the 32-kHz oscillator O K14 K14 32KXOUT O Floating HFCLKIN Input of the digital (or sine) HS clock I A11 A11 HFCLKIN I N/A HFCLKOUT HS clock output O M11 M11 HFCLKOUT VBUS VBUS power rail Power P8 P8 DP/ UART3.RXD USB data P/USB carkit receive data/universal asynchronous receiver/transmitter (UART)3 receive data I/O N10 N10 DN/ UART3.TXD USB data N/USB carkit transmit data/UART3 transmit data I/O P10 ID USB ID I/O UCLK HS USB clock I STP HS USB stop I GPIO9 GPIO9 DIR HS USB direction O GPIO10 GPIO10 I/O NXT HS USB next O GPIO11 GPIO11 I/O DATA0 HS USB Data0 I/O UART4.TXD UART4.TXD DATA1 HS USB Data1 I/O UART4.RXD UART4.RXD O DATA2 HS USB Data2 I/O UART4.RTSI UART4.RTSI DATA3 HS USB Data3 UART4.CTSO UART4.CTSO O GPIO12 GPIO12 I/O DATA4 HS USB Data4 I/O GPIO14 GPIO14 I/O DATA5 HS USB Data5 I/O GPIO3 GPIO3 I/O DATA6 HS USB Data6 I/O GPIO4 GPIO4 I/O DATA7 HS USB Data7 I/O GPIO5 GPIO5 I/O USB PHY ULPI TPS65930 Ball AVSS1 AVSS3 CLOCK TPS65920 Ball O I/O I I O Floating Power N/A DP/UART3.RX D I/O N/A P10 DN/UART3.TX D I/O N/A G6 G6 ID I/O Connected to VRUSB3V1 K11 K11 UCLK O Floating H12 H12 STP I H11 H11 DIR O Floating J8 J8 NXT O Floating L10 L10 DATA0 O Floating K10 K10 DATA1 O Floating G11 G11 DATA2 O Floating G10 G10 DATA3 O Floating E12 E12 DATA4 O Floating G9 G9 DATA5 O Floating G12 G12 DATA6 O Floating E11 E11 DATA7 O Floating VBUS PU Floating I/O Terminal Description Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 19 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Table 2-2. Signal Description (continued) Module TEST USB CP Signal Name Description Type Default Configuration After Reset Released TPS65920 Ball TPS65930 Ball P14 P14 TEST.RESET Signal Type Internal Pull or Not I PD Features Not Used (1) TEST.RESET Reset T2 device (except power state-machine) TESTV1 Analog test I/O P1 P1 TESTV1 I/O Floating TESTV2 Analog test I/O A14 A14 TESTV2 I/O Floating TEST Selection between JTAG mode and application mode for JTAG/GPIOs (with PU or PD) I A1 A1 TEST I JTAG.TDI/ BERDATA JTAG.TDI/BERDATA I A13 A13 JTAG.TDI/ BERDATA I GND JTAG.TCK/ BERCLK JTAG.TCK/BERCLK I B14 B14 JTAG.TCK/ BERCLK I GND CP.IN Charge pump input voltage CP.CAPP Charge pump flying capacitor P CP.CAPM Charge pump flying capacitor M I Power P7 P7 CP.IN O N7 N7 CP.CAPP O N6 N6 CP.CAPM PD GND Floating Power VBAT O Floating O Floating CP.GND Power GND GND CP.GND Charge pump ground Power GND VBAT.US B VBAT.USB USB LDOs (VINTUSB1P5, VINTUSB1P8, VUSB.3P1) VBAT Power N9 N9 VBAT.USB Power VBAT USB.LDO VUSB.3P1 USB LDO output Power M8 M8 VUSB.3P1 Power N/A VAUX1 VAUX12S.IN VAUX1/VAUX2/VSIM LDO input voltage Power L1 L1 VAUX12S.IN Power VBAT VAUX2 VAUX2.OUT VAUX2 LDO output voltage Power N2 N2 VAUX2.OUT Power Floating VPLLA3R VPLLA3R.IN Input for VPLL1, VPLL2, VAUX3, and VRTC LDOs Power H14 H14 VPLLA3R.IN Power VBAT VRTC VRTC.OUT VRTC internal LDO output (internal use only) Power K12 K12 VRTC.OUT Power N/A VPLL1 VPLL1.OUT LDO output voltage Power G14 G14 VPLL1.OUT Power Floating VMMC1.IN VMMC1 LDO input voltage Power A2 A2 VMMC1.IN Power VBAT VMMC1.OUT VMMC1 LDO output voltage Power B1 B1 VMMC1.OUT Power Floating VINTUSB1 VINTUSB1P5. P5 OUT VINTUSB1P5 internal LDO output (internal use only) Power M7 M7 VINTUSB1P5. OUT Power Floating VINTUSB1 VINTUSB1P8. P8 OUT VINTUSB1P8 internal LDO output (internal use only) Power N8 N8 VINTUSB1P8. OUT Power Floating K1 K1 VDAC.IN Power VBAT VMMC1 P5 P5 Video DAC VDAC.IN Input for VDAC, VINTANA1, and VINTANA2 LDOs Power VDAC.OUT Output voltage of the regulator Power L2 L2 VDAC.OUT Power Floating VINT VINT.IN Input for VINTDIG LDO Power H13 H13 VINT.IN Power VBAT Power N/A VINTANA1. VINTANA1 OUT VINTANA1 internal LDO output (internal use only) Power H1 H1 VINTANA1.OU T VINTANA2. OUT VINTANA2 internal LDO output (internal use only) Power J2 J2 VINTANA2.OU T Power N/A VINTANA2. OUT VINTANA2 internal LDO output (internal use only) Power A5 A5 VINTANA2.OU T Power N/A VINTDIG.OUT VINTDIG internal LDO output (internal use only) Power J13 J13 VINTDIG.OUT Power N/A VINTANA2 VINTDIG 20 Terminal Description Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Table 2-2. Signal Description (continued) Module Signal Name Description Type TPS65920 Ball TPS65930 Ball Default Configuration After Reset Released Signal Internal Pull or Not Type Features Not Used (1) VDD1.IN VDD1 dc-dc input voltage Power D13 D13 VDD1.IN Power VBAT VDD1.IN VDD1 dc-dc input voltage Power D12 D12 VDD1.IN Power VBAT VDD1.IN VDD1 dc-dc input voltage Power D14 D14 VDD1.IN Power VBAT VDD1.SW VDD1 dc-dc switch O C11 C11 VDD1.SW O Floating VDD1.SW VDD1 dc-dc switch O C12 C12 VDD1.SW O Floating VDD1.SW VDD1 dc-dc switch O C13 C13 VDD1.SW O Floating VDD1.FB VDD1 dc-dc output voltage (feedback) I E14 E14 VDD1.FB I GND VDD1.GND VDD1 dc-dc ground Power GND A12 A12 VDD1.GND Power GND GND VDD1.GND VDD1 dc-dc ground Power GND B11 B11 VDD1.GND Power GND GND VDD1.GND VDD1 dc-dc ground Power GND B12 B12 VDD1.GND Power GND GND VDD2.IN VDD2 dc-dc input voltage Power M13 M13 VDD2.IN Power VBAT VDD2.IN VDD2 dc-dc input voltage Power M12 M12 VDD2.IN Power VBAT VDD2.FB VDD2 dc-dc output voltage (feedback) I N13 N13 VDD2.FB I GND VDD2.SW VDD2 dc-dc switch O N11 N11 VDD2.SW O Floating VDD2.SW VDD2 dc-dc switch O P11 P11 VDD2.SW O Floating VDD2.GND VDD2 dc-dc ground Power GND N12 N12 VDD2.GND Power GND GND VDD2.GND VDD2 dc-dc ground Power GND P12 P12 VDD2.GND Power GND GND VIO.IN VIO dc-dc input voltage Power M2 M2 VIO.IN Power VBAT VIO.IN VIO dc-dc input voltage Power M3 M3 VIO.IN Power VBAT VIO.FB VIO dc-dc output voltage (feedback) I M4 M4 VIO.FB I GND VIO.SW VIO dc-dc switch O N4 N4 VIO.SW O Floating VIO.SW VIO dc-dc switch O P4 P4 VIO.SW O Floating VIO.GND VIO dc-dc ground Power GND N3 N3 VIO.GND Power GND GND VIO.GND VIO dc-dc ground Power GND P3 P3 VIO.GND Power GND GND Backup battery BKBAT Backup battery Power H9 H9 BKBAT Power GND Digital VDD IO.1P8 TPS65920/TPS65930 device I/O input Power B7 B7 IO.1P8 Power N/A Digital ground DGND Digital ground Power GND H10 H10 DGND Power GND GND LEDGND LED driver ground Power GND F13 F13 LEDGND Power GND GND GPIO13 GPIO13 LEDSYNC LED synchronization input B10 B10 GPIO13 I LEDA LED leg A VIBRA.P H-bridge vibrator P Open drain E13 E13 Signal not functional(3) Floating LEDB LED leg B VIBRA.M H-bridge vibrator M Open drain G13 G13 Signal not functional(3) Floating VDD1 VDD2 VIO LED driver I/O I PD Floating Terminal Description Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 21 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Table 2-2. Signal Description (continued) Module Keypad Signal Name Description Type TPS65920 Ball TPS65930 Ball Default Configuration After Reset Released Signal Type Internal Pull or Not Features Not Used (1) KPD.C0 Keypad column 0 Open drain G4 G4 KPD.C0 OD Floating KPD.C1 Keypad column 1 Open drain G3 G3 KPD.C1 OD Floating KPD.C2 Keypad column 2 Open drain E5 E5 KPD.C2 OD Floating KPD.C3 Keypad column 3 Open drain B2 B2 KPD.C3 OD Floating KPD.C4 Keypad column 4 Open drain E3 E3 KPD.C4 OD Floating KPD.C5 Keypad column 5 Open drain D5 D5 KPD.C5 OD Floating KPD.R0 Keypad row 0 I K7 K7 KPD.R0 I PU Floating KPD.R1 Keypad row 1 I H5 H5 KPD.R1 I PU Floating KPD.R2 Keypad row 2 I K5 K5 KPD.R2 I PU Floating KPD.R3 Keypad row 3 I H6 H6 KPD.R3 I PU Floating KPD.R4 Keypad row 4 I K8 K8 KPD.R4 I PU Floating KPD.R5 Keypad row 5 I L8 L8 KPD.R5 I PU Floating (1) This column provides the connection when the associated feature is not used or not connected. When there is a pin muxing, not all functions on the muxed pin are used. But even if a function is not used, the Default Configuration After Reset Released column still applies. Connection criteria: – Analog pins: – For input: GND – For output: Floating (except VPRECH is connected to GND) – For I/O if input by default: GND (except for audio features input: capacitor to ground with a 100-nF typical value capacitor) – Digital pins: – For input: GND (except keypad and STP are left floating) – For input and pullup: Floating – For output: Floating – For I/O and pullup: Floating N/A (not applicable): When the associated feature is mandatory for correct functioning of the TPS65920/TPS65930 device (2) The signal VPRECH must be connected to the CPRECH capacitor to GND. (3) Signal not functional indicates that no signal is presented on the pad after a release reset. 22 Terminal Description Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 3 Electrical Characteristics 3.1 Absolute Maximum Ratings Table 3-1 lists the absolute maximum ratings. Table 3-1. Absolute Maximum Ratings Parameter Main battery supply voltage Test Conditions (1) Voltage on any input Supply represents the voltage applied to the power supply pin associated with the input Storage temperature range 3.2 Max Unit 2.1 4.5 V 0.0 1.0*Supply V –55 125 °C At 1.4 W (Theta JB 11°C/W 2S2P board) –40 Junction temperature (TJ) for parametric compliance (1) Typ –40 Ambient temperature range Junction temperature (TJ) Min 85 °C 105 °C 105 °C The product has negligible reliability impact if voltage spikes of 5.2 V occur for a total duration of 10 milliseconds. Minimum Voltages and Associated Currents Table 3-2 lists the VBAT minimum and maximum currents per VBAT ball. Table 3-2. VBAT Minimum Required Per VBAT Ball and Associated Maximum Current Category Pin and Module Maximum Current Specified (mA) VBAT pin name VDD_VPLLA3R_IN_6POV 340 VPLL1 (LDO) 40 VDD1 core (DCDC) <1 2.7 VDD2 core (DCDC) <1 2.7 SYSPOR (power ref) <1 2.7 PBIAS (power ref) <1 2.7 VDD_VDAC_IN_6POV 370 VDAC (LDO) 70 1.2 / 1.3 / 1.8 Maximum (2.7, output voltage selected + 250 mV) VINTANA1 (LDO) 50 1.5 Maximum (2.7, output voltage selected + 250 mV) VINTANA2 (LDO) 250 2.5 / 2.75 Maximum (2.7, output voltage selected +250 mV) Internal module supplied VBAT pin name Internal module supplied VIO core (DCDC) <1 VDD_VAUXI2S_IN_6POV 350 VAUX2 (LDO) 100 VBAT pin name VDD_VMMC1_IN_6POV 220 Internal module supplied VMMC1 (LDO) 220 VBAT pin name Internal module supplied Power_REGBATT VBAT pin name VDD_VINT_IN_6POV Output Voltage (V) VBAT Minimum (V) 1.0 / 1.2 / 1.3 / 1.8 / 2.8 / 3.0 Maximum (2.7, output voltage selected + 250 mV) 2.7 1.3 / 1.5 / 1.6 / 1.7 / 1.8 / 1.9 / 2.0 / 2.1 / 2.2 / 2.3 / 2.4 / 2.5 / 2.8 Maximum (2.7, output voltage selected + 250 mV) 1.85 / 2.85 / 3.0 / 3.15 Maximum (2.7, output voltage selected + 250 mV) 0.001 2.7 131 Electrical Characteristics Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 23 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Table 3-2. VBAT Minimum Required Per VBAT Ball and Associated Maximum Current (continued) Category Internal module supplied 3.3 Pin and Module Maximum Current Specified (mA) Output Voltage (V) VBAT Minimum (V) VINTDIG (LDO) 80 1.0 / 1.2 / 1.3 / 1.5 Maximum (2.7, output voltage selected + 250 mV) VRRTC (LDO) 30 1.5 Maximum (2.7, output voltage selected + 250 mV) VBACKUP (LDO) 1 2.5 / 3.0 / 3.1 / 3.2 Maximum (2.7, output voltage selected + 250 mV) Recommended Operating Conditions Table 3-3 lists the recommended operating maximum ratings. Table 3-3. Recommended Operating Maximum Ratings Parameter Test Conditions Min Typ Max Unit 2.7 (1) 3.6 4.5 V Backup battery supply voltage 1.8 3.2 3.3 V Ambient temperature range –40 85 °C Main battery supply voltage (1) 2.7 V is the minimum threshold for the battery at which the device will turn OFF. However, the minimum voltage at which the device will power ON is 3.2 V ±100 mV (if PWRON does not have a switch and is connected to VBAT) considering battery plug as the device switch on event. If PWRON has a switch then 3.2 V is the minimum for the device to turn ON. 3.4 Digital I/O Electrical Characteristics Table 3-4 describes the digital I/O electrical characteristics. The following list defines abbreviations used in the table: • RL: Reference level voltage applied to the I/O cell • VOL: Low-level output voltage • VOH: High-level output voltage • VIL: Low-level input voltage • VIH: High-level input voltage • Min: Minimum value • Max: Maximum value Table 3-4. Digital I/O Electrical Characteristics VOL (V) VOH (V) VIL (V) VIL (V) Min Max Min Max Min Max Min Max Max Freq (MHz) 0 0.45 RL–0.45 RL 0 0.35xRL 0.65xRL RL 33 30 5.2 5.2 0 0.45 RL–0.45 RL 0 0.35xRL 0.65xRL RL 33 30 5.2 5.2 0 0.45 RL–0.45 RL 0 0.35xRL 0.65xRL RL 3 30 5.2 5.2 0 0.45 RL–0.45 RL 0 0.35xRL 0.65xRL RL 3 30 5.2 5.2 0 0.45 RL–0.45 RL 0 0.35xRL 0.65xRL RL 3 30 5.2 5.2 0 0.45 RL–0.45 RL 0 0.35xRL 0.65xRL RL 3 30 5.2 5.2 Pin Name Load (pF) Rise Fall Time (ns) Output Mode Time (ns) GPIO0/CD1 JTAG.TDO GPIO0 JTAG.TMS GPIO2 TEST1 GPIO15 TEST2 GPIO6 PWM0 TEST3 GPIO7 VIBRA.SYNC PWM1 TEST4 24 Electrical Characteristics Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Table 3-4. Digital I/O Electrical Characteristics (continued) VOL (V) VOH (V) VIL (V) VIL (V) Pin Name Max Freq (MHz) Load (pF) Rise Fall Time (ns) Output Mode Time (ns) Min Max Min Max Min Max Min Max SYSEN 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL CLKEN 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 CLKREQ 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 INT1 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 30 NRESPWRON 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 NRESWARM 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 0 0.35×1.8V 0.65×1.8V VBAT PWRON 5.2 5.2 33.3 33.3 33.3 33.3 33.3 33.3 30 33.3 33.3 30 33.3 33.3 3 33.3 33.3 33.3 33.3 16.3 16.3 30 NSLEEP1 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 CLK256FS 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 12.288 VMODE1 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 33.3 33.3 BOOT0 0 RL 3 33.3 33.3 BOOT1 0 RL 3 33.3 33.3 REGEN 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 33.3 33.3 MSECURE 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 33.3 33.3 I2C.SR.SDA 0 0.4 –0.5 0.3×RL 0.7×RL RL+0.5 3.4 VMODE2 0 0.45 0 0.35×RL 0.65×RL RL 3.4 29.4 29.4 I2C.SR.SCL 0 0.4 –0.5 0.3×RL 0.7×RL RL+0.5 3.4 10.0 10.0 I2C.CNTL.SDA 0 0.4 –0.5 0.3×RL 0.7×RL RL+0.5 3.4 I2C.CNTL.SCL 0 0.4 –0.5 0.3×RL 0.7×RL RL+0.5 3.4 10.0 10.0 I2S.CLK 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 6.5 30 33.0 33.0 I2S.SYNC 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 6.5 30 33.0 33.0 I2S.DIN 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3.25 30 33.0 33.0 I2S.DOUT 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3.25 30 29.0 29.0 32KCLKOUT 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.032 30 16 16 HFCLKOUT 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 38.4 30 2.6 2.6 UCLK 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 60 10 1.0 1.0 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0 TEST.RESET 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 33.0 33.0 TEST 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 29.0 29.0 JTAG.TDI/ BERDATA 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 33.0 33.0 JTAG.TCK/ BERDATA 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 33.0 33.0 RL–0.45 RL 30 30 Up to 400 Up to 400 STP GPIO9 DIR GPIO10 NXT GPIO11 DATA0 UART4.TXD DATA1 UART4.RXD DATA2 UART4.RTSI DATA3 UART4.CTSO GPIO12 DATA4 GPIO14 DATA5 GPIO3 DATA6 GPIO4 DATA7 GPIO5 30 Electrical Characteristics Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 25 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Table 3-4. Digital I/O Electrical Characteristics (continued) VOL (V) VOH (V) VIL (V) VIL (V) Pin Name Min Max Min Max Min Max Min 0 0.45 RL–0.45 RL 0 0.35×RL 0.35×RL KPD.C0 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL KPD.C1 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL KPD.C2 0 0.45 RL–0.45 RL 0 0.35×RL KPD.C3 0 0.45 RL–0.45 RL 0 KPD.C4 0 0.45 RL–0.45 RL KPD.C5 0 0.45 RL–0.45 KPD.C6 0 0.45 KPD.C7 0 KPD.R0 Max Max Freq (MHz) Load (pF) Rise Fall Time (ns) Output Mode Time (ns) GPIO13 3 30 33.3 33.3 RL 0.033 30 29.0 29.0 RL 0.033 30 29.0 29.0 0.65×RL RL 0.033 30 29.0 29.0 0.35×RL 0.65×RL RL 0.033 30 29.0 29.0 0 0.35×RL 0.65×RL RL 0.033 30 29.0 29.0 RL 0 0.35×RL 0.65×RL RL 0.033 30 29.0 29.0 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 30 29.0 29.0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 30 29.0 29.0 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 3051.8 3051.8 KPD.R1 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 3051.8 3051.8 KPD.R2 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 3051.8 3051.8 KPD.R3 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 3051.8 3051.8 KPD.R4 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 3051.8 3051.8 KPD.R5 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 3051.8 3051.8 KPD.R6 0 0.45 0.45 RL 0 0.35×RL 0.65×RL RL 0.033 3051.8 3051.8 KPD.R7 0 0.45 0.45 RL 0 0.35×RL 0.65×RL RL 0.033 3051.8 3051.8 LEDSYNC 26 Electrical Characteristics Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 4 Power Module This section describes the electrical characteristics of the voltage regulators and timing characteristics of the supplies digitally controlled in the TPS65920 and TPS65930 devices . Figure 4-1 is the power provider block diagram. Main battery VPLL1.OUT VPLLA3R.IN VPLL1 VINT.IN 1.0/1.2/1.3/1.8 V 40 mA CVPLL1.OUT VMMC1.OUT CVMMC1.OUT VAUX2.OUT CVAUX2.OUT VMMC1 1.85/2.85 /3.0/3.15 V 220 mA VAUX2 1.3/1.5/1.7/1.8/1.9/2.0/ 2.1/2.2/2.3/2.4/2.5/2.8 V 100 mA VMMC1.IN VDAC.IN VDAC.IN VAUX12S.IN VDAC.IN VUSB.3P1 VRUSB_3V1 VBAT.USB 3.1 V 15 mA CVUSB.3P1 VINTDIG VINTDIG.OUT 1.0/1.2/1.3/1.5 V 80 mA VINTANA1 CVINTDIG.OUT VINTANA.OUT 1.5 V 50 mA VINTANA2 2.5/2.75 V 250 mA VDAC CVINTANA1.OUT VINTANA2.OUT CVINTANA2.OUT VDAC.OUT 1.2/1.3/1.8 V 70 mA CVDAC.OUT LVDD1 VDD1.L VINTUSB1P8.OUT VRUSB_1V8 VBAT.USB VDD1.IN x 3 1.81 V 30 mA CVINTUSB1P8.OUT VDD1 (DC-DC) (3) VDD1.OUT 0.6 V to 1.45 V 1200 mA VDD1.GND CVDD1.OUT (3) VINTUSB1P5.OUT CVINTUSB1P5.OUT VRUSB_1V5 LVDD2 VDD2.L VBAT.USB 1.525 V 30 mA VDD2.IN x 2 VDD2 (DC-DC) 0.6 V to 1.5 V 600 mA (2) VDD2.OUT CVDD2.OUT VDD2.GND (2) LVIO VIO.L VIO.IN x 2 VIO (DC-DC) 1.8 V/1.85 V 700 mA (2) VIO.OUT CVIO.OUT VIO.GND (2) 037-010 Two internal regulators, VRRTC and VBRTC, are not shown. VRRTC provides power to the RTC, and VBRTC is not used in this configuration. Figure 4-1. Power Provider Block Diagram NOTE For the component values, see Table 14-1. Power Module Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 27 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 4.1 www.ti.com Power Providers Table 4-1 summarizes the power providers. Table 4-1. Summary of the Power Providers Usage Type Voltage Range (V) Default Voltage Maximum Current VAUX2 External LDO 1.3, 1.5, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.8 1.8 V 100 mA VMMC1 External LDO 1.85, 2.85, 3.0, 3.15 3.0 V 220 mA VPLL1 External LDO 1.0, 1.2, 1.3, 1.8, 2.8, 3.0 1.8 V 40 mA VDAC External LDO 1.2, 1.3, 1.8 1.8 V 70 mA VIO External SMPS 1.8, 1.85 1.8 V 700 mA VDD1 External SMPS 0.6 ... 1.45 1.2 V 1200 mA VDD2 External SMPS 0.6 ... 1.5 1.2 V 600 mA VINTANA1 Internal LDO 1.5 1.5 V 50 mA VINTANA2 Internal LDO 2.5, 2.75 2.75 V 250 mA VINTDIG Internal LDO 1.0, 1.2, 1.3, 1.5 1.5 V 80 mA USBCP Internal Charge pump 5 5V 100 mA VUSB1V5 Internal LDO 1.5 1.5 V 30 mA VUSB1V8 Internal LDO 1.8 1.8 V 30 mA VUSB3V1 Internal LDO 3.1 3.1 V 15 mA VRRTC Internal LDO 1.5 1.5 V 30 mA VBRTC Internal LDO 1.3 1.3 V 100 μA Name 28 Power Module Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 4.1.1 VDD1 dc-dc Regulator 4.1.1.1 VDD1 dc-dc Regulator Characteristics The VDD1 dc-dc regulator is a stepdown dc-dc converter with a configurable output voltage. The programming of the output voltage and the characteristics of the dc-dc converter are SmartReflex-compatible. The regulator can be put in sleep mode to reduce its leakage (PFM) or in power-down mode when it is not in use. Table 4-3 describes the regulator characteristics. Table 4-2. Part Names With Corresponding VDD1 Current Support Device Name VDD1 Current Support TPS65920A2ZCH (some bug fixes, see errata) 1.2 A TPS65920A2ZCHR (some bug fixes, see errata) 1.2 A TPS65930A2ZCH (some bug fixes, see errata) 1.2 A TPS65930A2ZCHR (some bug fixes, see errata) 1.2 A Table 4-3. VDD1 dc-dc Regulator Characteristics Min Typ Max Unit Input voltage range Parameter Comments 2.7 3.6 4.5 V Output voltage 0.6 1.45 V Output voltage step Covering the 0.6-V to 1.45-V range Output accuracy (1) 0.6 V to < 0.8 V –6% 12.5 6% 0.8 V to 1.45 V –4% 4% Switching frequency Conversion efficiency (2), Figure 4-2 in active mode Output current Ground current (IQ) 3.2 IO = 10 mA, sleep 82% 100 mA < IO < 400 mA 85% 400 mA < IO < 600 mA 80% 600 mA < IO < 800 mA 75% 1.2 A Sleep mode 10 mA 3 μA Off at 30°C 30 Active, unloaded, not switching Short-circuit current VIN = VMax Load regulation 0 < IO < IMax Transient load regulation (3) IO = 10 mA to (IMax/2) + 10 mA, Maximum slew rate is IMax/2/100 ns 2.2 mV 50 mV 10 mV 10 mV 0.25 1 ms <10 100 μs 8 16 mV/μs 500 700 Ω 1 1.3 μH 0.1 Ω –65 Start-up time From sleep mode to on mode with constant load 4 Output shunt resistor (pulldown) Value External coil Data capture record (DCR) Saturation current (1) (2) (3) (4) 0.7 A 20 300 mVPP ac input, 10-μs rise and fall time Slew rate (rising or falling) (4) 50 300 Line regulation Recovery time MHz Active mode Sleep, unloaded Transient line regulation mV 1.8 A Accuracy includes all variations (line and load regulations, line and load transients, temperature, and process) VBAT = 3.8 V, VDD1 = 1.3 V, Fs = 3.2 MHz, L = 1 μH, LDCR = 100 mΩ, C = 10 μF, ESR = 10 mΩ Output voltage must discharge the load current completely and settle to its final value within 100 μs. Load current varies proportionally with the output voltage. The slew rate is for increasing and decreasing voltages, and the maximum load current is 1.1 A. Power Module Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 29 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Table 4-3. VDD1 dc-dc Regulator Characteristics (continued) Parameter Comments External capacitor (5) (5) Min Typ Max Value 8 10 12 Unit μF Equivalent series resistance (ESR) at switching frequency 0 20 mΩ Under current load condition step: Imax/2 (550 mA) in 100 ns with a ±20% external capacitor accuracy or Imax/3 (367 mA) in 100 ns with a ±50% external capacitor accuracy See Table 2-2 for how to connect the VDD1/2 dc-dc converter when it is not in use. Figure 4-2 shows the efficiency of the VDD1 dc-dc regulator in active mode and sleep mode. VDD1 EFFICIENCY vs OUTPUT CURRENT Output voltage = 1.3 V, Vbat = 3.6 V 90 80 70 Effciency (%) 60 50 40 30 20 10 0 0.0001 0.001 0.01 0.1 1 ILOAD (A) SWCS037-018 Figure 4-2. VDD1 dc-dc Regulator Efficiency 4.1.1.2 External Components and Application Schematics Figure 4-3 is an application schematic with the external components on the VDD1 dc-dc regulator. 30 Power Module Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Device VDD1.IN (D14) VDD1.IN (D13) VDD1.IN (D12) VDD1.SW (C11) LVDD1 VDD1.SW (C12) VDD1.SW (C13) CVDD1.OUT VDD1.GND (A12) VDD1.GND (B11) VDD1.GND (B12) 030-009 Figure 4-3. VDD1 dc-dc Application Schematic NOTE For the component values, see Table 14-1. Power Module Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 31 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 4.1.2 www.ti.com VDD2 dc-dc Regulator 4.1.2.1 VDD2 dc-dc Regulator Characteristics The VDD2 dc-dc regulator is a programmable output stepdown dc-dc converter with an internal field effect transistor (FET). Like the VDD1 regulator, the VDD2 regulator can be placed in sleep or power-down mode and is SmartReflex-compatible. The VDD2 regulator differs from VDD1 in its current load capability. Table 4-4 describes the regulator characteristics. Table 4-4. VDD2 dc-dc Regulator Characteristics Parameter Comments Input voltage range Output voltage Min Typ Max Unit 2.7 3.6 4.5 V 1 1.5 0.6 Output voltage step Covering the 0.6-V to 1.45-V range, 1.5 V is a single programmable value 12.5 Output accuracy (1) 0.6 V to < 0.8 V –6% 0.8 V to 1.5 V –4% Switching frequency Conversion efficiency (2), Figure 4-4 in active mode Output current Ground current (IQ) 6% 4% 3.2 IO = 10 mA, sleep 82% 100 mA < IO < 300 mA 85% 300 mA < IO < 500 mA 80% MHz Active mode 600 mA Sleep mode 10 mA Off at 30°C 1 μA Sleep, unloaded 50 Active, unloaded, not switching Short-circuit current VIN = VMax Load regulation 0 < IO < IMax Transient load regulation (3) IO = 10 mA to (IMax/2) + 10 mA, Maximum slew rate is IMax/2/100 ns 300 1.2 –65 Line regulation Transient line regulation V mV 300 mVPP ac input, 10-μs rise and fall time A 20 mV 50 mV 10 mV 10 mV Output shunt resistor (internal pulldown) 500 700 Ω Start-up time 0.25 1 ms 25 100 μs Recovery time From sleep mode to on mode with constant load Slew rate (rising or falling) (4) Value External coil (1) (2) (3) (4) (5) 32 8 16 mV/μs 1 1.3 μH DCR Saturation current External capacitor (5) 4 0.7 0.1 900 Value 8 ESR at switching frequency 0 Ω mA 10 12 μF 20 mΩ Accuracy includes all variations (line and load regulations, line and load transients, temperature, and process) VBAT = 3.8 V, VDD2 = 1.3 V, Fs = 3.2 MHz, L = 1 μH, LDCR = 100 mΩ, C = 10 μF, ESR = 10 mΩ Output voltage needs to discharge the load current completely and settle to its final value within 100 μs. Load current varies proportionally with the output voltage. The slew rate is for both increasing and decreasing voltages and the maximum load current is 600 mA. Under current load condition step: Imax/2 (300 mA) in 100 ns with a ±20% external capacitor accuracy or Imax/3 (200 mA) in 100 ns with a ±50% external capacitor accuracy Power Module Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com See Table 2-2 for how to connect the VDD1/2 dc-dc converter when it is not in use. Figure 4-4 shows the efficiency of the VDD2 dc-dc regulator in active mode and sleep mode. VDD2 EFFICIENCY vs OUTPUT CURRENT Output voltage = 1.3 V, Vbat = 3.6 V 90 80 70 Effciency (%) 60 50 40 30 20 10 0 0.0001 0.001 0.01 0.1 1 ILOAD (A) SWCS037-019 Figure 4-4. VDD2 dc-dc Regulator Efficiency 4.1.2.2 External Components and Application Schematics Figure 4-5 is an application schematic with the external components on the VDD2 dc-dc regulator. Power Module Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 33 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Device VDD2.IN (M12) VDD2.IN (M13) LVDD2 VDD2.SW (N11) VDD2.SW (P11) CVDD2.OUT VDD2.GND (N12) VDD2.GND (P12) 030-010 Figure 4-5. VDD2 dc-dc Application Schematic NOTE For the component values, see Table 14-1. 34 Power Module Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 4.1.3 VIO dc-dc Regulator 4.1.3.1 VIO dc-dc Regulator Characteristics The I/O and memory dc-dc regulator is a 600-mA stepdown dc-dc converter (internal FET) with two output voltage settings. It supplies the memories and all I/O ports in the application and is one of the first power providers to switch on in the power-up sequence. This dc-dc regulator can be placed in sleep or power-down mode; however, care must be taken in the sequencing of this power provider, because numerous ESD blocks are connected to this supply. Table 4-5 describes the regulator characteristics. Table 4-5. VIO dc-dc Regulator Characteristics Parameter Comments Input voltage range Min Typ Max Unit 2.7 3.6 4.5 V 1.8 1.85 Output voltage (1) Output accuracy (2) –4% 4% –3% 3% Switching frequency Conversion efficiency (3) Figure 4-6 in active mode Output current Ground current (IQ) V 3.2 IO = 10 mA, sleep 85% 100 mA < IO < 400 mA 85% 400 mA < IO < 600 mA 80% MHz On mode 700 Sleep mode Off at 30°C 1 Sleep, unloaded Active, unloaded, not switching 300 300 mVPP ac, input rise and fall time 10 μs Start-up time Recovery time From sleep mode to on mode with constant load Output shunt resistor (internal pulldown) Value External coil External capacitor (1) (2) (3) (4) 0.7 50 mV 10 mV 0.25 1 ms <10 100 μs 500 700 Ω 1 1.3 μH DCR Saturation current μA 50 Load transient (4) Line transient mA 10 0.1 900 Value 8 ESR at switching frequency 1 Ω mA 10 12 μF 20 mΩ This voltage is tuned according to the platform and transient requirements. ±4% accuracy includes all the variation (line and load regulation, line and load transient, temperature, process) ±3% accuracy is dc accuracy only. VBAT = 3.8 V, VIO = 1.8 V, Fs = 3.2 MHz, L = 1 μH, LDCR = 100 mΩ, C = 10 μF, ESR = 10 mΩ Load transient can also be specified as 0 < IO < IOUTmax/2, Δt = 1 μs, 100 mV but this is not included in ±4% accuracy. Power Module Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 35 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Figure 4-6 shows the efficiency of the VIO dc-dc regulator in active mode and sleep mode. VIO EFFICIENCY vs OUTPUT CURRENT Output voltage = 1.2 V, Vbat = 3.8 V 100 90 80 70 Effciency (%) 60 50 40 30 20 10 0 0.0001 0.001 0.01 0.1 1 ILOAD (A) SWCS037-020 Figure 4-6. VIO dc-dc Regulator Efficiency 4.1.3.2 External Components and Application Schematics Figure 4-7 is an application schematic with the external components on the VIO dc-dc regulator. 36 Power Module Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Device VIO.IN (M2) VIO.IN (M3) VIO.SW (N4) LVIO VIO.SW (P4) CVIO.OUT VIO.GND (N3) VIO.GND (P3) 030-011 Figure 4-7. VIO dc-dc Application Schematic NOTE For the component values, see Table 14-1. Power Module Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 37 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 4.1.4 www.ti.com VDAC LDO Regulator The VDAC programmable LDO regulator is a high-PSRR, low-noise linear regulator that powers the host processor dual-video DAC. It is controllable with registers through I2C and can be powered down. Table 4-6 describes the regulator characteristics. Table 4-6. VDAC LDO Regulator Characteristics Parameter Test Conditions Min Typ 0.3 1 Max Unit Output Load Conditions Filtering capacitor Connected from VDAC.OUT to analog ground Filtering capacitor ESR 20 2.7 μF 600 mΩ Electrical Characteristics VIN Input voltage VOUT Output voltage IOUT Rated output current On mode 2.7 3.6 4.5 V 1.164 1.2 1.236 V 1.261 1.3 1.339 1.746 1.8 1.854 On mode 70 Low-power mode mA 5 dc load regulation On mode: 0 < IO < IMax dc line regulation On mode, VIN = VINmin to VINmax at IOUT = IOUTmax Turn-on time IOUT = 0, CL = 1 μF (within 10% of VOUT) Wake-up time Full load capability Ripple rejection f < 20 kHz 65 20 kHz < f < 100 kHz 45 f = 1 MHz 40 20 mV 3 mV 100 μs 10 μs dB VIN = VOUT + 1 V, IO = IMax Output noise 100 Hz < f < 5 kHz 400 nV/√Hz 5 kHz < f < 400 kHz 125 400 kHz < f < 10 MHz Ground current 50 On mode, IOUT = 0 150 On mode, IOUT = IOUTmax 350 Low-power mode, IOUT = 0 15 Low-power mode, IOUT = 1 mA 25 Off mode at 55°C VDO 38 Dropout voltage On mode, IOUT = IOUTmax Transient load regulation ILoad: IMin – IMax Slew: 60 mA/μs Transient line regulation VIN drops 500 mV Slew: 40 mV/μs Power Module μA 1 –40 250 mV 40 mV 10 mV Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 4.1.5 VPLL1 LDO Regulator The VPLL1 programmable LDO regulator is a high-PSRR, low-noise, linear regulator used for the host processor PLL supply. Table 4-7 describes the regulator characteristics. Table 4-7. VPLL1 LDO Regulator Characteristics Parameter Test Conditions Min Typ 0.3 1 Max Unit Output Load Conditions Filtering capacitor Connected from VPLL1.OUT to analog ground Filtering capacitor ESR 20 2.7 μF 600 mΩ Electrical Characteristics VIN Input voltage VOUT Output voltage IOUT Rated output current On mode and low-power mode 2.7 3.6 4.5 V 0.97 1.0 1.03 V 1.164 1.2 1.236 1.261 1.3 1.339 1.746 1.8 1.854 2.716 2.8 2.884 2.91 3.0 3.090 On mode 40 Low-power mode mA 5 dc load regulation On mode: 0 < IO < IMax dc line regulation On mode, VIN = VINmin to VINmax at IOUT = IOUTmax Turn-on time IOUT = 0, CL = 1 μF (within 10% of VOUT) Wake-up time Full load capability Ripple rejection f < 10 kHz 50 10 kHz < f < 100 kHz 40 f = 1 MHz 30 20 mV 3 mV 100 μs 10 μs dB VIN = VOUT + 1 V, IO = IMax Ground current On mode, IOUT = 0 70 On mode, IOUT = IOUTmax Low-power mode, IOUT = 0 15 Low-power mode, IOUT = 1 mA 16 Off mode at 55°C VDO Dropout voltage On mode, IOUT = IOUTmax Transient load regulation ILoad: IMin – IMax Slew: 60 mA/μs Transient line regulation VIN drops 500 mV Slew: 40 mV/μs 1 –40 250 mV 40 mV 10 mV Power Module Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 μA 110 39 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 4.1.6 www.ti.com VMMC1 LDO Regulator The VMMC1 LDO regulator is a programmable linear voltage converter that powers the multimedia card (MMC) slot. It includes a discharge resistor and overcurrent protection (short-circuit). This LDO regulator can also be turned off automatically when MMC card extraction is detected. The VMMC1 LDO can be powered through an independent supply other than the battery; for example, a charge pump. In this case, the input from the VMMC1 LDO can be higher than the battery voltage. Table 4-8 describes the regulator characteristics. Table 4-8. VMMC1 LDO Regulator Characteristics Parameter Test Conditions Min Typ 0.3 1 Max Unit Output Load Conditions Filtering capacitor Connected from VMMC1.OUT to analog ground Filtering capacitor ESR 2.7 μF 600 mΩ 5.5 V 1.85 1.9055 2.85 2.9355 3.0 3.09 3.15 3.2445 V 20 Electrical Characteristics VIN Input voltage 2.7 1.7945 2.7645 2.91 3.0555 3.6 VOUT Output voltage On mode and low-power mode IOUT Rated output current On mode Low-power mode dc load regulation On mode: 0 < IO < IMax dc line regulation On mode, VIN = VINmin to VINmax at IOUT = IOUTmax Turn-on time IOUT = 0, CL = 1 μF (within 10% of VOUT) Wake-up time Full load capability Ripple rejection f < 10 kHz 10 kHz < f < 100 kHz f = 1 MHz VIN = VOUT + 1 V, IO = IMax Ground current On mode, IOUT = 0 On mode, IOUT = IOUTmax Low-power mode, IOUT = 0 Low-power mode, IOUT = 5 mA Off mode at 55°C 70 290 17 20 1 μA Dropout voltage On mode, IOUT = IOUTmax 250 mV Transient load regulation ILoad: IMin – IMax Slew: 40 mA/μs 40 mV Transient line regulation VIN drops 500 mV Slew: 40 mV/μs 10 mV VDO 40 Power Module 220 5 mA 20 mV 3 mV 100 μs 10 μs 50 40 25 –40 dB Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 4.1.7 VAUX2 LDO Regulator The VAUX2 general-purpose LDO regulator powers the auxiliary devices. Table 4-9 describes the regulator characteristics. Table 4-9. VAUX2 LDO Regulator Characteristics Parameter Test Conditions Min Typ 0.3 1 Max Unit Output Load Conditions Filtering capacitor Connected from VAUX2.OUT to analog ground Filtering capacitor ESR 20 2.7 μF 600 mΩ Electrical Characteristics VIN Input voltage 2.7 3.6 4.5 V –3% 1.3 1.5 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.8 3% V 100 5 mA 20 mV 3 mV 100 μs 10 μs VOUT Output voltage On mode and low-power mode IOUT Rated output current On mode Low-power mode dc load regulation On mode: IOUT = IOUTmax to 0 dc line regulation On mode, VIN = VINmin to VINmax at IOUT = IOUTmax Turn-on time IOUT = 0, CL = 1 μF (within 10% of VOUT) Wake-up time Full load capability Ripple rejection f < 10 kHz 10 kHz < f < 100 kHz f = 1 MHz VIN = VOUT + 1 V, IO = IMax Ground current On mode, IOUT = 0 On mode, IOUT = IOUTmax Low-power mode, IOUT = 0 Low-power mode, IOUT = 5 mA Off mode at 55°C 70 170 17 20 1 μA Dropout voltage On mode, IOUT = IOUTmax 250 mV Transient load regulation ILoad: IMin – IMax Slew: 40 mA/μs 40 mV Transient line regulation VIN drops 500 mV Slew: 40 mV/μs 10 mV VDO 50 40 25 –40 dB Power Module Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 41 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 4.1.8 www.ti.com Output Load Conditions Table 4-10 lists the regulators that power the device, and the output loads associated with them. Table 4-10. Output Load Conditions Regulator VINTDIG LDO Parameter Filtering capacitor Test Conditions Connected from VINTDIG.OUT to analog ground Filtering capacitor ESR VINTANA1 LDO Filtering capacitor Filtering capacitor Connected from VINTANA1.OUT to analog ground 600 mΩ 2.7 μF 600 mΩ 2.7 μF 0.3 1 600 mΩ Connected from VUSB.3P1 to GND 0.3 1 1 2.7 μF 0 10 600 mΩ Connected from VINTUSB1P8.OUT to GND 0.3 1 2.7 μF 0 10 600 mΩ Connected from VINTUSB1P5 to GND 0.3 1 2.7 μF 0 10 600 mΩ 20 Filtering capacitor ESR 42 μF 0.3 Filtering capacitor ESR VRUSB_1V5 LDO Filtering capacitor Unit 2.7 Connected from VINTANA2.OUT to analog ground Filtering capacitor ESR VRUSB_1V8 LDO Filtering capacitor Max 1 20 Filtering capacitor ESR VRUSB_3V1 LDO Filtering capacitor Typ 0.3 20 Filtering capacitor ESR VINTANA2 LDO Min Power Module Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 4.1.9 Charge Pump The charge pump generates a 4.8-V (nominal) power supply voltage from the battery to the VBUS pin. The input voltage range is 2.7 to 4.5 V for the battery voltage. The charge pump operating frequency is 1 MHz. The charge pump tolerates 7 V on VBUS when it is in power-down mode. The charge pump integrates a short-circuit current limitation at 450 mA. Table 4-11 lists the charge pump output load conditions. Table 4-11. Charge Pump Output Load Conditions Parameter Test Conditions Min Typ Max Unit μF Output Load Conditions Filtering capacitor Connected from VBUS to VSSP 1.41 4.7 6.5 Flying capacitor Connected from CP to CN 1.32 2.2 3.08 μF 20 mΩ Filtering capacitor ESR Power Module Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 43 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 4.1.10 USB LDO Short-Circuit Protection Scheme The short-circuit current for the LDOs and dc-dcs in the TPS65920 and TPS65930 devices is approximately twice the maximum load current. When the output of the block is shorted to ground, the power dissipation can exceed the 1.2-W requirement if no action is taken. A short-circuit protection scheme is included in the TPS65920 and TPS65930 devices to ensure that if the output of an LDO or dc-dc is short-circuited, the power dissipation does not exceed the 1.2-W level. The three USB LDOs, VRUSB3V1, VRUSB1V8, and VRUSB1V5, are included in this short-circuit protection scheme, which monitors the LDO output voltage at a frequency of 1 Hz and generates an interrupt (sc_it) when a short-circuit is detected. The scheme compares the LDO output voltage to a reference voltage and detects a short-circuit if the LDO voltage drops below this reference value (0.5 or 0.75 V programmable). In the case of the VRUSB3V1 and VRUSB1V8 LDOs, the reference is compared with a divided down voltage (1.5 V typical). If a short-circuit is detected on VRUSB3V1, the power subchip FSM switches this LDO to sleep mode. If a short-circuit is detected on VRUSB1V8 or VRUSB1V5, the power subchip FSM switches off the relevant LDO. 44 Power Module Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 4.2 Power References The bandgap voltage reference is filtered (resistance/capacitance [RC] filter) using an external capacitor connected across the VREF output and an analog ground (REFGND). The VREF voltage is scaled, distributed, and buffered in the device. The bandgap is started in fast mode (not filtered), and is set automatically by the power state-machine in slow mode (filtered, less noisy) when required. Table 4-12 lists the voltage reference characteristics. Table 4-12. Voltage Reference Characteristics Parameter Test Conditions Min Typ Max Unit Connected from VREF to GNDREF 0.3 1 2.7 μF Input voltage On mode 2.7 3.6 4.5 V Internal bandgap reference voltage On mode, measured through TESTV terminal 1.272 1.285 1.298 V Reference voltage (VREF terminal) On mode 0.749 0.75 0.77 V Retention mode reference On mode 0.492 0.5 0.508 V 0.9 1 1.1 μA 25 20 15 10 10 μA Output Load Condition Filtering capacitor Electrical Characteristics VIN IREF NMOS sink Ground current Bandgap IREF block Preregulator VREF buffer Retention reference buffer Output spot noise 100 Hz 1 A-weighted noise (rms) P-weighted noise (rms) Integrated noise 20 to 100 kHz nV (rms) 150 nV (rms) <1 MHz from VBAT 4.3.1 0.1 μA 1 ms 60 dB Start-up time 4.3 μV 2.2 IBIAS trim bit LSB Ripple rejection μV/√Hz 200 Power Control Backup Battery Charger If the backup battery is rechargeable, it can be recharged from the main battery. A programmable voltage regulator powered by the main battery allows recharging of the backup battery. The backup battery charge must be enabled using a control bit register. Recharging starts when two conditions are met: • Main battery voltage > backup battery voltage • Main battery > 3.2 V The comparators of the backup battery system (BBS) give the two thresholds of the backup battery charge startup. The programmed voltage for the charger gives the end-of-charge threshold. The programmed current for the charger gives the charge current. Overcharging is prevented by measurement of the backup battery voltage through the GP ADC. Table 4-13 lists the characteristics of the backup battery charger. Table 4-13. Backup Battery Charger Characteristics Parameter VBACKUP-to-MADC input attenuation Test Conditions VBACKUP from 1.8 to 3.3 V Min Typ Max 0.33 Power Module Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 Unit V/V 45 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Table 4-13. Backup Battery Charger Characteristics (continued) Parameter Test Conditions Backup battery charging current End backup battery charging voltage: VBBCHGEND 4.3.2 Min Typ Max VBACKUP = 2.8 V, BBCHEN = 1, BBISEL = 00 10 25 45 Unit μA VBACKUP = 2.8 V, BBCHEN = 1, BBISEL = 01 105 150 270 μA VBACKUP = 2.8 V, BBCHEN = 1, BBISEL = 10 350 500 900 μA VBACKUP = 2.8 V, BBCHEN = 1, BBISEL = 11 0.7 1 1.8 mA VBACKUP = 0 V, BBCHEN = 1, BBISEL = 00 17.5 25 45 μA VBACKUP = 0 V, BBCHEN = 1, BBISEL = 01 105 150 270 μA VBACKUP = 0 V, BBCHEN = 1, BBISEL = 10 350 500 900 μA VBACKUP = 0 V, BBCHEN = 1, BBISEL = 11 0.7 1 1.8 mA IVBACKUP = –10 μA, BBSEL = 00 2.4 2.5 2.6 V IVBACKUP = –10 μA, BBSEL = 01 2.9 3.0 3.1 V IVBACKUP = –10 μA, BBSEL = 10 3.0 3.1 3.2 V IVBACKUP = –10 μA, BBSEL = 11 3.1 3.2 3.3 V Min Typ Max Unit 3.1 3.2 3.3 V 2.55 2.7 2.85 V 2.5 2.5 2.65 2.85 2.95 2.95 V 1.6 1.95 1.8 2.1 2.0 2.25 V Battery Monitoring and Threshold Detection 4.3.2.1 Power On/Power Off and Backup Conditions Table 4-14 lists the threshold levels of the battery. Table 4-14. Battery Threshold Levels Parameter Test Conditions Main battery charged threshold VMBCH Measured on VBAT terminal Main battery low threshold VMBLO VBACKUP = 3.2 V, measured on VBAT terminal (monitored on terminal ONNOFF) Main battery high threshold VMBHI Measured on terminal VBAT, VBACKUP = 0 V Measured on terminal VBAT, VBACKUP = 3.2 V Batteries not present threshold VBNPR Measured on terminal VBACKUP with VBAT < 2.1 V Measured on terminal VBAT with VBACKUP = 0 V (monitored on terminal VRRTC) 4.3.3 VRRTC LDO Regulator The VRRTC voltage regulator is a programmable, low dropout, linear voltage regulator supplying (1.5 V) the embedded real-time clock (32.768-kHz oscillator) and dedicated I/Os of the digital host counterpart. The VRRTC regulator is also the supply voltage of the power-management digital state-machine. The VRRTC regulator is supplied from the UPR line, switched on by the main or backup battery, depending on the system state. The VRRTC output is present as long as a valid energy source is present. The VRRTC line is supplied by an LDO when VBAT > 2.7, and a clamp circuit when in backup mode. Table 4-15 describes the regulator characteristics. Table 4-15. VRRTC LDO Regulator Characteristics Parameter Test Conditions Min Typ 0.3 1 Max Unit Output Load Conditions Filtering capacitor Connected from VRTC.OUT to analog ground Filtering capacitor ESR 20 2.7 μF 600 mΩ Electrical Characteristics VIN Input voltage On mode 2.7 VBAT 4.5 V VOUT Output voltage On mode 1.45 1.5 1.55 V 46 Power Module Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Table 4-15. VRRTC LDO Regulator Characteristics (continued) Parameter IOUT Test Conditions Rated output current Min Typ On mode Max Unit 30 mA Sleep mode 1 DC load regulation On mode: IOUT = IOUTmax to 0 100 mV DC line regulation On mode, VIN = VINmin to VINmax at IOUT = IOUTmax 100 mV Turn-on time IOUT = 0, at VOUT = VOUTfinal ± 3% 100 μs Wake-up time On mode from low power to On mode, IOUT = 0, at VOUT = VOUTfinal ± 3% 100 μs From backup to On mode, IOUT = 0, at VOUT = VOUTfinal ± 3% 100 Ripple rejection (VRRTC) f < 10 kHz 50 10 kHz < f < 100 kHz 40 f = 1 MHz 30 dB VIN = VOUT + 1 V, IO = IMAX Ground current On mode, IOUT = 0 70 On mode, IOUT = IOUTmax 100 Sleep mode, IOUT = 0 10 Sleep mode, IOUT = 1 mA 11 Off mode VDO (1) Dropout voltage (1) μA 1 On mode, IOUT = IOUTmax Transient load regulation ILOAD: IMIN – IMAX Slew: 40 mA/μs Transient line regulation VIN drops 500 mV Slew: 40 mV/μs Overshoot Softstart Pull down resistance Default in off mode –40 250 mV 40 mV 10 mV 3% 250 320 450 Ω For nominal output voltage 4.4 Power Consumption Table 4-16 describes the power consumption depending on the use cases. NOTE Typical power consumption is obtained in the nominal operating conditions and with the TPS65920 and TPS65930 devices in stand-alone configuration. Table 4-16. Power Consumption Mode Description Typical Consumption Backup Only the RTC date is maintained with a couple of registers in the backup domain. No main source is connected. Consumption is on the backup battery. VBAT not present 2.25 * 3.2 = 7.2 μW Wait on The phone is apparently off for the user, a main battery is present and well-charged. The RTC registers and registers in the backup domain are maintained. The wake-up capabilities (such as the PWRON button) are available. VBAT = 3.8 V 64 × 3.8 = 243.2 μW Active no load The subsystem is powered by the main battery, all supplies are enabled with full current capability, internal reset is released, and the associated processor is running. VBAT = 3.8 V 3291 × 3.8 = 12505 μW Sleep no load The main battery powers the subsystem, selected supplies are enabled but in low-consumption mode, and the associated processor is in low-power mode. VBAT = 3.8 V 496 × 3.8 = 1884.4 μW Power Module Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 47 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Table 4-17 lists the regulator states according to the mode in use. Table 4-17. Regulator State Depending on Use Case Regulator 48 Mode Backup Wait On Sleep No Load VAUX2 OFF OFF SLEEP Active No Load ON VMMC1 OFF OFF OFF OFF VPLL1 OFF OFF SLEEP ON VDAC OFF OFF OFF OFF VINTANA1 OFF OFF SLEEP ON VINTANA2 OFF OFF SLEEP ON VINTDIG OFF OFF SLEEP ON VIO OFF OFF SLEEP ON VDD1 OFF OFF SLEEP ON VDD2 OFF OFF SLEEP ON VUSB_1V5 OFF OFF OFF OFF VUSB_1V8 OFF OFF OFF OFF VUSB_3V1 OFF OFF SLEEP SLEEP Power Module Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 4.5 Power Management 4.5.1 Boot Modes Table 4-18 lists the modes corresponding to BOOT0–BOOT1. Table 4-18. BOOT Mode Description 4.5.2 Name Description BOOT0 BOOT1 Reserved 0 0 MC027 Master_C027_Generic 01 0 1 MC021 Master_C021_Generic 10 1 0 SC021 Slave_C021_Generic 11 1 1 Process Modes This parameter defines: • The boot voltage for the host core • The boot sequence associated with the process • The dynamic voltage and frequency scaling (DVFS) protocol associated with the process 4.5.2.1 MC021 Mode Table 4-19 lists the characteristics of MC021 mode. Table 4-19. MC021 Mode Boot core voltage 1.2 V Power sequence VIO followed by VPLL1, VDD2, VDD1 SmartReflex IF (I2C HS) DVFS protocol 4.5.3 Power-On Sequence 4.5.3.1 Timing Before Sequence_Start Sequence_Start is a symbolic internal signal to ease the description of the power sequences. It occurs according to the events shown in Figure 4-8. Power Module Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 49 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Vbkup User_Action Starting_Event is main battery insertion Vbat 61 ms - 2 cycle32k Sequence_Start Starting_Event is charger insertion VAC 61 ms - 2 cycle32k Sequence_Start Starting_Event is VBUS insertion Vbus 61 ms - 2 cycle32k Sequence_Start Starting_Event is PWRON button PWRON Pushbutton debouncing - 30 ms Sequence_Start Starting_Event is PWRON rising when device is in slave mode PWRON 0 ms Sequence_Start 030-012 Figure 4-8. Timing Before Sequence Start 50 Power Module Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 4.5.3.2 Power-On Sequence Figure 4-9 describes the timing and control that must occur in the OMAP3 mode. Sequence_Start is a symbolic internal signal to ease the description of the power sequences. It occurs according to the events shown in Figure 4-8. Sequence_Start 4608 ms battery detection REGEN 1068 ms - 3 MHz oscillator setting + clock switch VIO 1.8 V 1179 ms for VIO stabilization VPLL1 1.8 V 1022 ms for LDO stabilization and start dc-dc ramping VDD2 1.2 V 1099 ms for VDD2 stabilization and VDD1 start ramping VDD1 1.2 V 1175 ms for VDD1 stabilization 32KCLKOUT 61 ms SYSEN 1179 ms for VIO stabilization CLKEN 1953 ms ~ 5.3 ms HFCLKOUT 61 ms NRESPWRON 019-072 Figure 4-9. Timings–Power On in OMAP3 Mode 4.5.3.3 Power On in Slave_C021 Mode Figure 4-10 describes the timing and control that must occur in the Slave_C021 mode. Sequence_Start is a symbolic internal signal to ease the description of the power sequences and occurs according to the different events detailed in Figure 4-8 Power Module Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 51 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com PWRON 4791 ms – 3 MHz oscillator setting + internal reg REGEN 1068 ms for external supply ramp VIO 1.8 V 1179 ms for VIO dc-dc stablilization VPLL1 1.8 V 1022 ms VDD2 1.2 V 1099 ms for VDD2 stabilization VDD1 1.2 V 1175 ms for VDD1 stabilization 32KCLKOUT 61 ms SYSEN 1099 ms for VDD2 stabilization CLKEN 1953 ms for digital clock setting HFCLKOUT 64 ms NRESPWRON 030-022 Figure 4-10. Timings—Power On in Slave_C021 Mode 52 Power Module Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 4.5.4 Power-Off Sequence This section describes the signal behavior required to power down the system. 4.5.4.1 Power-Off Sequence Figure 4-11 shows the timing and control that occur during the power-off sequence in master modes. VBAT DEVOFF(register) 18 ms NRESPWRON 1.2 ms REGEN 18 ms 32KCLKOUT 1.2 ms DCDCs 1.2 ms LDOs 18 ms SYSEN 18 ms HFCLKOUT 126 ms CLKEN 3.42 ms before detection of starting event NEXT_Startup_event 037-055 NOTE: All of these timings are typical values with the default setup (depending on the resynchronization between power domains, state machinery priority, etc.). Figure 4-11. Power-Off Sequence in Master Modes Because of the internal frequency used by Power STM switching from 3 to 1.5 MHz when the HF clock value is 19.2 MHz, if the HF clock value is not 19.2 MHz (with HFCLK_FREQ bit field values set accordingly in the CFG_BOOT register), the delay between DEVOFF and NRESPWRON/CLK32KOUT/SYSEN/HFCLKOUT is divided by two (approximately 9 μs). The DEVOFF event is PWRON falling edge in slave mode and DEVOFF internal register write in master mode. Power Module Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 53 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 5 www.ti.com Real-Time Clock and Embedded Power Controller The TPS65930 and TPS65920 devices contain an RTC to provide clock and timekeeping functions and an EPC to provide battery supervision and control. 5.1 RTC The RTC provides the following basic functions: • Time information (seconds/minutes/hours) directly in binary-coded decimal (BCD) code • Calendar information (day/month/year/day of the week) directly in BCD code • Interrupt generation periodically (1 second/1 minute/1 hour/1 day) or at a precise time (alarm function) • 32-kHz oscillator drift compensation and time correction • Alarm-triggered system wake-up event 5.1.1 Backup Battery The TPS65030 and TPS65920 devices device implement a backup mode in which a backup battery can keep the RTC running to maintain clock and time information even if the main supply is not present. If the backup battery is rechargeable, the device also provides a backup battery charger so it can be recharged when the main battery supply is present. The backup domain powers the following: • Internal 32.768-kHz crystal oscillator • RTC • Eight general-purpose (GP) storage registers • Backup domain low-power regulator (VBRTC) 5.2 EPC The EPC provides five system states for optimal power use by the system, as listed in Table 5-1. Table 5-1. System States System State NO SUPPLY Description The system is not powered by any battery. BACKUP The system is powered only with the backup battery and maintains only the VBRTC supply. WAIT-ON The system is powered by the main battery and maintains only the VRRTC supply. It can accept switch-on requests. ACTIVE The system is powered by the main battery; all supplies can be enabled with full current capability. SLEEP The main battery powers the system; selected supplies are enabled, but in low consumption mode. Three categories of events can trigger state transitions: • Hardware events: Supply/battery insertion, wake-up requests, USB plug, and RTC alarm • Software events: Switch-off commands, switch-on commands, and sleep on commands • Monitoring events: Supply/battery level check, main battery removal, main battery fail, and thermal shutdown 54 Real-Time Clock and Embedded Power Controller Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 Copyright © 2008–2011, Texas Instruments Incorporated TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 6 Audio/Voice Module (TPS65930 Device Only) NOTE This section applies only to the TPS65930 device. Figure 6-1 is the audio/voice module block diagram. HFCLKIN High-speed 2 I C (Control) Audio TDM/I2S interface Main mic Bias LDOs Carkit Speak/mic Monaural auxiliary input Class-D predriver H-bridge vibrator Audio/voice module Device 037-004 Figure 6-1. Audio/Voice Module Block Diagram 6.1 Audio/Voice Downlink (RX) Module The audio/voice module includes the following output stages: • Predriver output signals for external class-D amplifiers (single-ended) • Vibrator H-bridge 6.1.1 Predriver for External Class-D Amplifier The external class-D amplifiers provide a stereo signal on terminals PreD.LEFT and PreD.RIGHT to drive the external class-D amplifier. These terminals are available if a stereo, single-ended, ac-coupled headset is used. Copyright © 2008–2011, Texas Instruments Incorporated Audio/Voice Module (TPS65930 Device Only) Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 55 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 6.1.1.1 www.ti.com Predriver Output Characteristics Table 6-1 lists the predriver output characteristics. Table 6-1. Predriver Output Characteristics Parameter Test Conditions Load impedance Min Typ Max 10 kΩ 50 Gain range (1) pF Audio path –92 30 Voice path –66 30 –1 Absolute gain error (2) 1 Peak-to-peak output voltage (0 dBFs) Default gain Total harmonic distortion At 0 dBFs –80 –75 At –6 dBFs –74 –69 At –20 dBFs –70 –65 At –60 dBFs –30 –25 –90 –85 Default gain (2) Load > 10 kΩ // 50 pF 1.5 (3) Idle channel noise (20 Hz to 20 kHz, A-weighted) Default gain Load = 10 Ω SNR (A-weighted over 20-kHz bandwidth) At 0 dBFs Default gain (3) At –60 dBFs 30 Output PSRR (for all gains) 20 Hz to 4 kHz 90 20 Hz to 20 kHz 70 (1) (2) (3) 83 Unit dB dB VPP 88 dB dB dB dB Audio digital filter = –62 to 0 dB (1-dB steps) and 0 to 12 dB (6-dB steps) Voice digital filter = –3 to 12 dB (1-dB steps) ARXPGA (volume control) = –24 to 12 dB (2-dB steps) Output driver = –6 dB, 0 dB, 6 dB The default gain setting assumes the ARXPGA has 0-dB gain setting (volume control) and output driver at 0-dB gain setting. The default gain setting assumes the ARXPGA has 0-dB gain setting (volume control) and output driver at 0-dB gain setting. 6.1.1.2 External Components and Application Schematics Figure 6-2 is a simplified schematic for the external class-D predriver. On board RPR/RPL Chip CPL/CPR PreDriverD IN+ Class D (TPA2010D1...) IN– Closed to external Class C CPR.O/CPL.O RPL.O/RPR.O CPL.M/CPR.M RPR.M/RPL.M 037-054 Input resistor (RPR or RPL) sets the gain of the external class D. For TPS2010D1, the gain is defined according to the following equation: Gain (V/V) = 2*150*103/(RPR or RPL) RPR or RPL > 15 kΩ Figure 6-2. Predriver for External Class D 56 Audio/Voice Module (TPS65930 Device Only) Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 Copyright © 2008–2011, Texas Instruments Incorporated TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com NOTE For other component values, see Table 14-1. 6.1.2 Vibrator H-Bridge A digital signal from the pulse width modulated generator is fed to the vibrator H-bridge driver. The vibrator H-bridge is a differential driver that drives vibrator motors. The differential output allows dual rotation directions. 6.1.2.1 Vibrator H-Bridge Output Characteristics Table 6-2 lists the vibrator H-bridge output characteristics. Table 6-2. Vibrator H-Bridge Output Characteristics Parameter Test Conditions VBAT voltage Differential output swing (16-Ω load) Min Typ Max 2.8 3.6 4.8 VBAT = 2.8 V 3.6 VBAT = 3.5 V 4.3 Load capacitance 8 16 Load inductance 30 Total harmonic distortion 8 Ω 100 pF 60 Ω 300 μH 10% Operating frequency 6.1.2.2 V VPP Output resistance (summed for both sides) Load resistance Unit 20 10k Hz External Components and Application Schematics Figure 6-3 is a simplified vibrator H-bridge schematic. On board VBAT Chip VBAT.RIGHT CV.V Ferrite cheap bead LV.P VIBRA.P CV.P Vibrator Ferrite cheap bead LV.M VIBRA.M CV.M VIBRA.GND (LED.GND) 037-053 Figure 6-3. Vibrator H-Bridge Copyright © 2008–2011, Texas Instruments Incorporated Audio/Voice Module (TPS65930 Device Only) Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 57 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com NOTE For other component values, see Table 14-1. Example of ferrite: BLM 18BD221SN1. 6.1.3 Carkit Output The USB-CEA carkit uses the DP/DM pad to output audio signals (see the CEA-936–Mini-USB Analog Carkit specification). Figure 6-4 shows the carkit output downlink full path characteristics for audio and USB. Digital PGA gain = 0 dB 0 dBFs Amp 0 dB Analog PGA gain = 0 dB DAC USB Amp –0.6 dB 1.35 VPP 037-052 Figure 6-4. Carkit Output Downlink Path Characteristics Table 6-3 lists the USB-CEA carkit audio downlink electrical characteristics. Table 6-3. USB-CEA Carkit Audio Downlink Electrical Characteristics Parameter Conditions Output load Gain range USB-CEA (DP/DM) (1) Min Typ Max 20 kΩ Audio path –92 30 Voice path –66 30 –1 1 Absolute gain error At 1 kHz Peak-to-peak differential output voltage (0 dBFs) Gain = 0 dB 1.5 Total harmonic distortion At 0 dBFs –80 –75 At –6 dBFs –74 –69 At –20 dBFs –70 –65 At –60 dBFs –30 –25 THD+N (20 Hz to 20 kHz, A-weighted) At 0 dBFs Idle channel noise (20 Hz to 20 kHz, A-weighted) Default gain (2) Output PSRR 20 Hz to 20 kHz –90 60 1.3 Isolation between D+/D– during audio mode (20 Hz to 20 kHz) USB-CEA stereo Crosstalk RX/Tx (1 VPP output) USB-CEA mono/stereo Signal noise ratio (20 Hz to 20 kHz, A-weighted) At 0 dBFs Phone speaker amplifier output impedance at 1 kHz USB-CEA (DP/DM) (2) 58 dB dB dB V 1.4 60 Crosstalk between right and left channels (1) 1.35 dB dB –85 1.5 Common mode output voltage for USB-CEA dB VPP 60 Supply voltage (Vintana1) Unit V dB –90 dB –60 60 dB dB 200 Ω Audio digital filter = –62 to 0 dB (1-dB steps) and 0 to 12 dB (6-dB steps) Voice digital filter = –36 to 12 dB (1-dB steps) ARXPGA (volume control) = –24 to 12 dB (2-dB steps) Output driver (USB-CEA) = –1 dB The default gain setting assumes the ARXPGA has 0-dB gain setting (volume control) and output driver at 0.6-dB gain setting. Audio/Voice Module (TPS65930 Device Only) Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 Copyright © 2008–2011, Texas Instruments Incorporated TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 6.1.4 Digital Audio Filter Module Figure 6-5 shows the digital audio filter downlink full path characteristics for the audio interface. High-pass filter Audio interface Low-pass Filter Digital modulator Randomizer DAC 037-051 Figure 6-5. Digital Audio Filter Downlink Path Characteristics The HPF can be bypassed. It is controlled by the MISC_SET_2 ARX_HPF_BYP bit set to address 0x49. Table 6-4 lists the audio filter frequency responses relative to reference gain at 1 kHz. Table 6-4. Digital Audio Filter RX Electrical Characteristics Parameter Conditions Min Passband Passband ripple 0 to 0.42FS (1) –0.25 Stopband Stopband attenuation F = 0.6FS (1) to 0.8FS (1) 0.1 Max Unit 0.25 dB FS 75 dB 15.8/FS –1.4 Linear phase FS 0.6 60 Group delay (1) Typ 0.42 (1) μs 1.4 ° FS is the sampling frequency (8, 11.025, 12, 16, 22.05, 24, 32, 44.1, or 48 kHz). 6.1.5 Boost Stage The boost effect adds emphasis to low frequencies. It compensates for a HPF created by the capacitor resistor (CR) filter of the headset (in ac-coupling configuration). There are four modes. Three effects are available, with slightly different frequency responses, and the fourth setting disables the boost effect: • Boost effect 1 • Boost effect 2 • Boost effect 3 • Flat equalization: The boost effect is in bypass mode. NOTE Boost effect modes are defined in Table 6-5. Table 6-5 and Table 6-6 include the typical values according to the frequency response versus input frequency and FS frequency. Copyright © 2008–2011, Texas Instruments Incorporated Audio/Voice Module (TPS65930 Device Only) Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 59 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Table 6-5. Boost Electrical Characteristics Versus FS Frequency (FS ≤ 22.05 kHz) FS = 8 kHz FS = 11.025 kHz FS = 12 kHz FS = 16 kHz FS = 22.05 kHz Frequency (Hz) 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 10 4.51 5.13 5.62 5.10 5.51 5.80 5.22 5.58 5.83 5.54 5.77 5.92 5.76 5.89 5.97 12 4.08 4.83 5.46 4.80 5.32 5.71 4.95 5.41 5.76 5.36 5.66 5.87 5.65 5.83 5.94 15.2 3.43 4.32 5.18 4.28 4.97 5.54 4.47 5.11 5.61 5.03 5.47 5.79 5.45 5.71 5.90 18.2 2.91 3.86 4.89 3.82 4.63 5.36 4.04 4.80 5.45 4.71 5.26 5.69 5.24 5.59 5.84 20.5 2.56 3.53 4.65 3.49 4.37 5.21 3.72 4.56 5.32 4.45 5.09 5.60 5.06 5.49 5.79 29.4 1.62 2.49 3.78 2.45 3.42 4.57 2.68 3.74 4.73 3.51 4.39 5.24 4.35 5.02 5.59 39.7 1.05 1.71 2.93 1.67 2.55 3.84 1.88 2.80 4.06 2.66 3.63 4.72 3.67 4.45 5.27 50.4 0.71 1.20 2.26 1.17 1.91 3.17 1.33 2.13 3.41 2.01 2.95 4.19 2.89 3.85 4.88 60.3 0.51 0.92 1.79 0.89 1.49 2.65 1.00 1.68 2.89 1.57 2.43 3.72 2.39 3.35 4.52 76.7 0.32 0.61 1.26 0.59 1.05 1.99 0.69 1.18 2.22 1.11 1.79 3.04 1.76 2.66 3.94 97.5 0.20 0.39 0.87 0.38 0.70 1.43 0.44 0.79 1.62 0.75 1.27 2.36 1.24 2.00 3.28 131.5 0.12 0.21 0.50 0.20 0.39 0.88 0.25 0.47 1.02 0.42 0.78 1.59 0.75 1.30 2.41 157 0.08 0.15 0.36 0.15 0.28 0.65 0.17 0.33 0.75 0.31 0.57 1.22 0.55 0.99 1.93 200 0.05 0.09 0.22 0.09 0.17 0.41 0.11 0.21 0.49 0.19 0.37 0.82 0.36 0.66 1.38 240 0.03 0.06 0.15 0.06 0.12 0.29 0.07 0.14 0.35 0.14 0.26 0.60 0.25 0.48 1.04 304 0.02 0.04 0.09 0.04 0.07 0.18 0.04 0.09 0.22 0.08 0.16 0.38 0.16 0.30 0.70 463 0.00 0.01 0.03 0.01 0.03 0.07 0.02 0.04 0.09 0.03 0.07 0.17 0.07 0.13 0.32 704 0.00 0.00 0.01 0.00 0.01 0.03 0.01 0.01 0.03 0.01 0.03 0.07 0.03 0.06 0.14 1008 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.03 0.01 0.02 0.06 1444 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 2070 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 3770 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Unit dB Table 6-6. Boost Electrical Characteristics Versus FS Frequency (FS ≥ 24 kHz) FS = 24 kHz FS = 32 kHz FS = 44.1 kHz FS = 48 kHz FS = 96 kHz Frequency (Hz) 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 10 5.79 5.90 5.97 5.89 5.89 5.99 5.95 5.98 6.04 5.96 5.99 6.01 5.71 5.83 5.90 12 5.70 5.85 5.95 5.84 5.84 5.98 5.92 5.97 6.03 5.94 5.98 6.00 5.54 5.68 5.81 15.2 5.53 5.76 5.91 5.73 5.73 5.96 5.87 5.94 6.02 5.89 5.95 5.99 5.40 5.57 5.73 18.2 5.35 5.65 5.87 5.62 5.62 5.93 5.80 5.90 6.00 5.83 5.93 5.98 5.28 5.48 5.68 20.5 5.19 5.56 5.83 5.52 5.52 5.91 5.74 5.87 5.99 5.78 5.90 5.97 5.19 5.42 5.64 29.4 4.55 5.18 5.64 5.10 5.07 5.79 5.51 5.75 5.94 5.57 5.79 5.92 4.87 5.18 5.48 39.7 3.81 4.62 5.37 4.52 4.52 5.64 5.12 5.53 5.85 5.26 5.59 5.84 4.47 4.91 5.30 50.4 3.14 4.06 5.02 3.94 3.95 5.43 4.69 5.27 5.72 4.88 5.37 5.73 4.08 4.63 5.11 60.3 2.62 3.51 4.69 3.46 3.54 5.21 4.30 5.00 5.59 4.49 5.13 5.62 3.72 4.37 4.95 76.7 1.97 2.90 4.15 2.76 2.76 4.78 3.68 4.52 5.34 3.91 4.70 5.40 3.18 3.92 4.67 97.5 1.41 2.22 3.51 2.10 2.09 4.27 2.99 3.94 4.99 3.24 4.15 5.07 2.59 3.41 4.33 131.5 0.88 1.49 2.65 1.40 1.40 3.49 2.15 3.10 4.35 2.38 3.35 4.51 1.86 2.69 3.75 157 0.65 1.13 2.15 1.04 1.04 2.96 1.70 2.58 3.90 1.90 2.82 4.08 1.47 2.24 3.35 200 0.41 0.76 1.55 0.70 0.70 2.28 1.19 1.93 3.23 1.35 2.15 3.44 1.03 1.68 2.77 240 0.30 0.55 1.18 0.50 0.50 1.81 0.89 1.51 2.71 1.02 1.70 2.92 0.77 1.31 2.32 304 0.18 0.35 0.80 0.33 0.32 1.27 0.58 1.04 2.05 0.68 1.19 2.24 0.51 0.90 1.75 463 0.08 0.16 0.37 0.14 0.14 0.64 0.27 0.50 1.12 0.31 0.58 1.25 0.23 0.43 0.95 60 704 0.03 0.06 0.16 0.06 0.06 0.29 0.12 0.23 0.56 0.14 0.27 0.62 0.10 0.20 0.46 1008 0.01 0.03 0.07 0.03 0.02 0.14 0.06 0.11 0.30 0.06 0.13 0.31 0.05 0.10 0.23 1444 0.00 0.01 0.03 0.01 0.01 0.06 0.03 0.05 0.16 0.03 0.06 0.15 0.02 0.05 0.11 2070 0.00 0.00 0.01 0.00 0.00 0.02 0.01 0.02 0.09 0.01 0.03 0.07 0.01 0.02 0.05 3770 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.01 0.00 0.00 0.01 Audio/Voice Module (TPS65930 Device Only) Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 Unit dB Copyright © 2008–2011, Texas Instruments Incorporated TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 6.2 Audio Uplink (TX) Module The audio uplink path includes two input amplification stages: • MIC_MAIN_P, MIC_MAIN_M (differential main handset input) • AUXR (common terminal: single-ended auxiliary) NOTE If two audio inputs are needed, and mic bias is not needed, the AUXR input can be used with MIC_MAIN to provide the two inputs. 6.2.1 Microphone Bias Module A bias generator provides an external voltage of 2.2 V to bias the analog microphones (MICBIAS1 terminal). The typical output current is 1 mA. 6.2.1.1 Analog Microphone Bias Module Characteristics Table 6-7 lists the characteristics of the analog microphone bias module. Table 6-7. Analog Microphone Bias Module Characteristics With Bias Resistor Parameter Test Conditions Bias voltage Min Typ Max Unit 2.15 2.2 2.25 V Load current 1 Output noise P-weighted 20 Hz to 6.6 kHz 1.8 External capacitor 0 Internal resistance 50 60 mA μVRMS 200 pF 70 kΩ NOTE If the external capacitor is higher than 200 pF, the analog microphone bias becomes unstable. To stabilize it, add a serial resistor. Table 6-8 lists the characteristics of the analog microphone bias module with a bias resistor. Table 6-8. Analog Microphone Bias Module Characteristics With Bias Resistor Parameter RSB RB + RSB Copyright © 2008–2011, Texas Instruments Incorporated Test Conditions Min CB < 200 pF 0 CB = 100 pF 300 CB = 1 μF 500 Typ Max Unit Ω 2.2 to 2.7 Audio/Voice Module (TPS65930 Device Only) Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 kΩ 61 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Figure 6-6 and Figure 6-7 show the external components and application schematics for the analog microphone. Device On board RMM.O MICBIAS1.OUT CMM.B CMM.P MIC.MAIN.P RMM.MP MIC.MAIN.M CMM.M CMM.O MICBIAS.GND 037-005 Figure 6-6. Analog Microphone Pseudodifferential NOTE For other component values, see Table 14-1. 62 Audio/Voice Module (TPS65930 Device Only) Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 Copyright © 2008–2011, Texas Instruments Incorporated TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com ON BOARD Device RMM.BP MICBIAS1.OUT RMM.GM /2 CMM.B CMM.P MIC.MAIN.P 47pF CMM.PM Close to Device Close to Device MIC.MAIN.M CMM.M CMM.GM RMM.GM /2 CMM.GP MICBIAS.GND 037-006 Figure 6-7. Analog Microphone Differential NOTE For other component values, see Table 14-1. NOTE To improve the rejection, ensure that MICBIAS_GND is as clean as possible. This ground must be shared with AGND of the TPS65920 or TPS65930 device and must not share with AVSS4, which is the ground used by RX class AB output stages. In differential mode, adding a low-pass filter (made by RSB and CB) is highly recommended if coupling between RX output stages and the microphone is too high (and not enough attenuation by the echo cancellation algorithm). The coupling can come from: • The internal TPS65920/TPS65930 coupling between MICBIAS.OUT voltage and RX output stages • Coupling noise between MICBIAS.GND and AVSS4 In pseudodifferential mode, the dynamic resistance of the microphone improves the rejection versus MICBIAS.OUT: PSRR = 20*log((RB + RDyn_mic)/RB). 6.2.1.2 Silicon Microphone Module Characteristics Based on silicon micro-electrical-mechanical system (MEMS) technology, the new microphone achieves the same acoustic and electrical properties as conventional microphones, but is more rugged and exhibits higher heat resistance. These properties offer designers of a wide range of products greater flexibility and new opportunities to integrate microphones. Copyright © 2008–2011, Texas Instruments Incorporated Audio/Voice Module (TPS65930 Device Only) Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 63 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com The silicon microphone is the integration of mechanical elements and electronics on a common silicon substrate through microfabrication technology. The complementary metal oxide semiconductor (CMOS) MEMS microphone is more like an analog IC than a classical microphone, or electric condenser microphone (ECM). It is powered as an IC with a direct connection to the power supply. The on-chip isolation between the power input and the rest of the system adds power supply rejection (PSR) to the component. This makes the CMOS MEMS microphone inherently more immune to power supply noise than an ECM and eliminates the need for additional filtering circuitry to keep the power supply line clean. Table 6-9 lists the characteristics of the silicon microphone module. Table 6-9. Silicon Microphone Module Characteristics Parameter Test Conditions Min Bias voltage Typ Max Unit 1 mA 2.2 Load current Output noise P-weighted 20 Hz to 6.6 kHz V 1.8 μVRMS Figure 6-8 is a schematic for the silicon microphone. Optional depending on dynamic of MIC On board 1 kW Device RSM MICBIAS1.OUT CSM CSM.P Silicon MIC SPM0204HE5-PB (SPM0102ND3-C) MIC.MAIN.P 4 1 Power Output GND GND 3 2 CSM.PG MIC.MAIN.M CSM.M MICBIAS.GND 037-007 Figure 6-8. Silicon Microphone NOTE For other component values, see Table 14-1. 64 Audio/Voice Module (TPS65930 Device Only) Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 Copyright © 2008–2011, Texas Instruments Incorporated TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 6.2.2 FM Radio/Auxiliary Input The auxiliary input AUXR/FMR can be used as FM radio input. The amplification stage output is connected to the ADC input. The FM radio input can also be output through an audio output stage. 6.2.2.1 External Components Figure 6-9 shows the external components on the auxiliary input. On board Chip CAUXR AUXR CAUXR.M 037-008 Figure 6-9. Audio Auxiliary Input NOTE For other component values, see Table 14-1. 6.2.3 Uplink Characteristics Figure 6-10 shows the uplink amplifier. Table 6-10 lists the uplink characteristics. Amp 0 to 30 dB ADC Digital PGA gain = 0 to 31 dB 037-050 Figure 6-10. Uplink Amplifier Table 6-10. Uplink Characteristics Parameter Speech delay Test Conditions Voice path Gain range (1) Absolute gain 0 dBFs at 1.02 kHz Peak-to-peak differential input voltage (0 dBFs) For differential input 0 dB gain setting (1) Min Typ Max 0.5 Unit ms 0 61 –1 1 dB dB 1.5 VPP Gain range is defined by: Preamplifier = 0 to 30 dB; Filter = 0 to 31 dB (1-dB steps) Copyright © 2008–2011, Texas Instruments Incorporated Audio/Voice Module (TPS65930 Device Only) Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 65 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Table 6-10. Uplink Characteristics (continued) Parameter Test Conditions Peak-to-peak single-ended input voltage (0 dBFs) Min Input impedance (2) Idle channel noise Crosstalk A/D to D/A Max Unit 1.5 VPP 70k Ω At –1 dBFs –80 –75 dB At –6 dBFs –74 –69 At –10 dBFs –70 –65 At –20 dBFs –60 –55 At –60 dBFs –20 –15 20 Hz to 20 kHz, A-weighted, gain = 0 dB –85 –78 16 kHz: < 20 Hz to 7 kHz, gain = 0 dB –90 8 kHz: P-weighted voice, gain = 18 dB –87 16 kHz: < 20 Hz to 7 kHz, gain = 18 dB –82 40k Total harmonic distortion (sine wave at 1.02 kHz) –80 Gain = 0 dB Intermodulation distortion dB –60 2-tone method dBFs dB –70 Crosstalk path between two microphones (2) Typ For single-ended input 0 dB gain setting dB Impedance varies in the specified range with gain selection. 6.2.4 Microphone Amplification Stage The microphone amplification stages perform the single-to-differential conversion for single-ended inputs. Two programmable gains from 0 dB to 30 dB can be set: • Automatic level control for main microphone input. The gain step is 1 dB. • Level control by register for line-in or carkit input. The gain step is 6 dB. The amplification stage outputs are connected to the ADC input (ADC left and right). 66 Audio/Voice Module (TPS65930 Device Only) Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 Copyright © 2008–2011, Texas Instruments Incorporated TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 6.2.5 Carkit Input The USB-CEA carkit uses the DP pad to input the audio signal. Figure 6-11 shows the uplink carkit full path uplink characteristics for audio and USB. Amp CEA –1.02 dB Amp 0 to 30 dB ADC Digital PGA gain = 0 to 31 dB 037-009 Figure 6-11. Carkit Input Uplink Path Characteristics Table 6-11 lists the USB-CEA carkit audio electrical characteristics. Table 6-11. USB-CEA Carkit Audio Uplink Electrical Characteristics Parameter Gain range Test Conditions (1) Typ –1 Absolute gain, 0 dBFs at 1.02 kHz (1) (2) USB-CEA default gain setting Speech delay Input common mode voltage Min (3) 60 –1.5 Voice path Max 1.5 0.5 USB-CEA 1.3 Phone microphone amplifier input impedance at 1 kHz USB-CEA 8 Peak-to-peak single-ended input voltage (0 dBFs) Default setting Total harmonic distortion (sine wave at 1 kHz), default gain setting At –1 dBFs dB dB ms 1.9 120 –74 Unit V kΩ 1.414 VPP –60 dB At –6 dBFs At –10 dBFs At –20 dBFs At –60 dBFs THD+N (20 Hz to 20 kHz, A-weighted) At 0 dBFs 60 dB Signal noise ratio (20 Hz to 20 kHz, A-weighted) At 0 dBFs 60 dB Idle channel noise (20 Hz to 20 kHz, A-weighted), default gain setting USB-CEA –77 Output PSRR (20 Hz to 20 kHz, A-weighted) USB-CEA 50 (1) (2) (3) dBFs dB Gain range is defined by: CEA amplifier = 0.56 to –1.02 dB; Preamplifier = 0 to 30 dB; Filter = 0 to 31 dB (1-dB steps). The CEA default gain setting assumes 0 dB on the preamplifier, 1 dB on digital filter, and CEA amplifier at –1.02 dB. Full-scale input voltage is 1 V minimum. Copyright © 2008–2011, Texas Instruments Incorporated Audio/Voice Module (TPS65930 Device Only) Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 67 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 6.2.6 www.ti.com Digital Audio Filter Module Figure 6-12 shows the digital audio filter uplink full path characteristics for the audio interface. A/D output Error cancellation SINC filter differentiator 4th order SINC filter integrator 4th order 1st order highpass filter Low-pass filter Audio interface 037-017 Figure 6-12. Digital Audio Filter Uplink Path Characteristics The high-pass filter (HPF) can be bypassed. It is controlled by the MISC_SET_2 ATX_HPF_BYP bit set to address 0x49. Table 6-12 lists the audio filter frequency responses relative to reference gain at 1 kHz. Table 6-12. Digital Audio Filter TX Electrical Characteristics Parameter Test Conditions Passband Passband gain In region 0.0005*FS to 0.42*FS (1) Stopband Stopband attenuation In region 0.6*FS to 1*FS (1) Group delay (1) 68 Min Typ Max Unit 0.0005 0.42 FS –0.25 0.25 dB 0.6 FS 60 dB 15.8/FS μs FS is the sampling frequency (8, 11.025, 12, 16, 22.05, 24, 32, 44.1, or 48 kHz). Audio/Voice Module (TPS65930 Device Only) Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 Copyright © 2008–2011, Texas Instruments Incorporated TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 7 USB Transceiver 7.1 USB Transceiver The TPS65920/TPS65930 device includes a USB OTG transceiver with the CEA carkit interface that supports USB 480 Mbps HS, 12 Mbps full-speed (FS), and USB 1.5 Mbps low-speed (LS) through a 4-pin ULPI. The carkit block ensures the interface between the phone and a carkit device. The TPS65920/TPS65930 USB supports the CEA carkit standard. Figure 7-1 is a block diagram of the USB 2.0 physical layer (PHY). USB OTG device Free headset UART control Audio accessory OMAP (LINK) Device USB PHY ULPI Phone connector (USB) PC ADC inputs (optional) Carkit 037-011 Figure 7-1. USB 2.0 PHY Block Diagram 7.1.1 Features The device has a USB OTG carkit transceiver that allows system implementation that complies with the following specifications: • Universal Serial Bus 2.0 Specification • On-The-Go Supplement to the USB 2.0 Specification • CEA-2011: OTG Transceiver Interface Specification • CEA-936A: Mini-USB Analog Carkit Specification • UTMI+ Low Pin Interface Specification The features of the individual specifications are: • Universal Serial Bus 2.0 Specification (hereafter referred to as the USB 2.0 specification): – 5-V-tolerant data line at HS/FS, FS-only, and LS-only transmission rates – 7-V-tolerant video bus (VBUS) line – Integrated data line serial termination resistors (factory-trimmed) – Integrated data line pullup and pulldown resistors – On-chip 480-MHz phase-locked loop (PLL) from the internal system clock (19.2, 26, and 38.4 MHz) – Synchronization (SYNC)/end-of-period (EOP) generation and checking – Data and clock recovery from the USB stream – Bit-stuffing/unstuffing and error detection – Resume signaling, wakeup, and suspend detection – USB 2.0 test modes • On-The-Go Supplement to the USB 2.0 Specification (hereafter referred to as the OTG supplement to the USB 2.0 specification): – 3-pin LS/FS serial mode (DAT_SE0) – 4-pin LS/FS serial mode (VP_VM) • CEA-936A: Mini-USB Analog Carkit Interface Specification: – 5-pin CEA mini-USB analog carkit interface USB Transceiver Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 69 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 • www.ti.com – UART signaling – Audio (mono/stereo) signaling – UART transactions during audio signaling – Basic and smart 4-wire/5-wire carkit, chargers, and accessories – ID CEA resistor comparators UTMI+ Low Pin Interface Specification (hereafter referred to as the ULPI specification): – 12-pin ULPI with 8-pin parallel data for USB signaling and register access – 60-MHz clock generation – Register mapping Figure 7-2 is the USB system application schematic. VBAT C VBUS.FC C VINTUSB.1P8 C VBUS.IN C VBAT.USB .* C VINTUSB.1P5 V U S B.3P 1 V IN TU S B.1P 5 C P.C A P N C P.C A P P C P.IN C P.G N D V IN TU S B.1P 8 C VUSB.3P1 CP.OUT UCLK USB CP STP Device ID DIR DP/UART3.RXD NXT DATA0/RX DATA1/TX Host processor DM/UART3.TXD USB 2.0 HS-OTG transceiver with CEA carkit interface VBUS USB-CEA carkit connector GND DATA2/RTSI DATA3/CTSO C VBUS1 DATA4 C VBUS2 DATA5 DATA6 DATA7 037-012 Figure 7-2. USB System Application Schematic NOTE For the component values, see Table 14-1. 7.1.2 HS USB Port Timing The ULPI interface supports an 8-bit data bus and the internal clock mode. The 4-bit data bus and the external clock mode are not supported. The HS functional mode supports an operating rate of 480 Mbps. Table 7-1 and Table 7-2 assume testing over the recommended operating conditions (see Figure 7-3). 70 USB Transceiver Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com HSU0 HSU1 HSU1 UCLK HSU5 HSU4 STP HSU2 HSU2 DIR_&_NXT HSU3 HSU6 HSU3 DATA[7:0] Data_OUT HSU7 Data_IN 037-049 Figure 7-3. HS-USB Interface—Transmit and Receive Modes (ULPI 8-bit) NOTE ULPI data [7:0] lines are set to 1 after USB PHY power up, and before the clock signal is stable. The input timing requirements are given by considering a rising or falling time of 1 ns (see Table 7-1). Table 7-1. HS-USB Interface Timing Requirements Notation Parameter Min Max Unit HSU4 ts(STPV-CLKH) Setup time, STP valid before UCLK rising edge 6 ns HSU5 th(CLKH-STPIV) Hold time, STP valid after UCLK rising edge 0 ns HSU6 ts(DATAV-CLKH) Setup time, DATA[0:7] valid before UCLK rising edge 6 HSU7 th(CLKH-DATIV) Hold time, DATA[0:7] valid after UCLK rising edge 0 ns ns Table 7-2 lists the HS-USB interface switching requirements. Table 7-2. HS-USB Interface Switching Requirements (1) Parameter (1) Notation Min Typ Max Unit HSU0 fp(CLK) UCLK clock frequency Steady state 58.42 60 61.67 MHz HSU1 tW(CLK) UCLK duty cycle Steady state 48.3% 50% 51.7% td(CLKH-DIR) Delay time, UCLK rising edge to DIR transition Steady state 0 9 td(CLKH-NXTV) Delay time, UCLK rising edge to NXT transition Steady state 0 9 td(CLKH-DATV) Delay time, UCLK rising edge to DATA[0:7] transition Steady state 0 9 HSU2 HSU3 (1) ns ns ns The capacitive load for output data and control load is 10 pF (rising and falling time is 2 ns). The capacitive load for the CLK port is 6 pF (rising and falling time is 1 ns). The HS-USB interface has only one state: the steady state. 7.1.3 USB-CEA Carkit Port Timing This mode allows the link for communication through the USB PHY to a remote carkit in CEA audio + data during audio (DDA) mode as defined in the CEA-936A specification. In this mode, the ULPI data bus is redefined as a 2-pin UART interface, which exchanges data through a direct access to the FS/LS analog transmitter and receiver. USB Transceiver Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 71 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com UART data are sent and received on the USB D+/D– pads. D+/D– are also used in this mode to carry audio I/O signals. Table 7-3 assumes testing over the recommended operating conditions (see the CEA-936A specification). Table 7-3. USB-CEA Carkit Interface Timing Parameters Parameter Min Max Unit tPH_DP_CON Phone D+ connect time 100 tCR_DP_CON Carkit D+ connect time 150 ms tPH_DM_CON Phone D– connect time tPH_CMD_DLY Phone command delay tPH_MONO_ACK Phone mono acknowledge tPH_DISC_DET Phone D+ disconnect time 150 tCR_DISC_DET Carkit D– disconnect detect 50 tPH_AUD_BIAS Phone audio bias tCR_AUD_DET Carkit audio detect 400 800 tCR_UART_DET Carkit UART detect (data-during-audio enabled) 700 1200 ns tPH_STLO_DET Phone stereo D+ low detect 30 100 ms tPH_PLS_POS Phone D– interrupt pulse width 200 600 ns tCR_PLS_NEG Carkit D+ interrupt pulse width 200 600 ns tDAT_AUD_POL Data-during-audio polarity 20 60 ms tACC_COL_DET Accessory ID collision detect 2 3 ms tACC_INT_PW Accessory ID interrupt pulse width 200 400 μs tACC_INT_WAIT Accessory ID interrupt wait time 10 15 ms tACC_CMD_WAIT Accessory ID command wait time 0 tPH_INT_PW Phone ID interrupt pulse width 4 8 ms tPH_INT_WAIT Phone ID interrupt wait time 4 8 ms tPH_CMD_WAIT Phone ID command wait time 0 ms tPH_UART_RPT Phone command repeat time 50 ms tCR_UART_RSP Carkit UART response tCR_INT_RPT Carkit interrupt repeat time fUART_DFLT Default UART signaling rate (typical rate) 300 ms 10 ms 2 ms 10 ms ms 150 1 ms ms μs ms 30 ms 9600 bps 50 ms Figure 7-4 shows the USB-CEA carkit UART data flow. ULPI Device USB-CEA connector DATA0: UART_TX DP/RXD/MIC DATA1: UART_RX DM/TXD/SPKR 037-048 Figure 7-4. USB-CEA Carkit UART Data Flow Table 7-4 lists the USB-CEA carkit UART timings. 72 USB Transceiver Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Table 7-4. USB-CEA Carkit UART Timings Notation Parameter Min Max Unit CK1 td(UART_TXH-DM) Delay time, UART_TX rising edge to DM transition 4.0 11 ns CK2 td(UART_TXL-DM) Delay time, UART_TX falling edge to DM transition 4.0 11 ns 205 234 CK3 td(DPH-UART_RX) Delay time, DP rising edge to UART_RX transition At 38.4 MHz At 19.2 MHz 310 364 CK4 td(DPL-UART_RX) Delay time, DP falling edge to UART_RX transition At 38.4 MHz 205 234 At 19.2 MHz 310 364 ns ns Figure 7-5 shows the USB-CEA carkit UART timings. UART_TX CK1 CK2 CK3 CK4 DM DP UART_RX 037-047 Figure 7-5. USB-CEA Carkit UART Timings 7.1.4 PHY Electrical Characteristics The PHY is the physical signaling layer of the USB 2.0. It contains the drivers and receivers for physical data and protocol signaling on the DP and DM lines. The PHY interfaces with the USB controller through the UTMI. The transmitters and receivers in the PHY are of two main classes: • FS and LS transceivers (legacy USB1.x transceivers) • HS transceivers To bias the transistors and run the logic, the PHY also contains reference generation circuitry which consists of: • A DPLL that does a frequency multiplication to achieve the 480-MHz low-jitter lock necessary for USB, and the clock required for the switched capacitor resistance block • A switched capacitor resistance block that replicates an external resistor on chip Built-in pullup and pulldown resistors are used as part of the protocol signaling. The PHY also contains circuitry that protects it from an accidental 5-V short on the DP and DM lines and from 8-kV IEC ESD strikes. 7.1.4.1 HS Differential Receiver The HS receiver consists of the following blocks: • A differential input comparator to receive the serial data • A squelch detector to qualify the received data • An oversampler-based clock data recovery scheme followed by a nonreturn to zero inverted (NRZI) decoder, bit unstuffing, and serial-to-parallel converter to generate the UTMI DATAOUT Table 7-5 lists the characteristics of the HS differential receiver. USB Transceiver Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 73 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Table 7-5. HS Differential Receiver Parameter Comments Min Typ Max Unit Input Levels for HS HS squelch detection threshold VHSSQ (Differential signal amplitude) 100 125 150 mV HS disconnect detection threshold VHSDSC (Differential signal amplitude) 525 600 625 mV HS data signaling common mode voltage range VHSCM –50 200 500 mV HS differential input sensitivity VDIHS 100 mV (Differential signal amplitude) –100 Input Impedance for HS Internal specification for input capacitance CHSLOAD 11 pF Internal CHSLOAD DP/DM matching CHSLOADM 0.2 pF External Components With the Total Budget Combined (without USB cable load) External capacitance on DP or DM 2 pF External series resistance on DP or DM 1 Ω 7.1.4.2 HS Differential Transmitter The HS transmitter is always operated on the UTMI parallel interface. The parallel data on the interface is serialized, bit stuffed, NRZI encoded, and transmitted as a dc output current on DP or DM, depending on the data. Each line has an effective 22.5-Ω load to ground, which generates the voltage levels for signaling. A disconnect detector is also part of the HS transmitter. A disconnect on the far end of the cable causes the impedance seen by the transmitter to double, thereby doubling the differential amplitude seen on the DP/DM lines. Table 7-6 lists the characteristics of the HS differential transmitter. Table 7-6. HS Differential Transmitter Parameter Comments Min Typ Max Unit Output Levels for HS HS TX idle level VHSOI Absolute voltage DP/DM – internal/external 45 Ω –10 0 10 mV HS TX data signaling high VHSOH Absolute voltage DP/DM – internal/external 45 Ω 360 400 440 mV HS data signaling low VHSOL –10 0 10 mV Chirp J level VCHIRPJ Differential voltage 700 800 1100 mV Chirp K level VCHIRPK Differential voltage –900 –800 –500 mV HS TX disconnect threshold VDISCOUT Absolute voltage DP/DM – no external 45 Ω 700 mV Driver Characteristics Rise time tHSR (10%–90%) 500 ps Fall time tHSF (10%–90%) 500 ps Driver output resistance ZHSDRV Also serves as HS termination 40.5 74 USB Transceiver 45 49.5 Ω Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 7.1.4.3 CEA/UART Driver Table 7-7 lists the characteristics of the CEA/UART driver. Table 7-7. CEA/UART Driver Parameter Comments Min Typ Max Unit 1 μs 2.4 3.3 3.6 V 0 0.1 0.4 V UART Driver CEA Phone UART edge rates tPH_UART_EDGE DP_PULLDOWN asserted Serial interface output high VOH_SER ISOURCE = 4 mA Serial interface output low VOL_SER ISINK = –4 mA Pulse match tolerance QPLS_MTCH ZCR_SPKR_IN = 60 kΩ at f = 1 kHz Phone D– interrupt pulse width tPH_PLS_POS ZCR_SPKR_IN = 60 kΩ at f = 1 kHz 200 600 ns Phone positive pulse voltage VPH_PLS_POS ZCR_SPKR_IN = 60 kΩ at f = 1 kHz 2.8 3.6 V Unit Carkit Pulse Driver 7.1.4.4 5% Pullup/Pulldown Resistors Table 7-8 lists the characteristics of pullup/pulldown resistors. Table 7-8. Pullup/Pulldown Resistors Parameter Comments Min Typ Max 0.9 1.1 1.575 1.425 2.2 3.09 Pullup Resistors Bus pullup resistor on upstream port (idle bus) RPUI Bus idle Bus pullup resistor on upstream port (receiving) RPUA Bus driven/driver outputs unloaded High (floating) VIHZ Pullups/pulldowns on DP and DM lines Phone D+ pullup voltage VPH_DP_UP Driver outputs unloaded kΩ 2.7 3.6 V 3 3.3 3.6 V 14.25 18 24.8 kΩ 3.6 V 75 pF 0.342 V Pulldown Resistors Phone D+/– pulldown High (floating) RPH_DP_DWN Driver outputs unloaded RPH_DM_DWN VIHZ Pullups/pulldowns on DP and DM lines 2.7 D+/– Data Line Upstream facing port CINUB [1.0] OTG device leakage VOTG_DATA_LKG [2] ZINP Driver outputs unloaded (waiver from USB.ORG Standard Committee) Input impedance exclusive of pullup/pulldown (1) (1) 22 80 120 kΩ Waiver received from usb.org standards committee on ZINP 300kmin specification 7.1.5 OTG Electrical Characteristics The OTG block integrates three main functions: • The USB plug detection function on VBUS and ID • The ID resistor detection • The VBUS level detection USB Transceiver Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 75 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 7.1.5.1 www.ti.com OTG VBUS Electrical Characteristics Table 7-9 lists the electrical characteristics of the OTG VBUS. Table 7-9. OTG VBUS Electrical Characteristics Parameter Comments Min Typ Max Unit 15 μs 0.5 0.6 0.7 V VBUS Wake-Up Comparator VBUS wake-up delay DELVBUS_WK_UP VBUS wake-up threshold VVBUS_WK_UP VBUS Comparators A-device session valid VA_SESS_VLD 0.8 1.1 1.4 V A-device VBUS valid VA_VBUS_VLD 4.4 4.5 4.6 V B-device session end VB_SESS_END 0.2 0.5 0.8 V B-device session valid VB_SESS_VLD 2.1 2.4 2.7 V 100 kΩ VBUS Line A-device VBUS input impedance to ground RA_BUS_IN SRP (VBUS pulsing) capable A-device not driving VBUS B-device VBUS SRP pulldown RB_SRP_DWN 5.25 V/8 mA, pullup voltage = 3 V 0.656 10 B-device VBUS SRP pullup RB_SRP_UP (5.25 V – 3 V)/8 mA, pullup voltage = 3 V 0.281 1 B-device VBUS SRP rise time maximum for OTG-A communication tRISE_SRP_UP_Max 0 to 2.1 V with < 13 μF load B-device VBUS SRP rise time minimum for standard host connection tRISE_SRP_UP_Min 0.8 to 2.0 V with > 97 μF load VBUS line maximum voltage 7.1.5.2 kΩ 2 kΩ 36 ms 60 ms If VBUS_CHRG bit is low 7 V OTG ID Electrical Characteristics Table 7-10 lists the electrical characteristics of OTG ID. Table 7-10. OTG ID Electrical Characteristics Parameter Comments Min Typ Max Unit ID Wake-Up Comparator ID wake-up comparator RID_WK_UP Wake-up when ID shorted to ground through a resistor lower than 445 kΩ (±1%) 445 kΩ ID Comparators — ID External Resistor Specifications ID ground comparator RID_GND ID_GND interrupt when ID shorted to ground through a resistor lower than 10 Ω 0 5 10 Ω ID 100k comparators RID_100K ID_100K interrupt when 102 kΩ (1%) resistor plugged in 101 102 103 kΩ ID 200k comparators RID_200K ID_200K interrupt when 200 kΩ (1%) resistor plugged in 198 200 202 kΩ ID 440k comparators RID_440K ID_440K interrupt when 440 kΩ (1%) resistor plugged in 435 440 445 kΩ ID Float comparator RID_FLOAT ID_FLOAT interrupt when ID shorted to ground through a resistor higher than 560 kΩ Phone ID pullup to VPH_ID_UP RPH_ID_UP ID unloaded (VRUSB) 70 Phone ID pullup voltage VPH_ID_UP Connected to VRUSB 2.5 1400 kΩ ID Line ID line maximum voltage 76 USB Transceiver 200 286 kΩ 3.2 V 5.25 V Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com USB Transceiver Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 77 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 8 MADC 8.1 General Description www.ti.com The TPS65920/TPS65930 device provides the MADC resource to the host processors in the system (hardware and software conversion modes). The MADC generates interrupt signals to the host processors. Interrupts are handled primarily by the MADC internal secondary interrupt handler and secondly at the upper level (outside the MADC) by the TPS65920/TPS65930 interrupt primary handler. 8.2 MADC Electrical Characteristics Table 8-1 lists the electrical characteristics of the MADC. Table 8-1. MADC Electrical Characteristics Parameter Conditions Min Resolution 0 MADC voltage reference Offset 2.5 V V –1 1 LSB Best fitting –2 2 LSB Best fitting for codes 230 to maximum –2 2 LSB Best fitting considering offset of 25 LSB –3.75 3.75 LSB Best fitting –28.5 28.5 mV Input bias μA 1 Input capacitor CBANK Maximum source input resistance Rs (for all 16 internal or external inputs) Input current leakage (for all 16 internal or external inputs) 78 Unit Bit 1.5 ADIN0 differential nonlinearity Integral nonlinearity for ADIN2 Max 10 ADIN2 input dynamic range for external input ADIN0 integral nonlinearity Typ MADC 10 pF 100 kΩ 1 μA Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 8.3 Channel Voltage Input Range Table 8-2 lists the analog input voltage minimum and maximum values. Table 8-2. Analog Input Voltage Range Channel Min Typ Max Unit Prescaler ADIN0: General-purpose input 0 1.5 V No prescaler DC current source for battery identification through external resistor (10 μA typical) ADIN2: General-purpose input (1) 0 2.5 V Prescaler in the MADC to be in range 0 to >1.5 V (1) General-purpose inputs must be tied to ground when TPS65920/TPS65930 internal power supplies (VINTANA1 and VINTANA2) are off. 8.3.1 Sequence Conversion Time (Real-Time or Nonaborted Asynchronous) Table 8-3 lists the sequence conversion timing characteristics. Table 8-3. Sequence Conversion Timing Characteristics Parameter Comments Min Typ Max Unit F Running frequency 1 T = 1/F Clock period 1 N Number of analog inputs to convert in a single sequence 0 2 Tstart SW1, SW2, or USB asynchronous request or real-time STARTADC request 3 4 μs Tsettling time Settling time to wait before sampling a stable analog input (capacitor bank charge time) 20 μs 5 12 MHz μs Tsettling is calculated from the max((Rs + Ron)*Cbank) of the two possible input sources (internal or external). Ron is the resistance of the selection analog input switches (5 kΩ). This time is software-programmable by the open-core protocol (OCP) register. Tstartsar The successive approximation registers ADC start time Tadc time The successive approximation registers ADC conversion time Tcapture time Tcapture time is the conversion result capture time. Tstop Full-conversion sequence time One channel (N = 1) (1) Conversion sequence time Without Tstart and Tstop: One channel (N = 1) (1) STARTADC pulse duration (1) Both channels (1) Without Tstart and Tstop: Both channels (1) STARTADC period is T. 1 μs 10 μs 2 μs 1 2 22 39 352 624 18 33 288 528 0.33 24 μs μs μs μs Total sequence conversion time general formula: Tstart+N*(1+Tsettling+Tadc+Tcapture) +Tstop MADC Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 79 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Table 8-3 is illustrated in Figure 8-1, which is a conversion sequence general timing diagram. The Busy parameter indicates that a conversion sequence is running, and the channel N result register parameter corresponds to the result register of the RT/GP selected channel. T one conversion Tstart Tstartsar Tcapture Tsettling Tadc Tstop madc_clk Busy mux_sel_lowv[3:0] channel N selected Acquire_lowv start_sar_lowv out_lowv[9:0] channel N result register new channel N value channel X value old value new value 037-046 Figure 8-1. Conversion Sequence General Timing Diagram 80 MADC Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 9 LED Drivers 9.1 General Description Two arrays of parallel LEDs are driven (dedicated for the phone light). The parallel LEDs are supplied by VBAT, and the external resistor value is given for each LED. The TPS65920/TPS65930 device supports two open-drain LED drivers for the keypad backlight, having drain connections tolerant of the main battery voltage. Figure 9-1 is the LED driver block diagram. Table 9-1 lists the electrical characteristics of the LED driver. BATT 120 W *16... LEDB 160 W BATT LEDSYNC LEDGND Device 037-045 Figure 9-1. LED Driver Block Diagram NOTE For the component values, see Table 14-1. Table 9-1. LED Driver Electrical Characteristics Parameter SW On resistance Conditions Min Typ Max IO = 160 mA 3 4 IO = 60 mA 10 12 LED Drivers Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 Unit Ω 81 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 10 www.ti.com Keyboard 10.1 Keyboard Connection The keyboard is connected to the chip using: • KBR (5 :0) input pins for row lines • KBC (5 :0) output pins for column lines Figure 10-1 shows the keyboard connection. Device VCC Internal pullup Keyboard controller 6x6 Keyboard matrix kbd_r_0 kbd_r_1 kbd_r_2 kbd_r_3 kbd_r_4 kbd_r_5 kbd_c_0 kbd_c_1 kbd_c_2 kbd_c_3 kbd_c_4 kbd_c_5 037-014 Figure 10-1. Keyboard Connection When a key button of the keyboard matrix is pressed, the corresponding row and column lines are shorted together. To allow key press detection, all input pins (KBR) are pulled up to VCC and all output pins (KBC) are driven to a low level. Any action on a button generates an interrupt to the sequencer. The decoding sequence is written to allow detection of simultaneous press actions on several key buttons. The keyboard interface can be used with a smaller keyboard area than 6 × 6. To use a 3 × 3 keyboard, KBR(4) and KBR(5) must be tied high to prevent any scanning process distribution. 82 Keyboard Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 11 Clock Specifications The TPS65920/TPS65930 device includes several I/O clock pins. The TPS65920/TPS65930 device has two sources of high-stability clock signals: the external high-frequency clock (HFCLKIN) input and an onboard 32-kHz oscillator (an external 32-kHz signal can be provided). Figure 11-1 is the clock overview. Device OR 32KXIN OR 32KCLKOUT 32KXOUT 32 kHz OR HFCLKIN HFCLKOUT 030-002 Figure 11-1. Clock Overview 11.1 Clock Features The TPS65920/TPS65930 device accepts two sources of high-stability clock signals: • 32KXIN/32KXOUT: Onboard 32-kHz crystal oscillator (an external 32-kHz input clock can be provided) • HFCLKIN: External high-frequency clock (19.2, 26, or 38.4 MHz). The TPS65920/TPS65930 device can provide: • 32KCLKOUT digital output clock • HFCLKOUT digital output clock with the same frequency as the HFCLKIN input clock Clock Specifications Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 83 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 11.2 Input Clock Specifications The clock system accepts two input clock sources: • 32-kHz crystal oscillator clock or sinusoidal/squared clock • HFCLKIN high-frequency input clock 11.2.1 Clock Source Requirements Table 11-1 lists the input clock requirements. Table 11-1. TPS65920/TPS65930 Input Clock Source Requirements Pad Clock Frequency 32KXIN 32KXOUT HFCLKIN (1) 32.768 kHz 19.2, 26, 38.4 MHz Stability Duty Cycle Crystal ±30 ppm 40%/60% Square wave – 45%/55% Sine wave – Square wave ±150 PPM Sine wave – – See (1) – HFCLK duty cycle and frequency is not altered by the internal circuit. The input clock accuracy must match that of the system requirement; for example, OMAP device. 11.2.2 HFCLKIN HFCLKIN can be a square- or a sine-wave input clock. If a square-wave input clock is provided, it is recommended to switch the block to bypass mode to avoid loading the clock. Figure 11-2 shows the HFCLKIN clock distribution. HFCLKIN Slicer HFCLKOUT Clock generator Slicer bypass SLICER_OK CLKEN2 Timer CLKEN Main state-machine CLKREQ SLEEP1 SLEEP2 Optional request configurable by software only for legacy support 037-044 Figure 11-2. HFCLKIN Clock Distribution When a device needs a clock signal other than 32.768 kHz, it makes a clock request and activates the 84 Clock Specifications Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com CLKREQ pin. As a result, the TPS65920/TPS65930 device immediately sets CLKEN to 1 to warn the clock provider in the system about the clock request and starts a timer (maximum of 5.2 ms using the 32.768-kHz clock). When the timer expires, the TPS65920/TPS65930 device opens a gated clock, the timer automatically reloads the defined value, and a high-frequency output clock signal is available through the HFCLKOUT pin. The output drive of HFCLKOUT is programmable (minimum load 10 pF, maximum load 40 pF) and must be at 40 pF by default. With a register setting, the mirroring of CLKEN can be enabled on CLKEN2. When this mirroring feature is not enabled, CLKEN2 can be used as a general-purpose output controlled through I2C accesses. CLKREQ, when enabled, has a weak pulldown resistor to support the wired-OR clock request. Figure 11-3 shows an example of the wired-OR clock request. Device PERIPH1 VIO CLKREQ PERIPH2 VIO PERIPHn VIO 037-043 Figure 11-3. Example of Wired-OR Clock Request The timer default value must be the worst case (10 ms) for the clock providers. For legacy or workaround support, the NSLEEP1 and NSLEEP2 signals can also be used as a clock request even if it is not their primary goal. By default, this feature is disabled and must be enabled individually by setting the register bits associated with each signal. Clock Specifications Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 85 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com When the external clock signal is present on the HFCLKIN ball, it is possible to use this clock instead of the internal RC oscillator and then synchronize the system on the same clock. The RC oscillator can then go to idle mode. Table 11-2 lists the input clock electrical characteristics of the HFCLKIN input clock. Table 11-2. HFCLKIN Input Clock Electrical Characteristics Parameter Description Configuration Mode Slicer Min Frequency Typ Max 19.2, 26, or 38.4 LP (1)/HP (2) (sine wave) Start-up time 4 LP/HP (sine wave) Input dynamic range 0.3 BP (3)/PD (4) (square wave) Current consumption 0.7 1.45 1.85 (5) 0 LP 175 HP 235 BP/PD Harmonic content of input signal (with 0.7-VPP amplitude): second component LP/HP (sine wave) VIH Voltage input high BP (square wave) VIL Voltage input low BP (square wave) (1) (2) (3) (4) (5) Unit MHz μs VPP μA 39 nA –25 dBc 1 V 0.6 V LP = Low-power mode HP = High-power mode BP = Bypass mode PD = Power-down mode Bypass input max voltage is the same as the maximum voltage provided for the I/O interface (IO.1P8V). Table 11-3 lists the input clock timing requirements of the HFCLKIN input clock when the source is a square wave. Figure 11-4 shows the HFCLKIN squared input clock timings. Table 11-3. HFCLKIN Square Input Clock Timing Requirements with Slicer in Bypass Name Parameter Description Min Typ Max Unit CH0 1/tC(HFCLKIN) Frequency, HFCLKIN CH1 tW(HFCLKIN) Pulse duration, HFCLKIN low or high 0.55*tC(HFCLKIN) ns CH3 tR(HFCLKIN) Rise time, HFCLKIN (1) 5 ns CH4 tF(HFCLKIN) Fall time, HFCLKIN (1) 5 ns (1) 19.2, 26, or 38.4 0.45*tC(HFCLKIN) MHz Default drive capability is 40 pF. CH0 CH1 CH1 HFCLKIN 019-017 Figure 11-4. HFCLKIN Squared Input Clock 11.2.3 32-kHz Input Clock A 32.768-kHz input clock (often abbreviated to 32-kHz) generates the clocks for the RTC. It has a low-jitter mode where the current consumption increases for lower jitter. It is possible to use the 32-kHz input clock with an external crystal or clock source. Depending on the mode chosen, the 32K oscillator is configured one of two ways: • An external 32.768-kHz crystal through the 32KXIN/32KXOUT balls (see Figure 11-5). This configuration is available only for master mode (for more information, see Section 12). • An external square/sine wave of 32.768 kHz through 32KXIN with amplitude equal to 1.8 or 1.85 V (see Figure 11-7, Figure 11-8, and Figure 11-9). This configuration is available for the master and slave modes (for more information, see Section 12). 86 Clock Specifications Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 11.2.3.1 External Crystal Description Figure 11-5 shows the 32-kHz oscillator block diagram with crystal in master mode. Current control circuit and mode selection Bias generator and startup circuit Signal swing limiting circuit Y Signal shaping (1) VBATOK Internal GND XI (1) VBATOK XO C1 XTAL C2 Internal GND External to device 037-042 NOTE: Switches close by default and open only if register access enables very-low-power mode when VBAT < 2.7 V. Figure 11-5. 32-kHz Oscillator Block Diagram In Master Mode With Crystal CXIN and CXOUT represent the total capacitance of the printed circuit board (PCB) and components, excluding the crystal. Their values depend on the datasheet of the crystal, the internal capacitors, and the parallel capacitor. The frequency of the oscillations depends on the value of the capacitors. The crystal must be in the fundamental mode of operation and parallel resonant. NOTE For the values of CXIN and CXOUT, see Table 14-1. Table 11-4 lists the required electrical constraints. Table 11-4. Crystal Electrical Characteristics Parameter Min Parallel resonance crystal frequency Typ Input voltage, Vin (normal mode) 1.0 Internal capacitor on each input (Cint) 1.3 Unit kHz 1.55 10 Parallel input capacitance (Cpin) Pin-to-pin capacitance V pF 1 Nominal load cap on each oscillator input CXIN and CXOUT (1) (1) Max 32.768 pF CXIN = CXOUT = Cosc*2 – (Cint + Cpin) pF 1.6 pF 1.8 Nominal load capacitor on each oscillator input defined as CXIN = CXOUT = Cosc*2 – (Cint + Cpin). Cosc is the load capacitor defined in the crystal oscillator specification, Cint is the internal capacitor, and Cpin is the parallel input capacitor. Clock Specifications Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 87 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Table 11-4. Crystal Electrical Characteristics (continued) Parameter Min Typ Max Unit 75 kΩ Crystal ESR (2) Crystal shunt capacitance, CO 1 pF Crystal tolerance at room temperature, 25°C –30 30 ppm Crystal tolerance versus temperature range (–40°C to 85°C) –200 200 ppm 1 μW 0.5 μW Maximum drive power Operating drive level (2) The crystal motional resistance Rm relates to the equivalent series resistance (ESR) by the following formula: 2 ESR = Rm C 1+ O CL Measured with the load capacitance specified by the crystal manufacturer. If CXIN = CXOUT = 10 pF, CL = 5 pF. Parasitic capacitance from the package and board must also be considered. When selecting a crystal, the system design must consider the temperature and aging characteristics of a crystal versus the user environment and expected lifetime of the system. Table 11-5 and Table 11-6 list the switching characteristics of the oscillator and the timing requirements of the 32.768-kHz input clock. Figure 11-6 shows the crystal oscillator output in normal mode. Table 11-5. Base Oscillator Switching Characteristics Name Parameter Description fP Oscillation frequency tSX Start-up time Min Typ Max 32.768 kHz 0.5 IDDA Active current consumption IDDQ Current consumption Unit LOJIT <1:0> = 00 1.8 LOJIT <1:0> = 11 8 Low battery mode (1.2 V) 1 Startup 8 s μA μA Table 11-6. 32-kHz Crystal Input Clock Timing Requirements Name Parameter Description OC0 1/tC(32KHZ) Frequency, 32 kHz OC1 tW(32KHZ) Pulse duration, 32 kHz low or high Min Typ Max 32.768 0.40*tC(32KHZ) OC0 OC1 Unit kHz 0.60*tC(32KHZ) μs OC1 32KX 019-019 Figure 11-6. 32-kHz Crystal Input 11.2.3.2 External Clock Description When an external 32K clock is used instead of a crystal, three configuration can be used: • A square- or sine-wave input can be applied to the 32KXIN pin with amplitude of 1.85 or 1.8 V. The 32KXOUT pin can be driven to a dc value of the square- or sine-wave amplitude divided by 2. This configuration, shown in Figure 11-7, is recommended if a large load is applied on the 32KXOUT pin. • A square- or sine-wave input can be applied to the 32KXIN pin with amplitude of 1.85 or 1.8 V. The 32KXOUT pin can be left floating. This configuration, showed in Figure 11-8, is used if no charge is applied on the 32KXOUT pin. • The oscillator is in bypass mode and a square-wave input can be applied to the 32KXIN pin with amplitude of 1.8 V. The 32KXOUT pin can be left floating. This configuration, shown in Figure 11-9, is 88 Clock Specifications Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com used if the oscillator is in bypass mode. Current control circuit and mode selection Bias generator and startup circuit Signal swing limiting circuit Y Signal shaping (1) VBATOK Square/sine wave: Vpp = VRRTC or VIO_1P8V XI XO DC level: DC Vpp/2 Internal GND (1) VBATOK Internal GND 037-041 (1) Switches close by default and open only if register access enables very-low-power mode when VBAT < 2.7 V. Figure 11-7. 32-kHz Oscillator Block Diagram Without Crystal Option 1 Current control circuit and mode selection Bias generator and startup circuit Signal swing limiting circuit Y Signal shaping (1) VBATOK Internal GND XI XO (1) VBATOK Floating Square/sine wave: Vpp = VRRTC or VIO_1P8V Internal GND 037-039 (1) Switches close by default and open only if register access enables very-low-power mode when VBAT < 2.7 V. Figure 11-8. 32-kHz Oscillator Block Diagram Without Crystal Option 2 Clock Specifications Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 89 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Current control circuit and mode selection Bias generator and startup circuit Signal swing limiting circuit Y Signal shaping (1) VBATOK XI (1) VBATOK XO Floating Square wave: Vpp = VIO_1P8V Internal GND Internal GND 037-040 (1) Switches close by default and open only if register access enables very-low-power mode when VBAT < 2.7 V. Figure 11-9. 32-kHz Oscillator in Bypass Mode Block Diagram Without Crystal Option 3 Table 11-7 lists the electrical constraints required by the 32-kHz input square- or sine-wave clock. Table 11-7. 32-kHz Input Square- or Sine-Wave Clock Source Electrical Characteristics Name Parameter Description f Frequency CI CFI Min Typ Max Unit 32.768 kHz Input capacitance 35 pF On-chip foot capacitance to GND on each input (see Figure 11-7, Figure 11-8, and Figure 11-9) 10 VPP Square-/sine-wave amplitude in bypass mode or not (1) VIH Voltage input high, square wave in bypass mode VIL Voltage input low, square wave in bypass mode (1) 1.8 pF V 0.8 V 0.6 V Bypass input maximum voltage is the same as the maximum voltage provided for the I/O interface. Table 11-8 lists the timing requirements of the 32-kHz square-wave input clock. Table 11-8. 32-kHz Square-Wave Input Clock Source Timing Requirements Name Parameter Description CK0 1/tC(32KHZ) Frequency, 32 kHz CK1 tW(32KHZ) Pulse duration, 32 kHz low or high tR(32KHZ) Rise time, 32 kHz CK4 tF(32KHZ) Fall time, 32 kHz (1) 90 Typ Max 32.768 0.45*tC(32KHZ) (1) CK3 (1) Min Unit MHz 0.55*tC(32KHZ) μs 0.1*tC(32KHZ) μs 0.1*tC(32KHZ) μs The capacitive load is 30 pF. Clock Specifications Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Figure 11-10 shows the 32-kHz square- or sine-wave input clock. CK0 CK1 CK1 32KX 037-038 Figure 11-10. 32-kHz Square- or Sine-Wave Input Clock 11.3 Output Clock Specifications The TPS65920/TPS65930 device provides two output clocks: • 32KCLKOUT • HFCLKOUT 11.3.1 32KCLKOUT Output Clock Figure 11-11 is the block diagram for the 32.768-kHz clock output. IO_1P8 (1.8 V) OR 32KXIN 32-kHz OSC OR 32KCLKOUT 32 kHz 32KXOUT RTC 037-037 Figure 11-11. 32.768-kHz Clock Output Block Diagram The TPS65920/TPS65930 device has an internal 32.768-kHz oscillator connected to an external 32.768-kHz crystal through the 32KXIN/32KXOUT balls or an external digital 32.768-kHz clock through the 32KXIN input (see Figure 11-11). The TPS65920/TPS65930 device also generates a 32.768-kHz digital clock through the 32KCLKOUT pin and can broadcast it externally to the application processor or any other devices. The 32KCLKOUT clock is broadcast by default in TPS65920/TPS65930 active mode, but can be disabled if it is not used. The 32.768-kHz clock (or signal) is also used to clock the RTC embedded in the TPS65920/TPS65930 device. The RTC is not enabled by default. The host processor must set the correct date and time and enable the RTC functionality. The 32KCLKOUT output buffer can drive several devices (up to 40-pF load). At startup, 32KCLKOUT must be stabilized (frequency/duty cycle) before the signal output. Depending on the startup conditions, this can delay the startup sequence. Table 11-9 lists the electrical characteristics of the 32KCLKOUT output clock. Clock Specifications Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 91 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Table 11-9. 32KCLKOUT Output Clock Electrical Characteristics Name Parameter Description Min f Frequency CL Load capacitance VOUT Output clock voltage, depending on output reference level IO_1P8 (see Section 2) VOH Voltage output high VOL (1) Typ Max Unit 32.768 kHz 40 pF 1.8 (1) V VOUT – 0.45 VOUT V 0 0.45 V Voltage output low The output voltage depends on the output reference level, which is IO_1P8 (see Section 2, Terminal Description). Table 11-10 lists the output clock switching characteristics. Figure 11-12 shows the 32KCLKOUT output clock waveform. Table 11-10. 32KCLKOUT Output Clock Switching Characteristics Name Parameter Description CK0 1/tC(32KCLKOUT) Frequency CK1 tW(32KCLKOUT) Pulse duration, 32KCLKOUT low or high Typ Max Unit 32.768 MHz 0.40*tC(32KCLKOUT) 0.60*tC(32KCLKOUT) ns 16 ns 16 ns (1) CK2 tR(32KCLKOUT) Rise time, 32KCLKOUT CK3 tF(32KCLKOUT) Fall time, 32KCLKOUT (1) (1) Min The output capacitive load is 30 pF. CK0 CK1 CK1 32KCLKOUT 037-035 Figure 11-12. 32KCLKOUT Output Clock 11.3.2 HFCLKOUT Output Clock Table 11-11 lists the electrical characteristics of the HFCLKOUT output clock. Table 11-11. HFCLKOUT Output Clock Electrical Characteristics Name Parameter Description Min f Frequency CL Load capacitance VOUT Output clock voltage, depending on output reference level IO_1P8 (see Section 2) VOH Voltage output high VOL Voltage output low (1) Typ Max 19.2, 26, or 38.4 Unit MHz 30 1.8 (1) pF V VOUT – 0.45 VOUT V 0 0.45 V The output voltage depends on the output reference level, which is IO_1P8 (see Section 2). Table 11-12 lists the switching characteristics of the HFCLKOUT output clock. Table 11-12. HFCLKOUT Output Clock Switching Characteristics Name Parameter Description Min Typ Max Unit CHO1 1/tC(HFCLKOUT) Frequency CHO2 tW(HFCLKOUT) Pulse duration, HFCLKOUT low or high 0.60*tC(HFCLKOUT) ns CHO3 tR(HFCLKOUT) Rise time, HFCLKOUT (1) 2.6 ns CHO4 tF(HFCLKOUT) Fall time, HFCLKOUT (1) 2.6 ns (1) 92 19.2, 26, or 38.4 0.40*tC(HFCLKOUT) MHz The output capacitive load is 30 pF. Clock Specifications Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Figure 11-13 shows the HFCLKOUT output clock waveform. CHO1 CHO2 CHO2 HFCLKOUT 037-036 Figure 11-13. HFCLKOUT Output Clock 11.3.3 Output Clock Stabilization Time Figure 11-14 shows the 32KCLKOUT and HFCLKOUT clock stabilization time. XIN Starting_Event Tstartup CLK32KOUTEN CLK32KOUT CLKEN Delay1 HFCLKOUTEN HFCLKOUT Delay2 NRESPWRON 037-034 NOTE: Tstartup, Delay1, and Delay2 depend on the boot mode (see Section 4.5, Power Management). NOTE: Ensure that the high frequency oscillator start-up time is in spec for the boot mode used. During power-up the internal delay, Delay1 above is fixed (5.2 ms and 5.3 ms depending on boot mode). The start-up time for the oscillator must be less than the fixed delay. Figure 11-14. 32KCLKOUT and HFCLKOUT Clock Stabilization Time Figure 11-15 shows the HFCLKOUT behavior. HFCLKIN HFCLKOUT 019-028 Figure 11-15. HFCLKOUT Behavior Clock Specifications Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 93 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 12 www.ti.com Timing Requirements and Switching Characteristics 12.1 Timing Parameters The timing parameter symbols used in the timing requirement and switching characteristic tables are created in accordance with JEDEC Standard 100. To shorten the symbols, some pin names and other related terminologies are abbreviated, as shown in Table 12-1. Table 12-1. Timing Parameters Subscripts Symbol Cycle time (period) d Delay time dis Disable time en Enable time h Hold time su Setup time START Start bit t Transition time v Valid time w Pulse duration (width) X Unknown, changing, or don't care level H High L Low V Valid IV Invalid AE Active edge FE First edge LE Last edge Z 94 Parameter c High impedance Timing Requirements and Switching Characteristics Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 Copyright © 2008–2011, Texas Instruments Incorporated TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 12.2 Target Frequencies Table 12-2 assumes testing over the recommended operating conditions. Table 12-2. TPS65920/TPS65930 Interface Target Frequencies I/O Interface SmartReflex inter-integrated circuit (I2C™) Interface Designation 2 I C General-purpose I2C USB USB JTAG Voice/Bluetooth® pulse code modulation (PCM) interface (1) (2) 1.5 V Slave HS mode 3.6 Mbps Slave fast-speed mode 400 Kbps Slave standard mode 100 Kbps HS 480 Mbps FS 12 Mbps LS 1.5 Mbps Real/View® ICE tool 30 MHz XDS560 and XDS510 tools 30 MHz Lauterbach™ tool TDM/inter-IC sound (I2S™) Target Frequency 30 MHz I2S 1/(64 * Fs) (1) Right-justified 1/(64 * Fs) (1) Left-justified 1/(64 * Fs) (1) TDM 1/(128 * Fs) (1) PCM (master mode) 1/(65 * Fs) (2) PCM (slave mode) 1/(33 to 65 * Fs) (2) Fs = 8 to 48 kHz; 96 kHz for RX path only (TDM/I2S interface) Fs = 8 or 16 kHz (voice/Bluetooth PCM interface) Copyright © 2008–2011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 95 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 12.3 I2C Timing The TPS65920/TPS65930 device provides two I2C HS slave interfaces (one for general-purpose and one for SmartReflex). These interfaces support standard mode (100 Kbps), fast mode (400 Kbps), and HS mode (3.4 Mbps). The general-purpose I2C module embeds four slave hard-coded addresses (ID1 = 48h, ID2 = 49h, ID3 = 4Ah, and ID4 = 4Bh). The SmartReflex I2C module uses one slave hard-coded address (ID5). The master mode is not supported. Table 12-3 and Table 12-4 assume testing over the recommended operating conditions (see Figure 12-1). START I1 I2C.SCL RESTART I2 1 8 9 1 I8 8 9 I8 I3 I2C.SDA STOP I4 MSB I7 LSB ACK I9 MSB LSB ACK 037-033 Figure 12-1. I2C Interface—Transmit and Receive in Slave Mode Table 12-3. I2C Interface—Timing Requirements (1) Notation Parameter (2) Min Max Unit Slave HS Mode I3 tsu(SDA-SCLH) Setup time, SDA valid to SCL high 10 I4 th(SCLL-SDA) Hold time, SDA valid from SCL low 0 ns I7 tsu(SCLH-SDAL) Setup time, SCL high to SDA low 160 ns I8 th(SDAL-SCLL) Hold time, SCL low from SDA low 160 ns I9 tsu(SDAH-SCLH) Setup time, SDA high to SCL high 160 ns I3 tsu(SDA-SCLH) Setup time, SDA valid to SCL high 100 I4 th(SCLL-SDA) Hold time, SDA valid from SCL low 0 I7 tsu(SCLH-SDAL) Setup time, SCL high to SDA low 0.6 ns I8 th(SDAL-SCLL) Hold time, SCL low from SDA low 0.6 ns I9 tsu(SDAH-SCLH) Setup time, SDA high to SCL high 0.6 ns 70 ns Slave Fast-Speed Mode ns 0.9 ns Slave Standard Mode (1) (2) I3 tsu(SDA-SCLH) Setup time, SDA valid to SCL high 250 ns I4 th(SCLL-SDA) Hold time, SDA valid from SCL low 0 ns I7 tsu(SCLH-SDAL) Setup time, SCL high to SDA low 4.7 ns I8 th(SDAL-SCLL) Hold time, SCL low from SDA low 4 ns I9 tsu(SDAH-SCLH) Setup time, SDA high to SCL high 4 ns The input timing requirements are given by considering a rising or falling time of: 80 ns in HS mode (3.4 Mbps) 300 ns in fast-speed mode (400 Kbps) 1000 ns in standard mode (100 Kbps) SDA is equal to I2C.SR.SDA or I2C.CNTL.SDA. SCL is equal to I2C.SR.SCL or I2C.CNTL.SCL. Table 12-4 lists the switching requirements of the I2C interface. 96 Timing Requirements and Switching Characteristics Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 Copyright © 2008–2011, Texas Instruments Incorporated TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Table 12-4. I2C Interface—Switching Requirements (1) Notation Parameter (2) Min Max Unit Slave HS Mode I1 tw(SCLL) Pulse duration, SCL low 160 ns I2 tw(SCLH) Pulse duration, SCL high 60 ns 1.3 (3) µs 0.6 µs 4.7 µs 4 µs Slave Fast-Speed Mode I1 tw(SCLL) Pulse duration, SCL low I2 tw(SCLH) Pulse duration, SCL high Slave Standard Mode (1) (2) (3) I1 tw(SCLL) Pulse duration, SCL low I2 tw(SCLH) Pulse duration, SCL high The capacitive load is: 100 pF in HS mode (3.4 Mbps) 400 pF in fast-speed mode (400 Kbps) 400 pF in standard mode (100 Kbps) SDA is equal to I2C.SR.SDA or I2C.CNTL.SDA SCL is equal to I2C.SR.SCL or I2C.CNTL.SCL SCL low timing for slave fast-speed mode is compatibile with 0.79 µs. 12.4 Audio Interface: TDM/I2S Protocol The TPS65920/TPS65930 device acts as a master for the TDM and I2S interfaces or as a slave for only the I2S interface. If the TPS65920/TPS65930 device is the master, it must provide the frame synchronization (TDM/I2S_SYNC) and bit clock (TDM/I2S_CLK) to the host processor. If it is the slave, the TPS65920/TPS65930 device receives frame synchronization and the bit clock. The TPS65920/TPS65930 device supports the I2S, TDM, left-justified, and right-justified data formats, but does not support TDM slave mode. Copyright © 2008–2011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 97 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 12.4.1 I2S Right- and Left-Justified Data Format Table 12-5 and Table 12-6 assume testing over the recommended operating conditions (see Figure 12-2 and Figure 12-3). Right channel Left channel I2S.SYNC I1 I2 I0 I1 I2 I2 I2S.CLK I4 I4 I3 I2S.DIN 23 22 1 22 1 I5 I2S.DOUT I4 I3 0 8 dummy bits 0 8 dummy bits 23 I3 22 1 22 1 I5 I5 23 I4 I3 0 8 dummy bits 23 0 8 dummy bits 23 22 I5 23 22 037-031 Figure 12-2. I2S Interface—I2S Master ModeI Left channel Right channel I2S.SYNC I1 I6 I0 I1 I7 I6 I2S.CLK I4 I4 I3 I2S.DIN 23 22 1 22 1 I5 I2S.DOUT 23 I4 I3 I4 I3 0 8 dummy bits 0 8 dummy bits I5 23 I3 22 1 22 1 I5 23 0 8 dummy bits 23 0 8 dummy bits 23 22 I5 22 037-032 Figure 12-3. I2S Interface—I2S Slave Mode The timing requirements listed in Table 12-5 are valid on the following conditions of input slew and output load: • Rise and fall time range of inputs (SYNC, DIN) is tR/tF = 1.0 ns/6.5 ns • Capacitance load range of outputs (CLK, SYNC, DOUT) is CLoad = 1 pF/30 pF 98 Timing Requirements and Switching Characteristics Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 Copyright © 2008–2011, Texas Instruments Incorporated TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com The input timing requirements in Table 12-5 are given by considering a rising or falling time of 6.5 ns. Table 12-5. I2S Interface—Timing Requirements Notation Parameter Min Max Unit Master Mode I3 tsu(DIN-CLKH) Setup time, I2S.DIN valid to I2S.CLK high2 25 ns I4 th(DIN-CLKH) Hold time, I2S.DIN valid from I2S.CLK high. 0 ns Slave Mode (1) (2) I0 tc(CLK) Cycle time, I2S.CLK (1) I1 tw(CLK) Pulse duration, I2S.CLK high or low (2) I3 tsu(DIN-CLKH) Setup time, I2S.DIN valid to I2S.CLK high 5 ns I4 th(DIN-CLKH) Hold time, I2S.DIN valid from I2S.CLK high. 5 ns I6 tsu(SYNC-CLKH) Setup time, I2S.SYNC valid to I2S.CLK high 5 ns I7 th(SYNC-CLKH) Hold time, I2S.SYNC valid from I2S.CLK high 5 ns 1/64 * Fs 0.45 * P ns 0.55 * P ns Fs = 8 to 48 kHz; 96 kHz for RX path only P = I2S.CLK period The capacitive load for Table 12-6 is 7 pF. Table 12-6 lists the switching characteristics for the I2S interface. Table 12-6. I2S Interface—Switching Characteristics Notation Parameter Min Max Unit Master Mode I0 tc(CLK) Cycle time, I2S.CLK (1) I1 tw(CLK) Pulse duration, I2S.CLK high or low (2) I2 td(CLKL-SYNC) I5 I5 1/64 * Fs ns 0.45 * P 0.55 * P ns Delay time, I2S.CLK falling edge to I2S.SYNC transition –10 10 ns td(CLKL-DOUT) Delay time, I2S.CLK falling edge to I2S.DOUT transition –10 10 ns td(CLKL-DOUT) Delay time, I2S.CLK falling edge to I2S.DOUT transition 0 20 ns Slave Mode (1) (2) Fs = 8 to 48 kHz; 96 kHz for RX path only P = I2S.CLK period Copyright © 2008–2011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 99 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 12.4.2 TDM Data Format Table 12-7 and Table 12-8 assume testing over the recommended operating conditions (see Figure 12-4). Channel 1 Channel 2 Channel 3 Channel 4 I2S.SYNC T0 T1 T2 T2 T1 T2 T2 I2S.CLK I2S.DIN T4 T4 T4 T4 T4 T4 T4 T4 T3 T3 T3 T3 T3 T3 T3 T3 23 22 1 T5 I2S.DOUT 23 22 0 T5 1 0 8 dummy bits 8 dummy bits 23 22 1 T5 23 22 0 T5 1 0 8 dummy bits 8 dummy bits 23 22 1 T5 23 22 0 T5 1 0 8 dummy bits 8 dummy bits 23 22 1 T5 23 22 0 T5 1 0 037-030 Figure 12-4. TDM Interface—TDM Master Mode 100 Timing Requirements and Switching Characteristics Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 Copyright © 2008–2011, Texas Instruments Incorporated TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com The timing requirements listed in Table 12-7 are valid on the following conditions of input slew and output load: • Rise and fall time range of inputs (SYNC, DIN) is tR/tF = 1.0 ns/6.5 ns • Capacitance load range of outputs (CLK, SYNC, DOUT) is CLoad = 1 pF/30 pF Table 12-7. TDM Interface Master Mode—Timing Requirements Notation Parameter T3 tsu(DIN-CLKH) Setup time, TDM.DIN valid to TDM.CLK high T4 th(DIN-CLKH) Hold time, TDM.DIN valid from TDM.CLK high Min Max Unit 25 ns 0 ns Table 12-8 lists the switching characteristics of the TDM interface master mode. Table 12-8. TDM Interface Master Mode—Switching Characteristics Notation (1) (2) Parameter (1) T0 tc(CLK) Cycle time, TDM.CLK T1 tw(CLK) Pulse duration, TDM.CLK high or low (2) T2 td(CLKL-SYNC) T5 td(CLKL-DOUT) Min Max Unit 1/64 * Fs ns 0.45*P 0.55*P ns Delay time, TDM.CLK rising edge to TDM.SYNC transition –10 10 ns Delay time, TDM.CLK rising edge to TDM.DOUT transition –10 12 ns Fs = 8 to 48 kHz; 96 kHz for RX path only P = TDM.CLK period 12.5 JTAG Interfaces The TPS65920/TPS65930 device JTAG TAP controller handles standard IEEE JTAG interfaces. This section describes the timing requirements for the tools used to test TPS65920/TPS65930 device power management. The JTAG/TAP module provides a JTAG interface according to IEEE Std1149.1a. This interface uses the four I/O pins TMS, TCK, TDI, and TDO. The TMS, TCK, and TDI inputs contain a pullup device, which makes their state high when they are not driven. The output TDO is a 3-state output, which is high impedance except when data are shifted between TDI and TDO. • TCK is the test clock signal. • TMS is the test mode select signal. • TDI is the scan path input. • TDO is the scan path output. TMS and TDO are multiplexed at the top level with the GPIO0 and GPIO1 pins. The dedicated external TEST pin switches from functional mode (GPIO0/GPIO1) to JTAG mode (TMS/TDO). The JTAG operations are controlled by a state-machine that follows the IEEE Std1149.1a state diagram. This state-machine is reset by the TPS65920/TPS65930 internal power-on reset (POR). A test mode is selected by writing a 6-bit word (instruction) into the instruction register and then accessing the related data register. Table 12-9 and Table 12-10 assume testing over the recommended operating conditions (see Figure 12-5). Copyright © 2008–2011, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 101 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com JL1 JL2 JL2 JTAG.TCK JL3 JL4 JL5 JL6 JTAG.TDI JTAG.TMS JL7 JTAG.TDO jtag_inter_time_wcs019 Figure 12-5. JTAG Interface Timing The input timing requirements are given by considering a rising or falling edge of 7 ns. Table 12-9. JTAG Interface—Timing Requirements Notation Parameter Min Max Unit Clock JL1 tc(TCK) Cycle time, JTAG.TCK period JL2 tw(TCK) Pulse duration, JTAG.TCK high or low (1) 30 JL3 tsu(TDIV-TCKH) Setup time, JTAG.TDI valid before JTAG.TCK high 8 ns JL4 th(TDIV-TCKH) Hold time, JTAG.TDI valid after JTAG.TCK high 5 ns JL5 tsu(TMSV-TCKH) Setup time, JTAG.TMS valid before JTAG.TCK high 8 ns JL6 th(TMSV-TCKH) Hold time, JTAG.TMS valid after JTAG.TCK high 5 ns 0.48*P ns 0.52*P ns Read Timing (1) P = JTAG.TCK clock period The capacitive load is 35 pF. Table 12-10. JTAG Interface—Switching Characteristics Notation Parameter Min Max 0 14 Unit Write Timing JL7 102 td(TCK-TDOV)) Delay time, JTAG, TCK active edge to JTAG.TDO valid Timing Requirements and Switching Characteristics Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 ns Copyright © 2008–2011, Texas Instruments Incorporated TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 13 Debouncing Time Table 13-1 lists the characteristics of debouncing. Table 13-1. Debouncing Block Programmable Debouncing Time Default USB plug detection Debouncing Functions USB No 9x50 ms 9x50 ms Plug/unplug detection VBUS (1) USB Yes 0 to 250 ms (32/32468-second steps) 28 ms Plug/unplug detection ID (2) USB Yes 0 to 250 ms (32/32468-second steps) 50 ms Power Yes 0 to 250 ms 30 ms Thermistor No 60 μs 60 μs Debouncing function interrupt generation debounce for VBUS and ID (3) Hot-die detection Thermal shutdown detection PWRON (4) Start/stop button No 60 μs 60 μs No 31.25 ms 31.25 ms Button reset No 60 μs 60 μs SIM card plug/unplug GPIO Yes 0 or 30 ms ± 1 ms 0 ms MMC1 (plug/unplug) GPIO Yes 0 or 30 ms ± 1 ms 0 ms NRESWARM (1) (2) (3) (4) Programmable in the VBUS_DEBOUNCE register Programmable in the ID_DEBOUNCE register Programmable in the RESERVED_E[2:0] CFG_VBUSDEB register The PWRON signal is debounced 1024*CLK32K (maximum 1026*CLK32K) falling edge in master mode. Figure 13-1 is a sample debouncing sequence chronogram. Event1 Event2 31 ms 32K clock 50 ms 50-ms clock Event1 detected on 32K clock synchronized with 50-ms clock Event1 Debounced after 50 ms 50 ms dT Event2 Debounced after 50 ms + dT 50 ms + dT 037-029 Figure 13-1. Debouncing Sequence Chronogram Example Event1 is correctly debounced after 5 ms. Event2 is debounced after 50ms + dT because the capture of the event is considered after the next rising edge of the 50-ms clock. Debouncing Time Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 103 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 14 www.ti.com External Components Table 14-1 lists the TPS65920/TPS65930 device external components. Table 14-1. TPS65920/TPS65930 External Components Function Component Reference Value Note Link Power Supplies Capacitor CVDD1.IN 10 μF Range ± 50% ESR min = 1 mΩ ESR max = 20 mΩ Taiyo Yuden: JMK212BJ106KD Capacitor CVDD1.OUT 10 μF Range ± 50% ESR min = 1 mΩ ESR max = 20 mΩ Taiyo Yuden: JMK212BJ106KD Inductor LVDD1 1 μH Range ± 30% DCR max = 100 mΩ Capacitor CVDD2.IN 10 μF Range ± 50% ESR min = 1 mΩ ESR max = 20 mΩ Taiyo Yuden: JMK212BJ106KD Capacitor CVDD2.OUT 10 μF Range ± 50% ESR min = 1 mΩ ESR max = 20 mΩ Taiyo Yuden: JMK212BJ106KD Inductor LVDD2 1 μH Range ± 30% DCR max = 100 mΩ 10 μF Range ± 50% ESR min = 1 mΩ ESR max = 20 mΩ Taiyo Yuden: JMK212BJ106KD VDD1 VDD2 Capacitor CVIO.IN Figure 4-1 Figure 4-1 Capacitor CVIO.OUT 10 μF Range ± 50% ESR min = 1 mΩ ESR max = 20 mΩ Taiyo Yuden: JMK212BJ106KD Inductor LVVIO 1 μH Range ± 30% DCR max = 100 mΩ VRUSB_3V Capacitor CVUSB.3P1 1 μF Range: 0.3 to 2.7 μF ESR min = 20 mΩ ESR max = 300 mΩ Figure 4-1 Figure 7-2 VRUSB_1V5 Capacitor CVINTUSB1P5.OUT 1 μF Range: 0.3 to 2.7 μF ESR min = 20 mΩ ESR max = 600 mΩ Figure 4-1 Figure 7-2 VRUSB_1V8 Capacitor CVINTUSB1P8.OUT 1 μF Range: 0.3 to 2.7 μF ESR min = 20 mΩ ESR max = 600 mΩ Figure 4-1 Figure 7-2 Capacitor CVDAC.IN 1 μF Range: 0.3 to 2.7 μF ESR min = 20 mΩ ESR max = 600 mΩ VIO VDAC Figure 4-1 Figure 4-1 Capacitor CVDAC.OUT 1 μF Range: 0.3 to 2.7 μF ESR min = 20 mΩ ESR max = 600 mΩ VPLLA3R Capacitor CVPLLA3R.IN 1 μF Range: 0.3 to 2.7 μF ESR min = 20 mΩ ESR max = 600 mΩ Figure 4-1 VPLL1 Capacitor CVPLL1.OUT 1 μF Range: 0.3 to 2.7 μF ESR min = 20 mΩ ESR max = 600 mΩ Figure 4-1 104 External Components Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Table 14-1. TPS65920/TPS65930 External Components (continued) Function Component Capacitor Reference CVMMC1.IN Value Note 1 μF Range: 0.3 to 2.7 μF ESR min = 20 mΩ ESR max = 600 mΩ VMMC1 Link Figure 4-1 Capacitor CVMMC1.OUT 1 μF Range: 0.3 to 2.7 μF ESR min = 20 mΩ ESR max = 600 mΩ VAUX12S Capacitor CVAUX12S.IN 1 μF Range: 0.3 to 2.7 μF ESR min = 20 mΩ ESR max = 600 mΩ Figure 4-1 VAUX2 Capacitor CVAUX2.OUT 1 μF Range: 0.3 to 2.7 μF ESR min = 20 mΩ ESR max = 600 mΩ Figure 4-1 VINT Capacitor CVINT.IN 1 μF Range: 0.3 to 2.7 μF ESR min = 20 mΩ ESR max = 600 mΩ Figure 4-1 VINTANA1 Capacitor CVINTANA1.OUT 1 μF Range: 0.3 to 2.7 μF ESR min = 20 mΩ ESR max = 600 mΩ Figure 4-1 VINTANA2 Capacitor CVINTANA2.OUT 1 μF Range: 0.3 to 2.7 μF ESR min = 20 mΩ ESR max = 600 mΩ Figure 4-1 VINTDIG Capacitor CVINTDIG.OUT 1 μF Range: 0.3 to 2.7 μF ESR min = 20 mΩ ESR max = 600 mΩ Figure 4-1 VBAT.USB Capacitor CVBAT.USB 1 μF Range: 0.3 to 2.7 μF ESR min = 20 mΩ ESR max = 600 mΩ Figure 7-2 Capacitor CVBUS.FC 2.2 μF ± 40% Capacitor CVBUS.IN 10 μF Capacitor CVBUS Capacitor CXIN 10 pF Capacitor CXOUT 10 pF USB CP 4.7 μF ± 40% ESR max = 20 mΩ Figure 7-2 ESR max = 20 mΩ 32.768 kHz 32K OSC 32.768 kHz Range: 9 pF to 12.5 pF Figure 11-5 ±30 ppm (at 25°C) ±200 ppm (–40°C to 85°C) Quartz X32.768kHz Capacitor CPL.O Capacitor CPL 1 μF Resistor RPL >15 kΩ Resistor RPL.M >15 kΩ Resistor RPL.O 10 kΩ Capacitor CPL.M 1 μF Capacitor CPR.O 50 pF Capacitor CPR 1 μF Resistor RPR >15 kΩ Resistor RPR.M >15 kΩ Resistor RPR.O 10 kΩ Capacitor CPR.M 1 μF Ferrite bead LV.M BLM18BD221S1N Ferrite bead LV.P BLM18BD221S1N Capacitor CV.V 1 μF Capacitor CV.M 1 nF Capacitor CV.P 1 nF Audio External class-D predriver left External class-D predriver right Vibrator H-bridge 50 pF Figure 6-2 Figure 6-2 Figure 6-3 External Components Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 105 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com Table 14-1. TPS65920/TPS65930 External Components (continued) Function MIC main (pseudo differential mode) Component Silicon MIC Auxiliary right Value CMM.M 100 nF Capacitor CMM.P 100 nF Capacitor CMM.O 47 pF Resistor RMM.O ~500 Ω Resistor RMM.MP ~1.7 kΩ Capacitor CMM.B 0 to 200 pF Capacitor CMM.M 100 nF Capacitor CMM.P 100 nF Capacitor CMM.PM 47 pF Capacitor CMM.O 47 pF CMM.GM 47 pF CMM.GP 47 pF Resistor RMM.BP 1 kΩ Resistor RMM.GM 1 kΩ Capacitor CMM.B Capacitor CVMIC1.OUT 1 μF Capacitor CSM 1 μF Capacitor CSM.P 100 nF Capacitor CSM.M 100 nF Capacitor CSM.PG 47 nF Resistor RSM >500 Ω Capacitor CAUXR 100 nF Capacitor CAUXR.M 47 pF MIC main Capacitor (differential mode) Capacitor VMIC1 Reference Capacitor 0 to 200 pF Note Link Figure 6-6 If greater than 200 pF, a serial resistor is required for bias stability Figure 6-7 If greater than 200 pF, a serial resistor is required for bias stability Range: 0.3 μF to 3.3 μF ESR min = 20 mΩ ESR max = 600 mΩ Figure 6-8 Figure 6-9 LED Driver LED Resistor RLED.A 120 Ω Needed for each LED Resistor RLED.B 160 kΩ Needed for each LED Figure 9-1 I2C Bus—External Pullup I2C SmartReflex I2C control Resistor RPSR.SDA Resistor RPSR.SCL Resistor RCNTL.SD; Resistor 106 RCNTL.SCL Pullups for various bus capacitances (CL) and I2C speeds (Std, Fast, and HS) If CL = 10 pF: Std = 118 kΩ, Fast = 35.4 kΩ, HS = 4.7 kΩ If CL = 12 pF: Std = 98.3 kΩ, Fast = 29.5 kΩ, HS = 3.9 kΩ If CL = 50 pF: Std = 23.6 kΩ, Fast = 7.1 kΩ, HS = 940 Ω If CL = 100 pF: Std = 11.8 kΩ, Fast = 3.54 kΩ, HS = 470 Ω If CL ≤ 12 pF, there is no need for an external pullup, the internal 3-kΩ pullup can be used. If an external pullup is used, disable the internal 3-kΩ pullup (reference the GPPUPDCTR1 register; see the TRM). External Components Section 12.3 Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 15 TPS65920/TPS65930 Package 15.1 TPS65920/TPS65930 Standard Package Symbols Figure 15-1 shows the printed device reference. Pin 1 indicator o YMLLLLS $ 037-028 Figure 15-1. Printed Device Reference Table 15-1 lists the fields and their meanings. Table 15-1. TPS65920/TPS65930 Nomenclature Description Field Marking used to note prototype (X), preproduction (P), or qualified/production device (blank) (1) A Mask set version descriptor (initial silicon = BLANK, first silicon revision = A, second silicon revision = B,...) (2) YM LLLLS $ (1) (2) Meaning P Year month Lot code Fab planning code A blank in the symbol or part number is collapsed so there are no gaps between characters. Initial silicon version is ES1.0; first revision can be named ES2.0, ES1.1, or ES1.01, depending on the level of change. Note: The device name is a maximum of 10 characters. 15.2 Package Thermal Resistance Characteristics Table 15-2 and Table 15-3 list the thermal resistance characteristics for the TPS65920 and TPS65930 devices, respectively. Table 15-2. TPS65920 Thermal Resistance Characteristics RθJA(°C/W) RθJB(°C/W) RθJC(°C/W) Board Type 33.40 13.80 6.74 (1) 2S2P (2) 14.50 (1) 1S0P (2) 57.04 (1) (2) 6.74 This measurement is not affected by the board on which the device is mounted. The board types are defined by JEDEC (reference JEDEC standard JESD51-9, Test Board for Area Array Surface Mount Package Thermal Measurements). Table 15-3. TPS65930 Thermal Resistance Characteristics RθJA(°C/W) RθJB(°C/W) RθJC(°C/W) Board Type 33.42 13.81 6.74 (1) 2S2P (2) 14.51 (1) 1S0P (2) 57.05 (1) (2) 6.74 This measurement is not affected by the board on which the device is mounted. The board types are defined by JEDEC (reference JEDEC standard JESD51-9, Test Board for Area Array Surface Mount Package Thermal Measurements). TPS65920/TPS65930 Package Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 107 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 15.3 Mechanical Data Figure 15-2 is the bottom view of the TPS65920/TPS65930 mechanical package. 037-016 Figure 15-2. TPS65920/TPS65930 Mechanical Package Bottom View Figure 15-3 shows the ball size. 0.35 mm 0.41 (±0.05) mm 037-027 Figure 15-3. Ball Size 108 TPS65920/TPS65930 Package Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com 15.4 ESD Specifications The device has built-in ESD protection to the limits specified below. It is recommended that the leads are shorted together, or the device placed in conductive foam, during storage or handling to prevent electrostatic damage. (1) ESD Method Standard Reference Performance Human Body Model (HBM) EIA / JESD22-A114D 2000V (1) Charge Device Model (CDM) EIA / JESD22-C101C 500V The pin CLK32KOUT is 1500V HBM compliant. TPS65920/TPS65930 Package Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 109 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 16 Glossary ADC Analog-to-digital converter ALC Automatic level control ASIC Application-specific integrated circuit BGA Ball grid array BW Signal bandwidth CMOS Complementary metal oxide semiconductor CMT Cellular mobile telephone CPU Central processing unit DAC Digital-to-analog converter DBB Digital baseband DCR Data capture record DM Data manual DSP Digital signal processor DVFS Dynamic voltage and frequency scaling ESD Electrostatic discharge ESR Equivalent series resistance FET Field effect transistor FS Full speed FSR Full-scale range GND Ground GP General-purpose GPIO General-purpose input/output hiZ High impedance HS High speed or high security HW Hardware 2 110 www.ti.com IC Inter-integrated circuit I2S Inter IC sound IC Integrated circuit ICN Idle channel noise ID Identification IDDQ Direct drain quiescent current IF Interface IO or I/O Input/output JTAG Joint Test Action Group, IEEE 1149.1 standard LDO Low-dropout regulator LED Light-emitting diode LJF Left-justified format LS Low speed MADC Monitoring analog-to-digital converter Glossary Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 TPS65930/TPS65920 SWCS037G – MAY 2008 – REVISED APRIL 2011 www.ti.com MMC Multimedia card NA, N/A Not applicable NRZI Nonreturn to zero inverted OCP Open-core protocol OTG On-the-Go PBGA Plastic ball grid array PCB Printed circuit board PD Pulldown PDM Pulse density modulated PFM Pulse frequency modulation PLL Phase-locked loop POL Polarity POR Power-on reset PSR Power-supply rejection PSRR Power-supply rejection ratio PU Pullup PWL Pulse-width length PWM Pulse-width modulation PWT Pulse-width time RJF Right-justified format RTC Real-time clock RX Receive SDI Serial display interface SMPS Switch-mode power supplies SNR Signal-to-noise ratio SW Software SYNC/SYNCHRO Synchronization SYS System TBD To be defined THRU Feed through TRM Technical reference manual TX Transmit UART Universal asynchronous receiver/transmitter ULPI UTMI+ low pin Interface UPR Uninterrupted power rail USB Universal serial bus UTMI USB transceiver macrocell Interface Glossary Copyright © 2008–2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: TPS65930/TPS65920 111 PACKAGE OPTION ADDENDUM www.ti.com 7-Jul-2011 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/ Ball Finish MSL Peak Temp (3) Samples (Requires Login) TPS65920A2ZCH ACTIVE NFBGA ZCH 139 184 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR TPS65920A2ZCHR ACTIVE NFBGA ZCH 139 1000 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR TPS65920BZCH NRND NFBGA ZCH 139 184 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR TPS65920BZCHR NRND NFBGA ZCH 139 1000 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR TPS65930A2ZCH ACTIVE NFBGA ZCH 139 184 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR TPS65930A2ZCHR ACTIVE NFBGA ZCH 139 1000 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR TPS65930BZCH NRND NFBGA ZCH 139 184 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR TPS65930BZCHR NRND NFBGA ZCH 139 1000 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 7-Jul-2011 Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 25-Jun-2011 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant TPS65920A2ZCHR NFBGA ZCH 139 1000 330.0 24.4 10.4 10.4 2.3 16.0 24.0 Q1 TPS65930A2ZCHR NFBGA ZCH 139 1000 330.0 24.4 10.4 10.4 2.3 16.0 24.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 25-Jun-2011 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) TPS65920A2ZCHR NFBGA ZCH 139 1000 333.2 345.9 41.3 TPS65930A2ZCHR NFBGA ZCH 139 1000 333.2 345.9 41.3 Pack Materials-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Audio www.ti.com/audio Communications and Telecom www.ti.com/communications Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com Wireless www.ti.com/wireless-apps RF/IF and ZigBee® Solutions www.ti.com/lprf TI E2E Community Home Page e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated