TI AM3715

AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
AM3715/03
Applications Processor
1 AM3715/03 Applications Processor
1.1
Features
• AM3715/03 Applications Processor:
– Compatible with OMAP™ 3 Architecture
– MPU Subsystem
• 1-GHz ARM CortexTM-A8 Core
• NEON SIMD Coprocessor
– POWERVR SGX™ Graphics Accelerator
(AM3715 only)
• Tile Based Architecture Delivering up to
20 MPoly/sec
• Universal Scalable Shader Engine:
Multi-threaded Engine Incorporating Pixel
and Vertex Shader Functionality
• Industry Standard API Support:
OpenGLES 1.1 and 2.0, OpenVG1.0
• Fine Grained Task Switching, Load
Balancing, and Power Management
• Programmable High Quality Image
Anti-Aliasing
– External Memory Interfaces:
• SDRAM Controller (SDRC)
– 16, 32-bit Memory Controller With
1G-Byte Total Address Space
– Interfaces to Low-Power SDRAM
– SDRAM Memory Scheduler (SMS) and
Rotation Engine
• General Purpose Memory Controller
(GPMC)
– 16-bit Wide Multiplexed Address/Data
Bus
– Up to 8 Chip Select Pins With
128M-Byte Address Space per Chip
Select Pin
– Glueless Interface to NOR Flash,
NAND Flash (With ECC Hamming
Code Calculation), SRAM and
Pseudo-SRAM
– Flexible Asynchronous Protocol
Control for Interface to Custom Logic
(FPGA, CPLD, ASICs, etc.)
– Nonmultiplexed Address/Data Mode
(Limited 2K-Byte Address Space)
– 1.8-V I/O and 3.0-V (MMC1 only),
0.9-V to 1.2-V Adaptive Processor Core
Voltage
0.9-V to 1.1-V Adaptive Core Logic Voltage
Note: These are default Operating
Performance Point (OPP) voltages and could
be optimized to lower values using
SmartReflex AVS.
– Commercial and Extended Temperature
Grades
– Serial Communication
• 5 Multichannel Buffered Serial Ports
(McBSPs)
– 512 Byte Transmit/Receive Buffer
(McBSP1/3/4/5)
– 5K-Byte Transmit/Receive Buffer
(McBSP2)
– SIDETONE Core Support (McBSP2 and
3 Only) For Filter, Gain, and Mix
Operations
– Direct Interface to I2S and PCM Device
and T Buses
– 128 Channel Transmit/Receive Mode
• Four Master/Slave Multichannel Serial
Port Interface (McSPI) Ports
• High-Speed/Full-Speed/Low-Speed USB
OTG Subsystem (12-/8-Pin ULPI Interface)
• High-Speed/Full-Speed/Low-Speed
Multiport USB Host Subsystem
– 12-/8-Pin ULPI Interface or 6-/4-/3-Pin
Serial Interface
• One HDQ/1-Wire Interface
• Four UARTs (One with Infrared Data
Association [IrDA] and Consumer Infrared
[CIR] Modes)
• Three Master/Slave High-Speed
Inter-Integrated Circuit (I2C) Controllers
– Camera Image Signal Processing (ISP)
• CCD and CMOS Imager Interface
• Memory Data Input
• BT.601/BT.656 Digital YCbCr 4:2:2
(8-/10-Bit) Interface
1
2
3
4
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
POWERVR SGX is a trademark of Imagination Technologies Ltd.
OMAP is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
PRODUCT PREVIEW information concerns products in the formative
or design phase of development. Characteristic data and other
specifications are design goals. Texas Instruments reserves the right
to change or discontinue these products without notice.
Copyright © 2010, Texas Instruments Incorporated
PRODUCT PREVIEW
1234
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
•
–
–
–
PRODUCT PREVIEW
–
2
Glueless Interface to Common Video
Decoders
• Resize Engine
– Resize Images From 1/4x to 4x
– Separate Horizontal/Vertical Control
System Direct Memory Access (SDMA)
Controller (32 Logical Channels With
Configurable Priority)
Comprehensive Power, Reset, and Clock
Management
• SmartReflexTM Technology
• Dynamic Voltage and Frequency Scaling
(DVFS)
ARM CortexTM-A8 Core
• ARMv7 Architecture
– Trust Zone
– Thumb®-2
– MMU Enhancements
• In-Order, Dual-Issue, Superscalar
Microprocessor Core
• NEON Multimedia Architecture
• Over 2x Performance of ARMv6 SIMD
• Supports Both Integer and Floating Point
SIMD
• Jazelle® RCT Execution Environment
Architecture
• Dynamic Branch Prediction with Branch
Target Address Cache, Global History
Buffer, and 8-Entry Return Stack
• Embedded Trace Macrocell (ETM)
Support for Non-Invasive Debug
ARM Cortex-A8 Memory Architecture:
• 32K-Byte Instruction Cache (4-Way
Set-Associative)
32K-Byte Data Cache (4-Way
Set-Associative)
• 256K-Byte L2 Cache
– 32K-Byte ROM
– 64K-Byte Shared SRAM
– Endianess:
• ARM Instructions - Little Endian
• ARM Data – Configurable
Removable Media Interfaces:
– Three Multimedia Card (MMC)/ Secure Digital
(SD) With Secure Data I/O (SDIO)
Test Interfaces
– IEEE-1149.1 (JTAG) Boundary-Scan
Compatible
– Embedded Trace Macro Interface (ETM)
– Serial Data Transport Interface (SDTI)
12 32-bit General Purpose Timers
2 32-bit Watchdog Timers
1 32-bit Secure Watchdog Timer
1 32-bit 32-kHz Sync Timer
Up to 188 General-Purpose I/O (GPIO) Pins
(Multiplexed With Other Device Functions)
45-nm CMOS Technology
Package-On-Package (POP) Implementation for
Memory Stacking
Packages:
– 515-pin s-PBGA package (CBP Suffix), .5mm
Ball Pitch (Top), .4mm Ball Pitch (Bottom)
– 515-pin s-PBGA package (CBC Suffix),
.65mm Ball Pitch (Top), .5mm Ball Pitch
(Bottom)
– 423-pin s-PBGA package (CUS Suffix)
•
•
•
•
•
•
•
•
•
•
•
AM3715/03 Applications Processor
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
1.2
SPRS616B – JUNE 2010 – REVISED JULY 2010
Description
The device can support numerous HLOS and RTOS solutions including Linux and Windows Embedded
CE which are available directly from TI. Additionally, the device is fully backward compatible with previous
CortexTM-A8 Sitara and OMAP processors.
This AM3715/03 Applications Processor data manual presents the electrical and mechanical specifications
for the AM3715/03 Applications Processor. The information contained in this data manual applies to both
the commercial and extended temperature versions of the AM3715/03 Applications Processor unless
otherwise indicated. It consists of the following sections:
• A description of the AM3715/03 terminals: assignment, electrical characteristics, multiplexing, and
functional description
• A presentation of the electrical characteristics requirements: power domains, operating conditions,
power consumption, and dc characteristics
• The clock specifications: input and output clocks, DPLL and DLL
• A description of thermal characteristics, device nomenclature, and mechanical data about the available
packaging
AM3715/03 Applications Processor
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
3
PRODUCT PREVIEW
The AM37x family of high-performance, applications processors are based on the enhanced device
architecture and are integrated on TI's advanced 45-nm process technology. This architecture is designed
to provide best in class ARM and Graphics performance while delivering low power consumption. This
balance of performance and power allow the device to support the following example applications:
• Portable Data Terminals
• Navigation
• Auto Infotainment
• Gaming
• Medical Imaging
• Home Automation
• Human Interface
• Industrial Control
• Test and Measurement
• Single board Computers
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
1.3
www.ti.com
Functional Block Diagram
The functional block diagram of the AM3715/03 Applications Processor is shown below.
Applications Processor
LCD Panel
MPU
Subsystem
Camera
(Parallel)
Amp
ARM CortexA8TM Core
TrustZone
32K/32K L1$
Parallel
TM
POWERVR
SGX
Graphics
Accelerator
L2$
256K
64
64
CVBS
or
S-Video
32
32
32
Channel
System
DMA
32
TV
Camera
ISP
Image
Capture
Hardware
Image
Pipeline
Dual Output 3-Layer
Display Processor
(1xGraphics, 2xVideo)
Temporal Dithering
SDTV®QCIF Support
32
32
64
HS USB
Host
HS
USB
OTG
32
Async
64
PRODUCT PREVIEW
64
L3 Interconnect Network-Hierarchial, Performance, and Power Driven
32
64KB
On-Chip
RAM
32
32KB
On-Chip
ROM
64
SMS:
SDRAM
Memory
Scheduler/
Rotation
SDRC:
SDRAM
Memory
Controller
32
32
32
L4 Interconnect
GPMC:
General
Purpose
Memory
Controller
NAND/
NOR
Flash,
SRAM
External and
Stacked Memories
Peripherals: 4xUART,
3xHigh-Speed I2C, 5xMcBSP
(2x with Sidetone/Audio Buffer)
4xMcSPI, 6xGPIO
3xHigh-Speed MMC/SDIO
HDQ/1 Wire, 6xMailboxes
12xGPTimers, 2xWDT,
32K Sync Timer
System
Controls
PRCM
2xSmartReflexTM
Control
Module
External
Peripherals
Interfaces
Emulation
Debug: SDTI, ETM, JTAG
Figure 1-1. AM3715/03 Functional Block Diagram
4
AM3715/03 Applications Processor
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
This data sheet revision history highlights the technical changes made to the data manual to make it a 'B'
revision.
Revision History
SECTION
ADDITIONS/CHANGES/DELETIONS
Electrical Characteristics
Updated/changed the following:
•
DC Electrical Characteristics
Clock Specifications
Updated/Changed DPLL and DLL Noise Isolation section
Package Characteristics
Updated/Changed Thermal Resistance Characteristics tables
PRODUCT PREVIEW
Global
Updated/Changed several signal names and associated data in the following sections:
•
Pin Assignments
•
Ball Characteristics
•
Multiplexing Characteristics
•
Signal Description
AM3715/03 Applications Processor
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
5
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
2 TERMINAL DESCRIPTION
2.1
Terminal Assignment
Figure 2-1 through Figure 2-5 show the ball locations for the 515- and 423- ball plastic ball grid array
(s-PBGA) packages. Table 2-1 through Table 2-25 indicate the signal names and ball grid numbers for
both packages.
Note: There are no balls present on the top of the 423-ball s-PBGA package.
AH
AG
AF
AE
AD
AC
AB
AA
Y
PRODUCT PREVIEW
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1 2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
030-001
Figure 2-1. AM3715/03 Applications Processor CBP s-PBGA-N515 Package (Bottom View)
6
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
PRODUCT PREVIEW
J
H
G
F
E
D
C
B
A
23
22
21
19
20
17
18
15
16
11
13
14
12
9
10
5
7
8
6
1
3
4
2
030-002
Figure 2-2. AM3715/03 Applications Processor CBP s-PBGA-N515 Package (Top View)
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
7
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
PRODUCT PREVIEW
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Figure 2-3. AM3715/03 Applications Processor CBC s-PBGA-515 Package (Bottom View)
8
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
PRODUCT PREVIEW
F
E
D
C
B
A
21 20 19 18 17 16 15 14 13 12 11 10 9
8
7
6
5
4
3
2
1
Figure 2-4. AM3715/03 Applications Processor CBC s-PBGA-515 Package (Top View)
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
9
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
AD
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
PRODUCT PREVIEW
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Figure 2-5. AM3715/03 Applications Processor CUS s-PBGA-N423 Package (Bottom View)
2.2
2.2.1
Pin Assignments
Pin Map (Top View)
The following pin maps show the top views of the 515-pin sPBGA package [CBP], the 515-pin sPBGA
package [CBC], and the 423-pin sPBGA package [CUS] pin assignments in four quadrants (A, B, C, and
D).
Note: A pin with an "NC" designator indicates No Connection. For proper device operation, these pins
must be left unconnected.
10
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
1
2
3
4
5
6
7
8
9
10
11
12
13
14
A
NC
NC
vss
NC
vdds_mem
NC
NC
vdds_mem
NC
NC
NC
vdds_mem
NC
NC
B
NC
vss
NC
NC
vdds_mem
NC
NC
vdds_mem
NC
NC
NC
vdds_mem
NC
NC
C
NC
NC
NC
NC
NC
NC
vss
NC
NC
vss
NC
NC
vss
NC
D
NC
NC
NC
NC
NC
NC
vss
vdd_core
vdd_core
vss
NC
NC
vss
NC
E
NC
NC
vss
vss
NC
NC
NC
NC
NC
NC
F vdds_mem vdds_mem gpmc_nadv gpmc_nwe
_ale
NC
H gpmc_nwp
gpmc_noe gpmc_nbe0 gpmc_ncs0
_cle
gpmc_d8
J vdds_mem vdds_mem
gpmc_ncs1
vdd_core
vss
vdd_core
gpmc_wait3
vdd_mpu
_iva
vdd_mpu
_iva
vdd_mpu
_iva
vss
vss
vdd_mpu
_iva
vdd_mpu
_iva
vss
vdd_mpu
_iva
vdd_mpu
_iva
K
gpmc_d0
gpmc_d9
gpmc_a10
gpmc_a4
gpmc_wait2
vss
vss
L
gpmc_d1
gpmc_d2
gpmc_a9
gpmc_a3
gpmc_wait1
vdd_mpu
_iva
vdd_mpu
_iva
M
pop_y23
_m1
pop_k2
_m2
gpmc_a8
gpmc_a2
gpmc_wait0
vdd_mpu
_iva
vdd_mpu
_iva
N
pop_u1
_n1
pop_l2
_n2
gpmc_a7
gpmc_a1
gpmc_ncs7
vss
vdd_mpu
_iva
gpmc_d3
vss
vss
gpmc_ncs6
vss
vss
P gpmc_d10
A.
PRODUCT PREVIEW
G
Top Views are provided to assist in hardware debugging efforts.
Figure 2-6. CBP Pin Map [Quadrant A - Top View]
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
11
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
15
16
17
18
19
20
21
22
23
24
25
26
27
28
pop_a12
_a15
NC
NC
vdds_mem
NC
NC
NC
vdds_mem
cam_vs
cam_hs
cam_d5
vss
pop_a22
_a27
pop_a23
_a28
A
pop_b12
_b15
NC
NC
vdds_mem
NC
NC
NC
vdds_mem
cam_wen
cam_d2
cam_d10
cam_xclkb
vss
pop_b23
_b28
B
NC
vdds_mem
NC
NC
vss
NC
NC
vss
cam_fld
cam_d3
cam_xclka
cam_d11
cam_pclk
vdds_mem
C
vdd_core
vdds_mem
NC
NC
vss
NC
vss
vdd_core
vdd_core
cam_d4
cam_strobe dss_hsync dss_vsync
dss_pclk
D
vdd_core
vdds
dss_data6 dss_acbias dss_data20 E
vdds
dss_data16 dss_data9
PRODUCT PREVIEW
dss_data8
dss_data7
F
vss
vdds_mem
G
vdds
H
pop_k1
_j28
J
NC
NC
NC
uart3_cts
_rctx
uart3_rts
_sd
uart3_rx
_irrx
uart3_tx
_irtx
vdd_mpu
_iva
vss
vss
vdd_core
vdd_core
vdd_core
i2c1_sda
hdq_sio
dss_data21
pop_h22
_j27
vdda_dplls
_dll
vss
vss
vdd_core
vss
vdd_core
i2c1_scl
vdds_
mmc1
mcbsp1_fsx
cam_d8
cam_d6
K
vss
vss
cap_vdd
_sram_core
vdd_core
vss
cam_d9
cam_d7
L
vdd_core
vss
mcbsp2_dx
vdd_core
pop_k22
_m26
mmc1
_cmd
vss
M
vdd_core
vdd_core
mcbsp2
_clkx
mmc1
_dat2
mmc1
_dat1
mmc1
_dat0
mmc1
_clk
N
gpio_126
mmc1
_dat3
P
vss
dss_data19 dss_data18 dss_data17
vdd_core mcbsp2_fsx
vdds_x
gpio_127
Figure 2-7. CBP Pin Map [Quadrant B - Top View]
12
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
R
gpmc_d11
gpmc_d12
gpmc_a6
vdds_mem
gpmc_ncs5
vdd_mpu
_iva
vdd_mpu
_iva
T
gpmc_d4
gpmc_d13
gpmc_a5
gpmc_clk
gpmc_ncs4
vdd_mpu
_iva
vdd_mpu
_iva
U
vdds_mem
vss
cap_vdd
gpmc_nbe1 _bb_mpu
_iva
gpmc_ncs3
vss
vdd_mpu
_iva
V
gpmc_d5
gpmc_d6
mcspi2
_cs1
cap_vdd
_sram
_mpu_iva
gpmc_ncs2
vss
vss
W gpmc_d14
gpmc_d7
vss
vdds
uart1_cts
vdd_mpu
_iva
vss
vdd_mpu
_iva
vdd_mpu
_iva
vss
vss
Y gpmc_d15
mcspi2_
simo
mcspi2
_somi
mcspi2
_cs0
uart1_rx
vdd_mpu
_iva
vdd_mpu
_iva
vdd_mpu
_iva
vss
vss
vdd_mpu
_iva
pop_aa2
_aa2
mcspi2_clk
mcspi1
_somi
uart1_tx
uart1_rts
jtag_rtck
jtag_tck
vdda_wkup
_bg_bb
mcspi1
_simo
etk_d10
vdds
vdd_core
etk_ctl
etk_d4
vss
etk_d3
sys_boot2
AA
pop_aa1
_aa1
AB
mcspi1
_cs2
mcspi1
_cs3
mcspi1_clk
AC
mcbsp4
_fsx
mcspi1
_cs0
mcspi1_cs1 vdd_core
AD mcbsp4_dr mcbsp4_dx
AE
mcbsp4
_clkx
AF
pop_ac8
_af1
mmc2
_clk
pop_u2
_af2
jtag_emu1 jtag_emu0
vdds
vdds
mmc2
_dat7
mmc2
_dat4
mmc2
_dat6
mmc2
_dat3
mcbsp3
_clkx
mcbsp3_dx
etk_d11
vdds
etk_d8
etk_clk
etk_d0
vss
etk_d6
i2c3_scl
pop_ab8
_ag10
pop_ab9
_ag11
etk_d1
pop_ab11
_ag13
i2c3_sda
mcbsp3_fsx mcbsp3_dr
AG
pop_ab1
_ag1
vss
vss
mmc2
_dat2
mmc2
_cmd
vss
etk_d12
etk_d14
etk_d9
AH
pop_ac1
_ah1
pop_ac2
_ah2
mmc2
_dat5
mmc2
_dat1
mmc2
_dat0
vdds_mem
etk_d13
etk_d15
etk_d5
pop_ac13
_ah10
pop_ac9
_ah11
etk_d2
pop_ac11
_ah13
etk_d7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
PRODUCT PREVIEW
www.ti.com
Figure 2-8. CBP Pin Map [Quadrant C - Top View]
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
13
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
PRODUCT PREVIEW
R
hsusb0
_data0
hsusb0_clk
T
hsusb0
_data3
hsusb0
_data2
hsusb0
_data1
U
hsusb0
_data7
hsusb0
_data6
hsusb0
_data5
V
vss
cvideo1
_rset
cvideo2
_vfb
cvideo2
_out
W
mcbsp1
_clkr
vss
vssa_dac
cvideo1
_vfb
cvideo1
_out
Y
mcbsp1_fsr
uart2_tx
NC
dss_
data15
dss_
data14
uart2_rts
uart2_cts
vss
vss
uart2_rx
i2c4_scl
sys_32k
i2c4_sda
NC
pop_aa23
_ae28
AE
sys_nirq
pop_aa22
_af27
pop_h23
_af28
AF
vdds
pop_ab23
_ag28
AG
pop_ac22
_ah27
pop_ac23
_ah28
AH
27
28
mcbsp2_dr
vdd_core
vss
mcbsp_clks
vdd_core
vdd_core
mcbsp1_dr
hsusb0
_data4
vss
vdd_core
mcbsp1_dx
vdda_dac
mcbsp1
_clkx
vdds_sram
vss
vdd_core
vss
vdd_core
vdd_mpu
_iva
vdd_core
sys_
xtalgnd
vdd_core
vdd_core
vdd_core
jtag_ntrst
jtag_tms
_tmsc
jtag_tdo
jtag_tdi
vdda_dpll
_per
hsusb0_dir
vss
vdd_mpu
_iva
cap_vddu
_wkup
_logic
gpio_128
vss
gpio_129
hsusb0_stp hsusb0_nxt
i2c2_sda
vdds
sys_xtalin
vdd_core
vss
sys_boot5 sys_clkout2
i2c2_scl
vdds
sys_xtalout sys_boot3 sys_boot4
vss
sys_boot6
pop_ab13
_ag15
vss
cam_d0
gpio_114
gpio_112
vdds
vdds
pop_l1
_ah15
pop_ac14
_ah16
cam_d1
gpio_115
gpio_113
cap_vddu
_array
vss
dss_data1
dss_data3
dss_data5
15
16
17
18
19
20
21
22
23
24
vdd_core
vss
sys_off
_mode
vdds
vdds
dss_data0 dss_data2
vdd_core
sys_clkreq
sys
_nreswarm
dss_data4 sys_clkout1 sys_boot1
sys
sys_boot0
_nrespwron
25
26
dss_data13 dss_data12
dss_
data22
dss_
data23
dss_data11 dss_data10
AA
AB
AC
AD
Figure 2-9. CBP Pin Map [Quadrant D - Top View]
14
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
1
2
3
4
5
6
7
8
9
10
11
12
13
A
pop_a1
_a1
NC
gpmc_
ncs2
gpmc
_a11
NC
vss
NC
vss
NC
NC
NC
NC
vss
B
NC
vss
gpmc_
wait2
gpmc_
ncs4
gpmc_
ncs6
gpmc_
ncs3
NC
NC
NC
NC
NC
NC
NC
i2c2_scl
sys_
boot2
gpmc_
ncs5
gpmc_
ncs7
gpmc_
wait3
NC
NC
NC
NC
vdds
vss
NC
NC
cap_
vdd_bb
_mpu_iva
vss
NC
vdds
vss
NC
vss
vdd_mpu
_iva
C I2C2_SDA
D
gpmc
_a9
gpmc
_a10
sys_
boot1
sys_
boot6
E
gpmc
_a7
gpmc
_a8
sys_
boot3
sys_
boot4
F
gpmc
_a5
gpmc
_a6
sys_
boot0
NC
G
vss
gpmc
_a4
sys_
boot5
vdds
NC
vss
vdd_mpu
_iva
vss
vdd_
core
vdd_mpu
_iva
NC
H
gpmc
_a2
gpmc
_a3
uart1
_rx
vss
vdd_mpu
_iva
NC
NC
NC
NC
NC
NC
J
gpmc
_nbe1
gpmc
_a1
NC
NC
NC
NC
NC
NC
NC
NC
NC
K
vss
gpmc
_nbe0
_cle
mmc2
_dat7
NC
NC
NC
NC
NC
vdd_mpu
_iva
NC
vdda_
dplls_
dll
L
pop_j1
_l1
gpmc
_d14
mmc2
_dat6
uart1
_tx
vdds
NC
vdd_mpu
_iva
vss
M
gpmc
_nwe
gpmc
_d15
mmc2
_dat5
vdds
vdd_
core
NC
vdd_mpu
_iva
vdd_mpu
_iva
N
gpmc
_clk
gpmc
_noe
mcbsp3
_dr
vss
vdd_mpu
_iva
vdd_mpu
_iva
cap_vdd
_sram
_mpu_iva
vss
A.
PRODUCT PREVIEW
www.ti.com
Top Views are provided to assist in hardware debugging efforts.
Figure 2-10. CBC Pin Map [Quadrant A - Top View]
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
15
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
14
15
16
www.ti.com
17
18
19
20
21
22
23
24
25
26
pop_
a21_a26
A
NC
NC
NC
NC
vdds
NC
pop_b16
_a20
NC
NC
cam_wen
cam_d2
pop_
a20_a25
NC
NC
NC
NC
NC
NC
NC
NC
NC
cam_fld
cam_d3
vss
pop_
b21_b26
B
NC
NC
NC
NC
NC
NC
NC
NC
NC
cam_hs
cam_d5
cam_
xclka
cam_
pclk
C
vss
vdd_
core
NC
NC
vss
NC
vss
NC
NC
cam_vs
cam_d4
cam_d10
cam_
strobe
D
vss
NC
vdds
cam_
xclkb
cam_d11
E
dss_
data20
dss_
acbias
F
uart3_
cts_
rctx
uart3_
rts_sd
PRODUCT PREVIEW
NC
NC
NC
NC
vdd_
core
NC
vss
vss
uart3_
tx_
irtx
dss_
pclk
dss_
data6
G
NC
NC
NC
NC
NC
NC
vdd_
core
NC
uart3_
rx_
irrx
dss_
data7
dss_
data8
H
NC
vdds
NC
NC
vdds
NC
NC
hdq_sio
i2c1_sda
i2c1_scl
dss_
data9
J
cap_vddu_
wkup_
logic
vss
NC
NC
mmc1_
dat2
NC
cap_vdd
_sram_
core
NC
dss_
hsync
vss
pop_
h21_k26
K
vss
mmc1_
cmd
vss
vdds
vss
vdds
dss_
data16
dss_
data17
L
vdd_
core
mmc1_
dat1
mmc1_
dat0
gpio_126
NC
dss_
data18
dss_
vsync
dss_
data19
M
vss
NC
mmc1_
clk
mmc1_
dat3
vdds_
mmc1
dss_
data21
cam_d8
cam_d9
N
Figure 2-11. CBC Pin Map [Quadrant B - Top View]
16
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
P
gpmc
_d13
NC
mcbsp3
_dx
NC
mcspi1
_somi
mcspi1
_simo
mcspi1
_clk
vdd_mpu
_iva
R
vss
uart1
_rts
mcbsp4
_dx
vss
mcspi1
_cs0
mcspi1
_cs1
mcspi1
_cs2
mmc2
_cmd
T
gpmc
_d10
pop_n2
_t2
mcbsp4
_fsx
vdds
vdd_
core
mcspi1
_cs3
mmc2
_dat1
mmc2
_dat0
U
gpmc
_d12
gpmc
_d11
mcbsp3
_clkx
mcbsp4
_dr
vdd_mpu
_iva
mcspi2
_somi
mmc2
_dat3
mmc2
_dat2
vdd_mpu
_iva
vdds_
sram
vdd_mpu
_iva
V
gpmc
_d8
etk_d9
mcbsp4
_clkx
NC
vdd_mpu
_iva
mcspi2
_cs0
mcspi2
_cs1
mmc2
_dat4
vdd_mpu
_iva
sys_off
_mode
sys_
nresp
wron
W
vss
uart1
_cts
mcbsp3
_fsx
vss
mcspi2
_clk
mcspi2
_simo
vdd_mpu
_iva
mmc2
_clk
sys_
clkout2
NC
jtag_
rtck
Y
gpmc
_d9
pop_t2
_y2
etk_d4
vdds
vss
vdd_
core
vdd_mpu
_iva
vss
vdd_mpu
_iva
vdd_
core
jtag_
tdo
AA
gpmc
_d1
gpmc
_d0
etk_d3
etk_d8
AB
etk_d5
etk_clk
etk_ctl
i2c3_scl
vss
AC
gpmc
_d3
gpmc
_d2
etk_d0
i2c3_sda
gpmc
_d7
gpmc
_nwp
vdds
gpmc
_wait1
NC
vss
gpmc
_wait0
NC
NC
AD
gpmc
_ncs1
etk_d7
etk_d2
etk_d1
gpmc
_d6
gpmc
_d5
sys_
nres
warm
gpmc
_ncs0
NC
gpmc_
nadv_ale
NC
NC
NC
AE
NC
pop_w2
_ae2
etk_d6
etk_d10
gpmc
_d4
etk_d12
vss
NC
etk_d15
vdds
NC
NC
NC
AF
NC
NC
NC
pop_y2
_af4
pop_aa6
_af5
etk_d11
etk_d13
pop_y7_
_af8
etk_d14
pop_y9_
_af10
NC
pop_aa10
_af12
pop_aa11
_af13
1
2
3
4
5
6
7
8
9
10
11
12
13
PRODUCT PREVIEW
www.ti.com
Figure 2-12. CBC Pin Map [Quadrant C - Top View]
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
17
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
gpio_127
gpio_128
gpio_129
mcbsp1
_fsx
vdds_x
NC
cam_d6
cam_d7
P
vss
mcbsp2
_clkx
mcbsp2
_dx
vdd_
core
NC
NC
NC
NC
R
mcbsp1
_clkx
mcbsp2
_dr
mcbsp
_clks
mcbsp1
_dr
vss
vdds
NC
NC
T
jtag_tdi
mcbsp1
_dx
mcbsp2
_fsx
mcbsp1
_clkr
hsusb0
_stp
NC
cvideo2
_vfb
vss
pop_
p21_u26
U
V
PRODUCT PREVIEW
vdda_
dpll_per
jtag_
ntrst
jtag_tck
jtag_tms
_tmsc
sys_nirq
mcbsp1
_fsr
hsusb0
_data2
hsusb0
_dir
hsusb0
_data0
cvideo1
_rset
vssa_
dac
vdda_
dac
cvideo2
_out
vdda_
wkup_
bg_bb
sys_
clkreq
i2c4_sda
hsusb0
_data4
hsusb0
_nxt
hsusb0
_clk
hsusb0
_data3
vss
vdds
cvideo1
_vfb
cvideo1
_out
W
jtag_
emu1
jtag_
emu0
vss
hsusb0
_data7
hsusb0
_data5
hsusb0
_data6
hsusb0
_data1
NC
uart2
_cts
dss_
data13
vss
Y
NC
uart2
_rts
dss_
data12
dss_
data14
AA
dss_
data23
dss_
data15
AB
vss
NC
vdds
NC
vdds
vss
NC
vdds
vss
NC
vdd_
core
NC
NC
vdds
dss_
data22
dss_
data10
AC
vss
i2c4_scl
gpio_113
gpio_112
vdds
vdds
vdds
uart2
_rx
uart2
_tx
dss_
data4
dss_
data5
vss
dss_
data11
AD
sys_
clkout1
cam_d1
cam_d0
gpio_115
gpio_114
cap
_vddu
_array
sys_32k
dss_
data0
dss_
data1
dss_
data2
dss_
data3
pop_y20
_ae25
pop_y21
_ae26
AE
pop_aa12
_af14
pop_aa13
_af15
pop_aa14
_af16
pop_y14
_af17
pop_aa17
_af18
sys_
xtalin
sys_
xtalout
pop_y17
_af21
pop_
aa19_af22
sys
_xtalgnd
pop_y19
_af24
pop_aa20
_af25
pop_aa21
_af26
AF
14
15
16
17
18
20
21
22
23
24
25
26
19
Figure 2-13. CBC Pin Map [Quadrant D - Top View]
18
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
1
2
A
NC
NC
B
NC
sdrc_a4
sdrc_a3
C
gpmc
_wait0
gpmc
_wait3
sdrc_a5
4
5
6
sdrc_a0
sdrc
_dqs0
sdrc_a1
sdrc_d3
sdrc_d1
gpmc
_ncs3
D
E
gpmc
_nwp
gpmc
_ncs0
sdrc_a6
F
gpmc
_nadv
_ale
gpmc
_noe
gpmc
_ncs6
gpmc
_ncs4
gpmc
_a10
gpmc
_nwe
gpmc
_ncs7
G
H
gpmc
_a8
gpmc
_a9
J
gpmc
_a7
gpmc
_a6
gpmc
_a5
gpmc
_a4
gpmc
_a3
gpmc
_a2
gpmc
_a1
K
L
gpmc_
nbe1
gpmc
_d0
M
gpmc
_d1
gpmc
_d2
A.
3
gpmc
_d4
mcspi2
_cs1
gpmc
_ncs5
gpmc_
nbe0_cle
mcspi2
_cs0
7
8
sdrc
_dm2
sdrc
_dqs2
sdrc
_dm0
sdrc_d7
sdrc_d18
sdrc_d2
sdrc_a2
9
10
11
12
sdrc
_clk
sdrc
_nclk
sdrc_d19
sdrc_d21
sdrc_d8
sdrc_d6
sdrc_d16
sdrc_d20
sdrc_d9
sdrc_d0
sdrc_d4
sdrc_d5
sdrc_d22
sdrc_a10
sdrc_a9
sdrc_a8
sdrc_d17
sdrc_a7
sdrc_a13
sdrc_a14
vdd_mpu
_iva
vdd_
core
sdrc_a11
sdrc_a12
vdd_mpu
_iva
vdd_mpu
_iva
vdd_
core
vdds_x
vdd_mpu
_iva
vdd_mpu
_iva
vss
vdd_
core
vdd_mpu
_iva
vdd_mpu
_iva
vss
vss
sdrc_d10
vdds
_mem
vdds
_mem
vdds
_mem
vdds
_mem
vdds
_mem
vdds
_mem
vss
vss
vss
vss
vdd_mpu
_iva
vdd_mpu
_iva
vss
vss
vdd_mpu
_iva
vdd_mpu
_iva
vdd_mpu
_iva
vdd_mpu
_iva
vss
PRODUCT PREVIEW
www.ti.com
Top Views are provided to assist in hardware debugging efforts.
Figure 2-14. CUS Pin Map [Quadrant A - Top View]
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
19
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
13
14
sdrc_
dqs1
sdrc_
d14
sdrc_
dm1
sdrc_
d13
15
www.ti.com
16
17
sdrc_
dm3
sdrc_
dqs3
sdrc_
d15
sdrc_
d27
sdrc_
d30
sdrc_
d12
sdrc_
d26
sdrc_
d11
18
19
20
sdrc_
ncs0
sdrc_
nwe
sdrc_
d31
sdrc_
ncs1
sdrc_
cke0
sdrc_
d28
sdrc_
ba0
sdrc_
ncas
sdrc_
cke1
sdrc_
d25
sdrc_
d29
sdrc_
ba1
sdrc_
nras
sdrc_
d23
sdrc_
d24
vdds_
mem
cam_vs
vdd_
core
vdds_
mem
vdds_
mem
cam_wen
cam_d3
vdd_
core
vdds_
mem
vdds_
mem
vdda
_dplls
_dll
cam_d2
cam_d4
21
22
23
24
cam_hs
uart3_
_cts_
rctx
hdq_si0
A
cam_
xclka
uart3_
_rts_
sd
uart3_
_rx_
irrx
B
cam_
xclkb
uart3_
_tx_
irtx
cam_d5
C
dss_
data20
dss_
data6
D
dss_
hsync
dss_
data7
dss_
data8
E
cam_d10
dss_
vsync
dss_
data9
cam_d11
dss_
pclk
dss_
data17
dss_
data18
G
dss_
data19
cam_fld
H
F
PRODUCT PREVIEW
vdd_
core
vss
vdds_
mem
vss
cap_vdd
_sram
_core
vss
vss
vss
vss
vdd_
core
vdd_
core
cam_
pclk
cam_
strobe
dss_
acbias
dss_
data16
cam_d8
vss
vss
vdd_
core
vdd_
core
vdd_
core
i2c1_scl
i2c1_sda
dss_
data21
cam_d9
cam_d7
K
vss
vdd_
core
vdd_
core
vss
mmc1_
cmd
cam_d6
L
vss
vdd_
core
vdd_
core
vss
vdds
vdds
vdds
mmc1_
dat2
mmc1_
dat1
mmc1_
dat0
mmc1_
clk
J
M
Figure 2-15. CUS Pin Map [Quadrant B - Top View]
20
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
gpmc
_d3
N
mcspi2
_somi
mcspi2
_simo
mcspi2
_clk
vdd_mpu
_iva
vdd_mpu
_iva
vdd_mpu
_iva
vss
vss
vss
vss
vss
vss
vss
vss
vss
vss
P
gpmc
_d5
gpmc
_d6
R
gpmc
_d7
gpmc
_d8
gpmc
_d11
mcspi1
_simo
mcbsp1
_cs3
vdd_mpu
_iva
vdd_mpu
_iva
vdd_mpu
_iva
gpmc
_d9
gpmc
_d12
mcspi1
_somi
mcspi1
_clk
mcspi1
_cs0
vdd_mpu
_iva
vdd_mpu
_iva
vss
vss
vss
vss
cap_vdd
_sram_
mpu_iva
vss
vdds
vss
vdd_mpu
_iva
T
U
gpmc
_d10
gpmc
_d13
V
gpmc
_d14
gpmc
_d15
mmc2
_dat3
mcbsp3
_fsx
gpmc
_clk
mmc2
_dat2
mcbsp3
_clkx
mmc2
_dat1
W
Y
mmc2
_clk
mmc2
_dat6
AA
mmc2
_dat7
mmc2
_dat5
AB
mmc2
_dat4
mmc2
_dat0
AC
etk_clk
uart1_
cts
etk_d10
AD
NC
etk_d5
etk_ctl
1
2
3
etk_d8
4
mcbsp3
_dx
uart1
_rx
vdds
vdds
vdd_mpu
_iva
uart1
_rts
uart1
_tx
vdds
vdds
vdd_mpu
_iva
sys_
clkout1
vdds
sys_
nres
warm
cap_vddu_
wkup_logic
sys_
clkout2
jtag_
rtck
jtag_tms
_tmsc
sys_
nres
pwron
vdds_
sram
mmc2
_cmd
jtag_
tck
jtag_
ntrst
jtag_
tdo
jtag_
tdi
sys_
boot0
etk_d4
etk_d1
etk_d2
etk_d6
etk_d11
etk_d12
etk_d9
etk_d0
etk_d3
etk_d7
5
6
8
9
mcbsp3
_dr
7
10
etk_d14
i2c3_sda
etk_d13
etk_d15
11
12
PRODUCT PREVIEW
www.ti.com
Figure 2-16. CUS Pin Map [Quadrant C - Top View]
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
21
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
vdds
vdds
vdds
cap_vddu
_array
cap_vdd
_bb_mpu
_iva
gpio_126
mmc1_
dat3
vdds_
mmc1
N
hsusb0
_dir
gpio_129
P
PRODUCT PREVIEW
vss
vss
vss
vss
vss
vss
vss
vss
vss
vdd_
core
vdd_
core
vdd_
core
mcbsp2
_dx
hsusb0
_clk
hsusb0
_nxt
hsusb0
_stp
vss
vss
vss
vss
vdd_
core
vdd_
core
vdd_
core
vdd_
core
mcbsp2
_clkx
hsusb0
_data7
hsusb0
_data1
hsusb0
_data0
T
vdd_mpu
_iva
vss
vss
vss
vdda_
dpll
_per
hsusb0
_data3
hsusb0
_data2
U
vdd_mpu
_iva
vss
vss
mcbsp1
_clkx
mcbsp2
_dr
vdd_mpu
_iva
sys_
xtalgnd
sys_
nirq
mcbsp1
_dx
mcbsp1
_clkr
sys_
clkreq
i2c4_sda
i2c4_scl
mcbsp1
_dr
vdda_
wkup
_bg_bb
sys_
boot6
sys_32k
mcbsp
_clks
mcbsp1
_fsx
vdda_
dac
vssa_dac
sys_
boot5
cam_d0
dss_
data1
mcbsp1
_fsr
i2c2_sda
i2c2_scl
sys_
boot1
sys_
boot4
cam_d1
dss_
data0
dss_
data3
dss_
data5
sys_
xtaout
sys_
xtalin
sys_
boot2
sys_
boot3
dss_
data2
dss_
data4
14
15
20
21
i2c3_scl
13
vss
16
17
18
19
mcbsp2
_fsx
R
dss_
data22
dss_
data15
hsusb0
_data5
dss_
data23
dss_
data14
hsusb0
_data6
hsusb0
_data4
W
dss_
data13
cvideo2
_vfb
cvideo1
_rset
Y
V
cvideo2
_out
AA
dss_
data12
cvideo1
_vfb
cvideo1
_out
AB
dss_
data10
dss_
data11
jtag_
emu0
AC
sys_off
_mode
jtag_
emu1
AD
23
24
22
Figure 2-17. CUS Pin Map [Quadrant D - Top View]
22
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
2.3
SPRS616B – JUNE 2010 – REVISED JULY 2010
Ball Characteristics
Note: The default mode is the mode at the release of the reset; also see the RESET REL. MODE
column.
(b) Modes 1 to 7 are possible modes for alternate functions. On each pin, some modes are effectively
used for alternate functions, while some modes are not used and do not correspond to a functional
configuration.
5. TYPE: Signal direction
– I = Input
– O = Output
– I/O = Input/Output
– D = Open drain
– DS = Differential
– A = Analog
Note: In the safe_mode, the buffer is configured in high-impedance.
6. BALL RESET STATE: The state of the terminal at the power-on reset.
– 0: The buffer drives VOL (pulldown/pullup resistor not activated)
0(PD): The buffer drives VOL with an active pulldown resistor.
– 1: The buffer drives VOH (pulldown/pullup resistor not activated)
1(PU): The buffer drives VOH with an active pullup resistor.
– Z: High-impedance
– L: High-impedance with an active pulldown resistor
– H : High-impedance with an active pullup resistor
7. BALL RESET REL. STATE: The state of the terminal at the release of the System Control Module
reset (PRCM CORE_RSTPWRON_RET reset signal).
– 0: The buffer drives VOL (pulldown/pullup resistor not activated)
0(PD): The buffer drives VOL with an active pulldown resistor.
– 1: The buffer drives VOH (pulldown/pullup resistor not activated)
1(PU): The buffer drives VOH with an active pullup resistor.
– Z: High-impedance
– L: High-impedance with an active pulldown resistor
– H : High-impedance with an active pullup resistor
8. RESET REL. MODE: The mode is automatically configured at the release of the System Control
Module reset (PRCM CORE_RSTPWRON_RET reset signal).
9. POWER: The voltage supply that powers the terminal’s I/O buffers.
10. HYS: Indicates if the input buffer is with hysteresis.
11. BUFFER STRENGTH: Drive strength of the associated output buffer.
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
23
PRODUCT PREVIEW
Table 2-1 through Table 2-3 describe the terminal characteristics and the signals multiplexed on each pin
for the CBP, CBC, and CUS packages, respectively. The following list describes the table column
headers.
1. BALL BOTTOM: Ball number(s) on the bottom side associated with each signal(s) on the bottom.
2. BALL TOP: Ball number(s) on the top side associated with each signal(s) on the top.
3. PIN NAME: Names of signals multiplexed on each ball (also notice that the name of the pin is the
signal name in mode 0).
Note: Table 2-1 through Table 2-3 do not take into account subsystem pin multiplexing options.
Subsystem pin multiplexing options are described in Section 2.5, Signal Descriptions.
4. MODE: Multiplexing mode number.
(a) Mode 0 is the primary mode; this means that when mode 0 is set, the function mapped on the pin
corresponds to the name of the pin. There is always a function mapped on the primary mode.
Notice that primary mode is not necessarily the default mode.
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
12. PULL U/D - TYPE: Denotes the presence of an internal pullup or pulldown resistor. Pullup and
pulldown resistors can be enabled or disabled via software.
Note: The pullup/pulldown drive strength is equal to minumum = 50mA, tyical = 100 mA, maximum =
250 mA (unless otherwise specified), except for CBP balls P27, P26, R27, and R25, and CUS balls
N22 and P24, which the pulldown drive strength is equal to 1.8 kΩ.
13. IO CELL: IO cell information.
Note: Configuring two pins to the same input signal is not supported as it can yield unexpected results.
This can be easily prevented with the proper software configuration.
NOTE
In the AM3715/03 device, new Far End load Settings registers are added for some IOs. This
new feature configures the IO according to the transmission line and the
application/peripheral load. For a full description on these registers, see the System Control
Module / SCM Functional Description / Functional Register Description / Signal Integrity
Parameter Control Registers with Pad Group Assignment section of the AM3715/03 TRM.
Table 2-1. Ball Characteristics (CBP Pkg.) (1)
PRODUCT PREVIEW
BALL
BOTTOM
[1]
BALL TOP
[2]
PIN NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL. MODE POWER [9] HYS [10]
[8]
BUFFER
STRENG
TH (mA)
[11]
NA
J2
sdrc_d0
0
IO
L
Z
0
vdds_mem
Yes
4
NA
J1
sdrc_d1
0
IO
L
Z
0
vdds_mem
Yes
4
NA
G2
sdrc_d2
0
IO
L
Z
0
vdds_mem
Yes
4
NA
G1
sdrc_d3
0
IO
L
Z
0
vdds_mem
Yes
NA
F2
sdrc_d4
0
IO
L
Z
0
vdds_mem
NA
F1
sdrc_d5
0
IO
L
Z
0
NA
D2
sdrc_d6
0
IO
L
Z
NA
D1
sdrc_d7
0
IO
L
NA
B13
sdrc_d8
0
IO
NA
A13
sdrc_d9
0
NA
B14
sdrc_d10
NA
A14
NA
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
(2)
PU/ PD
LVCMOS
(2)
PU/ PD
LVCMOS
(2)
PU/ PD
LVCMOS
4
(2)
PU/ PD
LVCMOS
Yes
4
(2)
PU/ PD
LVCMOS
vdds_mem
Yes
4
(2)
PU/ PD
LVCMOS
0
vdds_mem
Yes
4
(2)
PU/ PD
LVCMOS
Z
0
vdds_mem
Yes
4
(2)
PU/ PD
LVCMOS
L
Z
0
vdds_mem
Yes
4
(2)
PU/ PD
LVCMOS
IO
L
Z
0
vdds_mem
Yes
4
(2)
PU/ PD
LVCMOS
0
IO
L
Z
0
vdds_mem
Yes
4
(2)
PU/ PD
LVCMOS
sdrc_d11
0
IO
L
Z
0
vdds_mem
Yes
4
(2)
PU/ PD
LVCMOS
B16
sdrc_d12
0
IO
L
Z
0
vdds_mem
Yes
4
(2)
PU/ PD
LVCMOS
NA
A16
sdrc_d13
0
IO
L
Z
0
vdds_mem
Yes
4
(2)
PU/ PD
LVCMOS
NA
B19
sdrc_d14
0
IO
L
Z
0
vdds_mem
Yes
4
(2)
PU/ PD
LVCMOS
NA
A19
sdrc_d15
0
IO
L
Z
0
vdds_mem
Yes
4
(2)
PU/ PD
LVCMOS
NA
B3
sdrc_d16
0
IO
L
Z
0
vdds_mem
Yes
4
(2)
PU/ PD
LVCMOS
NA
A3
sdrc_d17
0
IO
L
Z
0
vdds_mem
Yes
4
(2)
PU/ PD
LVCMOS
NA
B5
sdrc_d18
0
IO
L
Z
0
vdds_mem
Yes
4
(2)
PU/ PD
LVCMOS
NA
A5
sdrc_d19
0
IO
L
Z
0
vdds_mem
Yes
4
(2)
PU/ PD
LVCMOS
NA
B8
sdrc_d20
0
IO
L
Z
0
vdds_mem
Yes
4
(2)
PU/ PD
LVCMOS
NA
A8
sdrc_d21
0
IO
L
Z
0
vdds_mem
Yes
4
(2)
PU/ PD
LVCMOS
NA
B9
sdrc_d22
0
IO
L
Z
0
vdds_mem
Yes
4
(2)
PU/ PD
LVCMOS
NA
A9
sdrc_d23
0
IO
L
Z
0
vdds_mem
Yes
4
(2)
PU/ PD
LVCMOS
NA
B21
sdrc_d24
0
IO
L
Z
0
vdds_mem
Yes
4
(2)
PU/ PD
LVCMOS
NA
A21
sdrc_d25
0
IO
L
Z
0
vdds_mem
Yes
4
(2)
PU/ PD
LVCMOS
NA
D22
sdrc_d26
0
IO
L
Z
0
vdds_mem
Yes
4
(2)
PU/ PD
LVCMOS
NA
D23
sdrc_d27
0
IO
L
Z
0
vdds_mem
Yes
4
(2)
PU/ PD
LVCMOS
NA
E22
sdrc_d28
0
IO
L
Z
0
vdds_mem
Yes
4
(2)
PU/ PD
LVCMOS
NA
E23
sdrc_d29
0
IO
L
Z
0
vdds_mem
Yes
4
(2)
PU/ PD
LVCMOS
NA
G22
sdrc_d30
0
IO
L
Z
0
vdds_mem
Yes
4
(2)
PU/ PD
LVCMOS
NA
G23
sdrc_d31
0
IO
L
Z
0
vdds_mem
Yes
4
(2)
PU/ PD
LVCMOS
(1)
(2)
24
NA in this table stands for Not Applicable.
In buffer mode, the drive strength is fixed regardless of the load. The driver is designed to drive 75Ω for video applications. In bypass
mode, the drive strength is 0.47 mA.
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
BALL
BOTTOM
[1]
BALL TOP
[2]
PIN NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL. MODE POWER [9] HYS [10]
[8]
BUFFER
STRENG
TH (mA)
[11]
NA
AB21
sdrc_ba0
0
O
0
0
0
4
vdds_mem
No
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
(1)
NA
LVCMOS
NA
LVCMOS
NA
AC21
sdrc_ba1
0
O
0
0
0
vdds_mem
No
4
(1)
NA
N22
sdrc_a0
0
O
0
0
0
vdds_mem
No
4
(1)
NA
LVCMOS
NA
N23
sdrc_a1
0
O
0
0
0
vdds_mem
No
4
(1)
NA
LVCMOS
NA
P22
sdrc_a2
0
O
0
0
0
vdds_mem
No
4
(1)
NA
LVCMOS
NA
P23
sdrc_a3
0
O
0
0
0
vdds_mem
No
4
(1)
NA
LVCMOS
NA
R22
sdrc_a4
0
O
0
0
0
vdds_mem
No
4
(1)
NA
LVCMOS
NA
R23
sdrc_a5
0
O
0
0
0
vdds_mem
No
4
(1)
NA
LVCMOS
NA
T22
sdrc_a6
0
O
0
0
0
vdds_mem
No
4
(1)
NA
LVCMOS
NA
T23
sdrc_a7
0
O
0
0
0
vdds_mem
No
4
(1)
NA
LVCMOS
NA
U22
sdrc_a8
0
O
0
0
0
vdds_mem
No
4
(1)
NA
LVCMOS
NA
U23
sdrc_a9
0
O
0
0
0
vdds_mem
No
4
(1)
NA
LVCMOS
NA
V22
sdrc_a10
0
O
0
0
0
vdds_mem
No
4
(1)
NA
LVCMOS
NA
V23
sdrc_a11
0
O
0
0
0
vdds_mem
No
4
(1)
NA
LVCMOS
NA
W22
sdrc_a12
0
O
0
0
0
vdds_mem
No
4
(1)
NA
LVCMOS
NA
W23
sdrc_a13
0
O
0
0
0
vdds_mem
No
4
(1)
NA
LVCMOS
NA
Y22
sdrc_a14
0
O
0
0
0
vdds_mem
No
4
(1)
NA
LVCMOS
NA
M22
sdrc_ncs0
0
O
1
1
0
vdds_mem
No
4
(1)
NA
LVCMOS
NA
M23
sdrc_ncs1
0
O
1
1
0
vdds_mem
No
4
(1)
NA
LVCMOS
NA
A11
sdrc_clk
0
IO
L
0
0
vdds_mem
Yes
4
(1)
PU/ PD
LVCMOS
NA
B11
sdrc_nclk
0
O
1
1
0
vdds_mem
No
4
(1)
NA
LVCMOS
NA
J22
sdrc_cke0
0
O
H
1
7
vdds_mem
Yes
4
(1)
PU/ PD
LVCMOS
safe_mode_out1 (2)
7
sdrc_cke1
0
O
H
1
7
vdds_mem
NA
4
(1)
PU/ PD
LVCMOS
safe_mode_out1 (2)
7
NA
J23
NA
L23
sdrc_nras
0
O
1
1
0
vdds_mem
No
4
(1)
NA
LVCMOS
NA
L22
sdrc_ncas
0
O
1
1
0
vdds_mem
No
4
(1)
NA
LVCMOS
NA
K23
sdrc_nwe
0
O
1
1
0
vdds_mem
No
4
(1)
NA
LVCMOS
NA
C1
sdrc_dm0
0
O
0
0
0
vdds_mem
No
4
(1)
NA
LVCMOS
NA
A17
sdrc_dm1
0
O
0
0
0
vdds_mem
No
4
(1)
NA
LVCMOS
NA
A6
sdrc_dm2
0
O
0
0
0
vdds_mem
No
4
(1)
NA
LVCMOS
NA
A20
sdrc_dm3
0
O
0
0
0
vdds_mem
No
4
(1)
NA
LVCMOS
NA
C2
sdrc_dqs0
0
IO
L
Z
0
vdds_mem
Yes
4
(1)
PU/ PD
LVCMOS
NA
B17
sdrc_dqs1
0
IO
L
Z
0
vdds_mem
Yes
4
(1)
PU/ PD
LVCMOS
NA
B6
sdrc_dqs2
0
IO
L
Z
0
vdds_mem
Yes
4
(1)
PU/ PD
LVCMOS
NA
B20
sdrc_dqs3
0
IO
L
Z
0
vdds_mem
Yes
4
(1)
PU/ PD
LVCMOS
N4
AC15
gpmc_a1
0
O
L
L
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_34
4
IO
safe_mode
7
gpmc_a2
0
O
L
L
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_35
4
IO
safe_mode
7
gpmc_a3
0
O
L
L
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_36
4
IO
safe_mode
7
gpmc_a4
0
O
L
L
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_37
4
IO
safe_mode
7
M4
L4
K4
(1)
(2)
AB15
AC16
AB16
PRODUCT PREVIEW
Table 2-1. Ball Characteristics (CBP Pkg.) (continued)
The drive strength of these IOs is set according to the programmable load range: 2 pF to 4 pF per default or 4 pF to 12 pF. For a full
description of the drive strength programming, see the System Control Module chapter of the AM37xx TRM.
In the safe_mode_out1, the buffer is configured to drive 1.
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
25
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-1. Ball Characteristics (CBP Pkg.) (continued)
BALL
BOTTOM
[1]
BALL TOP
[2]
PIN NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL. MODE POWER [9] HYS [10]
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
T3
AC17
gpmc_a5
0
O
L
L
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_38
4
IO
safe_mode
7
gpmc_a6
0
O
H
H
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_39
4
IO
safe_mode
7
gpmc_a7
0
O
H
H
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_40
4
IO
safe_mode
7
gpmc_a8
0
O
H
H
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_41
4
IO
safe_mode
7
gpmc_a9
0
O
H
H
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
sys_ndmareq2
1
I
gpio_42
4
IO
safe_mode
7
gpmc_a10
0
O
H
H
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
sys_ndmareq3
1
I
gpio_43
4
IO
safe_mode
7
gpmc_a11
0
O
L
L
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
safe_mode
7
R3
N3
M3
L3
K3
PRODUCT PREVIEW
NA
AB17
AC18
AB18
AC19
AB19
AC20
K1
M2
gpmc_d0
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
L1
M1
gpmc_d1
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
L2
N2
gpmc_d2
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
P2
N1
gpmc_d3
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
T1
R2
gpmc_d4
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
V1
R1
gpmc_d5
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
V2
T2
gpmc_d6
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
W2
T1
gpmc_d7
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
H2
AB3
gpmc_d8
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_44
4
IO
safe_mode
7
gpmc_d9
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_45
4
IO
safe_mode
7
gpmc_d10
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_46
4
IO
safe_mode
7
gpmc_d11
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_47
4
IO
safe_mode
7
gpmc_d12
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_48
4
IO
safe_mode
7
gpmc_d13
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_49
4
IO
safe_mode
7
gpmc_d14
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_50
4
IO
safe_mode
7
gpmc_d15
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_51
4
IO
safe_mode
7
K2
P1
R1
R2
T2
W1
Y1
26
AC3
AB4
AC4
AB6
AC6
AB7
AC7
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
BALL
BOTTOM
[1]
BALL TOP
[2]
PIN NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL. MODE POWER [9] HYS [10]
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
G4
Y2
gpmc_ncs0
0
O
1
1
0
vdds_mem
NA
8
NA
LVCMOS
H3
Y1
gpmc_ncs1
0
O
H
1
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_52
4
IO
safe_mode
7
gpmc_ncs2
0
O
H
H
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_53
4
IO
safe_mode
7
gpmc_ncs3
0
O
H
H
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
sys_ndmareq0
1
I
gpio_54
4
IO
safe_mode
7
gpmc_ncs4
0
O
H
H
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
sys_ndmareq1
1
I
mcbsp4_clkx
2
IO
gpt_9_pwm_evt
3
IO
gpio_55
4
IO
safe_mode
7
gpmc_ncs5
0
O
H
H
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
sys_ndmareq2
1
I
mcbsp4_dr
2
I
gpt_10_pwm_evt
3
IO
gpio_56
4
IO
safe_mode
7
gpmc_ncs6
0
O
H
H
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
sys_ndmareq3
1
I
mcbsp4_dx
2
IO
gpt_11_pwm_evt
3
IO
gpio_57
4
IO
safe_mode
7
gpmc_ncs7
0
O
H
H
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpmc_io_dir
1
O
mcbsp4_fsx
2
IO
gpt_8_pwm_evt
3
IO
gpio_58
4
IO
safe_mode
7
gpmc_clk
0
O
L
0
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_59
4
IO
V8
U8
T8
R8
P8
N8
T4
NA
NA
NA
NA
NA
NA
W2
safe_mode
7
F3
W1
gpmc_nadv_ale
0
O
0
0
0
vdds_mem
NA
8
PU/ PD
LVCMOS
G2
V2
gpmc_noe
0
O
1
1
0
vdds_mem
NA
8
PU/ PD
LVCMOS
F4
V1
gpmc_nwe
0
O
1
1
0
vdds_mem
NA
8
PU/ PD
LVCMOS
G3
AC12
gpmc_nbe0_cle
0
O
L
0
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_60
4
IO
safe_mode
7
gpmc_nbe1
0
O
L
L
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_61
4
IO
safe_mode
7
gpmc_nwp
0
O
L
0
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_62
4
IO
U3
H1
NA
AB10
safe_mode
7
M8
AB12
gpmc_wait0
0
I
H
H
0
vdds_mem
Yes
NA
PU/ PD
LVCMOS
L8
AC10
gpmc_wait1
0
I
H
H
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_63
4
IO
safe_mode
7
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
PRODUCT PREVIEW
Table 2-1. Ball Characteristics (CBP Pkg.) (continued)
27
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-1. Ball Characteristics (CBP Pkg.) (continued)
BALL
BOTTOM
[1]
BALL TOP
[2]
PIN NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL. MODE POWER [9] HYS [10]
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
K8
NA
gpmc_wait2
0
I
H
H
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
uart4_tx
2
O
gpio_64
4
IO
safe_mode
7
gpmc_wait3
0
I
H
H
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
sys_ndmareq1
1
I
uart4_rx
2
I
gpio_65
4
IO
safe_mode
7
dss_pclk
0
O
H
H
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_66
4
IO
hw_dbg12
5
O
safe_mode
7
dss_hsync
0
O
H
H
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_67
4
IO
hw_dbg13
5
O
safe_mode
7
dss_vsync
0
O
H
H
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_68
4
IO
safe_mode
7
dss_acbias
0
O
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_69
4
IO
safe_mode
7
dss_data0
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
uart1_cts
2
I
NA
gpio_70
4
IO
8
safe_mode
7
dss_data1
0
IO
PU/ PD
LVCMOS
uart1_rts
2
O
8
gpio_71
4
IO
8
safe_mode
7
dss_data2
0
IO
PU/ PD
LVCMOS
gpio_72
4
IO
safe_mode
7
dss_data3
0
IO
PU/ PD
LVCMOS
gpio_73
4
IO
safe_mode
7
dss_data4
0
IO
PU/ PD
LVCMOS
uart3_rx_irrx
2
I
NA
gpio_74
4
IO
8
safe_mode
7
dss_data5
0
IO
PU/ PD
LVCMOS
uart3_tx_irtx
2
O
8
gpio_75
4
IO
8
safe_mode
7
dss_data6
0
IO
PU/ PD
LVCMOS
uart1_tx
2
O
gpio_76
4
IO
hw_dbg14
5
O
safe_mode
7
J8
D28
D26
PRODUCT PREVIEW
D27
E27
AG22
AH22
AG23
AH23
AG24
AH24
E26
28
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
8
L
L
7
vdds
Yes
8
8
L
L
7
vdds
Yes
8
8
8
L
L
7
vdds
Yes
8
8
8
L
L
7
vdds
Yes
8
8
L
L
7
vdds
Yes
8
8
L
L
7
TERMINAL DESCRIPTION
vdds
Yes
8
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
BALL
BOTTOM
[1]
BALL TOP
[2]
PIN NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL. MODE POWER [9] HYS [10]
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
F28
NA
dss_data7
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
uart1_rx
2
I
gpio_77
4
IO
hw_dbg15
5
O
safe_mode
7
dss_data8
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
uart3_rx_irrx
2
I
gpio_78
4
IO
hw_dbg16
5
O
safe_mode
7
dss_data9
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
uart3_tx_irtx
2
O
gpio_79
4
IO
hw_dbg17
5
O
safe_mode
7
dss_data10
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_80
4
IO
safe_mode
7
dss_data11
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_81
4
IO
safe_mode
7
dss_data12
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_82
4
IO
safe_mode
7
dss_data13
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_83
4
IO
safe_mode
7
dss_data14
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_84
4
IO
safe_mode
7
dss_data15
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_85
4
IO
safe_mode
7
dss_data16
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_86
4
IO
safe_mode
7
dss_data17
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_87
4
IO
safe_mode
7
dss_data18
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
mcspi3_clk
2
IO
dss_data0
3
IO
gpio_88
4
IO
safe_mode
7
dss_data19
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
mcspi3_simo
2
IO
dss_data1
3
IO
gpio_89
4
IO
safe_mode
7
dss_data20
0
O
H
H
7
vdds
Yes
8
PU/ PD
LVCMOS
mcspi3_somi
2
IO
dss_data2
3
IO
gpio_90
4
IO
safe_mode
7
F27
G26
AD28
AD27
AB28
AB27
AA28
AA27
G25
H27
H26
H25
E28
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
PRODUCT PREVIEW
Table 2-1. Ball Characteristics (CBP Pkg.) (continued)
29
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-1. Ball Characteristics (CBP Pkg.) (continued)
BALL
BOTTOM
[1]
BALL TOP
[2]
PIN NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL. MODE POWER [9] HYS [10]
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
J26
NA
dss_data21
0
O
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
mcspi3_cs0
2
IO
dss_data3
3
IO
gpio_91
4
IO
safe_mode
7
dss_data22
0
O
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
mcspi3_cs1
2
O
dss_data4
3
IO
gpio_92
4
IO
safe_mode
7
dss_data23
0
O
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
dss_data5
3
IO
gpio_93
4
IO
safe_mode
7
AC27
AC28
NA
NA
PRODUCT PREVIEW
W28
NA
cvideo2_out
0
AO
0
0
0
vdda_dac
NA
NA (1)
NA
10-bit DAC
Y28
NA
cvideo1_out
0
AO
0
0
0
vdda_dac
NA
NA (1)
NA
10-bit DAC
Y27
NA
cvideo1_vfb
0
AO
0
NA
0
vdda_dac
NA
NA (2)
NA
10-bit DAC
W27
NA
cvideo2_vfb
0
AO
0
NA
0
vdda_dac
NA
NA (2)
NA
10-bit DAC
W26
NA
cvideo1_rset
0
AIO
0
NA
0
vdda_dac
No
NA
NA
10-bit DAC
A24
NA
cam_hs
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_94
4
IO
hw_dbg0
5
O
safe_mode
7
cam_vs
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_95
4
IO
hw_dbg1
5
O
safe_mode
7
cam_xclka
0
O
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_96
4
IO
safe_mode
7
cam_pclk
0
I
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_97
4
IO
hw_dbg2
5
O
safe_mode
7
cam_fld
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
cam_global_reset
2
IO
gpio_98
4
IO
hw_dbg3
5
O
safe_mode
7
cam_d0
0
I
L
L
7
vdds
Yes
NA
PU/PD
LVCMOS
gpio_99
4
I
safe_mode
7
cam_d1
0
I
L
L
7
vdds
Yes
NA
PU/PD
LVCMOS
gpio_100
4
I
safe_mode
7
cam_d2
0
I
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_101
4
IO
hw_dbg4
5
O
safe_mode
7
cam_d3
0
I
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_102
4
IO
A23
C25
C27
C23
AG17
AH17
B24
C24
(1)
(2)
30
NA
NA
NA
NA
NA
NA
NA
NA
The drive strength is fixed regardless of the load. The driver is designed to drive 75-ohm for video applications.
In buffer mode, the drive strength is fixed regardless of the load. The driver is designed to drive 75Ω for video applications. In bypass
mode, the drive strength is 0.47 mA.
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
BALL
BOTTOM
[1]
D24
A25
K28
L28
K27
L27
B25
C26
B26
B23
D25
AG19
AH19
AG18
AH18
P21
N21
BALL TOP
[2]
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL. MODE POWER [9] HYS [10]
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
NA
PU/ PD
LVCMOS
L
L
7
vdds
Yes
NA
PU/ PD
LVCMOS
L
L
7
vdds
Yes
NA
PU/ PD
LVCMOS
L
L
7
vdds
Yes
NA
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
I
L
L
7
vdds
Yes
NA
PU/PD
LVCMOS
I
L
L
7
vdds
Yes
NA
PU/PD
LVCMOS
4
I
L
L
7
vdds
Yes
NA
PU/PD
LVCMOS
7
-
gpio_115
4
I
L
L
7
vdds
Yes
NA
PU/PD
LVCMOS
safe_mode
7
-
mcbsp2_fsx
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_116
4
IO
safe_mode
7
mcbsp2_clkx
0
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
PIN NAME [3]
MODE [4]
TYPE [5]
hw_dbg5
5
O
safe_mode
7
cam_d4
0
I
gpio_103
4
IO
hw_dbg6
5
O
safe_mode
7
cam_d5
0
I
gpio_104
4
IO
hw_dbg7
5
O
safe_mode
7
cam_d6
0
I
gpio_105
4
I
safe_mode
7
cam_d7
0
I
gpio_106
4
I
safe_mode
7
cam_d8
0
I
gpio_107
4
I
safe_mode
7
cam_d9
0
I
gpio_108
4
I
safe_mode
7
cam_d10
0
I
gpio_109
4
IO
hw_dbg8
5
O
safe_mode
7
cam_d11
0
I
gpio_110
4
IO
hw_dbg9
5
O
safe_mode
7
cam_xclkb
0
O
gpio_111
4
IO
safe_mode
7
cam_wen
0
I
cam_shutter
2
O
gpio_167
4
IO
hw_dbg10
5
O
safe_mode
7
cam_strobe
0
O
gpio_126
4
IO
hw_dbg11
5
O
safe_mode
7
gpio_112
4
safe_mode
7
gpio_113
4
safe_mode
7
gpio_114
safe_mode
IO
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
PRODUCT PREVIEW
Table 2-1. Ball Characteristics (CBP Pkg.) (continued)
31
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-1. Ball Characteristics (CBP Pkg.) (continued)
BALL
BOTTOM
[1]
R21
M21
N28
BALL TOP
[2]
NA
NA
NA
NA
NA
PRODUCT PREVIEW
N25
NA
NA
P27
P26
R27
R25
AE2
AG5
AH5
(3)
(4)
(5)
(6)
32
NA
NA
NA
NA
NA
NA
NA
NA
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds_mmc1 Yes
1
PU/ PD (3)
LVCMOS
L
L
7
vdds_mmc1 Yes
1
PU/ PD (3)
LVCMOS
L
L
7
vdds_mmc1 Yes
1
PU/ PD
L
L
7
vdds_mmc1 Yes
1
PU/ PD (5)
L
L
7
vdds_mmc1 Yes
1
PU/ PD
(5)
LVCMOS
L
L
7
vdds_mmc1 Yes
1
PU/ PD
(5)
LVCMOS
IO
L
L
7
vdds_x
Yes
1
PU/ PD
(5)
LVCMOS
IO
L
L
7
vdds_x
Yes
1
PU/ PD (5)
LVCMOS
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
IO
L
L
7
vdds_x
Yes
1
PU/ PD (5)
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
4
IO
safe_mode
7
mcbsp2_dr
0
I
gpio_118
4
IO
safe_mode
7
mcbsp2_dx
0
IO
gpio_119
4
IO
safe_mode
7
mmc1_clk
0
IO
4
IO
(4)
safe_mode
7
mmc1_cmd
0
O
(4)
4
IO
safe_mode
7
mmc1_dat0
0
IO
(4)
4
IO
safe_mode
7
mmc1_dat1
0
IO
gpio_123 (6)
4
IO
safe_mode
7
mmc1_dat2
0
IO
(6)
4
IO
safe_mode
7
mmc1_dat3
0
IO
gpio_125 (6)
4
IO
safe_mode
7
gpio_126 (6)
4
safe_mode
7
gpio_127 (6)
4
safe_mode
7
gpio_128 (6)
4
safe_mode
7
gpio_129 (6)
4
safe_mode
7
mmc2_clk
0
IO
mcspi3_clk
1
IO
gpio_130
4
IO
safe_mode
7
mmc2_cmd
0
O
mcspi3_simo
1
IO
gpio_131
4
IO
safe_mode
7
mmc2_dat0
0
IO
mcspi3_somi
1
IO
gpio_132
4
IO
safe_mode
7
gpio_124
P28
BUFFER
STRENG
TH (mA)
[11]
gpio_117
gpio_122
N26
RESET
REL. MODE POWER [9] HYS [10]
[8]
TYPE [5]
gpio_121
N27
BALL
RESET
REL.
STATE [7]
MODE [4]
gpio_120
M27
BALL
RESET
STATE [6]
PIN NAME [3]
(3)
LVCMOS
LVCMOS
PU = [50 to 100 kΩ] per default or [10 to 50 kΩ] according to the selected mode.
For a full description of the pull-up drive strength programming, see the PRG_SDMMC_PUSTRENGTH configuration register bit field in
the System Control Module chapter of the AM/DM37x TRM.
PD: 30 to 150 kΩ.
The usage of this GPIO is strongly restricted. For more information, see the GPIO chapter of the AM37x TRM.
PU = [50 to 100 kΩ] per default or [10 to 50 kΩ] according to the selected mode.
For a full description of the pull-up drive strength programming, see the PRG_SDMMC_PUSTRENGTH configuration register bit field in
the System Control Module chapter of the AM/DM37x TRM.
PD: 30 to 150 kΩ.
The usage of this GPIO is strongly restricted. For more information, see the GPIO chapter of the AM37x TRM.
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
BALL
BOTTOM
[1]
BALL TOP
[2]
PIN NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL. MODE POWER [9] HYS [10]
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
AH4
NA
mmc2_dat1
0
IO
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_133
4
IO
safe_mode
7
mmc2_dat2
0
IO
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
mcspi3_cs1
1
O
gpio_134
4
IO
safe_mode
7
mmc2_dat3
0
IO
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
mcspi3_cs0
1
IO
gpio_135
4
IO
safe_mode
7
mmc2_dat4
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
mmc2_dir_dat0
1
O
mmc3_dat0
3
IO
gpio_136
4
IO
safe_mode
7
mmc2_dat5
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
mmc2_dir_dat1
1
O
cam_global_reset
2
IO
mmc3_dat1
3
IO
gpio_137
4
IO
mm3_rxdp
6
IO
safe_mode
7
mmc2_dat6
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
mmc2_dir_cmd
1
O
cam_shutter
2
O
mmc3_dat2
3
IO
gpio_138
4
IO
safe_mode
7
mmc2_dat7
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
mmc2_clkin
1
I
mmc3_dat3
3
IO
gpio_139
4
IO
mm3_rxdm
6
IO
safe_mode
7
mcbsp3_dx
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
uart2_cts
1
I
gpio_140
4
IO
safe_mode
7
mcbsp3_dr
0
I
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
uart2_rts
1
O
gpio_141
4
IO
safe_mode
7
mcbsp3_clkx
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
uart2_tx
1
O
gpio_142
4
IO
safe_mode
7
mcbsp3_fsx
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
uart2_rx
1
I
gpio_143
4
IO
safe_mode
7
uart2_cts
0
I
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
mcbsp3_dx
1
IO
gpt_9_pwm_evt
2
IO
AG4
AF4
AE4
AH3
AF3
AE3
AF6
AE6
AF5
AE5
AB26
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
PRODUCT PREVIEW
Table 2-1. Ball Characteristics (CBP Pkg.) (continued)
33
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-1. Ball Characteristics (CBP Pkg.) (continued)
BALL
BOTTOM
[1]
AB25
AA25
AD25
PRODUCT PREVIEW
AA8
AA9
W8
Y8
AE1
AD1
AD2
AC1
Y21
AA21
34
BALL TOP
[2]
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
PIN NAME [3]
MODE [4]
TYPE [5]
gpio_144
4
IO
safe_mode
7
uart2_rts
0
O
mcbsp3_dr
1
I
gpt_10_pwm_evt
2
IO
gpio_145
4
IO
safe_mode
7
uart2_tx
0
O
mcbsp3_clkx
1
IO
gpt_11_pwm_evt
2
IO
gpio_146
4
IO
safe_mode
7
uart2_rx
0
I
mcbsp3_fsx
1
IO
gpt_8_pwm_evt
2
IO
gpio_147
4
IO
safe_mode
7
uart1_tx
0
O
gpio_148
4
IO
safe_mode
7
uart1_rts
0
O
gpio_149
4
IO
safe_mode
7
uart1_cts
0
I
gpio_150
4
IO
safe_mode
7
uart1_rx
0
I
mcbsp1_clkr
2
IO
mcspi4_clk
3
IO
gpio_151
4
IO
safe_mode
7
mcbsp4_clkx
0
IO
gpio_152
4
IO
mm3_txse0
6
IO
safe_mode
7
mcbsp4_dr
0
I
gpio_153
4
IO
mm3_rxrcv
6
IO
safe_mode
7
mcbsp4_dx
0
IO
gpio_154
4
IO
mm3_txdat
6
IO
safe_mode
7
mcbsp4_fsx
0
IO
gpio_155
4
IO
mm3_txen_n
6
IO
safe_mode
7
mcbsp1_clkr
0
IO
mcspi4_clk
1
IO
gpio_156
4
IO
safe_mode
7
mcbsp1_fsr
0
IO
cam_global_reset
2
IO
gpio_157
4
IO
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL. MODE POWER [9] HYS [10]
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
BALL
BOTTOM
[1]
BALL TOP
[2]
V21
NA
U21
T21
K26
W21
H18
H19
H20
H21
T28
T25
R28
T26
T27
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL. MODE POWER [9] HYS [10]
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
1
IO
mcbsp3_dx
2
IO
gpio_158
4
IO
safe_mode
7
mcbsp1_dr
0
I
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
mcspi4_somi
1
IO
mcbsp3_dr
2
I
gpio_159
4
IO
safe_mode
7
mcbsp_clks
0
I
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
cam_shutter
2
O
gpio_160
4
IO
uart1_cts
5
I
safe_mode
7
mcbsp1_fsx
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
mcspi4_cs0
1
IO
mcbsp3_fsx
2
IO
gpio_161
4
IO
safe_mode
7
mcbsp1_clkx
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
mcbsp3_clkx
2
IO
gpio_162
4
IO
safe_mode
7
uart3_cts_rctx
0
IO
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_163
4
IO
safe_mode
7
uart3_rts_sd
0
O
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_164
4
IO
safe_mode
7
uart3_rx_irrx
0
I
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_165
4
IO
safe_mode
7
uart3_tx_irtx
0
O
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_166
4
IO
safe_mode
7
hsusb0_clk
0
I
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_120
4
IO
safe_mode
7
hsusb0_stp
0
O
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_121
4
IO
safe_mode
7
hsusb0_dir
0
I
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_122
4
IO
safe_mode
7
hsusb0_nxt
0
I
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_124
4
IO
safe_mode
7
hsusb0_data0
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
uart3_tx_irtx
2
O
gpio_125
4
IO
uart2_tx
5
O
safe_mode
7
PIN NAME [3]
MODE [4]
safe_mode
7
mcbsp1_dx
mcspi4_simo
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
PRODUCT PREVIEW
Table 2-1. Ball Characteristics (CBP Pkg.) (continued)
35
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-1. Ball Characteristics (CBP Pkg.) (continued)
BALL
BOTTOM
[1]
BALL TOP
[2]
PIN NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL. MODE POWER [9] HYS [10]
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
U28
NA
hsusb0_data1
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
uart3_rx_irrx
2
I
gpio_130
4
IO
uart2_rx
5
I
safe_mode
7
hsusb0_data2
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
uart3_rts_sd
2
O
gpio_131
4
IO
uart2_rts
5
O
safe_mode
7
hsusb0_data3
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
uart3_cts_rctx
2
IO
gpio_169
4
IO
uart2_cts
5
I
safe_mode
7
hsusb0_data4
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_188
4
IO
safe_mode
7
hsusb0_data5
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_189
4
IO
safe_mode
7
hsusb0_data6
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_190
4
IO
safe_mode
7
hsusb0_data7
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_191
4
IO
U27
U26
U25
PRODUCT PREVIEW
V28
V27
V26
NA
NA
NA
NA
NA
NA
safe_mode
7
K21
NA
i2c1_scl
0
OD
H
H
0
vdds
NA
3
PU/ PD (7) (8)
Open Drain
J21
NA
i2c1_sda
0
IOD
H
H
0
vdds
Yes
3
PU/ PD (7) (8)
Open Drain
AF15
NA
i2c2_scl
0
OD
H
H
7
vdds
Yes
3
PU/ PD (7)
(9)
Open Drain
gpio_168
4
IO
safe_mode
7
i2c2_sda
0
IOD
PU/ PD (7)
(9)
Open Drain
gpio_183
4
IO
safe_mode
7
i2c3_scl
0
OD
PU/ PD (7)
(9)
Open Drain
gpio_184
4
IO
safe_mode
7
i2c3_sda
0
IOD
PU/ PD (7)
(9)
Open Drain
gpio_185
4
IO
safe_mode
7
i2c4_scl
0
OD
sys_ nvmode1
1
O
safe_mode
7
i2c4_sda
0
AE15
AF14
AG14
AD26
AE26
(7)
(8)
(9)
36
NA
NA
NA
NA
NA
IOD
4
H
H
7
vdds
Yes
3
4
H
H
7
vdds
Yes
3
4
H
H
7
vdds
Yes
3
4
H
H
0
vdds
Yes
3
PU/ PD (7) (8)
Open Drain
PU/ PD (7) (8)
Open Drain
4
H
H
0
vdds
Yes
3
The pullup and pulldown can be either the standard LVCMOS 100-mA drive strength or the I2C pullup and pulldown described below:
Nominal resistance = 1.66 kΩ in high-speed mode with a load range of 5 pF to 12 pF, 4.5 kΩ in standard / fast mode with a load range
of 5 pF to 15 pF.
The default buffer configuration is High-Speed I2C point-to-point mode using internal pullup. For a full description of the pull drive
strength programming, see prg_i2c1_pullupresx, prg_i2c1_lb1lb0, and prg_sr_pullupresx, prg_sr_lb bits of the CONTROL_PROG_IO1,
CONTROL_PROG_IO_WKUP1 control modules in the System Control Module / SCM Programming Model / Feature Settings section
and the System Control Module chapter of the AM/DM37x TRM to modify the IO settings if required by the targeted interface application.
The default buffer configuration is standard LVCMOS mode (non-I2C). For a full description of the pull drive strength programming, see
PADCONFS bits of CONTROL_PADCONF_X control modules (standard LVCMOS mode), or prg_i2c2_pullupresx, prg_i2c2_lb1lb0, and
prg_i2c3_pullupresx, prg_i2c3_lb1lb0 bits of the CONTROL_PROG_IO2, CONTROL_PROG_IO3 control modules (I2C mode) in the
System Control Module chapter of the AM/DM37x TRM to modify the IO settings if required by the targeted interface application.
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 2-1. Ball Characteristics (CBP Pkg.) (continued)
J25
AB3
AB4
AA4
AC2
AC3
AB1
AB2
AA3
Y2
Y3
Y4
BALL TOP
[2]
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
PIN NAME [3]
MODE [4]
TYPE [5]
sys_ nvmode2
1
O
safe_mode
7
hdq_sio
0
IOD
sys_altclk
1
I
i2c2_sccbe
2
OD
i2c3_sccbe
3
OD
gpio_170
4
IO
safe_mode
7
mcspi1_clk
0
IO
mmc2_dat4
1
IO
gpio_171
4
IO
safe_mode
7
mcspi1_ simo
0
IO
mmc2_dat5
1
IO
gpio_172
4
IO
safe_mode
7
mcspi1_ somi
0
IO
mmc2_dat6
1
IO
gpio_173
4
IO
safe_mode
7
mcspi1_cs0
0
IO
mmc2_dat7
1
IO
gpio_174
4
IO
safe_mode
7
mcspi1_cs1
0
O
mmc3_cmd
3
O
gpio_175
4
IO
safe_mode
7
mcspi1_cs2
0
O
mmc3_clk
3
IO
gpio_176
4
IO
safe_mode
7
mcspi1_cs3
0
O
hsusb2_ data2
3
IO
gpio_177
4
IO
mm2_txdat
5
IO
safe_mode
7
mcspi2_clk
0
IO
hsusb2_ data7
3
IO
gpio_178
4
IO
safe_mode
7
mcspi2_ simo
0
IO
gpt_9_pwm_evt
1
IO
hsusb2_ data4
3
IO
gpio_179
4
IO
safe_mode
7
mcspi2_ somi
0
IO
gpt_10_pwm_evt
1
IO
hsusb2_ data5
3
IO
gpio_180
4
IO
safe_mode
7
mcspi2_cs0
0
IO
gpt_11_pwm_evt
1
IO
hsusb2_ data6
3
IO
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL. MODE POWER [9] HYS [10]
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
4
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
PRODUCT PREVIEW
BALL
BOTTOM
[1]
37
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-1. Ball Characteristics (CBP Pkg.) (continued)
BALL
BOTTOM
[1]
V3
BALL TOP
[2]
NA
PIN NAME [3]
MODE [4]
TYPE [5]
gpio_181
4
IO
safe_mode
7
mcspi2_cs1
0
O
gpt_8_pwm_evt
1
IO
hsusb2_ data3
3
IO
gpio_182
4
IO
mm2_txen_n
5
IO
safe_mode
7
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL. MODE POWER [9] HYS [10]
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
AE25
NA
sys_32k
0
I
Z
Z
0
vdds
Yes
NA
PU/ PD
LVCMOS
AE17
NA
sys_xtalin
0
AI
Z
Z
0
vdds
Yes
NA
No
LVCMOS
Analog
AF17
NA
sys_xtalout
0
AO
Z
0
0
vdds
NA
NA
NA
LVCMOS
Analog
AF25
NA
sys_clkreq
0
IO
0
See
0
vdds
Yes
4
PU/ PD
LVCMOS
gpio_1
4
IO
safe_mode
7
sys_nirq
0
I
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_0
4
IO
AF26
NA
(10)
PRODUCT PREVIEW
safe_mode
7
AH25
NA
sys_nrespwron
0
I
Z
Z
0
vdds
Yes
NA
No
LVCMOS
AF24
NA
sys_nreswarm
0
IOD
0
1
0
vdds
Yes
4
PU/ PD
LVCMOS
gpio_30
4
IO
safe_mode
7
sys_boot0
0
I
dss_data18
3
IO
gpio_2
4
IO
safe_mode
7
sys_boot1
0
I
dss_data19
3
IO
gpio_3
4
IO
safe_mode
7
sys_boot2
0
I
gpio_4
4
IO
safe_mode
7
sys_boot3
0
I
dss_data20
3
O
gpio_5
4
IO
safe_mode
7
sys_boot4
0
I
mmc2_dir_dat2
1
O
dss_data21
3
O
gpio_6
4
IO
safe_mode
7
sys_boot5
0
I
mmc2_dir_dat3
1
O
dss_data22
3
O
gpio_7
4
IO
safe_mode
7
sys_boot6
0
I
dss_data23
3
O
gpio_8
4
IO
AH26
AG26
AE14
AF18
AF19
AE21
AF21
NA
NA
NA
NA
NA
NA
NA
Open Drain
Z
Z
0
vdds
Yes
8
PU/ PD
LVCMOS
Z
Z
0
vdds
Yes
8
PU/ PD
LVCMOS
Z
Z
0
vdds
Yes
8
PU/ PD
LVCMOS
Z
Z
0
vdds
Yes
8
PU/ PD
LVCMOS
Z
Z
0
vdds
Yes
8
PU/ PD
LVCMOS
Z
Z
0
vdds
Yes
8
PU/ PD
LVCMOS
Z
Z
0
vdds
Yes
8
PU/ PD
LVCMOS
(10) Depending on the sys_clkreq direction the corresponding reset released state value can be:
• Z if sys_clkreq is used as input
• 1 if sys_clkreq is used as output
For a full description of the sys_clkreq control, see Power, Reset, and Clock Management chapter of the AM37xx TRM.
38
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
BALL
BOTTOM
[1]
BALL TOP
[2]
AF22
NA
AG25
AE22
NA
NA
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL. MODE POWER [9] HYS [10]
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
0
O
0
L
7
vdds
Yes
4
PU/ PD
LVCMOS
4
IO
L
L
7 (11)
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
PIN NAME [3]
MODE [4]
safe_mode
7
sys_off_mode
gpio_9
safe_mode
7
sys_clkout1
0
O
gpio_10
4
IO
safe_mode
7
sys_clkout2
0
O
gpio_186
4
IO
safe_mode
7
AA17
NA
jtag_ntrst
0
I
L
L
0
vdds
Yes
NA
PU/ PD
LVCMOS
AA13
NA
jtag_tck
0
I
L
L
0
vdds
Yes
NA
PU/ PD
LVCMOS
AA12
NA
jtag_rtck
0
O
L
0
0
vdds
NA
4
PU/ PD
LVCMOS
AA18
NA
jtag_tms_tmsc
0
IO
H
H
0
vdds
Yes
4
PU/ PD
LVCMOS
AA20
NA
jtag_tdi
0
I
H
H
0
vdds
Yes
NA
PU/ PD
LVCMOS
AA19
NA
jtag_tdo
0
O
L
Z
0
vdds
NA
4
PU/ PD
LVCMOS
AA11
NA
jtag_emu0
0
IO
H
H
0
vdds
Yes
4
PU/ PD
LVCMOS
gpio_11
4
IO
safe_mode
7
jtag_emu1
0
IO
H
H
0
vdds
Yes
4
PU/ PD
LVCMOS
gpio_31
4
IO
safe_mode
7
etk_clk
0
O
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
mcbsp5_ clkx
1
IO
mmc3_clk
2
IO
hsusb1_stp
3
O
gpio_12
4
IO
mm1_rxdp
5
IO
hw_dbg0
7
O
etk_ctl
0
O
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
mmc3_cmd
2
O
hsusb1_clk
3
O
gpio_13
4
IO
hw_dbg1
7
O
etk_d0
0
O
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
mcspi3_ simo
1
IO
mmc3_dat4
2
IO
hsusb1_ data0
3
IO
gpio_14
4
IO
mm1_rxrcv
5
IO
hw_dbg2
7
O
etk_d1
0
O
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
mcspi3_ somi
1
IO
hsusb1_ data1
3
IO
gpio_15
4
IO
mm1_txse0
5
IO
hw_dbg3
7
O
etk_d2
0
O
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
mcspi3_cs0
1
IO
hsusb1_ data2
3
IO
gpio_16
4
IO
mm1_txdat
5
IO
hw_dbg4
7
O
AA10
AF10
AE10
AF11
AG12
AH12
NA
NA
NA
NA
NA
NA
PRODUCT PREVIEW
Table 2-1. Ball Characteristics (CBP Pkg.) (continued)
(11) Mux0 if sys_boot6 is pulled down (clock master).
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
39
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-1. Ball Characteristics (CBP Pkg.) (continued)
BALL
BOTTOM
[1]
BALL TOP
[2]
PIN NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL. MODE POWER [9] HYS [10]
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
AE13
NA
etk_d3
0
O
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
mcspi3_clk
1
IO
mmc3_dat3
2
IO
hsusb1_ data7
3
IO
gpio_17
4
IO
hw_dbg5
7
O
etk_d4
0
O
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
mcbsp5_dr
1
I
mmc3_dat0
2
IO
hsusb1_ data4
3
IO
gpio_18
4
IO
hw_dbg6
7
O
etk_d5
0
O
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
mcbsp5_fsx
1
IO
mmc3_dat1
2
IO
hsusb1_ data5
3
IO
gpio_19
4
IO
hw_dbg7
7
O
etk_d6
0
O
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
mcbsp5_dx
1
O
mmc3_dat2
2
IO
hsusb1_ data6
3
IO
gpio_20
4
IO
hw_dbg8
7
O
etk_d7
0
O
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
mcspi3_cs1
1
O
mmc3_dat7
2
IO
hsusb1_ data3
3
IO
gpio_21
4
IO
mm1_txen_n
5
IO
hw_dbg9
7
O
etk_d8
0
O
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
mmc3_dat6
2
IO
hsusb1_dir
3
I
gpio_22
4
IO
hw_dbg10
7
O
etk_d9
0
O
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
mmc3_dat5
2
IO
hsusb1_nxt
3
I
gpio_23
4
IO
mm1_rxdm
5
IO
hw_dbg11
7
O
etk_d10
0
O
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
uart1_rx
2
I
hsusb2_clk
3
O
gpio_24
4
IO
hw_dbg12
7
O
etk_d11
0
O
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
hsusb2_stp
3
O
gpio_25
4
IO
mm2_rxdp
5
IO
hw_dbg13
7
O
etk_d12
0
O
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
hsusb2_dir
3
I
AE11
AH9
PRODUCT PREVIEW
AF13
AH14
AF9
AG9
AE7
AF7
AG7
40
NA
NA
NA
NA
NA
NA
NA
NA
NA
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
BALL
BOTTOM
[1]
AH7
AG8
AH8
BALL TOP
[2]
NA
NA
NA
PIN NAME [3]
MODE [4]
TYPE [5]
gpio_26
4
IO
hw_dbg14
7
O
etk_d13
0
O
hsusb2_nxt
3
I
gpio_27
4
IO
mm2_rxdm
5
IO
hw_dbg15
7
O
etk_d14
0
O
hsusb2_ data0
3
IO
gpio_28
4
IO
mm2_rxrcv
5
IO
hw_dbg16
7
O
etk_d15
0
O
hsusb2_ data1
3
IO
gpio_29
4
IO
mm2_txse0
5
IO
hw_dbg17
7
O
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL. MODE POWER [9] HYS [10]
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
AH21
NA
vss
0
GND
-
-
-
-
-
-
-
-
AG16
NA
vss
0
GND
-
-
-
-
-
-
-
-
M28
NA
vss
0
GND
-
-
-
-
-
-
-
-
AH20
NA
cap_vddu_array
0
PWR
-
-
-
-
-
-
-
-
AG20
NA
vdds
0
PWR
-
-
-
-
-
-
-
-
AG21
NA
vdds
0
PWR
-
-
-
-
-
-
-
-
H28
NA
vdds
0
PWR
-
-
-
-
-
-
-
-
P25
NA
vdds_x
0
PWR
-
-
-
-
-
-
-
-
AE9, AE18, NA
AE19, AE24,
AC4, Y16,
Y18, Y19,
Y20, W18,
W20, V20,
U19, U20,
T19, P20,
N19, N20,
M19, M25,
L25, K18,
K20, J4,
J18, J19,
J20, H4,
E25, D8, D9,
D15, D22,
D23
vdd_core
0
PWR
-
-
-
-
-
-
-
-
Y9, Y10,
NA
Y11, Y14,
Y15, W9,
W11, W12,
W15, U10,
T9, T10, R9,
R10, N10,
M9, M10,
L9, L10,
K11, K14,
K13, J9,
J10, J11,
J14, J15
vdd_mpu_iva
0
PWR
-
-
-
-
-
-
-
-
0
PWR
-
-
-
-
-
-
-
-
AH6, U1,
R4, J1, J2,
G28, F1, F2,
D16, C16,
C28, B5, B8,
B12, B18,
B22, A5, A8,
A12, A18,
A22
AC5, P1,
vdds_mem
H1, F23, E1,
C23, A4, A7,
A10, A15,
A18
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
PRODUCT PREVIEW
Table 2-1. Ball Characteristics (CBP Pkg.) (continued)
41
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-1. Ball Characteristics (CBP Pkg.) (continued)
PIN NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL. MODE POWER [9] HYS [10]
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
AG27, AF8, NA
AF16, AF23,
AE8, AE16,
AE23, AD3,
AD4, W4,
F25, F26
vdds
0
PWR
-
-
-
-
-
-
-
-
W16
NA
vdds_sram
0
PWR
K15
NA
vdda_dplls_dll
0
PWR
-
-
-
-
-
-
-
-
AA16
NA
vdda_dpll_per
0
PWR
-
-
-
-
-
-
-
-
AA14
NA
vdda_wkup_
bg_bb
0
PWR
-
-
-
-
-
-
-
-
K25
NA
vdds_mmc1
0
PWR
-
-
-
-
-
-
-
-
V25
NA
vdda_dac
0
PWR
-
-
-
-
-
-
-
-
Y26
NA
vssa_dac
0
GND
-
-
-
-
-
-
-
-
AG2, AG3,
AG6, AF12,
AF20, AE12,
AE20,
AC25,
AC26, Y12,
Y13, Y25,
W3, W10,
W13, W14,
W17, W19,
W25, V9,
V10, V19,
U2, U9, T20,
R19, R20,
R26, P3, P4,
P9, P10,
P19, N9,
M20, L19,
L20, L26,
K9, K10,
K12, K16,
K17, K19,
J3, J12, J13,
J16, J17,
G27, E3,E4,
D7, D10,
D13, D19,
D21, C7,
C10, C13,
C19, C22,
B2, B27, A3,
A26
B4, B7, B10, vss
B15, B18,
C22, E2,
F22, H2, P2,
AB5, AB14,
AB20
0
GND
-
-
-
-
-
-
-
-
AA15
NA
0
PWR
-
-
-
-
-
-
-
-
AH10,
AH11,
AH13,
AH15,
AH16,
AG11,
AG13, AF1,
AF28, AE28,
AA1, N1,
M1, J28,
A15, M2,
N2, A1, A2,
A27, A28,
AG1, AG28,
AH1, AH2,
AH27,
AH28, B1,
B28, AA2,
AF2, AF27,
AG10,
AG15, B15,
J27, M26
A12, AA1,
Feed-Through
AA23, AB11, Pins (12)
AB9, AC11,
AC13,
AC14, AC8,
AC9, H23,
K1, L1, U1,
Y23, A1, A2,
A22, A23,
AB1, AB23,
AC1, AC2,
AC22,
AC23, B1,
B23, AA2,
U2, AA22,
AB8, AB13,
B12, H22,
K2, K22, L2
-
-
-
-
-
-
-
-
-
-
BALL
BOTTOM
[1]
BALL TOP
[2]
PRODUCT PREVIEW
cap_vddu_wkup_
logic
(12) These signals are feed-through balls. For more information, see Table 2-28.
42
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 2-1. Ball Characteristics (CBP Pkg.) (continued)
BALL TOP
[2]
PIN NAME [3]
MODE [4]
TYPE [5]
G1, A13,
AB2, AB22, No Connect (13)
A14,A16,
B2, B22
A17, B14,
B16, B17,
C14, C15,
C17, D17,
D18, H9,
H10, H11,
H12, H13,
H14, H15,
H16, H17,
A4, A6, A7,
A9, A10,
A11, A19,
A20, A21,
B3, B4, B6,
B7, B9, B10,
B11, B13,
B19, B20,
B21, C1,C2,
C3, C4,C5,
C6, C8,C9,
C11, C12,
C18, C20,
C21, D1,
D2, D3, D4,
D5,D6, D11,
D12,D14,
D20, E1,E2,
AA26,AE27,
A27, A28,
B28, AG1,
AG28, AH1,
AH2,AH27,
AH28
-
-
Y17
NA
sys_xtalgnd
0
GND
U4
NA
cap_vdd_bb_
mpu_iva
0
PWR
V4
NA
cap_vdd_sram
_mpu_iva
0
PWR
L21
NA
cap_vdd_sram_core 0
PWR
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL. MODE POWER [9] HYS [10]
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
PRODUCT PREVIEW
BALL
BOTTOM
[1]
(13) Pins labeled as "No connect" must be left unconnected. Any connections to these pins may result in unpredictable behavior.
Table 2-2. Ball Characteristics (CBC Pkg.) (1)
BALL
BOTTOM
[1]
BALL TOP
[2]
PIN NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
POWER [9] HYS [10]
REL. MODE
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
AE16
NA
cam_d0
0
I
L
L
7
vdda
Yes
NA
PU/ PD
LVCMOS
gpio_99
4
I
safe_mode
7
-
cam_d1
0
I
L
L
7
vdda
Yes
NA
PU/ PD
LVCMOS
gpio_100
4
I
safe_mode
7
-
gpio_112
4
I
L
L
7
vdda
Yes
NA
PU/ PD
LVCMOS
safe_mode
7
-
gpio_114
4
I
L
L
7
vdda
Yes
NA
PU/ PD
LVCMOS
safe_mode
7
-
gpio_113
4
I
L
L
7
vdda
Yes
NA
PU/ PD
LVCMOS
safe_mode
7
-
PU/ PD
LVCMOS
PU/ PD
LVCMOS
PU/ PD
LVCMOS
PU/ PD
LVCMOS
AE15
AD17
AE18
AD16
NA
NA
NA
NA
gpio_115
4
I
AE17
NA
safe_mode
7
-
L
L
7
vdda
Yes
NA
NA
G20
sdrc_a0
0
O
0
0
0
vdds
NA
4
NA
K20
sdrc_a1
0
O
0
0
0
vdds
NA
4 (2)
NA
J20
sdrc_a2
0
O
0
0
0
vdds
NA
4
(1)
(2)
(2)
(2)
NA in this table stands for Not Applicable.
The drive strength of these IOs is set according to the programmable load range: 2 pF to 4 pF per default or 4 pF to 12 pF. For a full
description of the drive strength programming, see the System Control Module chapter of the TRM.
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
43
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
BALL TOP
[2]
PIN NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
POWER [9] HYS [10]
REL. MODE
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
NA
J21
sdrc_a3
0
O
0
0
0
vdds
NA
4
(2)
NA
U21
sdrc_a4
0
O
0
0
0
vdds
NA
PU/ PD
LVCMOS
4
(2)
PU/ PD
NA
R20
sdrc_a5
0
O
0
0
0
vdds
LVCMOS
NA
4
(2)
PU/ PD
NA
M21
sdrc_a6
0
O
0
0
0
LVCMOS
vdds
NA
4
(2)
PU/ PD
NA
M20
sdrc_a7
0
O
0
0
LVCMOS
0
vdds
NA
4
(2)
PU/ PD
NA
N20
sdrc_a8
0
O
0
LVCMOS
0
0
vdds
NA
4
(2)
PU/ PD
NA
K21
sdrc_a9
0
O
LVCMOS
0
0
0
vdds
NA
4
(2)
PU/ PD
NA
Y16
sdrc_a10
0
LVCMOS
O
0
0
0
vdds
NA
4
(2)
PU/ PD
NA
N21
sdrc_a11
LVCMOS
0
O
0
0
0
vdds
NA
4 (2)
PU/ PD
NA
R21
LVCMOS
sdrc_a12
0
O
0
0
0
vdds
NA
4
(2)
PU/ PD
NA
LVCMOS
AA15
sdrc_a13
0
O
0
0
0
vdds
NA
4
(2)
PU/ PD
LVCMOS
NA
Y12
sdrc_a14
0
O
0
0
0
vdds
NA
4
(2)
PU/ PD
LVCMOS
NA
AA18
sdrc_ba0
0
O
0
0
0
vdds
NA
4
(2)
PU/ PD
LVCMOS
NA
V20
sdrc_ba1
0
O
0
0
0
vdds
NA
4 (2)
PU/ PD
LVCMOS
NA
Y15
sdrc_cke0
0
O
H
1
7
vdds
NA
4
(2)
PU/ PD
LVCMOS
safe_mode_out1 (3)
7
sdrc_cke1
0
O
H
1
7
vdds
NA
4
(2)
PU/ PD
LVCMOS
safe_mode_out1 (4)
7
NA
Y13
PRODUCT PREVIEW
NA
A12
sdrc_clk
0
IO
L
0
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
NA
D1
sdrc_d0
0
IO
L
Z
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
NA
G1
sdrc_d1
0
IO
L
Z
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
NA
G2
sdrc_d2
0
IO
L
Z
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
NA
E1
sdrc_d3
0
IO
L
Z
0
vdds
Yes
4 (5)
PU/ PD
LVCMOS
NA
D2
sdrc_d4
0
IO
L
Z
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
NA
E2
sdrc_d5
0
IO
L
Z
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
NA
B3
sdrc_d6
0
IO
L
Z
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
NA
B4
sdrc_d7
0
IO
L
Z
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
NA
A10
sdrc_d8
0
IO
L
Z
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
NA
B11
sdrc_d9
0
IO
L
Z
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
NA
A11
sdrc_d10
0
IO
L
Z
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
NA
B12
sdrc_d11
0
IO
L
Z
0
vdds
Yes
4 (5)
PU/ PD
LVCMOS
NA
A16
sdrc_d12
0
IO
L
Z
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
NA
A17
sdrc_d13
0
IO
L
Z
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
NA
B17
sdrc_d14
0
IO
L
Z
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
NA
B18
sdrc_d15
0
IO
L
Z
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
NA
B7
sdrc_d16
0
IO
L
Z
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
NA
A5
sdrc_d17
0
IO
L
Z
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
NA
B6
sdrc_d18
0
IO
L
Z
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
NA
A6
sdrc_d19
0
IO
L
Z
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
NA
A8
sdrc_d20
0
IO
L
Z
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
NA
B9
sdrc_d21
0
IO
L
Z
0
vdds
Yes
4 (5)
PU/ PD
LVCMOS
NA
A9
sdrc_d22
0
IO
L
Z
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
NA
B10
sdrc_d23
0
IO
L
Z
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
NA
C21
sdrc_d24
0
IO
L
Z
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
NA
D20
sdrc_d25
0
IO
L
Z
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
NA
B19
sdrc_d26
0
IO
L
Z
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
NA
C20
sdrc_d27
0
IO
L
Z
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
NA
D21
sdrc_d28
0
IO
L
Z
0
vdds
Yes
4 (5)
PU/ PD
LVCMOS
NA
E20
sdrc_d29
0
IO
L
Z
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
NA
E21
sdrc_d30
0
IO
L
Z
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
NA
G21
sdrc_d31
0
IO
L
Z
0
vdds
Yes
4 (5)
PU/ PD
LVCMOS
(3)
(4)
(5)
44
In the safe_mode_out1, the buffer is configured to drive 1.
In the safe_mode_out1, the buffer is configured to drive 1.
The drive strength of these IOs is set according to the programmable load range: 2 pF to 4 pF per default or 4 pF to 12 pF. For a full
description of the drive strength programming, see the System Control Module chapter of the TRM.
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
BALL
BOTTOM
[1]
BALL TOP
[2]
PIN NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
POWER [9] HYS [10]
REL. MODE
[8]
BUFFER
STRENG
TH (mA)
[11]
NA
H1
sdrc_dm0
0
O
0
0
0
vdds
NA
4
NA
A14
sdrc_dm1
0
O
0
0
0
vdds
NA
4
NA
A4
sdrc_dm2
0
O
0
0
0
vdds
NA
4 (5)
NA
A18
sdrc_dm3
0
O
0
0
0
vdds
NA
4
NA
C2
sdrc_dqs0
0
IO
L
Z
0
vdds
Yes
NA
B15
sdrc_dqs1
0
IO
L
Z
0
vdds
NA
B8
sdrc_dqs2
0
IO
L
Z
0
NA
A19
sdrc_dqs3
0
IO
L
Z
NA
U20
sdrc_ncas
0
O
1
NA
B13
sdrc_nclk
0
O
NA
T21
sdrc_ncs0
0
NA
T20
sdrc_ncs1
NA
V21
NA
AE21
AE22
AE23
AE24
AD23
AD24
AC26
AD26
AA25
Y25
AA26
AB26
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
(5)
PU/ PD
LVCMOS
(5)
PU/ PD
LVCMOS
PU/ PD
LVCMOS
(5)
PU/ PD
LVCMOS
4
(5)
PU/ PD
LVCMOS
Yes
4
(5)
PU/ PD
LVCMOS
vdds
Yes
4
(5)
PU/ PD
LVCMOS
0
vdds
Yes
4
(5)
PU/ PD
LVCMOS
1
0
vdds
NA
4
(5)
PU/ PD
LVCMOS
1
1
0
vdds
NA
4
(5)
PU/ PD
LVCMOS
O
1
1
0
vdds
NA
4
(5)
PU/ PD
LVCMOS
0
O
1
1
0
vdds
NA
4
(5)
PU/ PD
LVCMOS
sdrc_nras
0
O
1
1
0
vdds
NA
4
(5)
PU/ PD
LVCMOS
Y18
sdrc_nwe
0
O
1
1
0
vdds
NA
4
(5)
PU/ PD
LVCMOS
NA
dss_data0
0
IO
L
L
7
vdda
Yes
8
PU/ PD
LVCMOS
uart1_cts
2
I
gpio_70
4
IO
safe_mode
7
-
dss_data1
0
IO
L
L
7
vdda
Yes
8
PU/ PD
LVCMOS
uart1_rts
2
O
gpio_71
4
IO
safe_mode
7
-
dss_data2
0
IO
L
L
7
vdda
Yes
8
PU/ PD
LVCMOS
gpio_72
4
IO
safe_mode
7
-
dss_data3
0
IO
L
L
7
vdda
Yes
8
PU/ PD
LVCMOS
gpio_73
4
IO
safe_mode
7
-
dss_data4
0
IO
L
L
7
vdda
Yes
8
PU/ PD
LVCMOS
uart3_rx_irrx
2
I
gpio_74
4
IO
safe_mode
7
-
dss_data5
0
IO
L
L
7
vdda
Yes
8
PU/ PD
LVCMOS
uart3_tx_irtx
2
O
gpio_75
4
IO
safe_mode
7
-
dss_data10
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_80
4
IO
safe_mode
7
-
dss_data11
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_81
4
IO
safe_mode
7
-
dss_data12
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_82
4
IO
safe_mode
7
-
dss_data13
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_83
4
IO
safe_mode
7
-
dss_data14
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_84
4
IO
safe_mode
7
-
dss_data15
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_85
4
IO
safe_mode
7
-
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
PRODUCT PREVIEW
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
45
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
BALL TOP
[2]
PIN NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
POWER [9] HYS [10]
REL. MODE
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
F25
NA
dss_data20
0
O
H
H
7
vdds
Yes
8
PU/ PD
LVCMOS
mcspi3_somi
2
IO
dss_data2
3
IO
gpio_90
4
IO
safe_mode
7
-
dss_data22
0
O
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
mcspi3_cs1
2
O
dss_data4
3
IO
gpio_92
4
IO
safe_mode
7
-
dss_data23
0
O
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
dss_data5
3
IO
gpio_93
4
IO
safe_mode
7
-
dss_pclk
0
O
H
H
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_66
4
IO
hw_dbg12
5
O
safe_mode
7
-
gpmc_a1
0
O
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_34
4
IO
safe_mode
7
-
gpmc_a2
0
O
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_35
4
IO
safe_mode
7
-
gpmc_a3
0
O
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_36
4
IO
safe_mode
7
-
gpmc_a4
0
O
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_37
4
IO
safe_mode
7
-
gpmc_a5
0
O
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_38
4
IO
safe_mode
7
-
gpmc_a6
0
O
H
H
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_39
4
IO
safe_mode
7
-
gpmc_a7
0
O
H
H
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_40
4
IO
safe_mode
7
-
gpmc_a8
0
O
H
H
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_41
4
IO
safe_mode
7
-
gpmc_a9
0
O
H
H
7
vdds
Yes
8
PU/ PD
LVCMOS
sys_ndmareq2
1
I
gpio_42
4
IO
safe_mode
7
-
gpmc_a10
0
O
H
H
7
vdds
Yes
8
PU/ PD
LVCMOS
sys_ndmareq3
1
I
gpio_43
4
IO
safe_mode
7
-
gpmc_clk
0
O
L
0
0
vdds
Yes
8
PU/ PD
LVCMOS
gpio_59
4
IO
safe_mode
7
-
gpmc_d0
0
IO
H
H
0
vdds
Yes
8
PU/ PD
LVCMOS
AC25
AB25
G25
PRODUCT PREVIEW
J2
H1
H2
G2
F1
F2
E1
E2
D1
D2
N1
AA2
46
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
L1
U2
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
BALL
BOTTOM
[1]
BALL TOP
[2]
PIN NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
POWER [9] HYS [10]
REL. MODE
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
AA1
U1
gpmc_d1
0
IO
H
H
0
vdds
Yes
8
PU/ PD
LVCMOS
AC2
V2
gpmc_d2
0
IO
H
H
0
vdds
Yes
8
PU/ PD
LVCMOS
AC1
V1
gpmc_d3
0
IO
H
H
0
vdds
Yes
8
PU/ PD
LVCMOS
AE5
AA3
gpmc_d4
0
IO
H
H
0
vdds
Yes
8
PU/ PD
LVCMOS
AD6
AA4
gpmc_d5
0
IO
H
H
0
vdds
Yes
8
PU/ PD
LVCMOS
AD5
Y3
gpmc_d6
0
IO
H
H
0
vdds
Yes
8
PU/ PD
LVCMOS
AC5
Y4
gpmc_d7
0
IO
H
H
0
vdds
Yes
8
PU/ PD
LVCMOS
V1
R1
gpmc_d8
0
IO
H
H
0
vdds
Yes
8
PU/ PD
LVCMOS
gpio_44
4
IO
safe_mode
7
-
gpmc_d9
0
IO
H
H
0
vdds
Yes
8
PU/ PD
LVCMOS
gpio_45
4
IO
safe_mode
7
-
gpmc_d10
0
IO
H
H
0
vdds
Yes
8
PU/ PD
LVCMOS
gpio_46
4
IO
safe_mode
7
-
gpmc_d11
0
IO
H
H
0
vdds
Yes
8
PU/ PD
LVCMOS
gpio_47
4
IO
safe_mode
7
-
gpmc_d12
0
IO
H
H
0
vdds
Yes
8
PU/ PD
LVCMOS
gpio_48
4
IO
safe_mode
7
-
gpmc_d13
0
IO
H
H
0
vdds
Yes
8
PU/ PD
LVCMOS
gpio_49
4
IO
safe_mode
7
-
gpmc_d14
0
IO
H
H
0
vdds
Yes
8
PU/ PD
LVCMOS
gpio_50
4
IO
safe_mode
7
-
gpmc_d15
0
IO
H
H
0
vdds
Yes
8
PU/ PD
LVCMOS
gpio_51
4
IO
Y1
T1
U2
U1
P1
L2
M2
T1
N1
P2
P1
M1
J2
K2
safe_mode
7
-
AD10
AA9
gpmc_nadv_ale
0
O
0
0
0
vdds
NA
8
NA
LVCMOS
K2
NA
gpmc_nbe0_cle
0
O
L
0
0
vdds
Yes
8
PU/ PD
LVCMOS
gpio_60
4
IO
safe_mode
7
-
gpmc_nbe1
0
O
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_61
4
IO
J1
NA
safe_mode
7
-
AD8
AA8
gpmc_ncs0
0
O
1
1
0
vdds
NA
8
NA
LVCMOS
AD1
W1
gpmc_ncs1
0
O
H
1
0
vdds
Yes
8
PU/ PD
LVCMOS
gpio_52
4
IO
safe_mode
7
-
gpmc_ncs2
0
O
H
H
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_53
4
IO
safe_mode
7
-
gpmc_ncs3
0
O
H
H
7
vdds
Yes
8
PU/ PD
LVCMOS
sys_ndmareq0
1
I
gpio_54
4
IO
safe_mode
7
-
gpmc_ncs4
0
O
H
H
7
vdds
Yes
8
PU/ PD
LVCMOS
sys_ndmareq1
1
I
mcbsp4_clkx
2
IO
gpt_9_pwm_evt
3
IO
gpio_55
4
IO
A3
B6
B4
NA
NA
NA
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
PRODUCT PREVIEW
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
47
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
BALL TOP
[2]
C4
NA
B5
C5
NA
NA
PRODUCT PREVIEW
PIN NAME [3]
MODE [4]
TYPE [5]
safe_mode
7
-
gpmc_ncs5
0
O
sys_ndmareq2
1
I
mcbsp4_dr
2
I
gpt_10_pwm_evt
3
IO
gpio_56
4
IO
safe_mode
7
-
gpmc_ncs6
0
O
sys_ndmareq3
1
I
mcbsp4_dx
2
IO
gpt_11_pwm_evt
3
IO
gpio_57
4
IO
safe_mode
7
-
gpmc_ncs7
0
O
gpmc_io_dir
1
O
mcbsp4_fsx
2
IO
gpt_8_pwm_evt
3
IO
gpio_58
4
IO
safe_mode
7
-
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
POWER [9] HYS [10]
REL. MODE
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
H
H
7
vdds
Yes
8
PU/ PD
LVCMOS
H
H
7
vdds
Yes
8
PU/ PD
LVCMOS
H
H
7
vdds
Yes
8
PU/ PD
LVCMOS
N2
L2
gpmc_noe
0
O
1
1
0
vdds
NA
8
NA
LVCMOS
M1
K1
gpmc_nwe
0
O
1
1
0
vdds
NA
8
NA
LVCMOS
AC6
Y5
gpmc_nwp
0
O
L
0
0
vdds
Yes
8
PU/ PD
LVCMOS
gpio_62
4
IO
safe_mode
7
-
AC11
Y10
gpmc_wait0
0
I
H
H
0
vdds
Yes
NA
PU/ PD
LVCMOS
AC8
Y8
gpmc_wait1
0
I
H
H
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_63
4
IO
safe_mode
7
-
gpmc_wait2
0
I
H
H
7
vdds
Yes
8
PU/ PD
LVCMOS
uart4_tx
2
O
gpio_64
4
IO
safe_mode
7
-
gpmc_wait3
0
I
H
H
7
vdds
Yes
8
PU/ PD
LVCMOS
sys_ndmareq1
1
I
uart4_rx
2
I
gpio_65
4
IO
safe_mode
7
-
hsusb0_clk
0
I
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_120
4
IO
safe_mode
7
-
hsusb0_data0
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
uart3_tx_irtx
2
O
gpio_125
4
IO
uart2_tx
5
O
safe_mode
7
-
hsusb0_data1
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
uart3_rx_irrx
2
I
gpio_130
4
IO
uart2_rx
5
I
safe_mode
7
-
hsusb0_data2
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
uart3_rts_sd
2
O
gpio_131
4
IO
uart2_rts
5
O
B3
C6
W19
V20
Y20
V18
48
NA
NA
NA
NA
NA
NA
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
BALL
BOTTOM
[1]
BALL TOP
[2]
W20
NA
W17
Y18
Y19
Y17
V19
W18
U20
NA
NA
NA
NA
NA
NA
NA
PIN NAME [3]
MODE [4]
TYPE [5]
safe_mode
7
-
hsusb0_data3
0
IO
uart3_cts_rctx
2
IO
gpio_169
4
IO
uart2_cts
5
I
safe_mode
7
-
hsusb0_data4
0
IO
gpio_188
4
IO
safe_mode
7
-
hsusb0_data5
0
IO
gpio_189
4
IO
safe_mode
7
-
hsusb0_data6
0
IO
gpio_190
4
IO
safe_mode
7
-
hsusb0_data7
0
IO
gpio_191
4
IO
safe_mode
7
-
hsusb0_dir
0
I
gpio_122
4
IO
safe_mode
7
-
hsusb0_nxt
0
I
gpio_124
4
IO
safe_mode
7
-
hsusb0_stp
0
O
gpio_121
4
IO
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
POWER [9] HYS [10]
REL. MODE
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
safe_mode
7
-
U15
NA
jtag_ntrst
0
I
L
L
0
vdds
Yes
NA
PU/ PD
LVCMOS
W13
NA
jtag_rtck
0
O
L
0
0
vdds
NA
4
PU/ PD
LVCMOS
V14
NA
jtag_tck
0
I
L
L
0
vdds
Yes
NA
PU/ PD
LVCMOS
U16
NA
jtag_tdi
0
I
H
H
0
vdds
Yes
NA
PU/ PD
LVCMOS
Y13
NA
jtag_tdo
0
O
L
Z
0
vdds
NA
4
PU/ PD
LVCMOS
V15
NA
jtag_tms_tmsc
0
IO
H
H
0
vdds
Yes
4
PU/ PD
LVCMOS
N19
NA
mmc1_clk
0
IO
L
L
7
vdds_mmc1 Yes
1
PU/ PD (6)
LVCMOS
gpio_120 (7)
4
IO
safe_mode
7
-
mmc1_cmd
0
O
L
L
7
vdds_mmc1 Yes
1
PU/ PD (6)
LVCMOS
gpio_121 (7)
4
IO
safe_mode
7
-
mmc1_dat0
0
IO
L
L
7
vdds_mmc1 Yes
1
PU/ PD (6)
LVCMOS
(7)
4
IO
safe_mode
7
-
mmc1_dat1
0
IO
L
L
7
vdds_mmc1 Yes
1
PU/ PD (6)
LVCMOS
gpio_123 (7)
4
IO
safe_mode
7
-
mmc1_dat2
0
IO
L
L
7
vdds_mmc1 Yes
1
PU/ PD (6)
LVCMOS
(7)
4
IO
safe_mode
7
-
mmc1_dat3
0
IO
L
L
7
vdds_mmc1 Yes
1
PU/ PD (6)
LVCMOS
gpio_125 (7)
4
IO
L18
M19
NA
NA
gpio_122
M18
K18
NA
NA
gpio_124
N20
(6)
(7)
NA
PRODUCT PREVIEW
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
PU = [50 to 100 kΩ] per default or [10 to 50 kΩ] according to the selected mode.
For a full description of the pull-up drive strength programming, see the PRG_SDMMC_PUSTRENGTH configuration register bit field in
the System Control Module chapter of the AM/DM37x TRM.
PD: 30 to 150 kΩ.
The usage of this GPIO is strongly restricted. For more information, see the General-Purpose Interface chapter of the TRM.
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
49
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
BALL TOP
[2]
M20
NA
P17
P18
P19
J25
NA
NA
NA
NA
PIN NAME [3]
MODE [4]
TYPE [5]
safe_mode
7
-
gpio_126 (7)
4
IO
safe_mode
7
-
gpio_127 (7)
4
IO
safe_mode
7
-
gpio_128 (7)
4
IO
safe_mode
7
-
gpio_129 (7)
4
IO
safe_mode
7
-
i2c1_scl
0
OD
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
POWER [9] HYS [10]
REL. MODE
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
L
L
7
vdds_x
Yes
1
PU/PD (6)
LVCMOS
L
L
7
vdds_x
Yes
1
PU/PD (6)
LVCMOS
L
L
7
vdds
Yes
4
PU/PD
LVCMOS
L
L
7
vdds_x
Yes
1
PU/PD
H
H
0
vdds
NA
3
PU/ PD (8)
(6)
LVCMOS
(9)
Open Drain
(8) (9)
LVCMOS
Open Drain
J24
NA
i2c1_sda
0
IOD
H
H
0
vdds
Yes
3
PU/ PD
C2
NA
i2c2_scl
0
OD
H
H
7
vdds
Yes
3
PU/ PD (8) (10) LVCMOS
Open Drain
gpio_168
4
IO
safe_mode
7
-
i2c2_sda
0
IOD
gpio_183
4
IO
safe_mode
7
-
i2c3_scl
0
OD
gpio_184
4
IO
safe_mode
7
-
i2c3_sda
0
IOD
gpio_185
4
IO
safe_mode
7
-
mcbsp1_clkr
0
IO
mcspi4_clk
1
IO
gpio_156
4
IO
safe_mode
7
-
mcbsp1_clkx
0
IO
mcbsp3_clkx
2
IO
gpio_162
4
IO
safe_mode
7
-
mcbsp1_dr
0
I
mcspi4_somi
1
IO
mcbsp3_dr
2
I
gpio_159
4
IO
safe_mode
7
-
C1
PRODUCT PREVIEW
AB4
AC4
U19
T17
T20
NA
NA
NA
NA
NA
NA
4
4
H
H
7
vdds
Yes
3
PU/ PD (8) (10) LVCMOS
Open Drain
4
4
H
H
7
vdds
Yes
3
PU/ PD (8) (10) LVCMOS
Open Drain
4
4
H
H
7
vdds
Yes
3
PU/
PD (11)(12)
LVCMOS
Open Drain
4
4
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
(8)
The pullup and pulldown can be either the standard LVCMOS 100-mA drive strength or the I2C pullup and pulldown described as
follows: Nominal resistance = 1.66 kΩ in high-speed mode with a load range of 5 pF to 12 pF, 4.5 kΩ in standard / fast mode with a load
range of 5 pF to 15 pF.
(9) The default buffer configuration is High-Speed I2C point-to-point mode using internal pullup. For a full description of the pull drive
strength programming, see prg_i2c1_pullupresx, prg_i2c1_lb1lb0, and prg_sr_pullupresx, prg_sr_lb bits of the CONTROL_PROG_IO1,
CONTROL_PROG_IO_WKUP1 control modules in the System Control Module chapter of the TRM to modify the IO settings if required
by the targeted interface application.
(10) The default buffer configuration is standard LVCMOS mode (non-I2C). For a full description of the pull drive strength programming, see
PADCONFS bits of CONTROL_PADCONF_X control modules (standard LVCMOS mode), or prg_i2c2_pullupresx, prg_i2c2_lb1lb0, and
prg_i2c3_pullupresx, prg_i2c3_lb1lb0 bits of the CONTROL_PROG_IO2, CONTROL_PROG_IO3 control modules (I2C mode) in the
System Control Module chapter of the AM/DM37x TRM to modify the IO settings if required by the targeted interface application.
(11) The pullup and pulldown can be either the standard LVCMOS 100-mA drive strength or the I2C pullup and pulldown described as
follows: Nominal resistance = 1.66 kΩ in high-speed mode with a load range of 5 pF to 12 pF, 4.5 kΩ in standard / fast mode with a load
range of 5 pF to 15 pF.
(12) The default buffer configuration is standard LVCMOS mode (non-I2C). For a full description of the pull drive strength programming, see
PADCONFS bits of CONTROL_PADCONF_X control modules (standard LVCMOS mode), or prg_i2c2_pullupresx, prg_i2c2_lb1lb0, and
prg_i2c3_pullupresx, prg_i2c3_lb1lb0 bits of the CONTROL_PROG_IO2, CONTROL_PROG_IO3 control modules (I2C mode) in the
System Control Module chapter of the AM/DM37x TRM to modify the IO settings if required by the targeted interface application.
50
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
BALL
BOTTOM
[1]
BALL TOP
[2]
PIN NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
POWER [9] HYS [10]
REL. MODE
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
U17
NA
mcbsp1_dx
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
mcspi4_simo
1
IO
mcbsp3_dx
2
IO
gpio_158
4
IO
safe_mode
7
-
mcbsp1_fsr
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
cam_global_reset
2
IO
gpio_157
4
IO
safe_mode
7
-
mcbsp1_fsx
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
mcspi4_cs0
1
IO
mcbsp3_fsx
2
IO
gpio_161
4
IO
safe_mode
7
-
mcbsp2_clkx
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_117
4
IO
safe_mode
7
-
mcbsp2_dr
0
I
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_118
4
IO
safe_mode
7
-
mcbsp2_dx
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_119
4
IO
safe_mode
7
-
mcbsp2_fsx
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_116
4
IO
safe_mode
7
-
mcspi1_clk
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
mmc2_dat4
1
IO
gpio_171
4
IO
safe_mode
7
-
mcspi1_cs0
0
IO
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
mmc2_dat7
1
IO
gpio_174
4
IO
safe_mode
7
-
mcspi1_cs2
0
O
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
mmc3_clk
3
IO
gpio_176
4
IO
safe_mode
7
-
mcspi1_simo
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
mmc2_dat5
1
IO
gpio_172
4
IO
safe_mode
7
-
mcspi1_somi
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
mmc2_dat6
1
IO
gpio_173
4
IO
safe_mode
7
-
mcspi2_clk
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
hsusb2_data7
3
IO
gpio_178
4
IO
safe_mode
7
-
mcspi2_cs0
0
IO
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
gpt_11_pwm_evt
1
IO
hsusb2_data6
3
IO
gpio_181
4
IO
V17
P20
R18
T18
R19
U18
P9
R7
R9
P8
P7
W7
V8
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
PRODUCT PREVIEW
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
51
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
BALL TOP
[2]
W8
NA
U8
W10
R10
PRODUCT PREVIEW
T10
T9
U10
U9
V10
R2
H3
L4
Y24
52
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
PIN NAME [3]
MODE [4]
TYPE [5]
safe_mode
7
-
mcspi2_simo
0
IO
gpt_9_pwm_evt
1
IO
hsusb2_data4
3
IO
gpio_179
4
IO
safe_mode
7
-
mcspi2_somi
0
IO
gpt_10_pwm_evt
1
IO
hsusb2_data5
3
IO
gpio_180
4
IO
safe_mode
7
-
mmc2_clk
0
IO
mcspi3_clk
1
IO
gpio_130
4
IO
safe_mode
7
-
mmc2_cmd
0
O
mcspi3_simo
1
IO
gpio_131
4
IO
safe_mode
7
-
mmc2_dat0
0
IO
mcspi3_somi
1
IO
gpio_132
4
IO
safe_mode
7
-
mmc2_dat1
0
IO
gpio_133
4
IO
safe_mode
7
-
mmc2_dat2
0
IO
mcspi3_cs1
1
O
gpio_134
4
IO
safe_mode
7
-
mmc2_dat3
0
IO
mcspi3_cs0
1
IO
gpio_135
4
IO
safe_mode
7
-
mmc2_dat4
0
IO
mmc2_dir_dat0
1
O
mmc3_dat0
3
IO
gpio_136
4
IO
safe_mode
7
-
uart1_rts
0
O
gpio_149
4
IO
safe_mode
7
-
uart1_rx
0
I
mcbsp1_clkr
2
IO
mcspi4_clk
3
IO
gpio_151
4
IO
safe_mode
7
-
uart1_tx
0
O
gpio_148
4
IO
safe_mode
7
-
uart2_cts
0
I
mcbsp3_dx
1
IO
gpt_9_pwm_evt
2
IO
gpio_144
4
IO
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
POWER [9] HYS [10]
REL. MODE
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
BALL
BOTTOM
[1]
BALL TOP
[2]
AA24
NA
AD21
AD22
F23
F24
H24
G24
J23
AD15
NA
NA
NA
NA
NA
NA
NA
NA
PIN NAME [3]
MODE [4]
TYPE [5]
safe_mode
7
-
uart2_rts
0
O
mcbsp3_dr
1
I
gpt_10_pwm_evt
2
IO
gpio_145
4
IO
safe_mode
7
-
uart2_rx
0
I
mcbsp3_fsx
1
IO
gpt_8_pwm_evt
2
IO
gpio_147
4
IO
safe_mode
7
-
uart2_tx
0
O
mcbsp3_clkx
1
IO
gpt_11_pwm_evt
2
IO
gpio_146
4
IO
safe_mode
7
-
uart3_cts_rctx
0
IO
gpio_163
4
IO
safe_mode
7
-
uart3_rts_sd
0
O
gpio_164
4
IO
safe_mode
7
-
uart3_rx_irrx
0
I
gpio_165
4
IO
safe_mode
7
-
uart3_tx_irtx
0
O
gpio_166
4
IO
safe_mode
7
-
hdq_sio
0
IOD
sys_altclk
1
I
i2c2_sccbe
2
OD
i2c3_sccbe
3
OD
gpio_170
4
IO
safe_mode
7
-
i2c4_scl
0
OD
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
POWER [9] HYS [10]
REL. MODE
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
Open Drain
H
H
0
vdds
Yes
3
PU/ PD (13)
LVCMOS
Open Drain
(14)
W16
F3
D3
NA
NA
NA
sys_nvmode1
1
O
safe_mode
7
-
i2c4_sda
0
IOD
sys_nvmode2
1
O
safe_mode
7
-
sys_boot0
0
I
dss_data18
3
IO
gpio_2
4
IO
safe_mode
7
-
sys_boot1
0
I
dss_data19
3
IO
4
4
H
H
0
vdds
Yes
3
PU/ PD (13)
(14)
LVCMOS
Open Drain
4
4
Z
Z
0
vdds
Yes
8
PU/ PD
LVCMOS
Z
Z
0
vdds
Yes
8
PU/ PD
LVCMOS
(13) The pullup and pulldown can be either the standard LVCMOS 100-mA drive strength or the I2C pullup and pulldown described as
follows: Nominal resistance = 1.66 kΩ in high-speed mode with a load range of 5 pF to 12 pF, 4.5 kΩ in standard / fast mode with a load
range of 5 pF to 15 pF.
(14) The default buffer configuration is High-Speed I2C point-to-point mode using internal pullup. For a full description of the pull drive
strength programming, see prg_i2c1_pullupresx, prg_i2c1_lb1lb0, and prg_sr_pullupresx, prg_sr_lb bits of the CONTROL_PROG_IO1,
CONTROL_PROG_IO_WKUP1 control modules in the System Control Module chapter of the TRM to modify the IO settings if required
by the targeted interface application.
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
53
PRODUCT PREVIEW
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
C3
E3
E4
G3
PRODUCT PREVIEW
D4
AE14
W11
W15
V16
BALL TOP
[2]
NA
NA
NA
NA
NA
NA
NA
NA
NA
PIN NAME [3]
MODE [4]
TYPE [5]
gpio_3
4
IO
safe_mode
7
-
sys_boot2
0
I
gpio_4
4
IO
safe_mode
7
-
sys_boot3
0
I
dss_data20
3
O
gpio_5
4
IO
safe_mode
7
-
sys_boot4
0
I
mmc2_dir_dat2
1
O
dss_data21
3
O
gpio_6
4
IO
safe_mode
7
-
sys_boot5
0
I
mmc2_dir_dat3
1
O
dss_data22
3
O
gpio_7
4
IO
safe_mode
7
-
sys_boot6
0
I
dss_data23
3
O
gpio_8
4
IO
safe_mode
7
-
sys_clkout1
0
O
gpio_10
4
IO
safe_mode
7
-
sys_clkout2
0
O
gpio_186
4
IO
safe_mode
7
-
sys_clkreq
0
IO
gpio_1
4
IO
safe_mode
7
-
sys_nirq
0
I
gpio_0
4
IO
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
POWER [9] HYS [10]
REL. MODE
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
Z
Z
0
vdds
Yes
8
PU/ PD
LVCMOS
Z
Z
0
vdds
Yes
8
PU/ PD
LVCMOS
Z
Z
0
vdds
Yes
8
PU/ PD
LVCMOS
Z
Z
0
vdds
Yes
8
PU/ PD
LVCMOS
Z
Z
0
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7 (15)
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
0
see
0
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
(16)
safe_mode
7
-
V13
NA
sys_nrespwron
0
I
Z
Z
0
vdds
Yes
NA
No
LVCMOS
AD7
AA5
sys_nreswarm
0
IOD
0
1
0
vdds
Yes
4
PU/ PD
LVCMOS
gpio_30
4
IO
safe_mode
7
-
sys_off_mode
0
O
gpio_9
4
IO
V12
NA
Open Drain
0
L
7
vdds
Yes
4
PU/ PD
LVCMOS
safe_mode
7
-
AF19
NA
sys_xtalin
0
AI
Z
Z
0
vdds
Yes
NA
NA
LVCMOS
Analog
AF20
NA
sys_xtalout
0
AO
Z
0
0
vdds
NA
NA
NA
Analog
W26
NA
cvideo1_out
0
AO
0
0
0
vdda_dac
NA
NA
NA
10-bit DAC
V26
NA
cvideo2_out
0
AO
0
0
0
vdda_dac
NA
NA
NA
10-bit DAC
W25
NA
cvideo1_vfb
0
AO
0
NA
0
vdda_dac
NA
NA
NA
10-bit DAC
U24
NA
cvideo2_vfb
0
AO
0
NA
0
vdda_dac
NA
NA
NA
10-bit DAC
V23
NA
cvideo1_rset
0
AIO
Z
NA
0
vdda_dac
No
NA
NA
10-bit DAC
(15) Mux0 if sys_boot6 is pulled down (clock master).
(16) Depending on the sys_clkreq direction the corresponding reset released state value can be:
• Z if sys_clkreq is used as input
• 1 if sys_clkreq is used as output
For a full description of the sys_clkreq control, see Power, Reset, and Clock Management chapter of the TRM.
54
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
BALL
BOTTOM
[1]
BALL TOP
[2]
PIN NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
POWER [9] HYS [10]
REL. MODE
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
AE20
NA
sys_32k
0
I
Z
Z
0
vdds
Yes
NA
PU/ PD
LVCMOS
A24
NA
cam_d2
0
I
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_101
4
IO
hw_dbg4
5
O
safe_mode
7
-
cam_d3
0
I
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_102
4
IO
hw_dbg5
5
O
safe_mode
7
-
cam_d4
0
I
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_103
4
IO
hw_dbg6
5
O
safe_mode
7
-
cam_d5
0
I
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_104
4
IO
hw_dbg7
5
O
safe_mode
7
-
cam_d10
0
I
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_109
4
IO
hw_dbg8
5
O
safe_mode
7
-
cam_d11
0
I
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_110
4
IO
hw_dbg9
5
O
safe_mode
7
-
cam_fld
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
cam_global_reset
2
IO
gpio_98
4
IO
hw_dbg3
5
O
safe_mode
7
-
cam_hs
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_94
4
IO
hw_dbg0
5
O
safe_mode
7
-
cam_pclk
0
I
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_97
4
IO
hw_dbg2
5
O
safe_mode
7
-
cam_strobe
0
O
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_126
4
IO
hw_dbg11
5
O
safe_mode
7
-
cam_xclka
0
O
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_96
4
IO
safe_mode
7
-
cam_xclkb
0
O
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_111
4
IO
safe_mode
7
-
cam_d6
0
I
L
L
7
vdds
Yes
NA
PU/ PD
SubLVDS
gpio_105
4
I
safe_mode
7
-
cam_d7
0
I
L
L
7
vdds
Yes
NA
PU/ PD
SubLVDS
gpio_106
4
I
safe_mode
7
-
B24
D24
C24
D25
E26
B23
C23
C26
D26
C25
E25
P25
P26
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
PRODUCT PREVIEW
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
55
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
BALL TOP
[2]
PIN NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
POWER [9] HYS [10]
REL. MODE
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
N25
NA
cam_d8
0
I
L
L
7
vdds
NA
NA
PU/ PD
SubLVDS
gpio_107
4
I
safe_mode
7
-
cam_d9
0
I
L
L
7
vdds
NA
NA
PU/ PD
SubLVDS
gpio_108
4
I
safe_mode
7
-
cam_vs
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_95
4
IO
hw_dbg1
5
O
safe_mode
7
-
cam_wen
0
I
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
cam_shutter
2
O
gpio_167
4
IO
hw_dbg10
5
O
safe_mode
7
-
dss_acbias
0
O
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_69
4
IO
safe_mode
7
-
dss_data6
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
uart1_tx
2
O
gpio_76
4
IO
hw_dbg14
5
O
safe_mode
7
-
dss_data7
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
uart1_rx
2
I
gpio_77
4
IO
hw_dbg15
5
O
safe_mode
7
-
dss_data8
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
uart3_rx_irrx
2
I
gpio_78
4
IO
hw_dbg16
5
O
safe_mode
7
-
dss_data9
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
uart3_tx_irtx
2
O
gpio_79
4
IO
hw_dbg17
5
O
safe_mode
7
-
dss_data16
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_86
4
IO
safe_mode
7
-
dss_data17
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_87
4
IO
safe_mode
7
-
dss_data18
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
mcspi3_clk
2
IO
dss_data0
3
IO
gpio_88
4
IO
safe_mode
7
-
dss_data19
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
mcspi3_simo
2
IO
dss_data1
3
IO
gpio_89
4
IO
safe_mode
7
-
N26
D23
A23
F26
PRODUCT PREVIEW
G26
H25
H26
J26
L25
L26
M24
M26
56
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
BALL
BOTTOM
[1]
BALL TOP
[2]
PIN NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
POWER [9] HYS [10]
REL. MODE
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
N24
NA
dss_data21
0
O
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
mcspi3_cs0
2
IO
dss_data3
3
IO
gpio_91
4
IO
safe_mode
7
-
dss_hsync
0
O
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_67
4
IO
hw_dbg13
5
O
safe_mode
7
-
dss_vsync
0
O
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_68
4
IO
safe_mode
7
-
mcspi1_cs1
0
O
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
mmc3_cmd
3
O
gpio_175
4
IO
safe_mode
7
-
mcspi1_cs3
0
O
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
hsusb2_data2
3
IO
gpio_177
4
IO
mm2_txdat
5
IO
safe_mode
7
-
mcspi2_cs1
0
O
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpt_8_pwm_evt
1
IO
hsusb2_data3
3
IO
gpio_182
4
IO
mm2_txen_n
5
IO
safe_mode
7
-
mcbsp_clks
0
I
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
cam_shutter
2
O
gpio_160
4
IO
uart1_cts
5
I
safe_mode
7
-
etk_clk
0
O
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
mcbsp5_clkx
1
IO
mmc3_clk
2
IO
hsusb1_stp
3
O
gpio_12
4
IO
mm1_rxdp
5
IO
hw_dbg0
7
O
etk_ctl
0
O
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
mmc3_cmd
2
O
hsusb1_clk
3
O
gpio_13
4
IO
hw_dbg1
7
O
etk_d0
0
O
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
mcspi3_simo
1
IO
mmc3_dat4
2
IO
hsusb1_data0
3
IO
gpio_14
4
IO
mm1_rxrcv
5
IO
hw_dbg2
7
O
etk_d1
0
O
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
mcspi3_somi
1
IO
hsusb1_data1
3
IO
K24
M25
R8
T8
V9
T19
AB2
AB3
AC3
AD4
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
PRODUCT PREVIEW
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
57
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
AD3
AA3
Y3
PRODUCT PREVIEW
AB1
AE3
AD2
AA4
V2
AE4
58
BALL TOP
[2]
NA
NA
NA
NA
NA
NA
NA
NA
NA
PIN NAME [3]
MODE [4]
TYPE [5]
gpio_15
4
IO
mm1_txse0
5
IO
hw_dbg3
7
O
etk_d2
0
O
mcspi3_cs0
1
IO
hsusb1_data2
3
IO
gpio_16
4
IO
mm1_txdat
5
IO
hw_dbg4
7
O
etk_d3
0
O
mcspi3_clk
1
IO
mmc3_dat3
2
IO
hsusb1_data7
3
IO
gpio_17
4
IO
hw_dbg5
7
O
etk_d4
0
O
mcbsp5_dr
1
I
mmc3_dat0
2
IO
hsusb1_data4
3
IO
gpio_18
4
IO
hw_dbg6
7
O
etk_d5
0
O
mcbsp5_fsx
1
IO
mmc3_dat1
2
IO
hsusb1_data5
3
IO
gpio_19
4
IO
hw_dbg7
7
O
etk_d6
0
O
mcbsp5_dx
1
O
mmc3_dat2
2
IO
hsusb1_data6
3
IO
gpio_20
4
IO
hw_dbg8
7
O
etk_d7
0
O
mcspi3_cs1
1
O
mmc3_dat7
2
IO
hsusb1_data3
3
IO
gpio_21
4
IO
mm1_txen_n
5
IO
hw_dbg9
7
O
etk_d8
0
O
mmc3_dat6
2
IO
hsusb1_dir
3
I
gpio_22
4
IO
hw_dbg10
7
O
etk_d9
0
O
mmc3_dat5
2
IO
hsusb1_nxt
3
I
gpio_23
4
IO
mm1_rxdm
5
IO
hw_dbg11
7
O
etk_d10
0
O
uart1_rx
2
I
hsusb2_clk
3
O
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
POWER [9] HYS [10]
REL. MODE
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
BALL
BOTTOM
[1]
AF6
AE6
AF7
AF9
AE9
Y15
Y14
U3
N3
P3
W3
V3
U4
BALL TOP
[2]
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
PIN NAME [3]
MODE [4]
TYPE [5]
gpio_24
4
IO
hw_dbg12
7
O
etk_d11
0
O
hsusb2_stp
3
O
gpio_25
4
IO
mm2_rxdp
5
IO
hw_dbg13
7
O
etk_d12
0
O
hsusb2_dir
3
I
gpio_26
4
IO
hw_dbg14
7
O
etk_d13
0
O
hsusb2_nxt
3
I
gpio_27
4
IO
mm2_rxdm
5
IO
hw_dbg15
7
O
etk_d14
0
O
hsusb2_data0
3
IO
gpio_28
4
IO
mm2_rxrcv
5
IO
hw_dbg16
7
O
etk_d15
0
O
hsusb2_data1
3
IO
gpio_29
4
IO
mm2_txse0
5
IO
hw_dbg17
7
O
jtag_emu0
0
IO
gpio_11
4
IO
safe_mode
7
-
jtag_emu1
0
IO
gpio_31
4
IO
safe_mode
7
-
mcbsp3_clkx
0
IO
uart2_tx
1
O
gpio_142
4
IO
safe_mode
7
-
mcbsp3_dr
0
I
uart2_rts
1
O
gpio_141
4
IO
safe_mode
7
-
mcbsp3_dx
0
IO
uart2_cts
1
I
gpio_140
4
IO
safe_mode
7
-
mcbsp3_fsx
0
IO
uart2_rx
1
I
gpio_143
4
IO
safe_mode
7
-
mcbsp4_clkx
0
IO
gpio_152
4
IO
mm3_txse0
6
IO
safe_mode
7
-
mcbsp4_dr
0
I
gpio_153
4
IO
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
POWER [9] HYS [10]
REL. MODE
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
H
H
0
vdds
Yes
4
PU/ PD
LVCMOS
H
H
0
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
PRODUCT PREVIEW
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
59
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
R3
T3
M3
PRODUCT PREVIEW
L3
K3
W2
BALL TOP
[2]
NA
NA
NA
NA
NA
NA
PIN NAME [3]
MODE [4]
TYPE [5]
mm3_rxrcv
6
IO
safe_mode
7
-
mcbsp4_dx
0
IO
gpio_154
4
IO
mm3_txdat
6
IO
safe_mode
7
-
mcbsp4_fsx
0
IO
gpio_155
4
IO
mm3_txen_n
6
IO
safe_mode
7
-
mmc2_dat5
0
IO
mmc2_dir_dat1
1
O
cam_global_reset
2
IO
mmc3_dat1
3
IO
gpio_137
4
IO
mm3_rxdp
6
IO
safe_mode
7
-
mmc2_dat6
0
IO
mmc2_dir_cmd
1
O
cam_shutter
2
O
mmc3_dat2
3
IO
gpio_138
4
IO
safe_mode
7
-
mmc2_dat7
0
IO
mmc2_clkin
1
I
mmc3_dat3
3
IO
gpio_139
4
IO
mm3_rxdm
6
IO
safe_mode
7
-
uart1_cts
0
I
gpio_150
4
IO
safe_mode
7
-
AC16
NA
vss
0
GND
AD18
NA
vdds
0
PWR
L19
NA
vss
0
GND
AC19
NA
vss
0
GND
AD19
NA
vdds
0
PWR
L20
NA
vdds
0
PWR
P23
NA
vdds_x
0
PWR
AE19
NA
cap_vddu_array
0
PWR
AC21, D15, NA
G11, G18,
H20, M7,
M17, R20,
T7, Y8, Y12
vdd_core
0
PWR
D13, G9,
NA
G12, H7,
K11, L9, M9,
M10, N7,
N8, P10, U7,
U11, U13,
V7, V11,
W9, Y9, Y11
vdd_mpu_iva
0
PWR
60
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
POWER [9] HYS [10]
REL. MODE
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
BALL
BOTTOM
[1]
BALL TOP
[2]
PIN NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
POWER [9] HYS [10]
REL. MODE
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
A18, AC7,
A3, A15, B5, vdds
AC15,
F2, F21,
AC18,
L20, W21
AC24,
AD20,
AE10, C11,
D9, E24,
G4, J15,
J18, L7,
L24, M4, T4,
T24, W24,
Y4, AB24
0
PWR
-
-
-
-
-
-
-
-
U12
NA
vdds_sram
0
PWR
-
-
-
-
-
-
-
-
K13
NA
vdda_dplls_dll
0
PWR
-
-
-
-
-
-
-
-
U14
NA
vdda_dpll_per
0
PWR
-
-
-
-
-
-
-
-
W14
NA
vdda_wkup_bg_bb
0
PWR
-
-
-
-
-
-
-
-
N23
NA
vdds_mmc1
0
PWR
-
-
-
-
-
-
-
-
V25
NA
vdda_dac
0
PWR
-
-
-
-
-
-
-
-
V24
NA
vssa_dac
0
GND
-
-
-
-
-
-
-
-
A6, A8, A13,
AB5, AB22,
AC10,
AD14,
AD25, AE7,
B2, B25,
C12, D7,
D10, D12,
D14, D18,
D20, E22,
G1, G8,
G10, G20,
G23, H4,
K1, K15,
K25, L10,
L17, L23,
N4, N10,
N17, R1,
R4, R17,
T23, U25,
W1, W4,
W23, Y7,
Y10, Y16,
Y26
A7, A13,
vss
B14, C1, F1,
F20, H2,
H20, L21,
M2, P20,
R2, W20 Y6,
Y11, AA7,
AA16
0
GND
-
-
-
-
-
-
-
-
K14
NA
cap_vddu_wkup_log 0
ic
PWR
-
-
-
-
-
-
-
-
A1, L1, T2,
Y2, AE2,
AF4, AF5,
AF8, AF10,
AF12, AF13,
AF14, AF15,
AF17, AF16,
A20, AF21,
AF18, AF24,
AF22, A25,
AE25, AF25,
A26, B26,
K26, U26,
AE26, AF26
A1, J1, N2, Feed-Through
T2, W2, Y2, Pins (17)
AA6, Y7, Y9,
AA10, AA11,
AA12, AA13,
Y14, AA14,
B16, Y17,
AA17, Y19,
AA19, A20,
Y20, AA20,
A21, B21,
H21, P21,
Y21, AA21
-
-
-
-
-
-
-
-
-
-
PRODUCT PREVIEW
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
(17) These signals are feed-through balls. For more information, see Table 2-27.
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
61
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
BALL TOP
[2]
PIN NAME [3]
PRODUCT PREVIEW
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
POWER [9] HYS [10]
REL. MODE
[8]
BUFFER
STRENG
TH (mA)
[11]
PULLUP
/DOWN
TYPE [12]
IO CELL
[13]
A2, AF1,
A2, AA1,
No Connect (18)
B1,D5, K23, AA2,B1, B2,
A5, A7, A9, B20, Y1
A10, A11,
A12, A14,
A15, A16,
A17, A19,
A21, A22,
AA23, AB23,
AC9, AC12,
AC13,
AC14,
AC17,
AC20,
AC22,
AC23, AD9,
AD11,
AD12,
AD13, AE1,
AE8, AE11,
AE12, AE13,
AF2, AF3,
AF11, B7,
B8, B9, B10,
B11, B12,
B13, B14,
B15, B16,
B17, B18,
B19, B20,
B21, B22,
C7, C8, C9,
C10, C13,
C14, C15,
C16, C17
C18, C19,
C20, C21,
C22, D8,
D11, D16,
D17, D19,
D21, D22,
E23, F4, G7,
G13, G14,
G15, G16,
G17, G19,
H8, H9,
H10, H11,
H12, H13,
H14, H15,
H16, H17,
H18, H19,
H23, J3, J4,
J7, J8, J9,
J10, J11,
J12, J13,
J14, J16,
J17, J19,
J20, K4, K7,
K8, K9, K10,
K12, K16,
K17, K19,
L8, M8,
M23, N18,
P2, P4, P24,
R23, R24,
R25, R26,
T25, T26,
U23, V4,
W12, Y23
-
-
-
-
-
-
-
-
-
-
AF23
NA
sys_xtalgnd
0
GND
A4
NA
gpmc_a11
0
O
L
L
7
vdds
Yes
8
PU/PD
LVCMOS
safe_mode
7
IO
D6
NA
cap_vdd_bb_mpu_iv 0
a
PWR
N9
NA
cap_vdd_sram_mpu 0
_iva
PWR
K20
NA
cap_vdd_sram_core 0
PWR
(18) Pins labeled as "No connect" must be left unconnected. Any connections to these pins may result in unpredictable behavior.
62
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 2-3. Ball Characteristics (CUS Pkg.)
MODE [4]
TYPE [5]
BALL RESET BALL RESET RESET REL. POWER [9]
STATE [6]
REL. STATE MODE [8]
[7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
D7
sdrc_d0
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
C5
sdrc_d1
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
C6
sdrc_d2
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
B5
sdrc_d3
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
D9
sdrc_d4
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
D10
sdrc_d5
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
C7
sdrc_d6
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
B7
sdrc_d7
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
B11
sdrc_d8
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
C12
sdrc_d9
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
B12
sdrc_d10
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
D13
sdrc_d11
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
C13
sdrc_d12
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
B14
sdrc_d13
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
A14
sdrc_d14
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
B15
sdrc_d15
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
C9
sdrc_d16
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
E12
sdrc_d17
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
B8
sdrc_d18
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
B9
sdrc_d19
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
C10
sdrc_d20
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
B10
sdrc_d21
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
D12
sdrc_d22
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
E13
sdrc_d23
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
E15
sdrc_d24
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
D15
sdrc_d25
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
C15
sdrc_d26
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
B16
sdrc_d27
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
C16
sdrc_d28
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
D16
sdrc_d29
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
B17
sdrc_d30
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
B18
sdrc_d31
0
IO
L
Z
0
vdds_mem
Yes
4
PU/ PD
LVCMOS
C18
sdrc_ba0
0
O
0
0
0
vdds_mem
NA
4 (1)
PU/ PD
LVCMOS
D18
sdrc_ba1
0
O
0
0
0
vdds_mem
NA
4 (1)
PU/ PD
LVCMOS
A4
sdrc_a0
0
O
0
0
0
vdds_mem
NA
4 (1)
PU/ PD
LVCMOS
B4
sdrc_a1
0
O
0
0
0
vdds_mem
NA
4
PU/ PD
LVCMOS
D6
sdrc_a2
0
O
0
0
0
vdds_mem
NA
4 (1)
PU/ PD
LVCMOS
B3
sdrc_a3
0
O
0
0
0
vdds_mem
NA
4 (1)
PU/ PD
LVCMOS
B2
sdrc_a4
0
O
0
0
0
vdds_mem
NA
4 (1)
PU/ PD
LVCMOS
C3
sdrc_a5
0
O
0
0
0
vdds_mem
NA
4 (1)
PU/ PD
LVCMOS
E3
sdrc_a6
0
O
0
0
0
vdds_mem
NA
4
PU/ PD
LVCMOS
F6
sdrc_a7
0
O
0
0
0
vdds_mem
NA
4 (1)
PU/ PD
LVCMOS
E10
sdrc_a8
0
O
0
0
0
vdds_mem
NA
4 (1)
PU/ PD
LVCMOS
E9
sdrc_a9
0
O
0
0
0
vdds_mem
NA
4 (1)
PU/ PD
LVCMOS
E7
sdrc_a10
0
O
0
0
0
vdds_mem
NA
4 (1)
PU/ PD
LVCMOS
G6
sdrc_a11
0
O
0
0
0
vdds_mem
NA
4 (1)
PU/ PD
LVCMOS
G7
sdrc_a12
0
O
0
0
0
vdds_mem
NA
4 (1)
PU/ PD
LVCMOS
F7
sdrc_a13
0
O
0
0
0
vdds_mem
NA
4 (1)
PU/ PD
LVCMOS
F9
sdrc_a14
0
O
0
0
0
vdds_mem
NA
4 (1)
PU/ PD
LVCMOS
A19
sdrc_ncs0
0
O
1
1
0
vdds_mem
NA
4 (1)
PU/ PD
LVCMOS
B19
sdrc_ncs1
0
O
1
1
0
vdds_mem
NA
4 (1)
PU/ PD
LVCMOS
A10
sdrc_clk
0
IO
L
0
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
(1)
(1)
(1)
(1)
PRODUCT PREVIEW
BALL
PIN NAME [3]
BOTTOM [1]
The drive strength of these IOs is set according to the programmable load range: 2 pF to 4 pF per default or 4 pF to 12 pF. For a full
description of the drive strength programming, see the System Control Module chapter of the TRM.
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
63
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
BALL
PIN NAME [3]
BOTTOM [1]
MODE [4]
TYPE [5]
BALL RESET BALL RESET RESET REL. POWER [9]
STATE [6]
REL. STATE MODE [8]
[7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
A11
sdrc_nclk
0
O
1
1
0
vdds_mem
NA
4 (1)
PU/ PD
LVCMOS
B20
sdrc_cke0
0
O
H
1
7
vdds_mem
NA
4 (1)
PU/ PD
LVCMOS
safe_mode_out1 (2)
7
sdrc_cke1
0
O
H
1
7
vdds_mem
NA
4 (1)
PU/ PD
LVCMOS
safe_mode_out1 (2)
7
D19
sdrc_nras
0
O
1
1
0
vdds_mem
NA
4 (1)
PU/ PD
LVCMOS
C19
sdrc_ncas
0
O
1
1
0
vdds_mem
NA
4 (1)
PU/ PD
LVCMOS
A20
sdrc_nwe
0
O
1
1
0
vdds_mem
NA
4
PU/ PD
LVCMOS
B6
sdrc_dm0
0
O
0
0
0
vdds_mem
NA
4 (1)
PU/ PD
LVCMOS
B13
sdrc_dm1
0
O
0
0
0
vdds_mem
NA
4 (1)
PU/ PD
LVCMOS
A7
sdrc_dm2
0
O
0
0
0
vdds_mem
NA
4 (1)
PU/ PD
LVCMOS
A16
sdrc_dm3
0
O
0
0
0
vdds_mem
NA
4 (1)
PU/ PD
LVCMOS
A5
sdrc_dqs0
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
A13
sdrc_dqs1
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
A8
sdrc_dqs2
0
IO
L
Z
0
vdds_mem
Yes
4 (1)
PU/ PD
LVCMOS
A17
sdrc_dqs3
0
IO
L
Z
0
vdds_mem
Yes
4 (3)
PU/ PD
LVCMOS
K4
gpmc_a1
0
O
L
L
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_34
4
IO
safe_mode
7
gpmc_a2
0
O
L
L
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_35
4
IO
safe_mode
7
gpmc_a3
0
O
L
L
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_36
4
IO
safe_mode
7
gpmc_a4
0
O
L
L
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_37
4
IO
safe_mode
7
gpmc_a5
0
O
L
L
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_38
4
IO
safe_mode
7
gpmc_a6
0
O
H
H
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_39
4
IO
safe_mode
7
gpmc_a7
0
O
H
H
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_40
4
IO
safe_mode
7
gpmc_a8
0
O
H
H
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_41
4
IO
safe_mode
7
gpmc_a9
0
O
H
H
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
sys_ndmareq2
1
I
gpio_42
4
IO
safe_mode
7
gpmc_a10
0
O
H
H
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
sys_ndmareq3
1
I
gpio_43
4
IO
safe_mode
7
L2
gpmc_d0
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
M1
gpmc_d1
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
M2
gpmc_d2
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
N2
gpmc_d3
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
C20
PRODUCT PREVIEW
K3
K2
J4
J3
J2
J1
H1
H2
G2
(2)
(3)
64
(1)
In the safe_mode_out1, the buffer is configured to drive 1.
The drive strength of these IOs is set according to the programmable load range: 2 pF to 4 pF per default or 4 pF to 12 pF. For a full
description of the drive strength programming, see the System Control Module chapter of the TRM.
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
MODE [4]
TYPE [5]
BALL RESET BALL RESET RESET REL. POWER [9]
STATE [6]
REL. STATE MODE [8]
[7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
M3
gpmc_d4
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
P1
gpmc_d5
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
P2
gpmc_d6
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
R1
gpmc_d7
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
R2
gpmc_d8
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_44
4
IO
safe_mode
7
gpmc_d9
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_45
4
IO
safe_mode
7
gpmc_d10
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_46
4
IO
safe_mode
7
gpmc_d11
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_47
4
IO
safe_mode
7
gpmc_d12
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_48
4
IO
safe_mode
7
gpmc_d13
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_49
4
IO
safe_mode
7
gpmc_d14
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_50
4
IO
safe_mode
7
gpmc_d15
0
IO
H
H
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_51
4
IO
T2
U1
R3
T3
U2
V1
V2
safe_mode
7
E2
gpmc_ncs0
0
O
1
1
0
vdds_mem
NA
8
NA
LVCMOS
D2
gpmc_ncs3
0
O
H
H
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
sys_ndmareq0
1
I
gpio_54
4
IO
safe_mode
7
gpmc_ncs4
0
O
H
H
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
sys_ndmareq1
1
I
mcbsp4_ clkx
2
IO
gpt_9_pwm_evt
3
IO
gpio_55
4
IO
safe_mode
7
gpmc_ncs5
0
O
H
H
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
sys_ndmareq2
1
I
mcbsp4_dr
2
I
gpt_10_pwm_evt
3
IO
gpio_56
4
IO
safe_mode
7
gpmc_ncs6
0
O
H
H
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
sys_ndmareq3
1
I
mcbsp4_dx
2
IO
gpt_11_pwm_evt
3
IO
gpio_57
4
IO
safe_mode
7
gpmc_ncs7
0
O
H
H
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpmc_io_dir
1
O
mcbsp4_fsx
2
IO
gpt_8_pwm_evt
3
IO
F4
G5
F3
G4
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
PRODUCT PREVIEW
BALL
PIN NAME [3]
BOTTOM [1]
65
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
BALL
PIN NAME [3]
BOTTOM [1]
W2
MODE [4]
TYPE [5]
gpio_58
4
IO
safe_mode
7
gpmc_clk
0
O
gpio_59
4
IO
BALL RESET BALL RESET RESET REL. POWER [9]
STATE [6]
REL. STATE MODE [8]
[7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
L
0
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
safe_mode
7
F1
gpmc_nadv_ale
0
O
0
0
0
vdds_mem
NA
8
PU/ PD
LVCMOS
F2
gpmc_noe
0
O
1
1
0
vdds_mem
NA
8
PU/ PD
LVCMOS
G3
gpmc_nwe
0
O
1
1
0
vdds_mem
NA
8
PU/ PD
LVCMOS
K5
gpmc_nbe0_cle
0
O
L
0
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_60
4
IO
safe_mode
7
gpmc_nbe1
0
O
L
L
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_61
4
IO
safe_mode
7
gpmc_nwp
0
O
L
0
0
vdds_mem
Yes
8
PU/ PD
LVCMOS
gpio_62
4
IO
L1
E1
PRODUCT PREVIEW
safe_mode
7
C1
gpmc_wait0
0
I
H
H
0
vdds_mem
Yes
NA
PU/ PD
LVCMOS
C2
gpmc_wait3
0
I
H
H
7
vdds_mem
Yes
8
PU/ PD
LVCMOS
sys_ndmareq1
1
I
uart4_rx
2
I
gpio_65
4
IO
safe_mode
7
dss_pclk
0
O
H
H
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_66
4
IO
hw_dbg12
5
O
safe_mode
7
dss_hsync
0
O
H
H
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_67
4
IO
hw_dbg13
5
O
safe_mode
7
dss_vsync
0
O
H
H
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_68
4
IO
safe_mode
7
dss_acbias
0
O
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_69
4
IO
safe_mode
7
dss_data0
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
uart1_cts
2
I
NA
gpio_70
4
IO
8
safe_mode
7
dss_data1
0
IO
uart1_rts
2
O
gpio_71
4
IO
safe_mode
7
dss_data2
0
IO
gpio_72
4
IO
safe_mode
7
dss_data3
0
IO
gpio_73
4
IO
safe_mode
7
dss_data4
0
IO
uart3_rx_ irrx
2
I
gpio_74
4
IO
safe_mode
7
G22
E22
F22
J21
AC19
AB19
AD20
AC20
AD21
66
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
MODE [4]
TYPE [5]
BALL RESET BALL RESET RESET REL. POWER [9]
STATE [6]
REL. STATE MODE [8]
[7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
AC21
dss_data5
0
IO
L
Yes
8
PU/ PD
LVCMOS
uart3_tx_ irtx
2
O
NA
gpio_75
4
IO
8
safe_mode
7
dss_data6
0
IO
uart1_tx
2
O
gpio_76
4
IO
hw_dbg14
5
O
safe_mode
7
dss_data7
0
IO
uart1_rx
2
I
gpio_77
4
IO
hw_dbg15
5
O
safe_mode
7
dss_data8
0
IO
uart3_rx_irrx
2
I
gpio_78
4
IO
hw_dbg16
5
O
safe_mode
7
dss_data9
0
IO
uart3_tx_irtx
2
O
gpio_79
4
IO
hw_dbg17
5
O
safe_mode
7
dss_data10
0
IO
gpio_80
4
IO
safe_mode
7
dss_data11
0
IO
gpio_81
4
IO
safe_mode
7
dss_data12
0
IO
gpio_82
4
IO
safe_mode
7
dss_data13
0
IO
gpio_83
4
IO
safe_mode
7
dss_data14
0
IO
gpio_84
4
IO
safe_mode
7
dss_data15
0
IO
gpio_85
4
IO
safe_mode
7
dss_data16
0
IO
gpio_86
4
IO
safe_mode
7
dss_data17
0
IO
gpio_87
4
IO
safe_mode
7
dss_data18
0
IO
mcspi3_clk
2
IO
dss_data0
3
IO
gpio_88
4
IO
safe_mode
7
dss_data19
0
IO
mcspi3_simo
2
IO
D24
E23
E24
F23
AC22
AC23
AB22
Y22
W22
V22
J22
G23
G24
H23
L
7
vdds
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
PRODUCT PREVIEW
BALL
PIN NAME [3]
BOTTOM [1]
67
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
BALL
PIN NAME [3]
BOTTOM [1]
MODE [4]
TYPE [5]
BALL RESET BALL RESET RESET REL. POWER [9]
STATE [6]
REL. STATE MODE [8]
[7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
dss_data1
3
IO
gpio_89
4
IO
safe_mode
7
dss_data20
0
O
mcspi3_somi
2
IO
H
H
7
vdds
Yes
8
PU/ PD
LVCMOS
dss_data2
3
IO
gpio_90
4
IO
safe_mode
7
dss_data21
0
O
mcspi3_cs0
2
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
dss_data3
3
IO
gpio_91
4
IO
safe_mode
7
dss_data22
0
O
mcspi3_cs1
2
O
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
dss_data4
3
IO
gpio_92
4
IO
safe_mode
7
dss_data23
0
O
dss_data5
3
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_93
4
IO
safe_mode
7
AA23
cvideo2_out
0
AB24
cvideo1_out
0
AO
0
0
0
vdda_dac
NA
NA (4)
NA
10-bit DAC
AO
0
0
0
vdda_dac
NA
NA (4)
NA
AB23
cvideo1_vfb
10-bit DAC
0
AO
0
NA
0
vdda_dac
NA
NA (5)
NA
Y23
10-bit DAC
cvideo2_vfb
0
AO
0
NA
0
vdda_dac
NA
NA (5)
NA
10-bit DAC
Y24
cvideo1_rset
0
AIO
0
NA
0
vdda_dac
No
NA
NA
10-bit DAC
A22
cam_hs
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_94
4
IO
hw_dbg0
5
O
safe_mode
7
cam_vs
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_95
4
IO
hw_dbg1
5
O
safe_mode
7
cam_ xclka
0
O
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_96
4
IO
safe_mode
7
cam_pclk
0
I
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_97
4
IO
hw_dbg2
5
O
safe_mode
7
cam_fld
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
cam_global_reset
2
IO
hw_dbg3
5
O
gpio_98
4
IO
safe_mode
7
cam_d0
0
I
L
L
7
vdds
Yes
NA
PU/ PD
LVCMOS
gpio_99
4
I
safe_mode
7
cam_d1
0
I
L
L
7
vdds
Yes
NA
PU/ PD
LVCMOS
gpio_100
4
I
D23
K22
V21
PRODUCT PREVIEW
W21
E18
B22
J19
H24
AB18
AC18
(4)
(5)
68
The drive strength is fixed regardless of the load. The driver is designed to drive 75Ω for video applications.
In buffer mode, the drive strength is fixed regardless of the load. The driver is designed to drive 75 Ω for video applications. In bypass
mode, the drive strength is 0.47 mA.
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
G19
F19
G20
B21
L24
K24
J23
K23
F21
G21
C22
F18
J20
V20
T21
MODE [4]
TYPE [5]
BALL RESET BALL RESET RESET REL. POWER [9]
STATE [6]
REL. STATE MODE [8]
[7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
NA
PU/ PD
LVCMOS
L
L
7
vdds
Yes
NA
PU/ PD
LVCMOS
L
L
7
vdds
Yes
NA
PU/ PD
LVCMOS
L
L
7
vdds
Yes
NA
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
safe_mode
7
cam_d2
0
I
gpio_101
4
IO
hw_dbg4
5
O
safe_mode
7
cam_d3
0
I
gpio_102
4
IO
hw_dbg5
5
O
safe_mode
7
cam_d4
0
I
gpio_103
4
IO
hw_dbg6
5
O
safe_mode
7
cam_d5
0
I
gpio_104
4
IO
hw_dbg7
5
O
safe_mode
7
cam_d6
0
I
gpio_105
4
I
safe_mode
7
cam_d7
0
I
gpio_106
4
I
safe_mode
7
cam_d8
0
I
gpio_107
4
I
safe_mode
7
cam_d9
0
I
gpio_108
4
I
safe_mode
7
cam_d10
0
I
gpio_109
4
IO
hw_dbg8
5
O
safe_mode
7
cam_d11
0
I
gpio_110
4
IO
hw_dbg9
5
O
safe_mode
7
cam_ xclkb
0
O
gpio_111
4
IO
safe_mode
7
cam_wen
0
I
cam_ shutter
2
O
gpio_167
4
IO
hw_dbg10
5
O
safe_mode
7
cam_ strobe
0
O
gpio_126
4
IO
hw_dbg11
5
O
safe_mode
7
mcbsp2_fsx
0
IO
gpio_116
4
IO
safe_mode
7
mcbsp2_ clkx
0
IO
gpio_117
4
IO
safe_mode
7
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
PRODUCT PREVIEW
BALL
PIN NAME [3]
BOTTOM [1]
69
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
BALL
PIN NAME [3]
BOTTOM [1]
MODE [4]
TYPE [5]
BALL RESET BALL RESET RESET REL. POWER [9]
STATE [6]
REL. STATE MODE [8]
[7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
V19
mcbsp2_dr
0
I
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_118
4
IO
safe_mode
7
mcbsp2_dx
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_119
4
IO
safe_mode
7
mmc1_clk
0
IO
L
L
7
vdds_mmc1
Yes
1
PU/ PD
4
IO
L
L
7
vdds_mmc1
Yes
1
PU/ PD (6)
LVCMOS
L
L
7
vdds_mmc1
Yes
1
PU/ PD (6)
LVCMOS
L
L
7
vdds_mmc1
Yes
1
PU/ PD (8)
LVCMOS
L
L
7
vdds_mmc1
Yes
1
PU/ PD (8)
LVCMOS
L
L
7
vdds_mmc1
Yes
1
PU/ PD (8)
LVCMOS
IO
L
L
7
vdds_x
Yes
1
PU/ PD (8)
LVCMOS
IO
L
L
7
vdds_x
Yes
1
PU/ PD
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
R20
M23
gpio_120
L23
safe_mode
7
mmc1_cmd
0
O
(7)
4
IO
gpio_121
M22
safe_mode
7
mmc1_dat0
0
IO
(7)
4
IO
gpio_122
M21
safe_mode
7
mmc1_dat1
0
IO
(9)
4
IO
safe_mode
7
mmc1_dat2
0
IO
gpio_124 (9)
4
IO
safe_mode
7
mmc1_dat3
gpio_123
PRODUCT PREVIEW
M20
N23
0
IO
(9)
4
IO
safe_mode
7
gpio_126 (9)
4
safe_mode
7
gpio_129 (9)
4
safe_mode
7
mmc2_clk
0
IO
mcspi3_clk
1
IO
gpio_130
4
IO
safe_mode
7
mmc2_ cmd
0
O
mcspi3_ simo
1
IO
gpio_131
4
IO
safe_mode
7
mmc2_ dat0
0
IO
mcspi3_ somi
1
IO
gpio_132
4
IO
safe_mode
7
mmc2_ dat1
0
IO
gpio_133
4
IO
safe_mode
7
mmc2_ dat2
0
IO
mcspi3_cs1
1
O
gpio_134
4
IO
safe_mode
7
mmc2_ dat3
0
gpio_125
N22
P24
Y1
AB5
AB3
Y3
W3
V3
(6)
(7)
(8)
(9)
70
(7)
IO
(6)
(8)
LVCMOS
LVCMOS
PU = [50 to 100 kΩ] per default or [10 to 50 kΩ] according to the selected mode. For a full description of the pull-up drive strength
programming, see the PRG_SDMMC_PUSTRENGTH configuration register bit field in the System Control Module chapter of the TRM.
PD: 30 to 150 kΩ.
The usage of this GPIO is strongly restricted. For more information, see the General-Purpose Interface chapter of the TRM.
PU = [50 to 100 kΩ] per default or [10 to 50 kΩ] according to the selected mode. For a full description of the pull-up drive strength
programming, see the PRG_SDMMC_PUSTRENGTH configuration register bit field in the System Control Module chapter of the TRM.
PD: 30 to 150 kΩ.
The usage of this GPIO is strongly restricted. For more information, see the General-Purpose Interface chapter of the TRM.
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
AB2
AA2
Y2
AA1
V6
V5
W4
V4
W7
W6
AC2
V7
MODE [4]
TYPE [5]
mcspi3_cs0
1
IO
gpio_135
4
IO
safe_mode
7
mmc2_ dat4
0
IO
mmc2_dir_dat0
1
O
mmc3_dat0
3
IO
gpio_136
4
IO
safe_mode
7
mmc2_ dat5
0
IO
mmc2_dir_dat1
1
O
cam_global_reset
2
IO
mmc3_dat1
3
IO
gpio_137
4
IO
mm3_rxdp
6
IO
safe_mode
7
mmc2_dat6
0
IO
mmc2_dir_cmd
1
O
cam_shutter
2
O
mmc3_dat2
3
IO
gpio_138
4
IO
safe_mode
7
mmc2_dat7
0
IO
mmc2_clkin
1
I
mmc3_dat3
3
IO
gpio_139
4
IO
mm3_rxdm
6
IO
safe_mode
7
mcbsp3_dx
0
IO
uart2_cts
1
I
gpio_140
4
IO
safe_mode
7
mcbsp3_dr
0
I
uart2_rts
1
O
gpio_141
4
IO
safe_mode
7
mcbsp3_ clkx
0
IO
uart2_tx
1
O
gpio_142
4
IO
safe_mode
7
mcbsp3_fsx
0
IO
uart2_rx
1
I
gpio_143
4
IO
safe_mode
7
uart1_tx
0
O
gpio_148
4
IO
safe_mode
7
uart1_rts
0
O
gpio_149
4
IO
safe_mode
7
uart1_cts
0
I
gpio_150
4
IO
safe_mode
7
uart1_rx
0
I
mcbsp1_ clkr
2
IO
mcspi4_clk
3
IO
BALL RESET BALL RESET RESET REL. POWER [9]
STATE [6]
REL. STATE MODE [8]
[7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
PRODUCT PREVIEW
BALL
PIN NAME [3]
BOTTOM [1]
71
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
BALL
PIN NAME [3]
BOTTOM [1]
W19
AB20
W18
Y18
PRODUCT PREVIEW
AA18
AA19
V18
A23
B23
B24
C23
R21
R23
P23
72
MODE [4]
TYPE [5]
gpio_151
4
IO
safe_mode
7
mcbsp1_ clkr
0
IO
mcspi4_clk
1
IO
gpio_156
4
IO
safe_mode
7
mcbsp1_fsr
0
IO
cam_global_reset
2
IO
gpio_157
4
IO
safe_mode
7
mcbsp1_dx
0
IO
mcspi4_ simo
1
IO
mcbsp3_dx
2
IO
gpio_158
4
IO
safe_mode
7
mcbsp1_dr
0
I
mcspi4_ somi
1
IO
mcbsp3_dr
2
I
gpio_159
4
IO
safe_mode
7
mcbsp_clks
0
I
cam_ shutter
2
O
gpio_160
4
IO
uart1_cts
5
I
safe_mode
7
mcbsp1_fsx
0
IO
mcspi4_cs0
1
IO
mcbsp3_fsx
2
IO
gpio_161
4
IO
safe_mode
7
mcbsp1_ clkx
0
IO
mcbsp3_ clkx
2
IO
gpio_162
4
IO
safe_mode
7
uart3_cts_ rctx
0
IO
gpio_163
4
IO
safe_mode
7
uart3_rts_ sd
0
O
gpio_164
4
IO
safe_mode
7
uart3_rx_ irrx
0
I
gpio_165
4
IO
safe_mode
7
uart3_tx_ irtx
0
O
gpio_166
4
IO
safe_mode
7
hsusb0_clk
0
I
gpio_120
4
IO
safe_mode
7
hsusb0_stp
0
O
gpio_121
4
IO
safe_mode
7
hsusb0_dir
0
I
gpio_122
4
IO
safe_mode
7
BALL RESET BALL RESET RESET REL. POWER [9]
STATE [6]
REL. STATE MODE [8]
[7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
MODE [4]
TYPE [5]
BALL RESET BALL RESET RESET REL. POWER [9]
STATE [6]
REL. STATE MODE [8]
[7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
R22
hsusb0_nxt
0
I
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_124
4
IO
safe_mode
7
hsusb0_ data0
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
uart3_tx_ irtx
2
O
gpio_125
4
IO
uart2_tx
5
O
safe_mode
7
hsusb0_ data1
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
uart3_rx_ irrx
2
I
gpio_130
4
IO
uart2_rx
5
I
safe_mode
7
hsusb0_ data2
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
uart3_rts_ sd
2
O
gpio_131
4
IO
uart2_rts
5
O
safe_mode
7
hsusb0_ data3
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
uart3_cts_ rctx
2
IO
gpio_169
4
IO
uart2_cts
5
I
safe_mode
7
hsusb0_ data4
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_188
4
IO
safe_mode
7
hsusb0_ data5
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_189
4
IO
safe_mode
7
hsusb0_ data6
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_190
4
IO
safe_mode
7
hsusb0_ data7
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_191
4
IO
T24
T23
U24
U23
W24
V23
W23
T22
PRODUCT PREVIEW
BALL
PIN NAME [3]
BOTTOM [1]
safe_mode
7
K20
i2c1_scl
0
OD
H
H
0
vdds
NA
3
PU/ PD (10)(11) Open Drain
K21
i2c1_sda
0
IOD
H
H
0
vdds
Yes
3
PU/ PD (10)(11) Open Drain
AC15
i2c2_scl
0
OD
H
H
7
vdds
Yes
3
PU/ PD (10)(12) Open Drain
gpio_168
4
IO
safe_mode
7
i2c2_sda
0
IOD
gpio_183
4
IO
safe_mode
7
i2c3_scl
0
OD
gpio_184
4
IO
safe_mode
7
AC14
AC13
4
H
H
7
vdds
Yes
3
PU/ PD (10)(12) Open Drain
4
H
H
7
vdds
Yes
3
PU/ PD (10)(12) Open Drain
4
(10) The pullup and pulldown can be either the standard LVCMOS 100-mA drive strength or the I2C pullup and pulldown described below:
Nominal resistance = 1.66 kΩ in high-speed mode with a load range of 5 pF to 12 pF, 4.5 kΩ in standard / fast mode with a load range
of 5 pF to 15 pF.
(11) The default buffer configuration is High-Speed I2C point-to-point mode using internal pullup. For a full description of the pull drive
strength programming, see prg_i2c1_pullupresx, prg_i2c1_lb1lb0, and prg_sr_pullupresx, prg_sr_lb bits of the CONTROL_PROG_IO1,
CONTROL_PROG_IO_WKUP1 control modules in the System Control Module / SCM Programming Model / Feature Settings section
and the System Control Module chapter of the AM/DM37x TRM to modify the IO settings if required by the targeted interface application.
(12) The default buffer configuration is standard LVCMOS mode (non-I2C). For a full description of the pull drive strength programming, see
PADCONFS bits of CONTROL_PADCONF_X control modules (standard LVCMOS mode), or prg_i2c2_pullupresx, prg_i2c2_lb1lb0, and
prg_i2c3_pullupresx, prg_i2c3_lb1lb0 bits of the CONTROL_PROG_IO2, CONTROL_PROG_IO3 control modules (I2C mode) in the
System Control Module chapter of the AM/DM37x TRM to modify the IO settings if required by the targeted interface application.
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
73
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
BALL
PIN NAME [3]
BOTTOM [1]
MODE [4]
TYPE [5]
BALL RESET BALL RESET RESET REL. POWER [9]
STATE [6]
REL. STATE MODE [8]
[7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
AC12
i2c3_sda
0
IOD
H
Yes
3
gpio_185
4
IO
safe_mode
7
i2c4_scl
0
OD
sys_nvmode1
1
O
safe_mode
7
i2c4_sda
0
IOD
sys_nvmode2
1
O
safe_mode
7
hdq_sio
0
IOD
sys_altclk
1
I
i2c2_sccbe
2
OD
i2c3_sccbe
3
OD
gpio_170
4
IO
safe_mode
7
mcspi1_clk
0
IO
mmc2_dat4
1
IO
gpio_171
4
IO
safe_mode
7
mcspi1_ simo
0
IO
mmc2_dat5
1
IO
gpio_172
4
IO
safe_mode
7
mcspi1_ somi
0
IO
mmc2_dat6
1
IO
gpio_173
4
IO
safe_mode
7
mcspi1_cs0
0
IO
mmc2_dat7
1
IO
gpio_174
4
IO
safe_mode
7
mcspi1_cs3
0
O
hsusb2_ data2
3
IO
gpio_177
4
IO
mm2_txdat
5
IO
safe_mode
7
mcspi2_clk
0
IO
hsusb2_ data7
3
IO
gpio_178
4
IO
safe_mode
7
mcspi2_ simo
0
IO
gpt_9_pwm_evt
1
IO
hsusb2_ data4
3
IO
gpio_179
4
IO
safe_mode
7
mcspi2_ somi
0
IO
gpt_10_pwm_evt
1
IO
hsusb2_ data5
3
IO
gpio_180
4
IO
safe_mode
7
mcspi2_cs0
0
IO
gpt_11_pwm_evt
1
IO
hsusb2_ data6
3
IO
gpio_181
4
IO
safe_mode
7
Y16
Y15
A24
T5
PRODUCT PREVIEW
R4
T4
T6
R5
N5
N4
N3
M5
74
H
7
vdds
IO CELL [13]
PU/ PD (10)(12) Open Drain
4
H
H
0
vdds
Yes
3
PU/ PD (10)(11) Open Drain
4
H
H
0
vdds
Yes
3
PU/ PD (10)(11) Open Drain
4
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
MODE [4]
TYPE [5]
BALL RESET BALL RESET RESET REL. POWER [9]
STATE [6]
REL. STATE MODE [8]
[7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
M4
mcspi2_cs1
0
O
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpt_8_pwm_evt
1
IO
hsusb2_ data3
3
IO
gpio_182
4
IO
mm2_txen_n
5
IO
safe_mode
7
AA16
sys_32k
0
I
Z
Z
0
vdds
Yes
NA
PU/ PD
LVCMOS
AD15
sys_xtalin
0
AI
Z
Z
0
vdds
Yes
NA
No
Analog
AD14
sys_xtalout
0
AO
Z
0
0
vdds
NA
NA
NA
Analog
Y13
sys_clkreq
0
IO
0
see
0
vdds
Yes
4
PU/ PD
LVCMOS
gpio_1
4
IO
safe_mode
7
sys_nirq
0
I
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_0
4
IO
W16
(13)
safe_mode
7
AA10
sys_nrespwron
0
I
Z
Z
0
vdds
Yes
NA
No
LVCMOS
Y10
sys_nreswarm
0
IOD
0
1
0
vdds
Yes
4
PU/ PD
LVCMOS
gpio_30
4
IO
safe_mode
7
sys_boot0
0
I
Z
Z
0
vdds
Yes
8
PU/ PD
LVCMOS
dss_data18
3
IO
gpio_2
4
IO
safe_mode
7
sys_boot1
0
I
Z
Z
0
vdds
Yes
8
PU/ PD
LVCMOS
dss_data19
3
IO
gpio_3
4
IO
safe_mode
7
sys_boot2
0
I
Z
Z
0
vdds
Yes
8
PU/ PD
LVCMOS
gpio_4
4
IO
safe_mode
7
sys_boot3
0
I
Z
Z
0
vdds
Yes
8
PU/ PD
LVCMOS
dss_data20
3
O
gpio_5
4
IO
safe_mode
7
sys_boot4
0
I
Z
Z
0
vdds
Yes
8
PU/ PD
LVCMOS
mmc2_dir_dat2
1
O
dss_data21
3
O
gpio_6
4
IO
safe_mode
7
sys_boot5
0
I
Z
Z
0
vdds
Yes
8
PU/ PD
LVCMOS
mmc2_dir_dat3
1
O
dss_data22
3
O
gpio_7
4
IO
safe_mode
7
sys_boot6
0
I
Z
Z
0
vdds
Yes
8
PU/ PD
LVCMOS
dss_data23
3
O
gpio_8
4
IO
safe_mode
7
sys_off_ mode
0
O
0
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_9
4
IO
safe_mode
7
AB12
AC16
AD17
AD18
AC17
AB16
AA15
AD23
PRODUCT PREVIEW
BALL
PIN NAME [3]
BOTTOM [1]
(13) Depending on the sys_clkreq direction the corresponding reset released state value can be:
• Z if sys_clkreq is used as input
• 1 if sys_clkreq is used as output
For a full description of the sys_clkreq control, see Power, Reset, and Clock Management chapter of the TRM.
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
75
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
BALL
PIN NAME [3]
BOTTOM [1]
MODE [4]
TYPE [5]
BALL RESET BALL RESET RESET REL. POWER [9]
STATE [6]
REL. STATE MODE [8]
[7]
Y7
sys_clkout1
0
O
L
L
7 (14)
gpio_10
4
IO
safe_mode
7
sys_clkout2
0
O
L
L
gpio_186
4
IO
AA6
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
vdds
Yes
4
PU/ PD
LVCMOS
7
vdds
Yes
4
PU/ PD
LVCMOS
safe_mode
7
AB7
jtag_ntrst
0
I
L
L
0
vdds
Yes
NA
PU/ PD
LVCMOS
AB6
jtag_tck
0
I
L
L
0
vdds
Yes
NA
PU/ PD
LVCMOS
AA7
jtag_rtck
0
O
L
0
0
vdds
NA
4
PU/ PD
LVCMOS
AA9
jtag_tms_tmsc
0
IO
H
H
0
vdds
Yes
4
PU/ PD
LVCMOS
AB10
jtag_tdi
0
I
H
H
0
vdds
Yes
NA
PU/ PD
LVCMOS
AB9
jtag_tdo
0
O
L
Z
0
vdds
NA
4
PU/ PD
LVCMOS
AC24
jtag_emu0
0
IO
H
H
0
vdds
Yes
4
PU/ PD
LVCMOS
gpio_11
4
IO
safe_mode
7
jtag_emu1
0
IO
H
H
0
vdds
Yes
4
PU/ PD
LVCMOS
gpio_31
4
IO
safe_mode
7
etk_clk
0
O
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
mcbsp5_ clkx
1
IO
mmc3_clk
2
IO
hsusb1_stp
3
O
gpio_12
4
IO
mm1_rxdp
5
IO
hw_dbg0
7
O
etk_ctl
0
O
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
mmc3_cmd
2
O
hsusb1_clk
3
O
gpio_13
4
IO
hw_dbg1
7
O
etk_d0
0
O
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
mcspi3_ simo
1
IO
mmc3_dat4
2
IO
hsusb1_ data0
3
IO
gpio_14
4
IO
mm1_rxrcv
5
IO
hw_dbg2
7
O
etk_d1
0
O
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
mcspi3_ somi
1
IO
hsusb1_ data1
3
IO
gpio_15
4
IO
mm1_txse0
5
IO
hw_dbg3
7
O
etk_d2
0
O
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
mcspi3_cs0
1
IO
hsusb1_ data2
3
IO
gpio_16
4
IO
mm1_txdat
5
IO
hw_dbg4
7
O
etk_d3
0
O
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
mcspi3_clk
1
IO
mmc3_dat3
2
IO
hsusb1_ data7
3
IO
gpio_17
4
IO
AD24
PRODUCT PREVIEW
AC1
AD3
AD6
AC6
AC7
AD8
(14) Mux0 if sys_boot6 is pulled down (clock master).
76
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
AC5
AD2
AC8
AD9
AC4
AD5
AC3
AC9
AC10
AD11
MODE [4]
TYPE [5]
hw_dbg5
7
O
etk_d4
0
O
mcbsp5_dr
1
I
mmc3_dat0
2
IO
hsusb1_ data4
3
IO
gpio_18
4
IO
hw_dbg6
7
O
etk_d5
0
O
mcbsp5_fsx
1
IO
mmc3_dat1
2
IO
hsusb1_ data5
3
IO
gpio_19
4
IO
hw_dbg7
7
O
etk_d6
0
O
mcbsp5_dx
1
O
mmc3_dat2
2
IO
hsusb1_ data6
3
IO
gpio_20
4
IO
hw_dbg8
7
O
etk_d7
0
O
mcspi3_cs1
1
O
mmc3_dat7
2
IO
hsusb1_ data3
3
IO
gpio_21
4
IO
mm1_txen_n
5
IO
hw_dbg9
7
O
etk_d8
0
O
mmc3_dat6
2
IO
hsusb1_dir
3
I
gpio_22
4
IO
hw_dbg10
7
O
etk_d9
0
O
mmc3_dat5
2
IO
hsusb1_nxt
3
I
gpio_23
4
IO
mm1_rxdm
5
IO
hw_dbg11
7
O
etk_d10
0
O
uart1_rx
2
I
hsusb2_clk
3
O
gpio_24
4
IO
hw_dbg12
7
O
etk_d11
0
O
hsusb2_stp
3
O
gpio_25
4
IO
mm2_rxdp
5
IO
hw_dbg13
7
O
etk_d12
0
O
hsusb2_dir
3
I
gpio_26
4
IO
hw_dbg14
7
O
etk_d13
0
O
hsusb2_nxt
3
I
gpio_27
4
IO
mm2_rxdm
5
IO
BALL RESET BALL RESET RESET REL. POWER [9]
STATE [6]
REL. STATE MODE [8]
[7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
PRODUCT PREVIEW
BALL
PIN NAME [3]
BOTTOM [1]
77
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
BALL
PIN NAME [3]
BOTTOM [1]
MODE [4]
TYPE [5]
BALL RESET BALL RESET RESET REL. POWER [9]
STATE [6]
REL. STATE MODE [8]
[7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
hw_dbg15
7
O
etk_d14
0
O
hsusb2_ data0
3
IO
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
gpio_28
4
IO
mm2_rxrcv
5
IO
hw_dbg16
7
O
etk_d15
0
O
hsusb2_ data1
3
IO
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
gpio_29
4
IO
mm2_txse0
5
IO
hw_dbg17
7
O
E16, F15,
vdds_mem
F16, G15,
G16, H15, J6,
J7, J8, K6,
K7, K8
0
PWR
-
-
-
-
-
-
-
-
F12, F13,
G12, G13,
H12, H13,
J17, J18,
K17, K18,
K19, L14,
L15, M14,
M15, R17,
R18, R19,
T17, T18,
T19, T20
0
PWR
-
-
-
-
-
-
-
-
F10, G9,
vdd_mpu_iva
G10, H9,
H10, J9, J10,
L11, L12, M6,
M7, M8, M12,
N6, N7, N8,
R6, R7, R8,
T7, T8, U12,
U13, V12,
V13, W12,
W13
0
PWR
-
-
-
-
-
-
-
-
H8
AC11
AD12
vdd_core
PRODUCT PREVIEW
0
PWR
-
-
-
-
-
-
-
-
M17, M18,
vdds
M19, N17,
N18, N19,
U10, V9, V10,
W9, W10, Y9
0
PWR
-
-
-
-
-
-
-
-
N24
vdds_mmc1
0
PWR
-
-
-
-
-
-
-
-
Y12
cap_vddu_
wkup_logic
0
PWR
-
-
-
-
-
-
-
-
U8
cap_vdd_sram_mpu_ 0
iva
PWR
-
-
-
-
-
-
-
-
H17
cap_vdd_sram_core
0
PWR
-
-
-
-
-
-
-
-
G18
vdda_dplls_dll
0
PWR
-
-
-
-
-
-
-
-
U17
vdda_dpll_per
0
PWR
-
-
-
-
-
-
-
-
AA12
vdds_sram
0
PWR
-
-
-
-
-
-
-
-
AA13
vdda_wkup_bg_bb
0
PWR
-
-
-
-
-
-
-
-
N21
cap_vdd_bb_mpu_iv 0
a
PWR
-
-
-
-
-
-
-
-
N20
cap_vddu_array
0
PWR
-
-
-
-
-
-
-
-
AB15
vssa_dac
0
GND
-
-
-
-
-
-
-
-
AB13
vdda_dac
0
PWR
-
-
-
-
-
-
-
-
78
vdds_x
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
MODE [4]
TYPE [5]
BALL RESET BALL RESET RESET REL. POWER [9]
STATE [6]
REL. STATE MODE [8]
[7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
H11, H14,
vss
H16, J11,
J12, J13, J14,
J15, J16,
K10, K11,
K14, K15, L8,
L10, L13,
L17, M9,
M10, M11,
M13, M16,
N9, N10,
N11, N12,
N13, N14,
N15, N16,
P8, P10, P11,
P12, P13,
P14, P15,
P17, R10,
R11, R14,
R15, T9, T10,
T11, T12,
T13, T14,
T15, T16, U9,
U11, U14,
U15, U16,
V15, V16
0
GND
-
-
-
-
-
-
-
-
AD1, A1, A2, No Connect (15)
B1
-
-
-
-
-
-
-
-
-
-
W15
0
GND
-
-
-
-
-
-
-
-
sys_xtalgnd
PRODUCT PREVIEW
BALL
PIN NAME [3]
BOTTOM [1]
(15) Pins labeled as "No connect" must be left unconnected. Any connections to these pins may result in unpredictable behavior.
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
79
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
2.4
www.ti.com
Multiplexing Characteristics
Table 2-4 provides a description of the multiplexing on the CBP, CBC, and CUS packages, respectively.
Note: The following does not take into account subsystem pin multiplexing options. Subsystem pin
multiplexing options are described in Section 2.5, Signal Description. For more information, see the
System Control Module / System Control Module Functional Description / Pad Functional Multiplexing and
Configuration section of the AM37x Technical Reference Manual (TRM).
Table 2-4. Multiplexing Characteristics
CBP
Bottom
CBC
Top
Bottom
CUS
MODE 0
MODE 2
MODE 3
MODE 4
MODE 5
MODE 6
MODE
7
Top
PRODUCT PREVIEW
NA
J2
NA
D1
D7
sdrc_d0
NA
J1
NA
G1
C5
sdrc_d1
NA
G2
NA
G2
C6
sdrc_d2
NA
G1
NA
E1
B5
sdrc_d3
NA
F2
NA
D2
D9
sdrc_d4
NA
F1
NA
E2
D10
sdrc_d5
NA
D2
NA
B3
C7
sdrc_d6
NA
D1
NA
B4
B7
sdrc_d7
NA
B13
NA
A10
B11
sdrc_d8
NA
A13
NA
B11
C12
sdrc_d9
NA
B14
NA
A11
B12
sdrc_d10
NA
A14
NA
B12
D13
sdrc_d11
NA
B16
NA
A16
C13
sdrc_d12
NA
A16
NA
A17
B14
sdrc_d13
NA
B19
NA
B17
A14
sdrc_d14
NA
A19
NA
B18
B15
sdrc_d15
NA
B3
NA
B7
C9
sdrc_d16
NA
A3
NA
A5
E12
sdrc_d17
NA
B5
NA
B6
B8
sdrc_d18
NA
A5
NA
A6
B9
sdrc_d19
NA
B8
NA
A8
C10
sdrc_d20
NA
A8
NA
B9
B10
sdrc_d21
NA
B9
NA
A9
D12
sdrc_d22
NA
A9
NA
B10
E13
sdrc_d23
NA
B21
NA
C21
E15
sdrc_d24
NA
A21
NA
D20
D15
sdrc_d25
NA
D22
NA
B19
C15
sdrc_d26
NA
D23
NA
C20
B16
sdrc_d27
NA
E22
NA
D21
C16
sdrc_d28
NA
E23
NA
E20
D16
sdrc_d29
NA
G22
NA
E21
B17
sdrc_d30
NA
G23
NA
G21
B18
sdrc_d31
NA
AB21
NA
AA18
C18
sdrc_ba0
NA
AC21
NA
V20
D18
sdrc_ba1
NA
N22
NA
G20
A4
sdrc_a0
NA
N23
NA
K20
B4
sdrc_a1
NA
P22
NA
J20
D6
sdrc_a2
NA
P23
NA
J21
B3
sdrc_a3
NA
R22
NA
U21
B2
sdrc_a4
NA
R23
NA
R20
C3
sdrc_a5
NA
T22
NA
M21
E3
sdrc_a6
NA
T23
NA
M20
F6
sdrc_a7
NA
U22
NA
N20
E10
sdrc_a8
NA
U23
NA
K21
E9
sdrc_a9
NA
V22
NA
Y16
E7
sdrc_a10
80
MODE 1
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 2-4. Multiplexing Characteristics (continued)
Bottom
CBC
Top
Bottom
CUS
MODE 0
MODE 1
MODE 2
MODE 3
MODE 4
MODE 5
MODE 6
MODE
7
Top
NA
V23
NA
N21
G6
sdrc_a11
NA
W22
NA
R21
G7
sdrc_a12
NA
W23
NA
AA15
F7
sdrc_a13
NA
Y22
NA
Y12
F9
sdrc_a14
NA
M22
NA
T21
A19
sdrc_ncs0
NA
M23
NA
T20
B19
sdrc_ncs1
NA
A11
NA
A12
A10
sdrc_clk
NA
B11
NA
B13
A11
sdrc_nclk
NA
J22
NA
Y15
B20
sdrc_cke0
safe_mo
de_out1
NA
J23
NA
Y13
C20
sdrc_cke1
safe_mo
de_out1
NA
L23
NA
V21
D19
sdrc_nras
NA
L22
NA
U20
C19
sdrc_ncas
NA
K23
NA
Y18
A20
sdrc_nwe
NA
C1
NA
H1
B6
sdrc_dm0
NA
A17
NA
A14
B13
sdrc_dm1
NA
A6
NA
A4
A7
sdrc_dm2
NA
A20
NA
A18
A16
sdrc_dm3
NA
C2
NA
C2
A5
sdrc_dqs0
NA
B17
NA
B15
A13
sdrc_dqs1
NA
B6
NA
B8
A8
sdrc_dqs2
NA
B20
NA
A19
A17
sdrc_dqs3
N4
AC15
J2
NA
K4
gpmc_a1
gpio_34
safe_mo
de
M4
AB15
H1
NA
K3
gpmc_a2
gpio_35
safe_mo
de
L4
AC16
H2
NA
K2
gpmc_a3
gpio_36
safe_mo
de
K4
AB16
G2
NA
J4
gpmc_a4
gpio_37
safe_mo
de
T3
AC17
F1
NA
J3
gpmc_a5
gpio_38
safe_mo
de
R3
AB17
F2
NA
J2
gpmc_a6
gpio_39
safe_mo
de
N3
AC18
E1
NA
J1
gpmc_a7
gpio_40
safe_mo
de
M3
AB18
E2
NA
H1
gpmc_a8
gpio_41
safe_mo
de
L3
AC19
D1
NA
H2
gpmc_a9
sys_ndmareq
2
gpio_42
safe_mo
de
K3
AB19
D2
NA
G2
gpmc_a10
sys_ndmareq
3
gpio_43
safe_mo
de
NA
AC20
A4
NA
NA
gpmc_a11
K1
M2
AA2
U2
L2
gpmc_d0
L1
M1
AA1
U1
M1
gpmc_d1
L2
N2
AC2
V2
M2
gpmc_d2
P2
N1
AC1
V1
N2
gpmc_d3
T1
R2
AE5
AA3
M3
gpmc_d4
V1
R1
AD6
AA4
P1
gpmc_d5
V2
T2
AD5
Y3
P2
gpmc_d6
W2
T1
AC5
Y4
R1
gpmc_d7
H2
AB3
V1
R1
R2
gpmc_d8
gpio_44
safe_mo
de
K2
AC3
Y1
T1
T2
gpmc_d9
gpio_45
safe_mo
de
P1
AB4
T1
N1
U1
gpmc_d10
gpio_46
safe_mo
de
R1
AC4
U2
P2
R3
gpmc_d11
gpio_47
safe_mo
de
safe_mo
de
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
81
PRODUCT PREVIEW
CBP
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-4. Multiplexing Characteristics (continued)
CBP
Bottom
CBC
Top
Bottom
CUS
MODE 0
MODE 1
MODE 2
MODE 3
MODE 4
MODE 5
MODE 6
MODE
7
Top
PRODUCT PREVIEW
R2
AB6
U1
P1
T3
gpmc_d12
gpio_48
safe_mo
de
T2
AC6
P1
M1
U2
gpmc_d13
gpio_49
safe_mo
de
W1
AB7
L2
J2
V1
gpmc_d14
gpio_50
safe_mo
de
Y1
AC7
M2
K2
V2
gpmc_d15
gpio_51
safe_mo
de
G4
Y2
AD8
AA8
E2
gpmc_ncs0
H3
Y1
AD1
W1
NA
gpmc_ncs1
gpio_52
safe_mo
de
V8
NA
A3
NA
NA
gpmc_ncs2
gpio_53
safe_mo
de
U8
NA
B6
NA
D2
gpmc_ncs3
sys_ndmareq
0
gpio_54
safe_mo
de
T8
NA
B4
NA
F4
gpmc_ncs4
sys_ndmareq mcbsp4_clkx
1
gpt_9_pwm gpio_55
_evt
safe_mo
de
R8
NA
C4
NA
G5
gpmc_ncs5
sys_ndmareq mcbsp4_dr
2
gpt_10_pw
m_evt
gpio_56
safe_mo
de
P8
NA
B5
NA
F3
gpmc_ncs6
sys_ndmareq mcbsp4_dx
3
gpt_11_pw
m_evt
gpio_57
safe_mo
de
N8
NA
C5
NA
G4
gpmc_ncs7
gpmc_io_dir
gpt_8_pwm gpio_58
_evt
safe_mo
de
T4
W2
N1
L1
W2
gpmc_clk
gpio_59
safe_mo
de
F3
W1
AD10
AA9
F1
gpmc_nadv_a
le
G2
V2
N2
L2
F2
gpmc_noe
F4
V1
M1
K1
G3
gpmc_nwe
G3
AC12
K2
NA
K5
gpmc_nbe0_c
le
gpio_60
safe_mo
de
U3
NA
J1
NA
L1
gpmc_nbe1
gpio_61
safe_mo
de
H1
AB10
AC6
Y5
E1
gpmc_nwp
gpio_62
safe_mo
de
M8
AB12
AC11
Y10
C1
gpmc_wait0
L8
AC10
AC8
Y8
NA
gpmc_wait1
gpio_63
safe_mo
de
K8
NA
B3
NA
NA
gpmc_wait2
gpio_64
safe_mo
de
J8
NA
C6
NA
C2
gpmc_wait3
gpio_65
safe_mo
de
D28
NA
G25
NA
G22
dss_pclk
gpio_66
hw_dbg12
safe_mo
de
D26
NA
K24
NA
E22
dss_hsync
gpio_67
hw_dbg13
safe_mo
de
D27
NA
M25
NA
F22
dss_vsync
gpio_68
safe_mo
de
E27
NA
F26
NA
J21
dss_acbias
gpio_69
safe_mo
de
AG22
NA
AE21
NA
AC19
dss_data0
uart1_cts
gpio_70
safe_mo
de
AH22
NA
AE22
NA
AB19
dss_data1
uart1_rts
gpio_71
safe_mo
de
AG23
NA
AE23
NA
AD20
dss_data2
gpio_72
safe_mo
de
AH23
NA
AE24
NA
AC20
dss_data3
gpio_73
safe_mo
de
AG24
NA
AD23
NA
AD21
dss_data4
uart3_rx_irrx
gpio_74
safe_mo
de
AH24
NA
AD24
NA
AC21
dss_data5
uart3_tx_irtx
gpio_75
safe_mo
de
E26
NA
G26
NA
D24
dss_data6
uart1_tx
gpio_76
(1)
82
mcbsp4_fsx
uart4_tx
sys_ndmareq uart4_rx (1)
1
hw_dbg14
safe_mo
de
UART4 is only available on CBP and CBC packages.
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 2-4. Multiplexing Characteristics (continued)
Bottom
CBC
Top
Bottom
CUS
MODE 0
MODE 1
MODE 2
MODE 3
MODE 4
MODE 5
MODE 6
MODE
7
Top
F28
NA
H25
NA
E23
dss_data7
uart1_rx
gpio_77
hw_dbg15
safe_mo
de
F27
NA
H26
NA
E24
dss_data8
uart3_rx_irrx
gpio_78
hw_dbg16
safe_mo
de
G26
NA
J26
NA
F23
dss_data9
uart3_tx_irtx
gpio_79
hw_dbg17
safe_mo
de
AD28
NA
AC26
NA
AC22
dss_data10
gpio_80
safe_mo
de
AD27
NA
AD26
NA
AC23
dss_data11
gpio_81
safe_mo
de
AB28
NA
AA25
NA
AB22
dss_data12
gpio_82
safe_mo
de
AB27
NA
Y25
NA
Y22
dss_data13
gpio_83
safe_mo
de
AA28
NA
AA26
NA
W22
dss_data14
gpio_84
safe_mo
de
AA27
NA
AB26
NA
V22
dss_data15
gpio_85
safe_mo
de
G25
NA
L25
NA
J22
dss_data16
gpio_86
safe_mo
de
H27
NA
L26
NA
G23
dss_data17
gpio_87
safe_mo
de
H26
NA
M24
NA
G24
dss_data18
mcspi3_clk
dss_data0
gpio_88
safe_mo
de
H25
NA
M26
NA
H23
dss_data19
mcspi3_simo
dss_data1
gpio_89
safe_mo
de
E28
NA
F25
NA
D23
dss_data20
mcspi3_somi
dss_data2
gpio_90
safe_mo
de
J26
NA
N24
NA
K22
dss_data21
mcspi3_cs0
dss_data3
gpio_91
safe_mo
de
AC27
NA
AC25
NA
V21
dss_data22
mcspi3_cs1
dss_data4
gpio_92
safe_mo
de
AC28
NA
AB25
NA
W21
dss_data23
dss_data5
gpio_93
safe_mo
de
W28
NA
V26
NA
AA23
cvideo2_out
Y28
NA
W26
NA
AB24
cvideo1_out
Y27
NA
W25
NA
AB23
cvideo1_vfb
W27
NA
U24
NA
Y23
cvideo2_vfb
W26
NA
V23
NA
Y24
cvideo1_rset
A24
NA
C23
NA
A22
cam_hs
gpio_94
hw_dbg0
safe_mo
de
A23
NA
D23
NA
E18
cam_vs
gpio_95
hw_dbg1
safe_mo
de
C25
NA
C25
NA
B22
cam_xclka
gpio_96
C27
NA
C26
NA
J19
cam_pclk
gpio_97
hw_dbg2
safe_mo
de
C23
NA
B23
NA
H24
cam_fld
gpio_98
hw_dbg3
safe_mo
de
AG17
NA
AE16
NA
AB18
cam_d0
gpio_99 (2)
safe_mo
de
AH17
NA
AE15
NA
AC18
cam_d1
gpio_100 (2)
safe_mo
de
B24
NA
A24
NA
G19
cam_d2
gpio_101
hw_dbg4
safe_mo
de
C24
NA
B24
NA
F19
cam_d3
gpio_102
hw_dbg5
safe_mo
de
D24
NA
D24
NA
G20
cam_d4
gpio_103
hw_dbg6
safe_mo
de
A25
NA
C24
NA
B21
cam_d5
gpio_104
hw_dbg7
safe_mo
de
K28
NA
P25
NA
L24
cam_d6
gpio_105 (2)
safe_mo
de
L28
NA
P26
NA
K24
cam_d7
gpio_106 (2)
safe_mo
de
(2)
cam_global_res
et
safe_mo
de
This GPIO is only an input (and not an output).
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
83
PRODUCT PREVIEW
CBP
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-4. Multiplexing Characteristics (continued)
CBP
Bottom
CBC
Top
Bottom
CUS
MODE 0
MODE 1
MODE 2
MODE 3
MODE 4
MODE 5
MODE 6
MODE
7
Top
PRODUCT PREVIEW
K27
NA
N25
NA
J23
cam_d8
gpio_107 (2)
safe_mo
de
L27
NA
N26
NA
K23
cam_d9
gpio_108 (2)
safe_mo
de
B25
NA
D25
NA
F21
cam_d10
gpio_109
hw_dbg8
safe_mo
de
C26
NA
E26
NA
G21
cam_d11
gpio_110
hw_dbg9
safe_mo
de
B26
NA
E25
NA
C22
cam_xclkb
gpio_111
B23
NA
A23
NA
F18
cam_wen
D25
NA
D26
NA
J20
cam_strobe
AG19
NA
AD17
NA
NA
gpio_112 (2)
safe_mo
de
AH19
NA
AD16
NA
NA
gpio_113 (2)
safe_mo
de
AG18
NA
AE18
NA
NA
gpio_114 (2)
safe_mo
de
AH18
NA
AE17
NA
NA
gpio_115 (3)
safe_mo
de
P21
NA
U18
NA
V20
mcbsp2_fsx
gpio_116
safe_mo
de
N21
NA
R18
NA
T21
mcbsp2_clkx
gpio_117
safe_mo
de
R21
NA
T18
NA
V19
mcbsp2_dr
gpio_118
safe_mo
de
M21
NA
R19
NA
R20
mcbsp2_dx
gpio_119
safe_mo
de
N28
NA
N19
NA
M23
mmc1_clk
gpio_120 (4)
safe_mo
de
M27
NA
L18
NA
L23
mmc1_cmd
gpio_121 (4)
safe_mo
de
N27
NA
M19
NA
M22
mmc1_dat0
gpio_122 (4)
safe_mo
de
N26
NA
M18
NA
M21
mmc1_dat1
gpio_123 (4)
safe_mo
de
N25
NA
K18
NA
M20
mmc1_dat2
gpio_124 (4)
safe_mo
de
P28
NA
N20
NA
N23
mmc1_dat3
gpio_125 (4)
safe_mo
de
P27
NA
M20
NA
N22
gpio_126 (4)
safe_mo
de
P26
NA
P17
NA
NA
gpio_127 (4)
safe_mo
de
R27
NA
P18
NA
NA
gpio_128 (4)
safe_mo
de
R25
NA
P19
NA
P24
gpio_129 (4)
safe_mo
de
AE2
NA
W10
NA
Y1
mmc2_clk
mcspi3_clk
gpio_130
safe_mo
de
AG5
NA
R10
NA
AB5
mmc2_cmd
mcspi3_simo
gpio_131
safe_mo
de
AH5
NA
T10
NA
AB3
mmc2_dat0
mcspi3_somi
gpio_132
safe_mo
de
AH4
NA
T9
NA
Y3
mmc2_dat1
gpio_133
safe_mo
de
AG4
NA
U10
NA
W3
mmc2_dat2
mcspi3_cs1
gpio_134
safe_mo
de
AF4
NA
U9
NA
V3
mmc2_dat3
mcspi3_cs0
gpio_135
safe_mo
de
AE4
NA
V10
NA
AB2
mmc2_dat4
mmc2_dir_dat
0
mmc3_dat0 gpio_136
safe_mo
de
(3)
(4)
84
cam_shutter
safe_mo
de
gpio_167
hw_dbg10
safe_mo
de
gpio_126
hw_dbg11
safe_mo
de
This GPIO is only an input (and not an output).
The usage of this GPIO is strongly restricted. For more information, see the General-Purpose Interface chapter of the TRM.
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 2-4. Multiplexing Characteristics (continued)
Bottom
CBC
Top
Bottom
CUS
MODE 0
MODE 1
MODE 2
MODE 3
MODE 4
MODE 5
MODE 6
MODE
7
Top
AH3
NA
M3
NA
AA2
mmc2_dat5
mmc2_dir_dat cam_global_res mmc3_dat1 gpio_137
1
et
AF3
NA
L3
NA
Y2
mmc2_dat6
mmc2_dir_cm cam_shutter
d
mmc3_dat2 gpio_138
safe_mo
de
AE3
NA
K3
NA
AA1
mmc2_dat7
mmc2_clkin
mmc3_dat3 gpio_139
mm3_rxdm safe_mo
de
AF6
NA
P3
NA
V6
mcbsp3_dx
uart2_cts
gpio_140
safe_mo
de
AE6
NA
N3
NA
V5
mcbsp3_dr
uart2_rts
gpio_141
safe_mo
de
AF5
NA
U3
NA
W4
mcbsp3_clkx
uart2_tx
gpio_142
safe_mo
de
AE5
NA
W3
NA
V4
mcbsp3_fsx
uart2_rx
gpio_143
safe_mo
de
AB26
NA
Y24
NA
NA
uart2_cts
mcbsp3_dx
gpt_9_pwm_evt
gpio_144
safe_mo
de
AB25
NA
AA24
NA
NA
uart2_rts
mcbsp3_dr
gpt_10_pwm_e
vt
gpio_145
safe_mo
de
AA25
NA
AD22
NA
NA
uart2_tx
mcbsp3_clkx
gpt_11_pwm_e
vt
gpio_146
safe_mo
de
AD25
NA
AD21
NA
NA
uart2_rx
mcbsp3_fsx
gpt_8_pwm_evt
gpio_147
safe_mo
de
AA8
NA
L4
NA
W7
uart1_tx
gpio_148
safe_mo
de
AA9
NA
R2
NA
W6
uart1_rts
gpio_149
safe_mo
de
W8
NA
W2
NA
AC2
uart1_cts
gpio_150
safe_mo
de
Y8
NA
H3
NA
V7
uart1_rx
mcspi4_clk gpio_151
safe_mo
de
AE1
NA
V3
NA
NA
mcbsp4_clkx
gpio_152
mm3_txse0 safe_mo
de
AD1
NA
U4
NA
NA
mcbsp4_dr
gpio_153
mm3_rxrcv safe_mo
de
AD2
NA
R3
NA
NA
mcbsp4_dx
gpio_154
mm3_txdat safe_mo
de
AC1
NA
T3
NA
NA
mcbsp4_fsx
gpio_155
mm3_txen_ safe_mo
n
de
Y21
NA
U19
NA
W19
mcbsp1_clkr
gpio_156
safe_mo
de
AA21
NA
V17
NA
AB20
mcbsp1_fsr
gpio_157
safe_mo
de
V21
NA
U17
NA
W18
mcbsp1_dx
mcspi4_simo mcbsp3_dx
gpio_158
safe_mo
de
U21
NA
T20
NA
Y18
mcbsp1_dr
mcspi4_somi mcbsp3_dr
gpio_159
safe_mo
de
T21
NA
T19
NA
AA18
mcbsp_clks
K26
NA
P20
NA
AA19
mcbsp1_fsx
W21
NA
T17
NA
V18
mcbsp1_clkx
H18
NA
F23
NA
A23
H19
NA
F24
NA
H20
NA
H24
H21
NA
T28
mcbsp1_clkr
mcspi4_clk
cam_global_res
et
mm3_rxdp
cam_shutter
gpio_160
mcbsp3_fsx
gpio_161
safe_mo
de
mcbsp3_clkx
gpio_162
safe_mo
de
uart3_cts_rctx
gpio_163
safe_mo
de
B23
uart3_rts_sd
gpio_164
safe_mo
de
NA
B24
uart3_rx_irrx
gpio_165
safe_mo
de
G24
NA
C23
uart3_tx_irtx
gpio_166
safe_mo
de
NA
W19
NA
R21
hsusb0_clk
gpio_120
safe_mo
de
T25
NA
U20
NA
R23
hsusb0_stp
gpio_121
safe_mo
de
R28
NA
V19
NA
P23
hsusb0_dir
gpio_122
safe_mo
de
mcspi4_cs0
uart1_cts
safe_mo
de
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
safe_mo
de
85
PRODUCT PREVIEW
CBP
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-4. Multiplexing Characteristics (continued)
CBP
Bottom
CBC
Top
Bottom
CUS
MODE 0
MODE 1
MODE 2
MODE 3
MODE 4
MODE 5
MODE 6
MODE
7
Top
PRODUCT PREVIEW
T26
NA
W18
NA
R22
hsusb0_nxt
gpio_124
T27
NA
V20
NA
T24
hsusb0_data0
uart3_tx_irtx
gpio_125
uart2_tx
safe_mo
de
U28
NA
Y20
NA
T23
hsusb0_data1
uart3_rx_irrx
gpio_130
uart2_rx
safe_mo
de
U27
NA
V18
NA
U24
hsusb0_data2
uart3_rts_sd
gpio_131
uart2_rts
safe_mo
de
U26
NA
W20
NA
U23
hsusb0_data3
uart3_cts_rctx
gpio_169
uart2_cts
safe_mo
de
U25
NA
W17
NA
W24
hsusb0_data4
gpio_188
safe_mo
de
V28
NA
Y18
NA
V23
hsusb0_data5
gpio_189
safe_mo
de
V27
NA
Y19
NA
W23
hsusb0_data6
gpio_190
safe_mo
de
V26
NA
Y17
NA
T22
hsusb0_data7
gpio_191
safe_mo
de
K21
NA
J25
NA
K20
i2c1_scl
J21
NA
J24
NA
K21
i2c1_sda
AF15
NA
C2
NA
AC15
i2c2_scl
gpio_168
safe_mo
de
AE15
NA
C1
NA
AC14
i2c2_sda
gpio_183
safe_mo
de
AF14
NA
AB4
NA
AC13
i2c3_scl
gpio_184
safe_mo
de
AG14
NA
AC4
NA
AC12
i2c3_sda
gpio_185
safe_mo
de
AD26
NA
AD15
NA
Y16
i2c4_scl
sys_nvmode1
safe_mo
de
AE26
NA
W16
NA
Y15
i2c4_sda
sys_nvmode2
safe_mo
de
J25
NA
J23
NA
A24
hdq_sio
sys_altclk
AB3
NA
P9
NA
T5
mcspi1_clk
AB4
NA
P8
NA
AA4
NA
P7
AC2
NA
AC3
i2c3_sccbe gpio_170
safe_mo
de
mmc2_dat4
gpio_171
safe_mo
de
R4
mcspi1_simo mmc2_dat5
gpio_172
safe_mo
de
NA
T4
mcspi1_somi mmc2_dat6
gpio_173
safe_mo
de
R7
NA
T6
mcspi1_cs0
gpio_174
safe_mo
de
NA
R8
NA
NA
mcspi1_cs1
mmc3_cmd gpio_175
safe_mo
de
AB1
NA
R9
NA
NA
mcspi1_cs2
mmc3_clk
safe_mo
de
AB2
NA
T8
NA
R5
mcspi1_cs3
hsusb2_dat gpio_177
a2
AA3
NA
W7
NA
N5
mcspi2_clk
hsusb2_dat gpio_178
a7
safe_mo
de
Y2
NA
W8
NA
N4
mcspi2_simo gpt_9_pwm_e
vt
hsusb2_dat gpio_179
a4
safe_mo
de
Y3
NA
U8
NA
N3
mcspi2_somi gpt_10_pwm_
evt
hsusb2_dat gpio_180
a5
safe_mo
de
Y4
NA
V8
NA
M5
mcspi2_cs0
gpt_11_pwm_
evt
hsusb2_dat gpio_181
a6
safe_mo
de
V3
NA
V9
NA
M4
mcspi2_cs1
gpt_8_pwm_e
vt
hsusb2_dat gpio_182
a3
AE25
NA
AE20
NA
AA16
sys_32k
AE17
NA
AF19
NA
AD15
sys_xtalin
AF17
NA
AF20
NA
AD14
sys_xtalout
AF25
NA
W15
NA
Y13
sys_clkreq
gpio_1
safe_mo
de
AF26
NA
V16
NA
W16
sys_nirq
gpio_0
safe_mo
de
86
i2c2_sccbe
safe_mo
de
mmc2_dat7
TERMINAL DESCRIPTION
gpio_176
mm2_txdat
mm2_txen_
n
safe_mo
de
safe_mo
de
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 2-4. Multiplexing Characteristics (continued)
Bottom
CBC
Top
Bottom
CUS
MODE 0
MODE 1
MODE 2
MODE 3
MODE 4
MODE 5
MODE 6
MODE
7
Top
AH25
NA
V13
NA
AA10
sys_nrespwro
n
AF24
NA
AD7
AA5
Y10
sys_nreswar
m
AH26
NA
F3
NA
AB12
sys_boot0
dss_data18 gpio_2
safe_mo
de
AG26
NA
D3
NA
AC16
sys_boot1
dss_data19 gpio_3
safe_mo
de
AE14
NA
C3
NA
AD17
sys_boot2
gpio_4
safe_mo
de
AF18
NA
E3
NA
AD18
sys_boot3
dss_data20 gpio_5
safe_mo
de
AF19
NA
E4
NA
AC17
sys_boot4
mmc2_dir_dat
2
dss_data21 gpio_6
safe_mo
de
AE21
NA
G3
NA
AB16
sys_boot5
mmc2_dir_dat
3
dss_data22 gpio_7
safe_mo
de
AF21
NA
D4
NA
AA15
sys_boot6
dss_data23 gpio_8
safe_mo
de
AF22
NA
V12
NA
AD23
sys_off_mode
gpio_9
safe_mo
de
AG25
NA
AE14
NA
Y7
sys_clkout1
gpio_10
safe_mo
de
AE22
NA
W11
NA
AA6
sys_clkout2
gpio_186
safe_mo
de
AA17
NA
U15
NA
AB7
jtag_ntrst
AA13
NA
V14
NA
AB6
jtag_tck
AA12
NA
W13
NA
AA7
jtag_rtck
AA18
NA
V15
NA
AA9
jtag_tms_tms
c
AA20
NA
U16
NA
AB10
jtag_tdi
AA19
NA
Y13
NA
AB9
jtag_tdo
AA11
NA
Y15
NA
AC24
jtag_emu0
gpio_11
safe_mo
de
AA10
NA
Y14
NA
AD24
jtag_emu1
gpio_31
safe_mo
de
AF10
NA
AB2
NA
AC1
etk_clk
AE10
NA
AB3
NA
AD3
AF11
NA
AC3
NA
AG12
NA
AD4
AH12
NA
AE13
gpio_30
mcbsp5_clkx
safe_mo
de
mmc3_clk
hsusb1_stp gpio_12
mm1_rxdp
etk_ctl
mmc3_cmd
hsusb1_clk gpio_13
AD6
etk_d0
mcspi3_simo mmc3_dat4
hsusb1_dat gpio_14
a0
mm1_rxrcv
hw_dbg
2
NA
AC6
etk_d1
mcspi3_somi
hsusb1_dat gpio_15
a1
mm1_txse0
hw_dbg
3
AD3
NA
AC7
etk_d2
mcspi3_cs0
hsusb1_dat gpio_16
a2
mm1_txdat
hw_dbg
4
NA
AA3
NA
AD8
etk_d3
mcspi3_clk
mmc3_dat3
hsusb1_dat gpio_17
a7
hw_dbg
5
AE11
NA
Y3
NA
AC5
etk_d4
mcbsp5_dr
mmc3_dat0
hsusb1_dat gpio_18
a4
hw_dbg
6
AH9
NA
AB1
NA
AD2
etk_d5
mcbsp5_fsx
mmc3_dat1
hsusb1_dat gpio_19
a5
hw_dbg
7
AF13
NA
AE3
NA
AC8
etk_d6
mcbsp5_dx
mmc3_dat2
hsusb1_dat gpio_20
a6
hw_dbg
8
AH14
NA
AD2
NA
AD9
etk_d7
mcspi3_cs1
mmc3_dat7
hsusb1_dat gpio_21
a3
AF9
NA
AA4
NA
AC4
etk_d8
mmc3_dat6
hsusb1_dir
AG9
NA
V2
NA
AD5
etk_d9
mmc3_dat5
hsusb1_nxt gpio_23
AE7
NA
AE4
NA
AC3
etk_d10
uart1_rx
hsusb2_clk gpio_24
AF7
NA
AF6
NA
AC9
etk_d11
hsusb2_stp gpio_25
AG7
NA
AE6
NA
AC10
etk_d12
hsusb2_dir
hw_dbg
1
mm1_txen_
n
gpio_22
Submit Documentation Feedback
hw_dbg
9
hw_dbg
10
mm1_rxdm
hw_dbg
11
hw_dbg
12
mm2_rxdp
gpio_26
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
hw_dbg
0
hw_dbg
13
hw_dbg
14
87
PRODUCT PREVIEW
CBP
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-4. Multiplexing Characteristics (continued)
CBP
Bottom
CBC
Top
Bottom
CUS
MODE 0
MODE 1
MODE 2
MODE 3
MODE 4
MODE 5
MODE 6
MODE
7
Top
AH7
NA
AF7
NA
AD11
etk_d13
hsusb2_nxt gpio_27
mm2_rxdm
hw_dbg
15
AG8
NA
AF9
NA
AC11
etk_d14
hsusb2_dat gpio_28
a0
mm2_rxrcv
hw_dbg
16
AH8
NA
AE9
NA
AD12
etk_d15
hsusb2_dat gpio_29
a1
mm2_txse0
hw_dbg
17
vdd_core
PRODUCT PREVIEW
AC4, J4, H4, NA
D8, AE9, D9,
D15, Y16,
AE18, Y18,
W18, K18,
J18, AE19,
Y19, U19,
T19, N19,
M19, J19,
Y20, W20,
V20, U20,
P20, N20,
K20, J20,
D22, D23,
AE24, M25,
L25, E25
AC21, D15,
NA
G11, G18,
H20, M7,
M17, R20, T7,
Y8, Y12
F12, F13,
G12, G13,
H12, H13,
J17, J18,
K17, K18,
K19, L14,
L15, M14,
M15, R17,
R18, R19,
T17, T18,
T19, T20
Y9, W9, T9, NA
R9, M9, L9,
J9, Y10, U10,
T10, R10,
N10, M10,
L10, J10,
Y11, W11,
K11, J11,
W12, K13,
Y14, K14,
J14, Y15,
W15, J15
D13, G9,
NA
G12, H7, K11,
L9, M9, M10,
N7, N8, P10,
U7, U11, U13,
V7, V11, W9,
Y9, Y11
F10, G9, G10, vdd_mpu_iva
H9, H10, J9,
J10, L11, L12,
M6, M7, M8,
M12, N6, N7,
N8, R6, R7,
R8, T7, T8,
U12, U13,
V12, V13,
W12, W13
U4
NA
D6
NA
N21
cap_vdd_bb_
mpu_iva
AA15
NA
K14
NA
Y12
cap_vddu_wk
up_logic
K15
NA
K13
NA
G18
vdda_dplls_dll
W16
NA
U12
NA
AA12
vdds_sram
AD3, AD4,
W4, AF8,
AE8, AF16,
AE16, AF23,
AE23, F25,
F26, AG27
NA
A18, AC7,
A3,A15,B5,F2 M17, M18,
vdds
AC15, AC18, ,F21,L20,W21 M19, N17,
AC24, AD20,
N18, N19,
AE10, C11,
U10, V9, V10,
D9, E24, G4,
W9, W10, Y9
J15, J18, L7,
L24, M4, T4,
T24, W24,
Y4, AB24
U1, J1, F1,
J2, F2, R4,
B5, A5, AH6,
B8, A8, B12,
A12, D16,
C16, B18,
A18, B22,
A22, G28,
C28
AC5, P1, H1, NA
F23, E1, C23,
A4, A7, A10,
A15, A18
NA
E16, F15,
vdds_mem
F16, G15,
G16, H15, J6,
J7, J8, K6,
K7, K8
AA16
NA
U14
NA
U17
vdda_dpll_per
AA14
NA
W14
NA
AA13
vdda_wkup_b
g_bb
88
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 2-4. Multiplexing Characteristics (continued)
CBC
CUS
MODE 0
Bottom
Top
Bottom
Top
AG2, U2, B2,
AG3, W3, P3,
J3, E3, A3,
P4, E4, AG6,
D7, C7, V9,
U9, P9, N9,
K9, W10,
V10, P10,
K10, D10,
C10, AF12,
AE12, Y12,
K12, J12,
Y13, W13,
J13, D13,
C13, W14,
K16, J16,
W17, K17,
J17, W19,
V19, R19,
P19, L19,
K19, D19,
C19, AF20,
AE20, T20,
AG15, AF2,
AF27, B15,
J27, M2, M26,
N2, AA2,
AG10, AC25,
AC26, Y25,
W25, M20,
L20, L26,
G27, D21,
C22, B27,
A26, R20,
R26
B4, B7, B10,
B15, B18,
C22, E2, F22,
H2, P2, AB5,
AB14, AB20
A6, A8, A13,
AB5, AB22,
AC10, AD14,
AD25, AE7,
B2, B25, C12,
D7, D10, D12,
D14, D18,
D20, E22, G1,
G8, G10,
G20, G23,
H4, K1, K15,
K25, L10,
L17, L23, N4,
N10, N17, R1,
R4, R17, T23,
U25, W1, W4,
W23, Y7,
Y10, Y16,
Y26
A7, A13, B14,
C1, F1, F20,
H2, H20, L21,
M2, P20, R2,
W20 Y6, Y11,
AA7, AA16
H11, H14,
vss
H16, J11,
J12, J13, J14,
J15, J16,
K10, K11,
K14, K15, L8,
L10, L13,
L17, M9,
M10, M11,
M13, M16,
N9, N10, N11,
N12, N13,
N14, N15,
N16, P8, P10,
P11, P12,
P13, P14,
P15, P17,
R10, R11,
R14, R15, T9,
T10, T11,
T12, T13,
T14, T15,
T16, U9, U11,
U14, U15,
U16, V15,
V16
V25
NA
V25
NA
AB13
vdda_dac
Y26
NA
V24
NA
AB15
vssa_dac
K25
NA
N23
NA
N24
vdds_mmc1
P25
NA
P23
NA
H8
vdds_x
AG21
NA
AD19
NA
NA
vdds
AH20
NA
AE19
NA
N20
cap_vddu_arr
ay
AH21
NA
AC19
NA
NA
vss
AG16
NA
AC16
NA
NA
vss
AG20
NA
AD18
NA
NA
vdds
M28
NA
L19
NA
NA
vss
H28
NA
L20
NA
NA
vdds
V4
NA
N9
NA
U8
cap_vdd_sra
m_mpu_iva
L21
NA
K20
NA
H17
cap_vdd_sra
m_core
Y17
NA
AF23
NA
W15
sys_xtalgnd
MODE 1
MODE 2
MODE 3
MODE 4
MODE 5
MODE 6
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
MODE
7
PRODUCT PREVIEW
CBP
89
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
2.5
www.ti.com
Signal Description
Many signals are available on multiple pins according to the software configuration of the pin multiplexing
options.
1. SIGNAL NAME: The signal name
2. DESCRIPTION: Description of the signal
3. TYPE: Type = Ball type for this specific function:
– I = Input
– O = Output
– Z = High-impedance
– D = Open Drain
– DS = Differential
– A = Analog
4. BALL BOTTOM: Associated ball(s) bottom
5. BALL TOP: Associated ball(s) top
6. SUBSYSTEM PIN MULTIPLEXING: Contains a list of the pin multiplexing options at the
module/subsystem level. The pin function is selected at the module/system level.
PRODUCT PREVIEW
Note: The Subsystem Multiplexing Signals are not described in the following tables. For more
information, see the System Control Module / System Control Module Functional Description / Pad
Functional Multiplexing and Configuration section of the AM37x Technical Reference Manual (TRM).
2.5.1
External Memory Interfaces
NOTE
For more information, see Memory Subsystem / General-Purpose Memory Controller /
GPMC Environment section of the AM37x Technical Reference Manual (TRM).
Table 2-5. External Memory Interfaces – GPMC Signals Description (1)
SIGNAL NAME
[1]
DESCRIPTION [2]
TYPE
[3]
BALL
BOTTOM
(CBP
Pkg.) [4]
BALL
TOP
(CBP
Pkg.) [5]
BALL BOTTOM
(CBC Pkg.) [4]
BALL TOP
(CBC Pkg.) [5]
BALL
BOTTOM
(CUS
Pkg.) [4]
SUBSYSTEM
PIN
MULTIPLEXING
[6]
gpmc_a1
GPMC output address bit 1 /
extended multiplexed address
gpmc_a17
O
N4 / K1
AC15 / M2
J2 / AA2
NA / U2
K4 / L2
- / gpmc_d0
gpmc_a2
GPMC output address bit 2 /
extended multiplexed address
gpmc_a18
O
M4 / L1
AB15 / M1
H1 / AA1
NA / U1
K3 / M1
- / gpmc_d1
gpmc_a3
GPMC output address bit 3 /
extended multiplexed address
gpmc_a19
O
L4 / L2
AC16 / N2
H2 / AC2
NA / V2
K2 / M2
- / gpmc_d2
gpmc_a4
GPMC output address bit 4 /
extended multiplexed address
gpmc_a20
O
K4 / P2
AB16 / N1
G2 / AC1
NA / V1
J4 / N2
- / gpmc_d3
gpmc_a5
GPMC output address bit 5 /
extended multiplexed address
gpmc_a21
O
T3 / T1
AC17 / R2
F1 / AE5
NA / AA3
J3 / M3
- / gpmc_d4
gpmc_a6
GPMC output address bit 6 /
extended multiplexed address
gpmc_a22
O
R3 / V1
AB17 / R1
F2 / AD6
NA / AA4
J2/ P1
- / gpmc_d5
gpmc_a7
GPMC output address bit 7 /
extended multiplexed address
gpmc_a23
O
N3 / V2
AC18 / T2
E1 / AD5
NA / Y3
J1/ P2
- / gpmc_d6
gpmc_a8
GPMC output address bit 8 /
extended multiplexed address
gpmc_a24
O
M3 / W2
AB18 / T1
E2 / AC5
NA / Y4
H1/ R1
- / gpmc_d7
(1)
90
NA in table stands for Not Applicable.
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 2-5. External Memory Interfaces – GPMC Signals Description (continued)
DESCRIPTION [2]
TYPE
[3]
BALL
BOTTOM
(CBP
Pkg.) [4]
BALL
TOP
(CBP
Pkg.) [5]
BALL BOTTOM
(CBC Pkg.) [4]
BALL TOP
(CBC Pkg.) [5]
BALL
BOTTOM
(CUS
Pkg.) [4]
SUBSYSTEM
PIN
MULTIPLEXING
[6]
gpmc_a9
GPMC output address bit 9 /
extended multiplexed address
gpmc_a25
O
L3 / H2
AC19 /
AB3
D1 / V1
NA / R1
H2/ R2
- / gpmc_d8
gpmc_a10
GPMC output address bit 10 /
extended multiplexed address
gpmc_a26
O
K3 / K2
AB19 /
AC3
D2 / Y1
T1
G2/ T2
- / gpmc_d9
gpmc_a11
GPMC output address bit 11 /
extended multiplexed address
gpmc_a27
O
NC / P1
AC20 /
AB4
A4 / T1
- / N1
NA
- / gpmc_d10
gpmc_a12
General-purpose memory address
bit 12
O
R1
AC4
U2
P2
R3
gpmc_d11
gpmc_a13
General-purpose memory address
bit 13
O
R2
AB6
U1
P1
T3
gpmc_d12
gpmc_a14
General-purpose memory address
bit 14
O
T2
AC6
P1
M1
U2
gpmc_d13
gpmc_a15
General-purpose memory address
bit 15
O
W1
AB7
L2
J2
V1
gpmc_d14
gpmc_a16
General-purpose memory address
bit 16
O
Y1
AC7
M2
K2
V2
gpmc_d15
gpmc_a17
General-purpose memory address
bit 17
O
N4
AC15
J2
NA
K4
gpmc_a1
gpmc_a18
General-purpose memory address
bit 18
O
M4
AB15
H1
NA
K3
gpmc_a2
gpmc_a19
General-purpose memory address
bit 19
O
L4
AC16
H2
NA
K2
gpmc_a3
gpmc_a20
General-purpose memory address
bit 20
O
K4
AB16
G2
NA
J4
gpmc_a4
gpmc_a21
General-purpose memory address
bit 21
O
T3
AC17
F1
NA
J3
gpmc_a5
gpmc_a22
General-purpose memory address
bit 22
O
R3
AB17
F2
NA
J2
gpmc_a6
gpmc_a23
General-purpose memory address
bit 23
O
N3
AC18
E1
NA
J1
gpmc_a7
gpmc_a24
General-purpose memory address
bit 24
O
M3
AB18
E2
NA
H1
gpmc_a8
gpmc_a25
General-purpose memory address
bit 25
O
L3
AC19
D1
NA
H2
gpmc_a9
gpmc_a26
General-purpose memory address
bit 26
O
K3
AB19
D2
NA
G2
gpmc_a10
gpmc_d0
GPMC data bit 0 / multiplexed
address gpmc_a1
IO
K1
M2
AA2
U2
L2
gpmc_d0
gpmc_d1
GPMC data bit 1 / multiplexed
address gpmc_a2
IO
L1
M1
AA1
U1
M1
gpmc_d1
gpmc_d2
GPMC data bit 2 / multiplexed
address gpmc_a3
IO
L2
N2
AC2
V2
M2
gpmc_d2
gpmc_d3
GPMC data bit 3 / multiplexed
address gpmc_a4
IO
P2
N1
AC1
V1
N2
gpmc_d3
gpmc_d4
GPMC data bit 4 / multiplexed
address gpmc_a5
IO
T1
R2
AE5
AA3
M3
gpmc_d4
gpmc_d5
GPMC data bit 5 / multiplexed
address gpmc_a6
IO
V1
R1
AD6
AA4
P1
gpmc_d5
gpmc_d6
GPMC data bit 6 / multiplexed
address gpmc_a7
IO
V2
T2
AD5
Y3
P2
gpmc_d6
gpmc_d7
GPMC data bit 7 / multiplexed
address gpmc_a8
IO
W2
T1
AC5
Y4
R1
gpmc_d7
gpmc_d8
GPMC data bit 8 / multiplexed
address gpmc_a9
IO
H2
AB3
V1
R1
R2
gpmc_d8
gpmc_d9
GPMC data bit 9 / multiplexed
address gpmc_a10
IO
K2
AC3
Y1
T1
T2
gpmc_d9
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
PRODUCT PREVIEW
SIGNAL NAME
[1]
91
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-5. External Memory Interfaces – GPMC Signals Description (continued)
SIGNAL NAME
[1]
DESCRIPTION [2]
TYPE
[3]
BALL
BOTTOM
(CBP
Pkg.) [4]
BALL
TOP
(CBP
Pkg.) [5]
BALL BOTTOM
(CBC Pkg.) [4]
BALL TOP
(CBC Pkg.) [5]
BALL
BOTTOM
(CUS
Pkg.) [4]
SUBSYSTEM
PIN
MULTIPLEXING
[6]
PRODUCT PREVIEW
gpmc_d10
GPMC data bit 10 / multiplexed
address gpmc_a11
IO
P1
AB4
T1
N1
U1
gpmc_d10
gpmc_d11
GPMC data bit 11 / multiplexed
address gpmc_a12
IO
R1
AC4
U2
P2
R3
gpmc_d11
gpmc_d12
GPMC data bit 12 / multiplexed
address gpmc_a13
IO
R2
AB6
U1
P1
T3
gpmc_d12
gpmc_d13
GPMC data bit 13 / multiplexed
address gpmc_a14
IO
T2
AC6
P1
M1
U2
gpmc_d13
gpmc_d14
GPMC data bit 14 / multiplexed
address gpmc_a15
IO
W1
AB7
L2
J2
V1
gpmc_d14
gpmc_d15
GPMC data bit 15 / multiplexed
address gpmc_a16
IO
Y1
AC7
M2
K2
V2
gpmc_d15
gpmc_ncs0
GPMC Chip Select bit 0
O
G4
Y2
AD8
AA8
E2
NA
gpmc_ncs1
GPMC Chip Select bit 1
O
H3
Y1
AD1
W1
NA
NA
gpmc_ncs2
GPMC Chip Select bit 2
O
V8
NA
A3
NA
NA
NA
gpmc_ncs3
GPMC Chip Select bit 3
O
U8
NA
B6
NA
D2
NA
gpmc_ncs4
GPMC Chip Select bit 4
O
T8
NA
B4
NA
F4
NA
gpmc_ncs5
GPMC Chip Select bit 5
O
R8
NA
C4
NA
G5
NA
gpmc_ncs6
GPMC Chip Select bit 6
O
P8
NA
B5
NA
F3
NA
gpmc_ncs7
GPMC Chip Select bit 7
O
N8
NA
C5
NA
G4
NA
gpmc_io_dir
GPMC IO direction control for use
with external transceivers
O
N8
NA
C5
NA
G4
gpmc_ncs7
gpmc_clk
GPMC clock
O
T4
W2
N1
L1
W2
NA
gpmc_nadv_ale Address Valid or Address Latch
Enable
O
F3
W1
AD10
AA9
F1
NA
gpmc_noe
Output Enable
O
G2
V2
N2
L2
F2
NA
gpmc_nwe
Write Enable
O
F4
V1
M1
K1
G3
NA
gpmc_nbe0_cle Lower Byte Enable. Also used for
Command Latch Enable
O
G3
AC12
K2
NA
K5
NA
gpmc_nbe1
Upper Byte Enable
O
U3
NA
J1
NA
L1
NA
gpmc_nwp
Flash Write Protect
O
H1
AB10
AC6
Y5
E1
NA
gpmc_wait0
External indication of wait
I
M8
AB12
AC11
Y10
C1
NA
gpmc_wait1
External indication of wait
I
L8
AC10
AC8
Y8
NA
NA
gpmc_wait2
External indication of wait
I
K8
NA
B3
NA
NA
NA
gpmc_wait3
External indication of wait
I
J8
NA
C6
NA
C2
NA
NOTE
For more information, see Memory Subsystem / SDRAM Controller (SDRC) Subsystem /
SDRC Subsystem Environment section of the AM37x Technical Reference Manual (TRM).
Table 2-6. External Memory Interfaces – SDRC Signals Description (1)
SIGNAL
NAME
DESCRIPTION
TYPE (2)
BALL
BOTTOM
(CBP Pkg.)
BALL TOP
(CBP Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL TOP
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
sdrc_d0
SDRAM data bit 0
IO
NA
J2
NA
D1
D7
sdrc_d1
SDRAM data bit 1
IO
NA
J1
NA
G1
C5
sdrc_d2
SDRAM data bit 2
IO
NA
G2
NA
G2
C6
sdrc_d3
SDRAM data bit 3
IO
NA
G1
NA
E1
B5
sdrc_d4
SDRAM data bit 4
IO
NA
F2
NA
D2
D9
sdrc_d5
SDRAM data bit 5
IO
NA
F1
NA
E2
D10
sdrc_d6
SDRAM data bit 6
IO
NA
D2
NA
B3
C7
(1)
(2)
92
NA in this table stands for "Not Applicable".
Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog).
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 2-6. External Memory Interfaces – SDRC Signals Description (continued)
DESCRIPTION
TYPE (2)
BALL
BOTTOM
(CBP Pkg.)
BALL TOP
(CBP Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL TOP
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
sdrc_d7
SDRAM data bit 7
IO
NA
D1
NA
B4
B7
sdrc_d8
SDRAM data bit 8
IO
NA
B13
NA
A10
B11
sdrc_d9
SDRAM data bit 9
IO
NA
A13
NA
B11
C12
sdrc_d10
SDRAM data bit 10
IO
NA
B14
NA
A11
B12
sdrc_d11
SDRAM data bit 11
IO
NA
A14
NA
B12
D13
sdrc_d12
SDRAM data bit 12
IO
NA
B16
NA
A16
C13
sdrc_d13
SDRAM data bit 13
IO
NA
A16
NA
A17
B14
sdrc_d14
SDRAM data bit 14
IO
NA
B19
NA
B17
A14
sdrc_d15
SDRAM data bit 15
IO
NA
A19
NA
B18
B15
sdrc_d16
SDRAM data bit 16
IO
NA
B3
NA
B7
C9
sdrc_d17
SDRAM data bit 17
IO
NA
A3
NA
A5
E12
sdrc_d18
SDRAM data bit 18
IO
NA
B5
NA
B6
B8
sdrc_d19
SDRAM data bit 19
IO
NA
A5
NA
A6
B9
sdrc_d20
SDRAM data bit 20
IO
NA
B8
NA
A8
C10
sdrc_d21
SDRAM data bit 21
IO
NA
A8
NA
B9
B10
sdrc_d22
SDRAM data bit 22
IO
NA
B9
NA
A9
D12
sdrc_d23
SDRAM data bit 23
IO
NA
A9
NA
B10
E13
sdrc_d24
SDRAM data bit 24
IO
NA
B21
NA
C21
E15
sdrc_d25
SDRAM data bit 25
IO
NA
A21
NA
D20
D15
sdrc_d26
SDRAM data bit 26
IO
NA
D22
NA
B19
C15
sdrc_d27
SDRAM data bit 27
IO
NA
D23
NA
C20
B16
sdrc_d28
SDRAM data bit 28
IO
NA
E22
NA
D21
C16
sdrc_d29
SDRAM data bit 29
IO
NA
E23
NA
E20
D16
sdrc_d30
SDRAM data bit 30
IO
NA
G22
NA
E21
B17
sdrc_d31
SDRAM data bit 31
IO
NA
G23
NA
G21
B18
sdrc_ba0
SDRAM bank select 0
O
NA
AB21
NA
AA18
C18
sdrc_ba1
SDRAM bank select 1
O
NA
AC21
NA
V20
D18
sdrc_a0
SDRAM address bit 0
O
NA
N22
NA
G20
A4
sdrc_a1
SDRAM address bit 1
O
NA
N23
NA
K20
B4
sdrc_a2
SDRAM address bit 2
O
NA
P22
NA
J20
D6
sdrc_a3
SDRAM address bit 3
O
NA
P23
NA
J21
B3
sdrc_a4
SDRAM address bit 4
O
NA
R22
NA
U21
B2
sdrc_a5
SDRAM address bit 5
O
NA
R23
NA
R20
C3
sdrc_a6
SDRAM address bit 6
O
NA
T22
NA
M21
E3
sdrc_a7
SDRAM address bit 7
O
NA
T23
NA
M20
F6
sdrc_a8
SDRAM address bit 8
O
NA
U22
NA
N20
E10
sdrc_a9
SDRAM address bit 9
O
NA
U23
NA
K21
E9
sdrc_a10
SDRAM address bit 10
O
NA
V22
NA
Y16
E7
sdrc_a11
SDRAM address bit 11
O
NA
V23
NA
N21
G6
sdrc_a12
SDRAM address bit 12
O
NA
W22
NA
R21
G7
sdrc_a13
SDRAM address bit 13
O
NA
W23
NA
AA15
F7
sdrc_a14
SDRAM address bit 14
O
NA
Y22
NA
Y12
F9
sdrc_ncs0
Chip select 0
O
NA
M22
NA
T21
A19
sdrc_ncs1
Chip select 1
O
NA
M23
NA
T20
B19
sdrc_clk
Clock
IO
NA
A11
NA
A12
A10
sdrc_nclk
Clock Invert
O
NA
B11
NA
B13
A11
sdrc_cke0
Clock Enable 0
O
NA
J22
NA
Y15
B20
sdrc_cke1
Clock Enable 1
O
NA
J23
NA
Y13
C20
sdrc_nras
SDRAM Row Access
O
NA
L23
NA
V21
D19
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
PRODUCT PREVIEW
SIGNAL
NAME
93
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-6. External Memory Interfaces – SDRC Signals Description (continued)
SIGNAL
NAME
DESCRIPTION
TYPE (2)
BALL
BOTTOM
(CBP Pkg.)
BALL TOP
(CBP Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL TOP
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
sdrc_ncas
SDRAM column
address strobe
O
NA
L22
NA
U20
C19
sdrc_nwe
SDRAM write enable
O
NA
K23
NA
Y18
A20
sdrc_dm 0
Data Mask 0
O
NA
C1
NA
H1
B6
sdrc_ dm1
Data Mask 1
O
NA
A17
NA
A14
B13
sdrc_ dm2
Data Mask 2
O
NA
A6
NA
A4
A7
sdrc_dm 3
Data Mask 3
O
NA
A20
NA
A18
A16
sdrc_dqs0
Data Strobe 0
IO
NA
B17
NA
C2
A5
sdrc_dqs1
Data Strobe 1
IO
NA
NA
NA
B15
A13
sdrc_dqs2
Data Strobe 2
IO
NA
NA
NA
B8
A8
sdrc_dqs3
Data Strobe 3
IO
NA
B20
NA
A19
A17
PRODUCT PREVIEW
94
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
2.5.2
SPRS616B – JUNE 2010 – REVISED JULY 2010
Video Interfaces
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBP Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
cam_hs
Camera Horizontal Synchronization
IO
A24
C23
A22
cam_vs
Camera Vertical Synchronization
IO
A23
D23
E18
cam_xclka
Camera Clock Output a
O
C25
C25
B22
cam_xclkb
Camera Clock Output b
O
B26
E25
C22
cam_d0
Camera digital image data bit 0
I
AG17
AE16
AB18
cam_d1
Camera digital image data bit 1
I
AH17
AE15
AC18
cam_d2
Camera digital image data bit 2
I
B24
A24
G19
cam_d3
Camera digital image data bit 3
I
C24
B24
F19
cam_d4
Camera digital image data bit 4
I
D24
D24
G20
cam_d5
Camera digital image data bit 5
I
A25
C24
B21
cam_d6
Camera digital image data bit 6
I
K28
P25
L24
cam_d7
Camera digital image data bit 7
I
L28
P26
K24
cam_d8
Camera digital image data bit 8
I
K27
N25
J23
cam_d9
Camera digital image data bit 9
I
L27
N26
K23
cam_d10
Camera digital image data bit 10
I
B25
D25
F21
cam_d11
Camera digital image data bit 11
I
C26
E26
G21
cam_fld
Camera field identification
IO
C23
B23
H24
cam_pclk
Camera pixel clock
I
C27
C26
J19
cam_wen
Camera Write Enable
I
B23
A23
F18
cam_strobe
Flash strobe control signal
O
D25
D26
J20
cam_global_reset
Global reset is used strobe
synchronization
IO
C23 / AH3 / AA21
B23/M3/V17
H24/ AA2/ AB20
cam_shutter
Mechanical shutter control signal
O
B23 / AF3 / T21
A23 / T19/ L3
F18/ Y2/ AA18
(1)
PRODUCT PREVIEW
Table 2-7. Video Interfaces – CAM Signals Description
Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog).
NOTE
For more information, see Display Subsystem / Display Subsystem Environment section of
the AM37x Technical Reference Manual (TRM).
Table 2-8. Video Interfaces – DSS Signals Description
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBP Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
dss_pclk
LCD Pixel Clock
O
D28
G25
G22
dss_hsync
LCD Horizontal Synchronization
O
D26
K24
E22
dss_vsync
LCD Vertical Synchronization
O
D27
M25
F22
dss_acbias
AC bias control (STN) or pixel data enable (TFT) output
O
E27
F26
J21
dss_data0
LCD Pixel Data bit 0
O
AG22 / H26
AE21 / M24
AC19 / G24
dss_data1
LCD Pixel Data bit 1
O
AH22 / H25
AE22 / M26
AB19 / H23
dss_data2
LCD Pixel Data bit 2
O
AG23 / E28
AE23 / F25
AD20 / D23
dss_data3
LCD Pixel Data bit 3
O
AH23 / J26
AE24 / N24
AC20 / K22
dss_data4
LCD Pixel Data bit 4
O
AG24 / AC27
AD23 / AC25
AD21 / V21
dss_data5
LCD Pixel Data bit 5
O
AH24 / AC28
AD24 / AB25
AC21 / W21
dss_data6
LCD Pixel Data bit 6
O
E26
G26
D24
dss_data7
LCD Pixel Data bit 7
O
F28
H25
E23
dss_data8
LCD Pixel Data bit 8
O
F27
H26
E24
dss_data9
LCD Pixel Data bit 9
O
G26
J26
F23
dss_data10
LCD Pixel Data bit 10
O
AD28
AC26
AC22
(1)
Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog).
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
95
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-8. Video Interfaces – DSS Signals Description (continued)
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBP Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
dss_data11
LCD Pixel Data bit 11
O
AD27
AD26
AC23
dss_data12
LCD Pixel Data bit 12
O
AB28
AA25
AB22
dss_data13
LCD Pixel Data bit 13
O
AB27
Y25
Y22
dss_data14
LCD Pixel Data bit 14
O
AA28
AA26
W22
dss_data15
LCD Pixel Data bit 15
O
AA27
AB26
V22
dss_data16
LCD Pixel Data bit 16
O
G25
L25
J22
dss_data17
LCD Pixel Data bit 17
O
H27
L26
G23
dss_data18
LCD Pixel Data bit 18
O
H26 / AH26
M24 / F3
G24 / AB12
dss_data19
LCD Pixel Data bit 19
O
H25 / AG26
M26 / D3
H23 / AC16
dss_data20
LCD Pixel Data bit 20
O
E28 / AF18
F25 / E3
D23 / AD18
dss_data21
LCD Pixel Data bit 21
O
J26 / AF19
N24 / E4
K22 / AC17
dss_data22
LCD Pixel Data bit 22
O
AC27 / AE21
AC25 / G23
V21 / AB16
dss_data23
LCD Pixel Data bit 23
O
AC28 / AF21
AB25 / D4
W21 / AA15
Table 2-9. Video Interfaces – RFBI Signals Description
PRODUCT PREVIEW
SIGNAL
NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBP Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
SUBSYSTEM PIN
MULTIPLEXING (2)
rfbi_a0
RFBI command/data control
O
E27
F26
J21
dss_acbias
rfbi_cs0
1st LCD chip select
O
D26
K24
E22
dss_hsync
rfbi_da0
RFBI data bus 0
IO
AG22 / H26
AE21 / M24
AC19 / G24
dss_data0
rfbi_da1
RFBI data bus 1
IO
AH22 / H25
AE22 / M26
AB19 / H23
dss_data1
rfbi_da2
RFBI data bus 2
IO
AG23 / E28
AE23 / F25
AD20 / D23
dss_data2
rfbi_da3
RFBI data bus 3
IO
AH23 / J26
AE24 / N24
AC20 / K22
dss_data3
rfbi_da4
RFBI data bus 4
IO
AG24 / AC27
AD23 / AC25
AD21 / V21
dss_data4
rfbi_da5
RFBI data bus 5
IO
AH24 / AC28
AD24 / AB25
AC21 / W21
dss_data5
rfbi_da6
RFBI data bus 6
IO
E26
G26
D24
dss_data6
rfbi_da7
RFBI data bus 7
IO
F28
H25
E23
dss_data7
rfbi_da8
RFBI data bus 8
IO
F27
H26
E24
dss_data8
rfbi_da9
RFBI data bus 9
IO
G26
J26
F23
dss_data9
rfbi_da10
RFBI data bus 10
IO
AD28
AC26
AC22
dss_data10
rfbi_da11
RFBI data bus 11
IO
AD27
AD26
AC23
dss_data11
rfbi_da12
RFBI data bus 12
IO
AB28
AA25
AB22
dss_data12
rfbi_da13
RFBI data bus 13
IO
AB27
Y25
Y22
dss_data13
rfbi_da14
RFBI data bus 14
IO
AA28
AA26
W22
dss_data14
rfbi_da15
RFBI data bus 15
IO
AA27
AB26
V22
dss_data15
rfbi_rd
Read enable for RFBI
O
D28
G25
G22
dss_pclk
rfbi_wr
Write Enable for RFBI
O
D27
M25
F22
dss_vsync
rfbi_te_vsync
0
tearing effect removal and Vsync input
from 1st LCD
I
G25
L25
J22
dss_data16
rfbi_hsync0
Hsync for 1st LCD
I
H27
L26
G23
dss_data17
rfbi_te_vsync
1
tearing effect removal and Vsync input
from 2nd LCD
I
H26 / AH26
M24 / F3
G24 / AB12
dss_data18
rfbi_hsync1
Hsync for 2nd LCD
I
H25 / AG26
M26 / D3
H23 / AC16
dss_data19
rfbi_cs1
2nd LCD chip select
O
E28 / AF18
F25 / E3
D23 / AD18
dss_data20
(1)
(2)
96
Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog).
The subsystem pin multiplexing options are not described in Table 2-1 and Table 2-4.
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 2-10. Video Interfaces – TV Signals Description
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBP Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
W26
AB24
cvideo1_out
TV analog output Composite:
cvideo1_out
AO
Y28
cvideo2_out
TV analog output S-VIDEO: cvideo2_out
AO
W28
V26
AA23
cvideo1_vfb
cvideo1_vfb: Feedback through external
resistor to composite
AO
Y27
W25
AB23
cvideo2_vfb
cvideo2_vfb: Feedback through external
resistor to S-VIDEO
AO
W27
U24
Y23
cvideo1_rset
cvideo1 input reference current resistor
setting
AIO
W26
V23
Y24
Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog).
PRODUCT PREVIEW
(1)
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
97
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
2.5.3
www.ti.com
Serial Communication Interfaces
For more information, see HDQ/1-Wire / HDQ/1-Wire Environment section of the AM37x Technical
Reference Manual (TRM).
Table 2-11. Serial Communication Interfaces – HDQ/1-Wire Signals Description
SIGNAL
NAME
hdq_sio
(1)
DESCRIPTION
Bidirectional HDQ 1-Wire control and data
Interface. Output is open drain.
TYPE (1)
BALL BOTTOM
(CBP Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
IOD
J25
J23
A24
Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog).
For more information, see Multimaster High-Speed I2C Controller / HS I2C Environment section of the
AM37x Technical Reference Manual (TRM).
Table 2-12. Serial Communication Interfaces – I2C Signals Description
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBP Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
INTER-INTEGRATED CIRCUIT INTERFACE (I2C1)
PRODUCT PREVIEW
i2c1_scl
I2C Master Serial clock. Output is open
drain.
OD
K21
J25
K20
i2c1_sda
I2C Serial Bidirectional Data. Output is
open drain.
IOD
J21
J24
K21
INTER-INTEGRATED CIRCUIT INTERFACE (I2C3)
i2c3_scl
I2C Master Serial clock. Output is open
drain.
OD
AF14
AB4
AC13
i2c3_sda
I2C Serial Bidirectional Data. Output is
open drain.
IOD
AG14
AC4
AC12
i2c3_sccbe
Serial Camera Control Bus Enable
OD
J25
J23
A24
INTER-INTEGRATED CIRCUIT INTERFACE (I2C2)
i2c2_scl
I2C Master Serial clock. Output is open
drain.
OD
AF15
C2
AC15
i2c2_sda
I2C Serial Bidirectional Data. Output is
open drain.
IOD
AE15
C1
AC14
i2c2_sccbe
Serial Camera Control Bus Enable
OD
J25
J23
A24
(1)
Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog).
For more information, see Power Reset and Clock Management / PRCM Introduction to Power
Management / SmartReflex Voltage-Control Overview section of the AM37x Technical Reference Manual
(TRM).
Table 2-13. Serial Communication Interfaces – SmartReflex Signals Description (1)
SIGNAL NAME
DESCRIPTION
TYPE (2)
BALL BOTTOM
(CBP Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
INTER-INTEGRATED CIRCUIT INTERFACE (I2C4)
i2c4_scl
I2C Master Serial clock. Output is open
drain.
OD
AD26
AD15
Y16
i2c4_sda
I2C Serial Bidirectional Data. Output is
open drain.
IOD
AE26
W16
Y15
(1)
(2)
98
For more information on SmartReflex voltage control, see the PRCM chapter of the AM37x Technical Reference Manual (TRM).
Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog).
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
For more information, see Multi-Channel Buffered Serial Port / McBSP Environment section of the AM37x
Technical Reference Manual (TRM).
Table 2-14. Serial Communication Interfaces – McBSP LP Signals Description
SIGNAL NAME
TYPE (1)
DESCRIPTION
BALL BOTTOM
(CBP Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
MULTICHANNEL SERIAL (McBSP LP 1)
mcbsp1_dr
Received serial data
I
U21
T20
Y18
mcbsp1_clkr
Receive Clock
IO
Y8 / Y21
U19 / H3
V7 / W19
mcbsp1_fsr
Receive frame synchronization
IO
AA21
V17
AB20
mcbsp1_dx
Transmitted serial data
O
V21
U17
W18
mcbsp1_clkx
Transmit clock
IO
W21
T17
V18
mcbsp1_fsx
Transmit frame synchronization
IO
K26
P20
AA19
mcbsp_clks
External clock input (shared by McBSP1, 2,
3, 4, and 5)
I
T21
T19
AA18
mcbsp2_dr
Received serial data
I
R21
T18
V19
mcbsp2_dx
Transmitted serial data
O
M21
R19
R20
mcbsp2_clkx
Combined serial clock
IO
N21
R18
T21
mcbsp2_fsx
Combined frame synchronization
IO
P21
U18
V20
PRODUCT PREVIEW
MULTICHANNEL SERIAL (McBSP LP 2)
MULTICHANNEL SERIAL (McBSP LP 3)
mcbsp3_dr
Received serial data
I
AE6 / AB25 / U21
T20 / AA24 / N3
V5 / Y18
mcbsp3_dx
Transmitted serial data
O
AF6 / AB26 / V21
U17 / Y24 / P3
V6 / W18
mcbsp3_clkx
Combined serial clock
IO
AF5 / AA25 / W21
T17 / AD22 / U3
W4 / V18
mcbsp3_fsx
Combined frame synchronization
IO
AE5 / AD25 / K26
P20 / AD21 / W3
V4 / AA19
MULTICHANNEL SERIAL (McBSP LP 4)
mcbsp4_dr
Received serial data
I
R8 / AD1
C4 / U4
G5
mcbsp4_dx
Transmitted serial data
O
P8 / AD2
B5 / R3
F3
mcbsp4_clkx
Combined serial clock
IO
T8 / AE1
B4 / V3
F4
mcbsp4_fsx
Combined frame synchronization
IO
N8 / AC1
C5 / T3
G4
MULTICHANNEL SERIAL (McBSP LP 5)
mcbsp5_dr
Received serial data
I
AE11
Y3
AC5
mcbsp5_dx
Transmitted serial data
O
AF13
AE3
AC8
mcbsp5_clkx
Combined serial clock
IO
AF10
AB2
AC1
mcbsp5_fsx
Combined frame synchronization
IO
AH9
AB1
AD2
(1)
Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog)
For more information, see Multichannel SPI / McSPI Environment section of the AM37x Technical
Reference Manual (TRM).
Table 2-15. Serial Communication Interfaces – McSPI Signals Description
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBP Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
MULTICHANNEL SERIAL PORT INTERFACE (McSPI1)
mcspi1_clk
SPI Clock
IO
AB3
P9
T5
mcspi1_simo
Slave data in, master data out
IO
AB4
P8
R4
mcspi1_somi
Slave data out, master data in
IO
AA4
P7
T4
mcspi1_cs0
SPI Enable 0, polarity configured by
software
IO
AC2
R7
T6
mcspi1_cs1
SPI Enable 1, polarity configured by
software
O
AC3
R8
NA
mcspi1_cs2
SPI Enable 2, polarity configured by
software
O
AB1
R9
NA
(1)
Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog)
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
99
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-15. Serial Communication Interfaces – McSPI Signals Description (continued)
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBP Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
SPI Enable 3, polarity configured by
software
O
AB2
T8
R5
SIGNAL NAME
mcspi1_cs3
MULTICHANNEL SERIAL PORT INTERFACE (McSPI2)
mcspi2_clk
SPI Clock
IO
AA3
W7
N5
mcspi2_simo
Slave data in, master data out
IO
Y2
W8
N4
mcspi2_somi
Slave data out, master data in
IO
Y3
U8
N3
mcspi2_cs0
SPI Enable 0, polarity configured by
software
IO
Y4
V8
M5
mcspi2_cs1
SPI Enable 1, polarity configured by
software
O
V3
V9
M4
MULTICHANNEL SERIAL PORT INTERFACE (McSPI3)
mcspi3_clk
SPI Clock
IO
H26 / AE2 / AE13
W10 / M24 / AA3
G24 / Y1 / AD8
mcspi3_simo
Slave data in, master data out
IO
H25 / AG5 / AF11
R10 / M26 / AC3
H23 / AB5 / AD6
mcspi3_somi
Slave data out, master data in
IO
E28 / AH5 / AG12
F25 / T10 / AD4
D23 / AB3 / AC6
mcspi3_cs0
SPI Enable 0, polarity configured by
software
IO
J26 / AF4 / AH12
U9 / N24 / AD3
K22 / V3 / AC7
mcspi3_cs1
SPI Enable 1, polarity configured by
software
O
AC27 / AG4 / AH14
AC25 / U10 / AD2
V21 / W3 / AD9
PRODUCT PREVIEW
MULTICHANNEL SERIAL PORT INTERFACE (McSPI4)
mcspi4_clk
SPI Clock
IO
Y8 / Y21
U19 / H3
V7 / W19
mcspi4_simo
Slave data in, master data out
IO
V21
U17
W18
mcspi4_somi
Slave data out, master data in
IO
U21
T20
Y18
mcspi4_cs0
SPI Enable 0, polarity configured by
software
IO
K26
P20
AA19
For more information, see UART/IrDA/CIR / UART/IrDA/CIR Environment section of the AM37x Technical
Reference Manual (TRM).
Table 2-16. Serial Communication Interfaces – UARTs Signals Description
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBP Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
AC19 / AC2 / AA18
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART1)
uart1_cts
UART1 Clear To Send
I
AG22 / W8 / T21
AE21 / T19 / W2
uart1_rts
UART1 Request To Send
O
AH22 / AA9
AE22 / R2
W6 / AB19
uart1_rx
UART1 Receive data
I
F28 / Y8 / AE7
H3 / H25 / AE4
E23 / V7 / AC3
uart1_tx
UART1 Transmit data
O
E26 / AA8
L4 / G26
D24 / W7
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART2)
uart2_cts
UART2 Clear To Send
I
AF6 / AB26 / U26
Y24/ P3/ W20
V6/ U23
uart2_rts
UART2 Request To Send
O
AE6 / AB25 / U27
AA24/ N3/ V18
V5/ U24
uart2_rx
UART2 Receive data
I
AE5 / AD25/ U28
W3/ AD21/ Y20
T23/ V4
uart2_tx
UART2 Transmit data
O
AF5 / AA25/ T27
U3/AD22/V20
T24/ W4
H18 / U26
W20 / F23
A23 / U23
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART3) / IrDA
uart3_cts_rctx
UART3 Clear To Send (input),
Remote TX (output)
IO
uart3_rts_sd
UART3 Request To Send, IR enable
O
H19 / U27
V18 / F24
B23 / U24
uart3_rx_irrx
UART3 Receive data, IR and
Remote RX
I
AG24 / H20 / U28 / F27
AD23 / Y20 / H24/ H26
AD21 / B24 / T23 / E24
uart3_tx_irtx
UART3 Transmit data, IR TX
O
AH24 / H21 / T27/ G26
AD24 / V20 / J29 / G24
AC21 / C23 / T24/ F23
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART4) / IrDA
uart4_rx
UART4 Receive data
I
J8
C6
NA
uart4_tx
UART4 Transmit data
O
K8
B3
NA
(1)
100
Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog)
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
For more information, see High-Speed USB Host Subsystem and High-Speed USB OTG Controller /
High-Speed USB Host Subsystem / High-Speed USB Host Subsystem Environment section of the AM37x
Technical Reference Manual (TRM).
Table 2-17. Serial Communication Interfaces – USB Signals Description
SIGNAL NAME
TYPE (1
DESCRIPTION
)
BALL BOTTOM
(CBP Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
hsusb0_clk
Dedicated for external transceiver 60-MHz clock input to PHY
I
T28
W19
R21
hsusb0_stp
Dedicated for external transceiver Stop signal
O
T25
U20
R23
hsusb0_dir
Dedicated for external transceiver Data direction control from
PHY
I
R28
V19
P23
hsusb0_nxt
Dedicated for external transceiver Next signal from PHY
I
T26
W18
R22
hsusb0_data0
Dedicated for external transceiver Bidirectional data bus
IO
T27
V20
T24
hsusb0_data1
Dedicated for external transceiver Bidirectional data bus
IO
U28
Y20
T23
hsusb0_data2
Dedicated for external transceiver Bidirectional data bus
IO
U27
V18
U24
hsusb0_data3
Dedicated for external transceiver Bidirectional data bus
IO
U26
W20
U23
hsusb0_data4
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
U25
W17
W24
hsusb0_data5
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
V28
Y18
V23
hsusb0_data6
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
V27
Y19
W23
hsusb0_data7
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
V26
Y17
T22
mm3_rxdm
Vminus receive data (not used in 3- or 4-pin configurations)
IO
AE3
K3
NA (2)
mm3_rxdp
Vplus receive data (not used in 3- or 4-pin configurations)
IO
AH3
M3
NA (2)
mm3_rxrcv
Differential receiver signal input (not used in 3-pin mode)
IO
AD1
U4
NA
mm3_txse0
Single-ended zero. Used as VM in 4-pin VP_VM mode.
IO
AE1
V3
NA
mm3_txdat
USB data. Used as VP in 4-pin VP_VM mode.
IO
AD2
R3
NA
mm3_txen_n
Transmit enable
IO
AC1
T3
NA
mm2_rxdm
Vminus receive data (not used in 3- or 4-pin configurations)
IO
AH7
AF7
AD11
mm2_rxdp
Vplus receive data (not used in 3- or 4-pin configurations)
IO
AF7
AF6
AC9
mm2_rxrcv
Differential receiver signal input (not used in 3-pin mode)
IO
AG8
AF9
AC11
mm2_txse0
Single-ended zero. Used as VM in 4-pin VP_VM mode.
IO
AH8
AE9
AD12
mm2_txdat
USB data. Used as VP in 4-pin VP_VM mode.
IO
AB2
T8
R5
mm2_txen_n
Transmit enable
IO
V3
V9
M4
mm1_rxdm
Vminus receive data (not used in 3- or 4-pin configurations)
IO
AG9
V2
AD5
mm1_rxdp
Vplus receive data (not used in 3- or 4-pin configurations)
IO
AF10
AB2
AC1
mm1_rxrcv
Differential receiver signal input (not used in 3-pin mode)
IO
AF11
AC3
AD6
mm1_txse0
Single-ended zero. Used as VM in 4-pin VP_VM mode.
IO
AG12
AD4
AC6
mm1_txdat
USB data. Used as VP in 4-pin VP_VM mode.
IO
AH12
AD3
AC7
mm1_txen_n
Transmit enable
IO
AH14
AD2
AD9
hsusb2_clk
Dedicated for external transceiver 60-MHz clock input to PHY
O
AE7
AE4
AC3
hsusb2_stp
Dedicated for external transceiver Stop signal
O
AF7
AF6
AC9
hsusb2_dir
Dedicated for external transceiver Data direction control from
PHY
I
AG7
AE6
AC10
hsusb2_nxt
Dedicated for external transceiver Next signal from PHY
I
AH7
AF7
AD11
hsusb2_data0
Dedicated for external transceiver Bidirectional data bus
IO
AG8
AF9
AC11
hsusb2_data1
Dedicated for external transceiver Bidirectional data bus
IO
AH8
AE9
AD12
PRODUCT PREVIEW
HIGH-SPEED UNIVERSAL SERIAL BUS INTERFACE (HSUSB0)
MM_FSUSB3
MM_FSUSB2
MM_FSUSB1
HSUSB2
(1)
(2)
Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog)
This pin is not supported on the CUS package.
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
101
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-17. Serial Communication Interfaces – USB Signals Description (continued)
SIGNAL NAME
TYPE (1
DESCRIPTION
)
BALL BOTTOM
(CBP Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
hsusb2_data2
Dedicated for external transceiver Bidirectional data bus
IO
AB2
T8
R5
hsusb2_data3
Dedicated for external transceiver Bidirectional data bus
IO
V3
V9
M4
hsusb2_data4
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
Y2
W8
N4
hsusb2_data5
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
Y3
U8
N3
hsusb2_data6
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
Y4
V8
M5
hsusb2_data7
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
AA3
W7
N5
hsusb1_clk
Dedicated for external transceiver 60-MHz clock input to PHY
O
AE10
AB3
AD3
hsusb1_stp
Dedicated for external transceiver Stop signal
O
AF10
AB2
AC1
hsusb1_dir
Dedicated for external transceiver data direction control from
PHY
I
AF9
AA4
AC4
hsusb1_nxt
Dedicated for external transceiver Next signal from PHY
I
AG9
V2
AD5
hsusb1_data0
Dedicated for external transceiver Bidirectional data bus
IO
AF11
AC3
AD6
hsusb1_data1
Dedicated for external transceiver Bidirectional data bus
IO
AG12
AD4
AC6
hsusb1_data2
Dedicated for external transceiver Bidirectional data bus
IO
AH12
AD3
AC7
hsusb1_data3
Dedicated for external transceiver Bidirectional data bus
IO
AH14
AD2
AD9
hsusb1_data4
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
AE11
Y3
AC5
hsusb1_data5
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
AH9
AB1
AD2
hsusb1_data6
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
AF13
AE3
AC8
hsusb1_data7
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
AE13
AA3
AD8
HSUSB1
PRODUCT PREVIEW
102
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
2.5.4
SPRS616B – JUNE 2010 – REVISED JULY 2010
Removable Media Interfaces
For more information, see MMC/SDIO Card Interface / MMC/SDIO Environment section of the AM37x
Technical Reference Manual (TRM).
Table 2-18. Removable Media Interfaces – MMC/SDIO Signals Description
SIGNAL NAME
TYPE (1
DESCRIPTION
)
BALL BOTTOM
(CBP Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOMa
(CUS Pkg.)
M23
MULTIMEDIA MEMORY CARD (MMC1) / SECURE DIGITAL IO (SDIO1)
mmc1_clk
MMC/SD Output Clock
IO
N28
N19
mmc1_cmd
MMC/SD command signal
O
M27
L18
L23
mmc1_dat0
MMC/SD Card Data bit 0 / SPI Serial Input
IO
N27
M19
M22
mmc1_dat1
MMC/SD Card Data bit 1
IO
N26
M18
M21
mmc1_dat2
MMC/SD Card Data bit 2
IO
N25
K18
M20
mmc1_dat3
MMC/SD Card Data bit 3
IO
P28
N20
N23
mmc2_clk
MMC/SD Output Clock
IO
AE2
W10
Y1
mmc2_dir_dat0
Direction control for DAT0 signal case an external
transceiver used
O
AE4
V10
AB2
mmc2_dir_dat1
Direction control for DAT1 and DAT3 signals case an
external transceiver used
O
AH3
M3
AA2
mmc2_dir_dat2
Direction control for DAT2 signal case an external
transceiver used
O
AF19
E4
AC17
mmc2_dir_dat3
Direction control for DAT4, DAT5, DAT6, and DAT7
signals case an external transceiver used
O
AE21
G3
AB16
mmc2_clkin
MMC/SD input Clock
I
AE3
K3
AA1
mmc2_dat0
MMC/SD Card Data bit 0
IO
AH5
T10
AB3
mmc2_dat1
MMC/SD Card Data bit 1
IO
AH4
T9
Y3
mmc2_dat2
MMC/SD Card Data bit 2
IO
AG4
U10
W3
mmc2_dat3
MMC/SD Card Data bit 3
IO
AF4
U9
V3
mmc2_dat4
MMC/SD Card Data bit 4
IO
AE4 / AB3
P9 / V10
AB2 / T5
mmc2_dat5
MMC/SD Card Data bit 5
IO
AH3 / AB4
M3/P8
AA2 / R4
mmc2_dat6
MMC/SD Card Data bit 6
IO
AF3 / AA4
L3/P7
Y2 / T4
mmc2_dat7
MMC/SD Card Data bit 7
IO
AE3 / AC2
K3/R7
AA1 / T6
mmc2_dir_cmd
Direction control for CMD signal case an external
transceiver is used
O
AF3
L3
Y2
mmc2_cmd
MMC/SD command signal
O
AG5
R10
AB5
AC1
PRODUCT PREVIEW
MULTIMEDIA MEMORY CARD (MMC2) / SECURE DIGITAL IO (SDIO2)
MULTIMEDIA MEMORY CARD (MMC3) / SECURE DIGITAL IO (SDIO3)
mmc3_clk
MMC/SD Output Clock
IO
AB1 / AF10
R9 / AB2
mmc3_cmd
MMC/SD command signal
O
AC3 / AE10
R8 / AB3
AD3
mmc3_dat0
MMC/SD Card Data bit 0 / SPI Serial Input
IO
AE4 / AE11
V10 / Y3
AB2 / AC5
mmc3_dat1
MMC/SD Card Data bit 1
IO
AH3 / AH9
M3/AB1
AA2 / AD2
mmc3_dat2
MMC/SD Card Data bit 2
IO
AF3 / AF13
L3/AE3
Y2 / AC8
mmc3_dat3
MMC/SD Card Data bit 3
IO
AE3 / AE13
K3/AA3
AA1 / AD8
mmc3_dat4
MMC/SD Card Data bit 4
IO
AF11
AC3
AD6
mmc3_dat5
MMC/SD Card Data bit 5
IO
AG9
V2
AD5
mmc3_dat6
MMC/SD Card Data bit 6
IO
AF9
AA4
AC4
mmc3_dat7
MMC/SD Card Data bit 7
IO
AH14
AD2
AD9
(1)
Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog)
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
103
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
2.5.5
www.ti.com
Test Interfaces
Table 2-19. Test Interfaces – ETK Signals Description
SIGNAL NAME
PRODUCT PREVIEW
(1)
104
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBP Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
etk_ctl
ETK trace ctl
O
AE10
AB3
AD3
etk_clk
ETK trace clock
O
AF10
AB2
AC1
etk_d0
ETK data 0
O
AF11
AC3
AD6
etk_d1
ETK data 1
O
AG12
AD4
AC6
etk_d2
ETK data 2
O
AH12
AD3
AC7
etk_d3
ETK data 3
O
AE13
AA3
AD8
etk_d4
ETK data 4
O
AE11
Y3
AC5
etk_d5
ETK data 5
O
AH9
AB1
AD2
etk_d6
ETK data 6
O
AF13
AE3
AC8
etk_d7
ETK data 7
O
AH14
AD2
AD9
etk_d8
ETK data 8
O
AF9
AA4
AC4
etk_d9
ETK data 9
O
AG9
V2
AD5
etk_d10
ETK data 10
O
AE7
AE4
AC3
etk_d11
ETK data 11
O
AF7
AF6
AC9
etk_d12
ETK data 12
O
AG7
AE6
AC10
etk_d13
ETK data 13
O
AH7
AF7
AD11
etk_d14
ETK data 14
O
AG8
AF9
AC11
etk_d15
ETK data 15
O
AH8
AE9
AD12
Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog)
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 2-20. Test Interfaces – JTAG Signals Description
(1)
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBP Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
jtag_ntrst
Test Reset
I
AA17
U15
AB7
jtag_tck
Test Clock
I
AA13
V14
AB6
jtag_rtck
ARM Clock
Emulation
O
AA12
W13
AA7
jtag_tms_tmsc
Test Mode Select
IO
AA18
V15
AA9
AB10
jtag_tdi
Test Data Input
I
AA20
U16
jtag_tdo
Test Data Output
O
AA19
Y13
AB9
jtag_emu0
Test emulation 0
IO
AA11
Y15
AC24
jtag_emu1
Test emulation 1
IO
AA10
Y14
AD24
Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog)
TYPE (1)
BALL BOTTOM
(CBP Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
SUBSYSTEM
SIGNAL
MULTIPLEXING (2)
Serial clock dual edge
O
AF7 / AA11 / AG8
AF6 / Y15 / AF9
AC9 / AC24 / AC11
etk_d11 / jtag_emu0 /
etk_d14
sdti_txd0
Serial data out (System Trace
messages)
O
AG7 / AA10 / AA11
AE6 / Y14 / Y15
AC10 / AD24 /
AC24
etk_d12 / jtag_emu1 /
jtag_emu0
sdti_txd1
Serial data out (System Trace
messages)
O
AH7 / AA10
AF7 / Y14
AD11 / AD24
etk_d13 / jtag_emu1
sdti_txd2
Serial data out (System Trace
messages)
O
AG8
AF9
AC11
etk_d14
sdti_txd3
Serial data out (System Trace
messages)
O
AH8
AE9
AD12
etk_d15
SIGNAL
NAME
sdti_clk
(1)
(2)
DESCRIPTION
Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog)
The subsystem pin multiplexing options are not described in Table 2-1 and Table 2-4
Table 2-22. Test Interfaces – HWDBG Signals Description
(1)
SIGNAL NAME
DESCRIPTION
TYPE (1)
hw_dbg0
Debug signal 0
hw_dbg1
Debug signal 1
hw_dbg2
BALL BOTTOM
(CBP Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
O
A24 / AF10
C23/AB2
AC1/A22
O
A23 / AE10
D23/AB3
AD3/E18
Debug signal 2
O
C27/ AF11
C26/AC3
AD6/J19
hw_dbg3
Debug signal 3
O
C23 / AG12
B23/AD4
AC6/H24
hw_dbg4
Debug signal 4
O
B24 / AH12
A24/AD3
AC7/G19
hw_dbg5
Debug signal 5
O
C24 / AE13
B24/AA3
AD8/F19
hw_dbg6
Debug signal 6
O
D24 / AE11
D24/Y3
AC5/G20
hw_dbg7
Debug signal 7
O
A25 / AH9
C24/AB1
AD2/B21
hw_dbg8
Debug signal 8
O
B25 / AF13
D25/AE3
AC8/F21
hw_dbg9
Debug signal 9
O
C26 / AH14
E26/AD2
AD9/G21
hw_dbg10
Debug signal 10
O
B23 / AF9
A23/AA4
AC4/F18
hw_dbg11
Debug signal 11
O
D25 / AG9
D26/V2
AD5/J20
hw_dbg12
Debug signal 12
O
D28 / AE7
G25/AE4
AC3/G22
hw_dbg13
Debug signal 13
O
D26 / AF7
K24/AF6
AC9/E22
hw_dbg14
Debug signal 14
O
E26 / AG7
G26/AE6
AC10/D24
hw_dbg15
Debug signal 15
O
F28 / AH7
H25/AF7
AD11/E23
hw_dbg16
Debug signal 16
O
F27 / AG8
H26/AF9
AC11/E24
hw_dbg17
Debug signal 17
O
G26 / AH8
J26/AE9
AD12/F23
Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog)
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
105
PRODUCT PREVIEW
Table 2-21. Test Interfaces – SDTI Signals Description
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
2.5.6
www.ti.com
Miscellaneous
For more information, see Timers / GP Timers / GP Timers Environment section of the AM37x Technical
Reference Manual (TRM).
Table 2-23. Miscellaneous – GP Timer Signals Description
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBP Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
gpt_8_pwm_evt
PWM or event for GP
timer 8
IO
N8 / AD25 / V3
C5 / AD21/ V9
G4/ M4
gpt_9_pwm_evt
PWM or event for GP
timer 9
IO
T8 / AB26 / Y2
B4 / W8 / Y24
F4 / N4
gpt_10_pwm_evt
PWM or event for GP
timer 10
IO
R8 / AB25 / Y3
C4 / U8 / AA24
G5 / N3
gpt_11_pwm_evt
PWM or event for GP
timer 11
IO
P8 / AA25 / Y4
B5 / V8 / AD22
F3 / M5
(1)
Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog)
PRODUCT PREVIEW
106
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
2.5.7
SPRS616B – JUNE 2010 – REVISED JULY 2010
General-Purpose IOs
For more information, see General-Purpose Interface / General-Purpose Interface Environment section of
the AM37x Technical Reference Manual (TRM).
(1)
(2)
SIGNAL NAME
DESCRIPTION
TYPE (2)
BALL BOTTOM
(CBP Pkg.)
gpio_0
General-purpose IO 0
IO
gpio_1
General-purpose IO 1
IO
gpio_2
General-purpose IO 2
gpio_3
gpio_4
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
AF26
V16
W16
AF25
W15
Y13
IO
AH26
F3
AB12
General-purpose IO 3
IO
AG26
D3
AC16
General-purpose IO 4
IO
AE14
C3
AD17
gpio_5
General-purpose IO 5
IO
AF18
E3
AD18
gpio_6
General-purpose IO 6
IO
AF19
E4
AC17
gpio_7
General-purpose IO 7
IO
AE21
G3
AB16
gpio_8
General-purpose IO 8
IO
AF21
D4
AA15
gpio_9
General-purpose IO 9
IO
AF22
V12
AD23
gpio_10
General-purpose IO 10
IO
AG25
AE14
Y7
gpio_11
General-purpose IO 11
IO
AA11
Y15
AC24
gpio_12
General-purpose IO 12
IO
AF10
AB2
AC1
gpio_13
General-purpose IO 13
IO
AE10
AB3
AD3
gpio_14
General-purpose IO 14
IO
AF11
AC3
AD6
gpio_15
General-purpose IO 15
IO
AG12
AD4
AC6
gpio_16
General-purpose IO 16
IO
AH12
AD3
AC7
gpio_17
General-purpose IO 17
IO
AE13
AA3
AD8
gpio_18
General-purpose IO 18
IO
AE11
Y3
AC5
gpio_19
General-purpose IO 19
IO
AH9
AB1
AD2
gpio_20
General-purpose IO 20
IO
AF13
AE3
AC8
gpio_21
General-purpose IO 21
IO
AH14
AD2
AD9
gpio_22
General-purpose IO 22
IO
AF9
AA4
AC4
gpio_23
General-purpose IO 23
IO
AG9
V2
AD5
gpio_24
General-purpose IO 24
IO
AE7
AE4
AC3
gpio_25
General-purpose IO 25
IO
AF7
AF6
AC9
gpio_26
General-purpose IO 26
IO
AG7
AE6
AC10
gpio_27
General-purpose IO 27
IO
AH7
AF7
AD11
gpio_28
General-purpose IO 28
IO
AG8
AF9
AC11
gpio_29
General-purpose IO 29
IO
AH8
AE9
AD12
gpio_30
General-purpose IO 30
IO
AF24
AD7
Y10
gpio_31
General-purpose IO 31
IO
AA10
Y14
AD24
gpio_34
General-purpose IO 34
IO
N4
J2
K4
gpio_35
General-purpose IO 35
IO
M4
H1
K3
gpio_36
General-purpose IO 36
IO
L4
H2
K2
gpio_37
General-purpose IO 37
IO
K4
G2
J4
gpio_38
General-purpose IO 38
IO
T3
F1
J3
gpio_39
General-purpose IO 39
IO
R3
F2
J2
gpio_40
General-purpose IO 40
IO
N3
E1
J1
gpio_41
General-purpose IO 41
IO
M3
E2
H1
gpio_42
General-purpose IO 42
IO
L3
D1
H2
gpio_43
General-purpose IO 43
IO
K3
D2
G2
gpio_44
General-purpose IO 44
IO
H2
V1
R2
gpio_45
General-purpose IO 45
IO
K2
Y1
T2
PRODUCT PREVIEW
Table 2-24. General-Purpose IOs Signals Description (1)
NA in table stands for "Not Applicable".
Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog)
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
107
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-24. General-Purpose IOs Signals Description (continued)
DESCRIPTION
TYPE (2)
gpio_46
General-purpose IO 46
IO
gpio_47
General-purpose IO 47
IO
gpio_48
General-purpose IO 48
IO
R2
U1
T3
gpio_49
General-purpose IO 49
IO
T2
P1
U2
gpio_50
General-purpose IO 50
IO
W1
L2
V1
gpio_51
General-purpose IO 51
IO
Y1
M2
V2
gpio_52
General-purpose IO 52
IO
H3
AD1
NA
gpio_53
General-purpose IO 53
IO
V8
A3
NA
gpio_54
General-purpose IO 54
IO
U8
B6
D2
gpio_55
General-purpose IO 55
IO
T8
B4
F4
gpio_56
General-purpose IO 56
IO
R8
C4
G5
gpio_57
General-purpose IO 57
IO
P8
B5
F3
gpio_58
General-purpose IO 58
IO
N8
C5
G4
gpio_59
General-purpose IO 59
IO
T4
N1
W2
gpio_60
General-purpose IO 60
IO
G3
K2
K5
gpio_61
General-purpose IO 61
IO
U3
J1
L1
gpio_62
General-purpose IO 62
IO
H1
AC6
E1
gpio_63
General-purpose IO 63
IO
L8
AC8
NA
gpio_64
General-purpose IO 64
IO
K8
B3
NA
gpio_65
General-purpose IO 65
IO
J8
C6
C2
gpio_66
General-purpose IO 66
IO
D28
G25
G22
gpio_67
General-purpose IO 67
IO
D26
K24
E22
gpio_68
General-purpose IO 68
IO
D27
M25
F22
gpio_69
General-purpose IO 69
IO
E27
F26
J21
gpio_70
General-purpose IO 70
IO
AG22
AE21
AC19
gpio_71
General-purpose IO 71
IO
AH22
AE22
AB19
gpio_72
General-purpose IO 72
IO
AG23
AE23
AD20
gpio_73
General-purpose IO 73
IO
AH23
AE24
AC20
gpio_74
General-purpose IO 74
IO
AG24
AD23
AD21
gpio_75
General-purpose IO 75
IO
AH24
AD24
AC21
gpio_76
General-purpose IO 76
IO
E26
G26
D24
gpio_77
General-purpose IO 77
IO
F28
H25
E23
gpio_78
General-purpose IO 78
IO
F27
H26
E24
gpio_79
General-purpose IO 79
IO
G26
J26
F23
gpio_80
General-purpose IO 80
IO
AD28
AC26
AC22
gpio_81
General-purpose IO 81
IO
AD27
AD26
AC23
gpio_82
General-purpose IO 82
IO
AB28
AA25
AB22
gpio_83
General-purpose IO 83
IO
AB27
Y25
Y22
gpio_84
General-purpose IO 84
IO
AA28
AA26
W22
gpio_85
General-purpose IO 85
IO
AA27
AB26
V22
gpio_86
General-purpose IO 86
IO
G25
L25
J22
gpio_87
General-purpose IO 87
IO
H27
L26
G23
gpio_88
General-purpose IO 88
IO
H26
M24
G24
gpio_89
General-purpose IO 89
IO
H25
M26
H23
gpio_90
General-purpose IO 90
IO
E28
F25
D23
gpio_91
General-purpose IO 91
IO
J26
N24
K22
gpio_92
General-purpose IO 92
IO
AC27
AC25
V21
gpio_93
General-purpose IO 93
IO
AC28
AB25
W21
gpio_94
General-purpose IO 94
IO
A24
C23
A22
gpio_95
General-purpose IO 95
IO
A23
D23
E18
gpio_96
General-purpose IO 96
IO
C25
C25
B22
PRODUCT PREVIEW
SIGNAL NAME
108
BALL BOTTOM
(CBP Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
P1
T1
U1
R1
U2
R3
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 2-24. General-Purpose IOs Signals Description (continued)
(3)
SIGNAL NAME
DESCRIPTION
TYPE (2)
BALL BOTTOM
(CBP Pkg.)
BALL BOTTOM
(CBC Pkg.)
gpio_97
General-purpose IO 97
IO
C27
C26
J19
gpio_98
General-purpose IO 98
IO
C23
B23
H24
gpio_99
General-purpose IO 99
I
AG17
AE16
AB18
gpio_100
General-purpose IO 100
I
AH17
AE15
AC18
gpio_101
General-purpose IO 101
IO
B24
A24
G19
gpio_102
General-purpose IO 102
IO
C24
B24
F19
gpio_103
General-purpose IO 103
IO
D24
D24
G20
gpio_104
General-purpose IO 104
IO
A25
C24
B21
gpio_105
General-purpose IO 105
I
K28
P25
L24
gpio_106
General-purpose IO 106
I
L28
P26
K24
gpio_107
General-purpose IO 107
I
K27
N25
J23
gpio_108
General-purpose IO 108
I
L27
N26
K23
gpio_109
General-purpose IO 109
IO
B25
D25
F21
gpio_110
General-purpose IO 110
IO
C26
E26
G21
gpio_111
General-purpose IO 111
IO
B26
E25
C22
gpio_112
General-purpose IO 112
I
AG19
AD17
NA
gpio_113
General-purpose IO 113
I
AH19
AD16
NA
gpio_114
General-purpose IO 114
I
AG18
AE18
NA
gpio_115
General-purpose IO 115
I
AH18
AE17
NA
gpio_116
General-purpose IO 116
IO
P21
U18
V20
gpio_117
General-purpose IO 117
IO
N21
R18
T21
gpio_118
General-purpose IO 118
IO
R21
T18
V19
gpio_119
General-purpose IO 119
IO
M21
R19
R20
gpio_120
General-purpose IO 120
IO
N28 (3) / T28
W19 / N19 (3)
M23 (3) / R21
gpio_121
General-purpose IO 121
IO
M27 (3) / T25
U20 / L18 (3)
L23 (3) / R23
gpio_122
General-purpose IO 122
IO
N27 (3) / R28
V19 / M19 (3)
M22 (3) / P23
gpio_123
General-purpose IO 123
IO
N26 (3)
M18 (3)
M21 (3)
gpio_124
General-purpose IO 124
IO
N25 (3) / T26
W18 / K18 (3)
M20 (3)/R22
gpio_125
General-purpose IO 125
IO
P28 (3) / T27
V20 / N20 (3)
N23 (3)/T24
gpio_126
General-purpose IO 126
IO
D25 / P27 (3)
M20 (3) / D26
J20 / N22 (3)
gpio_127
General-purpose IO 127
IO
P26 (3)
P17 (3)
NA
(3)
(3)
gpio_128
General-purpose IO 128
IO
R27
gpio_129
General-purpose IO 129
IO
R25 (3)
P18
P19 (3)
gpio_130
General-purpose IO 130
IO
AE2 / U28
Y20 / W10
Y1 / T23
gpio_131
General-purpose IO 131
IO
AG5 / U27
V18 / R10
AB5 / U24
gpio_132
General-purpose IO 132
IO
AH5
T10
AB3
gpio_133
General-purpose IO 133
IO
AH4
T9
Y3
gpio_134
General-purpose IO 134
IO
AG4
U10
W3
gpio_135
General-purpose IO 135
IO
AF4
U9
V3
gpio_136
General-purpose IO 136
IO
AE4
V10
AB2
gpio_137
General-purpose IO 137
IO
AH3
M3
AA2
gpio_138
General-purpose IO 138
IO
AF3
L3
Y2
gpio_139
General-purpose IO 139
IO
AE3
K3
AA1
gpio_140
General-purpose IO 140
IO
AF6
P3
V6
gpio_141
General-purpose IO 141
IO
AE6
N3
V5
gpio_142
General-purpose IO 142
IO
AF5
U3
W4
gpio_143
General-purpose IO 143
IO
AE5
W3
V4
gpio_144
General-purpose IO 144
IO
AB26
Y24
NA
gpio_145
General-purpose IO 145
IO
AB25
AA24
NA
gpio_146
General-purpose IO 146
IO
AA25
AD22
NA
PRODUCT PREVIEW
BALL BOTTOM
(CUS Pkg.)
NA
P24 (3)
The usage of this GPIO is strongly restricted.
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
109
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-24. General-Purpose IOs Signals Description (continued)
DESCRIPTION
TYPE (2)
BALL BOTTOM
(CBP Pkg.)
BALL BOTTOM
(CBC Pkg.)
gpio_147
General-purpose IO 147
IO
AD25
AD21
NA
gpio_148
General-purpose IO 148
IO
AA8
L4
W7
gpio_149
General-purpose IO 149
IO
AA9
R2
W6
gpio_150
General-purpose IO 150
IO
W8
W2
AC2
gpio_151
General-purpose IO 151
IO
Y8
H3
V7
gpio_152
General-purpose IO 152
IO
AE1
V3
NA
gpio_153
General-purpose IO 153
IO
AD1
U4
NA
gpio_154
General-purpose IO 154
IO
AD2
R3
NA
gpio_155
General-purpose IO 155
IO
AC1
T3
NA
gpio_156
General-purpose IO 156
IO
Y21
U19
W19
gpio_157
General-purpose IO 157
IO
AA21
V17
AB20
gpio_158
General-purpose IO 158
IO
V21
U17
W18
gpio_159
General-purpose IO 159
IO
U21
T20
Y18
gpio_160
General-purpose IO 160
IO
T21
T19
AA18
gpio_161
General-purpose IO 161
IO
K26
P20
AA19
gpio_162
General-purpose IO 162
IO
W21
T17
V18
gpio_163
General-purpose IO 163
IO
H18
F23
A23
gpio_164
General-purpose IO 164
IO
H19
F24
B23
gpio_165
General-purpose IO 165
IO
H20
H24
B24
gpio_166
General-purpose IO 166
IO
H21
G24
C23
gpio_167
General-purpose IO 167
IO
B23
A23
F18
gpio_168
General-purpose IO 168
IO
AF15
C2
AC15
gpio_169
General-purpose IO 169
IO
U26
W20
U23
gpio_170
General-purpose IO 170
IO
J25
J23
A24
gpio_171
General-purpose IO 171
IO
AB3
P9
T5
gpio_172
General-purpose IO 172
IO
AB4
P8
R4
gpio_173
General-purpose IO 173
IO
AA4
P7
T4
gpio_174
General-purpose IO 174
IO
AC2
R7
T6
gpio_175
General-purpose IO 175
IO
AC3
R8
NA
gpio_176
General-purpose IO 176
IO
AB1
R9
NA
gpio_177
General-purpose IO 177
IO
AB2
T8
R5
gpio_178
General-purpose IO 178
IO
AA3
W7
N5
gpio_179
General-purpose IO 179
IO
Y2
W8
N4
gpio_180
General-purpose IO 180
IO
Y3
U8
N3
gpio_181
General-purpose IO 181
IO
Y4
V8
M5
gpio_182
General-purpose IO 182
IO
V3
V9
M4
gpio_183
General-purpose IO 183
IO
AE15
C1
AC14
gpio_184
General-purpose IO 184
IO
AF14
AB4
AC13
gpio_185
General-purpose IO 185
IO
AG14
AC4
AC12
gpio_186
General-purpose IO 186
IO
AE22
W11
AA6
gpio_188
General-purpose IO 188
IO
U25
W17
W24
gpio_189
General-purpose IO 189
IO
V28
Y18
V23
gpio_190
General-purpose IO 190
IO
V27
Y19
W23
gpio_191
General-purpose IO 191
IO
V26
Y17
T22
PRODUCT PREVIEW
SIGNAL NAME
110
TERMINAL DESCRIPTION
BALL BOTTOM
(CUS Pkg.)
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
2.5.8
SPRS616B – JUNE 2010 – REVISED JULY 2010
Power Supplies
Note: For more information, see Power Reset and Clock Management / PRCM Environment and the
Power, Reset, and Clock Management / PRCM Functional Description / PRCM Voltage Management
Functional Description sections of the AM37x TRM.
SIGNAL NAME
DESCRIPTION
BALL BOTTOM
(CBP Pkg.)
BALL TOP
(CBP Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL TOP
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
vdd_mpu_iva
ARM power domain
Y9 / W9 / T9 / R9 /
M9 / L9 / J9 / Y10 /
U10 / T10 / R10 /
N10 / M10 / L10 /
J10 / Y11 / W11 /
K11 / J11 / W12 /
K13 / Y14 / K14 /
J14 / Y15 / W15 /
J15
NA
H7/ N7/ U7/ V7/ N8/
G9/ L9/ M9/ W9/ Y9/
M10/ P10/ K11/ U11/
V11/ Y11/ G12/ D13/
U13
NA
W13/ W12/ V13/
V12/ U13/ U12/ T8/
T7/ R8/ R7/ R6/ N8/
N7/ N6/ M12/ M8/
M7/ M6/ L12/ L11/
J10/ J9/ H10/ H9/
G10/ G9/F10
vdd_core
Core power domain
AC4 / J4 / H4 / D8 /
AE9 / D9 / D15 /
Y16 / AE18 / Y18 /
W18 / K18 / J18 /
AE19 / Y19 / U19 /
T19 / N19 / M19 /
J19 / Y20 / W20 /
V20 / U20 / P20 /
N20 / K20 / J20 /
D22 / D23 / AE24 /
M25 / L25 / E25
NA
M7/ T7/ Y8/ G11/ Y12/
D15/ M17/ G18/ H20/
R20/ AC21
NA
T20/ T19/ T18/ T17/
R19/ R18/ R17/
M15/ M14/ L15/
L14/ K19/ K18/ K17/
J18/ J17/ H13/ H12/
G13/ G12/ F13/ F12
cap_vddu_wkup_l
ogic
Wakeup/EMU/memor
y domains, connect
capacitor
AA15
NA
K14
NA
Y12
vdda_dplls_dll
Input power for the
analog part of the
MPU,CORE DPLLs
and the DLL
K15
NA
K13
NA
G18
vdda_dac
Video DAC power
plane
V25
NA
V25
NA
AB13
vssa_dac
Video DAC ground
plane
Y26
NA
V24
NA
AB15
vdds
IO power plane
AD3 / AD4 / W4 /
AF8 / AE8 / AF16 /
AE16 / AF23 /
AE23 / F25 / F26 /
AG27
NA
G4/ M4/ T4/ Y4/ L7/
AC7/ D9/ AE10/ C11/
J15/ AC15/ A18/ J18/
AC18/ AD20/ E24/
L24/ T24/ W24/ AC24 /
AB24
A3 / A15 / B5 / F2 /
F21/ L20 / W21
Y9 / W10 / W9 /
V10 / V9 / U10 /
N19 / N18 / N17 /
M19 / M18 / M17
vdds_mem
Memory IO power
plane
U1 / J1 / F1 / J2 /
F2 / R4 / B5 / A5 /
AH6 / B8 / A8 / B12
/ A12 / D16 / C16 /
B18 / A18 / B22 /
A22 / G28 / C28
AC5 / P1 / H1 / F23
/ E1 / C23 / A4 / A7
/ A10 / A15 / A18
NA
NA
K8 / K7 / K6 / J8 /
J7 / J6 / H15 / G16
/ G15 / F16 / F15 /
E16
vdda_dpll_per
Input power for the
analog part of the
Peripheral DPLLs
AA16
NA
U14
NA
U17
vdda_wkup_bg_b
b
For wakeup LDO and
VDDA (2 LDOs
SRAM and BG)
AA14
NA
W14
NA
AA13
(1)
NA in this table stands for "Not applicable".
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
111
PRODUCT PREVIEW
Table 2-25. Power Supplies Signals Description (1)
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-25. Power Supplies Signals Description (continued)
SIGNAL NAME
DESCRIPTION
BALL BOTTOM
(CBP Pkg.)
BALL TOP
(CBP Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL TOP
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
AG2 / U2 / B2 /
AG3 / W3 / P3 / J3 /
E3 / A3 / P4 / E4 /
AG6 / D7 / C7 / V9 /
U9 / P9 / N9 / K9 /
W10 / V10 / P10 /
K10 / D10 / C10 /
AF12 / AE12 / Y12 /
K12 / J12 / Y13 /
W13 / J13 / D13 /
C13 / W14 / K16 /
J16 / W17 / K17 /
J17 / W19 / V19 /
R19 / P19 / L19 /
K19 / D19 / C19 /
AF20 / AE20 / T20 /
R20 / M20 / L20 /
D21 / C22 / AC25 /
Y25 / W25 / AC26 /
R26 / L26 / A26 /
G27 / B27
H2 / B18 / AB5 /
AB14 / AB20 / P2 /
F22 / E2 / C22 / B4
/ B7 / B10 / B15
G1/ K1/ R1/ W1/ B2/
H4/ N4/ R4/ W4/ AB5/
A6/ D7/ Y7/AE7/ A8/
G8/ D10/ G10/ L10/
N10/ Y10/ AC10/ C12/
D12/A13/ D14/ AD14/
K15/ Y16/ L17/ N17/
R17/ D18/ D20/G20/
E22/ AB22/ G23/ L23/
T23/ W23/ B25/
K25/U25/ AD25 / Y26
C1/ F1/ H2/ M2/ R2/
Y6/AA7/ Y11/ AA16/
W20/P20/ L21/ H20/
F20/ B14/A13/ A7
V16/ V15/ U16/
U15/ U14/ U11/
U9/T16/ T15/ T14/
T13/ T12/ T11/ T10/
T9/ R15/ R14/ R11/
R10/ P17/ P15/
P14/ P13/P12/ P11/
P10/ P8/ N16/ N15/
N14/ N13/ N12/
N11/ N10/ N9/ M16/
M13/ M11/ M10/
M9/ L17/ L13/ L10/
L8/ K15/ K14/ K11/
K10/ J16/ J15/ J14/
J13/ J12/ J11/H16/
H14/ H11
PRODUCT PREVIEW
vss
Ground
vdds_sram
SRAM LDOs
W16
NA
U12
NA
AA12
vdds_mmc1
MMC IO power
domain for CMD,
CLK, and DAT(0..3)
K25
NA
N23
NA
N24
vdds_x
Power supply for dual
voltage GPIOs
P25
NA
P23
NA
H8
vss
Ground
M28
NA
L19
NA
NA
vdds
IO power plane
AG20
NA
AD18
NA
NA
vss
Ground
AG16
NA
AC16
NA
NA
vdds
IO power plane
H28
NA
L20
NA
NA
cap_vdd_sram_m
pu_iva
SRAM LDO
capacitance for
VDDRAM1
V4
NA
N9
NA
U8
cap_vdd_sram_co
re
SRAM LDO
capacitance for
VDDRAM2
L21
NA
K20
NA
H17
vdds
IO power plane
AG21
NA
AD19
NA
NA
cap_vddu_array
Decoupling capacitor
for internal LDO.
AH20
NA
AE19
NA
N20
vss
Ground
AH21
NA
AC19
NA
NA
cap_vdd_bb_mpu
_iva
Decoupling capacitor
for MPU/IVA domains
(bb)
U4
NA
D6
NA
N21
sys_xtalgnd
Kelvin ground
Y17
NA
AF23
NA
W15
112
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
2.5.9
SPRS616B – JUNE 2010 – REVISED JULY 2010
System and Miscellaneous Terminals
Note: For more information, see the Power, Reset, and Clock Management / PRCM Environment section
of the AM37x TRM.
Table 2-26. System and Miscellaneous Signals Description (1)
SIGNAL NAME
DESCRIPTION
TYPE (2)
BALL
BOTTOM
(CBP Pkg.)
BALL TOP
(CBP Pkg.)
BALL
BOTTOM
(CBC Pkg.)
BALL TOP
(CBC Pkg.)
BALL
BOTTOM
(CUS Pkg.)
32-kHz clock input
I
AE25
NA
AE20
NA
AA16
sys_xtalin
Main input clock. Oscillator input or LVCMOS at
19.2, 13, or 12 MHz.
AI-I
AE17
NA
AF19
NA
AD15
sys_xtalout
Output of oscillator
AO
AF17
NA
AF20
NA
AD14
sys_altclk
Alternate clock source selectable for GPTIMERs
(maximum 54 MHz), USB (48 MHz), or
NTSC/PAL (54 MHz)
I
J25
NA
J23
NA
A24
sys_clkreq
Request from device for system clock (open
source type)
IO
AF25
NA
W15
NA
Y13
sys_clkout1
Configurable output clock1
O
AG25
NA
AE14
NA
Y7
sys_clkout2
Configurable output clock2
O
AE22
NA
W11
NA
AA6
sys_boot0
Boot configuration mode bit 0
I
AH26
NA
F3
NA
AB12
sys_boot1
Boot configuration mode bit 1
I
AG26
NA
D3
NA
AC16
sys_boot2
Boot configuration mode bit 2
I
AE14
NA
C3
NA
AD17
sys_boot3
Boot configuration mode bit 3
I
AF18
NA
E3
NA
AD18
sys_boot4
Boot configuration mode bit 4
I
AF19
NA
E4
NA
AC17
sys_boot5
Boot configuration mode bit 5
I
AE21
NA
G3
NA
AB16
sys_boot6
Boot configuration mode bit 6
I
AF21
NA
D4
NA
AA15
sys_nrespwron
Power On Reset
I
AH25
NA
V13
NA
AA10
sys_nreswarm
Warm Boot Reset (open drain output)
IOD
AF24
NA
AD7
AA5
Y10
sys_nirq
External FIQ input
I
AF26
NA
V16
NA
W16
sys_nvmode1
Indicates the voltage mode
O
AD26
NA
AD15
NA
Y16
sys_nvmode2
Indicates the voltage mode
O
AE26
NA
W16
NA
Y15
sys_off_mode
Indicates the voltage mode
O
AF22
NA
V12
NA
AD23
sys_ndmareq0
External A request 0 (system expansion). Level
(active low) or edge (falling) selectable.
I
U8
NA
B6
NA
D2
sys_ndmareq1
External A request 1 (system expansion). Level
(active low) or edge (falling) selectable.
I
T8 / J8
NA
B4 / C6
NA
F4 / C2
sys_ndmareq2
External A request 2 (system expansion). Level
(active low) or edge (falling) selectable.
I
L3 / R8
NA
D1 / C4
NA
H2 / G5
sys_ndmareq3
External A request 3 (system expansion). Level
(active low) or edge (falling) selectable.
I
K3 / P8
NA
D2 / B5
NA
G2 / F3
(1)
(2)
PRODUCT PREVIEW
sys_32k
NA in this table stands for "Not applicable".
Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog)
Table 2-27. CBC Package Feed-Through Balls
JEDEC 14x14mm, 0.65mm,
152ball
JEDEC DESCRIPTION
NC
d-vdd
(1)
BALL TOP
BALL BOTTOM
FEED-THROUGH BALL
NAME
No Connect
A1
A1
pop_a1_a1
DDR Supply
J1
L1
pop_j1_l1
NC
No Connect
AA1
AF1
NC
f-vdd
Flash Supply
N2
T2
pop_n2_t2
f-vdd
Flash Supply
T2
Y2
pop_t2_y2
NC
No Connect
W2
AE2
pop_w2_ae2
NC
No Connect
Y2
AF4
pop_y2_af4
f-vdd
Flash Supply
AA6
AF5
pop_aa6_af5
f-vdd
Flash Supply
Y7
AF8
pop_y7_af8
(1)
For more details on the feedthrough pin connections, please refer to the PoP memory datasheet.
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
113
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 2-27. CBC Package Feed-Through Balls (continued)
PRODUCT PREVIEW
NC, Int
No Connect; Interrupt when
using OneNAND POP
Y9
AF10
pop_y9_af10
f-nbe0, cle0
No Connect/CLE
AA10
AF12
pop_aa10_af12
d-vdd
DDR Supply/ POP FLASH
vpp supply
AA11
AF13
pop_aa11_af13
d-tq
No Connect/ DDR die
temperature sensor
AA12
AF14
pop_aa12_af14
vss
Shared Ground
AA13
AF15
pop_aa13_af15
d-vdd
DDR Supply
Y14
AF17
pop_y14_af17
d-vddq
DDR Supply
AA14
AF16
pop_aa14_af16
d-vdd
DDR Supply
B16
A20
pop_b16_a20
vss
Shared Ground
Y17
AF21
pop_y17_af21
d-vdd
DDR Supply
AA17
AF18
pop_aa17_af18
vss
Shared Ground
Y19
AF24
pop_y19_af24
d-vddq
DDR Supply
AA19
AF22
pop_aa19_af22
NC
No Connect
A20
A25
pop_a20_a25
NC
No Connect
Y20
AE25
pop_y20_ae25
NC
No Connect
AA20
AF25
pop_aa20_af25
NC
No Connect
A21
A26
pop_a21_a26
NC
No Connect
B21
B26
pop_b21_b26
d-vdd
DDR Supply
H21
K26
pop_h21_k26
d-vdd
DDR Supply
P21
U26
pop_p21_u26
NC
No Connect
Y21
AE26
pop_y21_ae26
NC
No Connect
AA21
AF26
pop_aa21_af26
Table 2-28. CBP Package Feed-Through Balls
JEDEC 12x12, 0.5mm,
168ball
JEDEC DESCRIPTION
d-vdd
d-vdd
(1)
BALL TOP
BALL BOTTOM
FEED-THROUGH BALL
NAME
DDR Supply
A12
A15
pop_a12_a15
DDR Supply
AA23
AE28
pop_aa23_ae28
d-vdd
DDR Supply
H23
AF28
pop_h23_af28
d-vdd
DDR Supply
K1
J28
pop_k1_j28
d-vdd
DDR Supply
Y23
M1
pop_y23_m1
f-vdd
Flash Supply
AA1
AA1
pop_aa1_aa1
f-vdd
Flash Supply
AC8
AF1
pop_ac8_af1
f-vdd
Flash Supply
AC13
AH10
pop_ac13_ah10
f-vdd
Flash Supply
L1
AH15
pop_l1_ah15
f-vdd
Flash Supply
U1
N1
pop_u1_n1
f-vpp
Flash vpp supply
AC11
AH13
pop_ac11_ah13
NC, int0
No Connect/PoP OneNAND
interrupt
AB9
AG11
pop_ab9_ag11
NC, int1
No Connect/PoP OneNAND
interrupt
AC9
AH11
pop_ac9_ah11
NC
No Connect
A1
A1
NC
NC
No Connect
A2
A2
NC
NC
No Connect
A22
A27
pop_a22_a27
NC
No Connect
A23
A28
pop_a23_a28
NC
No Connect
AB1
AG1
pop_ab1_ag1
NC
No Connect
AB23
AG28
pop_ab23_ag28
NC
No Connect
AC1
AH1
pop_ac1_ah1
NC
No Connect
AC2
AH2
pop_ac2_ah2
NC
No Connect
AC22
AH27
pop_ac22_ah27
NC
No Connect
AC23
AH28
pop_ac23_ah28
(1)
114
For more details on the feedthrough pin connections, please refer to the PoP memory datasheet.
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 2-28. CBP Package Feed-Through Balls (continued)
No Connect
B1
B1
NC
NC
No Connect
B23
B28
pop_b23_b28
f-rst#, rp#
Flash reset
AB11
AG13
pop_ab11_ag13
d-tq
DDR temperature alert
AC14
AH16
pop_ac14_ah16
vss
Shared Ground
AA2
AA2
pop_aa2_aa2
vss
Shared Ground
U2
AF2
pop_u2_af2
vss
Shared Ground
AA22
AF27
pop_aa22_af27
vss
Shared Ground
AB8
AG10
pop_ab8_ag10
vss
Shared Ground
AB13
AG15
pop_ab13_ag15
vss
Shared Ground
B12
B15
pop_b12_b15
vss
Shared Ground
H22
J27
pop_h22_j27
vss
Shared Ground
K2
M2
pop_k2_m2
vss
Shared Ground
K22
M26
pop_k22_m26
vss
Shared Ground
L2
N2
pop_l2_n2
PRODUCT PREVIEW
NC
TERMINAL DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
115
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
3 Electrical Characteristics
NOTE
For more information, see the Power Reset and Clock Management / PRCM Environment
section of the AM37x TRM.
3.1
Absolute Maximum Ratings
Stresses beyond those listed as absolute maximum ratings may cause permanent damage to the device.
These are stress ratings only, and functional operation of the device at these or any other conditions
beyond those listed under "Recommended Operating Conditions" is not implied. Exposure to absolute
maximum rated conditions for extended periods may affect device reliability.
Table 3-1. Absolute Maximum Rating over Junction Temperature Range
PARAMETER
PRODUCT PREVIEW
MIN
MAX
UNIT
vdd_mpu_iva
Supply voltage range for MPU
–0.5
1.5
V
vdd_core
Supply voltage range for core domain
–0.5
1.5
V
vdda_wkup_bg_bb
Supply voltage range for wake-up domain (internal
LDO)
–0.5
2.6
V
vdda_dplls_dll
Supply voltage for MPU, Core DPLLs and DLL
–0.5
2.1
V
vdda_dpll_per
Supply voltage for DPLLs (peripherals)
–0.5
2.1
V
vdds_sram
Supply voltage for SRAM LDOs
–0.5
2.6
V
vdda_dac
Supply voltage for video buffers and DAC
–0.5
2.10
V
vdds
Supply voltage for 1.8-V I/O macros
–0.5
2.45
V
vdds_mem
Supply voltage for memory buffers
–0.5
2.45
V
vdds_mmc1
Supply voltage range for mmc1
dual voltage IOs
1.8-V mode
–0.5
2.45
V
3.0-V mode
-0.5
3.80
Supply voltage range for dual
voltage GPIOs
1.8-V mode
–0.5
3.80
3.0-V mode
-0.5
3.80
mmc1
1.8-V mode
-0.5
2.45
vdds_x
VPAD
3.0-V mode
VESD
V
V
-0.5
3.80
Video DAC
–0.5
2.10
V
The other balls
–0.5
2.45
V
ESD stress
voltage(1)
HBM (Human Body Model)(2)
C (Charged Device Model)
(3)
1000
V
300
Iclamp
Clamp current for an input or output
–20
20
mA
TSTG
Storage temperature range
–65
150
°C
(1) Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device.
(2) JEDEC JESD22-A114F
(3) JEDEC JESD22-C101D
(4) vddy refers to vdds or vdds_mem.
Table 3-2 summarizes the power consumption at the ball level.
Table 3-2. Maximum Current Ratings at Ball Level
PARAMETER
SIGNAL
Processors
)
116
MAX
UNIT
AM3715
740
mA
AM3703
740
AM3715
300
AM3703
230
DESCRIPTION
vdd_mpu_iva(1 Maximum current rating for MPU
vdd_core(1)
(3)
Maximum current rating for core domain
Core
Electrical Characteristics
mA
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 3-2. Maximum Current Ratings at Ball Level
(3)
(continued)
PARAMETER
SIGNAL
MAX
UNIT
DESCRIPTION
vdds
Maximum current rating for 1.8-V I/O macros
60
mA
vdds_mem
Maximum current rating for memory buffers
35
mA
vdds_mmc1(2)
Maximum current rating for mmc1 dual voltage buffers
20
mA
vdds_x
Maximum current rating for GPIO dual voltage buffers
2
mA
vdda_wkup_bg Maximum current rating for wake-up, bandgap and VBB LDOs
_bb
5
mA
vdda_dac
Maximum current rating for video buffers and DAC
60
mA
vdda_dplls_dll
Maximum current rating for MPU, core DPLLs and DLL
30
mA
vdda_dpll_per
Maximum current rating for DPLLs (peripherals)
10
mA
vdds_sram
Maximum current rating for SRAM LDOs (common)
41
mA
TM
(1) With SmartReflex
enabled.
(2) MMC card and I/O card are not included.
(3) The maximum current ratings documented in this table are preliminary data which are subject to change.
3.2
Recommended Operating Conditions
PRODUCT PREVIEW
The device is used under the recommended operating conditions described in Table 3-3.
NOTE
Logic functions and parameter values are not assured out of the range specified in the
recommended operating conditions.
Table 3-3. Recommended Operating Conditions
PARAMETER
vdd_mpu_iva
DESCRIPTION
MIN
NOM
40
Supply voltage for 1.8-V I/O macros
Supply voltage for memory buffers
Noise (peak-peak)
1.71
1.80
1.71
1.80
Oscillator IO (Crystal or
Square modes)
Others
vdds_mmc1
V
90
mVPP
1.91
V
40
mVPP
90
1.8-V mode
1.71
1.80
1.91
3.0-V mode
2.70
3.00 to 3.30
3.60
Noise (peak-peak)
1.8-V mode
90
V
mVPP
150
Supply voltage range for x dual
voltage IOs
1.8-V mode
1.71
1.80
1.91
3.0-V mode
2.70
3.00
3.60
Noise (peak-peak)
1.8-V mode
90
3.0-V mode
150
vdda_wkup_bg_ Supply voltage range for wake-up LDO
bb
Noise (peak-peak)
mVPP
1.91
Supply voltage range for mmc1
dual voltage IOs
3.0-V mode
vdds_x
mVPP
V
Noise (peak-peak)
vdds_mem
40
See(1)
Supply voltage range for core domain
Noise (peak-peak)
vdds
UNIT
V
Noise (peak-peak)
vdd_core
MAX
See(1)
Supply voltage range for ARM
1.71
1.80
V
mVPP
1.91
V
50
mVPP
Electrical Characteristics
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
117
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 3-3. Recommended Operating Conditions (continued)
PARAMETER
vdda_dac
DESCRIPTION
Analog supply voltage for Video DAC
MIN
NOM
MAX
UNIT
1.71
1.80
1.91
V
30
mVPP
3
mVPP
0.3
mVPP
Noise (peak-peak) for a
100 kHz < f < 1 MHz
frequency from 0 to 100 kHz (For
1 MHz < f < 10 MHz
a frequency > 100 kHz,
f > 10 MHz
decreases 20 dB/dec)
vdds_sram
Supply voltage for SRAM LDOs
1.71
1.80
Noise (peak-peak)
vdda_dplls_dll
Supply voltage for MPU, core DPLLs and DLL
Supply voltage for DPLLs (peripherals)
V
50
mVPP
1.71
1.80
1.91
V
40
mVPP
1.71
1.80
1.91
V
50
mVPP
vddy(2)
V
Noise (peak-peak) for a frequencies below 1 MHz
vdda_dpll_per
1.91
Noise (peak-peak)
VPAD
Voltage at I/O pad
0
vssa_dac
Ground for video buffers and DAC
0
V
vss
Main ground
0
V
TA
Operating board (PCB) temperature range
–40
85
°C
TJ
Operating junction temperature range
–40
105
°C
(1) See the operating condition addendum for values. OPP voltage values may change following the silicon characterization result.
PRODUCT PREVIEW
(2) vddy refers to vdda_dac, vdds, vdds_mem, vdds_mmc1, and vdds_x.
118
Electrical Characteristics
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
3.3
SPRS616B – JUNE 2010 – REVISED JULY 2010
DC Electrical Characteristics
Table 3-4 summarizes the dc electrical characteristics.
Note: The interfaces or signals described in Table 3-4 correspond to the interfaces or signals available in
multiplexing mode 0. All interfaces or signals multiplexed on the balls / pins described in Table 3-4 have
the same DC electrical characteristics.
Table 3-4. DC Electrical Characteristics
PARAMETER
MIN
NOM
MAX
UNIT
SDRC Mode (CBP Balls(21): C14 / B14 / C15 / B16 / D17 / C17 / B17 / D18 / H9 / H10 / H11 / H12 / A13 / A14 / H16 / H17 / H14 / H13 /
H15 / A16 / A17)(4)
High-level input voltage
VIL
Low-level input voltage
0.7 * vdds_mem
VHYS (1)
Hysteresis voltage at an input
VOH
High-level output voltage, driver enabled,
pullup or pulldown disabled
IOH = –4 mA
VOL
Low-level output voltage, driver enabled,
pullup or pulldown disabled
IOL = 4 mA
CIN
Input capacitance
tTIN(2)
Input recommended rise, tRIN, and fall time, tFIN (measured
between 20% and 80% at PAD)
tROUT(2)
V
0.3 * vdds_mem
0.07
V
V
0.8 * vdds_mem
vdds_mem
V
0
0.2 * vdds_mem
V
1.15
pF
10
ns
Output maximum rise time (rise time, tROUT, evaluated
between 20% and 80% at PAD) @ maximum load
1.15
ns
tFOUT(2)
Output maximum fall time (fall time, tFOUT, evaluated
between 20% and 80% at PAD) @ maximum load
1.10
ns
COUT
Load capacitance
pF
DS0 = 0(3)
2
4
DS0 = 1(3)
4
12
0.70 * vdds_mmc1
vdds_mmc1 + 0.3
V
–0.3
0.30 * vdds_mmc1
V
PRODUCT PREVIEW
VIH
MMC Interface 1 Mode (CBP Balls(21): N28 / M27 / N27 / N26 / N25 / P28)
1.8-V Mode
VIH
High-level input voltage
VIL
Low-level input voltage
VOH
High-level output voltage with 100-mA sink current IOH
VOL
Low-level output voltage with 100-mA sink current at
vdds_mmc1 minimum
VHYS (1)
Hysteresis voltage at an input
tTIN (2)
Input transition time (tRIN or tFIN evaluated
between 10% and 90% at PAD)
COUT
Load capacitance
LOUT
Line inductance (except vdds_mmc1)
vdds_mmc1 – 0.2
V
0.2
V
Normal Mode
(SPEECTRL =
1)(4)
3
ns
High-Speed
(SPEECTRL =
0)(4)
8
0.1
10
V
30
pF
16
nH
3.0-V Mode
VIH
High-level input voltage
0.625 * vdds_mmc1
vdds_mmc1 + 0.3
V
VIL
Low-level input voltage
–0.3
0.25 * vdds_mmc1
V
VOH
High-level output voltage with 100-mA sink current IOH
VOL
Low-level output voltage with 100-mA source current at
vdds_mmc1 minimum
VHYS (1)
Hysteresis voltage at an input
0.75 * vdds_mmc1
V
0.125 * vdds_mmc1
0.05
V
Electrical Characteristics
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
V
119
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 3-4. DC Electrical Characteristics (continued)
PARAMETER
tTIN(2)
Input transition time (tRIN or tFIN evaluated
between 10% and 90% at PAD)
COUT
Load capacitance
LOUT
Line inductance (except vdds_mmc1)
MAX
UNIT
Normal Mode
(SPEECTRL =
1)(4)
MIN
3
ns
High-Speed
(SPEECTRL =
0)(4)
8
10
NOM
30
pF
16
nH
0.70 * vdds_x
vdds_x + 0.3
V
GPIO Mode (CBP Balls(21): P27 / P26 / R27 / R25)
1.8-V Mode
VIH
High-level input voltage
VIL
Low-level input voltage
VOH
High-level output voltage with 20-mA sink current IOH
VOL
PRODUCT PREVIEW
–0.3
0.20 * vdds_x
V
0.8 * vdds_x
vdds_x + 0.3
V
Low-level output voltage with 1-mA source current at vdds_x
minimum
–0.3
0.4
V
VHYS (1)
Hysteresis voltage at an input
0.1
tTIN (2)
Input transition time (tRIN or tFIN evaluated
between 10% and 90% at PAD)
35
ns
CIN
Input capacitance
2.5
pF
COUT
Load capacitance
30
pF
LOUT
Line inductance (except vdds_x)
16
nH
Normal Mode
(SPEECTRL =
1)(4)
V
3.0-V Mode
VIH
High-level input voltage
0.70 * vdds_x
vdds_x + 0.3
V
VIL
Low-level input voltage
–0.3
0.20 * vdds_x
V
VOH
High-level output voltage with 20-mA sink current IOH
0.7 * vdds_x
vdds_x + 0.3
V
VOL
Low-level output voltage with 1-mA source current at
vdds_sim minimum
–0.3
0.4
V
VHYS (1)
Hysteresis voltage at an input
0.05
tTIN (2)
Input transition time (tRIN or tFIN evaluated
between 10% and 90% at PAD)
CIN
COUT
LOUT
Normal Mode
(SPEECTRL =
1)(4)
V
35
ns
Input capacitance
2.5
pF
Load capacitance
30
pF
Line inductance (except vdds_x)
16
nH
I2C Mode (CBP Balls(21): K21 / J21 / AF15 / AE15 / AF14 / AG14 / AD26 / AE26)(6)
Standard Mode
VIH
High-level input voltage
0.7 * vdds
vdds + 0.5
V
VIL
Low-level input voltage
–0.5
0.3 * vdds
V
VHYS (1)
Hysteresis voltage at an input
0.15
VOL
Low-level output voltage open-drain at 3-mA sink current
NA
NA
V
II
Input current at each I/O pin with an input voltage between
0.1 * vdds to 0.9 * vdds
–10
10
mA
CI
Capacitance for each I/O pin
10
pF
tFOUT(5)
Output fall time from VIHmin to VILmax with a bus capacitance
CB from 10 pF to 400 pF
250
ns
tROUT(5)
Output rise time with a capacitive load from 10 pF to 150 pF
with internal pullup
20 + 0.1CB
250
ns
VIH
High-level input voltage
0.7 * vdds
vdds + 0.5
V
VIL
Low-level input voltage
–0.5
0.3 * vdds
V
V
Fast Mode
120
Electrical Characteristics
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 3-4. DC Electrical Characteristics (continued)
PARAMETER
MIN
VHYS (1)
Hysteresis voltage at an input
VOL
Low-level output voltage open-drain at 3-mA sink current
II
Input current at each I/O pin with an input voltage between
0.1 * vdds to 0.9 * vdds
CI
Capacitance for each I/O pin
tFOUT(5)
tROUT(5)
NOM
MAX
0.15
UNIT
V
0
0.2 * vdds
V
–10
10
mA
10
pF
Output fall time from VIHmin to VILmax with a bus capacitance
CB from 10 pF to 400 pF
20 + 0.1CB
250
ns
Output rise time with a capacitive load from 10 pF to 150 pF
with internal pullup
20 + 0.1CB
250
ns
High-Speed Mode
VIH
High-level input voltage
0.7 * vdds
vdds + 0.5
V
VIL
Low-level input voltage
–0.5
0.3 * vdds
V
VHYS (1)
Hysteresis voltage at an input
0.15
VOL
Low-level output voltage open-drain at 3-mA sink current
II
Input current at each I/O pin with an input voltage between
0.1 * vdds to 0.9 * vdds
CI
Capacitance for each I/O pin
tFOUT(5)(
6)
Output fall time with a capacitive load from 10 pF to 100 pF
at 3-mA sink current
10
Output fall time with a capacitive load of 400 pF at 3-mA
sink current
Output rise time with a capacitive load from 10 pF to 80 pF
with internal pullup
0.2 * vdds
V
–10
10
mA
10
pF
40
ns
20
80
ns
10
40
ns
0.7 * vdds
vdds
V
–0.5
0.3 * vdds
V
PRODUCT PREVIEW
tROUT(5)
V
0
Standard LVCMOS Mode
VIH
High-level input voltage
VIL
Low-level input voltage
VOH
High-level output voltage at 4-mA sink current
VOL
Low-level output voltage at 4-mA sink current
0.45
V
CIN
Input capacitance
1.15
pF
tTIN (2)
Input transition time (tRIN or tFIN evaluated between 10% and
90% at PAD)
10
ns
tTOUT
Output transition time at 40-pF load (tROUT or tFOUT
evaluated between 10% and 90% at PAD)
10
ns
vdds – 0.45
V
MIPI D-PHY Interface
MIPI D-PHY Interface - GPI Mode(14) (CBP Balls(21): AG19 / AH19 / AG18 / AH18 / K28 / L28 / K27 / AG17 / AH17)
VIH(7)
High-level input voltage
0.65 * vdds_x
vdds_x + 0.3
V
VIL(8)
Low-level input voltage
–0.3
0.35 * vdds_x
V
VHYS (1)
Hysteresis voltage at an input
0.15
CIN
Input capacitance
1.3
pF
tTIN (2)
Input transition time (tRIN or tFIN evaluated between 10% and
90% at PAD)
10
ns
V
Other Balls
Common to "Other Balls"
VIH
High-level input voltage
0.65 * vdds
vdds + 0.3
V
VIL
Low-level input voltage
–0.3
0.35 * vdds
V
VHYS (1)
Hysteresis voltage at an input
0.15
V
VOH
High-level output voltage, driver enabled,
pullup or pulldown disabled
IOH = – X mA
vdds – 0.45
V
VOL
Low-level output voltage, driver enabled,
pullup or pulldown disabled
IOL = X mA
0.45
V
Differences Between "Other Balls"
Electrical Characteristics
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
121
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 3-4. DC Electrical Characteristics (continued)
PARAMETER
MIN
NOM
MAX
UNIT
1.00
1.15
1.35
pF
5
ns
2.20
pF
10
ns
1.15
pF
10
ns
Input Capacitance and Input Transition Time
sys_xtalin pin (CBP Ball(21): AE17)
CIN
Input capacitance
tTIN(2)
Input transition time (rise time, tRIN or fall time, tFIN
evaluated between 10% and 90% at PAD)
JTAG interface (CBP Balls(21): AA17 / AA13 / AA12 / AA18 / AA20 / AA19 / AA11 / AA10)
CIN
Input capacitance
tTIN(2)
Input transition time (rise time, tRIN or fall time, tFIN
evaluated between 10% and 90% at PAD)
Otherwise
CIN
Input capacitance
tTIN(2)
Input transition time (rise time, tRIN or fall time, tFIN
evaluated between 10% and 90% at PAD)
Output Capacitance Load and Output Transition Time
sys_32k, sys_clkreq, sys_off_mode, sys_clkout1, sys_nirq, uart3_cts_rctx, uart3_rts_sd, uart3_rx_irrx, uart3_tx_irtx, hdq_sio
(CBP Balls(21): R27 / AE25 / AF25 / AF22 / AG25 / AF26 / H18 / H19 / H20 / H21 / J25)
PRODUCT PREVIEW
tTOUT
Output transition time (rise time, tROUT or
DS[1:0] =
fall time, tFOUT evaluated between 10% and 00(3)
90% at PAD)
CTOUT
Output load
tTOUT
Output transition time (rise time, tROUT or
DS[1:0] =
fall time, tFOUT evaluated between 10% and 10(3)
90% at PAD)
CTOUT
Output load
tTOUT
Output transition time (rise time, tROUT or
DS[1:0] =
fall time, tFOUT evaluated between 10% and 01(3)
90% at PAD)
CTOUT
Output load
1
15
ns
4
60
pF
0.4
5
ns
2
21
pF
0.6
7
ns
7
33
pF
1.5
5
ns
2
22
pF
0.6(20)
2.4
ns
2
22
pF
CAM, HSUSB0, SDMMC2, UART1, UART2, McBSP, McSPI, ETK Interfaces, sys_clkout2 (CBP Ball(21): AE22)
tTOUT
Output transition time (rise time, tROUT or fall time, tFOUT
evaluated between 10% and 90% at PAD)
CTOUT
Output load
Otherwise
tTOUT
Output transition time (rise time, tROUT or fall time, tFOUT
evaluated between 10% and 90% at PAD)
CTOUT
Output load
Hysteresis
sys_xtalin pin (CBP Ball(21): AE17)
VHYS (1)
Hysteresis voltage at an input
0.25
V
Hysteresis voltage at an input
0.07
V
Hysteresis voltage at an input
0.15
V
hsusb0_clk (CBP Ball(21): T28)
VHYS (1)
Otherwise
VHYS(1)
(1) Vhys is the magnitude of the difference between the positive-going threshold voltage VT+ and the negative-going threshold voltage VT–.
Some receivers, but not all, are designed for hysteresis. Vhys applies only to those that are.
(2) VIH is the voltage at which the receiver is required to detect a high state in the input signal.
(3) VIL is the voltage at which the receiver is required to detect a low state in the input signal. VIL is larger than the maximum single-ended
line voltage during HS transmission. Therefore, both LP receivers will detect low during HS signaling.
(4) This value includes a ground difference of 50 mV between the transmitter and the receiver, the status common-mode level tolerance
and variations below 450 MHz.
(5) No structure within the PHY may be damaged when a dc signal that is within the signal voltage range VPIN is applied to a pad pin, or for
a transient voltage limited VPIN.
(6) The voltage overshoot and undershoot beyond the VPIN is only allowed during a single TVPIN window after any LP-0 or LP-1 transition.
122
Electrical Characteristics
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
(7) Not valid if GPI is being used.
(8) Common mode is defined as the average voltage level of DX and DY: VCM = (V(DX) + V(DY))/2. Common mode ripple may be due to
rise-fall time and transmission line impairments in the PCB.
(9) Value when driving into differential load impedance anywhere in the range 80 to 125 Ω.
(10) UI = 1 / (2 * fh), where fh is the fundamental frequency of HS data transmission. For example, for 800 Mbps fh is 400 MHz.
(11) For capacitive load from 100 pF to 400 pF, fall time should be linearly interpolated:
tFmin = (1 + (Load – 100 pF) / 300 pF) * 10 ns
tFmax = (1 + (Load – 100 pF) / 300 pF) * 40 ns
(12) SPEEDCTRL = 0 [26 MHz typical] per default or SPEEDCTRL = 1 [52 MHz typical] according to the selected mode. For a full
description of the speed programming, see the PRG_mmc1_SPEEDCTRL configuration register bit field in the AM37x TRM.
(13) ULPM stands for Ultra Low Power Mode.
(14)
–
–
In DSS TFT Mode: COUT = 10 pf with a clock frequency up to 74.3 MHz.
Note: For the DSS (TFT mode) in HD-TV application, to run at full speed (74.3 MHz) it is recommended to use the dss_data[5:0]
signals on the dss_data[23:18] balls (H26, H25, E28, J26, AC27, AC28). In that case, the dss_data[23:18] signals are available on
the sys_boot0, sys_boot1, sys_boot3, sys_boot4, sys_boot5, and sys_boot6 balls (AH26, AG26, AF18, AF19, AE21, AF21).
If the dss_data[5:0] signals are used on the dss_data[5:0] balls (AG22, AH22, AG23, AH23, AG24, AH24), OPP100 DSS (TFT
mode) are limited at 66 MHz. The values may change following the silicon characterization result.
In DSS STN Mode: COUT = 40 pf with a clock frequency up to 44 MHz.
In DSS RFBI Mode: COUT = 30 pF with a clock frequency up to 20.75 MHz.
(15) For a full description of the DS0 load compensation register configuration, see the description of the CONTROL_PROG_IO1
configuration registers in System Control Module / Programming Model / Feature Settings / SDRC I/O Drive Strength Selection section
of the AM37x TRM.
(16) For a full description of the SPEEDCTRL speed register configuration, see the description of the CONTROL_PROG_IO1 configuration
registers in System Control Module / Programming Model / Feature Settings section of the AM37x TRM.
(17) For capacitive load from 100 pF to 400 pF, fall time should be linearly interpolated: tFOUTmin = (1 + (Load – 100 pF) / 300 pF) * 10 ns.
tFOUTmax = (1 + (Load – 100 pF) / 300 pF) * 40 ns.
(18) Rise and fall times are specified for (0.3 * vdds) to (0.7 * vdds).
(19) The tIN (tRIN and tFIN also) value is the recommended condition. The tIN (tRIN and tFIN also) mismatch causes additional delay time inside
the device then leads to ac timing invalidation in this DM.
The tIN (tRIN and tFIN also) mismatch does not necessarily mean functional failure. This global value may be overridden on a per interface
basis if another value is explicitly defined for that interface in the Timing Requirements and Switching Characteristics chapter of the data
manual.
(20) For more information about the tUI(INST,MIN) value, see .
(21) For associated CBC and CUS balls, please refer to the Multiplexing Characteristics table.
Electrical Characteristics
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
123
PRODUCT PREVIEW
–
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
3.4
www.ti.com
External Capacitors
To improve module performance, decoupling capacitors are required to suppress the switching noise
generated by high frequency and to stabilize the supply voltage. A decoupling capacitor is most effective
when it is close to the device, because this minimizes the inductance of the circuit board wiring and
interconnects.
3.4.1
Voltage Decoupling Capacitors
Table 3-5 summarizes the Core voltage decoupling characteristics.
3.4.1.1
Core Voltage Decoupling Capacitors
To improve module performance, decoupling capacitors are required to suppress the switching noise
generated by high frequency and to stabilize the supply voltage. A decoupling capacitor is most effective
when it is close to the device, because this minimizes the inductance of the circuit board wiring and
interconnects.
Table 3-5. Core Voltage Decoupling Characteristics (1)
PARAMETER
Cvdd_core
(1) (2)
PRODUCT PREVIEW
Cvdd_mpu_iva
(1)
(2)
(1) (2)
MIN
TYP
MAX
UNIT
0.6
1.2
1.8
mF
0.6
1.2
1.8
mF
In power plan configuration
The typical value corresponds to 2 capacitors of 470 nF, plus 3 capacitors of 100 nF.
3.4.1.2
IO and Analog Voltage Decoupling Capacitors
Table 3-6 summarizes the power supply decoupling capacitor characteristics.
Table 3-6. Power Supply Decoupling Capacitor Characteristics
PARAMETER
Cvdds
(1) (2)
Cvdds_mem
Cvdds_mmc1
Cvdds_x
(1) (3)
(4)
(4)
MIN
TYP
MAX
UNIT
200
400
600
nF
350
700
1050
nF
50
100
150
nF
50
100
150
nF
Cvdda_dplls_dll
(4)
50
100
150
nF
Cvdda_dpll_per
(4)
50
100
150
nF
110
220
330
nF
240
470
700
nF
50
100
150
nF
Cvdds_sram
(4)
Cvdda_wkup_bg_bb (4)
Cvdda_dac
(1)
(2)
(3)
(4)
(4)
In power plan configuration
The typical value corresponds to 4 capacitors of 100 nF.
The typical value corresponds to 7 capacitors of 100 nF.
In power rail configuration
3.4.2
Output Capacitors
The capacitors at the outputs are required to stabilize the internal LDO supply voltages. The capacitors
must be placed as close as possible to the balls.
Table 3-7 summarizes the power supply decoupling characteristics.
Table 3-7. Output Capacitor Characteristics
PARAMETER
MIN
TYP
MAX
UNIT
Ccap_vdd_sram_mpu_iva
0.7
1
1.3
mF
Ccap_vdd_sram_core
0.7
1
1.3
mF
124
Electrical Characteristics
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 3-7. Output Capacitor Characteristics (continued)
PARAMETER
TYP
MAX
UNIT
0.7
1
1.3
mF
Ccap_vddu_array
0.7
1
1.3
mF
Ccap_vdd_bb_mpu_iva
0.7
1
1.3
mF
PRODUCT PREVIEW
MIN
Ccap_vddu_wkup_logic
Electrical Characteristics
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
125
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Figure 3-1 illustrates an example of the external capacitors.
Device
vdda_dac
Cvdda_dac
vdda_dac
vdds_sram
Video DAC
vssa_dac
vdds_sram
Cvdds_sram
SRAM_LDO1
cap_vdd_sram_mpu_iva
Ccap_vdd_sram_mpu_iva
SRAM_LDO2
cap_vdd_sram_core
Ccap_vdd_sram_core
DPLL_MPU
vdda_dplls_dll
vdda_dplls_dll
vdds_mmc1
Cvdda_dplls_dll
vdds_mmc1
PRODUCT PREVIEW
MMC I/Os
Cvdds_mmc1
DPLL_CORE
DLL
vdds_mem
vdds_mem
Cvdds_mem
vdda_wkup_bg_bb
VDDS_MEM
DPLL5
BG
DPLL4
vdda_dpll_per
vdda_dpll_per
Cvdda_dpll_per
vdda_wkup_bg_bb
Cvdda_wkup_bg_bb
BBLDO
cap_vdd_bb_mpu_iva
Ccap_vdd_bb_mpu_iva
WKUP_LOGIC
MPU
vdd_mpu_iva
vdd_mpu_iva
Cvdd_mpu_iva
cap_vddu_wkup_logic
Ccap_vddu_wkup_logic
CORE
vdd_core
vdd_core
Cvdd_core
cap_vddu_array
Ccap_vddu_array
vdds
vdds
VDDS I/O
Cvdds
sys_xtalgnd
vss
OSC I/O
Figure 3-1. External Capacitors
126
Electrical Characteristics
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
NOTE
•
•
3.5
Decoupling capacitors must be placed as closed as possible of the power ball. Choose
the ground located closest to the power pin for each decoupling capacitor. In case of
interconnecting powers, first insert the decoupling capacitor and then interconnect the
powers.
The decoupling capacitor value depends on the board characteristics.
Power-Up and Power-Down Sequences
This section provides the timing requirements for the device hardware signals.
NOTE
•
3.5.1
If the MMC dual voltages interfaces are used with 1.8-V or 3.0-V, then the power-up and
power-down sequences specified in the Figure 3-2 and Figure 3-3 must be followed
carefully to avoid any significant current consumption.
If the MMC dual voltages interfaces are used with 1.8-V only (3.0-V is never used), then
vdds_mmc1, vdds_x may be connected to the main power supply vdds so that they ramp
up together before vdd_core.
PRODUCT PREVIEW
•
Power-Up Sequence
NOTE
For more information, see the Power, Reset, and Clock Management / PRCM Functional
Description / PRCM Reset Manager Functional Description / Reset Sequences of the AM37x
TRM.
Figure 3-2 shows the power-up sequence.
Electrical Characteristics
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
127
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
1.8 V
vdds, vdds_mem,
vdds_sram,
vdda_wkup_bg_bb
vdda_dplls_dll,
vdda_dpll_per
1.8 V
(1)
1.1 V
vdd_core
(1)
1.1 V
vdd_mpu_iva
sys_32k
sys_xtalin
sys_nrespwron
PRODUCT PREVIEW
sys_nreswarm
vdds_mmc1, vdds_x,
vdda_dac, vpp
(1)
(2)
(3)
1.2 V supported.
If an external square clock is provided, it could be started after sys_nrespwron release, provided it is clean, i.e. no glitch, stable
frequency and duty cycle.
sys_32k can be turned on any time between the vdds ramp-up and the sys_nrespwron release.
Figure 3-2. Power-Up Sequence
3.5.2
Power-Down Sequence
The following steps give two examples of power-down sequence supported by the AM37x device.
1. Put the AM37x device under reset (sys_nrespwron)
2. Stop all signals driven to its balls (sys_32k, sys_xtalin)
3. Either:
(a) Shutdown all power domains at once. This sequence is described in black color in Figure 3-3.
(b) Or, if the shutdown is sequenced, you must follow these steps (described in dash style blue color
in Figure 3-3):
– Turn off all complex IO domains (vdds_mmc1, vdds_x)
– Turn off all the core and MPU domains (vdd_core, vdd_mpu_iva)
– Turn off all DPLL domains (vdda_dplls_dll, vdda_dpll_per)
– Turn off all sram LDOs (vdds_sram)
– Turn off all reference domains (vdda_wkup_bg_bb)
– Turn off all standard IO domains (vdds, vdds_mem)
Figure 3-3 shows both power-down sequences: one of them is described in black color, and the other one
in dash style blue.
128
Electrical Characteristics
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
sys_nrespwron
vdds_mmc1, vdds_x,
vdda_dac
vdd_core
vdd_mpu_iva
vdda_dplls_dll,
vdda_dpll_per
vdda_wkup_bg_bb
vdds, vdds_mem
sys_32k
sys_xtalin
A.
sys_32k can be turned off any time between the sys_nrespwron assertion and the vdds shut down.
Figure 3-3. Power-Down Sequence
Alternate power-down sequence:
• vdd_mpu_iva shuts down before vdd_core.
• vdda_sram, vdda_wkup_bg_bb, vdds and vdds_mem shut down simultaneously.
• vdda_dplls_dll and vdda_dpll_per shut down anytime between all complex IO domains shut down and
vdda_sram shuts down.
Electrical Characteristics
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
129
PRODUCT PREVIEW
vdds_sram
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
4 Clock Specifications
NOTE
For more information, see the Power, Reset, and Clock Management / PRCM Environment /
External Clock Signal section of the AM3715/03 TRM, and, Power, Reset and Clock
Management / PRCM Functional Description / PRCM Clock Manager Functional Description
section of the AM3715/03 TRM.
Figure 4-1 shows external input clock sources and output clocks.
Device
From power IC: 32 768-Hz
sys_32k
Alternate clock source selectable (48-MHz, 54-MHz)
sys_altclk
To peripherals (from oscillator clock [sys_xtalin]): 12-,13-,
16.8-, 19.2-, 26-, or 38.4-MHz (no divider)
sys_clkout1
PRODUCT PREVIEW
To peripherals (from oscillator clock [sys_xtalin]): 12-,13-,
16.8-, 19.2-, 26-, or 38.4-MHz or Core_clk: up to 332 MHz
(possible divider: 4, 8, 16) or DPLL 54-MHz, DPLL 96-MHz
(possible divider: 1, 2, 4, 8, or 16)
sys_clkout2
sys_xtalout
To quartz (oscillator output) or unconnected
sys_xtalin
From quartz (oscillator input) or square clock
sys_clkreq
Clock request. To square clock source or from peripherals
sys_xtalout
sys_xtalout
Oscillator
is used
Unconnected
Oscillator
is bypassed
sys_xtalin
sys_clkreq
GPin
sys_xtalin
sys_clkreq
Square
clock
source
SWPS038-006
Figure 4-1. Clock Interface
130
Clock Specifications
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
The AM3715/03 outputs externally two clocks:
• sys_clkout1 can output the oscillator clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz) at any time. It can be
controlled by software or externally using sys_clkreq control. When the device is in the off state, the
sys_clkreq can be asserted to enable the oscillator and activate the sys_clkout1 without waking up the
device. The off state polarity of sys_clkout1 is programmable.
• sys_clkout2 can output the oscillator clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz), core_clk (core DPLL
output), 96 MHz or 54 MHz. It can be divided by 2, 4, 8, or 16 and its off state polarity is
programmable. This output is active only when the core power domain is active.
4.1
Input Clock Specifications
4.1.1
Input Clock Requirements
Table 4-1 illustrates the requirements to supply a clock to the device.
Table 4-1. Input Clock Requirements
PAD
CLOCK FREQUENCY
sys_32k
32.768 kHz
sys_xtalout
sys_xtalin
12, 13, 16.8, or 19.2 MHz
12, 13, 16.8, 19.2, 26, or 38.4 MHz
sys_altclk
STABILITY
DUTY CYCLE
JITTER
TRANSITION
+/- 200 ppm
-
-
<10 ns
Crystal
±50 ppm (±5
ppm)(1)
-
-
-
Square
±50 ppm (±5
ppm)(1)
45% to 55%
X%(2) *
tc(xtalin)(3) 200ps
5 ns
+/-50 ppm
49% to 51%
<1%
10 ns
48 or 54 MHz
(1) ± 50 ppm is the clock frequency stability/accuracy and ± 5 ppm takes into account the aging effects.
(2) Depending on the internal system clock divider configuration (PRCM.PRM_CLKSRC_CTRL[7:6], SYSCLKDIV bit field), the sys_xtalin
input clock can be divided by 2 to provide the standard system clock (SYS_CLK) frequencies.
For more information, see the Power, Reset, and Clock Management chapter of the TRM. In X%, X represents then the internal system
clock divider with following possible values: X = 1 or 2.
(3) tc(xtalin) is the sys_xtalin cycle time of the clock coming to sys_xtalin ball.
4.1.2
sys_xtalin / sys_xtalout External Crystal
An external crystal is connected to the device pins. Figure 4-2 describes the crystal implementation.
Clock Specifications
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
131
PRODUCT PREVIEW
The AM3715/03 device operation requires the following three input clocks:
• The sys_32k 32-kHz clock is used for low frequency operation. It supplies the wake-up domain for
operation in lowest power mode (off mode). This clock is provided through the sys_32k pin.
• The sys_altclk system alternative clock can be used (through the sys_altclk pin) to provide alternative
48 MHz or 54 MHz.
• The sys_xtalin / sys_xtalout system input clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz) is used to
generate the main source clock of the AM3715/03 device. It supplies the DPLLs as well as several
other modules. The system input clock can be connected to either:
– A crystal oscillator clock managed by sys_xtalin and sys_xtalout. In this case, the sys_clkreq is
used as an input (GPIN).
– A CMOS digital clock through the sys_xtalin pin. In this case, the sys_clkreq is used as an output to
request the external system clock.
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Device
sys_xtalout
sys_xtalin
Optional Rbias
Optional Rd
Cf1
Cf2
Crystal
PRODUCT PREVIEW
SWPS038-007
Figure 4-2. Crystal Implementation
The crystal must be in the fundamental mode of operation and parallel resonant. Table 4-2 summarizes
the required electrical constraints.
Table 4-2. Crystal Electrical Characteristics(1)
NAME
DESCRIPTION
MIN
fp
Parallel resonance crystal frequency(1)
Cf1
Cf1 load capacitance for crystal parallel resonance with Cf1 = Cf2
12
Cf2
Cf2 load capacitance for crystal parallel resonance with Cf1 = Cf2
12
TYP
MAX
12, 13, 16.8, or 19.2
UNIT
MHz
24
pF
24
pF
ESR(Cf1,Cf2)(2) Frequency 10 MHz , Negative resistor at nominal 300 Ω, Negative
resistor at worst case 180 Ω
100
Ω
Frequency 15 MHz, Negative resistor at nominal 500 Ω, Negative
resistor at worst case 300 Ω
60
Ω
Frequency 30 MHz, Negative resistor at nominal 250 Ω, Negative
resistor at worst case 150 Ω
50
Ω
Crystal shunt capacitance
4.5
pF
Co
(1) Measured with the load capacitance specified by the crystal manufacturer. This load is defined by the foot capacitances tied in series. If
CL = 20 pF, then both foot capacitors will be Cf1 = Cf2 = 40 pF. Parasitic capacitance from package and board must also be taken in
account.
(2) The crystal motional resistance Rm is related to the equivalent series resistance (ESR) by the following formula:
ESR = Rm * (1 + (CO * Cf1 * Cf2 / (Cf1 + Cf2)))2.
When selecting a crystal, the system design must take into account the temperature and aging
characteristics of a crystal versus the user environment and expected lifetime of the system.
Table 4-3 details the switching characteristics of the oscillator and the requirements of the input clock.
Table 4-3. Oscillator Switching Characteristics—Crystal Mode
NAME
fp
tsX
132
DESCRIPTION
MIN
Oscillation frequency
(1) (2)
Start-up time
TYP
12, 13, 16.8, or 19.2
3
Clock Specifications
MAX
UNIT
MHz
ms
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
(1) Start-up time is defined as the time the oscillator takes to gain sys_xtalin amplitude enough to have 45% to 55% duty cycle at the core
input from the time power down (PWRDN) is released. Start-up time is a strong function of crystal parameters. At power-on reset, the
time is adjustable using the pin itself. The reset must be released when the oscillator or clock source is stable. To switch from bypass
mode to crystal or from crystal mode to bypass mode, there is a waiting time about 100 ms; however, if the chip comes from bypass
mode to crystal mode then the crystal will start-up after time mentioned in the tsX parameter.
(2) Before the processor boots up and the oscillator is set to bypass mode, there is a waiting time when the internal oscillator is in
application mode and receives a square wave. The switching time in this case is about 100 ms.
4.1.3
sys_xtalin Squarer Input Clock
Table 4-4 summarizes the base oscillator electrical characteristics.
Table 4-4. Oscillator Electrical Characteristics—Bypass Mode
NAME
DESCRIPTION
MIN
f
Frequency
Ci
Input Capacitance
1.00
Ri
Input Resistance
160
tsX
Start-up time(1)
TYP
MAX
12, 13, 16.8, 19.2, 26, or 38.4
1.15
1.35
216
280
See(2)
UNIT
MHz
pF
Ω
ms
(1) To switch from bypass mode to crystal mode or from crystal mode to bypass mode, there is a waiting time about 100 ms; however, if the
chip comes from bypass mode to crystal mode then the crystal will start-up after time mentioned in Table 4-3, tsX parameter above.
Clock Specifications
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
PRODUCT PREVIEW
(2) Before the processor boots up and the oscillator is set to bypass mode, there is a waiting time when the internal oscillator is in
application mode and receives a square wave. The switching time in this case is about 100 ms.
133
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 4-5 details the squarer input clock timing requirements.
Table 4-5. sys_xtalin Squarer Input Clock Timing Requirements—Bypass Mode
NAME
DESCRIPTION
MIN
OCS0
1 / tc(xtalin)
Frequency, sys_xtalin
OCS1
tw(xtalin)
Pulse duration, sys_xtalin low or high
tJ(xtalin)
Peak-to-peak jitter(1), sys_xtalin
tR(xtalin)
Rise time, sys_xtalin
tF(xtalin)
Fall time, sys_xtalin
tJ(xtalin)
Frequency stability, sys_xtalin
TYP
MAX
UNIT
12, 13, 16.8, 19.2, 26, or 38.4
0.45 * tc(xtalin)
MHz
0.55 * tc(xtalin)
ns
X%(2) *
tc(xtalin) (3) 200
ps
5
ns
5
ns
+/-50
(+/-5ppm)(4)
ppm
(1)
–
Peak-to-peak jitter is meant here as follows:
– The maximum value is the difference between the longest measured clock period and the expected clock period
– The minimum value is the difference between the shortest measured clock period and the expected clock period Maximum and
minimum are obtained on a statistical population of 300 period samples and expressed relative to the expected clock period
PRODUCT PREVIEW
(2) Depending on the internal system clock divider configuration (PRCM.PRM_CLKSRC_CTRL[7:6], SYSCLKDIV bit field), the sys_xtalin
input clock can be divided by 2 to provide the standard system clock (SYS_CLK) frequencies. For more information, see the Power,
Reset, and Clock Management chapter of the TRM. In X%, X represents then the internal system clock divider with following possible
values: X = 1 or 2.
(3) tc(xtalin) is the sys_xtalin cycle time of the clock coming to sys_xtalin ball.
(4) ±50 ppm is the clock frequency stability/accuracy and ±5 ppm takes into account the aging effects.
OSC0
OSC1
OSC1
sys_xtalin
SWPS038-008
Figure 4-3. sys_xtalin Squarer Input Clock
4.1.4
sys_32k CMOS Input Clock
Table 4-6 summarizes the electrical characteristics of the sys_32k input clock.
Table 4-6. sys_32k Input Clock Electrical Characteristics
NAME
DESCRIPTION
f
Frequency, sys_32k
Ci
Input capacitance
Ri
MIN
TYP
MAX
UNIT
32.768
Input resistance
3
kHz
1.6
pF
6
10
MΩ
MAX
UNIT
Table 4-7 details the input requirements of the sys_32k input clock.
Table 4-7. sys_32k Input Clock Timing Requirements
NAME
CK0
DESCRIPTION
MIN
TYP
1 / tc(32k)
Frequency, sys_32k
32.768
tR(32k)
Rise time, sys_32k
10
tF(32k)
Fall time, sys_32k
10
ns
tJ(32k)
Frequency stability, sys_32k
200
ppm
CK0
CK1
kHz
ns
CK1
sys_32k
SWPS038-009
Figure 4-4. sys_32k Input Clock
134
Clock Specifications
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
4.1.5
SPRS616B – JUNE 2010 – REVISED JULY 2010
sys_altclk CMOS Input Clock
Table 4-8 summarizes the electrical characteristics of the sys_altclk input clock.
Table 4-8. sys_altclk Input Clock Electrical Characteristics
NAME
DESCRIPTION
f
Frequency, sys_altclk
Ci
Input capacitance
Ri
MIN
TYP
MAX
48 or 54
Input resistance
UNIT
MHz
3
1.6
pF
6
10
MΩ
MAX
UNIT
Table 4-9 details the input requirements of the sys_altclk input clock.
Table 4-9. sys_altclk Input Clock Timing Requirements
DESCRIPTION
MIN
TYP
1 / tc(altclk)
Frequency, sys_altclk
48 or 54
MHz
ALT1
tw(altclk)
Pulse duration, sys_altclk low or high
tJ(altclk)
Peak-to-peak jitter, sys_altclk
tR(altclk)
Rise time, sys_altclk
10
tF(altclk)
Fall time, sys_altclk
10
ns
tJ(altclk)
Frequency stability, sys_altclk
50
ppm
0.49 * tc(altclk)
0.51 * tc(altclk)
-1%
1%
ns
ns
(1) Peak-to-peak jitter is meant here as follows:
– The maximum value is the difference between the longest measured clock period and the expected clock period
– The minimum value is the difference between the shortest measured clock period and the expected clock period Maximum and
minimum are obtained on a statistical population of 300 period samples and expressed relative to the expected clock period
ALT0
ALT1
ALT1
sys_altclk
SWPS038-010
Figure 4-5. sys_altclk Input Clock
4.2
Output Clocks Specifications
4.2.1
sys_clkout1 Output Clock
Table 4-10 summarizes the sys_clkout1 ouput clock electrical characteristics.
Table 4-10. sys_clkout1 Output Clock Electrical Characteristics
NAME
f
DESCRIPTION
Frequency, sys_clkout1
MIN
TYP
MAX
sys_xtalin / sys_xtalout clock frequency
UNIT
MHz
SC[0:1] = 00(1)
CL
Load capacitance (transmission line load + far end load)
4
60
pF
ZT
Transmission line impedance
30
70
Ω
LT
Transmission line length
2
20
cm
pF
SC[0:1] = 01(1)
CL
Load capacitance (transmission line load + far end load)
7
33
ZT
Transmission line impedance
30
70
Ω
LT
Transmission line length
2
8
cm
pF
SC[0:1] = 10(1)
CL
Load capacitance (transmission line load + far end load)
2
21
ZT
Transmission line impedance
30
70
Ω
LT
Transmission line length
1
6
cm
Clock Specifications
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
135
PRODUCT PREVIEW
NAME
ALT0
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
(1) The mode is configured by bits SC0 and SC1 of the IO cell. For more details, see the AM3715/03 TRM.
Table 4-11 details the sys_clkout1 ouput clock switching characteristics.
Table 4-11. sys_clkout1 Output Clock Switching Characteristics
NAME
CO0
DESCRIPTION
1 / tc(CLKOUT1) Frequency, sys_clkout1
MIN
TYP
MAX
sys_xtalin/sys_xtalout clock frequency
UNIT
MHz
SC[0:1] = 00(1)
CL
Load capacitance
4
(5)
60
pF
tJ
Peak-to-peak jitter
X
+ 693
ps
tJC2C
Cycle-to-cycle jitter
X(5) + 705
ps
tW(CLKOUT1)
Pulse duration, sys_clkout1 low or high
1)
1)
tR(CLKOUT1)
Rise time, sys_clkout1
1(2) (4)
15(3)
ns
tF(CLKOUT1)
Fall time, sys_clkout1
1(2) (4)
15(3)
ns
CL
Load capacitance
33
pF
tJ
Peak-to-peak jitter
X(5) + 543
ps
tJC2C
Cycle-to-cycle jitter
X(5) + 555
ps
tW(CLKOUT1)
Pulse duration, sys_clkout1 low or high
0.45*tc(CLKOUT
0.55*tc(CLKOUT
SC[0:1] = 01(1)
PRODUCT PREVIEW
tR(CLKOUT1)
7
Rise time, sys_clkout1
tF(CLKOUT1)
Fall time, sys_clkout1
CL
Load capacitance
tJ
Peak-to-peak jitter
0.45*tc(CLKOUT
0.6
0.6
0.55*tc(CLKOUT
1)
(2) (4)
1)
7(3)
ns
(3)
ns
21
pF
X(5) + 603
ps
(2) (4)
7
SC[0:1] = 10(1)
2
X
(5)
tJC2C
Cycle-to-cycle jitter
tW(CLKOUT1)
Pulse duration, sys_clkout1 low or high
1)
1)
tR(CLKOUT1)
Rise time, sys_clkout1
0.4(2) (4)
5(3)
ns
tF(CLKOUT1)
Fall time, sys_clkout1
0.4(2) (4)
5(3)
ns
0.47*tc(CLKOUT
+ 615
ps
0.53*tc(CLKOUT
(1) The mode is configured by bits SC0 and SC1 of the IO cell. For more details, see the AM3715/03 TRM.
(2) At minimum load
(3) At maximum load (Maximum frequency 20 MHz)
(4) Caution: this creates EMI parasitics up to 1.2 ns
(5) X parameter corresponds to the input jitter contribution added at sys_xtalin input pin. For more information regarding the sys_xtalin input
jitter requirement, see Section 4.1.1.
CO0
CO1
CO1
sys_clkout1
SWPS038-011
Figure 4-6. sys_clkout1 Output Clock
4.2.2
sys_clkout2 Output Clock
Table 4-12 summarizes the sys_clkout2 ouput clock electrical characteristics.
Table 4-12. sys_clkout2 Output Clock Electrical Characteristics
NAME
DESCRIPTION
f
Frequency, sys_clkout2
CL
Load capacitance
136
MIN
TYP
MAX
sys_xtalin clock or core_dpll clock(1) or 54
MHz, 96 MHz(2)
2
Clock Specifications
22
UNIT
MHz
pF
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 4-12. sys_clkout2 Output Clock Electrical Characteristics (continued)
MAX
UNIT
ZT
NAME
Transmission line impedance
DESCRIPTION
MIN
30
TYP
70
Ω
LT
Transmission line length
1
6
cm
MAX
UNIT
(1) Possible divider: 4, 8, or 16.
(2) Possible divider: 1, 2, 4, 8, or 16.
Table 4-13 details the sys_clkout2 ouput clock switching characteristics.
Table 4-13. sys_clkout2 Output Clock Switching Characteristics
NAME
DESCRIPTION
MIN
1 / tc(CLKOUT2) Frequency, sys_clkout2
CO1
tw(CLKOUT2)
Pulse duration, sys_clkout2 low or high
tR(CLKOUT2)
Rise time, sys_clkout2
tF(CLKOUT2)
TYP
sys_xtalin clock or core_dpll clock(1) or 54
MHz, 96 MHz(2)
CO0
MHz
0.49*tc(clkout
2)
0.51*tc(clkout
2)
ns
1.5(1)
5(2)
ns
(1)
(2)
ns
Fall time, sys_clkout2
1.5
5
(1) At minimum load
CO0
CO1
CO1
sys_clkout2
SWPS038-012
Figure 4-7. sys_clkout2 Output Clock
4.3
DPLL and DLL Specifications
NOTE
For more information, see Power, Reset, and Clock Management / PRCM Functional
Description / PRCM Clock Manager Functional Description / Internal Clock Generation /
DPLLs section of the AM3715/03 TRM.
The applicative subsystem integrates five DPLLs and a DLL. The PRM and CM drive all of them.
The five main DPLLs are:
• DPLL1 (MPU)
• DPLL3 (Core)
• DPLL4 (Peripherals)
• DPLL5 (Second peripherals DPLL)
4.3.1
DPLL Characteristics
Table 4-14 summarizes the DPLL characteristics and assumes testing over recommended operating
conditions.
Table 4-14. DPLL Characteristics
NAME
DESCRIPTION
MIN
TYP
MAX
UNIT
vdda_dplls_dll
Supply voltage for DPLLs
(MPUand Core) and DLL
1.71
1.8
1.91
V
vdda_dpll_per
Supply voltage for DPLL
(Peripherals)
1.71
1.8
1.91
V
finput
CLKINP Input frequency
0.032
52
MHz
COMMENTS
FINP
Clock Specifications
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
137
PRODUCT PREVIEW
(2) At maximum load (maximum frequency 104 MHz).
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 4-14. DPLL Characteristics (continued)
NAME
DESCRIPTION
MAX
UNIT
0.032
MIN
52
MHz
REFCLK
10
1000
MHz
FINPHIF
0.001
800
MHz
10(1)
1000(2)
MHz
[M / (N + 1)] * FINP * [1
/ M2]
CLKOUTx2 output frequency
20(1)
2000(2)
MHz
2 * [M / (N + 1)] * FINP *
[1 / M2]
CLKOUTHIF output frequency
10(3)
1000(4)
MHz
FINPHIF / M3
(3)
(4)
finternal
Internal reference frequency
fCLKINPHIF
CLKINPHIF Input frequency
fCLKINPULOW
CLKINPULOW Input frequency
fCLKOUT
CLKOUT output frequency
fCLKOUTx2
fCLKOUTHIF
20
fDCOCLKLDO
DCOCLKLDO output frequency
tlock
TYP
2000
20
COMMENTS
2 * [M / (N + 1)] * FINP *
[1 / M3]
PRODUCT PREVIEW
2000
MHz
2 * [M / (N + 1)] * FINP
Frequency lock time
1.9 +
350*REFCLK
ms
plock
Phase lock time
1.9 +
500*REFCLK
ms
trelock-L
Relock time—Frequency lock(5)
(Low power bypass)
1.9 +
70*REFCLK
ms
DPLL in low-power
mode: lowcurrstdby = 1
prelock-L
Relock time—Phase lock(5) (Low
power bypass)
1.9 +
120*REFCLK
ms
DPLL in low-power
mode: lowcurrstdby = 1
trelock-F
Relock time—Frequency lock(5)
(Fast relock bypass)
0.05 +
70*REFCLK
ms
DPLL in normal mode:
lowcurrstdby = 0
prelock-F
Relock time—Phase lock(5) (Fast
relock bypass)
0.05 +
120*REFCLK
ms
DPLL in normal mode:
lowcurrstdby = 0
(1) The minimum frequencies on CLKOUT and CLKOUTX2 are assuming M2 = 1. For M2 > 1, the minimum frequency on these clocks will
further scale down by factor of M2.
(2) The maximum frequencies on CLKOUT and CLKOUTX2 are assuming M2 = 1.
(3) The minimum frequency on CLKOUTHIF is assuming M3 = 1. For M3 > 1, the minimum frequency on this clock will further scale down
by factor of M3.
(4) The maximum frequency on CLKOUTHIF is assuming M3 = 1.
(5) Relock time assumes typical operating conditions, 10°C maximum temperature drift.
Table 4-15. DPLL4 Characteristics
DESCRIPTION
MIN
TYP
MAX
UNIT
vdda_dpll_per
NAME
Supply voltage for DPLL
(peripherals)
1.71
1.8
1.91
V
finput
CLKINP input clock frequency
0.5
60
MHz
FINP
finternal
REFCLK internal reference
frequency
0.5
2.5
MHz
REFCLK
fCLKINPULOW
CLKINPULOW bypass input
frequency
0.001
800
MHz
fCLKOUT
CLKOUT output clock frequency
10 (1)
2000 (2)
MHz
[M / (N + 1)] * FINP * [1
/ M2]
fDCOCLKLDO
Internal oscillator (DCO) output
clock frequency
500
2000
MHz
[M / (N + 1)] * FINP
tlock
Frequency lock time
350*REFCLK
ms
plock
Phase lock time
500*REFCLK
ms
trelock-L
Relock time—Frequency lock (3)
(Low power bypass)
7.5 +
30*REFCLKs
ms
DPLL in low-power
mode: lowcurrstdby = 1
prelock-L
Relock time—Phase lock (3) (Low
power bypass)
7.5 +
125*REFCLKs
ms
DPLL in low-power
mode: lowcurrstdby = 1
(1)
(2)
(3)
138
COMMENTS
The minimum frequency on CLKOUT is assuming M2 = 1. For M2 > 1, the minimum frequency on this clock will further scale down by
factor of M2.
The maximum frequency on CLKOUT is assuming M2 = 1.
Relock time assumes typical operating conditions, 10°C maximum temperature drift.
Clock Specifications
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 4-15. DPLL4 Characteristics (continued)
MAX
UNIT
trelock-F
NAME
Relock time—Frequency lock (3)
(Fast relock bypass)
NA
ms
prelock-F
Relock time—Phase lock (3)
(Fast relock bypass)
NA
ms
4.3.2
DESCRIPTION
MIN
TYP
COMMENTS
DLL Characteristics
Table 4-16 summarizes the DLL characteristics and assumes testing over recommended operating
conditions.
Table 4-16. DLL Characteristics
DESCRIPTION
MIN
TYP
MAX
UNIT
1.71
1.8
1.91
V
66
120
200
MHz
Clocks
COMMENTS
vdda_dplls_dll
Supply voltage for DPLLs (MPU and
Core) and DLL
finput
Input clock frequency
tlock
Lock time
500
trelock
Relock time (Mode transitions through
idle mode)
500
ns
250
450
Clocks
IDLE to APPLICATION MODE
1 or 0
1.88
3.38
ms
IDLE to APPLICATION MODE
@133 MHz
1.50
2.71
ms
IDLE to APPLICATION MODE
@166 MHz
1.25
2.25
ms
IDLE to APPLICATION MODE
@200 MHz
(1)
Either application mode 0 and
1
IDLE to MODEMAXDELAY
(1) Maximum frequency for nominal conditions.
Clock Specifications
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
139
PRODUCT PREVIEW
NAME
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
4.3.3
www.ti.com
DPLL and DLL Noise Isolation
The DPLL and DLL require dedicated power supply pins to isolate the core analog circuit from the
switching noise generated by the core logic that can cause jitter on the clock output signal. Guard rings
are added to the cell to isolate it from substrate noise injection.
The vdd_core supplies are the most sensitive to noise; decoupling capacitance is recommended below the
supply rails. The maximum input noise level allowed is 40 mVPP for frequencies below 1 MHz.
Figure 4-8 illustrates an example of a noise filter.
Noise Filter
vdda_dplls_dll
DPLL_MPU
C
DLL
DPLL_CORE
Noise Filter
vdda_dpll_per
PRODUCT PREVIEW
DPLL5
C
DPLL4
030-017
A.
B.
C.
The capacitors must be inserted between power and ground as close as possible.
This circuit is provided only as an example.
The filter must be located as close as possible to the device.
Figure 4-8. DPLL Noise Filter
Table 4-17 specifies the noise filter requirements.
Table 4-17. DPLL Noise Filter Requirements (1)
(1)
NAME
MIN
TYP
MAX
UNIT
Filtering capacitor
50
100
150
nF
For more information, see IO and Analog Voltage Decoupling Characteristics.
4.3.4
Processor Clocks
Table 4-18 through Table 4-20 show the clocks AC performance values.
Table 4-18. Processor Voltages Without SmartReflexTM
RETENTI
ON
VDD1(1)
(2) (3) (V)
140
OPP50
OPP100
OPP130
MIN
MIN
TYP
MAX
MIN
TYP
MAX
MIN
TYP
MAX
0.8
0.92
0.97
1.02
1.08
1.14
1.2
1.21
1.27
1.33
Clock Specifications
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
(1) At ball level.
(2) These values are defined when the SmartReflexTM feature is deactivated. They can be lower when SmartReflex is activated.
(3) Minimum OPP voltage values defined in this table include any voltage transient.
Table 4-19. Processor Voltages With SmartReflexTM
RETENTI
ON
VDD1(1)
(2) (3) (4)
(V)
OPP50
OPP100
OPP130
OPP1G (5)
MIN
MIN
TYP
MAX
MIN
TYP
MAX
MIN
TYP
MAX
MIN
TYP
MAX
0.8
0.92
0.97
1.02
1.08
1.14
1.2
1.21
1.27
1.33
1.28
1.33
1.38
(1) At ball level.
(2) This table defines the safe VDD1 (vdd_mpu_iva) voltage ranges to be used before using the SmartReflex AVS feature for OPPs
calibration.
(3) These VDD1 (vdd_mpu_iva) values are the required voltage ranges prior to enabling the SmartReflex AVS feature. After calibration, the
minimum voltage may be lower than this specification.
(5) OPP1G is a high performance operating point which has following requirements:
– ABB LDO must be set to FBB (Forward Body Bias) mode when switching to this OPP. It requires having a 1mF capacitor connected
to cap_vdd_bb_mpu_iva.
– AVS (Adaptive Voltage Scaling) power technique must be used to achieve optimum operating voltage.
Table 4-20. Processor Clocks
OPP50
OPP100
OPP130
OPP1G (2)
Description
Source
Clock
Max
Freq.(MHz)
Ratio
Max
Freq.(MHz)
Ratio
Max
Freq.(MHz)
Ratio
Max
Freq.(MHz)
Ratio
DPLL1
Locked
Frequency
-
1200
-
1200
-
1600
-
2000
-
DPLL1CLK
OUT_M2
DPLL1
Locked
Frequency
300
2 *(M2 =
2)(1)
600
2 *(M2 =
1)(1)
800
2 *(M2 =
1)(1)
1000
2 *(M2 =
1)(1)
ARM_FCLK DPLL1CLK
OUT_M2
300
1
600
1
800
1
1000
1
(1) This ratio is configurable by software programming. For more information, see the AM3715/03 Technical Reference Manual (TRM).
(2) OPP1G is a high performance operating point which has following requirements:
– ABB LDO must be set to FBB (Forward Body Bias) mode when switching to this OPP. It requires having a 1mF capacitor connected
to cap_vdd_bb_mpu_iva.
– AVS (Adaptive Voltage Scaling) power technique must be used to achieve optimum operating voltage.
Clock Specifications
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
141
PRODUCT PREVIEW
(4) Minimum OPP voltage values defined in this table include any voltage transient.
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
4.3.5
www.ti.com
Device Core Clocks
Table 4-21 and Table 4-22 show the device core clocks AC performance values.
Table 4-21. Device Core Voltages
RETENTION
VDD2
(1)
(2)
(1) (2)
(V)
OPP50
OPP100
MIN
MIN
TYP
MAX
MIN
TYP
MAX
0.8
0.90
0.95
1.00
1.08
1.14
1.20
TM
Values are defined when SmartReflex
At ball level.
TM
feature is deactivated. They can be lower when SmartReflex
is activated.
Table 4-22. Device Core Clocks
OPP50
OPP100
Descript Source
ion
Max
Freq.(M
Hz)
Ratio
Max
Freq.(M
Hz)
Ratio
Max
Freq.(M
Hz)
Ratio
Max
Freq.(M
Hz)
Ratio
Max
Freq.(M
Hz)
Ratio
Max
Freq.(M
Hz)
Ratio
DPLL3 Locked
Frequen
cy
800
-
664
-
400
-
800
-
664
-
532
-
PRODUCT PREVIEW
DPLL3
CLKOU
T_M2
DPLL3 200
Locked
Frequen
cy
2 *(M2
= 2) (1)
166
2 *(M2
= 1) (1)
200
2 *(M2
= 1) (1)
400
2 *(M2
= 1) (1)
332
2 *(M2
= 1) (1)
266
2 *(M2
= 1) (1)
CORE_
CLK
DPLL3
CLKOU
T_M2
200
1
166
1
200
1
400
1
332
1
266
1
L3_ICL
K
CORE_
CLK
100
2 (1)
83
2 (1)
100
2 (1)
200
2 (1)
166
2 (1)
133
2 (1)
L4_ICL
K
L3_ICL
K
50
2 (1)
41.5
2 (1)
50
2 (1)
100
2 (1)
83
2 (1)
66.5
2 (1)
SDRC_
CLK
L3_ICL
K
100
1
83
1
100
1
200
1
166
1
133
1
50
2 (1)
41.5
2 (1)
50
2 (1)
100
2 (1)
83
2 (1)
66.5
2 (1)
GPMC_ L3_ICL
CLK
K
(1)
142
This ratio is configurable by software programming. For more information, see the AM37x Technical Reference Manual (TRM).
Clock Specifications
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
5 Timing Requirements and Switching Characteristics
5.1
Timing Test Conditions
All timing requirements and switching characteristics are valid over the recommended operating conditions
unless otherwise specified.
5.2
5.2.1
Interface Clock Specifications
Interface Clock Terminology
The interface clock is used at the system level to sequence the data and/or to control transfers accordingly
with the interface protocol.
5.2.2
Interface Clock Frequency
The interface clock frequency documented in this document is the maximum clock frequency, which
corresponds to the maximum frequency programmable on this output clock. This frequency defines the
maximum limit supported by the device IC and doesn’t take into account any system consideration (PCB,
Peripherals).
The system designer will have to consider these system considerations and the device IC timing
characteristics as well, to define properly the maximum operating frequency, which corresponds to the
maximum frequency supported to transfer the data on this interface.
5.2.3
Clock Jitter Specifications
Jitter is a phase noise, which may alter different characteristics of a clock signal. The jitter specified in this
document is the time difference between the typical cycle period and the actual cycle period affected by
noise sources on the clock. The cycle (or period) jitter terminology will be used to identify this type of jitter.
Tn–1
Tn
Tn+1
SWPS038-013
Figure 5-1. Cycle (or Period) Jitter
NOTE
Max. Cycle Jitter = Max (Ti)
Min. Cycle Jitter = Min (Ti)
Jitter Standard Deviation (or RMS Jitter) = Standard Deviation (Ti)
5.2.4
Clock Duty Cycle Error
The maximum duty cycle error is the difference between the absolute value of the maximum high-level
pulse duration or the maximum low-level pulse duration and the typical pulse duration value.
• Maximum pulse duration = Typical pulse duration + maximum duty cycle error
• Minimum pulse duration = Typical pulse duration - maximum duty cycle error
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
143
PRODUCT PREVIEW
The two interface clock characteristics are:
• The maximum clock frequency
• The maximum operating frequency
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
5.3
www.ti.com
Timing Parameters
The timing parameter symbols used in the timing requirements and switching characteristics tables are
created in accordance with JEDEC Standard 100. To shorten the symbols, some of pin names and other
related terminologies have been abbreviated as follows:
Table 5-1. Timing Parameters
SUBSCRIPTS
SYMBOL
Cycle time (period)
d
Delay time
dis
Disable time
en
Enable time
h
Hold time
su
Setup time
START
Start bit
t
Transition time
PRODUCT PREVIEW
v
Valid time
w
Pulse duration (width)
X
Unknown, changing, or don’t care level
F
Fall time
H
High
L
Low
R
Rise time
V
Valid
IV
Invalid
AE
Active edge
FE
First edge
LE
Last edge
Z
144
PARAMETER
c
High impedance
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
5.4
SPRS616B – JUNE 2010 – REVISED JULY 2010
External Memory Interfaces
The AM3715/03 includes the following external memory interfaces:
• General-purpose memory controller (GPMC)
• SDRAM controller (SDRC)
5.4.1
General-Purpose Memory Controller (GPMC)
NOTE
For more information, see Memory Subsystem / General-Purpose Memory Controller section
of the AM3715/03 TRM.
The GPMC is the unified memory controller used to interface external memory devices such as:
• Asynchronous SRAM-like memories and ASIC devices
• Asynchronous page mode and synchronous burst NOR flash
• NAND flash
GPMC/NOR Flash—Synchronous Mode
Table 5-3 and Table 5-4 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-2 through Figure 5-6).
Table 5-2. GPMC/NOR Flash Timing Conditions—Synchronous Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
1.8
ns
tF
Input signal fall time
1.8
ns
12
pF
Output Conditions
Output load capacitance(1)
CLOAD
(1) The load setting of the IO buffer: LB0 = 1.
Table 5-3. GPMC/NOR Flash Timing Requirements—Synchronous Mode(2)
NO.
PARAMETER
OPP100
MIN
MAX
OPP50
MIN
UNIT
MAX
F12
tsu(dV-clkH)
Setup time, input data gpmc_d[15:0] valid before
output clock gpmc_clk high
2.3
2.3
ns
F13
th(clkH-dV)
Hold time, input data gpmc_d[15:0] valid after output
clock gpmc_clk high
1.5
1.5
ns
F21
tsu(waitV-clkH)
Setup time, input wait gpmc_waitx(1) valid before
output clock gpmc_clk high
2.3
2.3
ns
F22
th(clkH-waitV)
Hold time, input wait gpmc_waitx(1) valid after output
clock gpmc_clk high
1.9
1.9
ns
(1) In gpmc_waitx, x is equal to 0, 1, 2, or 3.
(2) See Operating Condition Addendum for OPP voltages.
Table 5-4. GPMC/NOR Flash Switching Characteristics—Synchronous Mode(2)
NO.
PARAMETER
OPP100
MIN
MAX
(18)
OPP50
MIN
UNIT
MAX
F0
1 / tc(clk)
Frequency(15), output clock gpmc_clk
F1
tw(clkH)
Typical pulse duration, output clock gpmc_clk high
0.5P(12)
0.5P(12)
ns
F1
tw(clkL)
Typical pulse duration, output clock gpmc_clk low
0.5P(12)
0.5P(12)
ns
tdc(clk)
Duty cycle error, output clock gpmc_clk
Copyright © 2010, Texas Instruments Incorporated
100
–500
500
100
–500
500
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
MHz
ps
145
PRODUCT PREVIEW
5.4.1.1
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 5-4. GPMC/NOR Flash Switching Characteristics—Synchronous Mode(2)
NO.
PARAMETER
OPP100
MIN
(18)
(continued)
OPP50
MAX
MIN
UNIT
MAX
PRODUCT PREVIEW
tJ(clk)
Jitter standard deviation(16), output clock gpmc_clk
33.33
33.33
ps
tR(clk)
Rise time, output clock gpmc_clk
1.6
1.6
ns
tF(clk)
Fall time, output clock gpmc_clk
1.6
1.6
ns
tR(do)
Rise time, output data gpmc_d[15:0]
2
2
ns
tF(do)
Fall time, output data gpmc_d[15:0]
2
2
ns
F2
td(clkH-ncsV)
Delay time, output clock gpmc_clk rising edge to
output chip select gpmc_ncsx(11) transition
F(6) – 1.9 F(6) + 3.3 F(6) – 1.9 F(6) + 3.3
ns
F3
td(clkH-ncsIV)
Delay time, output clock gpmc_clk rising edge to
output chip select gpmc_ncsx(11) invalid
E(5) – 1.9 E(5) + 3.3 E(5) – 1.9 E(5) + 3.3
ns
F4
td(aV-clk)
Delay time, output address gpmc_a[27:1] valid to
output clock gpmc_clk first edge
B(2) – 4.1 B(2) + 2.1 B(2) – 4.1 B(2) + 2.1
ns
F5
td(clkH-aIV)
Delay time, output clock gpmc_clk rising edge to
output address gpmc_a[27:1] invalid
F6
td(nbeV-clk)
Delay time, output lower byte enable/command latch
enable gpmc_nbe0_cle, output upper byte enable
gpmc_nbe1 valid to output clock gpmc_clk first edge
B(2) – 1.2 B(2) + 2.2 B(2) – 1.2 B(2) + 2.2
ns
F7
td(clkH-nbeIV)
Delay time, output clock gpmc_clk rising edge to
D(4) – 2.2 D(4) + 1.2 D(4) – 2.2 D(4) + 1.2
output lower byte enable/command latch enable
gpmc_nbe0_cle, output upper byte enable gpmc_nbe1
invalid
ns
F8
td(clkH-nadv)
Delay time, output clock gpmc_clk rising edge to
output address valid/address latch enable
gpmc_nadv_ale transition
G(7) + 0.8 G(7) + 2.2 G(7) + 0.8 G(7) + 2.2
ns
F9
td(clkH-nadvIV)
Delay time, output clock gpmc_clk rising edge to
output address valid/address latch enable
gpmc_nadv_ale invalid
D(4) – 1.9 D(4) + 4.1 D(4) – 1.9 D(4) + 4.1
ns
F10
td(clkH-noe)
Delay time, output clock gpmc_clk rising edge to
output enable gpmc_noe transition
H(8) – 2.1 H(8) + 2.1 H(8) – 2.1 H(8) + 2.1
ns
F11
td(clkH-noeIV)
Delay time, output clock gpmc_clk rising edge to
output enable gpmc_noe invalid
E(5) – 2.1 E(5) + 2.1 E(5) – 2.1 E(5) + 2.1
ns
F14
td(clkH-nwe)
Delay time, output clock gpmc_clk rising edge to
output write enable gpmc_nwe transition
I(9) – 1.9
I(9) + 4.1
I(9) – 1.9
I(9) + 4.1
ns
F15
td(clkH-do)
Delay time, output clock gpmc_clk rising edge to
output data gpmc_d[15:0] transition
J(10) –
1.7
J(10) +
1.2
J(10) –
1.7
J(10) +
1.2
ns
F17
td(clkH-nbe)
Delay time, output clock gpmc_clk rising edge to
output lower byte enable/command latch enable
gpmc_nbe0_cle transition
J(10) –
2.2
J(10) +
1.2
J(10) –
2.2
J(10) +
1.2
ns
F18
tw(ncsV)
Pulse duration, output chip select
gpmc_ncsx(11) low
F19
F20
tw(nbeV)
tw(nadvV)
–2.1
ns
Read
A(1)
A(1)
ns
Write
(1)
A(1)
ns
(3)
(3)
ns
A
Pulse duration, output lower byte
enable/command latch enable
gpmc_nbe0_cle, output upper byte enable
gpmc_nbe1 low
Read
C
Write
C(3)
C(3)
ns
Pulse duration, output address
valid/address latch enable gpmc_nadv_ale
low
Read
K(13)
K(13)
ns
Write
(13)
K(13)
ns
F23
td(clkH-iodir)
Delay time, output clock gpmc_clk rising edge to
output IO direction control gpmc_io_dir high (IN
direction)
F24
td(clkH-iodirIV)
Delay time, output clock gpmc_clk rising edge to
output IO direction control gpmc_io_dir low (OUT
direction)
146
–2.1
K
C
H(8) – 2.1 H(8) + 4.1 H(8) – 2.1 H(8) + 4.1
M(17) –
2.1
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
M(17) +
4.1
M(17) –
2.1
M(17) +
4.1
ns
ns
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
(1) For single read: A = (CSRdOffTime – CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
For burst read: A = (CSRdOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
For burst write: A = (CSWrOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
With n being the page burst access number.
(2) B = ClkActivationTime * GPMC_FCLK(14)
(3) For single read: C = RdCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK (14)
For burst read: C = (RdCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
For burst write: C = (WrCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
With n being the page burst access number.
(4) For single read: D = (RdCycleTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
For burst read: D = (RdCycleTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
For burst write: D = (WrCycleTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
(6) For nCS falling edge (CS activated):
– Case GpmcFCLKDivider = 0:
– F = 0.5 * CSExtraDelay * GPMC_FCLK(14)
– Case GpmcFCLKDivider = 1:
– F = 0.5 * CSExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and CSOnTime are odd) or (ClkActivationTime and CSOnTime
are even)
– F = (1 + 0.5 * CSExtraDelay) * GPMC_FCLK(14) otherwise
– Case GpmcFCLKDivider = 2:
– F = 0.5 * CSExtraDelay * GPMC_FCLK(14) if ((CSOnTime – ClkActivationTime) is a multiple of 3)
– F = (1 + 0.5 * CSExtraDelay) * GPMC_FCLK(14) if ((CSOnTime – ClkActivationTime – 1) is a multiple of 3)
– F = (2 + 0.5 * CSExtraDelay) * GPMC_FCLK(14) if ((CSOnTime – ClkActivationTime – 2) is a multiple of 3)
(7) For ADV falling edge (ADV activated):
– Case GpmcFCLKDivider = 0:
– G = 0.5 * ADVExtraDelay * GPMC_FCLK(14)
– Case GpmcFCLKDivider = 1:
– G = 0.5 * ADVExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and ADVOnTime are odd) or (ClkActivationTime and
ADVOnTime are even)
– G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) otherwise
– Case GpmcFCLKDivider = 2:
– G = 0.5 * ADVExtraDelay * GPMC_FCLK(14) if ((ADVOnTime – ClkActivationTime) is a multiple of 3)
– G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) if ((ADVOnTime – ClkActivationTime – 1) is a multiple of 3)
– G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) if ((ADVOnTime – ClkActivationTime – 2) is a multiple of 3)
For ADV rising edge (ADV deactivated) in Reading mode:
– Case GpmcFCLKDivider = 0:
– G = 0.5 * ADVExtraDelay * GPMC_FCLK(14)
– Case GpmcFCLKDivider = 1:
– G = 0.5 * ADVExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and ADVRdOffTime are odd) or (ClkActivationTime and
ADVRdOffTime are even)
– G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) otherwise
– Case GpmcFCLKDivider = 2:
– G = 0.5 * ADVExtraDelay * GPMC_FCLK(14) if ((ADVRdOffTime – ClkActivationTime) is a multiple of 3)
– G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) if ((ADVRdOffTime – ClkActivationTime – 1) is a multiple of 3)
– G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) if ((ADVRdOffTime – ClkActivationTime – 2) is a multiple of 3)
For ADV rising edge (ADV deactivated) in Writing mode:
– Case GpmcFCLKDivider = 0:
– G = 0.5 * ADVExtraDelay * GPMC_FCLK(14)
– Case GpmcFCLKDivider = 1:
– G = 0.5 * ADVExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and ADVWrOffTime are odd) or (ClkActivationTime and
ADVWrOffTime are even)
– G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) otherwise
– Case GpmcFCLKDivider = 2:
– G = 0.5 * ADVExtraDelay * GPMC_FCLK(14) if ((ADVWrOffTime – ClkActivationTime) is a multiple of 3)
– G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) if ((ADVWrOffTime – ClkActivationTime – 1) is a multiple of 3)
– G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) if ((ADVWrOffTime – ClkActivationTime – 2) is a multiple of 3)
(8) For OE falling edge (OE activated) / IO DIR rising edge (Data Bus input direction):
– Case GpmcFCLKDivider = 0: o H = 0.5 * OEExtraDelay * GPMC_FCLK(14)
– Case GpmcFCLKDivider = 1:
– H = 0.5 * OEExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and OEOnTime are odd) or (ClkActivationTime and OEOnTime
are even)
– H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK(14) otherwise
– Case GpmcFCLKDivider = 2:
– H = 0.5 * OEExtraDelay * GPMC_FCLK(14) if ((OEOnTime – ClkActivationTime) is a multiple of 3)
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
147
PRODUCT PREVIEW
(5) For single read: E = (CSRdOffTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
For burst read: E = (CSRdOffTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
For burst write: E = (CSWrOffTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
–
–
www.ti.com
H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK(14) if ((OEOnTime – ClkActivationTime – 1) is a multiple of 3)
H = (2 + 0.5 * OEExtraDelay) * GPMC_FCLK(14) if ((OEOnTime – ClkActivationTime – 2) is a multiple of 3)
For OE rising edge (OE deactivated):
– Case GpmcFCLKDivider = 0:
– H = 0.5 * OEExtraDelay * GPMC_FCLK(14)
– Case GpmcFCLKDivider = 1:
– H = 0.5 * OEExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and OEOffTime are odd) or (ClkActivationTime and OEOffTime
are even)
– H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK(14) otherwise
– Case GpmcFCLKDivider = 2:
– H = 0.5 * OEExtraDelay * GPMC_FCLK(14) if ((OEOffTime – ClkActivationTime) is a multiple of 3)
– H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK(14) if ((OEOffTime – ClkActivationTime – 1) is a multiple of 3)
– H = (2 + 0.5 * OEExtraDelay) * GPMC_FCLK(14) if ((OEOffTime – ClkActivationTime – 2) is a multiple of 3)
(9) For WE falling edge (WE activated):
– Case GpmcFCLKDivider = 0:
– I = 0.5 * WEExtraDelay * GPMC_FCLK(14)
– Case GpmcFCLKDivider = 1:
– I = 0.5 * WEExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and WEOnTime are odd) or (ClkActivationTime and WEOnTime
are even)
– I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK(14) otherwise
– Case GpmcFCLKDivider = 2:
– I = 0.5 * WEExtraDelay * GPMC_FCLK(14) if ((WEOnTime – ClkActivationTime) is a multiple of 3)
– I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK(14) if ((WEOnTime – ClkActivationTime – 1) is a multiple of 3)
– I = (2 + 0.5 * WEExtraDelay) * GPMC_FCLK(14) if ((WEOnTime – ClkActivationTime – 2) is a multiple of 3)
PRODUCT PREVIEW
For WE rising edge (WE deactivated):
– Case GpmcFCLKDivider = 0:
– I = 0.5 * WEExtraDelay * GPMC_FCLK (14)
– Case GpmcFCLKDivider = 1:
– I = 0.5 * WEExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and WEOffTime are odd) or (ClkActivationTime and WEOffTime
are even)
– I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK(14) otherwise
– Case GpmcFCLKDivider = 2:
– I = 0.5 * WEExtraDelay * GPMC_FCLK(14) if ((WEOffTime – ClkActivationTime) is a multiple of 3)
– I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK(14) if ((WEOffTime – ClkActivationTime – 1) is a multiple of 3)
– I = (2 + 0.5 * WEExtraDelay) * GPMC_FCLK(14) if ((WEOffTime – ClkActivationTime – 2) is a multiple of 3)
(10) J = GPMC_FCLK(14)
(11) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
(12) P = gpmc_clk period in ns
(13) For read: K = (ADVRdOffTime – ADVOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
For write: K = (ADVWrOffTime – ADVOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
(14) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.
(15) Related to the gpmc_clk output clock maximum and minimum frequencies programmable in the GPMC module by setting the
GPMC_CONFIG1_CSx configuration register bit field GpmcFCLKDivider.
(16) The jitter probability density can be approximated by a Gaussian function.
(17) M = (RdCycleTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
Above M parameter expression is given as one example of GPMC programming. IO DIR signal will go from IN to OUT after both
RdCycleTime and BusTurnAround completion. Behavior of IO direction signal does depend on kind of successive Read/Write accesses
performed to Memory and multiplexed or nonmultiplexed memory addressing scheme, bus keeping feature enabled or not. IO DIR
behaviour is automatically handled by GPMC controller. For a full description of the gpmc_io_dir feature, see the AM3715/03 TRM.
(18) See Operating Condition Addendum for OPP voltages.
148
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
F1
F0
F1
gpmc_clk
F2
F3
F18
gpmc_ncsx
F4
Valid Address
gpmc_a[10:1]
F6
F7
F19
gpmc_nbe0_cle
F19
gpmc_nbe1
F6
F8
F8
F20
F9
gpmc_nadv_ale
F11
gpmc_noe
F13
F12
gpmc_d[15:0]
D0
gpmc_waitx
F23
OUT
gpmc_io_dir
F24
OUT
IN
SWPS038-014
(1)
(2)
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 5-2. GPMC/NOR Flash—Synchronous Single Read—(GpmcFCLKDivider = 0)
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
149
PRODUCT PREVIEW
F10
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
F1
F0
F1
gpmc_clk
F2
F3
gpmc_ncsx
F4
Valid Address
gpmc_a[10:1]
F6
F7
gpmc_nbe0_cle
F7
gpmc_nbe1
F6
F8
F8
F9
gpmc_nadv_ale
F10
F11
gpmc_noe
F13
F13
F12
PRODUCT PREVIEW
gpmc_d[15:0]
D0
F21
F12
D2
D1
D3
F22
gpmc_waitx
F23
gpmc_io_dir
OUT
F24
IN
OUT
SWPS038-015
(1)
(2)
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 5-3. GPMC/NOR Flash—Synchronous Burst Read—4x16-bit (GpmcFCLKDivider = 0)
150
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
F1
F1
F0
gpmc_clk
F2
F3
gpmc_ncsx
F4
Valid Address
gpmc_a[10:1]
F17
F6
F17
F17
gpmc_nbe0_cle
F17
F17
F17
gpmc_nbe1
F6
F8
F8
F9
gpmc_nadv_ale
F14
F15
D0
gpmc_d[15:0]
D1
F15
D2
F15
D3
gpmc_waitx
OUT
gpmc_io_dir
SWPS038-016
(1)
(2)
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 5-4. GPMC/NOR Flash—Synchronous Burst Write—(GpmcFCLKDivider > 0)
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
151
PRODUCT PREVIEW
F14
gpmc_nwe
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
F1
F0
F1
gpmc_clk
F2
F3
gpmc_ncsx
F6
F7
gpmc_nbe0_cle
Valid
F6
F7
gpmc_nbe1
Valid
F4
gpmc_a[27:17]
(gpmc_a[11:1])
Address (MSB)
F12
F4
gpmc_a[16:1]
(gpmc_d[15:0])
F5
Address (LSB)
F13
D0
F8
D1
F12
D2
F8
D3
F9
gpmc_nadv_ale
F10
F11
PRODUCT PREVIEW
gpmc_noe
gpmc_waitx
F23
gpmc_io_dir
OUT
F24
IN
OUT
SWPS038-017
(1)
(2)
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 5-5. GPMC/Multiplexed NOR Flash—Synchronous Burst Read
152
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
F1
F1
F0
gpmc_clk
F2
F3
F18
gpmc_ncsx
F4
gpmc_a[27:17]
(gpmc_a[11:1])
Address (MSB)
F17
F6
F17
F6
F17
F17
gpmc_nbe1
F17
F17
gpmc_nbe0_cle
F8
F8
F20
F9
gpmc_nadv_ale
PRODUCT PREVIEW
F14
F14
gpmc_nwe
F15
gpmc_a[16:1]
(gpmc_d[15:0])
Address (LSB)
D0
F22
D1
F15
F15
D2
D3
F21
gpmc_waitx
OUT
gpmc_io_dir
SWPS038-018
(1)
(2)
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 5-6. GPMC/Multiplexed NOR Flash—Synchronous Burst Write
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
153
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
5.4.1.2
www.ti.com
GPMC/NOR Flash—Asynchronous Mode
Table 5-6 and Table 5-7 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-7 through Figure 5-12).
Table 5-5. GPMC/NOR Flash Timing Conditions—Asynchronous Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
1.8
ns
tF
Input signal fall time
1.8
ns
16
pF
Output Conditions
CLOAD
Output load capacitance(1)
(1) The load setting of the IO buffer: LB0 = 0.
Table 5-6. GPMC/NOR Flash Internal Timing Parameters—Asynchronous Mode(1) (2)
NO.
PARAMETER
OPP100
MIN
MAX
(4)
OPP50
MIN
UNIT
MAX
Delay time, output data gpmc_d[15:0] generation from internal
functional clock GPMC_FCLK(3)
6.5
9.1
ns
FI2
Delay time, input data gpmc_d[15:0] capture from internal functional
clock GPMC_FCLK(3)
4.0
5.6
ns
FI3
Delay time, output chip select gpmc_ncsx generation from internal
functional clock GPMC_FCLK(3)
6.5
9.1
ns
FI4
Delay time, output address gpmc_a[27:1] generation from internal
functional clock GPMC_FCLK(3)
6.5
9.1
ns
FI5
Delay time, output address gpmc_a[27:1] valid from internal functional
clock GPMC_FCLK(3)
6.5
9.1
ns
FI6
Delay time, output lower-byte enable/command latch enable
gpmc_nbe0_cle, output upper-byte enable gpmc_nbe1 generation
from internal functional clock GPMC_FCLK(3)
6.5
9.1
ns
FI7
Delay time, output enable gpmc_noe generation from internal
functional clock GPMC_FCLK(3)
6.5
9.1
ns
FI8
Delay time, output write enable gpmc_nwe generation from internal
functional clock GPMC_FCLK(3)
6.5
9.1
ns
FI9
Skew, internal functional clock GPMC_FCLK(3)
100
170
ps
FI10
Delay time, IO direction generation from internal functional clock
GPMC_FCLK(3)
6.5
9.1
ps
PRODUCT PREVIEW
FI1
(1) The internal parameters table must be used to calculate data access time stored in the corresponding CS register bit field.
(2) Internal parameters are referred to the GPMC functional internal clock which is not provided externally.
(3) GPMC_FCLK is general-purpose memory controller internal functional clock.
(4) See Operating Condition Addendum for OPP voltages.
154
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 5-7. GPMC/NOR Flash Timing Requirements—Asynchronous Mode(7)
NO.
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
FA5(1)
tacc(d)
Data access time
H(5)
H(5)
ns
FA20(3)
tacc1-pgmode(d)
Page mode successive data access time
P(4)
P(4)
ns
(5)
(5)
ns
(2)
FA21
tacc2-pgmode(d)
Page mode first data access time
H
H
(1) The FA5 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC functional
clock cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock
edge. FA5 value must be stored inside the AccessTime register bit field.
(2) The FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in number of GPMC
functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data is internally sampled by
active functional clock edge. FA21 value must be stored inside the AccessTime register bit field.
(3) The FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of
GPMC functional clock cycles. After each access to input page data, next input page data is internally sampled by active functional clock
edge after FA20 functional clock cycles. The FA20 value must be stored in the PageBurstAccessTime register bit field.
(4) P = PageBurstAccessTime * (TimeParaGranularity + 1) * GPMC_FCLK(6)
(5) H = AccessTime * (TimeParaGranularity + 1) * GPMC_FCLK(6)
(6) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.
Table 5-8. GPMC/NOR Flash Switching Characteristics—Asynchronous Mode(16)
NO.
PARAMETER
OPP100
MIN
FA0
FA1
FA3
OPP50
MAX
MIN
UNIT
MAX
tR(d)
Rise time, output data gpmc_d[15:0]
2
2
ns
tF(d)
Fall time, output data gpmc_d[15:0]
2
2
ns
tw(nbeV)
Pulse duration, output lower-byte
enable/command latch enable
gpmc_nbe0_cle, output
upper-byte enable gpmc_nbe1
valid time
Read
N(12)
N(12)
Write
N
(12)
(12)
Pulse duration, output chip select
gpmc_ncsx(13) low
Read
A(1)
A(1)
Write
(1)
A(1)
Delay time, output chip select
gpmc_ncsx(13) valid to output
address valid/address latch
enable gpmc_nadv_ale invalid
Read
tw(ncsV)
td(ncsV-nadvIV)
Write
A
B(2) – 0.2
B
(2)
– 0.2
N
B(2) + 2.0
B
(2)
+ 2.0
B(2) – 0.2
B
(2)
– 0.2
ns
ns
B(2) + 2.6
B
(2)
ns
+ 2.6
FA4
td(ncsV-noeIV)
Delay time, output chip select gpmc_ncsx(13)
valid to output enable gpmc_noe invalid
(Single read)
C(3) – 0.2
C(3) + 2.0
C(3) – 0.2
C(3) + 2.6
ns
FA9
td(aV-ncsV)
Delay time, output address gpmc_a[27:1] valid
to output chip select gpmc_ncsx(13) valid
J(9) – 0.2
J(9) + 2.0
J(9) – 0.2
J(9) + 2.6
ns
FA10
td(nbeV-ncsV)
Delay time, output lower-byte
enable/command latch enable
gpmc_nbe0_cle, output upper-byte enable
gpmc_nbe1 valid to output chip select
gpmc_ncsx(13) valid
J(9) – 0.2
J(9) + 2.0
J(9) – 0.2
J(9) + 2.6
ns
FA12
td(ncsV-nadvV)
Delay time, output chip select gpmc_ncsx(13)
valid to output address valid/address latch
enable gpmc_nadv_ale valid
K(10) – 0.2
K(10) + 2.0
K(10) – 0.2
K(10) + 2.6
ns
FA13
td(ncsV-noeV)
Delay time, output chip select gpmc_ncsx(13)
valid to output enable gpmc_noe valid
L(11) – 0.2
L(11) + 2.0 L
– 0.2 L(11) + 2.6
ns
FA14
td(ncsV-iodir)
Delay time, output chip select gpmc_ncsx(13)
valid to output IO direction control gpmc_io_dir
high
L(11) – 0.2
L(11) + 2.0
L(11) + 2.6
ns
FA15
td(ncsV-iodir)
Delay time, output chip select gpmc_ncsx(13)
M(14) – 0.2 M(14) + 2.0 M(14) – 0.2 M(14) + 2.6
valid to output IO direction control gpmc_io_dir
low
ns
Copyright © 2010, Texas Instruments Incorporated
(11)
L(11) – 0.2
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
155
PRODUCT PREVIEW
(7) See Operating Condition Addendum for OPP voltages.
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 5-8. GPMC/NOR Flash Switching Characteristics—Asynchronous Mode(16) (continued)
NO.
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
G(7)
UNIT
MAX
G(7)
FA16
tw(aIV)
Pulse durationm output address gpmc_a[26:1]
invalid between 2 successive R/W accesses
FA18
td(ncsV-noeIV)
Delay time, output chip select gpmc_ncsx(13)
valid to output enable gpmc_noe invalid (Burst
read)
FA20
tw(aV)
Pulse duration, output address gpmc_a[27:1]
valid – 2nd, 3rd, and 4th accesses
FA25
td(ncsV-nweV)
Delay time, output chip select gpmc_ncsx(13)
valid to output write enable gpmc_nwe valid
E(5) – 0.2
E(5) + 2.0
E(5) – 0.2
E(5) + 2.6
ns
FA27
td(ncsV-nweIV)
Delay time, output chip select gpmc_ncsx(13)
valid to output write enable gpmc_nwe invalid
F(6) – 0.2
F(6) + 2.0
F(6) – 0.2
F(6) + 2.6
ns
FA28
td(nweV-dV)
Delay time, output write enable gpmc_ nwe
valid to output data gpmc_d[15:0] valid
2.6
ns
FA29
td(dV-ncsV)
Delay time, output data gpmc_d[15:0] valid to
output chip select gpmc_ncsx(13) valid
J(9) + 2.6
ns
FA37
td(noeV-aIV)
Delay time, output enable gpmc_noe valid to
output address gpmc_a[16:1]_d[15:0] phase
end
2.6
ns
I(8) – 0.2
I(8) + 2.0
D(4)
I(8) – 0.2
I(8) + 2.6
D(4)
2.0
J(9) – 0.2
ns
J(9) + 2.0
2.0
J(9) – 0.2
ns
ns
PRODUCT PREVIEW
(1) For single read: A = (CSRdOffTime – CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK(15)
For single write: A = (CSWrOffTime – CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK(15)
For burst read: A = (CSRdOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(15)
For burst write: A = (CSWrOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(15)
with n being the page burst access number
(2) For reading: B = ((ADVRdOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – CSExtraDelay)) *
GPMC_FCLK(15)
For writing: B = ((ADVWrOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – CSExtraDelay)) *
GPMC_FCLK(15)
(3) C = ((OEOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) * GPMC_FCLK(15)
(4) D = PageBurstAccessTime * (TimeParaGranularity + 1) * GPMC_FCLK(15)
(5) E = ((WEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – CSExtraDelay)) * GPMC_FCLK(15)
(6) F = ((WEOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – CSExtraDelay)) * GPMC_FCLK(15)
(7) G = Cycle2CycleDelay * GPMC_FCLK(15)
(8) I = ((OEOffTime + (n – 1) * PageBurstAccessTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) *
GPMC_FCLK(15)
(9) J = (CSOnTime * (TimeParaGranularity + 1) + 0.5 * CSExtraDelay) * GPMC_FCLK(15)
(10) K = ((ADVOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – CSExtraDelay)) * GPMC_FCLK(15)
(11) L = ((OEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) * GPMC_FCLK(15)
(12) For single read: N = RdCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK(15)
For single write: N = WrCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK(15)
For burst read: N = (RdCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(15)
For burst write: N = (WrCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(15)
(13) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
(14) M = ((RdCycleTime – CSOnTime) * (TimeParaGranularity + 1) – 0.5 * CSExtraDelay) * GPMC_FCLK(15)
Above M parameter expression is given as one example of GPMC programming. IO DIR signal will go from IN to OUT after both
RdCycleTime and BusTurnAround completion. Behavior of IO direction signal does depend on kind of successive Read/Write accesses
performed to Memory and multiplexed or nonmultiplexed memory addressing scheme, bus keeping feature enabled or not. IO DIR
behaviour is automatically handled by GPMC controller. For a full description of the gpmc_io_dir feature, see the AM3715/03 TRM.
(15) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.
(16) See Operating Condition Addendum for OPP voltages.
156
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
GPMC_FCLK
gpmc_clk
FA5
FA1
gpmc_ncsx
FA9
gpmc_a[10:1]
Valid Address
FA0
FA10
gpmc_nbe0_cle
Valid
FA0
Valid
gpmc_nbe1
FA10
FA3
FA12
gpmc_nadv_ale
FA13
gpmc_noe
Data IN 0
gpmc_d[15:0]
Data IN 0
gpmc_waitx
FA15
FA14
gpmc_io_dir
OUT
IN
OUT
SWPS038-019
(1)
(2)
(3)
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock
cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock
edge. FA5 value must be stored inside AccessTime register bits field.
GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
Figure 5-7. GPMC / NOR Flash—Asynchronous Read—Single Word
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
157
PRODUCT PREVIEW
FA4
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
GPMC_FCLK
gpmc_clk
FA5
FA5
FA1
FA1
gpmc_ncsx
FA16
FA9
FA9
gpmc_a[10:1]
Address 0
Address 1
FA0
FA0
FA10
FA10
gpmc_nbe0_cle
Valid
Valid
FA0
gpmc_nbe1
FA0
Valid
Valid
FA10
FA10
FA3
FA3
FA12
FA12
gpmc_nadv_ale
PRODUCT PREVIEW
FA4
FA4
FA13
FA13
gpmc_noe
gpmc_d[15:0]
Data Upper
gpmc_waitx
FA15
FA15
FA14
gpmc_io_dir
OUT
FA14
IN
OUT
IN
SWPS038-020
(1)
(2)
(3)
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock
cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock
edge. FA5 value must be stored inside AccessTime register bits field.
GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
Figure 5-8. GPMC / NOR Flash—Asynchronous Read—32-bit
158
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
GPMC_FCLK
gpmc_clk
FA21
FA20
FA20
FA20
Add1
Add2
Add3
D0
D1
D2
FA1
gpmc_ncsx
FA9
Add0
gpmc_a[10:1]
Add4
FA0
FA10
gpmc_nbe0_cle
FA0
FA10
gpmc_nbe1
FA12
gpmc_nadv_ale
FA13
gpmc_noe
gpmc_d[15:0]
D3
D3
gpmc_waitx
FA15
FA14
gpmc_io_dir
OUT
OUT
IN
SWPS038-021
(1)
(2)
(3)
(4)
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in number of GPMC
functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data will be internally sampled
by active functional clock edge. FA21 calculation must be stored inside AccessTime register bits field.
FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of
GPMC functional clock cycles. After each access to input page data, next input page data will be internally sampled by active
functional clock edge after FA20 functional clock cycles. FA20 is also the duration of address phases for successive input page data
(excluding first input page data). FA20 value must be stored in PageBurstAccessTime register bits field.
GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
Figure 5-9. GPMC / NOR Flash—Asynchronous Read—Page Mode 4x16-bit
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
159
PRODUCT PREVIEW
FA18
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
gpmc_fclk
gpmc_clk
FA1
gpmc_ncsx
FA9
gpmc_a[10:1]
Valid Address
FA0
FA10
gpmc_nbe0_cle
FA0
FA10
gpmc_nbe1
FA3
FA12
gpmc_nadv_ale
FA27
FA25
PRODUCT PREVIEW
gpmc_nwe
FA29
gpmc_d[15:0]
Data OUT
gpmc_waitx
gpmc_io_dir
OUT
SWPS038-022
(1)
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 5-10. GPMC / NOR Flash—Asynchronous Write—Single Word
160
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
GPMC_FCLK
gpmc_clk
FA1
FA5
gpmc_ncsx
FA9
gpmc_a[27:17]
(gpmc_a[11:1])
Address (MSB)
FA0
FA10
gpmc_nbe0_cle
Valid
FA0
FA10
gpmc_nbe1
Valid
FA3
FA12
gpmc_nadv_ale
FA13
gpmc_noe
FA29
gpmc_a[16:1]
(gpmc_d[15:0])
FA37
Data IN
Data IN
Address (LSB)
FA15
FA14
gpmc_io_dir
OUT
OUT
IN
gpmc_waitx
SWPS038-023
(1)
(2)
(3)
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock
cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock
edge. FA5 value must be stored inside AccessTime register bits field.
GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
Figure 5-11. GPMC / Multiplexed NOR Flash—Asynchronous Read—Single Word
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
161
PRODUCT PREVIEW
FA4
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
gpmc_fclk
gpmc_clk
FA1
gpmc_ncsx
FA9
gpmc_a[27:17]
(gpmc_a[11:1])
Address (MSB)
FA0
FA10
gpmc_nbe0_cle
FA0
FA10
gpmc_nbe1
FA3
FA12
gpmc_nadv_ale
FA27
FA25
PRODUCT PREVIEW
gpmc_nwe
FA29
gpmc_a[16:1]
(gpmc_d[15:0])
FA28
Valid Address (LSB)
Data OUT
gpmc_waitx
gpmc_io_dir
OUT
SWPS038-024
(1)
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 5-12. GPMC / Multiplexed NOR Flash—Asynchronous Write—Single Word
162
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
5.4.1.3
SPRS616B – JUNE 2010 – REVISED JULY 2010
GPMC/NAND Flash—Asynchronous Mode
Table 5-10 and Table 5-11 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-13 through Figure 5-16).
Table 5-9. GPMC/NAND Flash Timing Conditions—Asynchronous Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
1.8
ns
tF
Input signal fall time
1.8
ns
16
pF
Output Conditions
Output load capacitance(1)
CLOAD
(1) The load setting of the IO buffer: LB0 = 0.
Table 5-10. GPMC/NAND Flash Internal Timing Parameters—Asynchronous Mode(1)
NO.
PARAMETER
GNFI1
Delay time, output data gpmc_d[15:0] generation from internal
functional clock GPMC_FCLK(3)
6.5
9.1
ns
GNFI2
Delay time, input data gpmc_d[15:0] capture from internal
functional clock GPMC_FCLK(3)
4.0
5.6
ns
GNFI3
Delay time, output chip select gpmc_ncsx generation from
internal functional clock GPMC_FCLK(3)
6.5
9.1
ns
GNFI4
Delay time, output address valid/address latch enable
gpmc_nadv_ale generation from internal functional clock
GPMC_FCLK(3)
6.5
9.1
ns
GNFI5
Delay time, output lower-byte enable/command latch enable
gpmc_nbe0_cle generation from internal functional clock
GPMC_FCLK(3)
6.5
9.1
ns
GNFI6
Delay time, output enable gpmc_noe generation from internal
functional clock GPMC_FCLK(3)
6.5
9.1
ns
GNFI7
Delay time, output write enable gpmc_nwe generation from
internal functional clock GPMC_FCLK(3)
6.5
9.1
ns
GNFI8
Skew, functional clock GPMC_FCLK(3)
100
170
ps
MIN
OPP50
MAX
MIN
UNIT
MAX
PRODUCT PREVIEW
OPP100
(2) (4)
(1) Internal parameters table must be used to calculate data access time stored in the corresponding CS register bit field.
(2) Internal parameters are referred to the GPMC functional internal clock which is not provided externally.
(3) GPMC_FCLK is general-purpose memory controller internal functional clock.
(4) See Operating Condition Addendum for OPP voltages.
Table 5-11. GPMC/NAND Flash Timing Requirements—Asynchronous Mode(4)
NO.
PARAMETER
OPP100
MIN
GNF12(1)
tacc(d)
OPP50
MAX
MIN
J(2)
Access time, input data gpmc_d[15:0]
UNIT
MAX
J(2)
ns
(1) The GNF12 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC
functional clock cycles. From start of the read cycle and after GNF12 functional clock cycles, input data is internally sampled by the
active functional clock edge. The GNF12 value must be stored inside AccessTime register bit field.
(2) J = AccessTime * (TimeParaGranularity + 1) * GPMC_FCLK(3)
(3) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.
(4) See Operating Condition Addendum for OPP voltages.
Table 5-12. GPMC/NAND Flash Switching Characteristics—Asynchronous Mode(15)
NO.
PARAMETER
OPP100
MIN
tR(d)
Rise time, output data gpmc_d[15:0]
Copyright © 2010, Texas Instruments Incorporated
OPP50
MAX
2
MIN
UNIT
MAX
2
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
ns
163
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 5-12. GPMC/NAND Flash Switching Characteristics—Asynchronous Mode(15) (continued)
NO.
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
PRODUCT PREVIEW
tF(d)
Fall time, output data gpmc_d[15:0]
GNF0
tw(nweV)
Pulse duration, output write enable gpmc_nwe
valid
2
2
GNF1
td(ncsV-nweV)
Delay time, output chip select gpmc_ncsx(13)
valid to output write enable gpmc_nwe valid
B(2) – 0.2
B(2) + 2.0
B(2) – 0.2
B(2) + 2.6
ns
GNF2
tw(cleH-nweV)
Delay time, output lower-byte
enable/command latch enable gpmc_nbe0_cle
high to output write enable gpmc_nwe valid
C(3) – 0.2
C(3) + 2.0
C(3) – 0.2
C(3) + 2.6
ns
GNF3
tw(nweV-dV)
Delay time, output data gpmc_d[15:0] valid to
output write enable gpmc_nwe valid
D(4) – 0.2
D(4) + 2.0
D(4) – 0.2
D(4) + 2.6
ns
GNF4
tw(nweIV-dIV)
Delay time, output write enable gpmc_nwe
invalid to output data gpmc_d[15:0] invalid
E(5) – 0.2
E(5) + 2.0
E(5) – 0.2
E(5) + 2.6
ns
GNF5
tw(nweIV-cleIV)
Delay time, output write enable gpmc_nwe
invalid to output lower-byte enable/command
latch enable gpmc_nbe0_cle invalid
F(6) – 0.2
F(6) + 2.0
F(6) – 0.2
F(6) + 2.6
ns
GNF6
tw(nweIV-ncsIV)
Delay time, output write enable gpmc_nwe
invalid to output chip select gpmc_ncsx(13)
invalid
G(7) – 0.2
G(7) + 2.0
G(7) – 0.2
G(7) + 2.6
ns
GNF7
tw(aleH-nweV)
Delay time, output address valid/address latch
enable gpmc_nadv_ale high to output write
enable gpmc_nwe valid
C(3) – 0.2
C(3) + 2.0
C(3) – 0.2
C(3) + 2.6
ns
GNF8
tw(nweIV-aleIV)
Delay time, output write enable gpmc_nwe
invalid to output address valid/address latch
enable gpmc_nadv_ale invalid
F(6) – 0.2
F(6) + 2.0
F(6) – 0.2
F(6) + 2.6
ns
GNF9
tc(nwe)
Cycle time, write
A(1)
A(1)
H(8)
(13)
(9)
Delay time, output chip select gpmc_ncsx
valid to output enable gpmc_noe valid
GNF13
tw(noeV)
Pulse duration, output enable gpmc_noe valid
K(10)
K(10)
GNF14
tc(noe)
Cycle time, read
L(11)
L(11)
Delay time, output enable gpmc_noe invalid to
output chip select gpmc_ncsx(13) invalid
(12)
M
I
+ 2.0
(12)
– 0.2 M
I
– 0.2
ns
td(ncsV-noeV)
tw(noeIV-ncsIV)
– 0.2
(9)
GNF10
GNF15
I
ns
H(8)
(9)
(12)
+ 2.0 M
ns
(9)
I
+ 2.6
ns
ns
ns
(12)
– 0.2 M
+ 2.6
ns
(1) A = (WEOffTime – WEOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)
(2) B = ((WEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – CSExtraDelay)) * GPMC_FCLK(14)
(3) C = ((WEOnTime – ADVOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – ADVExtraDelay)) * GPMC_FCLK(14)
(4) D = (WEOnTime * (TimeParaGranularity + 1) + 0.5 * WEExtraDelay) * GPMC_FCLK(14)
(5) E = ((WrCycleTime – WEOffTime) * (TimeParaGranularity + 1) – 0.5 * WEExtraDelay) * GPMC_FCLK(14)
(6) F = ((ADVWrOffTime – WEOffTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – WEExtraDelay)) * GPMC_FCLK(14)
(7) G = ((CSWrOffTime – WEOffTime) * (TimeParaGranularity + 1) + 0.5 * (CSExtraDelay – WEExtraDelay)) * GPMC_FCLK(14)
(8) H = WrCycleTime * (1 + TimeParaGranularity) * GPMC_FCLK(14)
(9) I = ((OEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) * GPMC_FCLK(14)
(10) K = (OEOffTime – OEOnTime) * (1 + TimeParaGranularity) * GPMC_FCLK(14)
(11) L = RdCycleTime * (1 + TimeParaGranularity) * GPMC_FCLK(14)
(12) M = ((CSRdOffTime – OEOffTime) * (TimeParaGranularity + 1) + 0.5 * (CSExtraDelay – OEExtraDelay)) * GPMC_FCLK(14)
(13) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
(14) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.
(15) See Operating Condition Addendum for OPP voltages.
164
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
GPMC_FCLK
GNF1
GNF6
GNF2
GNF5
gpmc_ncsx
gpmc_nbe0_cle
gpmc_nadv_ale
gpmc_noe
GNF0
gpmc_nwe
GNF3
GNF4
gpmc_a[16:1]
(gpmc_d[15:0])
Command
SWPS038-025
(1)
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
Figure 5-13. GPMC / NAND Flash—Command Latch Cycle
GNF1
GNF6
GNF7
GNF8
PRODUCT PREVIEW
GPMC_FCLK
gpmc_ncsx
gpmc_nbe0_cle
gpmc_nadv_ale
gpmc_noe
GNF9
GNF0
gpmc_nwe
GNF3
gpmc_a[16:1]
(gpmc_d[15:0])
GNF4
Address
SWPS038-026
(1)
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
Figure 5-14. GPMC / NAND Flash—Address Latch Cycle
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
165
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
GPMC_FCLK
GNF12
GNF10
GNF15
gpmc_ncsx
gpmc_nbe0_cle
gpmc_nadv_ale
GNF14
GNF13
gpmc_noe
gpmc_a[16:1]
(gpmc_d[15:0])
DATA
gpmc_waitx
SWPS038-027
(1)
(2)
(3)
GNF12 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional
clock cycles. From start of read cycle and after GNF12 functional clock cycles, input data will be internally sampled by active
functional clock edge. GNF12 value must be stored inside AccessTime register bits field.
GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
PRODUCT PREVIEW
Figure 5-15. GPMC / NAND Flash—Data Read Cycle
GPMC_FCLK
GNF1
GNF6
gpmc_ncsx
gpmc_nbe0_cle
gpmc_nadv_ale
gpmc_noe
GNF9
GNF0
gpmc_nwe
GNF3
gpmc_a[16:1]
(gpmc_d[15:0])
GNF4
DATA
SWPS038-028
(1)
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
Figure 5-16. GPMC / NAND Flash—Data Write Cycle
166
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
5.4.2
SPRS616B – JUNE 2010 – REVISED JULY 2010
SDRAM Memory Controller (SDRC)
NOTE
For more information, see Memory Subsystem / SDRAM Controller (SDRC) Subsystem
section of the AM3715/03 TRM.
The SDRAM controller subsystem module provides connectivity between the processor and external
DRAM memory components. The module includes support for double-data-rate SDRAM (mobile DDR).
5.4.2.1
LPDDR Interface
This section provides the timing specification for the bottom-side LPDDR interface as a PCB design and
manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal
integrity, cross-talk, and signal timing. These rules, when followed, result in a reliable LPDDR memory
system without the need for a complex timing closure process. For more information regarding guidelines
for using this LPDDR specification, see the Understanding TI's PCB Routing Rule-Based DDR Timing
Specification Application Report (literature number SPRAAV0).
5.4.2.1.1 LPDDR Interface Schematic
Figure 5-17 and Figure 5-18 show the LPDDR interface schematics for a LPDDR memory system. The 1
x16 LPDDR system schematic is identical to Figure 5-17 except that the high word LPDDR device is
deleted.
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
167
PRODUCT PREVIEW
The LPDDR interface is balled out on the bottom side of all AM37x packages and on the top side of
AM37x POP packages. The LPDDR interface on the top of the POP package has been designed for
compatibility any POP LPDDR device with a matching footprint and compliance with the JEDEC
LPDDR-266 specification.
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
AM37x
LPDDR
sdrc_d0
T
DQ0
sdrc_d7
sdrc_dm0
sdrc_dqs0
sdrc_d8
T
DQ7
LDM
LDQS
DQ8
sdrc_d15
sdrc_dm1
sdrc_dqs1
T
T
T
T
T
T
LPDDR
PRODUCT PREVIEW
sdrc_d16
T
DQ0
sdrc_d23
sdrc_dm2
sdrc_dqs2
sdrc_d24
T
DQ7
LDM
LDQS
DQ8
sdrc_d31
sdrc_dm3
sdrc_dqs3
sdrc_ba0
sdrc_ba1
sdrc_a0
T
sdrc_a14
sdrc_ncs0
sdrc_ncs1
sdrc_ncas
sdrc_nras
sdrc_nwe
sdrc_cke0
sdrc_cke1
sdrc_clk
sdrc_nclk
T
T
T
T
T
T
T
T
T
T
DQ15
UDM
UDQS
DQ15
UDM
UDQS
BA0
BA1
A0
BA0
BA1
A0
A14
CS
A14
CS
CAS
RAS
WE
CKE
CAS
RAS
WE
CKE
CK
CK
CK
CK
N/C
T
T
T
T
N/C
T
T
Figure 5-17. AM37x LPDDR High Level Schematic (x16 memories)
168
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
AM37x
LPDDR
sdrc_d0
T
DQ0
sdrc_d7
sdrc_dm0
sdrc_dqs0
sdrc_d8
T
DQ7
DM0
DQS0
DQ8
sdrc_d15
sdrc_dm1
sdrc_dqs1
T
T
DQ15
DM1
DQS1
sdrc_d16
T
DQ16
sdrc_d23
sdrc_dm2
sdrc_dqs2
sdrc_d24
T
DQ23
DM2
DQS2
DQ24
sdrc_d31
sdrc_dm3
sdrc_dqs3
sdrc_ba0
sdrc_ba1
sdrc_a0
T
T
T
T
T
T
T
T
T
T
T
T
T
DQ31
DM3
DQS3
BA0
BA1
A0
PRODUCT PREVIEW
sdrc_a14
sdrc_ncs0
sdrc_ncs1
sdrc_ncas
sdrc_nras
sdrc_nwe
sdrc_cke0
sdrc_cke1
sdrc_clk
sdrc_nclk
T
A14
CS
T
N/C
T
CAS
RAS
WE
CKE
T
T
T
N/C
T
CK
CK
T
Figure 5-18. AM37x LPDDR High Level Schematic (x32 memory)
5.4.2.1.2 Compatible JEDEC LPDDR Devices
Table 5-13 shows the parameters of the JEDEC LPDDR devices that are compatible with this interface.
Generally, the LPDDR interface is compatible with x16 and x32 LPDDR266 and LPDDR333 speed grade
LPDDR devices.
Table 5-13. Compatible JEDEC LPDDR Devices
(1)
(2)
NO.
PARAMETER
MIN
1
JEDEC LPDDR Device Speed
Grade
MAX
UNIT
LPDDR-266
2
JEDEC LPDDR Device Bit Width
16
32
Bits
3
JEDEC LPDDR Device Count
1
2
Devices
4
JEDEC LPDDR Device Ball
Count
60
90
Balls
NOTES
See Note
(1)
See Note
(2)
Higher LPDDR speed grades are supported due to inherent JEDEC LPDDR backwards compatibility.
1 x16 LPDDR device is used for 16 bit LPDDR memory system. 1x32 or 2x16 LPDDR devices are used for a 32-bit LPDDR memory
system.
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
169
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
5.4.2.1.3 PCB Stackup
The minimum stackup required for routing the OMAP35x is a six layer stack as shown in Table 5-14.
Additional layers may be added to the PCB stack up to accommodate other circuity or to reduce the size
of the PCB footprint.
Table 5-14. OMAP35x Minimum PCB Stack Up
LAYER
TYPE
DESCRIPTION
1
Signal
Top Routing Mostly Horizontal
2
Plane
Ground
3
Plane
Power
4
Signal
Internal Routing
5
Plane
Ground
6
Signal
Bottom Routing Mostly Vertical
Table 5-15. PCB Stack Up Specifications
PARAMETER
MIN
1
PCB Routing/Plane Layers
6
2
Signal Routing Layers
3
3
Full ground layers under LPDDR routing region
2
4
Number of ground plane cuts allowed within LPDDR routing region
5
Number of ground reference planes required for each LPDDR routing 1
layer
6
Number of layers between LPDDR routing layer and reference ground 0
plane
7
PCB Routing Feature Size
4
Mils
8
PCB Trace Width w
4
Mils
9
PCB BGA escape via pad size
18
Mils
10
PCB BGA escape via hole size
8
Mils
11
Device BGA Pad Size
See Note (1)
12
LPDDR Device BGA Pad Size
See Note (2)
13
Single Ended Impedance, ZO
50
14
Impedance Control
Z-5
PRODUCT PREVIEW
NO.
(1)
(2)
(3)
170
TYP
MAX
UNIT
NOTES
0
1
0
Z
75
Ω
Z+5
Ω
See Note (3)
Please see the Flip Chip Ball Grid Array Package Reference Guide (literature number SPRU811) for device BGA pad size.
Please see the LPDDR device manufacturer documentation for the LPDDR device BGA pad size.
Z is the nominal singled ended impedance selected for the PCB specified by item 12.
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
5.5
SPRS616B – JUNE 2010 – REVISED JULY 2010
Multimedia Interfaces
5.5.1
Camera ISP2P Interface
NOTE
For more information, see Camera ISP chapter of the AM3715/03 TRM.
The camera subsystem provides the system interfaces and the processing capability to connect raw, YUV
or JPEG image sensor modules to the AM3715/03 device for video-preview, video-record and
still-image-capture applications.
The camera ISP2P subsystem supports different camera configurations:
• 10-bit Parallel interface
• 12-bit Parallel interface
• 12-bit Parallel interface
Note: For more information, see the Camera ISP / Camera ISP Environment / Camera ISP Connectivity
Schemes section of the AM3715/03 TRM.
5.5.1.1
Camera Output Clocks (cam_xclka and cam_xclkb)
Table 5-16. ISP2P cam_xclka and cam_xclkb Output Clocks Switching Characteristics
NO.
PARAMETER
OPP100
MIN
ISP15
1 / tc(xclk)
OPP50
MAX
Frequency(1), output clock cam_xclkn(4)
MIN
216
(4)
ISP16
tw(xclkH)
Typical pulse duration, output clock cam_xclkn
ISP16
tw(xclkL)
Typical pulse duration, output clock cam_xclkn(4) low
high
tdc(xclk)
Duty cycle error, output clock cam_xclkn(4)
(3)
0.5P
(2)
(2)
MHz
ns
0.5P(2)
231
(4)
216
0.5P
0.5P(2)
UNIT
MAX
ns
231
ps
tJ(xclk)
Jitter standard deviation , output clock cam_xclkn
33
33
ps
tR(xclk)
Rise time, output clock cam_xclkn(4)
0.93
0.93
ns
tF(xclk)
Fall time, output clock cam_xclkn(4)
0.93
0.93
ns
(4)
(1) Related with the cam_xclkn maximum and minimum frequencies programmable in the ISP module.
NOTE: You must disable the camera sensor or the camera module to change the frequency configuration. For more information, see the
AM3715/03 TRM.
(2) P = cam_xclkn(4) period in ns
(3) The jitter probability density can be approximated by a Gaussian function.
(4) In cam_xclkn, n is equal to a or b.
5.5.1.2
Parallel Camera Interface (CPI)
5.5.1.2.1 CPI—Video and Graphics Digitizer 1.8V Mode
The imaging subsystem deals with the processing of the pixel data coming from an external image sensor
or from video and graphics digitizer. It is a key component for the following multimedia applications: video
preview, camera viewfinder, video record and still image capture. It supports RAW, RGB, and YUV data
processing.
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
171
PRODUCT PREVIEW
The camera ISP2P subsystem supports up to two simultaneous pixel flows but only one of them can use
the video processing hardware:
• Parallel camera interface + Serial camera interface: one interface data goes through the video
processing hardware. The other interface data goes directly to memory
• Serial camera interface + Serial camera interface: one serial interface data goes through the video
processing hardware. The other serial interface data goes directly to memory.
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 5-18 assumes testing over the recommended operating conditions and electrical characteristic
conditions below (see Figure 5-19 and Figure 5-20).
Table 5-17. CPI Timing Conditions—Video and Graphics Digitizer 1.8-V Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
MIN
MAX
Input Conditions
tR
Input signal rise time
80
1800
ps
tF
Input signal fall time
80
1800
ps
Table 5-18. CPI Timing Requirements—Video and Graphics Digitizer 1.8-V Mode(4) (6)
NO.
PARAMETER
OPP100
MIN
ISP1
1 / tc(pclk)
UNIT
MAX
Frequency(1), input pixel clock cam_pclk
148.5
MHz
(2)
ns
ns
PRODUCT PREVIEW
ISP2
tw(pclkL)
Typical pulse duration, input pixel clock cam_pclk low
0.5P
ISP3
tw(pclkH)
Typical pulse duration, input pixel clock cam_pclk high
0.5P(2)
tdc(pclk)
Duty cycle error, input pixel clock cam_pclk
0.5*P(2) 3.247
ns
tJ(pclk)
Cycle jitter(3), input pixel clock cam_pclk
0.06P(2)
ns
ISP4
tsu(vsV-pclkH)
Setup time, input vertical synchronization cam_vs valid before input
pixel clock cam_pclk rising/falling edge
0.75
ns
ISP5
th(pclkH-vsV)
Hold time, input vertical synchronization cam_vs valid after input pixel
clock cam_pclk rising/falling edge
0.96
ns
ISP6
tsu(hsV-pclkH)
Setup time, input horizontal synchronization cam_hs valid before input
pixel clock cam_pclk rising/falling edge
0.75
ns
ISP7
th(pclkH-hsV)
Hold time, input horizontal synchronization cam_hs valid after input
pixel clock cam_pclk rising/falling edge
0.96
ns
ISP8
tsu(dV-pclkH)
Setup time, input data cam_d[n:0](5) valid before input pixel clock
cam_pclk rising/falling edge
0.75
ns
ISP9
th(pclkH-dV)
Hold time, input data cam_d[n:0](5) valid after input pixel clock
cam_pclk rising/falling edge
0.96
ns
ISP10
tsu(wenV-pclkH)
Setup time, input write enable cam_wen valid before input pixel clock
cam_pclk rising/falling edge
0.75
ns
ISP11
th(pclkH-wenV)
Hold time, input write enable cam_wen valid after input pixel clock
cam_pclk rising/falling edge
0.96
ns
ISP12
tsu(fldV-pclkH)
Setup time, input field identification cam_fld valid before input pixel
clock cam_pclk rising/falling edge
0.75
ns
ISP13
th(pclkH-fldV)
Hold time, input field identification cam_fld valid after input pixel clock
cam_pclk rising/falling edge
0.96
ns
(1) Related with the input maximum frequency supported by the ISP module in 8-bit mode with 8 to 16 data bits conversion bridge enabled.
(2) P = cam_pclk period in ns
(3) Maximum cycle jitter supported by cam_pclk input clock
(4) The timing requirements are assured up to the cycle jitter and duty cycle error conditions specified.
(5) n = 11 (Data bus size is limited to 8 bits. So the bits configuration is either cam_d[7:0] or cam_d[11:4]). Lines not connected must be
tied low.
(6) See Operating Condition Addendum for OPP voltages.
172
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
ISP3
ISP1
ISP2
cam_pclk
ISP4
ISP5
ISP6
ISP7
cam_vs
cam_hs
ISP8
ISP9
cam_d[N:0]
D(0)
D(n-2)
D(n-1)
D(0)
D(n-2)
D(n-1)
ISP10
ISP11
cam_fld
SWPS038-048
(1)
(2)
The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are software configurable. Optionally, the cam_wen signal can be used as
an external memory write-enable signal. For further details, see the AM3715/03 TRM.
N = 11 (Data bus size is limited to 8 bits. So the bits configuration is either cam_d[7:0] or cam_d[11:4]). When the number of data
lines is less than cam_d[N:0], data lines can be connected to the upper or lower lines of cam_d[N:0]. Lines not connected must be
tied low. For more information about video port mapping, see the AM3715/03 TRM.
Figure 5-19. CPI—Video and Graphics Digitizer—1.8-V Progressive Mode
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
173
PRODUCT PREVIEW
cam_wen
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
ISP3
ISP1
ISP2
cam_pclk
ISP4
ISP5
ISP6
ISP7
cam_vs
cam_hs
ISP8
ISP9
D(0)
cam_d[N:0]
D(n–1)
D(0)
D(n–1)
D(0)
ISP10
D(n–1)
D(0)
D(n–1)
ISP11
cam_wen
PRODUCT PREVIEW
ISP12
ISP13
EVEN
cam_fld
ODD
SWPS038-049
(1)
(2)
The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are software configurable. Optionally, the cam_wen signal can be used as
an external memory write-enable signal. For further details, see the AM3715/03 TRM.
N = 11 (Data bus size is limited to 8 bits. So the bits configuration is either cam_d[7:0] or cam_d[11:4]). When the number of data
lines is less than cam_d[N:0], data lines can be connected to the upper or lower lines of cam_d[N:0]. Lines not connected must be
tied low. For more information about video port mapping, see the AM3715/03 TRM.
Figure 5-20. CPI—Video and Graphics Digitizer—1.8-V Interlaced Mode
5.5.1.2.2 CPI—12-Bit SYNC Normal Progressive Mode
Table 5-20 assumes testing over the recommended operating conditions and electrical characteristic
conditions below (see Figure 5-21).
Table 5-19. CPI Timing Conditions—12-Bit SYNC Normal Progressive Mode(1)
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2.7
ns
tF
Input signal fall time
2.7
ns
8.6
pF
Output Condition
CLOAD
Output load capacitance
(1) The load setting of the IO buffer: LB0 = 1.
174
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 5-20. CPI Timing Requirements—12-Bit SYNC Normal Progressive Mode(4) (5)
PARAMETER
OPP100
MIN
ISP17
1 / tc(pclk)
Frequency(1), input pixel clock cam_pclk
ISP18
tw(pclkH)
Typical pulse duration, input pixel clock cam_pclk high
ISP18
OPP50
MAX
MIN
UNIT
MAX
75
45
MHz
0.5P(2)
0.5P(2)
ns
(2)
(2)
ns
tw(pclkL)
Typical pulse duration, input pixel clock cam_pclk low
tdc(pclk)
Duty cycle error, input pixel clock cam_pclk
0.5P
0.5P(2) 3.465
0.5P
0.5P(2) 6.93
ns
tJ(pclk)
Cycle jitter(3), input pixel clock cam_pclk
0.0649*P
0.0649*P
ns
ISP19
tsu(dV-pclkH)
Setup time, input data cam_d[11:0] valid before input
pixel clock cam_pclk rising edge
1.82
3.25
ns
ISP20
th(pclkH-dV)
Hold time, input data cam_d[11:0] valid after input
pixel clock cam_pclk rising edge
1.82
3.25
ns
ISP21
tsu(dV-vsH)
Setup time, input vertical synchronization cam_vs valid
before input pixel clock cam_pclk rising edge
1.82
3.25
ns
ISP22
th(pclkH-vsV)
Hold time, input vertical synchronization cam_vs valid
after input pixel clock cam_pclk rising edge
1.82
3.25
ns
ISP23
tsu(dV-hsH)
Setup time, input horizontal synchronization cam_hs
valid before input pixel clock cam_pclk rising edge
1.82
3.25
ns
ISP24
th(pclkH-hsV)
Hold time, input horizontal synchronization cam_hs
valid after input pixel clock cam_pclk rising edge
1.82
3.25
ns
ISP25
tsu(dV-hsH)
Setup time, input write enable cam_wen valid before
input pixel clock cam_pclk rising edge
1.82
3.25
ns
ISP26
th(pclkH-hsV)
Hold time, input write enable cam_wen valid after input
pixel clock cam_pclk rising edge
1.82
3.25
ns
(2)
(2)
PRODUCT PREVIEW
NO.
(1) Related with the input maximum frequency supported by the ISP module.
(2) P = cam_pclk period in ns
(3) Maximum cycle jitter supported by cam_pclk input clock.
(4) The timing requirements are assured up to the cycle jitter and duty cycle error conditions specified.
(5) See Operating Condition Addendum for OPP voltages.
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
175
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
ISP16
ISP15
ISP16
cam_xclki
ISP17
ISP18
ISP18
cam_pclk
ISP19
ISP20
ISP21
ISP22
cam_vs
cam_hs
ISP23
cam_d[11:0]
D(0)
D(n–3)
D(n–2)
ISP24
D(n–1)
D(0)
D(1)
D(n–1)
PRODUCT PREVIEW
ISP25
ISP26
cam_wen
cam_fld
SWPS038-050
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable. If the cam_hs, cam_vs, and cam_fld signals are output,
the signal length can be set.
The parallel camera in SYNC mode supports progressive image sensor modules and 8-, 10-, 11-, or 12-bit data.
When the image sensor has fewer than 12 data lines, it must be connected to the lower data lines and the unused lines must be
grounded.
However, it is possible to shift the data to 0, 2, or 4 data internal lanes.
The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit mode, cam_d[11:2] or cam_d[9:0] in 10-bit mode, cam_d[10:0] in 11-bit
mode and cam_d[11:0] in 12-bit mode.
Optionally, the data write to memory can be qualified by the external cam_wen signal.
The cam_wen signal can be used as an external memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs,
and cam_wen signals are asserted.
In cam_xclki, i can be equal to a or b. See Table 5-16 for ISP15 and ISP16 parameters.
Figure 5-21. CPI—12-Bit SYNC Normal Progressive Mode
5.5.1.2.3 CPI—8-Bit SYNC Packed Progressive Mode
Table 5-22 assumes testing over the recommended operating conditions and electrical characteristic
conditions below (see Figure 5-22).
Table 5-21. CPI Timing Conditions—8-Bit SYNC Packed Progressive Mode(1)
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2.5
ns
tF
Input signal fall time
2.5
ns
8.6
pF
Output Condition
CLOAD
176
Output load capacitance
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
(1) The load setting of the IO buffer: LB0 = 1.
Table 5-22. CPI Timing Requirements—8-Bit SYNC Packed Progressive Mode(4) (5)
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
ISP3
1 / tc(pclk)
Frequency (1), input pixel clock cam_pclk
ISP4
tw(pclkH)
Typical pulse duration, input pixel clock cam_pclk high
0.5*P(2)
0.5*P(2)
ISP4
tw(pclkL)
Typical pulse duration, input pixel clock cam_pclk low
0.5*P(2)
0.5*P(2)
130
65
(2)
MHz
ns
ns
(2)
tdc(pclk)
Duty cycle error, input pixel clock cam_pclk
0.5*P 3.465
0.5*P 6.93
ns
tJ(pclk)
Cycle jitter(3), input pixel clock cam_pclk
0.649*P(2
0.5*P(2)
ns
ISP5
tsu(dV-pclkH)
Setup time, input data cam_d[7:0] valid before input
pixel clock cam_pclk rising edge
1.08
2.27
ns
ISP6
th(pclkH-dV)
Hold time, input data cam_d[7:0] valid after input pixel
clock cam_pclk rising edge
1.08
2.27
ns
ISP7
tsu(dV-vsH)
Setup time, input vertical synchronization cam_vs valid
before input pixel clock cam_pclk rising edge
1.08
2.27
ns
ISP8
th(pclkH-vsV)
Hold time, input vertical synchronization cam_vs valid
after input pixel clock cam_pclk rising edge
1.08
2.27
ns
ISP9
tsu(dV-hsH)
Setup time, input horizontal synchronization cam_hs
valid before input pixel clock cam_pclk rising edge
1.08
2.27
ns
ISP10
th(pclkH-hsV)
Hold time, input horizontal synchronization cam_hs
valid after input pixel clock cam_pclk rising edge
1.08
2.27
ns
ISP11
tsu(dV-hsH)
Setup time, input write enable cam_wen valid before
input pixel clock cam_pclk rising edge
1.08
2.27
ns
ISP12
th(pclkH-hsV)
Hold time, input write enable cam_wen valid after input
pixel clock cam_pclk rising edge
1.08
2.27
ns
)
PRODUCT PREVIEW
NO.
(1) Related with the input maximum frequency supported by the ISP module.
(2) P = cam_pclk period in ns
(3) Maximum cycle jitter supported by cam_pclk input clock.
(4) The timing requirements are assured up to the cycle jitter and duty cycle error conditions specified.
(5) See Operating Condition Addendum for OPP voltages.
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
177
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
ISP16
ISP15
ISP16
cam_xclki
ISP4
ISP3
ISP4
cam_pclk
ISP5
ISP6
ISP7
ISP8
cam_vs
cam_hs
ISP9
D(0)
cam_d[7:0]
D(n-3)
D(n-2)
ISP10
D(n-1)
D(0)
D(1)
D(n-1)
ISP11
ISP12
cam_wen
PRODUCT PREVIEW
cam_fld
SWPS038-051
(1)
(2)
(3)
(4)
(5)
The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable.
The image sensor is connected to the lower data lines and the unused lines are grounded. However, it is possible to shift the data to
0, 2, or 4 data internal lanes. The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit packed mode.
Optionally, the data write to memory can be qualified by the external cam_wen signal. The cam_wen signal can be used as a
external memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs, and cam_wen signals are asserted. The
polarity of cam_fld is programmable.
The camera module can pack 8-bit data into 16 bits. It doubles the maximum pixel clock. This mode can be particularly useful to
transfer an YCbCr data stream or compressed stream to memory at very high speed.
In cam_xclki, i can be equal to a or b. See Table 5-16 for ISP15 and ISP16 parameters.
Figure 5-22. CPI—8-Bit SYNC Packed Progressive Mode
5.5.1.2.4 CPI—12-Bit SYNC Normal Interlaced Mode
Table 5-24 assumes testing over the recommended operating conditions and electrical characteristic
conditions below (see Figure 5-23).
Table 5-23. CPI Timing Conditions—12-Bit SYNC Normal Interlaced Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2.7
ns
tF
Input signal fall time
2.7
ns
8.6
pF
Output Condition
CLOAD
Output load capacitance(1)
(1) The load setting of the IO buffer: LB0 = 1.
178
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 5-24. CPI Timing Requirements—12-Bit SYNC Normal Interlaced Mode(4) (5)
PARAMETER
OPP100
MIN
ISP17
1 / tc(pclk)
Frequency(1), input pixel clock cam_pclk
ISP18
tw(pclkH)
Typical pulse duration, input pixel clock cam_pclk high
ISP18
OPP50
MAX
MIN
UNIT
MAX
75
45
MHz
0.5P(2)
0.5P(2)
ns
(2)
(2)
ns
tw(pclkL)
Typical pulse duration, input pixel clock cam_pclk low
tdc(pclk)
Duty cycle error, input pixel clock cam_pclk
0.5*P(2) 3.465
0.5P
0.5*P(2) 6.93
1111
ns
tJ(pclk)
Cycle jitter(3), input pixel clock cam_pclk
0.649*P(2
0.5*P(2)
200
ns
ISP19
tsu(dV-pclkH)
Setup time, input data cam_d[11:0] valid before input
pixel clock cam_pclk rising edge
1.82
3.25
ns
ISP20
th(pclkH-dV)
Hold time, input data cam_d[11:0] valid after input
pixel clock cam_pclk rising edge
1.82
3.25
ns
ISP21
tsu(dV-vsH)
Setup time, input vertical synchronization cam_vs valid
before input pixel clock cam_pclk rising edge
1.82
3.25
ns
ISP22
th(pclkH-vsV)
Hold time, input vertical synchronization cam_vs valid
after input pixel clock cam_pclk rising edge
1.82
3.25
ns
ISP23
tsu(dV-hsH)
Setup time, input horizontal synchronization cam_hs
valid before input pixel clock cam_pclk rising edge
1.82
3.25
ns
ISP24
th(pclkH-hsV)
Hold time, input horizontal synchronization cam_hs
valid after input pixel clock cam_pclk rising edge
1.82
3.25
ns
ISP25
tsu(dV-hsH)
Setup time, input write enable cam_wen valid before
input pixel clock cam_pclk rising edge
1.82
3.25
ns
ISP26
th(pclkH-hsV)
Hold time, input write enable cam_wen valid after input
pixel clock cam_pclk rising edge
1.82
3.25
ns
ISP27
tsu(dV-fldH)
Setup time, input field identification cam_fld valid
before input pixel clock cam_pclk rising edge
1.82
3.25
ns
ISP28
th(pclkH-fldV)
Hold time, input field identification cam_fld valid after
input pixel clock cam_pclk rising edge
1.82
3.25
ns
)
0.5P
PRODUCT PREVIEW
NO.
(1) Related with the input maximum frequency supported by the ISP module.
(2) P = cam_pclk period in ns
(3) Maximum cycle jitter supported by cam_pclk input clock.
(4) The timing requirements are assured up to the cycle jitter and duty cycle error conditions specified.
(5) See Operating Condition Addendum for OPP voltages.
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
179
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
ISP16
ISP15
ISP16
cam_xclki
ISP18
ISP18
ISP17
cam_pclk
ISP20
ISP19
cam_vs
FRAME(0)
FRAME(0)
ISP21
cam_hs
ISP22
L(n-1)
L(0)
L(0)
ISP23
cam_d[11:0]
D(0)
D(n-3)
D(n-2)
D(0)
D(n-1)
D(1)
ISP24
D(2)
PRODUCT PREVIEW
ISP25
D(n-1)
ISP26
cam_wen
ISP28
ISP27
cam_fld
PAIR
IMPAIR
SWPS038-052
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable. If the cam_hs, cam_vs, and cam_fld signals are output,
the signal length can be set.
The parallel camera in SYNC mode supports interlaced image sensor modules and 8-, 10-, 11-, or 12-bit data.
When the image sensor has fewer than 12 data lines, it is connected to the lower data lines and the unused lines are grounded.
It is possible to shift the data to 0, 2, or 4 data internal lanes.
The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit mode, cam_d[11:2] or cam_d[9:0] in 10-bit mode, cam_d[10:0] in 11-bit
mode and cam_d[11:0] in 12-bit mode.
Optionally, the data write to memory can be qualified by the external cam_wen signal.
The cam_wen signal can be used as an external memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs,
and cam_wen signals are asserted.
In cam_xclki, i can be equal to a or b. See Table 5-16 for ISP15 and ISP16 parameters.
Figure 5-23. CPI—12-bit SYNC Normal Interlaced Mode
180
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
5.5.1.2.5 CPI—8-Bit SYNC Packed Interlaced Mode
Table 5-26 assumes testing over the recommended operating conditions and electrical characteristic
conditions below (see Figure 5-24).
Table 5-25. CPI Timing Conditions—8-Bit SYNC Packed Interlaced Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2.5
ns
tF
Input signal fall time
2.5
ns
8.6
pF
Output Condition
Output load capacitance(1)
CLOAD
(1) The load setting of the IO buffer: LB0 = 1.
Table 5-26. CPI Timing Requirements—8-Bit SYNC Packed Interlaced Mode(4) (5)
PARAMETER
OPP100
MIN
ISP3
1 / tc(pclk)
Frequency(1), input pixel clock cam_pclk
ISP4
tw(pclkH)
Typical pulse duration, input pixel clock cam_pclk high
ISP4
MAX
OPP50
MIN
UNIT
MAX
130
65
MHz
0.5P(2)
0.5P(2)
ns
(2)
(2)
ns
tw(pclkL)
Typical pulse duration, input pixel clock cam_pclk low
tdc(pclk)
Duty cycle error, input pixel clock cam_pclk
0.5*P(2) 3.465
0.5P
0.5*P(2) 6.93
ns
tJ(pclk)
Cycle jitter(3), input pixel clock cam_pclk
0.649*P(2
0.5*P(2)
ns
ISP5
tsu(dV-pclkH)
Setup time, input data cam_d[8:0] valid before input
pixel clock cam_pclk rising edge
1.08
2.27
ns
ISP6
th(pclkH-dV)
Hold time, input data cam_d[8:0] valid after input pixel
clock cam_pclk rising edge
1.08
2.27
ns
ISP7
tsu(dV-vsH)
Setup time, input vertical synchronization cam_vs valid
before input pixel clock cam_pclk rising edge
1.08
2.27
ns
ISP8
th(pclkH-vsV)
Hold time, input vertical synchronization cam_vs valid
after input pixel clock cam_pclk rising edge
1.08
2.27
ns
ISP9
tsu(dV-hsH)
Setup time, input horizontal synchronization cam_hs
valid before input pixel clock cam_pclk rising edge
1.08
2.27
ns
ISP10
th(pclkH-hsV)
Hold time, input horizontal synchronization cam_hs
valid after input pixel clock cam_pclk rising edge
1.08
2.27
ns
ISP11
tsu(dV-hsH)
Setup time, input write enable cam_wen valid before
input pixel clock cam_pclk rising edge
1.08
2.27
ns
ISP12
th(pclkH-hsV)
Hold time, input write enable cam_wen valid after input
pixel clock cam_pclk rising edge
1.08
2.27
ns
ISP13
tsu(dV-fldH)
Setup time, input field identification cam_fld valid
before input pixel clock cam_pclk rising edge
1.08
2.27
ns
ISP14
th(pclkH-fldV)
Hold time, input field identification cam_fld valid after
input pixel clock cam_pclk rising edge
1.08
2.27
ns
)
0.5P
PRODUCT PREVIEW
NO.
(1) Related with the input maximum frequency supported by the ISP module.
(2) P = cam_pclk period in ns
(3) Maximum cycle jitter supported by cam_pclk input clock.
(4) The timing requirements are assured up to the cycle jitter and duty cycle error conditions specified.
(5) See Operating Condition Addendum for OPP voltages.
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
181
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
ISP15
www.ti.com
ISP16
ISP16
cam_xclki
ISP4
ISP3
ISP4
cam_pclk
ISP6
cam_vs
ISP5
FRAME(0)
FRAME(0)
ISP7
cam_hs
L(0)
ISP8
L(0)
L(n-1)
ISP9
D(0)
cam_d[7:0]
D(n-3)
D(n-2)
D(n-1)
D(0)
D(1)
ISP10
D(n-1)
D(2)
ISP11
ISP12
cam_wen
PRODUCT PREVIEW
ISP14
ISP13
cam_fld
PAIR
IMPAIR
SWPS038-053
(1)
(2)
(3)
(4)
(5)
The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable.
The image sensor is connected to the lower data lines and the unused lines are grounded. However, it is possible to shift the data to
0, 2, or 4 data internal lanes. The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit packed mode .
Optionally, the data write to memory can be qualified by the external cam_wen signal. The cam_wen signal can be used as an
external memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs, and cam_wen signals are asserted.
The camera module can pack 8-bit data into 16 bits. It doubles the maximum pixel clock. This mode can be particularly useful to
transfer a YCbCr data stream or compressed stream to memory at very high speed.
In cam_xclki, i can be equal to a or b. See Table 5-16 for ISP15 and ISP16 parameters.
Figure 5-24. CPI—8-Bit SYNC Packed Interlaced Mode
5.5.1.2.6 CPI—ITU Mode
Table 5-28 assumes testing over the recommended operating conditions and electrical characteristic
conditions below (see Figure 5-25).
Table 5-27. CPI Timing Conditions—ITU Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2.7
ns
tF
Input signal fall time
2.7
ns
8.6
pF
Output Condition
CLOAD
Output load capacitance(1)
(1) The load setting of the IO buffer: LB0 = 1.
182
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 5-28. CPI Timing Requirements—ITU Mode(4) (5)
NO.
PARAMETER
OPP100
MIN
ISP17
1 / tc(pclk)
Frequency(1), input pixel clock cam_pclk
ISP18
tw(pclkH)
Typical pulse duration, input pixel clock cam_pclk high
ISP18
OPP50
MAX
MIN
UNIT
MAX
75
45
MHz
0.5P(2)
0.5P(2)
ns
(2)
(2)
ns
tw(pclkL)
Typical pulse duration, input pixel clock cam_pclk low
tdc(pclk)
Duty cycle error, input pixel clock cam_pclk
0.5*P(2) 3.465
0.5P
0.5*P(2) 6.93
1111
ns
tJ(pclk)
Cycle jitter(3), input pixel clock cam_pclk
0.649*P(2
0.5*P(2)
200
ns
ISP23
tsu(dV-pclkH)
Setup time, input data cam_d[9:0] valid before input
pixel clock cam_pclk rising edge
1.82
3.25
ns
ISP24
th(pclkH-dV)
Hold time, input data cam_d[9:0] valid after input pixel
clock cam_pclk rising edge
1.82
3.25
ns
)
0.5P
(1) Related with the input maximum frequency supported by the ISP module.
(2) P = cam_pclk period in ns
(3) Maximum cycle jitter supported by cam_pclk input clock.
(4) The timing requirements are assured up to the cycle jitter and duty cycle error conditions specified.
PRODUCT PREVIEW
(5) See Operating Condition Addendum for OPP voltages.
ISP16
ISP15
ISP16
cam_xclki
ISP17
ISP18
ISP18
cam_pclk
ISP23
cam_d[9:0]
SOF
D(0)
ISP24
D(n-1)
EOF
SOF
D(0)
D(n-1)
EOF
SWPS038-054
(1)
(2)
(3)
The unused lines are grounded and the data bus is connected to the lower data lines. However, it is possible to shift the data to 0, 2,
or 4 data internal lanes. The different configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit mode and cam_d[11:2] or cam_d[9:0] in
10-bit mode.
The parallel camera in ITU mode supports progressive camera modules.
In cam_xclki, i can be equal to a or b. See Table 5-16 for ISP15 and ISP16 parameters.
Figure 5-25. CPI—ITU Mode
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
183
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
5.5.2
www.ti.com
Display Subsystem (DSS)
NOTE
For more information, see Display Subsystem chapter of the AM3715/03 TRM.
The display subsystem (DSS) provides the logic to display the video frame from external (SDRAM) or
internal (SRAM) memory on an LCD panel or a TV set. The display subsystem integrates the following
elements:
• Display controller (DISPC) module
• Remote frame buffer interface (RFBI) module
• NTSC/PAL video encoder
• LCD display with:
– Parallel Interface
The two display supports can be active at the same time.
5.5.2.1
DSS—Parallel Interface
PRODUCT PREVIEW
In parallel interface, the paths of the display subsystem modules are the display controller and the RFBI.
The display controller has two I/O pad modes and could be in the following configuration:
• Bypass mode (RFBI disabled), which implements the MIPI DPI protocol
• RFBI mode (RFBI enabled), which implements MIPI DBI 2.0 type B protocol
For more information about MIPI DPI and MIPI DBI protocols, see the DSS chapter in the AM37xxx TRM.
5.5.2.1.1 DSS—Parallel Interface—Bypass Mode
Two types of LCD panel are supported:
• Thin film transistor (TFT) or active matrix technology
• Supertwisted nematic (STN) or passive matrix technology
Both configurations are discussed in the following paragraphs.
5.5.2.1.2 DSS—Parallel Interface—Bypass Mode—TFT Mode
Table 5-30 assumes testing over the recommended operating conditions and electrical characteristic
conditions below (see Figure 5-26).
Table 5-29. DSS Timing Conditions—TFT Mode
TIMING CONDITION PARAMETER
VALUE
MIN
UNIT
MAX
Output Condition
CLOAD
Output load capacitance(1)
10
pF
(1) Buffer strength configuration: LB0 = 1
Table 5-30. DSS Switching Characteristics—TFT Mode(4)
NO.
PARAMETER
OPP100
OPP50
MIN
MAX
MIN
MAX
UNIT
DL0
td(pclkA-hsync)
Delay time, output pixel clock dss_pclk active edge to
output horizontal synchronization dss_hsync transition
–4.215
4.215
–4.658
4.658
ns
DL1
td(pclkA-vsync)
Delay time, output pixel clock dss_pclk active edge to
output vertical synchronization dss_vsync transition
–4.215
4.215
–4.658
4.658
ns
DL2
td(pclkA-acbiasA)
Delay time, output pixel clock dss_pclk active edge to
output data enable dss_acbias active level
–4.215
4.215
–4.658
4.658
ns
184
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 5-30. DSS Switching Characteristics—TFT Mode(4) (continued)
NO.
PARAMETER
OPP100
DL3
td(pclkA-dV)
Delay time, output pixel clock dss_pclk active edge to
output data dss_data[23:0] valid
DL4
1 / tc(pclk)
Frequency(2), output pixel clock dss_pclk
DL5
tw(pclk)
OPP50
MAX
MIN
MAX
–4.215
4.215
–4.658
4.658
ns
66(3)
MHz
74.3(3)
Pulse duration, output pixel clock dss_pclk low or high
UNIT
MIN
(1)
0.45P
(1)
0.55P
(5)
(1)
0.45P
(1)
0.55P
ns
(5)
(1) P = dss_pclk period in ns
(2) The pixel clock frequency is software programmable via the pixel clock divider configuration from 1 to 255 division range in the
DISPC_DIVISOR register.
(3) For the DSS (TFT mode) in HD-TV application, to run at full speed (74.3 MHz) it is recommended to use the dss_data[5:0] signals on
the dss_data[23:18] balls (H26, H25, E28, J26, AC27, AC28). In that case, the dss_data[23:18] signals are available on the sys_boot0,
sys_boot1, sys_boot3, sys_boot4, sys_boot5, and sys_boot6 balls (AH26, AG26, AF18, AF19, AE21, AF21) to run at full speed (74.3
MHz).
If the dss_data[5:0] signals are used on the dss_data[5:0] balls (AG22, AH22, AG23, AH23, AG24, AH24), OPP100 DSS (TFT mode)
are limited at 66 MHz. The values may change following the silicon characterization result.
(4) See Operating Condition Addendum for OPP voltages.
DL4
DL5
dss_pclk
DL1
dss_vsync
DL0
dss_hsync
DL2
dss_acbias
DL3
dss_data[23:0]
SWPS038-055
(1)
(2)
(3)
(4)
The pixel data bus depends on the use of 8-, 9-, 12-, 16-, 18-, or 24-bit per pixel data output pins.
The pixel clock frequency is programmable.
All timings not illustrated in the waveform are progammable by software, and control signal polarity and driven edge of dss_pclk too.
For more information, see the DSS chapter in the AM3715/03 TRM.
Figure 5-26. DSS—TFT Mode
5.5.2.1.3 DSS—Parallel Interface—Bypass Mode—STN Mode
Table 5-32 assumes testing over the recommended operating conditions and electrical characteristic
conditions below (see Figure 5-27).
Table 5-31. DSS Timing Conditions—STN Mode
TIMING CONDITION PARAMETER
VALUE
MIN
UNIT
MAX
Output Condition
CLOAD
Output load capacitance(1)
Copyright © 2010, Texas Instruments Incorporated
40
pF
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
185
PRODUCT PREVIEW
(5) tW(pclk) = 0.66.P when DISPC_DIVISOR[6:0] PCD = 3.
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
(1) Buffer strength configuration: LB0 = 1
Table 5-32. DSS Switching Characteristics—STN Mode(3)
NO.
PARAMETER
(4)
OPP100
DL3
td(pclkA-dV)
Delay time, output pixel clock dss_pclk active edge to
output data dss_data[7:0] valid
DL4
1 / tc(pclk)
Frequency(2), output pixel clock dss_pclk
DL5
tw(pclk)
Pulse duration, output pixel clock dss_pclk low or high
OPP50
UNIT
MIN
MAX
MIN
MAX
–6.868
6.868
–6.868
6.868
ns
44
MHz
0.45P(1)
0.55P(1)
0.45P(1)
0.55P(1)(5
ns
44
(5)
)
(1) P = dss_pclk period in ns
(2) The pixel clock frequency is software programmable via the pixel clock divider configuration from 1 to 255 division range in the
DISPC_DIVISOR register.
(3) The DSS in STN mode is used with 4 or 8 pins only; unused pixel data bits always remain low.
(4) See Operating Condition Addendum for OPP voltages.
(5) tW(pclk) = 0.66P when DISPC_DIVISOR[6:0] PCD = 3.
DL5
DL4
PRODUCT PREVIEW
dss_pclk
dss_vsync
dss_hsync
dss_acbias
DL3
dss_data[23:0]
SWPS038-056
(1)
(2)
(3)
(4)
(5)
The pixel data bus depends on the use of 4-, 8-, 12-, 16-, 18-, or 24-bit per pixel data output pins.
All timings not illustrated in the waveform are progammable by software, and control signal polarity and driven edge of dss_pclk too.
dss_vsync width must be programmed to be as small as possible.
The pixel clock frequency is programmable.
For more information, see the DSS chapter in the AM3715/03 TRM.
Figure 5-27. DSS—STN Mode
5.5.2.2
DSS—Parallel Interface— RFBI Mode — Applications
5.5.2.2.1 DSS—Parallel Interface—RFBI Mode— MIPI DBI-B 2.0 —LCD Panel
The Remote Frame Buffer Interface (RFBI) module provides the necessary control signals and data
(MIPI® DBI 2.0 type B protocol) to interface to the LCD driver of the LCD panel.
Table 5-34 and Table 5-35 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-28 through Figure 5-30).
Table 5-33. DSS Timing Conditions—RFBI Mode—MIPI DBI 2.0 - LCD Panel(2)
TIMING CONDITION PARAMETER
VALUE
MIN
UNIT
MAX
Input Conditions
186
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 5-33. DSS Timing Conditions—RFBI Mode—MIPI DBI 2.0 - LCD Panel(2) (continued)
TIMING CONDITION PARAMETER
VALUE
MIN
UNIT
MAX
tR
Input signal rise time
15
ns
tF
Input signal fall time
15
ns
30
pF
Output Condition
Output load capacitance(1)
CLOAD
(1) Buffer strength configuration: LB0 = 0.
(2) For any information regarding the RFBI registers configuration, see Display Subsystem / the Display Subsystem Environment / LCD
Support / Parallel Interface / Parallel Interface in RFBI Mode (MIPI DBI Protocol) / Transaction Timing Diagrams section of the
AM3715/03 TRM.
Table 5-34. DSS Timing Requirements—RFBI Mode—MIPI DBI 2.0 - LCD Panel
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
DR0
tsu(dV-rdH)
Setup time, input data rfbi_da[15:0] valid to output
read enable rfbi_rd high
7.3
6.3
ns
DR1
th(rdH-dIV)
Hold time, output read enable rfbi_rd high to input data
rfbi_da[15:0] invalid
10.6
9.6
ns
td(Data
Input data rfbi_da[15:0] sampled at the end of the
access time
sampled)
N(1)
N(1)
ns
(1) N = (AccessTime) * (TimeParaGranularity + 1) * L4CLK
Table 5-35. DSS Switching Characteristics— RFBI Mode— MIPI DBI 2.0 - LCD Panel
PARAMETER
OPP100
MIN
tw(wrH)
Pulse duration, output write enable rfbi_wr high
OPP50
MAX
MIN
UNIT
MAX
A(1)
A(1)
ns
(2)
B(2)
ns
tw(wrL)
Pulse duration, output write enable rfbi_wr low
B
td(a0-wrL)
Delay time, output command/data control rfbi_a0 transition to
output write enable rfbi_wr low
C(3)
C(3)
ns
td(wrH-a0)
Delay time, output write enable rfbi_wr high to output
command/data control rfbi_a0 transition
D(4)
D(4)
ns
td(csx-wrL)
Delay time, output chip select rfbi_csx(14) low to output write
enable rfbi_wr low
E(5)
E(5)
ns
td(wrH-csxH)
Delay time, output write enable rfbi_wr high to output chip select
rfbi_csx(14) high
F(6)
F(6)
ns
td(dV)
Output data rfbi_da[15:0] valid
G(7)
G(7)
ns
(8)
H(8)
ns
td(a0H-rdL)
Delay time, output command/data control rfbi_a0 high to output
read enable rfbi_rd low
H
td(rdlH-a0)
Delay time, output read enable rfbi_rd high to output
command/data control rfbi_a0 transition
I(9)
I(9)
ns
tw(rdH)
Pulse duration, output read enable rfbi_rd high
J(10)
J(10)
ns
(11)
K(11)
ns
(12)
(12)
ns
M(13)
ns
tw(rdL)
Pulse duration, output read enable rfbi_rd low
K
td(rdL-csxL)
Delay time, output read enable rfbi_rd low to output chip select
rfbi_csx(14) low
L
td(rdH-csxH)
Delay time, output read enable rfbi_rd high to output chip select
rfbi_csx(14) high
M(13)
tR(wr)
Rise time, output write enable rfbi_wr
10
10
ns
tF(wr)
Fall time, output write enable rfbi_wr
10
10
ns
tR(a0)
Rise time, output command/data control rfbi_a0
10
10
ns
tF(a0)
Fall time, output command/data control rfbi_a0
10
10
ns
tR(csx)
Rise time, output chip select rfbi_csx(14)
10
10
ns
tF(csx)
Fall time, output chip select rfbi_csx(14)
10
10
ns
Copyright © 2010, Texas Instruments Incorporated
L
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
187
PRODUCT PREVIEW
NO.
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 5-35. DSS Switching Characteristics— RFBI Mode— MIPI DBI 2.0 - LCD Panel (continued)
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
tR(d)
Rise time, output data rfbi_da[15:0]
10
10
ns
tF(d)
Fall time, output data rfbi_da[15:0]
10
10
ns
tR(rd)
Rise time, output read enable rfbi_rd
10
10
ns
tF(rd)
Fall time, output read enable rfbi_rd
10
10
ns
(1) A = (WECycleTime – WEOffTime) * (TimeParaGranularity + 1) * L4CLK
(2) B = (WEOffTime – WEOntime) * (TimeParaGranularity + 1) * L4CLK
(3) C = WEOnTime * (TimeParaGranularity + 1) * L4CLK
(4) D = (WECycleTime + CSPulseWidth – WEOffTime) * (TimeParaGranularity + 1) * L4CLK if mode Write to Read or Read to Write is
enabled
(5) E = (WEOnTime – CSOnTime) * (TimeParaGranularity + 1) * L4CLK
(6) F = (CSOffTime – WEOffTime) * (TimeParaGranularity + 1) * L4CLK
(7) G = WECycleTime * (TimeParaGranularity + 1) * L4CLK
(8) H = REOnTime * (TimeParaGranularity + 1) * L4CLK
(9) I = (RECycleTime + CSPulseWidth – REOffTime) * (TimeParaGranularity + 1) * L4CLK if mode Write to Read or Read to Write is
enabled
PRODUCT PREVIEW
(10) J = (RECycleTime – REOffTime) * (TimeParaGranularity + 1) * L4CLK
(11) K = (REOffTime – REOntime) * (TimeParaGranularity + 1) * L4CLK
(12) L = (REOnTime – CSOnTime) * (TimeParaGranularity + 1) * L4CLK
(13) M = (CSOffTime – REOffTime) * (TimeParaGranularity + 1) * L4CLK
(14) In rfbi_csx, x is equal to 0 or 1.
CsPulseWidth
WeCycleTime
WeCycleTime
rfbi_a0
CsOffTime
CsOnTime
CsOffTime
CsOnTime
rfbi_csx
WeOffTime
WeOnTime
WeOffTime
WeOnTime
rfbi_wr
rfbi_da[n:0]
DATA0
DATA1
rfbi_rd
rfbi_te_vsync[1:0]
rfbi_hsync[1:0]
SWPS038-057
(1)
(2)
(3)
In rfbi_csx, x is equal to 0 or 1.
rfbi_data[n:0], n up to 15
For more information, see the DSS chapter in the AM3715/03 TRM.
Figure 5-28. DSS—RFBI Mode—MIPI DBI 2.0 —LCD Panel—Command / Data Write
188
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
AccessTime
AccessTime
ReCycleTime
ReCycleTime
CsPulseWidth
rfbi_a0
CsOffTime
CsOffTime
CsOnTime
CsOnTime
ReOffTime
ReOffTime
rfbi_csx
ReOnTime
ReOnTime
rfbi_rd
DR0
DR1
DATA0
rfbi_da[n:0]
DATA1
rfbi_wr
rfbi_te_vsync[1:0]
rfbi_hsync[1:0]
SWPS038-058
In rfbi_csx, x is equal to 0 or 1.
rfbi_data[n:0], n up to 15
For more information, see the DSS chapter in the AM3715/03 TRM.
PRODUCT PREVIEW
(1)
(2)
(3)
Figure 5-29. DSS—RFBI Mode—MIPI DBI 2.0 —LCD Panel—Command / Data Read
WECycleTime
ReCycleTime
AccessTime
WECycleTime
rfbi_a0
CsOffTime
CsOffTime
CsOnTime
CsOffTime
CsOnTime
CsOnTime
rfbi_csx
WEOffTime
WEOffTime
WEOnTime
WEOnTime
rfbi_wr
ReOffTime
ReOnTime
rfbi_rd
CsPulseWidth
rfbi_da[n:0]
WRITE
READ
CsPulseWidth
WRITE
rfbi_te_vsync[1:0]
rfbi_hsync[1:0]
SWPS038-059
(1)
(2)
(3)
In rfbi_csx, x is equal to 0 or 1.
rfbi_data[n:0], n up to 15
For more information, see the DSS chapter in the AM3715/03 TRM.
Figure 5-30. DSS—RFBI Mode—MIPI DBI 2.0 — LCD Panel—Command / Data Write to Read and Read to
Write Modes
5.5.2.2.2 DSS—Parallel Interface—RFBI Mode—Pico DLP
The Remote Frame Buffer Interface (RFBI) module can provide also the necessary control signals and
data to interface to the Pico DLP driver of the Pico DLP panel. Table 5-36 assumes testing over the
recommended operating conditions and electrical characteristic conditions below (see Figure 5-31).
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
189
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 5-36. DSS Timing Conditions—RFBI Mode—Pico DLP
TIMING CONDITION PARAMETER
VALUE
MIN
UNIT
MAX
Output Condition
Output load capacitance(1)
CLOAD
5
pF
(1) Buffer strength configuration: LB0 = 0
To use Pico DLP application, RFBI register must be configured as shown in Table 5-37:
Table 5-37. DSS Register Configuration—RFBI Mode—Pico DLP
DESCRIPTION
REGISTER AND BIT FIELD(1)
BIT
VALUES
PRODUCT PREVIEW
Selection parallel mode
RFBI_CONFIGi and
ParallelMode
[1:0]
0b11: 16-bit parallel output interface
selected
Time Granularity (multiplies signal timing
latencies by 2).
RFBI_CONFIGi
andTimeGranularity
[4]
CS signal assertion time from Start Access
Time
RFBI_ONOFF_TIMEi and
CSOnTime
[3:0]
0b0000
CS signal de-assertion time from Start Access
Time
RFBI_ONOFF_TIMEi and
CSOffTime
[9:4]
0b000100: 4 cycles
WE signal assertion time from Start Access
Time
RFBI_ONOFF_TIMEi and
WEOnTime
[13:10]
0b0000
WE signal de-assertion time from Start Access
Time
RFBI_ONOFF_TIMEi and
WEOffTime
[19:14]
0b000010: 2 cycles
RE signal assertion time from Start Access
Time
RFBI_ONOFF_TIMEi and
REOnTime
[23:20]
0b0000
RE signal de-assertion time from Start Access
Time
RFBI_ONOFF_TIMEi and
REOffTime
[29:24]
0b0000
Write cycle time
RFBI_CYCLE_TIMEi and
WECycleTime
[5:0]
0b000100: 4 cycles
Read cycle time
RFBI_CYCLE_TIMEi and
ReCycleTime
[11:6]
0b000000
CS pulse width
RFBI_CYCLE_TIMEi and
CSPulseWidth
[17:12]
0b000000
Read to Write CS pulse width enable
RFBI_CYCLE_TIMEi and
RWEnable
[18]
0b0
Read to Read CS pulse width enable
RFBI_CYCLE_TIMEi and
RREnable
[19]
0b0
Write to Write CS pulse width enable
RFBI_CYCLE_TIMEi and
WWEnable
[20]
0b0
Write to Read CS pulse width enable
RFBI_CYCLE_TIMEi and
WREnable
[21]
0b0
From Start Access Time to CLK rising edge
used for the first data capture
RFBI_CYCLE_TIMEi and
AccessTime
[27:22]
0b0: x2 latency disable
0b000000
(1) i is equal to 0 or 1. For more information, see the DSS chapter in the AM3715/03 TRM.
190
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 5-38. DSS Switching Characteristics—RFBI Mode—Pico DLP(15)(17)(18)
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
tw(wrH)
Pulse duration, output write enable rfbi_wr high
A(1)
A(1)
ns
tw(wrL)
Pulse duration, output write enable rfbi_wr low
B(2)
B(2)
ns
(3)
(3)
ns
td(a0-wrL)
Delay time, output command/data control rfbi_a0
transition to output write enable rfbi_wr low
C
C
td(wrH-a0)
Delay time, output write enable rfbi_wr high to output
command/data control rfbi_a0 transition
D(4)
D(4)
ns
td(csx-wrL)
Delay time, output chip select rfbi_csx(14) low to output
write enable rfbi_wr low
E(5)
E(5)
ns
td(wrH-csxH)
Delay time, output write enable rfbi_wr high to output
chip select rfbi_csx(14) high
F(6)
F(6)
ns
td(dataV)
Output data rfbi_da[15:0](16) valid
G(7)
G(7)
ns
td(Skew)
Skew between output write enable falling rfbi_wr and
output data rfbi_da[15:0](16) high or low
15.5
15.5
ns
td(a0H-rdL)
Delay time, output command/data control rfbi_a0 high to
output read enable rfbi_rd low
H(8)
H(8)
ns
td(rdlH-a0)
Delay time, output read enable rfbi_rd high to output
command/data control rfbi_a0 transition
I(9)
I(9)
ns
tw(rdH)
Pulse duration, output read enable rfbi_rd high
J(10)
J(10)
ns
(11)
K(11)
ns
tw(rdL)
Pulse duration, output read enable rfbi_rd low
K
td(rdL-csxL)
Delay time, output read enable rfbi_rd low to output chip
select rfbi_csx(14) low
L(12)
L(12)
ns
td(rdL-csxH)
Delay time, output read enable rfbi_rd low to output chip
select rfbi_csx(14) high
M(13)
M(13)
ns
tR(wr)
Rise time, output write enable rfbi_wr
7
7
ns
tF(wr)
Fall time, output write enable rfbi_wr
7
7
ns
tR(a0)
Rise time, output command/data control rfbi_a0
7
7
ns
tF(a0)
Fall time, output command/data control rfbi_a0
7
7
ns
(14)
tR(csx)
Rise time, output chip select rfbi_csx
7
7
ns
tF(csx)
Fall time, output chip select rfbi_csx(14)
7
7
ns
tR(d)
Rise time, output data rfbi_da[15:0](16)
7
7
ns
(16)
tF(d)
Fall time, output data rfbi_da[15:0]
7
7
ns
tR(rd)
Rise time, output read enable rfbi_rd
7
7
ns
tF(rd)
Fall time, output read enable rfbi_rd
7
7
ns
(19)
CsOnTime
CS signal assertion time from Start Access Time RFBI_ONOFF_TIMEi Register
0
CsOffTime
CS signal de-assertion time from Start Access Time RFBI_ONOFF_TIMEi Register
40(19)
ns
WeOnTime
WE signal assertion time from Start Access Time RFBI_ONOFF_TIMEi Register
0(19)
ns
WeOffTime
WE signal de-assertion time from Start Access Time RFBI_ONOFF_TIMEi Register
20(19)
ns
ReOnTime
RE signal assertion time from Start Access Time RFBI_ONOFF_TIMEi Register
-
ns
ReOffTime
RE signal de-assertion time from Start Access Time RFBI_ONOFF_TIMEi Register
-
ns
WeCycleTime
Write cycle time - RFBI_CYCLE_TIMEi Register
40(19)
ns
ReCycleTime
Read cycle time - RFBI_CYCLE_TIMEi Register
-
ns
CsPulseWidth
CS pulse width - RFBI_CYCLE_TIMEi Register
0(19)
ns
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
PRODUCT PREVIEW
PARAMETER
ns
191
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
(1) A = (WECycleTime – WEOffTime) * (TimeParaGranularity + 1) * L4CLK
(2) B = (WEOffTime – WEOntime) * (TimeParaGranularity + 1) * L4CLK
(3) C = WEOnTime * (TimeParaGranularity + 1) * L4CLK
(4) D = (WECycleTime + CSPulseWidth – WEOffTime) * (TimeParaGranularity + 1) * L4CLK if mode Write to Read or Read to Write is
enabled.
(5) E = (WEOnTime – CSOnTime) * (TimeParaGranularity + 1) * L4CLK
(6) F = (CSOffTime – WEOffTime) * (TimeParaGranularity + 1) * L4CLK
(7) G = WECycleTime * (TimeParaGranularity + 1) * L4CLK
(8) H = REOnTime * (TimeParaGranularity + 1) * L4CLK
(9) I = (RECycleTime + CSPulseWidth – REOffTime) * (TimeParaGranularity + 1) * L4CLK if mode Write to Read or Read to Write is
enabled.
(10) J = (RECycleTime – REOffTime) * (TimeParaGranularity + 1) * L4CLK
(11) K = (REOffTime – REOntime) * (TimeParaGranularity + 1) * L4CLK
(12) L = (REOnTime – CSOnTime) * (TimeParaGranularity + 1) * L4CLK
(13) M = (CSOffTime – REOffTime) * (TimeParaGranularity + 1) * L4CLK
(14) In rfbi_csx, x is equal to 0 or 1.
(15) See DM Operating Condition Addendum for OPP voltages.
(16) 16-bit parallel output interface is selected in DSS register.
(17) At OPP100, L4 clock is 100 MHz and at OPP50, L4 clock is 50 MHz.
PRODUCT PREVIEW
(18) rfbi_wr must be at 25 MHz.
(19) These values are calculated by the following formula: RFBI Register (Value) * L4 Clock (ns).
CsPulseWidth
WeCycleTime
WeCycleTime
rfbi_a0
CsOffTime
CsOffTime
CsOnTime
CsOnTime
WeOffTime
WeOffTime
rfbi_csx
WeOnTime
WeOnTime
rfbi_wr
DATA0
rfbi_da[n:0]
rfbi_rd
DATA1
rfbi_te_vsync[1:0]
rfbi_hsync[1:0]
swps038-118
Figure 5-31. DSS—RFBI Mode—Pico DLP—Command / Data Write(1)(2)
(1) In rfbi_csx, x is equal to 0 or 1.
(2) rfbi_da[n:0], n up to 15
192
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
5.6
SPRS616B – JUNE 2010 – REVISED JULY 2010
Serial Communications Interfaces
5.6.1
Multichannel Buffered Serial Port (McBSP)
NOTE
For more information, see Multi-Channel Buffered Serial Port chapter of the AM3715/03
TRM.
The Multichannel Buffered Serial Port (McBSP) provides a full duplex direct serial interface between the
chip and other devices in a system such as other application chips, codecs. It can accommodate a wide
range of peripherals and clocked frame oriented protocols (I2S, PCM, T ) due to its high level of versatility.
The interface clock (clkx/clkr) activation edge (data/frame sync capture and generation) has to be
configured accordingly with the external peripheral (activation edge capability) and the type of data
transfer required at the system level.
Depending on the number of pins, McBSP supports either:
• 6-pin mode: dx and dr as data pins; clkx, clkr, fsx, and fsr as control pins
• 4-pin mode: dx and dr as data pins; clkx and fsx pins as control pins. The clkx and fsx pins are
internally looped back, via software configuration, respectively to the clkr and fsr internal signals for
data receive.
McBSP1 supports the 6-pin mode. McBSP2, 3, 4, and 5 support only the 4-pin mode.
The following sections describe the timing characteristics for applications in normal mode (that is, McBSPx
connected to one peripheral) and T applications in multipoint mode.
5.6.1.1
McBSP Timing Conditions—Normal Mode
Table 5-40 through Table 5-64 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-32 through Figure 5-39).
Table 5-39. McBSP Timing Conditions—Normal Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2
ps
tF
Input signal fall time
2
ps
Output load capacitance(1)
10
pF
Output Condition
CLOAD
(1) Buffer strength configuration:
– McBSP4 - Set #1: LB0 = 1.
– Otherwise: LB0 = 0.
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
193
PRODUCT PREVIEW
McBSP may support two types of data transfer at the system level:
• The full cycle mode, for which one clock period is used to transfer the data, generated on one edge
and captured on the same edge (one clock period later).
• The half cycle mode, for which one half clock period is used to transfer the data, generated on one
edge and captured on the opposite edge (one half clock period later). Note that a new data is
generated only every clock period, which secures the required hold time.
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 5-40. McBSP Output Clock Characteristics—Normal Mode(4)
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
McBSP1
tc(CLK)
Cycle time, mcbsp1_clkx (multiplexing mode 0) /
mcbsp1_clkr (multiplexing mode 0 & 2)
48
24
MHz
McBSP2
tc(CLK)
Cycle time, mcbsp2_clkx (multiplexing mode 0)
48
24
MHz
McBSP3
tc(CLK)
Cycle time, mcbsp3_clkx
IO set 1
(multiplexing
mode 0)
32
16
MHz
IO set 2
(multiplexing
mode 1)
48
24
IO set 3
(multiplexing
mode 2)
48
24
IO set 1
(multiplexing
mode 0)
48
16
IO set 3
(multiplexing
mode 2)
32
16
IO set 2
(multiplexing
mode 1)
32
16
McBSP4
tc(CLK)
Cycle time, mcbsp4_clkx
PRODUCT PREVIEW
McBSP5
tc(CLK)
Cycle time, mcbsp5_clkx
tW(CLKH)
Typical pulse duration, mcbsp1_clkr / mcbspx_clkx high(2)
(2)
tW(CLKL)
Typical pulse duration, mcbsp1_clkr / mcbspx_clkx low
tdc(CLK)
Duty cycle error, mcbsp1_clkr / mcbspx_clkx(2)
(3)
Jitter, mcbsp1_clkr / mcbspx_clkx
0.5*P(1)
0.5*P(1)
(1)
0.5*P(1)
0.5*P
/ mcbsp_clks
MHz
MHz
ns
ns
–0.75
0.75
–0.75
0.75
ns
-0.40
0.40
-0.40
0.40
ns
(1) P = mcbspy_clkx(2) or mcbsp1_clkr output clock period in ns
(2) In mcbspy, y is equal to 1, 2, 3, 4, or 5.
(3) In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5.
(4) See Operating Condition Addendum for OPP voltages.
5.6.1.1.1 Rising Edge as Activation Mode
5.6.1.1.1.1 Timing with Rising Edge as Activation Edge—Receive Mode
Table 5-41. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements—Rising Edge and Receive Mode(1) (2)
NO.
PARAMETER
OPP100
MIN
194
MAX
OPP50
MIN
UNIT
MAX
B3
tsu(DRV-CLKAE)
Setup time, mcbspx_dr valid before
mcbsp1_clkr / mcbspx_clkx active edge
Master
4.36
8.63
ns
Slave
3.67
7.94
ns
B4
th(CLKAE-DRV)
Hold time, mcbspx_dr valid after
mcbsp1_clkr / mcbspx_clkx active edge
Master
1.01
1.01
ns
Slave
0.4
0.4
ns
B5
tsu(FSV-CLKAE)
Setup time, mcbsp1_fsr / mcbspx_fsx valid before
mcbsp1_clkr / mcbspx_clkx active edge
3.67
7.94
ns
B6
th(CLKAE-FSV)
Hold time, mcbsp1_fsr / mcbspx_fsx valid after
mcbsp1_clkr / mcbspx_clkx active edge
0.5
0.5
ns
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
(2) See Operating Condition Addendum for OPP voltages.
Table 5-42. McBSP1, 2, and 3 (Sets #2 and #3) Switching Characteristics—Rising Edge and Receive
Mode(1) (2)
NO.
B2
PARAMETER
td(CLKAE-FSV)
OPP100
Delay time, mcbsp1_clkr / mcbspx_clkx active edge to
mcbsp1_fsr / mcbspx_fsx valid
OPP50
MIN
MAX
MIN
MAX
0.7
14.79
0.7
29.58
UNIT
ns
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
(2) See Operating Condition Addendum for OPP voltages.
Table 5-43. McBSP4 (Set #1) Timing Requirements—Rising Edge and Receive Mode(1) (2)
PARAMETER
OPP100
MIN
MAX
OPP50
MIN
UNIT
MAX
B3
tsu(DRV-CLKXAE)
Setup time, mcbspx_dr valid before
mcbspx_clkx active edge
Master
2.87
8.63
ns
Slave
3.67
7.94
ns
B4
th(CLKXAE-DRV)
Hold time, mcbspx_dr valid after
mcbspx_clkx active edge
Master
1.01
1.01
ns
Slave
0.4
0.4
ns
B5
tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx
active edge
3.67
7.94
ns
B6
th(CLKXAE-FSXV)
0.5
0.5
ns
Hold time, mcbspx_fsx valid after mcbspx_clkx active
edge
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 5-45 and Table 5-46.
(2) See Operating Condition Addendum for OPP voltages.
Table 5-44. McBSP4 (Set #1) Switching Characteristics—Rising Edge and Receive Mode(1) (2)
NO.
B2
PARAMETER
td(CLKXAE-FSXV)
OPP100
Delay time, mcbspx_clkx active edge to mcbspx_fsx
valid
OPP50
MIN
MAX
MIN
MAX
0.7
16.56
0.7
33.12
UNIT
ns
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 5-45 and Table 5-46.
(2) See Operating Condition Addendum for OPP voltages.
Table 5-45. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements—Rising Edge and Receive Mode(1) (2)
NO.
PARAMETER
OPP100
MIN
B3
tsu(DRV-CLKXAE)
MAX
OPP50
MIN
UNIT
MAX
Setup time, mcbspx_dr valid before
mcbspx_clkx active edge
Master
6.49
12.90
ns
Slave
5.80
12.21
ns
Hold time, mcbspx_dr valid after
mcbspx_clkx active edge
Master
1.01
1.01
ns
B4
th(CLKXAE-DRV)
0.4
0.4
ns
B5
tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx
active edge
5.81
12.21
ns
B6
th(CLKXAE-FSXV)
0.5
0.5
ns
Slave
Hold time, mcbspx_fsx valid after mcbspx_clkx active
edge
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
195
PRODUCT PREVIEW
NO.
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in Table 5-41 and Table 5-42.
For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
(2) See Operating Condition Addendum for OPP voltages.
Table 5-46. McBSP3 (Set #1), 4 (Set #2), and 5 Switching Characteristics—Rising Edge and Receive
Mode(1) (2)
NO.
B2
PARAMETER
td(CLKXAE-FSXV)
OPP100
Delay time, mcbspx_clkx active edge to mcbspx_fsx
valid
OPP50
MIN
MAX
MIN
MAX
0.7
22.18
0.7
44.37
UNIT
ns
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in Table 5-41 and Table 5-42.
For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins)
(2) See Operating Condition Addendum for OPP voltages.
mcbspx_clkr
B2
B2
PRODUCT PREVIEW
mcbspx_fsr
B3
mcbspx_dr
B4
D7
D6
D5
SWPS038-062
(1)
In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5.
Figure 5-32. McBSP Rising Edge Receive Timing in Master Mode
mcbspx_clkr
B5
B6
mcbspx_fsr
B3
mcbspx_dr
B4
D7
D6
D5
SWPS038-063
(1)
In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5.
Figure 5-33. McBSP Rising Edge Receive Timing in Slave Mode
5.6.1.1.1.2 Timing with Rising Edge as Activation Edge—Transmit Mode
Table 5-47. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements—Rising Edge and Transmit Mode(1)
(2)
NO.
PARAMETER
OPP100
MIN
196
MAX
OPP50
MIN
UNIT
MAX
B5
tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx
active edge
3.67
7.94
ns
B6
th(CLKXAE-FSXV)
0.5
0.5
ns
Hold time, mcbspx_fsx valid after mcbspx_clkx active
edge
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
(2) See Operating Condition Addendum for OPP voltages.
Table 5-48. McBSP1, 2, and 3 (Sets #2 and #3) Switching Characteristics—Rising Edge and Transmit
Mode(1) (2)
NO.
PARAMETER
OPP100
OPP50
MIN
MAX
MIN
MAX
UNIT
B2
td(CLKXAE-FSXV)
Delay time, mcbspx_clkx active edge to mcbspx_fsx
valid
0.7
14.79
0.7
29.58
ns
B8
td(CLKXAE-DXV)
Delay time, mcbspx_clkx active edge to
mcbspx_dx valid
Master
0.6
14.79
0.6
29.58
ns
Slave
0.6
13.89
0.6
28.68
ns
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
(2) See Operating Condition Addendum for OPP voltages.
Table 5-49. McBSP4 (Set #1) Timing Requirements—Rising Edge and Transmit Mode(1) (2)
PARAMETER
OPP100
MIN
MAX
OPP50
MIN
UNIT
MAX
B5
tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx
active edge
3.67
7.94
ns
B6
th(CLKXAE-FSXV)
0.5
0.5
ns
Hold time, mcbspx_fsx valid after mcbspx_clkx active
edge
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 5-51 and Table 5-52.
(2) See Operating Condition Addendum for OPP voltages.
Table 5-50. McBSP4 (Set #1) Switching Characteristics—Rising Edge and Transmit Mode(1) (2)
NO.
PARAMETER
OPP100
OPP50
MIN
MAX
MIN
MAX
UNIT
B2
td(CLKXAE-FSXV)
Delay time, mcbspx_clkx active edge to mcbspx_fsx
valid
0.7
16.56
0.7
33.12
ns
B8
td(CLKXAE-DXV)
Delay time, mcbspx_clkx active edge to
mcbspx_dx valid
Master
0.6
16.56
0.6
33.12
ns
Slave
0.6
17.15
0.6
32.22
ns
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 5-51 and Table 5-52.
(2) See Operating Condition Addendum for OPP voltages.
Table 5-51. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements—Rising Edge and Transmit Mode(1)
(2)
NO.
PARAMETER
OPP100
MIN
MAX
OPP50
MIN
UNIT
MAX
B5
tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx
active edge
5.81
12.21
ns
B6
th(CLKXAE-FSXV)
0.5
0.5
ns
Hold time, mcbspx_fsx valid after mcbspx_clkx active
edge
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in Table 5-47 and Table 5-48.
For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
(2) See Operating Condition Addendum for OPP voltages.
Table 5-52. McBSP3 (Set #1), 4 (Set #2), and 5 Switching Characteristics—Rising Edge and Transmit
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
197
PRODUCT PREVIEW
NO.
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 5-52. McBSP3 (Set #1), 4 (Set #2), and 5 Switching Characteristics—Rising Edge and Transmit
Mode(1) (2) (continued)
Mode(1) (2)
NO.
PARAMETER
OPP100
OPP50
UNIT
MIN
MAX
MIN
MAX
B2
td(CLKXAE-FSXV)
Delay time, mcbspx_clkx active edge to mcbspx_fsx
valid
0.7
22.18
0.7
44.37
ns
B8
td(CLKXAE-DXV)
Delay time, mcbspx_clkx active edge to
mcbspx_dx valid
Master
0.6
21.28
0.6
43.47
ns
Slave
0.6
21.28
0.6
43.47
ns
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in Table 5-47 and Table 5-48.
For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
(2) See Operating Condition Addendum for OPP voltages.
mcbspx_clkx
B2
B2
mcbspx_fsx
B8
PRODUCT PREVIEW
mcbspx_dx
D7
D6
D5
SWPS038-064
(1)
In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5.
Figure 5-34. McBSP Rising Edge Transmit Timing in Master Mode
mcbspx_clkx
B5
B6
mcbspx_fsx
B8
mcbspx_dx
D7
D6
D5
SWPS038-065
(1)
In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5.
Figure 5-35. McBSP Rising Edge Transmit Timing in Slave Mode
5.6.1.1.2 Falling Edge as Activation Edge
5.6.1.1.2.1 Timing with Falling Edge as Activation Edge Mode—Receive Mode
Table 5-53. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements—Falling Edge and Receive Mode(1)
(2)
NO.
PARAMETER
OPP100
MIN
198
MAX
OPP50
MIN
UNIT
MAX
B3
tsu(DRV-CLKAE)
Setup time, mcbspx_dr valid before
mcbsp1_clkr / mcbspx_clkx active edge
Master
4.36
8.63
ns
Slave
3.67
7.94
ns
B4
th(CLKAE-DRV)
Hold time, mcbspx_dr valid after
mcbsp1_clkr / mcbspx_clkx active edge
Master
1.01
1.01
ns
Slave
0.4
0.4
ns
B5
tsu(FSV-CLKAE)
Setup time, mcbsp1_fsr / mcbspx_fsx valid before
mcbsp1_clkr / mcbspx_clkx active edge
3.7
7.94
ns
B6
th(CLKAE-FSV)
Hold time, mcbsp1_fsr / mcbspx_fsx valid after
mcbsp1_clkr / mcbspx_clkx active edge
0.5
0.5
ns
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
(2) See Operating Condition Addendum for OPP voltages.
Table 5-54. McBSP1, 2, and 3 (Sets #2 and #3) Switching Characteristics—Falling Edge and Receive
Mode(1) (2)
NO.
B2
PARAMETER
td(CLKAE-FSV)
OPP100
Delay time, mcbsp1_clkr / mcbspx_clkx active edge to
mcbsp1_fsr / mcbspx_fsx valid
OPP50
MIN
MAX
MIN
MAX
0.7
14.79
0.7
29.58
UNIT
ns
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
(2) See Operating Condition Addendum for OPP voltages.
Table 5-55. McBSP4 (Set #1) Timing Requirements—Falling Edge and Receive Mode(1) (2)
PARAMETER
OPP100
MIN
MAX
OPP50
MIN
UNIT
MAX
B3
tsu(DRV-CLKXAE)
Setup time, mcbspx_dr valid before
mcbspx_clkx active edge
Master
2.87
8.63
ns
Slave
3.67
7.94
ns
B4
th(CLKXAE-DRV)
Hold time, mcbspx_dr valid after
mcbspx_clkx active edge
Master
1.01
1.01
ns
Slave
0.4
0.4
ns
B5
tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx
active edge
3.67
7.94
ns
B6
th(CLKXAE-FSXV)
0.5
0.5
ns
Hold time, mcbspx_fsx valid after mcbspx_clkx active
edge
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 5-57 and Table 5-58.
(2) See Operating Condition Addendum for OPP voltages.
Table 5-56. McBSP4 (Set #1) Switching Characteristics—Falling Edge and Receive Mode(1) (2)
NO.
B2
PARAMETER
td(CLKXAE-FSXV)
OPP100
Delay time, mcbspx_clkx active edge to mcbspx_fsx
valid
OPP50
MIN
MAX
MIN
MAX
0.7
16.56
0.7
33.12
UNIT
ns
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 5-57 and Table 5-58.
(2) See Operating Condition Addendum for OPP voltages.
Table 5-57. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements—Falling Edge and Receive Mode(1) (2)
NO.
PARAMETER
OPP100
MIN
B3
tsu(DRV-CLKXAE)
MAX
OPP50
MIN
UNIT
MAX
Setup time, mcbspx_dr valid before
mcbspx_clkx active edge
Master
6.5
12.9
ns
Slave
5.81
12.21
ns
Hold time, mcbspx_dr valid after
mcbspx_clkx active edge
Master
1.01
1.01
ns
B4
th(CLKXAE-DRV)
0.4
0.4
ns
B5
tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx
active edge
5.81
12.21
ns
B6
th(CLKXAE-FSXV)
0.5
0.5
ns
Slave
Hold time, mcbspx_fsx valid after mcbspx_clkx active
edge
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
199
PRODUCT PREVIEW
NO.
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in Table 5-53 and Table 5-54.
For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
(2) See Operating Condition Addendum for OPP voltages.
Table 5-58. McBSP3 (Set #1), 4 (Set #2), and 5 Switching Characteristics—Falling Edge and Receive
Mode(1) (2)
NO.
B2
PARAMETER
td(CLKXAE-FSXV)
OPP100
Delay time, mcbspx_clkx active edge to mcbspx_fsx
valid
OPP50
UNIT
MIN
MAX
MIN
MAX
0.7
22.19
0.7
44.37
ns
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in Table 5-53 and Table 5-54.
(2) See Operating Condition Addendum for OPP voltages.
mcbspx_clkr
B2
B2
mcbspx_fsr
PRODUCT PREVIEW
B3
mcbspx_dr
B4
D7
D6
D5
SWPS038-066
(1)
In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5.
Figure 5-36. McBSP Falling Edge Receive Timing in Master Mode
mcbspx_clkr
B5
B6
mcbspx_fsr
B3
mcbspx_dr
B4
D7
D6
D5
SWPS038-067
(1)
In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5.
Figure 5-37. McBSP Falling Edge Receive Timing in Slave Mode
5.6.1.1.2.2 Timing with Falling Edge as Activation Edge—Transmit Mode
Table 5-59. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements—Falling Edge and Transmit Mode(1)
(2)
NO.
PARAMETER
OPP100
MIN
200
MAX
OPP50
MIN
UNIT
MAX
B5
tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx
active edge
3.67
7.94
ns
B6
th(CLKXAE-FSXV)
0.5
0.5
ns
Hold time, mcbspx_fsx valid after mcbspx_clkx active
edge
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
(2) See Operating Condition Addendum for OPP voltages.
Table 5-60. McBSP1, 2, and 3 (Sets #2 and #3) Switching Characteristics—Falling Edge and Transmit
Mode(1) (2)
NO.
PARAMETER
OPP100
OPP50
MIN
MAX
MIN
MAX
UNIT
B2
td(CLKXAE-FSXV)
Delay time, mcbspx_clkx active edge to mcbspx_fsx
valid
0.7
14.79
0.7
29.58
ns
B8
td(CLKXAE-DXV)
Delay time, mcbspx_clkx active edge to
mcbspx_dx valid
Master
0.6
14.79
0.6
29.58
ns
Slave
0.6
13.89
0.6
28.68
ns
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
(2) See Operating Condition Addendum for OPP voltages.
Table 5-61. McBSP4 (Set #1) Timing Requirements—Falling Edge and Transmit Mode(1) (2)
PARAMETER
OPP100
MIN
MAX
OPP50
MIN
UNIT
MAX
B5
tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx
active edge
3.67
7.94
ns
B6
th(CLKXAE-FSXV)
0.5
0.5
ns
Hold time, mcbspx_fsx valid after mcbspx_clkx active
edge
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 5-63 and Table 5-64.
(2) See Operating Condition Addendum for OPP voltages.
Table 5-62. McBSP4 (Set #1) Switching Characteristics—Falling Edge and Transmit Mode(1) (2)
NO.
PARAMETER
OPP100
OPP50
MIN
MAX
MIN
MAX
UNIT
B2
td(CLKXAE-FSXV)
Delay time, mcbspx_clkx active edge to mcbspx_fsx
valid
0.7
16.56
0.7
33.12
ns
B8
td(CLKXAE-DXV)
Delay time, mcbspx_clkx active edge to
mcbspx_dx valid
Master
0.6
16.56
0.6
33.12
ns
Slave
0.6
17.15
0.6
32.22
ns
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 5-63 and Table 5-64.
(2) See Operating Condition Addendum for OPP voltages.
Table 5-63. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements—Falling Edge and Transmit Mode(1)
(2)
NO.
PARAMETER
OPP100
MIN
MAX
OPP50
MIN
UNIT
MAX
B5
tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx
active edge
5.81
12.21
ns
B6
th(CLKXAE-FSXV)
0.5
0.5
ns
Hold time, mcbspx_fsx valid after mcbspx_clkx active
edge
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in Table 5-60 and Table 5-61.
For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
(2) See Operating Condition Addendum for OPP voltages.
Table 5-64. McBSP3 (Set #1), 4 (Set #2), and 5 Switching Characteristics—Falling Edge and Transmit
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
201
PRODUCT PREVIEW
NO.
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 5-64. McBSP3 (Set #1), 4 (Set #2), and 5 Switching Characteristics—Falling Edge and Transmit
Mode(1) (2) (continued)
Mode(1) (2)
NO.
PARAMETER
OPP100
OPP50
MIN
MAX
MIN
MAX
UNIT
B2
td(CLKXAE-FSXV)
Delay time, mcbspx_clkx active edge to mcbspx_fsx
valid
0.7
22.18
0.7
44.37
ns
B8
td(CLKXAE-DXV)
Delay time, mcbspx_clkx active edge to
mcbspx_dx valid
Master
0.6
21.28
0.6
43.47
ns
Slave
0.6
21.28
0.6
43.47
ns
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in Table 5-60 and Table 5-61.
For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
(2) See Operating Condition Addendum for OPP voltages.
mcbspx_clkx
B2
B2
mcbspx_fsx
B8
PRODUCT PREVIEW
mcbspx_dx
D7
D6
D5
SWPS038-068
(1)
In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5.
Figure 5-38. McBSP Falling Edge Transmit Timing in Master Mode
mcbspx_clkx
B5
B6
mcbspx_fsx
B8
mcbspx_dx
D7
D6
D5
SWPS038-069
(1)
In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5.
Figure 5-39. McBSP Falling Edge Transmit Timing in Slave Mode
5.6.1.2
McBSP in TDM —Multipoint Mode (McBSP3)
For T application in multipoint mode, the AM3715/03 processor is considered as a slave. Table 5-66 and
Table 5-67 assume testing over the operating conditions and electrical characteristic conditions described
below.
Table 5-65. McBSP3 (Set #3) Timing Conditions—T Multipoint Mode(1)
TIMING CONDITION PARAMETER
VALUE
UNIT
MIN
MAX
Input Conditions
tR
Input signal rise time
1.0
8.5
ns
tF
Input signal fall time
1.0
8.5
ns
40
pF
Output Condition
CLOAD
202
Output load capacitance(2)
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
(1) For McBSP3, these timings concern only Set #3 (multiplexing mode in McBSP1 pins)
(2) The load setting of the IO buffer: LB0 = 0.
Table 5-66. McBSP3 (Set #3) Timing Requirements—T Multipoint Mode(4)
NO.
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
1 / tc(clkxH)
Frequency, input clock mcbsp3_clkx
tw(clkxH)
Pulse duration, input clock mcbsp3_clkx high
0.5P(1)
0.5P(1)
ns
tw(clkxL)
Pulse duration, input clock mcbsp3_clkx low
0.5P(1)
0.5P(1)
ns
tdc(clkx)
Duty cycle error, input clock mcbsp3_clkx
B3(3)
tsu(drV-clkxAE)
Setup time, input data mcbsp3_dr valid before input
clock mcbsp3_clkx active edge
B4(3)
th(clkxAE-drV)
Hold time, input data mcbsp3_dr valid after input clock
mcbsp3_clkx active edge
B5(3)
tsu(fsxV-clkxAE)
B6(3)
th(clkxAE-fsxV)
6
–8.14
8.14
6
–8.14
8.14
MHz
ns
9
9
ns
2.4
2.4
ns
Setup time, input frame synchronization mcbsp3_fsx
valid before input clock mcbsp3_clkx active edge
9
9
ns
Hold time, input frame synchronization mcbsp3_fsx
valid after input clock mcbsp3_clkx active edge
2.4
2.4
ns
(2) For McBSP3, these timings concern only Set #3 (multiplexing mode in McBSP1 pins).
(3) See Section 5.6.1.1 for corresponding figures.
(4) See Operating Condition Addendum for OPP voltages.
Table 5-67. McBSP3 (Set #3) Switching Characteristics—T Multipoint Mode(1)
NO.
B8(2)
PARAMETER
td(clkxAE-dxV)
Delay time, mcbsp3_clkx active edge to output data
mcbsp3_dx valid
OPP100
OPP50
MIN
MAX
MIN
MAX
0.6
15.89
0.6
28.68
UNIT
ns
(1) For McBSP3, these timings concern only Set #3 (multiplexing mode in McBSP1 pins).
(2) See Section 5.6.1.1 for corresponding figures.
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
203
PRODUCT PREVIEW
(1) P = input clock mcbsp3_clkx period in ns
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
5.6.2
www.ti.com
Multichannel Serial Port Interface (McSPI)
NOTE
For more information, see Multichannel SPI chapter of the AM3715/03 TRM.
McSPI allows a duplex, synchronous, serial communication between a local host and SPI compliant
external devices. The following timings are applicable to the different configurations of McSPI in
master/slave mode for any McSPI and any channel (n).
5.6.2.1
McSPI—Slave Mode
In slave mode, McSPI initiates data transfer on the data lines (mcspix_somi, mcspix_simo) when it
receives an SPI clock (mcspix_clk) from the external SPI master device.
Table 5-69 and Table 5-70 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-40 and Figure 5-41).
Table 5-68. McSPI Timing Conditions—Slave Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
PRODUCT PREVIEW
tR
Input signal rise time
4
ns
tF
Input signal fall time
4
ns
Output load capacitance(1)
20
pF
Output Condition
CLOAD
(1) The load setting of the IO buffer: LB0 = 1.
Table 5-69. McSPI Timing Requirements—Slave Mode(1)
NO.
PARAMETER
(3)
OPP100
MIN
OPP50
MAX
UNIT
MIN
MAX
12
MHz
0.45*P(2)
0.55*P(2)
ns
SS0
1/tc(CLK)
Frequency, mcspix_clk
24
SS1
tw(CLK)
Pulse duration, mcspix_clk high or low
SS2
tsu(SIMOV-CLKAE) Setup time, mcspix_simo valid before mcspix_clk
active edge
4.2
9.5
ns
SS3
th(SIMOV-CLKAE)
Hold time, mcspix_simo valid after mcspix_clk active
edge
4.6
9.9
ns
SS4
tsu(CS0V-CLKFE)
Setup time, mcspix_cs0 valid before mcspix_clk first
edge
13.8
28.6
ns
SS5
th(CS0I-CLKLE)
Hold time, mcspix_cs0 invalid after mcspix_clk last
edge
13.8
28.6
ns
0.45*P(2)
0.55*P(2)
(1) In mcspix, x is equal to 1, 2, 3, or 4.
(2) P = mcspix_clk clock period
(3) See Operating Condition Addendum for OPP voltages.
204
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 5-70. McSPI Switching Characteristics—Slave Mode(1) (3)
NO.
PARAMETER
(4)
OPP100
SS6
td(CLKAE-SOMIV)
Delay time, mcspix_clk active edge to mcspix_somi
shifted
SS7
td(CS0AE-SOMIV)
Delay time, mcspix_cs0 active edge to
mcspix_somi shifted
OPP50
UNIT
MIN
MAX
MIN
MAX
1.8
15.9
3.2
31.7
ns
31.7
ns
Modes 0
and 2(2)
15.9
(1) In mcspix, x is equal to 1, 2, 3, or 4.
(2) The polarity of mcspix_clk and the active edge (rising or falling) on which mcspix_simo is driven and mcspix_somi is latched is all
software configurable:
– mcspix_clk(1) phase programmable with the bit PHA of MCSPI_CH(i)CONF register: PHA = 0 (Modes 0 and 2)
For more information, see the McSPI environment chapter, Data Format Configurations section of the AM3715/03 TRM for modes and
phase correspondence description.
(3) This timing applies to all configurations regardless of mcspix_clk polarity and which clock edges are used to drive output data and
capture input data.
(4) See Operating Condition Addendum for OPP voltages.
PHA=0
EPOL=1
mcspi_cs(IN)
PRODUCT PREVIEW
SS1
SS0
SS4
mcspi_clk(IN)
SS1
SS5
POL=0
SS1
SS0
SS1
POL=1
mcspi_clk(IN)
SS7
SS6
Bit n–1
mcspi_somi(OUT)
SS6
Bit n–2
Bit n–3
Bit n–4
Bit 0
PHA=1
EPOL=1
mcspi_cs(IN)
SS1
SS0
SS4
mcspi_clk(IN)
SS1
SS5
POL=0
SS1
SS0
SS1
POL=1
mcspi_clk(IN)
SS6
Bit n–1
mcspi_somi(OUT)
SS6
Bit n–2
SS6
Bit n–3
SS6
Bit 1
Bit 0
SWPS038-070
(1)
(2)
The active clock edge selection of mcspi_clk (rising or falling) on which mcspi_simo is driven and mcspi_somi data is latched is
software configurable with the bit MCSPI_CH(i)CONF[1] = POL and the bit MCSPI_CH(i)CONF[0] = PHA.
The polarity of mcspi_cs is software configurable with the bit MCSPI_CH(i)CONF[6] = EPOL.
Figure 5-40. McSPI—Slave Mode—Transmit
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
205
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
PHA=0
EPOL=1
mcspi_cs(IN)
SS1
SS0
SS4
mcspi_clk(IN)
SS1
SS5
POL=0
SS1
SS0
SS1
POL=1
mcspi_clk(IN)
SS3
SS2
SS2
SS3
Bit n–1
mcspi_simo(IN)
Bit n–3
Bit n–2
Bit n–4
Bit 0
PHA=1
EPOL=1
mcspi_cs(IN)
SS1
SS0
PRODUCT PREVIEW
SS4
mcspi_clk(IN)
SS1
SS5
POL=0
SS1
SS0
SS1
POL=1
mcspi_clk(IN)
SS2
SS3
SS2
mcspi_simo(IN)
Bit n–1
SS3
Bit n–2
Bit n–3
Bit 0
Bit 1
SWPS038-071
(1)
(2)
The active clock edge selection of mcspi_clk (rising or falling) on which mcspi_simo is driven and mcspi_somi data is latched is
software configurable with the bit MCSPI_CH(i)CONF[1] = POL and the bit MCSPI_CH(i)CONF[0] = PHA.
The polarity of mcspi_cs is software configuable with the bit MCSPI_CH(i)CONF[6] = EPOL.
Figure 5-41. McSPI—Slave Mode—Receive
206
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
5.6.2.2
SPRS616B – JUNE 2010 – REVISED JULY 2010
McSPI—Master Mode
In master mode, McSPI supports multichannel communication. McSPI initiates a data transfer on the data
lines (SPIDAT [1:0]) and generates clock (SPICLK) and control signals (SPIEN) to a single SPI slave
device at a time.
Table 5-72 and Table 5-75 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-42 and Figure 5-43).
Table 5-71. McSPI Timing Conditions—Master Mode(1)
TIMING CONDITION PARAMETER
VALUE
MIN
UNIT
MAX
Input Conditions
tR
Input signal rise time
4
ns
tF
Input signal fall time
4
ns
Output Conditions
McSPI1, McSPI2, McSPI3, and McSPI4
CLOAD
Output load capacitance for spix_csn signals
20
pF
30
pF
20
pF
CLOAD
Output load capacitance for spix_clk and spix_simo
McSPI1 and McSPI4
CLOAD
Output load capacitance for spix_clk and spix_simo
(1) Buffer strength configuration: LB0 = 1.
Table 5-72. McSPI1, 2, and 4 Timing Requirements—Master Mode(1) (2)
NO.
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
SM2
tsu(SOMIV-CLKAE) Setup time, mcspix_somi valid before mcspix_clk
active edge
1.1
1.5
ns
SM3
th(SOMIV-CLKAE)
1.9
2.8
ns
Hold time, mcspix_somi valid after mcspix_clk active
edge
(1) In mcspix, x is equal to 1, 2, or 4. In mcspix_csn, n is equal to 0, 1, 2, or 3 for x equal to 1, n is equal to 0 or 1 for x equal to 2 and 4.
(2) See Operating Condition Addendum for OPP voltages.
Table 5-73. McSPI1, 2, and 4 Switching Characteristics—Master Mode(1) (6)
NO.
PARAMETER
OPP100
MIN
SM0
SM1
1/tc(CLK)
Frequency, mcspix_clk
0.45*P
24
(3)
Pulse duration, mcspix_clk high or low
Rise time, output clock mcspi1_clk and mcspi4_clk
5.72
5.68
Rise time, output clock mcspi2_clk
7.33
7.31
Fall time, output clock mcspi1_clk and mcspi4_clk
5.22
5.21
Fall time, output clock mcspi2_clk
6.77
6.71
Delay time, mcspix_clk active edge to mcspix_simo
shifted
–2.1
SM5
td(CSnA-CLKFE)
Delay time, mcspix_csi active to Modes 1 and 3(2)
mcspix_clk first edge
Modes 0 and 2(2)
A(4) – 3.2
Modes 1 and 3(2)
td(CLKLE-CSnI)
td(CSnAE-SIMOV)
Delay time, mcspix_clk last
edge to mcspix_csi inactive
Modes 0 and 2
(2)
Delay time, mcspix_csi active edge to mcspix_simo
shifted
Copyright © 2010, Texas Instruments Incorporated
0.45*P
(3)
tR(clk)
td(CLKAE-SIMOV)
0.55*P
UNIT
MAX
48
(3)
SM4
SM7
MIN
tw(CLK)
tF(clk)
SM6
OPP50
MAX
5.0
–2.1
0.55*P
MHz
(3)
11.3
ns
ns
ns
ns
A(4) – 4.4
ns
– 3.2
B(5) – 4.4
ns
B(5) – 3.2
B(5) – 4.4
ns
B
A
(5)
(4)
– 3.2
A
5.0
(4)
– 4.4
ns
11.3
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
ns
207
PRODUCT PREVIEW
McSPI2 and McSPI3
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
(1) In mcspix, x is equal to 1, 2, or 4. In mcspix_csn, n is equal to 0, 1, 2, or 3 for x equal to 1, n is equal to 0 or 1 for x equal to 2 and 4.
(2) The polarity of mcspix_clk and the active edge (rising or falling) on which mcspix_simo is driven and mcspix_somi is latched is all
software configurable:
– mcspix_clk(1) phase programmable with the bit PHA of MCSPI_CH(i)CONF register: PHA = 1 (Modes 1 and 3).
– mcspix_clk(1) phase programmable with the bit PHA of MCSPI_CH(i)CONF register: PHA = 0 (Modes 0 and 2).
For more information, see the McSPI environment chapter, Data Format Configurations section of the AM3715/03 TRM for modes and
phase correspondence description.
(3) P = mcspix_clk clock period
(4) Case P = 20.8 ns, A = (TCS+0.5)*P(3) (TCS is a bit field of MSPI_CHCONFx[26:25] register).
Case P > 20.8 ns, A = TCS*P(3) (TCS is a bitfield of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of
AM3715/03 TRM.
(5) B = TCS*P(3) (TCS is a bit field of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of AM3715/03 TRM.
(6) See Operating Condition Addendum for OPP voltages.
Table 5-74. McSPI3 Timing Requirements—Master Mode(1)
NO.
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
SM2
tsu(SOMIV-CLKAE) Setup time, mcspi3_somi valid before mcspi3_clk
active edge
1.5
4.3
ns
SM3
th(SOMIV-CLKAE)
2.8
5.9
ns
Hold time, mcspi3_somi valid after mcspi3_clk active
edge
PRODUCT PREVIEW
(1) See Operating Condition Addendum for OPP voltages.
Table 5-75. McSPI3 Switching Characteristics—Master Mode(1)
NO.
PARAMETER
OPP100
SM0
1/tc(CLK)
Frequency, mcspi3_clk
SM1
tw(CLKH)
Pulse duration, mcspi3_clk high or low
tR(clk)
Rise time, output clock mcspi3_clk
tF(clk)
Fall time, output clock mcspi3_clk
SM4
td(CLK-SIMO)
Delay time, mcspi3_clk active edge to mcspi3_simo
shifted
SM5
td(CSn-CLK)
Delay time, mcspi3_csi active to
mcspi3_clk first edge
SM7
td(CLK-CSn)
td(csn-simo)
Delay time, mcspi3_clk last edge to
mcspi3_csi inactive
Delay time, mcspi3_csi active edge to
mcspi3_simo shifted
OPP50
MIN
MAX
0.45*P(3)
0.55*P(3)
UNIT
MIN
MAX
12
MHz
0.45*P(3)
0.55*P(3)
ns
ns
24
Balls:
AE2 /
AE13
7.33
7.31
Ball: H26
4.31
4.30
Balls:
AE2 /
AE13
6.77
6.71
Ball: H26
SM6
(2) (6)
4.0
–2.1
11.3
ns
4.0
–5.3
23.6
ns
Modes 1
and 3
A(4) – 4.4
A(4) –
10.1
ns
Modes 0
and 2
B(5) – 4.4
B(5) –
10.1
ns
Modes 1
and 3
B(5) – 4.4
B(5) –
10.1
ns
Modes 0
and 2
A(4) – 4.4
A(4) –
10.1
ns
Modes 0
and 2
11.3
23.6
ns
(1) In mcspi3_csn, n is equal to 0 or 1. The polarity of mcspi3_clk and the active edge (rising or falling) on which mcspi3_simo is driven and
mcspi3_somi is latched is all software configurable.
– mcspi3_clk phase programmable with the bit PHA of MCSPI_CH(i)CONF register: PHA = 1 (Modes 1 and 3).
– mcspi3_clk phase programmable with the bit PHA of MCSPI_CH(i)CONF register: PHA = 0 (Modes 0 and 2).
For more information, see the McSPI environment chapter, Data Format Configurations section of the AM3715/03 TRM for modes and
phase correspondence description.
(2) This timing applies to all configurations regardless of McSPI3_CLK polarity and which clock edges are used to drive output data and
capture input data.
(3) P = mcspi3_clk clock period
208
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
(4) Case P = 20.8 ns, A = (TCS + 0.5)*P(3) (TCS is a bit field of MSPI_CHCONFx[26:25] register).
Case P > 20.8 ns, A = TCS*P(3) (TCS is a bit field of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of
AM3715/03 TRM.
(5) B = TCS*P(3) (TCS is a bit field of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of AM3715/03 TRM.
(6) See Operating Condition Addendum for OPP voltages.
PHA=0
EPOL=1
mcspi_cs(OUT)
SM0
SM1
SM5
mcspi_clk(OUT)
SM1
SM6
POL=0
SM1
SM0
SM1
POL=1
mcspi_clk(OUT)
SM4
Bit n–1
SM4
Bit n–2
Bit n–3
Bit n–4
Bit 0
PHA=1
EPOL=1
mcspi_cs(OUT)
SM1
SM0
SM5
mcspi_clk(OUT)
SM1
SM6
POL=0
SM0
SM1
SM1
POL=1
mcspi_clk(OUT)
SM4
SM4
Bit n–1
mcspi_simo(OUT)
SM4
Bit n–2
Bit n–3
SM4
Bit 1
Bit 0
SWPS038-072
(1)
(2)
The active clock edge selection of mcspi_clk (rising or falling) on which mcspi_simo is driven and mcspi_somi data is latched is
software configurable with the bit MCSPI_CH(i)CONF[1] = POL and the bit MCSPI_CH(i)CONF[0] = PHA.
The polarity of mcspi_ncs is software configuable with the bit MCSPI_CH(i)CONF[6] = EPOL.
Figure 5-42. McSPI—Master Mode—Transmit
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
209
PRODUCT PREVIEW
SM7
mcspi_simo(OUT)
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
PHA=0
EPOL=1
mcspi_cs(OUT)
SM0
SM1
SM5
mcspi_clk(OUT)
SM1
SM6
POL=0
SM1
SM0
SM1
POL=1
mcspi_clk(OUT)
SM2
SM2
SM3
mcspi_somi(IN)
SM3
Bit n–1
Bit n–2
Bit n–3
Bit n-4
Bit 0
PHA=1
PRODUCT PREVIEW
EPOL=1
mcspi_cs(OUT)
SM1
SM0
SM5
mcspi_clk(OUT)
SM1
SM6
POL=0
SM0
SM1
SM1
POL=1
mcspi_clk(OUT)
SM2
SM3
mcspi_somi(IN)
Bit n–1
SM2
SM3
Bit n–2
Bit n–3
Bit 1
Bit 0
SWPS038-073
(1)
(2)
The active clock edge selection of mcspi_clk (rising or falling) on which mcspi_simo is driven and mcspi_somi data is latched is
software configurable with the bit MCSPI_CH(i)CONF[1] = POL and the bit MCSPI_CH(i)CONF[0] = PHA.
The polarity of mcspi_ncs is software configuable with the bit MCSPI_CH(i)CONF[6] = EPOL.
Figure 5-43. McSPI—Master Mode—Receive
5.6.3
Multiport Full-Speed Universal Serial Bus (FS-USB)
NOTE
For more information, see High-Speed USB Host Subsystem and High-Speed USB OTG
Controller / High-Speed USB Host Subsystem section of the AM3715/03 TRM.
The AM3715/03 processor provides three USB ports working in full- and low-speed data transactions (up
to 12Mbit/s). When connected to either a serial link controller or a serial PHY (PHY interface modes) it
supports:
• 6-pin (Tx: Dat/Se0 or Tx: Dp/ ) unidirectional mode
• 4-pin bidirectional mode
• 3-pin bidirectional
210
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
5.6.3.1
SPRS616B – JUNE 2010 – REVISED JULY 2010
FS-USB—Unidirectional Standard 6-pin Mode
Table 5-77 and Table 5-78 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-44).
Table 5-76. LS- / FS-USB Timing Conditions—Unidirectional Standard 6-Pin Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2
ns
tF
Input signal fall time
2
ns
Output load capacitance(1)
15
pF
Output Condition
CLOAD
(1) Buffer strength configuration: LB0 = 1.
Table 5-77. LS- / FS-USB Timing Requirements—Unidirectional Standard 6-Pin Mode(1) (2)
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
FSU1
td(vp,vm)
Time duration, mmx_rxdp and mmx_rx low together
during transition
14
14
ns
FSU2
td(vp,vm)
Time duration, mmx_rxdp and mmx_rx high together
during transition
8
8
ns
FSU3
td(rcvU0)
Time duration, mmx_rrxcv undefine during a single
end 0 (mmx_rxdp and mmx_rx low together)
14
14
ns
FSU4
td(rcvU1)
Time duration, mmx_rxrcv undefine during a single
end 1 (mmx_rxdp and mmx_rx high together)
8
8
ns
(1) In mmx, x is equal to 0, 1, or 2.
(2) See Operating Condition Addendum for OPP voltages.
Table 5-78. LS- / FS-USB Switching Characteristics—Unidirectional Standard 6-Pin Mode(1) (2)
NO.
PARAMETER
OPP100
OPP50
UNIT
MIN
MAX
MIN
MAX
FSU5
td(txenL-dV)
Delay time, mmx_txen_n low to mmx_txdat valid
81.8
84.8
81.8
84.8
ns
FSU6
td(txenL-se0V)
Delay time, mmx_txen_n low to mmx_txse0 valid
81.8
84.8
81.8
84.8
ns
FSU7
ts(d-se0)
Skew between mmx_txdat and mmx_txse0 transition
1.5
ns
FSU8
td(dI-txenH)
Delay time, mmx_txdat invalid to mmx_txen_n high
81.8
81.8
ns
FSU9
td(se0I-txenH)
Delay time, mmx_txse0 invalid to mmx_txen_n high
81.8
81.8
ns
1.5
(1) In mmx, x is equal to 0, 1, or 2.
(2) See Operating Condition Addendum for OPP voltages.
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
211
PRODUCT PREVIEW
NO.
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Transmit
mmx_txen_n
FSU5
Receive
FSU8
mmx_txdat
FSU6
FSU7
FSU9
mmx_txse0
FSU1
FSU2
FSU1
FSU2
FSU3
FSU4
mmx_rxdp
mmx_rxdm
mmx_rxrcv
SWPS038-074
(1)
In mmx, x is equal to 0, 1, or 2.
Figure 5-44. LS- / FS-USB—Unidirectional Standard 6-Pin Mode
5.6.3.2
FS-USB—Bidirectional Standard 4-pin Mode
PRODUCT PREVIEW
Table 5-80 and Table 5-81 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-45).
Table 5-79. LS- / FS-USB Timing Conditions—Bidirectional Standard 4-Pin Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2
ns
tF
Input signal fall time
2
ns
Output load capacitance(1)
15
pF
Output Condition
CLOAD
(1) Buffer strength configuration: LB0 = 1.
Table 5-80. LS- / FS-USB Timing Requirements—Bidirectional Standard 4-Pin Mode(1) (2)
NO.
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
FSU10
td(d,se0)
Time duration, mmx_txdat and mmx_txse0 low
together during transition
14
14
ns
FSU11
td(d,se0)
Time duration, mmx_txdat and mmx_txse0 high
together during transition
8
8
ns
FSU12
td(rcvU0)
Time duration, mmx_rrxcv undefine during a single
end 0 (mmx_txdat and mmx_txse0 low together)
14
14
ns
FSU13
td(rcvU1)
Time duration, mmx_rxrcv undefine during a single
end 1 (mmx_txdat and mmx_txse0 high together)
8
8
ns
(1) In mmx, x is equal to 0, 1, or 2.
(2) See Operating Condition Addendum for OPP voltages.
Table 5-81. LS- / FS-USB Switching Characteristics—Bidirectional Standard 4-Pin Mode(1) (2)
NO.
PARAMETER
OPP100
OPP50
UNIT
MIN
MAX
MIN
MAX
FSU14
td(txenL-dV)
Delay time, mmx_txen_n low to mmx_txdat valid
81.8
84.8
81.8
84.8
ns
FSU15
td(txenL-se0V)
Delay time, mmx_txen_n low to mmx_txse0 valid
81.8
84.8
81.8
84.8
ns
FSU16
ts(d-se0)
Skew between mmx_txdat and mmx_txse0 transition
1.5
ns
FSU17
td(dV-txenH)
Delay time, mmx_txdat invalid before mmx_txen_n
high
212
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
1.5
81.8
81.8
ns
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 5-81. LS- / FS-USB Switching Characteristics—Bidirectional Standard 4-Pin Mode(1) (2) (continued)
NO.
PARAMETER
OPP100
MIN
FSU18
td(se0V-txenH)
Delay time, mmx_txse0 invalid before mmx_txen_n
high
81.8
MAX
OPP50
MIN
UNIT
MAX
81.8
ns
(1) In mmx, x is equal to 0, 1, or 2.
(2) See Operating Condition Addendum for OPP voltages.
Transmit
mmx_txen_n
FSU14
Receive
FSU17
FSU10
FSU11
FSU18
FSU10
FSU11
FSU12
FSU13
mmx_txdat
FSU15
FSU16
mmx_txse0
mmx_rxrcv
SWPS038-075
(1)
In mmx, x is equal to 0, 1, or 2.
PRODUCT PREVIEW
Figure 5-45. LS- / FS-USB—Bidirectional Standard 4-Pin Mode
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
213
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
5.6.4
www.ti.com
Multiport High-Speed Universal Serial Bus (HS-USB)
NOTE
For more information, see High-Speed USB Host Subsystem and High-Speed USB OTG
Controller / High-Speed USB OTG Controller section of the AM3715/03 TRM, and,
High-Speed USB Host Subsystem and High-Speed USB OTG Controller / High-Speed USB
Host Subsystem section of the AM3715/03 TRM.
In addition to the full-speed (FS) USB controller, a high-speed (HS) USB OTG controller is incorporated in
the AM3715/03 device. It allows high-speed transactions (up to 480 Mbit/s) on the USB ports 0, 1, 2, and
3 described below:
• Port 0:
– 12-bit slave mode (SDR)
• Ports 1 and 2:
– 12-bit master mode (SDR)
• Port 3:
5.6.4.1
HSUSB0—Port 0—12-bit Slave Mode
PRODUCT PREVIEW
Table 5-83 and Table 5-84 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-46).
Table 5-82. HSUSB0 Timing Conditions—12-bit Slave Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2
ns
tF
Input signal fall time
2
ns
3.5
pF
Output Condition
Output load capacitance(1)
CLOAD
(1) Buffer strength configuration: LB0 = 0.
Table 5-83. HSUSB0 Timing Requirements—12-bit Slave Mode(3) (4)
NO.
PARAMETER
OPP100
MIN
HSU0
fp(CLK)
hsusb0_clk clock frequency(1)
(2)
UNIT
MAX
60.03
MHz
500
ps
tJ(CLK)
Cycle jitter , hsusb0_clk
ts(DIRV-CLKH)
Setup time, hsusb0_dir valid before hsusb0_clk rising edge
6.68
ns
ts(NXTV-CLKH)
Setup time, hsusb0_nxt valid before hsusb0_clk rising edge
6.68
ns
th(CLKH-DIRIV)
Hold time, hsusb0_dir valid after hsusb0_clk rising edge
0
ns
th(CLKH-NXT/IV)
Hold time, hsusb0_nxt valid after hsusb0_clk rising edge
0
ns
HSU5
ts(DATAV-CLKH)
Setup time, hsusb0_data[0:7] valid before hsusb0_clk rising edge
6.68
ns
HSU6
th(CLKH-DATIV)
Hold time, hsusb0_data[0:7] valid after hsusb0_clk rising edge
0
ns
HSU3
HSU4
(1) Related with the input maximum frequency supported by the USB module.
(2) Maximum cycle jitter supported by hsusb0_clk input clock
(3) The timing requirements are assured up to the cycle jitter error condition specified.
(4) See Operating Condition Addendum for OPP voltages.
214
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 5-84. HSUSB0 Switching Characteristics—12-bit Slave Mode(1)
NO.
PARAMETER
OPP100
MIN
HSU1
HSU2
td(clkL-STPV)
Delay time, hsusb0_clk high to output usb0_stp valid
td(clkL-STPIV)
Delay time, hsusb0_clk high to output usb0_stp invalid
td(clkL-DV)
Delay time, hsusb0_clk high to output hsusb0_data[0:7] valid
td(clkL-DIV)
Delay time, hsusb0_clk high to output hsusb0_data[0:7] invalid
UNIT
MAX
8.6
ns
0
ns
8.6
ns
0
ns
(1) See Operating Condition Addendum for OPP voltages.
HSU0
hsusb0_clk
HSU1
HSU1
hsusb0_stp
HSU3
HSU5
HSU2
HSU2
Data_OUT
hsusb0_data[7:0]
HSU6
Data_IN
SWPS038-080
Figure 5-46. HSUSB0—12-bit Slave Mode
5.6.4.2
HSUSB1 and HSUSB2—Ports 1 and 2—12-bit Slave Mode
Table 5-86 and Table 5-87 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-47).
Table 5-85. HSUSB1 and HSUSB2 Timing Conditions—12-bit Master Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
3
ns
tF
Input signal fall time
2
ns
Output load capacitance(1)
5
pF
Output Condition
CLOAD
(1) Buffer strength configuration: LB0 = 0.
Table 5-86. HSUSB1 and HSUSB2 Timing Requirements—12-bit Master Mode(1)
NO.
PARAMETER
OPP100
MIN
HSU3
HSU4
HSU5
(2)
UNIT
MAX
tsu(dirV-clkH)
Setup time, input direction control hsusbx_dir valid before output clock
hsusbx_clk rising edge
9.3
ns
tsu(nxtV-clkH)
Setup time, input next signal hsusbx_nxt valid before output clock
hsusbx_clk rising edge
9.3
ns
th(clkH-dirIV)
Hold time, input direction control hsusbx_dir valid after output clock
hsusbx_clk rising edge
–0.52
ns
th(clkH-nxtIV)
Hold time, input next signal hsusbx_nxt valid after output clock
hsusbx_clk rising edge
–0.52
ns
tsu(dV-clkH)
Setup time, input data hsusbx_data[7:0] valid before output clock
hsusbx_clk rising edge
9.3
ns
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
215
PRODUCT PREVIEW
HSU4
hsusb0_dir
and
hsusb0_nxt
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 5-86. HSUSB1 and HSUSB2 Timing Requirements—12-bit Master Mode(1)
NO.
PARAMETER
(2)
OPP100
MIN
HSU6
th(clkH-dV)
(continued)
Hold time, input data hsusbx_data[7:0] valid after output clock
hsusbx_clk rising edge
UNIT
MAX
–0.52
ns
(1) In hsusbx, x is equal to 1 or 2.
(2) See Operating Condition Addendum for OPP voltages.
Table 5-87. HSUSB1 and HSUSB2 Switching Characteristics—12-bit Master Mode(1)
NO.
PARAMETER
OPP100
MIN
HSU0
HSU1
HSU2
fp(clk)
(3)
Frequency, output clock hsusbx_clk
(2)
UNIT
MAX
60
MHz
400
ps
12.81
ns
PRODUCT PREVIEW
tJ(clk)
Jitter standard deviation , output clock hsusbx_clk
td(clkH-stpV)
Delay time, output clock hsusbx_clk rising edge to output stop signal
hsusbx_stp valid
td(clkH-stpIV)
Delay time, output clock hsusbx_clk rising edge to output stop signal
hsusbx_stp invalid
td(clkH-dV)
Delay time, output clock hsusbx_clk rising edge to output data
hsusbx_data[7:0] valid
td(clkH-dIV)
Delay time, output clock hsusbx_clk rising edge to output data
hsusbx_data[7:0] invalid
tR(d)
Rise time, output data hsusbx_data[7:0]
0
ns
tF(d)
Fall time, output data hsusbx_data[7:0]
0
ns
1.95
ns
12.81
1.95
ns
ns
(1) In hsusbx, x is equal to 1 or 2.
(2) The jitter probability density can be approximated by a Gaussian function.
(3) See Operating Condition Addendum for OPP voltages.
HSU0
hsusbx_clk
HSU1
HSU1
hsusbx_stp
HSU3
HSU4
hsusbx_dir
and
hsusbx_nxt
HSU5
HSU2
HSU2
Data_OUT
hsusbx_data[7:0]
HSU6
Data_IN
SWPS038-081
(1)
In hsusbx, x is equal to 1 or 2.
Figure 5-47. HSUSB1 and HSUSB2—12-bit Master Mode
5.6.5
Inter-Integrated Circuit Interface (I2C)
NOTE
For more information, see Multimaster High-Speed I2C Controller chapter of the AM3715/03
TRM.
The multi-master I2C peripheral provides an interface between two or more devices via an I2C serial bus.
216
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
The I2C controller supports the multi-master mode which allows more than one device capable of
controlling the bus to be connected to it. Each I2C device is recognized by a unique address and can
operates as either transmitter or receiver, according to the function of the device. In addition to being a
transmitter or receiver, a device connected to the I2C bus can also be considered as master or slave when
performing data transfers. This data transfer is carried out via two serial bidirectional wires:
• An SDA data line
• An SCL clock line
In Figure 5-48 the data transfer is in master or slave configuration with 7-bit addressing format.
The I2C interface is compliant with Philips I2C specification version 2.1. It supports standard mode (up to
100K bits/s), fast mode (up to 400K bits/s) and high-speed mode (up to 3.4Mb/s).
5.6.5.1
I2C—Standard and Fast Modes
Table 5-88. I2C—Standard and Fast Modes
PARAMETER
STANDARD MODE
MIN
MAX
FAST MODE
MIN
UNIT
MAX
fscl
Frequency, clock i2cx_scl(4)
I1
tw(sclH)
Pulse duration, clock i2cx_scl(4) high
4.0
0.6
ms
I2
tw(sclL)
Pulse duration, clock i2cx_scl(4) low
4.7
1.3
ms
(4)
100
valid before clock
400
(1)
250
100
kHz
I3
tsu(sdaV-sclH)
Setup time, data i2cx_sda
i2cx_scl(4) active level
I4
th(sclH-sdaV)
Hold time, data i2cx_sda(4) valid after clock
i2cx_scl(4) active level
0(2)
I5
tsu(sdaL-sclH)
Setup time, clock i2cx_scl(4) high after data
i2cx_sda(4) low (for a START(5) condition or a
repeated START condition)
4.7
0.6
ms
I6
th(sclH-sdaH)
Hold time, data i2cx_sda low level after clock
i2cx_scl(4) high level (STOP condition)
4.0
0.6
ms
I7
th(sclH-RSTART)
Hold time, data i2cx_sda(4) low level after
clock i2cx_scl(4) high level (for a repeated
START condition)
4.0
0.6
ms
I8
tw(sdaH)
Pulse duration, data i2cx_sda(4) high between
STOP and START conditions
4.7(4)
1.3
ms
tR(scl)
Rise time, clock i2cx_scl(4)
1000
20 +
0.1CB
300
ns
tF(scl)
Fall time, clock i2cx_scl(4)
300
20 +
0.1CB
300
ns
tR(sda)
Rise time, data i2cx_sda(4)
1000
20 +
0.1CB
300
ns
tF(sda)
Fall time, data i2cx_sda(4)
300
20 +
0.1CB
300
ns
CB
Capacitive load for each bus line
400
400
pF
3.45(3)
0(2)
PRODUCT PREVIEW
NO.
ns
0.9(3)
ms
(1) A fast-mode I2C-bus device can be used in a standard-mode I2C-bus system, but the requirement tsu(SDAV-SCLH) ≥ 250 ns must then be
met. This is automatically the case if the device does not stretch the low period of the i2cx_scl(4). If such a device does stretch the low
period of the i2cx_scl(4), it must output the next data bit to the i2cx_sda(4) line tr(SDA) max + tsu(SDAV-SCLH) = 1000 + 250 = 1250 ns
(according to the standard-mode I2C-bus specification) before the i2cx_scl(4) line is released.
(2) The device provides (via the I2C bus) a hold time of at least 300 ns for the i2cx_sda(4) signal (see the fall and rise times of i2cx_scl(4)) to
bridge the undefined region of the falling edge of i2cx_scl(4).
(3) The maximum th(SCLH-SDA) has only to be met if the device does not stretch the low period of the i2cx_scl(4) signal.
(4) In i2cx, x is equal to 1, 2, 3, or 4. Note that I2C4 is master transmitter only.
(5) After this time, the first clock is generated.
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
217
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
START
START REPEAT
START
STOP
i2cX_sda
I6
I1
I2
I3
I4
I5
I8
I6
I7
i2cX_scl
SWPS038-084
(1)
In i2cX, X is equal to 1, 2, 3, or 4.
Figure 5-48. I2C—Standard and Fast Modes
5.6.5.2
I2C—High-Speed Mode
Table 5-89. I2C—High-Speed Mode
NO.
PARAMETER
MIN
Frequency, clock i2cx_scl(3)
fscl
(3)
PRODUCT PREVIEW
I1
tw(sclH)
Pulse duration, clock i2cx_scl
I2
tw(sclL)
Pulse duration, clock i2cx_scl(3) low
I3
tsu(sdaV-sclH)
Setup time, data i2cx_sda(3) valid before clock i2cx_scl(3) active level
(3)
high
60
valid after clock i2cx_scl
(3)
active level
MAX
UNIT
3.4(5)
MHz
(1)
ns
160(1)
ns
10
ns
I4
th(sclH-sdaV)
Hold time, data i2cx_sda
I5
tsu(sdaL-sclH)
Setup time, clock i2cx_scl(3) high after data i2cx_sda(3) low (for a
START(2) condition or a repeated START condition)
160
ns
I6
th(sclH-sdaH)
Hold time, data i2cx_sda(3) low level after clock i2cx_scl(3) high level
(STOP condition)
160
ns
I7
th(sclH-RSTART)
Hold time, data i2cx_sda(3) low level after clock i2cx_scl(3) high level
(for a repeated START condition)
160
ns
tR(scl)
Rise time, clock i2cx_scl(3)
10
40
ns
tR(scl)
Rise time, clock i2cx_scl(3) after a repeated START condition and after
a bit acknowledge
10
80
ns
tF(scl)
Fall time, clock i2cx_scl(3)
10
40
ns
10
80
ns
10
80
ns
100
pF
(3)
tR(sda)
Rise time, data i2cx_sda
tF(sda)
Fall time, data i2cx_sda(3)
CB
Capacitive load for each bus line
0
(4)
70
ns
(1) HS-mode master devices generate a serial clock signal with a high to low ratio of 1 to 2. tw(sclL) > 2 * tw(sclH).
(2) After this time, the first clock is generated.
(3) In i2cx, x is equal to 1, 2, 3, or 4. Note that I2C4 is master transmitter only.
(4) The device provides (via the I2C bus) a hold time of at least 300 ns for the i2cx_sda(3) signal (see the fall and rise times of i2cx_scl(3)) to
bridge the undefined region of the falling edge of i2cx_scl(3).
(5) The I2C4 clock frequency in high-speed mode is equal to the sys_xtalin input clock frequency divided by 15.
START REPEAT
STOP
i2cX_sda
IH5
IH6
IH1
IH2
IH3
IH4
IH7
i2cX_scl
SWPS038-085
(1)
In i2cX, X is equal to 1, 2, 3, or 4.
Figure 5-49. I2C—High-Speed Mode
218
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 5-90. I2C Correspondence Standard vs Data Manual Timing References
STANDARD-I2C
TI
I1
5.6.6
Standard/Fast Modes
High-Speed Mode
fscl
FSCL
FSCLH
tw(sclH)
THIGH
THIGH
I2
tw(sclL)
TLOW
TLOW
I3
tsu(sdaV-sclH)
TSU;DAT
TSU;DAT
I4
th(sclH-sdaV)
TSU;DAT
TSU;DAT
I5
tsu(sdaL-sclH)
TSU;STA
TSU;STA
I6
th(sclH-sdaH)
THD;STA
THD;STA
I7
th(sclH-RSTART)
TSU;STO
TSU;STO
I8
tw(sdaH)
TBUF
HDQ / 1-Wire Interface (HDQ/1-Wire)
NOTE
The module is intended to work with both HDQ and 1-Wire protocols. The protocols use a single wire to
communicate between the master and the slave. The protocols employ an asynchronous return to one
mechanism where, after any command, the line is pulled high.
5.6.6.1
HDQ/1-Wire—HDQ Mode
Table 5-91 and Table 5-93 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-50 through Figure 5-54).
Table 5-91. HDQ Interface Read Timing
PARAMETER
tCYCH
DESCRIPTION
Read bit window timing
MIN
MAX
UNIT
190
TYP
250
ms
(2)
(2)
ms
tHW1
Read one data valid after HDQ low
32
tHW0
Read zero data hold after HDQ low
70(2)
145(2)
66
ms
tRSPS
Response time from HDQ slave device(1)
190
320
ms
(1) Defined by software
(2) If the HDQ slave device drives a logic-low state after tHW0 max, it can be interpreted as a break pulse. For more information see Table 5-92
and the HDQ/1-Wire chapter of the AM3715/03 TRM.
Table 5-92. HDQ Sampling Cases(1)
CASES
FIRST SAMPLING (at 68 µs)
SECOND SAMPLING (at 180 µs)
1
L (logic-low state)
L (logic-low state)
2
L (logic-low state)
H (logic-high state)
3
H (logic-high state)
L (logic-low state)
4
H (logic-high state)
H (logic-high state)
(1) The different cases can be interpreted as follows:
– Case 1: If a logic-low state is present at the first sampling time and also at the second sampling time, the receive data can be
interpreted as a break pulse.
– Case 2: If a logic-low state is present at the first sampling time and a logic-high state is present at the second sampling time, the
receive data on the line is a zero (data).
– Case 3: Undefined.
– Case 4: If a logic-high state is present at the first sampling time and also at the second sampling time, the receive data on the line is
a one (data).
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
219
PRODUCT PREVIEW
For more information, see HDQ/1-Wire / HDQ/1-Wire chapter of the AM3715/03 TRM.
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 5-93. HDQ Write Switching Characteristics
PARAMETER
DESCRIPTION
MIN
TYP
MAX
UNIT
tB
Break timing
190
ms
tBR
Break recovery time
40
ms
tCYCD
Write bit windows timing
190
ms
tDW1
Write one data valid after HDQ low
0.5
50
ms
tDW0
Write zero data hold after HDQ low
86
145
ms
tB
tBR
HDQ
SWPS038-086
Figure 5-50. HDQ Break and Break Recovery Timing— HDQ Interface Writing to Slave
tB
tBR
HDQ
First sampling time
tHW1
Second sampling time
PRODUCT PREVIEW
tHW0
SWPS038-122
Figure 5-51. HDQ Break Detection— HDQ Interface Reading Slave
tCYCH
tHW0
tHW1
HDQ
SWPS038-087
Figure 5-52. HDQ Interface Bit Read Timing (Data)
tCYCD
tDW0
tDW1
HDQ
SWPS038-088
Figure 5-53. HDQ Interface Bit Write Timing (Command/Address or Data)
Command_byte_written
0_(LSB)
Break
1
Data_byte_received
tRSPS
6
7_(MSB)
1
0_(LSB)
6
HDQ
SWPS038-089
Figure 5-54. HDQ—Communication
5.6.6.2
HDQ/1-Wire—1-Wire Mode
Table 5-94 and Table 5-95 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-55 through Figure 5-58).
220
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 5-94. HDQ/1-Wire Timing Requirements—1-Wire Mode
PARAMETER
MAX
UNIT
tPDH
Presence pulse delay high
DESCRIPTION
MIN
15
TYP
60
ms
tPDL
Presence pulse delay low
60
240
ms
tRDV
Read data valid time
tLOWR
15
ms
tREL
Read data release time
0
45
ms
MAX
UNIT
960
ms
Table 5-95. HDQ/1-Wire Switching Characteristics—1-Wire Mode
PARAMETER
DESCRIPTION
MIN
tRSTL
Reset time low
480
tRSTH
Reset time high
480
TYP
ms
tSLOT
Bit cycle time
60
120
ms
tLOW1
Write bit-one time
1
15
ms
tLOW0
Write bit-zero time(2)
60
120
ms
tREC
Recovery time
1
(1)
tLOWR
Read bit strobe time
ms
1
15
ms
(2) tLOW0 must be less than tSLOT.
tRSTH
tRTSL
1-WIRE
tPDH
tPDL
SWPS038-090
Figure 5-55. 1-Wire Reset Timing
tSLOT
tREC
tRDV
tREL
tLOWR
1-WIRE
SWPS038-091
Figure 5-56. 1-Wire Read Bit Timing (Data)
tSLOT
1-WIRE
tREC
tLOW1
SWPS038-123
Figure 5-57. 1-Wire Write Bit-One Timing (Command / Address or Data)
tSLOT
1-WIRE
tREC
tLOW0
SWPS038-124
Figure 5-58. 1-Wire Write Bit-Zero Timing (Command/Address or Data)
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
221
PRODUCT PREVIEW
(1) tLOWR (low pulse sent by the master) must be short as possible to maximize the master sampling window.
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
5.6.7
www.ti.com
Universal Asynchronous Receiver Transmitter (UART)
NOTE
For more information, see UART/IrDA/CIR chapter of the AM3715/03 TRM.
5.6.7.1
UART3 IrDA
The IrDA module can operate in three different modes:
• Slow infrared (SIR) (≤ 115.2 Kbits/s)
• Medium infrared (MIR) (0.576 Mbits/s and 1.152 Mbits/s)
• Fast infrared (FIR) (4 Mbits/s)
Pulse Duration
90%
90%
PRODUCT PREVIEW
50%
50%
10%
10%
tr
tf
SWPS038-093
Figure 5-59. UART IrDA Pulse Parameters
5.6.7.1.1 UART3 IrDA—Receive Mode
Table 5-96. UART3 IrDA Signaling Rate and Pulse Duration—Receive Mode
SIGNALING RATE
ELECTRICAL PULSE DURATION
UNIT
MIN
TYP
MAX
2.4 Kbit/s
52.17
78.13
208.33
ms
9.6 Kbit/s
13.10
19.53
52.08
ms
19.2 Kbit/s
6.59
9.77
26.04
ms
38.4 Kbit/s
3.34
4.88
13.02
ms
57.6 Kbit/s
2.25
3.26
8.68
ms
115.2 Kbit/s
1.17
1.63
4.34
ms
0.576 Mbit/s
300.55
416.67
867.86
ns
1.152 Mbit/s
192.04
208.33
433.83
ns
4.0 Mbit/s (Single pulse)
62.70
125.00
170.63
ns
4.0 Mbit/s (Double pulse)
208.53
250.00
291.47
ns
SIR
MIR
FIR
222
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 5-97. UART3 IrDA Rise and Fall Times—Receive Mode
MAX
UNIT
tR
Rise time, input data uart3_rx_irrx
PARAMETER
MIN
TYP
200
ns
tF
Fall time, input data uart3_rx_irrx
200
ns
5.6.7.1.2 UART3 IrDA—Transmit Mode
Table 5-98. UART3 IrDA Signaling Rate and Pulse Duration—Transmit Mode
SIGNALING RATE
ELECTRICAL PULSE DURATION
UNIT
MIN
TYP
MAX
2.4 Kbit/s
78.1
78.1
78.1
ms
9.6 Kbit/s
19.5
19.5
19.5
ms
19.2 Kbit/s
9.75
9.75
9.75
ms
38.4 Kbit/s
4.87
4.87
4.87
ms
57.6 Kbit/s
3.25
3.25
3.25
ms
115.2 Kbit/s
1.62
1.62
1.62
ms
0.576 Mbit/s
414
416
419
ns
1.152 Mbit/s
206
208
211
ns
4.0 Mbit/s (Single pulse)
123
125
128
ns
4.0 Mbit/s (Double pulse)
248
250
253
ns
SIR
FIR
5.6.8
Removable Media Interfaces
5.6.8.1
Multimedia Memory Card and Secure Digital IO Card (mmc)
NOTE
For more information, see MMC/SD/SDIO Card Interface chapter of the AM3715/03 TRM.
The mmc host controller provides an interface to high-speed and standard MMC, SD memory cards, or
SDIO cards. The application interface is responsible for managing transaction semantics. The MMC/SDIO
host controller deals with MMC/SDIO protocol at transmission level, packing data, adding CRC, start/end
bit, and checking for syntactical correctness.
There are three mmc interfaces on the device:
• mmc1:
– 1.8-V / 3-V support
– 4-bit in Standard MMC, High-Speed MMC, Standard SD, and High-Speed SD modes
• mmc2:
– 1.8-V support
– 8-bit without external transceiver
– 4-bit with external transceiver allowing supporting 3-V peripherals. Transceiver direction control
signals are multiplexed with the upper four data bits.
• mmc3:
– 1.8-V support
– 8-bit without external transceiver
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
223
PRODUCT PREVIEW
MIR
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
5.6.8.1.1 mmc1 Interface—SD Identification Modes
Table 5-100 and Table 5-101 assume testing over the recommended operating conditions and electrical
characteristic conditions below.
Table 5-99. mmc1 Interface Timing Conditions—SD Identification Modes
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
10
ns
tF
Input signal fall time
10
ns
40
pF
Output Condition
Output load capacitance(1)
CLOAD
(1) Buffer strength configuration: LB0 = 0.
Table 5-100. mmc1 Interface Timing Requirements—SD Identification Modes(1) (2)
NO.
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
mmc1 Interface (1.8-V IO)
PRODUCT PREVIEW
SD3
tsu(CMDV-CLKIH)
Setup time, mmc1_cmd valid before mmc1_clk rising
clock edge
1198.4
1198.4
ns
SD4
th(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk rising
clock edge
1249.2
1249.2
ns
mmc1 Interface (3.0-V IO)
SD3
tsu(CMDV-CLKIH)
Setup time, mmc1_cmd valid before mmc1_clk rising
clock edge
1198.4
1198.4
ns
SD4
th(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk rising
clock edge
1249.2
1249.2
ns
(1) Corresponding figures showing timing parameters are common with other interface modes. (See SD , HS SD modes).
(2) See DM Operating Condition Addendum for OPP voltages.
Table 5-101. mmc1 Interface Switching Characteristics—SD Identification Modes(4) (7)
NO.
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
SD Identification Mode
SD1
tc(clk)
Frequency(1), output clock period
SD2
tW(clkH)
Typical pulse duration, output clock high
SD2
0.4
X(5)*PO(2)
(6)
(2)
Y *PO
0.4
X(5)*PO(2)
(6)
(2)
Y *PO
MHz
ns
tW(clkL)
Typical pulse duration, output clock low
tdc(clk)
Duty cycle error, output clock
125
125
ns
ns
tJ(clk)
Jitter standard deviation(3), output clock
200
200
ps
tc(clk)
Rise time, output clock
10
10
ns
tW(clkH)
Fall time, output clock
10
10
ns
tW(clkL)
Rise time, output cmd
10
10
ns
tdc(clk)
Fall time, output cmd
td(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to mmc1_cmd
transition
mmc1 Interface (1.8-V IO)
SD5
10
6.3
2492.7
6.3
10
ns
2492.7
ns
mmc1 Interface (3.0-V IO)
224
tc(clk)
Rise time, output clock
10
10
ns
tW(clkH)
Fall time, output clock
10
10
ns
tW(clkL)
Rise time, output cmd
10
10
ns
tdc(clk)
Fall time, output cmd
10
10
ns
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 5-101. mmc1 Interface Switching Characteristics—SD Identification Modes(4) (7) (continued)
NO.
SD5
PARAMETER
td(CLKOH-CMD)
OPP100
Delay time, mmc1_clk rising clock edge to mmc1_cmd
transition
OPP50
MIN
MAX
MIN
MAX
6.3
2492.7
6.3
2492.7
UNIT
ns
(1) Related with the output clock maximum and minimum frequencies programmable in mmc module.
(2) PO = output clock period in ns
(3) The jitter probability density can be approximated by a Gaussian function.
(4) Corresponding figures showing timing parameters are common with other interface modes. (See SD, HS SD modes).
(5) The X parameter is defined as follows:
CLKD
X
1 or Even
0.5
Odd
(trunk[CLKD/2]+1)/CLKD
All required details about clock divison factor CLKD can be found in AM3715/03 TRM.
(6) The Y parameter is defined as follows:
Y
1 or Even
0.5
Odd
(trunk[CLKD/2])/CLKD
All required details about clock divison factor CLKD can be found in AM3715/03 TRM.
(7) See DM Operating Condition Addendum for OPP voltages.
5.6.8.1.2 mmc1 Interface—High-Speed SD Mode
Table 5-103 and Table 5-104 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-60 and Figure 5-61).
Table 5-102. mmc1 Interface Timing Conditions—High-Speed SD Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
3
ns
tF
Input signal fall time
3
ns
40
pF
Output Condition
CLOAD
Output load capacitance(1)
(1) Buffer strength configuration: SPEEDCTRL = 1.
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
225
PRODUCT PREVIEW
CLKD
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 5-103. mmc1 Interface Timing Requirements—High-Speed SD Mode(2)
NO.
PARAMETER
OPP100
MIN
MAX
OPP50
MIN
UNIT
MAX
mmc1 Interface (1.8-V IO)
HSSD3
tsu(CMDV-CLKIH)
Setup time, mmc1_cmd valid before mmc1_clk rising
clock edge
5.6
26
ns
HSSD4
th(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk rising
clock edge
2.3
1.9
ns
HSSD7
tsu(DATxV-CLKIH)
Setup time, mmc1_dat[n:0](1) valid before mmc1_clk
rising clock edge
5.6
26
ns
HSSD8
th(CLKIH-DATxIV)
Hold time, mmc1_dat[n:0](1) valid after MMC1_clk
rising clock edge
2.3
1.9
ns
MMC1 Interface (3.0-V IO)
PRODUCT PREVIEW
HSSD3
tsu(CMDV-CLKIH)
Setup time, MMC1_cmd valid before MMC1_clk rising
clock edge
5.6
26
ns
HSSD4
th(CLKIH-CMDIV)
Hold time, MMC1_cmd valid after MMC1_clk rising
clock edge
2.3
1.9
ns
HSSD7
tsu(DATxV-CLKIH)
Setup time, MMC1_dat[n:0](1) valid before MMC1_clk
rising clock edge
5.6
26
ns
HSSD8
th(CLKIH-DATxIV)
Hold time, MMC1_dat[n:0](1) valid after MMC1_clk
rising clock edge
2.3
1.9
ns
(1) In MMC1_dat[n:0], n is equal to 3.
(2) See DM Operating Condition Addendum for OPP voltages.
226
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 5-104. MMC1 Interface Switching Characteristics—High-Speed SD Mode(7)
NO.
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
High-Speed SD Mode
HSSD1
tc(clk)
Frequency(1), output clock period
48
(4)
(2)
24
(4)
(2)
MHz
HSSD2
tW(clkH)
Typical pulse duration, output clock high
X *PO
X *PO
ns
HSSD2
tW(clkL)
Typical pulse duration, output clock low
Y(5)*PO(2)
Y(5)*PO(2)
ns
tdc(clk)
Duty cycle error, output clock
tJ(clk)
(3)
Jitter standard deviation , output clock
1041.67
2083.33
ps
200
200
ps
MMC1 Interface (1.8-V IO)
tc(clk)
Rise time, output clock
3
3
ns
tW(clkH)
Fall time, output clock
3
3
ns
tW(clkL)
Rise time, output cmd
3
3
ns
tdc(clk)
Fall time, output cmd
3
3
ns
HSSD5
td(CLKOH-CMD)
Delay time, MMC1_clk rising clock edge to
MMC1_cmd transition
3.72
14.11
4.13
34.53
ns
HSSD6
td(CLKOH-DATx)
Delay time, MMC1_clk rising clock edge to
MMC1_dat[n:0](6) transition
3.72
14.11
4.13
34.53
ns
tc(clk)
Rise time, output clock
3
3
ns
tW(clkH)
Fall time, output clock
3
3
ns
tW(clkL)
Rise time, output cmd
3
3
ns
tdc(clk)
Fall time, output cmd
3
ns
HSSD5
td(CLKOH-CMD)
Delay time, MMC1_clk rising clock edge to
MMC1_cmd transition
3.72
14.11
3
4.13
34.53
ns
HSSD6
td(CLKOH-DATx)
Delay time, MMC1_clk rising clock edge to
MMC1_dat[n:0](6) transition
3.72
14.11
4.13
34.53
ns
PRODUCT PREVIEW
MMC1 Interface (3.0-V IO)
(1) Related with the output clock maximum and minimum frequencies programmable in MMC module.
(2) PO = output clock period in ns
(3) The jitter probability density can be approximated by a Gaussian function.
(4) The X parameter is defined as follows:
CLKD
X
1 or Even
0.5
Odd
(trunk[CLKD/2]+1)/CLKD
All required details about clock divison factor CLKD can be found in AM3715/03 TRM.
(5) The Y parameter is defined as follows:
CLKD
Y
1 or Even
0.5
Odd
(trunk[CLKD/2])/CLKD
All required details about clock divison factor CLKD can be found in AM3715/03 TRM.
(6) In MMC1_dat[n:0], n is equal to 3.
(7) See DM Operating Condition Addendum for OPP voltages.
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
227
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
HSSD1
HSSD2
mmc1_clk
HSSD3
HSSD4
mmc1_cmd
HSSD7
HSSD8
mmc1_dat[3:0]
SWPS038-094
Figure 5-60. MMC1 Interface—High-Speed SD Mode—Data/Command Receive
HSSD1
HSSD2
mmc1_clk
HSSD5
HSSD5
mmc1_cmd
HSSD6
HSSD6
PRODUCT PREVIEW
mmc1_dat[3:0]
SWPS038-095
Figure 5-61. MMC1 Interface—High-Speed SD Mode—Data/Command Transmit
5.6.8.1.3 MMC1 Interface—Standard SD Mode
Table 5-106 and Table 5-107 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-62 and Figure 5-63).
Table 5-105. MMC1 Interface Timing Conditions—Standard SD Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
10
ns
tF
Input signal fall time
10
ns
40
pF
Output Condition
CLOAD
Output load capacitance(1)
(1) Buffer strength configuration: SPEEDCTRL = 1.
Table 5-106. MMC1 Interface Timing Requirements—Standard SD Mode(1)
NO.
PARAMETER
OPP100
MIN
MAX
(2) (4)
OPP50
MIN
UNIT
MAX
MMC1 Interface (1.8-V IO)
SD3
tsu(CMDV-CLKIH)
Setup time, MMC1_cmd valid before MMC1_clk rising
clock edge
3.3
21.9
ns
SD4
th(CLKIH-CMDIV)
Hold time, MMC1_cmd valid after MMC1_clk rising
clock edge
18.1
36.7
ns
SD7
tsu(DATxV-CLKIH)
Setup time, MMC1_dat[n:0](3) valid before MMC1_clk
rising clock edge
3.3
21.9
ns
SD8
th(CLKIH-DATxIV)
Hold time, MMC1_dat[n:0](3) valid after MMC1_clk
rising clock edge
18.1
36.7
ns
Setup time, MMC1_cmd valid before MMC1_clk rising
clock edge
3.3
21.9
ns
MMC1 Interface (3.0-V IO)
SD3
228
tsu(CMDV-CLKIH)
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 5-106. MMC1 Interface Timing Requirements—Standard SD Mode(1)
NO.
PARAMETER
(2) (4)
OPP100
MIN
(continued)
OPP50
MAX
MIN
UNIT
MAX
SD4
th(CLKIH-CMDIV)
Hold time, MMC1_cmd valid after MMC1_clk rising
clock edge
18.1
36.7
ns
SD7
tsu(DATxV-CLKIH)
Setup time, MMC1_dat[n:0](3) valid before MMC1_clk
rising clock edge
3.3
21.9
ns
SD8
th(CLKIH-DATxIV)
Hold time, MMC1_dat[n:0](3) valid after MMC1_clk
rising clock edge
18.1
36.7
ns
(1) Timing parameters are referred to output clock specified in Table 5-107.
(2) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 5-107.
(3) In MMC1_dat[n:0], n is equal to 3.
(4) See DM Operating Condition Addendum for OPP voltages.
Table 5-107. MMC1 Interface Switching Characteristics—Standard SD Mode(7)
NO.
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
Standard SD Mode
tc(clk)
Frequency(1), output clock period
SD2
tW(clkH)
Typical pulse duration, output clock high
SD2
24
tW(clkL)
Typical pulse duration, output clock low
tdc(clk)
Duty cycle error, output clock
tJ(clk)
X(4)*PO(2)
(5)
12
X(4)*PO(2)
(2)
(5)
Y *PO
MHz
PRODUCT PREVIEW
SD1
ns
(2)
Y *PO
ns
2083.33
4166.67
ps
Jitter standard deviation(3), output clock
200
200
ps
tc(clk)
Rise time, output clock
10
10
ns
tW(clkH)
Fall time, output clock
10
10
ns
tW(clkL)
Rise time, output cmd
10
10
ns
tdc(clk)
Fall time, output cmd
10
10
ns
SD5
td(CLKOH-CMD)
Delay time, MMC1_clk rising clock edge to
MMC1_cmd transition
6.13
35.53
6.3
77.03
ns
SD6
td(CLKOH-DATx)
Delay time, MMC1_clk rising clock edge to
MMC1_dat[n:0](6) transition
6.13
35.53
6.3
77.03
ns
MMC1 Interface (1.8-V)
MMC1 Interface (3.0-V)
tc(clk)
Rise time, output clock
10
10
ns
tW(clkH)
Fall time, output clock
10
10
ns
tW(clkL)
Rise time, output cmd
10
10
ns
tdc(clk)
Fall time, output cmd
10
10
ns
SD5
td(CLKOH-CMD)
Delay time, MMC1_clk rising clock edge to
MMC1_cmd transition
6.13
35.53
6.3
77.03
ns
SD6
td(CLKOH-DATx)
Delay time, MMC1_clk rising clock edge to
MMC1_dat[n:0](6) transition
6.13
35.53
6.3
77.03
ns
(1) Related with the output clock maximum and minimum frequencies programmable in MMC module.
(2) PO = output clock period in ns
(3) The jitter probability density can be approximated by a Gaussian function.
(4) The X parameter is defined as follows:
CLKD
X
1 or Even
0.5
Odd
(trunk[CLKD/2]+1)/CLKD
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
229
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
All required details about clock divison factor CLKD can be found in AM3715/03 TRM.
(5) The Y parameter is defined as follows:
CLKD
Y
1 or Even
0.5
Odd
(trunk[CLKD/2])/CLKD
All required details about clock divison factor CLKD can be found in AM3715/03 TRM.
(6) In MMC1_dat[n:0], n is equal to 3.
(7) See DM Operating Condition Addendum for OPP voltages.
SD1
SD2
mmc1_clk
SD3
SD4
mmc1_cmd
SD7
SD8
mmc1_dat[n:0]
SWPS038-098
PRODUCT PREVIEW
Figure 5-62. MMC1 Interface—Standard SD Mode—Data/Command Receive
SD1
SD2
mmc1_clk
SD5
SD5
mmc1_cmd
SD6
SD6
mmc1_dat[n:0]
SWPS038-099
Figure 5-63. MMC1 Interface—Standard SD Mode—Data/Command Transmit
5.6.8.1.4 MMC1 Interface—Standard MMC and MMC Identification Modes
Table 5-109 and Table 5-110 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-64 and Figure 5-65).
230
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 5-108. MMC1 Interface Timing Conditions—Standard MMC and MMC Identification Modes
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
3
ns
tF
Input signal fall time
3
ns
30
pF
Output Conditions
Output load capacitance(1)
CLOAD
(1) Buffer strength configuration: SPEEDCTRL = 1.
Table 5-109. MMC1 Interface Timing Requirements—Standard MMC and MMC Identification Modes(2) (3) (4)
NO.
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
MMC3
tsu(CMDV-CLKIH)
Setup time, MMC1_cmd valid before MMC1_clk rising
clock edge
13.6
55.1
ns
MMC4
th(CLKIH-CMDIV)
Hold time, MMC1_cmd valid after MMC1_clk rising
clock edge
7.7
7.5
ns
MMC7
tsu(DATxV-CLKIH)
Setup time, MMC1_dat[n:0](1) valid before MMC1_clk
rising clock edge
13.6
55.1
ns
MMC8
th(CLKIH-DATxIV)
Hold time, MMC1_dat[n:0](1) valid after MMC1_clk
rising clock edge
7.7
7.5
ns
PRODUCT PREVIEW
MMC1 Interface (1.8-V IO)
MMC1 Interface (3.0-V IO)
MMC3
tsu(CMDV-CLKIH)
Setup time, MMC1_cmd valid before MMC1_clk rising
clock edge
13.6
55.1
ns
MMC4
th(CLKIH-CMDIV)
Hold time, MMC1_cmd valid after MMC1_clk rising
clock edge
7.7
7.5
ns
MMC7
tsu(DATxV-CLKIH)
Setup time, MMC1_dat[n:0](1) valid before MMC1_clk
rising clock edge
13.6
55.1
ns
MMC8
th(CLKIH-DATxIV)
Hold time, MMC1_dat[n:0](1) valid after MMC1_clk
rising clock edge
7.7
7.5
ns
(1) In MMC1_dat[n:0], n is equal to 3.
(2) Timing parameters are referred to output clock specified in Table 5-110.
(3) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 5-110.
(4) See DM Operating Condition Addendum for OPP voltages.
Table 5-110. MMC1 Interface Switching Characteristics—Standard MMC and MMC Identification Modes(7)
NO.
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
MMC Identification Mode
MMC1
1/tc(clk)
Frequency(1), output clk period
MMC2
tW(clkH)
Typical pulse duration, output clk high
X(5)*PO(2)
X(5)*PO(2)
ns
MMC2
tW(clkL)
Typical pulse duration, output clk low
Y(6)*PO(2)
Y(6)*PO(2)
ns
tdc(clk)
Duty cycle error, output clk
125
125
ns
tJ(clk)
Jitter standard deviation(3), output clk
200
200
ps
12
MHz
0.4
0.4
MHz
Standard MMC Identification Mode
MMC1
tc(clk)
Frequency(1), output clk period
MMC2
tW(clkH)
Typical pulse duration, output clk high
X(5)*PO(2)
X(5)*PO(2)
ns
MMC2
tW(clkL)
Typical pulse duration, output clk low
Y(6)*PO(2)
Y(6)*PO(2)
ns
tdc(clk)
Duty cycle error, output clk
tJ(clk)
24
2083.3
4166.7
ps
Jitter standard deviation , output clk
200
200
ps
Rise time, output clk
10
10
ns
(3)
MMC1 Interface (1.8-V IO)
tc(clk)
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
231
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 5-110. MMC1 Interface Switching Characteristics—Standard MMC and MMC Identification Modes(7)
(continued)
NO.
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
tW(clkH)
Fall time, output clk
10
10
ns
tW(clkL)
Rise time, output data
10
10
ns
tdc(clk)
Fall time, output data
10
10
ns
MMC5
td(CLKOH-CMD)
Delay time, MMC1_clk rising clock edge to
MMC1_cmd transition
4.1
37.6
4.3
79
ns
MMC6
td(CLKOH-DATx)
Delay time, MMC1_clk rising clock edge to
MMC1_dat[n:0](4) transition
4.1
37.6
4.3
79
ns
MMC1 Interface (3.0-V IO)
tc(clk)
Rise time, output clk
10
10
ns
tW(clkH)
Fall time, output clk
10
10
ns
tW(clkL)
Rise time, output data
10
10
ns
PRODUCT PREVIEW
tdc(clk)
Fall time, output data
10
ns
MMC5
td(CLKOH-CMD)
Delay time, MMC1_clk rising clock edge to
MMC1_cmd transition
4.1
37.6
10
4.3
79
ns
MMC6
td(CLKOH-DATx)
Delay time, MMC1_clk rising clock edge to
MMC1_dat[n:0](4) transition
4.1
37.6
4.3
79
ns
(1) Related with the output clock maximum and minimum frequencies programmable in MMC module.
(2) PO = output clock period in ns
(3) The jitter probability density can be approximated by a Gaussian function.
(4) In MMC1_dat[n:0], n is equal to 3.
(5) The X parameter is defined as follows:
CLKD
X
1 or Even
0.5
Odd
(trunk[CLKD/2]+1)/CLKD
All required details about clock divison factor CLKD can be found in AM3715/03 TRM.
(6) The Y parameter is defined as follows:
CLKD
Y
1 or Even
0.5
Odd
(trunk[CLKD/2])/CLKD
All required details about clock divison factor CLKD can be found in AM3715/03 TRM.
(7) See DM Operating Condition Addendum for OPP voltages.
MMC1
MMC2
mmc1_clk
MMC3
MMC4
mmc1_cmd
MMC7
MMC8
mmc1_dat[3:0]
SWPS038-102
Figure 5-64. MMC1 Interface—Standard MMC and MMC Identification Modes—Data/Command Receive
Figure 5-65. MMC1 Interface—Standard MMC and MMC Identification Modes—Data/Command Transmit
232
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
5.6.8.1.5 MMC1 Interface—High-Speed MMC Mode
Table 5-112 and Table 5-113 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-66 and Figure 5-67).
Table 5-111. MMC1 Interface Timing Conditions—High-Speed MMC Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
3
ns
tF
Input signal fall time
3
ns
30
pF
Output Conditions
Output load capacitance(1)
CLOAD
(1) The load setting of the IO buffer: SPEEDCTRL = 1.
Table 5-112. MMC1 Interface Timing Requirements—High-Speed MMC Mode(2) (3) (4)
NO.
PARAMETER
OPP100
MIN
(5)
OPP50
MAX
MIN
UNIT
MAX
MMC3
tsu(CMDV-CLKIH)
Setup time, MMC1_cmd valid before MMC1_clk rising
clock edge
5.6
26.0
ns
MMC4
th(CLKIH-CMDIV)
Hold time, MMC1_cmd valid after MMC1_clk rising
clock edge
2.3
1.9
ns
MMC7
tsu(DATxV-CLKIH)
Setup time, MMC1_dat[n:0](1) valid before MMC1_clk
rising clock edge
5.6
26.0
ns
MMC8
th(CLKIH-DATxIV)
Hold time, MMC1_dat[n:0](1) valid after MMC1_clk
rising clock edge
2.3
1.9
ns
PRODUCT PREVIEW
MMC1 Interface (1.8-V IO)
MMC1 Interface (3.0-V IO)
MMC3
tsu(CMDV-CLKIH)
Setup time, MMC1_cmd valid before MMC1_clk rising
clock edge
5.6
26.0
ns
MMC4
th(CLKIH-CMDIV)
Hold time, MMC1_cmd valid after MMC1_clk rising
clock edge
2.3
1.9
ns
MMC7
tsu(DATxV-CLKIH)
Setup time, MMC1_dat[n:0](1) valid before MMC1_clk
rising clock edge
5.6
26.0
ns
MMC8
th(CLKIH-DATxIV)
Hold time, MMC1_dat[n:0](1) valid after MMC1_clk
rising clock edge
2.3
1.9
ns
(1) In MMC1_dat[n:0], n is equal to 3.
(2) Timing parameters are referred to output clock specified in Table 5-113.
(3) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 5-113.
(4) Corresponding figures showing timing parameters are common with the Standard MMC mode figures.
(5) See DM Operating Condition Addendum for OPP voltages.
Table 5-113. MMC1 Interface Switching Characteristics—High-Speed MMC Mode(4) (8)
NO.
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
MMC1
tc(clk)
Frequency(1), output clk period
MMC2
tW(clkH)
Typical pulse duration, output clk high
X(6)*PO(2)
X(6)*PO(2)
ns
MMC2
tW(clkL)
Typical pulse duration, output clk low
Y(7)*PO(2)
Y(7)*PO(2)
ns
tdc(clk)
Duty cycle error, output clk
tJ(clk)
Jitter standard deviation(3), output clk
48
24
MHz
1041.7
2083.3
ps
200
200
ps
MMC1 Interface (1.8-V IO)
tc(clk)
Rise time, output clk
3
3
ns
tW(clkH)
Fall time, output clk
3
3
ns
tW(clkL)
Rise time, output data
3
3
ns
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
233
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 5-113. MMC1 Interface Switching Characteristics—High-Speed MMC Mode(4) (8) (continued)
NO.
PARAMETER
OPP100
OPP50
MIN
MAX
UNIT
MIN
MAX
tdc(clk)
Fall time, output data
3
ns
MMC5
td(CLKOH-CMD)
Delay time, MMC1_clk rising clock edge to
MMC1_cmd transition
3.7
14.1
3
4.1
34.5
ns
MMC6
td(CLKOH-DATx)
Delay time, MMC1_clk rising clock edge to
MMC1_dat[n:0](5) transition
3.7
14.1
4.1
34.5
ns
MMC1 Interface (3.0-V IO)
tc(clk)
Rise time, output clk
3
3
ns
tW(clkH)
Fall time, output clk
3
3
ns
tW(clkL)
Rise time, output data
3
3
ns
tdc(clk)
Fall time, output data
3
3
ns
MMC5
td(CLKOH-CMD)
Delay time, MMC1_clk rising clock edge to
MMC1_cmd transition
3.7
14.1
4.1
34.5
ns
MMC6
td(CLKOH-DATx)
Delay time, MMC1_clk rising clock edge to
MMC1_dat[n:0](5) transition
3.7
14.1
4.1
34.5
ns
(1) Related with the output clock maximum and minimum frequencies programmable in MMC module.
(2) PO = output clock period in ns
PRODUCT PREVIEW
(3) The jitter probability density can be approximated by a Gaussian function.
(4) Corresponding figures showing timing parameters are common with the Standard MMC mode figures.
(5) In MMC1_dat[n:0], n is equal to 3.
(6) The X parameter is defined as follows:
CLKD
X
1 or Even
0.5
Odd
(trunk[CLKD/2]+1)/CLKD
All required details about clock divison factor CLKD can be found in AM3715/03 TRM.
(7) The Y parameter is defined as follows:
CLKD
Y
1 or Even
0.5
Odd
(trunk[CLKD/2])/CLKD
All required details about clock divison factor CLKD can be found in AM3715/03 TRM.
(8) See DM Operating Condition Addendum for OPP voltages.
234
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
MMC1
MMC2
mmc1_clk
MMC3
MMC4
mmc1_cmd
MMC7
MMC8
mmc1_dat[3:0]
SWPS038-100
Figure 5-66. MMC1 Interface—High-Speed MMC Mode—Data/Command Receive
MMC1
MMC2
mmc1_clk
MMC5
MMC5
mmc1_cmd
MMC6
mmc1_dat[3:0]
SWPS038-101
Figure 5-67. MMC1 Interface—High-Speed MMC Mode—Data/Command Transmit
5.6.8.1.6 MMC2 and MMC3 Interfaces—SDIO Identification Mode
Table 5-115 and Table 5-116 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-89 and Figure 5-90).
Table 5-114. MMC2 and MMC3 Interfaces Timing Conditions—SDIO Identification Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
10
ns
tF
Input signal fall time
10
ns
5
pF
Output Condition
CLOAD
Output load capacitance(1)
(1) Buffer strength configuration: LB0 = 0
Table 5-115. MMC2 and MMC3 Interfaces Timing Requirements—SDIO Identification Mode(1)(2)
NO.
PARAMETER
OPP100
MIN
MAX
OPP50
MIN
UNIT
MAX
MMC2 and MMC3 Interface (1.8-V IO)
SD3
tsu(CMDV-CLKIH)
Setup time, MMCx_cmd valid before
MMCx_clk rising clock edge
1198.4
1198.4
ns
SD4
th(CLKIH-CMDIV)
Hold time, MMCx_cmd valid after MMCx_clk
rising clock edge
1249.2
1249.2
ns
(1) See DM Operating Condition Addendum for OPP voltages.
(2) In MMCx, x is equal to 2 or 3.
Table 5-116. MMC2 and MMC3 Interfaces Switching Characteristics—SDIO Identification Mode(4)(7)(7)
NO.
PARAMETER
OPP100
MIN
MAX
OPP50
MIN
UNIT
MAX
Standard SDIO Mode
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
235
PRODUCT PREVIEW
MMC6
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 5-116. MMC2 and MMC3 Interfaces Switching Characteristics—SDIO Identification
Mode(4)(7)(7) (continued)
NO.
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
SD1
tc(clk)
Frequency(1), output clock period
SD2
tW(clkH)
Typical pulse duration, output clock high
X(5) *
PO(2)
X(5) *
PO(2)
ns
SD2
tW(clkL)
Typical pulse duration, output clock low
Y(6) *
PO(2)
Y(6) *
PO(2)
ns
tdc(clk)
Duty cycle error, output clock
125
125
ns
tJ(clk)
Jitter standard deviation(3), output clock
200
200
ps
tc(clk)
Rise time, output clock
10
10
ns
tW(clkH)
Fall time, output clock
10
10
ns
tW(clkL)
Rise time, output cmd
10
10
ns
tdc(clk)
Fall time, output cmd
10
10
ns
td(CLKOH-CMD)
Delay time, MMCx_clk rising clock edge to
MMCx_cmd transition
77.03
ns
SD5
0.4
6.3
0.4
2492.7
6.3
MHz
(1) Related to the output MMCx_clk maximum and minimum frequency.
(2) P = output MMCx_clk period in ns
PRODUCT PREVIEW
(3) The jitter probability density can be approximated by a Gaussian function.
(4) Corresponding figures showing timing parameters are common with other interface modes (see SDIO, HS SDIO modes).
(5) The X parameter is defined as follows:
CLKD
X
1 or Even
0.5
Odd
(trunk[CLKD/2]+1)/CLKD
All required details about clock divison factor CLKD can be found in AM3715/03 TRM.
(6) The Y parameter is defined as follows:
CLKD
Y
1 or Even
0.5
Odd
(trunk[CLKD/2])/CLKD
All required details about clock divison factor CLKD can be found in AM3715/03 TRM.
(7) In MMCx, x is equal to 2 or 3.
5.6.8.1.7 MMC2 and MMC3 Interfaces—High-Speed SDIO Mode
Table 5-118 and Table 5-119 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-68 and Figure 5-69).
Table 5-117. MMC2 and MMC3 Interfaces Timing Conditions—High-Speed SDIO Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
MIN
MAX
Input Conditions
tR
Input signal rise time
0.18
5.69
ns
tF
Input signal fall time
0.19
5.70
ns
Output Condition
CLOAD
236
Output load capacitance(1)
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
5
pF
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
(1) Buffer strength configuration for MMC2 and MMC3: LB0 = 0.
Table 5-118. MMC2 and MMC3 Interfaces Timing Requirements—High-Speed SDIO Mode(2)
NO.
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
HSSD3
tsu(dV-clkH)
Setup time, MMCx_cmd valid before MMCx_clk rising
clock edge
3.4
23.8
ns
HSSD4
th(clkH-dV)
Hold time, MMCx_cmd valid after MMCx_clk rising
clock edge
1.7
1.3
ns
HSSD7
tsu(dV-clkH)
Setup time, MMCx_dat[n:0](1) valid before MMCx_clk
rising clock edge
3.4
23.8
ns
HSSD8
th(clkH-dV)
Hold time, MMCx_dat[n:0](1) valid after MMCx_clk
rising clock edge
1.7
1.3
ns
(1) In MMCx_dat[n:0], n is equal to 3 for MMC2 and 7 for MMC3.
(2) See DM Operating Condition Addendum for OPP voltages.
Table 5-119. MMC2 and MMC3 Interfaces Switching Characteristics—High-Speed SDIO Mode(2)
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
HSSD1
tc(clk)
Frequency(1), output MMCx_clk period
HSSD2
tW(clkH)
Typical pulse duration, output MMCx_clk high
0.5*P(3)
0.5*P(3)
ns
HSSD2
tW(clkL)
Typical pulse duration, output MMCx_clk low
0.5*P(3)
0.5*P(3)
ns
tdc(clk)
Duty cycle error, output MMCx_clk
–1042
1042
–2083
2083
ps
tJ(clk)
Jitter standard deviation(4), output MMCx_clk
–65
65
–65
65
ps
HSSD5
td(clkL-doV)
Delay time, MMCx_clk rising clock edge to
MMCx_cmd transition
2.6
13.8
3
34.3
ns
HSSD6
td(clkL-doV)
Delay time, MMCx_clk rising clock edge to
MMCx_dat[n:0](2) transition
2.6
13.8
3
34.3
ns
48
24
MHz
(1) Related with the output MMCx_clk maximum and minimum frequency.
(2) In MMCx, x = 2 or 3. In MMCx_dat[n:0], n is equal to 3 for MMC2 and 7 for MMC3.
(3) P = output MMCx_clk period in ns.
(4) The jitter probability density can be approximated by a Gaussian function.
(5) See DM Operating Condition Addendum for OPP voltages.
HSSD1
HSSD2
HSSD2
mmcx_clk
HSSD3
HSSD4
mmcx_cmd
HSSD7
HSSD8
mmcx_dat[n:0]
SWPS038-096
Figure 5-68. MMC2 and MMC3 Interfaces—High-Speed SDIO Mode—Data/Command Receive(1)
(1) In MMCx, x = 2 or 3. In MMCx_dat[n:0], n is equal to 3 for MMC2 and 7 for MMC3.
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
237
PRODUCT PREVIEW
NO.
(5)
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
HSSD1
HSSD2
HSSD2
mmcx_clk
HSSD5
HSSD5
mmcx_cmd
HSSD6
HSSD6
mmcx_dat[n:0]
SWPS038-097
Figure 5-69. MMC2 and MMC3 Interfaces—High-Speed SDIO Mode—Data/Command Transmit(1)
(1) In MMCx, x = 2 or 3. In MMCx_dat[n:0], n is equal to 3 for MMC2 and 7 for MMC3.
5.6.8.1.8 MMC2 and MMC3 Interfaces—Standard SDIO Mode
Table 5-121 and Table 5-122 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-89 and Figure 5-90).
Table 5-120. MMC2 and MMC3 Interfaces Timing Conditions—Standard SDIO Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
PRODUCT PREVIEW
Input Conditions
tR
Input signal rise time
10
ns
tF
Input signal fall time
10
ns
5
pF
Output Condition
Output load capacitance(1)
CLOAD
(1) Buffer strength configuration: SPEEDCTRL = 1
Table 5-121. MMC2 and MMC3 Interfaces Timing Requirements—Standard SDIO Mode(2)(3)
NO.
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
MMC2 and MMC3 Interface (1.8-V IO)
SD3
tsu(CMDV-CLKIH)
Setup time, MMCx_cmd valid before
MMCx_clk rising clock edge
3.3
21.9
ns
SD4
th(CLKIH-CMDIV)
Hold time, MMCx_cmd valid after MMCx_clk
rising clock edge
18.1
36.7
ns
SD7
tsu(DATxV-CLKIH)
Setup time, MMCx_dat[n:0](1) valid before
MMCx_clk rising clock edge
3.3
21.9
ns
SD8
th(CLKIH-DATxIV)
Hold time, MMCx_dat[n:0](1) valid after
MMCx_clk rising clock edge
18.1
36.7
ns
(1) In MMCx_dat[n:0], n is equal to 3 for MMC2 and 7 for MMC3.
(2) See DM Operating Condition Addendum for OPP voltages.
(3) In MMCx, x is equal to 2 or 3.
Table 5-122. MMC2 and MMC3 Interfaces Switching Characteristics—Standard SDIO Mode(6)(7)
NO.
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
Standard SDIO Mode
SD1
tc(clk)
Frequency(1), output clock period
SD2
tW(clkH)
Typical pulse duration, output clock high
X(4) *
PO(2)
X(4) *
PO(2)
ns
SD2
tW(clkL)
Typical pulse duration, output clock low
Y(5) *
PO(2)
Y(5) *
PO(2)
ns
tdc(clk)
Duty cycle error, output clock
238
24
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
2083.33
12
4166.67
MHz
ps
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 5-122. MMC2 and MMC3 Interfaces Switching Characteristics—Standard SDIO Mode(6)(7) (continued)
NO.
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
tJ(clk)
Jitter standard deviation(3), output clock
200
200
ps
tc(clk)
Rise time, output clock
10
10
ns
tW(clkH)
Fall time, output clock
10
10
ns
tW(clkL)
Rise time, output cmd
10
10
ns
tdc(clk)
Fall time, output cmd
10
10
ns
SD5
td(CLKOH-CMD)
Delay time, MMCx_clk rising clock edge to
MMCx_cmd transition
6.13
35.53
6.3
77.03
ns
SD6
td(CLKOH-DATx)
Delay time, MMCx_clk rising clock edge to
MMCx_dat[n:0](6) transition
6.13
35.53
6.3
77.03
ns
(1) Related to the output MMCx_clk maximum and minimum frequency.
(2) P = output MMCx_clk period in ns
(3) The jitter probability density can be approximated by a Gaussian function.
(4) The X parameter is defined as follows:
X
1 or Even
0.5
Odd
(trunk[CLKD/2]+1)/CLKD
PRODUCT PREVIEW
CLKD
All required details about clock divison factor CLKD can be found in AM3715/03 TRM.
(5) The Y parameter is defined as follows:
CLKD
Y
1 or Even
0.5
Odd
(trunk[CLKD/2])/CLKD
All required details about clock divison factor CLKD can be found in AM3715/03 TRM.
(6) In MMCx, x is equal to 2 or 3. In MMCx_dat[n :0] is equal to 3 for MMC2 and 7 for MMC3.
(7) See DM Operating Condition Addendum for OPP voltages.
SD1
SD2
mmc1_clk
SD3
SD4
mmc1_cmd
SD7
SD8
mmc1_dat[n:0]
SWPS038-098
Figure 5-70. MMC2 and MMC3 Interfaces—Standard SDIO Mode—Data/Command Receive(1)
(1) In MMCx, x is equal to 2 or 3. In MMCx_dat[n:0] is equal to 3 for MMC2 and 7 for MMC3.
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
239
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
SD1
SD2
mmc1_clk
SD5
SD5
mmc1_cmd
SD6
SD6
mmc1_dat[n:0]
SWPS038-099
(1)
Figure 5-71. MMC2 and MMC3 Interfaces—Standard SDIO Mode—Data/Command Transmit
(1) In MMCx, x is equal to 2 or 3. In MMCx_dat[n:0] is equal to 3 for MMC2 and 7 for MMC3.
5.6.8.1.9 MMC2 and MMC3 Interfaces—Embedded Media Interface (eMMC)—High-Speed JC64 Mode
Table 5-124 and Table 5-125 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-72 through Figure 5-73).
Table 5-123. MMC2 and MMC3 Interfaces Timing Conditions—High-Speed JC64 Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
PRODUCT PREVIEW
MIN
MAX
Input Conditions
tR
Input signal rise time
0.38
3.82
ns
tF
Input signal fall time
0.39
3.68
ns
Output Condition
Output load capacitance(1)
CLOAD
14
pF
(1) Buffer strength configuration for MMC3: LB0 = 1.
Table 5-124. MMC2 and MMC3 Interfaces Timing Requirements—High-Speed JC64 Mode(1)
NO.
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
MMC3
tsu(cmdV-clkH)
Setup time, input command MMCx_cmd valid before
output clock MMCx_clk rising edge
5.1
25.5
ns
MMC4
th(clkH-cmdIV)
Hold time, input command MMCx_cmd valid after
output clock MMCx_clk rising edge
1.3
0.9
ns
MMC7
tsu(dV-clkH)
Setup time, input data MMCx_dat[n:0] valid before
output clock MMCx_clk rising edge
5.1
25.5
ns
MMC8
th(clkH-dIV)
Hold time, input data MMCx_dat[n:0] valid after output
clock MMCx_clk rising edge
1.3
0.9
ns
(1) In mmx_dat[n:0], x is equal to 2 or 3 and n is equal to 7.
(2) In mmx_cmd, x is equal to 2 or 3.
(3) In mmx_clk, x is equal to 2 or 3.
Table 5-125. MMC2 and MMC3 Interfaces Switching Characteristics—High-Speed JC64 Mode(5) (6)(7)
NO.
PARAMETER
OPP100
MIN
MMC1
1/tc(clk)
Frequency(1), output MMCx_clk period
tW(clkH)
Typical pulse duration, output MMCx_clk high
0.5*P
tW(clkL)
Typical pulse duration, output MMCx_clk low
0.5*P(2)
tdc(clk)
Duty cycle error, output MMCx_clk
tJ(clk)
Jitter standard deviation(3), output MMCx_clk
tR(clk)
Rising time, output MMCx_clk
tF(clk)
Falling time, output MMCx_clk
UNIT
MAX
48
MMC2
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
MIN
24
(2)
MMC2
240
OPP50
MAX
MHz
(2)
ns
0.5*P(2)
ns
0.5*P
–1042
1042
–2083
2083
ps
–65
65
–65
65
ps
2263
2263
ps
2136
2136
ps
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 5-125. MMC2 and MMC3 Interfaces Switching Characteristics—High-Speed JC64 Mode(5)
(6)(7)
(continued)
NO.
MMC5
MMC6
PARAMETER
OPP100
OPP50
UNIT
MIN
MAX
MIN
MAX
3.6
16.8
4
37.2
ns
td(clkL-doV)
Delay time, MMCx_clk rising clock edge to
MMCx_cmd transition
tR(do)
Rising time, output MMCx_cmd
2263
2263
ps
tF(do)
Falling time, output MMCx_cmd
2136
2136
ps
td(clkL-doV)
Delay time, MMCx_clk rising clock edge to
MMCx_daty transition
37.2
ns
tR(do)
Rising time, output MMCx_dat[n:0](4)
2263
2263
ps
tF(do)
(4)
2136
2136
ps
Falling time, output MMCx_dat[n:0]
3.6
16.8
4
(1) Related with the output clock maximum and minimum frequencies programmable in MMC module.
(2) PO = output clock period in ns
(3) The jitter probability density can be approximated by a Gaussian function.
(4) In mmx_dat[n:0], x is equal to 2 or 3 and n is equal to 7.
(5) See DM Operating Condition Addendum for OPP voltages.
(7) In mmx_clk, x is equal to 2 or 3.
MMC1
MMC2
MMC2
mmcx_clk
MMC5
MMC5
mmcx_cmd
MMC6
MMC6
mmcx_dat[n:0]
SWPS038-104
Figure 5-72. MMC2 and MMC3 Interfaces—High-Speed JC64 Transmiter Mode(1)(2)(3)
(1) In mmx_dat[n:0], x is equal to 2 or 3 and n is equal to 7.
(2) In mmx_cmd, x is equal to 2 or 3.
(3) In mmx_clk, x is equal to 2 or 3.
MMC1
MMC2
MMC2
mmcx_clk
MMC3
MMC4
mmcx_cmd
MMC7
MMC8
mmcx_dat[n:0]
SWPS038-105
(1)(2)(3)
Figure 5-73. MMC2 and MMC3 Interfaces—High-Speed JC64 Receiver Mode
(1) In mmx_dat[n:0], x is equal to 2 or 3 and n is equal to 7.
(2) In mmx_cmd, x is equal to 2 or 3.
(3) In mmx_clk, x is equal to 2 or 3.
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
241
PRODUCT PREVIEW
(6) In mmx_cmd, x is equal to 2 or 3.
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
5.6.9
www.ti.com
Embedded Media Interfaces
5.6.9.1
mmc3—High-Speed JC64 Mode
Table 5-127 and Table 5-128 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-74 through Figure 5-75).
Table 5-126. mmc3 Timing Conditions—High-Speed JC64 Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
MIN
MAX
Input Conditions
tR
Input signal rise time
0.38
3.82
ns
tF
Input signal fall time
0.39
3.68
ns
Output Condition
Output load capacitance(1)
CLOAD
12
pF
(1) Buffer strength configuration for mmc3: LB0 = 1.
Table 5-127. mmc3 Timing Requirements—High-Speed JC64 Mode(1)
NO.
PARAMETER
OPP100
PRODUCT PREVIEW
MIN
OPP50
MAX
MIN
UNIT
MAX
MMC3
tsu(cmdV-clkH)
Setup time, input command mmc3_cmd valid before
output clock mmc3_clk rising edge
5.1
25.5
ns
MMC4
th(clkH-cmdIV)
Hold time, input command mmc3_cmd valid after
output clock mmc3_clk rising edge
1.3
0.9
ns
MMC7
tsu(dV-clkH)
Setup time, input data mmc3_dat[n:0] valid before
output clock mmc3_clk rising edge
5.1
25.5
ns
MMC8
th(clkH-dIV)
Hold time, input data mmc3_dat[n:0] valid after output
clock mmc3_clk rising edge
1.3
0.9
ns
(1) In mmc3_dat[n:0], n is equal to 7.
Table 5-128. MMC3 Switching Characteristics—High-Speed JC64 Mode(5)
NO.
PARAMETER
OPP100
MIN
MMC1
1/tc(clk)
Frequency(1), output mmc3_clk period
MMC2
tW(clkH)
Typical pulse duration, output mmc3_clk high
MMC2
MMC5
MMC6
tW(clkL)
Typical pulse duration, output mmc3_clk low
tdc(clk)
Duty cycle error, output mmc3_clk
tJ(clk)
Jitter standard deviation(3), output mmc3_clk
tR(clk)
Rising time, output mmc3_clk
tF(clk)
Falling time, output mmc3_clk
td(clkL-doV)
Delay time, mmc3_clk rising clock edge to mmc3_cmd
transition
tR(do)
Rising time, output mmc3_cmd
tF(do)
Falling time, output mmc3_cmd
td(clkL-doV)
Delay time, mmc3_clk rising clock edge to mmc3_daty
transition
tR(do)
Rising time, output mmc3_dat[n:0](4)
tF(do)
Falling time, output mmc3_dat[n:0](4)
OPP50
MAX
MIN
UNIT
MAX
48
24
MHz
0.5*P(2)
0.5*P(2)
ns
(2)
(2)
ns
0.5*P
0.5*P
–1042
1042
–2083
2083
ps
–65
65
–65
65
ps
2263
ps
2136
ps
37.2
ns
2263
2263
ps
2136
2136
ps
37.2
ns
2263
2263
ps
2136
2136
ps
2263
2136
3.6
3.6
16.8
16.8
4
4
(1) Related with the output clock maximum and minimum frequencies programmable in MMC module.
(2) PO = output clock period in ns
(3) The jitter probability density can be approximated by a Gaussian function.
(4) In mmc3_dat[n:0], n is equal to 7.
(5) See Operating Condition Addendum for OPP voltages.
242
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
MMC1
MMC2
MMC2
mmcx_clk
MMC5
MMC5
mmcx_cmd
MMC6
MMC6
mmcx_dat[n:0]
SWPS038-104
(1)
In mmc3_dat[n:0], n is equal to 7.
Figure 5-74. MMC3—High-Speed JC64 Transmiter Mode
MMC1
MMC2
MMC2
mmcx_clk
MMC4
mmcx_cmd
MMC7
MMC8
mmcx_dat[n:0]
SWPS038-105
(1)
In mmc3_dat[n:0], n is equal to 7.
Figure 5-75. MMC3—High-Speed JC64 Receiver Mode
5.6.10 Test Interfaces
5.6.10.1 Embedded Trace Macro Interface (ETM)
Table 5-130 assumes testing over the recommended operating conditions and electrical characteristic
conditions below (see Figure 5-76).
Table 5-129. ETM Timing Conditions—Transmit Mode
TIMING CONDITION PARAMETER
VALUE
MIN
UNIT
MAX
Output Condition
Output load capacitance(1)
CLOAD
10
pF
(1) Buffer strength configuration: LB0 = 1.
Table 5-130. ETM Switching Characteristics—Transmit Mode(4)
NO.
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
TPIU1
1 / tc(clk)
Frequency(3), output clock etk_clk
TPIU2
tw(clkH)
Pulse duration, output clock etk_clk high
0.5P(1)
0.5P(1)
ns
TPIU3
tw(clkL)
Pulse duration, output clock etk_clk low
0.5P(1)
0.5P(1)
ns
tdc(clk)
Duty cycle error, output clock etk_clk
301
ps
tJ(clk)
Jitter standard deviation(2), output clock etk_clk
65
65
ps
tR(clk)
Rise time, output clock etk_clk
1.2
1.2
ns
tF(clk)
Fall time, output clock etk_clk
1.2
1.2
ns
Copyright © 2010, Texas Instruments Incorporated
166
–301
301
166
–301
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
MHz
243
PRODUCT PREVIEW
MMC3
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 5-130. ETM Switching Characteristics—Transmit Mode(4) (continued)
NO.
PARAMETER
OPP100
MIN
MAX
OPP50
MIN
UNIT
MAX
TPIU4
td(clk-ctl)
Delay time, output clock etk_clk low/high to output
control etk_ctl transition
0.839
0.839
ns
TPIU5
td(clkH-d)
Delay time, output clock etk_clk low/high to output
data etk_d[15:0] transition
0.839
0.839
ns
tR(d/ctl)
Rise time, output data etk_d[15:0] and output control
etk_ctl
1.2
1.2
ns
tF(d/ctl)
Fall time, output data etk_d[15:0] and output control
etk_ctl
1.2
1.2
ns
(1) P = etk_clk period in ns
(2) The jitter probability density can be approximated by a Gaussian function.
(3) Related with the etm_clk maximum frequency.
(4) See Operating Condition Addendum for OPP voltages.
TPIU1
TPIU2
TPIU3
PRODUCT PREVIEW
etk_clk
TPIU4
TPIU4
etk_ctl
TPIU5
TPIU5
etk_d[15:0]
SWPS038-106
Figure 5-76. ETM—Transmit Mode
5.6.10.2 System Debug Trace Interface (SDTI)
The System Debug Trace Interface (SDTI) module provides real-time software tracing functionality to
AM3715/03 device. The trace interface has four trace data pins and a trace clock pin.
This interface is a dual-edge interface:
• The data are available on rising and falling edge of sdti_clk.
• But can be also configured in single-edge mode where data are available on the falling edge of
sdti_clk.
Serial interface operates in clock stop regime: serial clock is not free-running; when there is no trace data,
there is no trace clock.
5.6.10.2.1 SDTI—Dual-Edge Mode
Table 5-132 assumes testing over the recommended operating conditions and electrical characteristic
conditions below (see Figure 5-77).
Table 5-131. SDTI Timing Conditions—Dual-Edge Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
25
pF
Output Condition
CLOAD
244
Output load capacitance(1)
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
(1) Buffer strength configuration: LB0 = 1.
Table 5-132. SDTI Switching Characteristics—Dual-Edge Mode(2)
NO.
PARAMETER
OPP100
MIN
MAX
0.5P(1) –
1.2
Multiplexing mode on
etk pins
Multiplexing mode on
jtag_emu pins
SD1
1 / tc(clk)
Frequency, output clock sdti_clk
SD2
tw(clk)
Pulse duration, output clock sdti_clk high or low
SD3
td(clk-txd)
Delay time, output clock sdti_clk
transition to output data
sdti_txd[3:0] transition
OPP50
UNIT
MIN
MAX
34.5
MHz
0.5P(1) +
1.2
0.5P(1) –
1.2
0.5P(1) +
1.2
ns
2.3
10.9
2.3
10.9
ns
2.3
13.9
2.3
13.9
34.5
(1) P = sdti_clk clock period in ns
(2) See Operating Condition Addendum for OPP voltages.
SD1
SD2
sdti_clk
sdti_txd[3:0]
Header
Header
SD3
Ad[7:4]
Ad[3:0]
Da[15:12]
Da[7:4]
Da[11:8]
Da[3:0]
SWPS038-107
Figure 5-77. SDTI—Dual-Edge Mode
5.6.10.2.2 SDTI—Single-Edge Mode
Table 5-134 assumes testing over the recommended operating conditions and electrical characteristic
conditions below (see Figure 5-78).
Table 5-133. SDTI Timing Conditions—Single-Edge Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
25
pF
Output Condition
CLOAD
Output load capacitance(1)
(1) Buffer strength configuration: LB0 = 1.
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
245
PRODUCT PREVIEW
SD3
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
Table 5-134. SDTI Switching Characteristics—Single-Edge Mode(2)
NO.
PARAMETER
OPP100
OPP50
MIN
MAX
0.5P(1) –
1.2
Multiplexing mode on
etk pins
Multiplexing mode on
jtag_emu pins
SD1
1 / tc(clk)
Frequency, output clock sdti_clk
SD2
tw(clk)
Pulse duration, output clock sdti_clk high or low
SD3
td(clk-txd)
Delay time, output clock sdti_clk
transition to output data
sdti_txd[3:0] transition
UNIT
MIN
MAX
34.5
MHz
0.5P(1) +
1.2
0.5P(1) –
1.2
0.5P(1) +
1.2
ns
2.3
26.5
2.3
26.5
ns
2.3
33.2
2.3
33.2
34.5
(1) P = sdti_clk clock period in ns
(2) See Operating Condition Addendum for OPP voltages.
SD1
SD2
sdti_clk
SD3
sdti_txd[3:0]
Header
SD3
Header
Ad[7:4]
Ad[3:0]
Da[15:12]
Da[11:8]
Da[7:4]
Da[3:0]
SWPS038-108
PRODUCT PREVIEW
Figure 5-78. SDTI—Single-Edge Mode
5.6.10.3 JTAG Interface (JTAG)
The JTAG TAP controller handles standard IEEE JTAG interfaces. The following section defines the
timing requirements for several tools used to test the AM3715/03 as:
• Free-running clock tool, like XDS560 and XDS510 tools
• Adaptive clock tool, like RealView® ICE tool and LauterbachTM tool
5.6.10.3.1 JTAG—Free-Running Clock Mode
Table 5-136 and Table 5-137 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-79).
Table 5-135. JTAG Timing Conditions—Free-Running Clock Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
5
ns
tF
Input signal fall time
5
ns
30
pF
Output Condition
CLOAD
Output load capacitance
Table 5-136. JTAG Timing Requirements—Free-Running Clock Mode(5) (6)
NO.
PARAMETER
OPP100
MIN
JT4
Frequency(1), input clock jtag_tck
tw(tckL)
Pulse duration, input clock jtag_tck low
0.5P
tw(tckH)
Pulse duration, input clock jtag_tck high
0.5P(2)
tdc(tck)
Duty cycle error, input clock jtag_tck
tJ(tck)
Cycle jitter , input clock jtag_tck
tsu(tdiV-rtckH)
Setup time, input data jtag_tdi valid before output
clock jtag_rtck high
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
UNIT
MAX
50
JT6
(3)
MIN
50
(2)
JT5
JT7
246
1 / tc(tck)
OPP50
MAX
MHz
(2)
ns
0.5P(2)
ns
0.5P
–1250
1250
–1667
1667
ps
–1250
1250
–1667
1667
ps
1.6
1.6
ns
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Table 5-136. JTAG Timing Requirements—Free-Running Clock Mode(5) (6) (continued)
NO.
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
JT8
th(tdiV-rtckH)
Hold time, input data jtag_tdi valid after output clock
jtag_rtck high
0.7
1.0
ns
JT9
tsu(tmsV-rtckH)
Setup time, input mode select jtag_tms_tmsc valid
before output clock jtag_rtck high
1.6
1.6
ns
JT10
th(tmsV-rtckH)
Hold time, input mode select jtag_tms_tmsc valid after
output clock jtag_rtck high
0.7
1.0
ns
JT12
tsu(emuxV-rtckH)
Setup time, input emulation jtag_emux(4) valid before
output clock jtag_rtck high
14.4
19.6
ns
JT13
th(emuxV-rtckH)
Hold time, input emulation jtag_emux(4) valid after
output clock jtag_rtck high
2.0
2.7
ns
(1) Related with the input maximum frequency supported by the JTAG module.
(2) P = input clock jtag _tck period in ns
(3) Maximum cycle jitter supported by input clock jtag _tck.
(4) In jtag_emux, x is equal to 0 or 1.
(5) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.
Table 5-137. JTAG Switching Characteristics—Free-Running Clock Mode(5)
NO.
PARAMETER
OPP100
MIN
JT1
1 / tc(rtck)
Frequency(1), output clock jtag_rtck
tw(rtckL)
Pulse duration, output clock jtag_rtck low
0.5P
tw(rtckH)
Pulse duration, output clock jtag_rtck high
0.5P(2)
tdc(rtck)
Duty cycle error, output clock jtag_rtck
–1250
(3)
50
MHz
(2)
ns
0.5P(2)
ns
0.5P
1250
UNIT
MAX
50
JT3
JT14
MIN
(2)
JT2
JT11
OPP50
MAX
–1667
1667
ps
tJ(rtck)
Jitter standard deviation , output clock jtag_rtck
33.3
33.3
ps
tR(rtck)
Rise time, output clock jtag_rtck
0
0
ns
tF(rtck)
Fall time, output clock jtag_rtck
0
0
ns
td(rtckL-tdoV)
Delay time, output clock jtag_rtck low to output data
jtag_tdo valid
7.9
ns
tR(tdo)
Rise time, output data jtag_tdo
0
0
ns
tF(tdo)
Fall time, output data jtag_tdo
0
0
ns
td(rtckH-emuxV)
Delay time, output clock jtag_rtck high to output
emulation ,jtag_emux(4) valid
20.4
ns
–5.8
2.7
5.8
15.1
–7.9
2.7
(1) Related with the jtag_rtck maximum frequency.
(2) P = output clock jtag _rtck period in ns
(3) The jitter probability density can be approximated by a Gaussian function.
(4) In jtag_emux, x is equal to 0 or 1.
(5) See Operating Condition Addendum for OPP voltages.
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
247
PRODUCT PREVIEW
(6) See Operating Condition Addendum for OPP voltages.
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
JT4
JT5
JT6
jtag_tck
JT1
JT2
JT3
jtag_rtck
JT7
JT8
JT9
JT10
jtag_tdi
jtag_tms_tmsc
JT12
JT13
jtag_emux(IN)
JT11
jtag_tdo
JT14
jtag_emux(OUT)
SWPS038-109
(1)
In jtag_emux, x is equal to 0 or 1.
Figure 5-79. JTAG—Free-Running Clock Mode
PRODUCT PREVIEW
5.6.10.3.2 JTAG—Adaptative Clock Mode
Table 5-139 and Table 5-140 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-80).
Table 5-138. JTAG Timing Conditions—Adaptative Clock Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
5
ns
tF
Input signal fall time
5
ns
30
pF
Output Condition
CLOAD
Output load capacitance
Table 5-139. JTAG Timing Requirements—Adaptative Clock Mode(4) (5)
NO.
PARAMETER
OPP100
MIN
JA4
1 / tc(tck)
Frequency(1), input clock jtag_tck
JA5
tw(tckL)
Pulse duration, input clock jtag_tck low
JA6
OPP50
MAX
MIN
UNIT
MAX
50
50
MHz
0.5P(2)
0.5P(2)
ns
(2)
(2)
ns
tw(tckH)
Pulse duration, input clock jtag_tck high
tdc(lclk)
Duty cycle error, input clock jtag_tck
–2500
2500
–2500
2500
ps
tJ(lclk)
Cycle jitter(3), input clock jtag_tck
–1500
1500
–1500
1500
ps
JA7
tsu(tdiV-tckH)
Setup time, input data jtag_tdi valid before input clock
jtag_tck high
13.8
13.8
ns
JA8
th(tdiV-tckH)
Hold time, input data jtag_tdi valid after input clock
jtag_tck high
13.8
13.8
ns
JA9
tsu(tmsV-tckH)
Setup time, input mode select jtag_tms_tmsc valid
before input clock jtag_tck high
13.8
13.8
ns
JA10
th(tmsV-tckH)
Hold time, input mode select jtag_tms_tmsc valid after
input clock jtag_tck high
13.8
13.8
ns
248
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
0.5P
0.5P
Copyright © 2010, Texas Instruments Incorporated
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
(1) Related with the input maximum frequency supported by the JTAG module
(2) P = input clock jtag _tck period in ns
(3) Maximum cycle jitter supported by input clock jtag _tck.
(4) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.
(5) See Operating Condition Addendum for OPP voltages.
Table 5-140. JTAG Switching Characteristics—Adaptative Clock Mode(4)
NO.
PARAMETER
OPP100
MIN
OPP50
MAX
MIN
UNIT
MAX
JA1
1 / tc(rtck)
Frequency(1), output clock jtag_rtck
JA2
tw(rtckL)
Pulse duration, output clock jtag_rtck low
0.5P(2)
0.5P(2)
ns
JA3
tw(rtckH)
Pulse duration, output clock jtag_rtck high
0.5P(2)
0.5P(2)
ns
tdc(rtck)
Duty cycle error, output clock jtag_rtck
tJ(rtck)
Jitter standard deviation(3), output clock jtag_rtck
tR(rtck)
JA11
50
–2500
50
2500
2500
ps
33.3
33.3
ps
Rise time, output clock jtag_rtck
0
0
ns
tF(rtck)
Fall time, output clock jtag_rtck
0
0
ns
td(rtckL-tdoV)
Delay time, output clock jtag_rtck low to output data
jtag_tdo valid
14.6
ns
–14.6
14.6
–2500
MHz
–14.6
PRODUCT PREVIEW
(1) Related with the jtag _rtck maximum frequency programmable.
(2) P = output clock jtag _rtck period in ns
(3) The jitter probability density can be approximated by a Gaussian function.
(4) See Operating Condition Addendum for OPP voltages.
JA4
JA5
JA6
jtag_tck
JA7
JA8
JA9
JA10
jtag_tdi
jtag_tms
JA1
JA2
JA3
jtag_rtck
JA11
jtag_tdo
SWPS038-110
Figure 5-80. JTAG—Adaptative Clock Mode
Copyright © 2010, Texas Instruments Incorporated
Timing Requirements and Switching Characteristics
Submit Documentation Feedback
249
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
www.ti.com
6 Package Characteristics
6.1
Package Thermal Characteristics
Table 6-1 and Table 6-2 provide the thermal resistance characteristics for the packages used on this
device.
Note: This table provides simulation data and may not represent actual use-case values.
Table 6-1. Thermal Resistance Characteristics 800MHz ARM Operation-4Gb DDR + Flash
PACKAGE
Power (W)(5)
qJA(°C/W)(2)
qJB(°C/W)(3)
qJC(°C/W)(4)
BOARD TYPE
CBP Package
1.42
20.06
6.44
(6)
2S2P(1)
2S2P(1)
2S2P(1)
CBC Package
1.42
19.97
7.76
(6)
CUS Package
1.42
24.75
11.06
7.06
(1) The board types are defined by JEDEC (reference JEDEC standard JESD51-9, Test Board for Array Surface Mount Package Thermal
Measurements).
(2) qJA (Theta-JA) = Thermal Resistance Junction-to-Ambient, °C/W
(3) qJB (Theta-JB) = Thermal Resistance Junction-to-Board, °C/W
(4) qJC (Theta-JC) = Thermal Resistance Junction-to-Board, °C/W
PRODUCT PREVIEW
(5) These power numbers are based on simulation results. Power numbers for CBP and CBC packages include the 37x device and POP
memory. CUS package is 37x only.
(6) Not applicable since these packages have memory package mounted on top.
Table 6-2. Thermal Resistance Characteristics 1GHz ARM Operation-8Gb DDR
PACKAGE
Power (W)(5)
qJA(°C/W)(2)
qJB(°C/W)(3)
qJC(°C/W)(4)
BOARD TYPE
CBP Package
2.06
19.51
6.19
(6)
2S2P(1)
2S2P(1)
2S2P(1)
CBC Package
2.06
20.11
8.01
(6)
CUS Package
2.06
24.75
11.06
7.06
(1) The board types are defined by JEDEC (reference JEDEC standard JESD51-9, Test Board for Array Surface Mount Package Thermal
Measurements).
(2) qJA (Theta-JA) = Thermal Resistance Junction-to-Ambient, °C/W
(3) qJB (Theta-JB) = Thermal Resistance Junction-to-Board, °C/W
(4) qJC (Theta-JC) = Thermal Resistance Junction-to-Board, °C/W
(5) These power numbers are based on simulation results. Power numbers for CBP and CBC packages include the 37x device and POP
memory. CUS package is 37x only.
(6) Not applicable since these packages have memory package mounted on top.
6.2
6.2.1
Device Support
Device and Development-Support Tool Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
37x processors and support tools. Each device has one of three prefixes: X, P, or null (no prefix). Texas
Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS.
These prefixes represent evolutionary stages of product development from engineering prototypes
(TMDX) through fully qualified production devices/tools (TMDS).
Device development evolutionary flow:
250
X
Experimental device that is not necessarily representative of the final devices electrical
specifications and may not use production assembly flow. (TMX definition)
P
Prototype device that is not necessarily the final silicon die and may not necessarily meet
final electrical specifications. (TMP definition)
null
Production version of the silicon die that is fully qualified. (TMS definition)
Package Characteristics
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
AM3715/03
www.ti.com
SPRS616B – JUNE 2010 – REVISED JULY 2010
Support tool development evolutionary flow:
TMDX
Development support product that has not yet completed Texas Instruments internal
qualification testing.
TMDS
Fully qualified development support product.
TMX and TMP devices and TMDX development-support tools are shipped against the following
disclaimer:
Developmental product is intended for internal evaluation purposes.
Production devices and TMDS development-support tools have been characterized fully, and the quality
and reliability of the device have been demonstrated fully. TIs standard warranty applies.
Predictions show that prototype devices (X or P), have a greater failure rate than the standard production
devices. Texas Instruments recommends that these devices not be used in any production system
because their expected end-use failure rate still is undefined. Only qualified production devices are to be
used.
For additional description of the device nomenclature markings, see the Processor Silicon Errata.
PREFIX
X
= Experimental Device
P
= Prototype Device
blank = Production Device
DEVICE
SILICON REVISION
AM3715
( )
CBP
( )
( )
( )
blank = 800 MHz Cortex-A8
100 = 1GHz Cortex-A8
PRODUCT PREVIEW
X
blank = tray
R
= tape and reel
blank = commercial temperature
A
= extended temperature
PACKAGE TYPE
CBP = 515-pin sPBGA
CBC = 515-pin sPBGA
CUS = 423-pin sPBGA
Figure 6-1. Device Nomenclature
Package Characteristics
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
251
AM3715/03
SPRS616B – JUNE 2010 – REVISED JULY 2010
Mechanical Data
252
Package Characteristics
PRODUCT PREVIEW
6.3
www.ti.com
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
PACKAGE OPTION ADDENDUM
www.ti.com
1-Jul-2010
PACKAGING INFORMATION
Orderable Device
XAM3715CBC
Status
(1)
ACTIVE
Package Type Package
Drawing
POP-FCBGA
CBC
Pins
Package Qty
Eco Plan
515
TBD
(2)
Lead/
Ball Finish
Call TI
MSL Peak Temp
(3)
Samples
(Requires Login)
Call TI
Purchase Samples
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 1
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DLP® Products
www.dlp.com
Communications and
Telecom
www.ti.com/communications
DSP
dsp.ti.com
Computers and
Peripherals
www.ti.com/computers
Clocks and Timers
www.ti.com/clocks
Consumer Electronics
www.ti.com/consumer-apps
Interface
interface.ti.com
Energy
www.ti.com/energy
Logic
logic.ti.com
Industrial
www.ti.com/industrial
Power Mgmt
power.ti.com
Medical
www.ti.com/medical
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
RFID
www.ti-rfid.com
Space, Avionics &
Defense
www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions www.ti.com/lprf
Video and Imaging
www.ti.com/video
Wireless
www.ti.com/wireless-apps
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated