AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 AM3715/03 Applications Processor 1 AM3715/03 Applications Processor 1.1 Features • AM3715/03 Applications Processor: – Compatible with OMAP™ 3 Architecture – MPU Subsystem • 1-GHz ARM CortexTM-A8 Core • NEON SIMD Coprocessor – POWERVR SGX™ Graphics Accelerator (AM3715 only) • Tile Based Architecture Delivering up to 20 MPoly/sec • Universal Scalable Shader Engine: Multi-threaded Engine Incorporating Pixel and Vertex Shader Functionality • Industry Standard API Support: OpenGLES 1.1 and 2.0, OpenVG1.0 • Fine Grained Task Switching, Load Balancing, and Power Management • Programmable High Quality Image Anti-Aliasing – External Memory Interfaces: • SDRAM Controller (SDRC) – 16, 32-bit Memory Controller With 1G-Byte Total Address Space – Interfaces to Low-Power SDRAM – SDRAM Memory Scheduler (SMS) and Rotation Engine • General Purpose Memory Controller (GPMC) – 16-bit Wide Multiplexed Address/Data Bus – Up to 8 Chip Select Pins With 128M-Byte Address Space per Chip Select Pin – Glueless Interface to NOR Flash, NAND Flash (With ECC Hamming Code Calculation), SRAM and Pseudo-SRAM – Flexible Asynchronous Protocol Control for Interface to Custom Logic (FPGA, CPLD, ASICs, etc.) – Nonmultiplexed Address/Data Mode (Limited 2K-Byte Address Space) – 1.8-V I/O and 3.0-V (MMC1 only), 0.9-V to 1.2-V Adaptive Processor Core Voltage 0.9-V to 1.1-V Adaptive Core Logic Voltage Note: These are default Operating Performance Point (OPP) voltages and could be optimized to lower values using SmartReflex AVS. – Commercial and Extended Temperature Grades – Serial Communication • 5 Multichannel Buffered Serial Ports (McBSPs) – 512 Byte Transmit/Receive Buffer (McBSP1/3/4/5) – 5K-Byte Transmit/Receive Buffer (McBSP2) – SIDETONE Core Support (McBSP2 and 3 Only) For Filter, Gain, and Mix Operations – Direct Interface to I2S and PCM Device and T Buses – 128 Channel Transmit/Receive Mode • Four Master/Slave Multichannel Serial Port Interface (McSPI) Ports • High-Speed/Full-Speed/Low-Speed USB OTG Subsystem (12-/8-Pin ULPI Interface) • High-Speed/Full-Speed/Low-Speed Multiport USB Host Subsystem – 12-/8-Pin ULPI Interface or 6-/4-/3-Pin Serial Interface • One HDQ/1-Wire Interface • Four UARTs (One with Infrared Data Association [IrDA] and Consumer Infrared [CIR] Modes) • Three Master/Slave High-Speed Inter-Integrated Circuit (I2C) Controllers – Camera Image Signal Processing (ISP) • CCD and CMOS Imager Interface • Memory Data Input • BT.601/BT.656 Digital YCbCr 4:2:2 (8-/10-Bit) Interface 1 2 3 4 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. POWERVR SGX is a trademark of Imagination Technologies Ltd. OMAP is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice. Copyright © 2010, Texas Instruments Incorporated PRODUCT PREVIEW 1234 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com • – – – PRODUCT PREVIEW – 2 Glueless Interface to Common Video Decoders • Resize Engine – Resize Images From 1/4x to 4x – Separate Horizontal/Vertical Control System Direct Memory Access (SDMA) Controller (32 Logical Channels With Configurable Priority) Comprehensive Power, Reset, and Clock Management • SmartReflexTM Technology • Dynamic Voltage and Frequency Scaling (DVFS) ARM CortexTM-A8 Core • ARMv7 Architecture – Trust Zone – Thumb®-2 – MMU Enhancements • In-Order, Dual-Issue, Superscalar Microprocessor Core • NEON Multimedia Architecture • Over 2x Performance of ARMv6 SIMD • Supports Both Integer and Floating Point SIMD • Jazelle® RCT Execution Environment Architecture • Dynamic Branch Prediction with Branch Target Address Cache, Global History Buffer, and 8-Entry Return Stack • Embedded Trace Macrocell (ETM) Support for Non-Invasive Debug ARM Cortex-A8 Memory Architecture: • 32K-Byte Instruction Cache (4-Way Set-Associative) 32K-Byte Data Cache (4-Way Set-Associative) • 256K-Byte L2 Cache – 32K-Byte ROM – 64K-Byte Shared SRAM – Endianess: • ARM Instructions - Little Endian • ARM Data – Configurable Removable Media Interfaces: – Three Multimedia Card (MMC)/ Secure Digital (SD) With Secure Data I/O (SDIO) Test Interfaces – IEEE-1149.1 (JTAG) Boundary-Scan Compatible – Embedded Trace Macro Interface (ETM) – Serial Data Transport Interface (SDTI) 12 32-bit General Purpose Timers 2 32-bit Watchdog Timers 1 32-bit Secure Watchdog Timer 1 32-bit 32-kHz Sync Timer Up to 188 General-Purpose I/O (GPIO) Pins (Multiplexed With Other Device Functions) 45-nm CMOS Technology Package-On-Package (POP) Implementation for Memory Stacking Packages: – 515-pin s-PBGA package (CBP Suffix), .5mm Ball Pitch (Top), .4mm Ball Pitch (Bottom) – 515-pin s-PBGA package (CBC Suffix), .65mm Ball Pitch (Top), .5mm Ball Pitch (Bottom) – 423-pin s-PBGA package (CUS Suffix) • • • • • • • • • • • AM3715/03 Applications Processor Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com 1.2 SPRS616B – JUNE 2010 – REVISED JULY 2010 Description The device can support numerous HLOS and RTOS solutions including Linux and Windows Embedded CE which are available directly from TI. Additionally, the device is fully backward compatible with previous CortexTM-A8 Sitara and OMAP processors. This AM3715/03 Applications Processor data manual presents the electrical and mechanical specifications for the AM3715/03 Applications Processor. The information contained in this data manual applies to both the commercial and extended temperature versions of the AM3715/03 Applications Processor unless otherwise indicated. It consists of the following sections: • A description of the AM3715/03 terminals: assignment, electrical characteristics, multiplexing, and functional description • A presentation of the electrical characteristics requirements: power domains, operating conditions, power consumption, and dc characteristics • The clock specifications: input and output clocks, DPLL and DLL • A description of thermal characteristics, device nomenclature, and mechanical data about the available packaging AM3715/03 Applications Processor Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 3 PRODUCT PREVIEW The AM37x family of high-performance, applications processors are based on the enhanced device architecture and are integrated on TI's advanced 45-nm process technology. This architecture is designed to provide best in class ARM and Graphics performance while delivering low power consumption. This balance of performance and power allow the device to support the following example applications: • Portable Data Terminals • Navigation • Auto Infotainment • Gaming • Medical Imaging • Home Automation • Human Interface • Industrial Control • Test and Measurement • Single board Computers AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 1.3 www.ti.com Functional Block Diagram The functional block diagram of the AM3715/03 Applications Processor is shown below. Applications Processor LCD Panel MPU Subsystem Camera (Parallel) Amp ARM CortexA8TM Core TrustZone 32K/32K L1$ Parallel TM POWERVR SGX Graphics Accelerator L2$ 256K 64 64 CVBS or S-Video 32 32 32 Channel System DMA 32 TV Camera ISP Image Capture Hardware Image Pipeline Dual Output 3-Layer Display Processor (1xGraphics, 2xVideo) Temporal Dithering SDTV®QCIF Support 32 32 64 HS USB Host HS USB OTG 32 Async 64 PRODUCT PREVIEW 64 L3 Interconnect Network-Hierarchial, Performance, and Power Driven 32 64KB On-Chip RAM 32 32KB On-Chip ROM 64 SMS: SDRAM Memory Scheduler/ Rotation SDRC: SDRAM Memory Controller 32 32 32 L4 Interconnect GPMC: General Purpose Memory Controller NAND/ NOR Flash, SRAM External and Stacked Memories Peripherals: 4xUART, 3xHigh-Speed I2C, 5xMcBSP (2x with Sidetone/Audio Buffer) 4xMcSPI, 6xGPIO 3xHigh-Speed MMC/SDIO HDQ/1 Wire, 6xMailboxes 12xGPTimers, 2xWDT, 32K Sync Timer System Controls PRCM 2xSmartReflexTM Control Module External Peripherals Interfaces Emulation Debug: SDTI, ETM, JTAG Figure 1-1. AM3715/03 Functional Block Diagram 4 AM3715/03 Applications Processor Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. This data sheet revision history highlights the technical changes made to the data manual to make it a 'B' revision. Revision History SECTION ADDITIONS/CHANGES/DELETIONS Electrical Characteristics Updated/changed the following: • DC Electrical Characteristics Clock Specifications Updated/Changed DPLL and DLL Noise Isolation section Package Characteristics Updated/Changed Thermal Resistance Characteristics tables PRODUCT PREVIEW Global Updated/Changed several signal names and associated data in the following sections: • Pin Assignments • Ball Characteristics • Multiplexing Characteristics • Signal Description AM3715/03 Applications Processor Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 5 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com 2 TERMINAL DESCRIPTION 2.1 Terminal Assignment Figure 2-1 through Figure 2-5 show the ball locations for the 515- and 423- ball plastic ball grid array (s-PBGA) packages. Table 2-1 through Table 2-25 indicate the signal names and ball grid numbers for both packages. Note: There are no balls present on the top of the 423-ball s-PBGA package. AH AG AF AE AD AC AB AA Y PRODUCT PREVIEW W V U T R P N M L K J H G F E D C B A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 030-001 Figure 2-1. AM3715/03 Applications Processor CBP s-PBGA-N515 Package (Bottom View) 6 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 AC AB AA Y W V U T R P N M L K PRODUCT PREVIEW J H G F E D C B A 23 22 21 19 20 17 18 15 16 11 13 14 12 9 10 5 7 8 6 1 3 4 2 030-002 Figure 2-2. AM3715/03 Applications Processor CBP s-PBGA-N515 Package (Top View) TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 7 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com PRODUCT PREVIEW AF AE AD AC AB AA Y W V U T R P N M L K J H G F E D C B A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Figure 2-3. AM3715/03 Applications Processor CBC s-PBGA-515 Package (Bottom View) 8 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 AA Y W V U T R P N M L K J H G PRODUCT PREVIEW F E D C B A 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Figure 2-4. AM3715/03 Applications Processor CBC s-PBGA-515 Package (Top View) TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 9 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com AD AC AB AA Y W V U T R P N M L K J H PRODUCT PREVIEW G F E D C B A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Figure 2-5. AM3715/03 Applications Processor CUS s-PBGA-N423 Package (Bottom View) 2.2 2.2.1 Pin Assignments Pin Map (Top View) The following pin maps show the top views of the 515-pin sPBGA package [CBP], the 515-pin sPBGA package [CBC], and the 423-pin sPBGA package [CUS] pin assignments in four quadrants (A, B, C, and D). Note: A pin with an "NC" designator indicates No Connection. For proper device operation, these pins must be left unconnected. 10 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 1 2 3 4 5 6 7 8 9 10 11 12 13 14 A NC NC vss NC vdds_mem NC NC vdds_mem NC NC NC vdds_mem NC NC B NC vss NC NC vdds_mem NC NC vdds_mem NC NC NC vdds_mem NC NC C NC NC NC NC NC NC vss NC NC vss NC NC vss NC D NC NC NC NC NC NC vss vdd_core vdd_core vss NC NC vss NC E NC NC vss vss NC NC NC NC NC NC F vdds_mem vdds_mem gpmc_nadv gpmc_nwe _ale NC H gpmc_nwp gpmc_noe gpmc_nbe0 gpmc_ncs0 _cle gpmc_d8 J vdds_mem vdds_mem gpmc_ncs1 vdd_core vss vdd_core gpmc_wait3 vdd_mpu _iva vdd_mpu _iva vdd_mpu _iva vss vss vdd_mpu _iva vdd_mpu _iva vss vdd_mpu _iva vdd_mpu _iva K gpmc_d0 gpmc_d9 gpmc_a10 gpmc_a4 gpmc_wait2 vss vss L gpmc_d1 gpmc_d2 gpmc_a9 gpmc_a3 gpmc_wait1 vdd_mpu _iva vdd_mpu _iva M pop_y23 _m1 pop_k2 _m2 gpmc_a8 gpmc_a2 gpmc_wait0 vdd_mpu _iva vdd_mpu _iva N pop_u1 _n1 pop_l2 _n2 gpmc_a7 gpmc_a1 gpmc_ncs7 vss vdd_mpu _iva gpmc_d3 vss vss gpmc_ncs6 vss vss P gpmc_d10 A. PRODUCT PREVIEW G Top Views are provided to assist in hardware debugging efforts. Figure 2-6. CBP Pin Map [Quadrant A - Top View] TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 11 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com 15 16 17 18 19 20 21 22 23 24 25 26 27 28 pop_a12 _a15 NC NC vdds_mem NC NC NC vdds_mem cam_vs cam_hs cam_d5 vss pop_a22 _a27 pop_a23 _a28 A pop_b12 _b15 NC NC vdds_mem NC NC NC vdds_mem cam_wen cam_d2 cam_d10 cam_xclkb vss pop_b23 _b28 B NC vdds_mem NC NC vss NC NC vss cam_fld cam_d3 cam_xclka cam_d11 cam_pclk vdds_mem C vdd_core vdds_mem NC NC vss NC vss vdd_core vdd_core cam_d4 cam_strobe dss_hsync dss_vsync dss_pclk D vdd_core vdds dss_data6 dss_acbias dss_data20 E vdds dss_data16 dss_data9 PRODUCT PREVIEW dss_data8 dss_data7 F vss vdds_mem G vdds H pop_k1 _j28 J NC NC NC uart3_cts _rctx uart3_rts _sd uart3_rx _irrx uart3_tx _irtx vdd_mpu _iva vss vss vdd_core vdd_core vdd_core i2c1_sda hdq_sio dss_data21 pop_h22 _j27 vdda_dplls _dll vss vss vdd_core vss vdd_core i2c1_scl vdds_ mmc1 mcbsp1_fsx cam_d8 cam_d6 K vss vss cap_vdd _sram_core vdd_core vss cam_d9 cam_d7 L vdd_core vss mcbsp2_dx vdd_core pop_k22 _m26 mmc1 _cmd vss M vdd_core vdd_core mcbsp2 _clkx mmc1 _dat2 mmc1 _dat1 mmc1 _dat0 mmc1 _clk N gpio_126 mmc1 _dat3 P vss dss_data19 dss_data18 dss_data17 vdd_core mcbsp2_fsx vdds_x gpio_127 Figure 2-7. CBP Pin Map [Quadrant B - Top View] 12 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 R gpmc_d11 gpmc_d12 gpmc_a6 vdds_mem gpmc_ncs5 vdd_mpu _iva vdd_mpu _iva T gpmc_d4 gpmc_d13 gpmc_a5 gpmc_clk gpmc_ncs4 vdd_mpu _iva vdd_mpu _iva U vdds_mem vss cap_vdd gpmc_nbe1 _bb_mpu _iva gpmc_ncs3 vss vdd_mpu _iva V gpmc_d5 gpmc_d6 mcspi2 _cs1 cap_vdd _sram _mpu_iva gpmc_ncs2 vss vss W gpmc_d14 gpmc_d7 vss vdds uart1_cts vdd_mpu _iva vss vdd_mpu _iva vdd_mpu _iva vss vss Y gpmc_d15 mcspi2_ simo mcspi2 _somi mcspi2 _cs0 uart1_rx vdd_mpu _iva vdd_mpu _iva vdd_mpu _iva vss vss vdd_mpu _iva pop_aa2 _aa2 mcspi2_clk mcspi1 _somi uart1_tx uart1_rts jtag_rtck jtag_tck vdda_wkup _bg_bb mcspi1 _simo etk_d10 vdds vdd_core etk_ctl etk_d4 vss etk_d3 sys_boot2 AA pop_aa1 _aa1 AB mcspi1 _cs2 mcspi1 _cs3 mcspi1_clk AC mcbsp4 _fsx mcspi1 _cs0 mcspi1_cs1 vdd_core AD mcbsp4_dr mcbsp4_dx AE mcbsp4 _clkx AF pop_ac8 _af1 mmc2 _clk pop_u2 _af2 jtag_emu1 jtag_emu0 vdds vdds mmc2 _dat7 mmc2 _dat4 mmc2 _dat6 mmc2 _dat3 mcbsp3 _clkx mcbsp3_dx etk_d11 vdds etk_d8 etk_clk etk_d0 vss etk_d6 i2c3_scl pop_ab8 _ag10 pop_ab9 _ag11 etk_d1 pop_ab11 _ag13 i2c3_sda mcbsp3_fsx mcbsp3_dr AG pop_ab1 _ag1 vss vss mmc2 _dat2 mmc2 _cmd vss etk_d12 etk_d14 etk_d9 AH pop_ac1 _ah1 pop_ac2 _ah2 mmc2 _dat5 mmc2 _dat1 mmc2 _dat0 vdds_mem etk_d13 etk_d15 etk_d5 pop_ac13 _ah10 pop_ac9 _ah11 etk_d2 pop_ac11 _ah13 etk_d7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 PRODUCT PREVIEW www.ti.com Figure 2-8. CBP Pin Map [Quadrant C - Top View] TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 13 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com PRODUCT PREVIEW R hsusb0 _data0 hsusb0_clk T hsusb0 _data3 hsusb0 _data2 hsusb0 _data1 U hsusb0 _data7 hsusb0 _data6 hsusb0 _data5 V vss cvideo1 _rset cvideo2 _vfb cvideo2 _out W mcbsp1 _clkr vss vssa_dac cvideo1 _vfb cvideo1 _out Y mcbsp1_fsr uart2_tx NC dss_ data15 dss_ data14 uart2_rts uart2_cts vss vss uart2_rx i2c4_scl sys_32k i2c4_sda NC pop_aa23 _ae28 AE sys_nirq pop_aa22 _af27 pop_h23 _af28 AF vdds pop_ab23 _ag28 AG pop_ac22 _ah27 pop_ac23 _ah28 AH 27 28 mcbsp2_dr vdd_core vss mcbsp_clks vdd_core vdd_core mcbsp1_dr hsusb0 _data4 vss vdd_core mcbsp1_dx vdda_dac mcbsp1 _clkx vdds_sram vss vdd_core vss vdd_core vdd_mpu _iva vdd_core sys_ xtalgnd vdd_core vdd_core vdd_core jtag_ntrst jtag_tms _tmsc jtag_tdo jtag_tdi vdda_dpll _per hsusb0_dir vss vdd_mpu _iva cap_vddu _wkup _logic gpio_128 vss gpio_129 hsusb0_stp hsusb0_nxt i2c2_sda vdds sys_xtalin vdd_core vss sys_boot5 sys_clkout2 i2c2_scl vdds sys_xtalout sys_boot3 sys_boot4 vss sys_boot6 pop_ab13 _ag15 vss cam_d0 gpio_114 gpio_112 vdds vdds pop_l1 _ah15 pop_ac14 _ah16 cam_d1 gpio_115 gpio_113 cap_vddu _array vss dss_data1 dss_data3 dss_data5 15 16 17 18 19 20 21 22 23 24 vdd_core vss sys_off _mode vdds vdds dss_data0 dss_data2 vdd_core sys_clkreq sys _nreswarm dss_data4 sys_clkout1 sys_boot1 sys sys_boot0 _nrespwron 25 26 dss_data13 dss_data12 dss_ data22 dss_ data23 dss_data11 dss_data10 AA AB AC AD Figure 2-9. CBP Pin Map [Quadrant D - Top View] 14 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 1 2 3 4 5 6 7 8 9 10 11 12 13 A pop_a1 _a1 NC gpmc_ ncs2 gpmc _a11 NC vss NC vss NC NC NC NC vss B NC vss gpmc_ wait2 gpmc_ ncs4 gpmc_ ncs6 gpmc_ ncs3 NC NC NC NC NC NC NC i2c2_scl sys_ boot2 gpmc_ ncs5 gpmc_ ncs7 gpmc_ wait3 NC NC NC NC vdds vss NC NC cap_ vdd_bb _mpu_iva vss NC vdds vss NC vss vdd_mpu _iva C I2C2_SDA D gpmc _a9 gpmc _a10 sys_ boot1 sys_ boot6 E gpmc _a7 gpmc _a8 sys_ boot3 sys_ boot4 F gpmc _a5 gpmc _a6 sys_ boot0 NC G vss gpmc _a4 sys_ boot5 vdds NC vss vdd_mpu _iva vss vdd_ core vdd_mpu _iva NC H gpmc _a2 gpmc _a3 uart1 _rx vss vdd_mpu _iva NC NC NC NC NC NC J gpmc _nbe1 gpmc _a1 NC NC NC NC NC NC NC NC NC K vss gpmc _nbe0 _cle mmc2 _dat7 NC NC NC NC NC vdd_mpu _iva NC vdda_ dplls_ dll L pop_j1 _l1 gpmc _d14 mmc2 _dat6 uart1 _tx vdds NC vdd_mpu _iva vss M gpmc _nwe gpmc _d15 mmc2 _dat5 vdds vdd_ core NC vdd_mpu _iva vdd_mpu _iva N gpmc _clk gpmc _noe mcbsp3 _dr vss vdd_mpu _iva vdd_mpu _iva cap_vdd _sram _mpu_iva vss A. PRODUCT PREVIEW www.ti.com Top Views are provided to assist in hardware debugging efforts. Figure 2-10. CBC Pin Map [Quadrant A - Top View] TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 15 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 14 15 16 www.ti.com 17 18 19 20 21 22 23 24 25 26 pop_ a21_a26 A NC NC NC NC vdds NC pop_b16 _a20 NC NC cam_wen cam_d2 pop_ a20_a25 NC NC NC NC NC NC NC NC NC cam_fld cam_d3 vss pop_ b21_b26 B NC NC NC NC NC NC NC NC NC cam_hs cam_d5 cam_ xclka cam_ pclk C vss vdd_ core NC NC vss NC vss NC NC cam_vs cam_d4 cam_d10 cam_ strobe D vss NC vdds cam_ xclkb cam_d11 E dss_ data20 dss_ acbias F uart3_ cts_ rctx uart3_ rts_sd PRODUCT PREVIEW NC NC NC NC vdd_ core NC vss vss uart3_ tx_ irtx dss_ pclk dss_ data6 G NC NC NC NC NC NC vdd_ core NC uart3_ rx_ irrx dss_ data7 dss_ data8 H NC vdds NC NC vdds NC NC hdq_sio i2c1_sda i2c1_scl dss_ data9 J cap_vddu_ wkup_ logic vss NC NC mmc1_ dat2 NC cap_vdd _sram_ core NC dss_ hsync vss pop_ h21_k26 K vss mmc1_ cmd vss vdds vss vdds dss_ data16 dss_ data17 L vdd_ core mmc1_ dat1 mmc1_ dat0 gpio_126 NC dss_ data18 dss_ vsync dss_ data19 M vss NC mmc1_ clk mmc1_ dat3 vdds_ mmc1 dss_ data21 cam_d8 cam_d9 N Figure 2-11. CBC Pin Map [Quadrant B - Top View] 16 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 P gpmc _d13 NC mcbsp3 _dx NC mcspi1 _somi mcspi1 _simo mcspi1 _clk vdd_mpu _iva R vss uart1 _rts mcbsp4 _dx vss mcspi1 _cs0 mcspi1 _cs1 mcspi1 _cs2 mmc2 _cmd T gpmc _d10 pop_n2 _t2 mcbsp4 _fsx vdds vdd_ core mcspi1 _cs3 mmc2 _dat1 mmc2 _dat0 U gpmc _d12 gpmc _d11 mcbsp3 _clkx mcbsp4 _dr vdd_mpu _iva mcspi2 _somi mmc2 _dat3 mmc2 _dat2 vdd_mpu _iva vdds_ sram vdd_mpu _iva V gpmc _d8 etk_d9 mcbsp4 _clkx NC vdd_mpu _iva mcspi2 _cs0 mcspi2 _cs1 mmc2 _dat4 vdd_mpu _iva sys_off _mode sys_ nresp wron W vss uart1 _cts mcbsp3 _fsx vss mcspi2 _clk mcspi2 _simo vdd_mpu _iva mmc2 _clk sys_ clkout2 NC jtag_ rtck Y gpmc _d9 pop_t2 _y2 etk_d4 vdds vss vdd_ core vdd_mpu _iva vss vdd_mpu _iva vdd_ core jtag_ tdo AA gpmc _d1 gpmc _d0 etk_d3 etk_d8 AB etk_d5 etk_clk etk_ctl i2c3_scl vss AC gpmc _d3 gpmc _d2 etk_d0 i2c3_sda gpmc _d7 gpmc _nwp vdds gpmc _wait1 NC vss gpmc _wait0 NC NC AD gpmc _ncs1 etk_d7 etk_d2 etk_d1 gpmc _d6 gpmc _d5 sys_ nres warm gpmc _ncs0 NC gpmc_ nadv_ale NC NC NC AE NC pop_w2 _ae2 etk_d6 etk_d10 gpmc _d4 etk_d12 vss NC etk_d15 vdds NC NC NC AF NC NC NC pop_y2 _af4 pop_aa6 _af5 etk_d11 etk_d13 pop_y7_ _af8 etk_d14 pop_y9_ _af10 NC pop_aa10 _af12 pop_aa11 _af13 1 2 3 4 5 6 7 8 9 10 11 12 13 PRODUCT PREVIEW www.ti.com Figure 2-12. CBC Pin Map [Quadrant C - Top View] TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 17 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com gpio_127 gpio_128 gpio_129 mcbsp1 _fsx vdds_x NC cam_d6 cam_d7 P vss mcbsp2 _clkx mcbsp2 _dx vdd_ core NC NC NC NC R mcbsp1 _clkx mcbsp2 _dr mcbsp _clks mcbsp1 _dr vss vdds NC NC T jtag_tdi mcbsp1 _dx mcbsp2 _fsx mcbsp1 _clkr hsusb0 _stp NC cvideo2 _vfb vss pop_ p21_u26 U V PRODUCT PREVIEW vdda_ dpll_per jtag_ ntrst jtag_tck jtag_tms _tmsc sys_nirq mcbsp1 _fsr hsusb0 _data2 hsusb0 _dir hsusb0 _data0 cvideo1 _rset vssa_ dac vdda_ dac cvideo2 _out vdda_ wkup_ bg_bb sys_ clkreq i2c4_sda hsusb0 _data4 hsusb0 _nxt hsusb0 _clk hsusb0 _data3 vss vdds cvideo1 _vfb cvideo1 _out W jtag_ emu1 jtag_ emu0 vss hsusb0 _data7 hsusb0 _data5 hsusb0 _data6 hsusb0 _data1 NC uart2 _cts dss_ data13 vss Y NC uart2 _rts dss_ data12 dss_ data14 AA dss_ data23 dss_ data15 AB vss NC vdds NC vdds vss NC vdds vss NC vdd_ core NC NC vdds dss_ data22 dss_ data10 AC vss i2c4_scl gpio_113 gpio_112 vdds vdds vdds uart2 _rx uart2 _tx dss_ data4 dss_ data5 vss dss_ data11 AD sys_ clkout1 cam_d1 cam_d0 gpio_115 gpio_114 cap _vddu _array sys_32k dss_ data0 dss_ data1 dss_ data2 dss_ data3 pop_y20 _ae25 pop_y21 _ae26 AE pop_aa12 _af14 pop_aa13 _af15 pop_aa14 _af16 pop_y14 _af17 pop_aa17 _af18 sys_ xtalin sys_ xtalout pop_y17 _af21 pop_ aa19_af22 sys _xtalgnd pop_y19 _af24 pop_aa20 _af25 pop_aa21 _af26 AF 14 15 16 17 18 20 21 22 23 24 25 26 19 Figure 2-13. CBC Pin Map [Quadrant D - Top View] 18 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 1 2 A NC NC B NC sdrc_a4 sdrc_a3 C gpmc _wait0 gpmc _wait3 sdrc_a5 4 5 6 sdrc_a0 sdrc _dqs0 sdrc_a1 sdrc_d3 sdrc_d1 gpmc _ncs3 D E gpmc _nwp gpmc _ncs0 sdrc_a6 F gpmc _nadv _ale gpmc _noe gpmc _ncs6 gpmc _ncs4 gpmc _a10 gpmc _nwe gpmc _ncs7 G H gpmc _a8 gpmc _a9 J gpmc _a7 gpmc _a6 gpmc _a5 gpmc _a4 gpmc _a3 gpmc _a2 gpmc _a1 K L gpmc_ nbe1 gpmc _d0 M gpmc _d1 gpmc _d2 A. 3 gpmc _d4 mcspi2 _cs1 gpmc _ncs5 gpmc_ nbe0_cle mcspi2 _cs0 7 8 sdrc _dm2 sdrc _dqs2 sdrc _dm0 sdrc_d7 sdrc_d18 sdrc_d2 sdrc_a2 9 10 11 12 sdrc _clk sdrc _nclk sdrc_d19 sdrc_d21 sdrc_d8 sdrc_d6 sdrc_d16 sdrc_d20 sdrc_d9 sdrc_d0 sdrc_d4 sdrc_d5 sdrc_d22 sdrc_a10 sdrc_a9 sdrc_a8 sdrc_d17 sdrc_a7 sdrc_a13 sdrc_a14 vdd_mpu _iva vdd_ core sdrc_a11 sdrc_a12 vdd_mpu _iva vdd_mpu _iva vdd_ core vdds_x vdd_mpu _iva vdd_mpu _iva vss vdd_ core vdd_mpu _iva vdd_mpu _iva vss vss sdrc_d10 vdds _mem vdds _mem vdds _mem vdds _mem vdds _mem vdds _mem vss vss vss vss vdd_mpu _iva vdd_mpu _iva vss vss vdd_mpu _iva vdd_mpu _iva vdd_mpu _iva vdd_mpu _iva vss PRODUCT PREVIEW www.ti.com Top Views are provided to assist in hardware debugging efforts. Figure 2-14. CUS Pin Map [Quadrant A - Top View] TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 19 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 13 14 sdrc_ dqs1 sdrc_ d14 sdrc_ dm1 sdrc_ d13 15 www.ti.com 16 17 sdrc_ dm3 sdrc_ dqs3 sdrc_ d15 sdrc_ d27 sdrc_ d30 sdrc_ d12 sdrc_ d26 sdrc_ d11 18 19 20 sdrc_ ncs0 sdrc_ nwe sdrc_ d31 sdrc_ ncs1 sdrc_ cke0 sdrc_ d28 sdrc_ ba0 sdrc_ ncas sdrc_ cke1 sdrc_ d25 sdrc_ d29 sdrc_ ba1 sdrc_ nras sdrc_ d23 sdrc_ d24 vdds_ mem cam_vs vdd_ core vdds_ mem vdds_ mem cam_wen cam_d3 vdd_ core vdds_ mem vdds_ mem vdda _dplls _dll cam_d2 cam_d4 21 22 23 24 cam_hs uart3_ _cts_ rctx hdq_si0 A cam_ xclka uart3_ _rts_ sd uart3_ _rx_ irrx B cam_ xclkb uart3_ _tx_ irtx cam_d5 C dss_ data20 dss_ data6 D dss_ hsync dss_ data7 dss_ data8 E cam_d10 dss_ vsync dss_ data9 cam_d11 dss_ pclk dss_ data17 dss_ data18 G dss_ data19 cam_fld H F PRODUCT PREVIEW vdd_ core vss vdds_ mem vss cap_vdd _sram _core vss vss vss vss vdd_ core vdd_ core cam_ pclk cam_ strobe dss_ acbias dss_ data16 cam_d8 vss vss vdd_ core vdd_ core vdd_ core i2c1_scl i2c1_sda dss_ data21 cam_d9 cam_d7 K vss vdd_ core vdd_ core vss mmc1_ cmd cam_d6 L vss vdd_ core vdd_ core vss vdds vdds vdds mmc1_ dat2 mmc1_ dat1 mmc1_ dat0 mmc1_ clk J M Figure 2-15. CUS Pin Map [Quadrant B - Top View] 20 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 gpmc _d3 N mcspi2 _somi mcspi2 _simo mcspi2 _clk vdd_mpu _iva vdd_mpu _iva vdd_mpu _iva vss vss vss vss vss vss vss vss vss vss P gpmc _d5 gpmc _d6 R gpmc _d7 gpmc _d8 gpmc _d11 mcspi1 _simo mcbsp1 _cs3 vdd_mpu _iva vdd_mpu _iva vdd_mpu _iva gpmc _d9 gpmc _d12 mcspi1 _somi mcspi1 _clk mcspi1 _cs0 vdd_mpu _iva vdd_mpu _iva vss vss vss vss cap_vdd _sram_ mpu_iva vss vdds vss vdd_mpu _iva T U gpmc _d10 gpmc _d13 V gpmc _d14 gpmc _d15 mmc2 _dat3 mcbsp3 _fsx gpmc _clk mmc2 _dat2 mcbsp3 _clkx mmc2 _dat1 W Y mmc2 _clk mmc2 _dat6 AA mmc2 _dat7 mmc2 _dat5 AB mmc2 _dat4 mmc2 _dat0 AC etk_clk uart1_ cts etk_d10 AD NC etk_d5 etk_ctl 1 2 3 etk_d8 4 mcbsp3 _dx uart1 _rx vdds vdds vdd_mpu _iva uart1 _rts uart1 _tx vdds vdds vdd_mpu _iva sys_ clkout1 vdds sys_ nres warm cap_vddu_ wkup_logic sys_ clkout2 jtag_ rtck jtag_tms _tmsc sys_ nres pwron vdds_ sram mmc2 _cmd jtag_ tck jtag_ ntrst jtag_ tdo jtag_ tdi sys_ boot0 etk_d4 etk_d1 etk_d2 etk_d6 etk_d11 etk_d12 etk_d9 etk_d0 etk_d3 etk_d7 5 6 8 9 mcbsp3 _dr 7 10 etk_d14 i2c3_sda etk_d13 etk_d15 11 12 PRODUCT PREVIEW www.ti.com Figure 2-16. CUS Pin Map [Quadrant C - Top View] TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 21 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com vdds vdds vdds cap_vddu _array cap_vdd _bb_mpu _iva gpio_126 mmc1_ dat3 vdds_ mmc1 N hsusb0 _dir gpio_129 P PRODUCT PREVIEW vss vss vss vss vss vss vss vss vss vdd_ core vdd_ core vdd_ core mcbsp2 _dx hsusb0 _clk hsusb0 _nxt hsusb0 _stp vss vss vss vss vdd_ core vdd_ core vdd_ core vdd_ core mcbsp2 _clkx hsusb0 _data7 hsusb0 _data1 hsusb0 _data0 T vdd_mpu _iva vss vss vss vdda_ dpll _per hsusb0 _data3 hsusb0 _data2 U vdd_mpu _iva vss vss mcbsp1 _clkx mcbsp2 _dr vdd_mpu _iva sys_ xtalgnd sys_ nirq mcbsp1 _dx mcbsp1 _clkr sys_ clkreq i2c4_sda i2c4_scl mcbsp1 _dr vdda_ wkup _bg_bb sys_ boot6 sys_32k mcbsp _clks mcbsp1 _fsx vdda_ dac vssa_dac sys_ boot5 cam_d0 dss_ data1 mcbsp1 _fsr i2c2_sda i2c2_scl sys_ boot1 sys_ boot4 cam_d1 dss_ data0 dss_ data3 dss_ data5 sys_ xtaout sys_ xtalin sys_ boot2 sys_ boot3 dss_ data2 dss_ data4 14 15 20 21 i2c3_scl 13 vss 16 17 18 19 mcbsp2 _fsx R dss_ data22 dss_ data15 hsusb0 _data5 dss_ data23 dss_ data14 hsusb0 _data6 hsusb0 _data4 W dss_ data13 cvideo2 _vfb cvideo1 _rset Y V cvideo2 _out AA dss_ data12 cvideo1 _vfb cvideo1 _out AB dss_ data10 dss_ data11 jtag_ emu0 AC sys_off _mode jtag_ emu1 AD 23 24 22 Figure 2-17. CUS Pin Map [Quadrant D - Top View] 22 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com 2.3 SPRS616B – JUNE 2010 – REVISED JULY 2010 Ball Characteristics Note: The default mode is the mode at the release of the reset; also see the RESET REL. MODE column. (b) Modes 1 to 7 are possible modes for alternate functions. On each pin, some modes are effectively used for alternate functions, while some modes are not used and do not correspond to a functional configuration. 5. TYPE: Signal direction – I = Input – O = Output – I/O = Input/Output – D = Open drain – DS = Differential – A = Analog Note: In the safe_mode, the buffer is configured in high-impedance. 6. BALL RESET STATE: The state of the terminal at the power-on reset. – 0: The buffer drives VOL (pulldown/pullup resistor not activated) 0(PD): The buffer drives VOL with an active pulldown resistor. – 1: The buffer drives VOH (pulldown/pullup resistor not activated) 1(PU): The buffer drives VOH with an active pullup resistor. – Z: High-impedance – L: High-impedance with an active pulldown resistor – H : High-impedance with an active pullup resistor 7. BALL RESET REL. STATE: The state of the terminal at the release of the System Control Module reset (PRCM CORE_RSTPWRON_RET reset signal). – 0: The buffer drives VOL (pulldown/pullup resistor not activated) 0(PD): The buffer drives VOL with an active pulldown resistor. – 1: The buffer drives VOH (pulldown/pullup resistor not activated) 1(PU): The buffer drives VOH with an active pullup resistor. – Z: High-impedance – L: High-impedance with an active pulldown resistor – H : High-impedance with an active pullup resistor 8. RESET REL. MODE: The mode is automatically configured at the release of the System Control Module reset (PRCM CORE_RSTPWRON_RET reset signal). 9. POWER: The voltage supply that powers the terminal’s I/O buffers. 10. HYS: Indicates if the input buffer is with hysteresis. 11. BUFFER STRENGTH: Drive strength of the associated output buffer. TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 23 PRODUCT PREVIEW Table 2-1 through Table 2-3 describe the terminal characteristics and the signals multiplexed on each pin for the CBP, CBC, and CUS packages, respectively. The following list describes the table column headers. 1. BALL BOTTOM: Ball number(s) on the bottom side associated with each signal(s) on the bottom. 2. BALL TOP: Ball number(s) on the top side associated with each signal(s) on the top. 3. PIN NAME: Names of signals multiplexed on each ball (also notice that the name of the pin is the signal name in mode 0). Note: Table 2-1 through Table 2-3 do not take into account subsystem pin multiplexing options. Subsystem pin multiplexing options are described in Section 2.5, Signal Descriptions. 4. MODE: Multiplexing mode number. (a) Mode 0 is the primary mode; this means that when mode 0 is set, the function mapped on the pin corresponds to the name of the pin. There is always a function mapped on the primary mode. Notice that primary mode is not necessarily the default mode. AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com 12. PULL U/D - TYPE: Denotes the presence of an internal pullup or pulldown resistor. Pullup and pulldown resistors can be enabled or disabled via software. Note: The pullup/pulldown drive strength is equal to minumum = 50mA, tyical = 100 mA, maximum = 250 mA (unless otherwise specified), except for CBP balls P27, P26, R27, and R25, and CUS balls N22 and P24, which the pulldown drive strength is equal to 1.8 kΩ. 13. IO CELL: IO cell information. Note: Configuring two pins to the same input signal is not supported as it can yield unexpected results. This can be easily prevented with the proper software configuration. NOTE In the AM3715/03 device, new Far End load Settings registers are added for some IOs. This new feature configures the IO according to the transmission line and the application/peripheral load. For a full description on these registers, see the System Control Module / SCM Functional Description / Functional Register Description / Signal Integrity Parameter Control Registers with Pad Group Assignment section of the AM3715/03 TRM. Table 2-1. Ball Characteristics (CBP Pkg.) (1) PRODUCT PREVIEW BALL BOTTOM [1] BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET REL. MODE POWER [9] HYS [10] [8] BUFFER STRENG TH (mA) [11] NA J2 sdrc_d0 0 IO L Z 0 vdds_mem Yes 4 NA J1 sdrc_d1 0 IO L Z 0 vdds_mem Yes 4 NA G2 sdrc_d2 0 IO L Z 0 vdds_mem Yes 4 NA G1 sdrc_d3 0 IO L Z 0 vdds_mem Yes NA F2 sdrc_d4 0 IO L Z 0 vdds_mem NA F1 sdrc_d5 0 IO L Z 0 NA D2 sdrc_d6 0 IO L Z NA D1 sdrc_d7 0 IO L NA B13 sdrc_d8 0 IO NA A13 sdrc_d9 0 NA B14 sdrc_d10 NA A14 NA PULLUP /DOWN TYPE [12] IO CELL [13] (2) PU/ PD LVCMOS (2) PU/ PD LVCMOS (2) PU/ PD LVCMOS 4 (2) PU/ PD LVCMOS Yes 4 (2) PU/ PD LVCMOS vdds_mem Yes 4 (2) PU/ PD LVCMOS 0 vdds_mem Yes 4 (2) PU/ PD LVCMOS Z 0 vdds_mem Yes 4 (2) PU/ PD LVCMOS L Z 0 vdds_mem Yes 4 (2) PU/ PD LVCMOS IO L Z 0 vdds_mem Yes 4 (2) PU/ PD LVCMOS 0 IO L Z 0 vdds_mem Yes 4 (2) PU/ PD LVCMOS sdrc_d11 0 IO L Z 0 vdds_mem Yes 4 (2) PU/ PD LVCMOS B16 sdrc_d12 0 IO L Z 0 vdds_mem Yes 4 (2) PU/ PD LVCMOS NA A16 sdrc_d13 0 IO L Z 0 vdds_mem Yes 4 (2) PU/ PD LVCMOS NA B19 sdrc_d14 0 IO L Z 0 vdds_mem Yes 4 (2) PU/ PD LVCMOS NA A19 sdrc_d15 0 IO L Z 0 vdds_mem Yes 4 (2) PU/ PD LVCMOS NA B3 sdrc_d16 0 IO L Z 0 vdds_mem Yes 4 (2) PU/ PD LVCMOS NA A3 sdrc_d17 0 IO L Z 0 vdds_mem Yes 4 (2) PU/ PD LVCMOS NA B5 sdrc_d18 0 IO L Z 0 vdds_mem Yes 4 (2) PU/ PD LVCMOS NA A5 sdrc_d19 0 IO L Z 0 vdds_mem Yes 4 (2) PU/ PD LVCMOS NA B8 sdrc_d20 0 IO L Z 0 vdds_mem Yes 4 (2) PU/ PD LVCMOS NA A8 sdrc_d21 0 IO L Z 0 vdds_mem Yes 4 (2) PU/ PD LVCMOS NA B9 sdrc_d22 0 IO L Z 0 vdds_mem Yes 4 (2) PU/ PD LVCMOS NA A9 sdrc_d23 0 IO L Z 0 vdds_mem Yes 4 (2) PU/ PD LVCMOS NA B21 sdrc_d24 0 IO L Z 0 vdds_mem Yes 4 (2) PU/ PD LVCMOS NA A21 sdrc_d25 0 IO L Z 0 vdds_mem Yes 4 (2) PU/ PD LVCMOS NA D22 sdrc_d26 0 IO L Z 0 vdds_mem Yes 4 (2) PU/ PD LVCMOS NA D23 sdrc_d27 0 IO L Z 0 vdds_mem Yes 4 (2) PU/ PD LVCMOS NA E22 sdrc_d28 0 IO L Z 0 vdds_mem Yes 4 (2) PU/ PD LVCMOS NA E23 sdrc_d29 0 IO L Z 0 vdds_mem Yes 4 (2) PU/ PD LVCMOS NA G22 sdrc_d30 0 IO L Z 0 vdds_mem Yes 4 (2) PU/ PD LVCMOS NA G23 sdrc_d31 0 IO L Z 0 vdds_mem Yes 4 (2) PU/ PD LVCMOS (1) (2) 24 NA in this table stands for Not Applicable. In buffer mode, the drive strength is fixed regardless of the load. The driver is designed to drive 75Ω for video applications. In bypass mode, the drive strength is 0.47 mA. TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 BALL BOTTOM [1] BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET REL. MODE POWER [9] HYS [10] [8] BUFFER STRENG TH (mA) [11] NA AB21 sdrc_ba0 0 O 0 0 0 4 vdds_mem No PULLUP /DOWN TYPE [12] IO CELL [13] (1) NA LVCMOS NA LVCMOS NA AC21 sdrc_ba1 0 O 0 0 0 vdds_mem No 4 (1) NA N22 sdrc_a0 0 O 0 0 0 vdds_mem No 4 (1) NA LVCMOS NA N23 sdrc_a1 0 O 0 0 0 vdds_mem No 4 (1) NA LVCMOS NA P22 sdrc_a2 0 O 0 0 0 vdds_mem No 4 (1) NA LVCMOS NA P23 sdrc_a3 0 O 0 0 0 vdds_mem No 4 (1) NA LVCMOS NA R22 sdrc_a4 0 O 0 0 0 vdds_mem No 4 (1) NA LVCMOS NA R23 sdrc_a5 0 O 0 0 0 vdds_mem No 4 (1) NA LVCMOS NA T22 sdrc_a6 0 O 0 0 0 vdds_mem No 4 (1) NA LVCMOS NA T23 sdrc_a7 0 O 0 0 0 vdds_mem No 4 (1) NA LVCMOS NA U22 sdrc_a8 0 O 0 0 0 vdds_mem No 4 (1) NA LVCMOS NA U23 sdrc_a9 0 O 0 0 0 vdds_mem No 4 (1) NA LVCMOS NA V22 sdrc_a10 0 O 0 0 0 vdds_mem No 4 (1) NA LVCMOS NA V23 sdrc_a11 0 O 0 0 0 vdds_mem No 4 (1) NA LVCMOS NA W22 sdrc_a12 0 O 0 0 0 vdds_mem No 4 (1) NA LVCMOS NA W23 sdrc_a13 0 O 0 0 0 vdds_mem No 4 (1) NA LVCMOS NA Y22 sdrc_a14 0 O 0 0 0 vdds_mem No 4 (1) NA LVCMOS NA M22 sdrc_ncs0 0 O 1 1 0 vdds_mem No 4 (1) NA LVCMOS NA M23 sdrc_ncs1 0 O 1 1 0 vdds_mem No 4 (1) NA LVCMOS NA A11 sdrc_clk 0 IO L 0 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS NA B11 sdrc_nclk 0 O 1 1 0 vdds_mem No 4 (1) NA LVCMOS NA J22 sdrc_cke0 0 O H 1 7 vdds_mem Yes 4 (1) PU/ PD LVCMOS safe_mode_out1 (2) 7 sdrc_cke1 0 O H 1 7 vdds_mem NA 4 (1) PU/ PD LVCMOS safe_mode_out1 (2) 7 NA J23 NA L23 sdrc_nras 0 O 1 1 0 vdds_mem No 4 (1) NA LVCMOS NA L22 sdrc_ncas 0 O 1 1 0 vdds_mem No 4 (1) NA LVCMOS NA K23 sdrc_nwe 0 O 1 1 0 vdds_mem No 4 (1) NA LVCMOS NA C1 sdrc_dm0 0 O 0 0 0 vdds_mem No 4 (1) NA LVCMOS NA A17 sdrc_dm1 0 O 0 0 0 vdds_mem No 4 (1) NA LVCMOS NA A6 sdrc_dm2 0 O 0 0 0 vdds_mem No 4 (1) NA LVCMOS NA A20 sdrc_dm3 0 O 0 0 0 vdds_mem No 4 (1) NA LVCMOS NA C2 sdrc_dqs0 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS NA B17 sdrc_dqs1 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS NA B6 sdrc_dqs2 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS NA B20 sdrc_dqs3 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS N4 AC15 gpmc_a1 0 O L L 7 vdds_mem Yes 8 PU/ PD LVCMOS gpio_34 4 IO safe_mode 7 gpmc_a2 0 O L L 7 vdds_mem Yes 8 PU/ PD LVCMOS gpio_35 4 IO safe_mode 7 gpmc_a3 0 O L L 7 vdds_mem Yes 8 PU/ PD LVCMOS gpio_36 4 IO safe_mode 7 gpmc_a4 0 O L L 7 vdds_mem Yes 8 PU/ PD LVCMOS gpio_37 4 IO safe_mode 7 M4 L4 K4 (1) (2) AB15 AC16 AB16 PRODUCT PREVIEW Table 2-1. Ball Characteristics (CBP Pkg.) (continued) The drive strength of these IOs is set according to the programmable load range: 2 pF to 4 pF per default or 4 pF to 12 pF. For a full description of the drive strength programming, see the System Control Module chapter of the AM37xx TRM. In the safe_mode_out1, the buffer is configured to drive 1. TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 25 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-1. Ball Characteristics (CBP Pkg.) (continued) BALL BOTTOM [1] BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET REL. MODE POWER [9] HYS [10] [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] T3 AC17 gpmc_a5 0 O L L 7 vdds_mem Yes 8 PU/ PD LVCMOS gpio_38 4 IO safe_mode 7 gpmc_a6 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS gpio_39 4 IO safe_mode 7 gpmc_a7 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS gpio_40 4 IO safe_mode 7 gpmc_a8 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS gpio_41 4 IO safe_mode 7 gpmc_a9 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS sys_ndmareq2 1 I gpio_42 4 IO safe_mode 7 gpmc_a10 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS sys_ndmareq3 1 I gpio_43 4 IO safe_mode 7 gpmc_a11 0 O L L 7 vdds_mem Yes 8 PU/ PD LVCMOS safe_mode 7 R3 N3 M3 L3 K3 PRODUCT PREVIEW NA AB17 AC18 AB18 AC19 AB19 AC20 K1 M2 gpmc_d0 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS L1 M1 gpmc_d1 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS L2 N2 gpmc_d2 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS P2 N1 gpmc_d3 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS T1 R2 gpmc_d4 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS V1 R1 gpmc_d5 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS V2 T2 gpmc_d6 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS W2 T1 gpmc_d7 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS H2 AB3 gpmc_d8 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS gpio_44 4 IO safe_mode 7 gpmc_d9 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS gpio_45 4 IO safe_mode 7 gpmc_d10 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS gpio_46 4 IO safe_mode 7 gpmc_d11 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS gpio_47 4 IO safe_mode 7 gpmc_d12 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS gpio_48 4 IO safe_mode 7 gpmc_d13 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS gpio_49 4 IO safe_mode 7 gpmc_d14 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS gpio_50 4 IO safe_mode 7 gpmc_d15 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS gpio_51 4 IO safe_mode 7 K2 P1 R1 R2 T2 W1 Y1 26 AC3 AB4 AC4 AB6 AC6 AB7 AC7 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 BALL BOTTOM [1] BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET REL. MODE POWER [9] HYS [10] [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] G4 Y2 gpmc_ncs0 0 O 1 1 0 vdds_mem NA 8 NA LVCMOS H3 Y1 gpmc_ncs1 0 O H 1 0 vdds_mem Yes 8 PU/ PD LVCMOS gpio_52 4 IO safe_mode 7 gpmc_ncs2 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS gpio_53 4 IO safe_mode 7 gpmc_ncs3 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS sys_ndmareq0 1 I gpio_54 4 IO safe_mode 7 gpmc_ncs4 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS sys_ndmareq1 1 I mcbsp4_clkx 2 IO gpt_9_pwm_evt 3 IO gpio_55 4 IO safe_mode 7 gpmc_ncs5 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS sys_ndmareq2 1 I mcbsp4_dr 2 I gpt_10_pwm_evt 3 IO gpio_56 4 IO safe_mode 7 gpmc_ncs6 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS sys_ndmareq3 1 I mcbsp4_dx 2 IO gpt_11_pwm_evt 3 IO gpio_57 4 IO safe_mode 7 gpmc_ncs7 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS gpmc_io_dir 1 O mcbsp4_fsx 2 IO gpt_8_pwm_evt 3 IO gpio_58 4 IO safe_mode 7 gpmc_clk 0 O L 0 0 vdds_mem Yes 8 PU/ PD LVCMOS gpio_59 4 IO V8 U8 T8 R8 P8 N8 T4 NA NA NA NA NA NA W2 safe_mode 7 F3 W1 gpmc_nadv_ale 0 O 0 0 0 vdds_mem NA 8 PU/ PD LVCMOS G2 V2 gpmc_noe 0 O 1 1 0 vdds_mem NA 8 PU/ PD LVCMOS F4 V1 gpmc_nwe 0 O 1 1 0 vdds_mem NA 8 PU/ PD LVCMOS G3 AC12 gpmc_nbe0_cle 0 O L 0 0 vdds_mem Yes 8 PU/ PD LVCMOS gpio_60 4 IO safe_mode 7 gpmc_nbe1 0 O L L 7 vdds_mem Yes 8 PU/ PD LVCMOS gpio_61 4 IO safe_mode 7 gpmc_nwp 0 O L 0 0 vdds_mem Yes 8 PU/ PD LVCMOS gpio_62 4 IO U3 H1 NA AB10 safe_mode 7 M8 AB12 gpmc_wait0 0 I H H 0 vdds_mem Yes NA PU/ PD LVCMOS L8 AC10 gpmc_wait1 0 I H H 7 vdds_mem Yes 8 PU/ PD LVCMOS gpio_63 4 IO safe_mode 7 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback PRODUCT PREVIEW Table 2-1. Ball Characteristics (CBP Pkg.) (continued) 27 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-1. Ball Characteristics (CBP Pkg.) (continued) BALL BOTTOM [1] BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET REL. MODE POWER [9] HYS [10] [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] K8 NA gpmc_wait2 0 I H H 7 vdds_mem Yes 8 PU/ PD LVCMOS uart4_tx 2 O gpio_64 4 IO safe_mode 7 gpmc_wait3 0 I H H 7 vdds_mem Yes 8 PU/ PD LVCMOS sys_ndmareq1 1 I uart4_rx 2 I gpio_65 4 IO safe_mode 7 dss_pclk 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS gpio_66 4 IO hw_dbg12 5 O safe_mode 7 dss_hsync 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS gpio_67 4 IO hw_dbg13 5 O safe_mode 7 dss_vsync 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS gpio_68 4 IO safe_mode 7 dss_acbias 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_69 4 IO safe_mode 7 dss_data0 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS uart1_cts 2 I NA gpio_70 4 IO 8 safe_mode 7 dss_data1 0 IO PU/ PD LVCMOS uart1_rts 2 O 8 gpio_71 4 IO 8 safe_mode 7 dss_data2 0 IO PU/ PD LVCMOS gpio_72 4 IO safe_mode 7 dss_data3 0 IO PU/ PD LVCMOS gpio_73 4 IO safe_mode 7 dss_data4 0 IO PU/ PD LVCMOS uart3_rx_irrx 2 I NA gpio_74 4 IO 8 safe_mode 7 dss_data5 0 IO PU/ PD LVCMOS uart3_tx_irtx 2 O 8 gpio_75 4 IO 8 safe_mode 7 dss_data6 0 IO PU/ PD LVCMOS uart1_tx 2 O gpio_76 4 IO hw_dbg14 5 O safe_mode 7 J8 D28 D26 PRODUCT PREVIEW D27 E27 AG22 AH22 AG23 AH23 AG24 AH24 E26 28 NA NA NA NA NA NA NA NA NA NA NA NA 8 L L 7 vdds Yes 8 8 L L 7 vdds Yes 8 8 8 L L 7 vdds Yes 8 8 8 L L 7 vdds Yes 8 8 L L 7 vdds Yes 8 8 L L 7 TERMINAL DESCRIPTION vdds Yes 8 Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 BALL BOTTOM [1] BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET REL. MODE POWER [9] HYS [10] [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] F28 NA dss_data7 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS uart1_rx 2 I gpio_77 4 IO hw_dbg15 5 O safe_mode 7 dss_data8 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS uart3_rx_irrx 2 I gpio_78 4 IO hw_dbg16 5 O safe_mode 7 dss_data9 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS uart3_tx_irtx 2 O gpio_79 4 IO hw_dbg17 5 O safe_mode 7 dss_data10 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_80 4 IO safe_mode 7 dss_data11 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_81 4 IO safe_mode 7 dss_data12 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_82 4 IO safe_mode 7 dss_data13 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_83 4 IO safe_mode 7 dss_data14 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_84 4 IO safe_mode 7 dss_data15 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_85 4 IO safe_mode 7 dss_data16 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_86 4 IO safe_mode 7 dss_data17 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_87 4 IO safe_mode 7 dss_data18 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS mcspi3_clk 2 IO dss_data0 3 IO gpio_88 4 IO safe_mode 7 dss_data19 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS mcspi3_simo 2 IO dss_data1 3 IO gpio_89 4 IO safe_mode 7 dss_data20 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS mcspi3_somi 2 IO dss_data2 3 IO gpio_90 4 IO safe_mode 7 F27 G26 AD28 AD27 AB28 AB27 AA28 AA27 G25 H27 H26 H25 E28 NA NA NA NA NA NA NA NA NA NA NA NA NA TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback PRODUCT PREVIEW Table 2-1. Ball Characteristics (CBP Pkg.) (continued) 29 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-1. Ball Characteristics (CBP Pkg.) (continued) BALL BOTTOM [1] BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET REL. MODE POWER [9] HYS [10] [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] J26 NA dss_data21 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS mcspi3_cs0 2 IO dss_data3 3 IO gpio_91 4 IO safe_mode 7 dss_data22 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS mcspi3_cs1 2 O dss_data4 3 IO gpio_92 4 IO safe_mode 7 dss_data23 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS dss_data5 3 IO gpio_93 4 IO safe_mode 7 AC27 AC28 NA NA PRODUCT PREVIEW W28 NA cvideo2_out 0 AO 0 0 0 vdda_dac NA NA (1) NA 10-bit DAC Y28 NA cvideo1_out 0 AO 0 0 0 vdda_dac NA NA (1) NA 10-bit DAC Y27 NA cvideo1_vfb 0 AO 0 NA 0 vdda_dac NA NA (2) NA 10-bit DAC W27 NA cvideo2_vfb 0 AO 0 NA 0 vdda_dac NA NA (2) NA 10-bit DAC W26 NA cvideo1_rset 0 AIO 0 NA 0 vdda_dac No NA NA 10-bit DAC A24 NA cam_hs 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_94 4 IO hw_dbg0 5 O safe_mode 7 cam_vs 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_95 4 IO hw_dbg1 5 O safe_mode 7 cam_xclka 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_96 4 IO safe_mode 7 cam_pclk 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_97 4 IO hw_dbg2 5 O safe_mode 7 cam_fld 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS cam_global_reset 2 IO gpio_98 4 IO hw_dbg3 5 O safe_mode 7 cam_d0 0 I L L 7 vdds Yes NA PU/PD LVCMOS gpio_99 4 I safe_mode 7 cam_d1 0 I L L 7 vdds Yes NA PU/PD LVCMOS gpio_100 4 I safe_mode 7 cam_d2 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_101 4 IO hw_dbg4 5 O safe_mode 7 cam_d3 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_102 4 IO A23 C25 C27 C23 AG17 AH17 B24 C24 (1) (2) 30 NA NA NA NA NA NA NA NA The drive strength is fixed regardless of the load. The driver is designed to drive 75-ohm for video applications. In buffer mode, the drive strength is fixed regardless of the load. The driver is designed to drive 75Ω for video applications. In bypass mode, the drive strength is 0.47 mA. TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 BALL BOTTOM [1] D24 A25 K28 L28 K27 L27 B25 C26 B26 B23 D25 AG19 AH19 AG18 AH18 P21 N21 BALL TOP [2] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET REL. MODE POWER [9] HYS [10] [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] L L 7 vdds Yes 8 PU/ PD LVCMOS L L 7 vdds Yes 8 PU/ PD LVCMOS L L 7 vdds Yes NA PU/ PD LVCMOS L L 7 vdds Yes NA PU/ PD LVCMOS L L 7 vdds Yes NA PU/ PD LVCMOS L L 7 vdds Yes NA PU/ PD LVCMOS L L 7 vdds Yes 8 PU/ PD LVCMOS L L 7 vdds Yes 8 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS I L L 7 vdds Yes NA PU/PD LVCMOS I L L 7 vdds Yes NA PU/PD LVCMOS 4 I L L 7 vdds Yes NA PU/PD LVCMOS 7 - gpio_115 4 I L L 7 vdds Yes NA PU/PD LVCMOS safe_mode 7 - mcbsp2_fsx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_116 4 IO safe_mode 7 mcbsp2_clkx 0 L L 7 vdds Yes 4 PU/ PD LVCMOS PIN NAME [3] MODE [4] TYPE [5] hw_dbg5 5 O safe_mode 7 cam_d4 0 I gpio_103 4 IO hw_dbg6 5 O safe_mode 7 cam_d5 0 I gpio_104 4 IO hw_dbg7 5 O safe_mode 7 cam_d6 0 I gpio_105 4 I safe_mode 7 cam_d7 0 I gpio_106 4 I safe_mode 7 cam_d8 0 I gpio_107 4 I safe_mode 7 cam_d9 0 I gpio_108 4 I safe_mode 7 cam_d10 0 I gpio_109 4 IO hw_dbg8 5 O safe_mode 7 cam_d11 0 I gpio_110 4 IO hw_dbg9 5 O safe_mode 7 cam_xclkb 0 O gpio_111 4 IO safe_mode 7 cam_wen 0 I cam_shutter 2 O gpio_167 4 IO hw_dbg10 5 O safe_mode 7 cam_strobe 0 O gpio_126 4 IO hw_dbg11 5 O safe_mode 7 gpio_112 4 safe_mode 7 gpio_113 4 safe_mode 7 gpio_114 safe_mode IO TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback PRODUCT PREVIEW Table 2-1. Ball Characteristics (CBP Pkg.) (continued) 31 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-1. Ball Characteristics (CBP Pkg.) (continued) BALL BOTTOM [1] R21 M21 N28 BALL TOP [2] NA NA NA NA NA PRODUCT PREVIEW N25 NA NA P27 P26 R27 R25 AE2 AG5 AH5 (3) (4) (5) (6) 32 NA NA NA NA NA NA NA NA PULLUP /DOWN TYPE [12] IO CELL [13] L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds_mmc1 Yes 1 PU/ PD (3) LVCMOS L L 7 vdds_mmc1 Yes 1 PU/ PD (3) LVCMOS L L 7 vdds_mmc1 Yes 1 PU/ PD L L 7 vdds_mmc1 Yes 1 PU/ PD (5) L L 7 vdds_mmc1 Yes 1 PU/ PD (5) LVCMOS L L 7 vdds_mmc1 Yes 1 PU/ PD (5) LVCMOS IO L L 7 vdds_x Yes 1 PU/ PD (5) LVCMOS IO L L 7 vdds_x Yes 1 PU/ PD (5) LVCMOS IO L L 7 vdds Yes 4 PU/ PD LVCMOS IO L L 7 vdds_x Yes 1 PU/ PD (5) LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS 4 IO safe_mode 7 mcbsp2_dr 0 I gpio_118 4 IO safe_mode 7 mcbsp2_dx 0 IO gpio_119 4 IO safe_mode 7 mmc1_clk 0 IO 4 IO (4) safe_mode 7 mmc1_cmd 0 O (4) 4 IO safe_mode 7 mmc1_dat0 0 IO (4) 4 IO safe_mode 7 mmc1_dat1 0 IO gpio_123 (6) 4 IO safe_mode 7 mmc1_dat2 0 IO (6) 4 IO safe_mode 7 mmc1_dat3 0 IO gpio_125 (6) 4 IO safe_mode 7 gpio_126 (6) 4 safe_mode 7 gpio_127 (6) 4 safe_mode 7 gpio_128 (6) 4 safe_mode 7 gpio_129 (6) 4 safe_mode 7 mmc2_clk 0 IO mcspi3_clk 1 IO gpio_130 4 IO safe_mode 7 mmc2_cmd 0 O mcspi3_simo 1 IO gpio_131 4 IO safe_mode 7 mmc2_dat0 0 IO mcspi3_somi 1 IO gpio_132 4 IO safe_mode 7 gpio_124 P28 BUFFER STRENG TH (mA) [11] gpio_117 gpio_122 N26 RESET REL. MODE POWER [9] HYS [10] [8] TYPE [5] gpio_121 N27 BALL RESET REL. STATE [7] MODE [4] gpio_120 M27 BALL RESET STATE [6] PIN NAME [3] (3) LVCMOS LVCMOS PU = [50 to 100 kΩ] per default or [10 to 50 kΩ] according to the selected mode. For a full description of the pull-up drive strength programming, see the PRG_SDMMC_PUSTRENGTH configuration register bit field in the System Control Module chapter of the AM/DM37x TRM. PD: 30 to 150 kΩ. The usage of this GPIO is strongly restricted. For more information, see the GPIO chapter of the AM37x TRM. PU = [50 to 100 kΩ] per default or [10 to 50 kΩ] according to the selected mode. For a full description of the pull-up drive strength programming, see the PRG_SDMMC_PUSTRENGTH configuration register bit field in the System Control Module chapter of the AM/DM37x TRM. PD: 30 to 150 kΩ. The usage of this GPIO is strongly restricted. For more information, see the GPIO chapter of the AM37x TRM. TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 BALL BOTTOM [1] BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET REL. MODE POWER [9] HYS [10] [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] AH4 NA mmc2_dat1 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS gpio_133 4 IO safe_mode 7 mmc2_dat2 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS mcspi3_cs1 1 O gpio_134 4 IO safe_mode 7 mmc2_dat3 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS mcspi3_cs0 1 IO gpio_135 4 IO safe_mode 7 mmc2_dat4 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS mmc2_dir_dat0 1 O mmc3_dat0 3 IO gpio_136 4 IO safe_mode 7 mmc2_dat5 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS mmc2_dir_dat1 1 O cam_global_reset 2 IO mmc3_dat1 3 IO gpio_137 4 IO mm3_rxdp 6 IO safe_mode 7 mmc2_dat6 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS mmc2_dir_cmd 1 O cam_shutter 2 O mmc3_dat2 3 IO gpio_138 4 IO safe_mode 7 mmc2_dat7 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS mmc2_clkin 1 I mmc3_dat3 3 IO gpio_139 4 IO mm3_rxdm 6 IO safe_mode 7 mcbsp3_dx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS uart2_cts 1 I gpio_140 4 IO safe_mode 7 mcbsp3_dr 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS uart2_rts 1 O gpio_141 4 IO safe_mode 7 mcbsp3_clkx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS uart2_tx 1 O gpio_142 4 IO safe_mode 7 mcbsp3_fsx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS uart2_rx 1 I gpio_143 4 IO safe_mode 7 uart2_cts 0 I H H 7 vdds Yes 4 PU/ PD LVCMOS mcbsp3_dx 1 IO gpt_9_pwm_evt 2 IO AG4 AF4 AE4 AH3 AF3 AE3 AF6 AE6 AF5 AE5 AB26 NA NA NA NA NA NA NA NA NA NA NA TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback PRODUCT PREVIEW Table 2-1. Ball Characteristics (CBP Pkg.) (continued) 33 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-1. Ball Characteristics (CBP Pkg.) (continued) BALL BOTTOM [1] AB25 AA25 AD25 PRODUCT PREVIEW AA8 AA9 W8 Y8 AE1 AD1 AD2 AC1 Y21 AA21 34 BALL TOP [2] NA NA NA NA NA NA NA NA NA NA NA NA NA PIN NAME [3] MODE [4] TYPE [5] gpio_144 4 IO safe_mode 7 uart2_rts 0 O mcbsp3_dr 1 I gpt_10_pwm_evt 2 IO gpio_145 4 IO safe_mode 7 uart2_tx 0 O mcbsp3_clkx 1 IO gpt_11_pwm_evt 2 IO gpio_146 4 IO safe_mode 7 uart2_rx 0 I mcbsp3_fsx 1 IO gpt_8_pwm_evt 2 IO gpio_147 4 IO safe_mode 7 uart1_tx 0 O gpio_148 4 IO safe_mode 7 uart1_rts 0 O gpio_149 4 IO safe_mode 7 uart1_cts 0 I gpio_150 4 IO safe_mode 7 uart1_rx 0 I mcbsp1_clkr 2 IO mcspi4_clk 3 IO gpio_151 4 IO safe_mode 7 mcbsp4_clkx 0 IO gpio_152 4 IO mm3_txse0 6 IO safe_mode 7 mcbsp4_dr 0 I gpio_153 4 IO mm3_rxrcv 6 IO safe_mode 7 mcbsp4_dx 0 IO gpio_154 4 IO mm3_txdat 6 IO safe_mode 7 mcbsp4_fsx 0 IO gpio_155 4 IO mm3_txen_n 6 IO safe_mode 7 mcbsp1_clkr 0 IO mcspi4_clk 1 IO gpio_156 4 IO safe_mode 7 mcbsp1_fsr 0 IO cam_global_reset 2 IO gpio_157 4 IO BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET REL. MODE POWER [9] HYS [10] [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] H H 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 BALL BOTTOM [1] BALL TOP [2] V21 NA U21 T21 K26 W21 H18 H19 H20 H21 T28 T25 R28 T26 T27 NA NA NA NA NA NA NA NA NA NA NA NA NA TYPE [5] BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET REL. MODE POWER [9] HYS [10] [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS 1 IO mcbsp3_dx 2 IO gpio_158 4 IO safe_mode 7 mcbsp1_dr 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS mcspi4_somi 1 IO mcbsp3_dr 2 I gpio_159 4 IO safe_mode 7 mcbsp_clks 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS cam_shutter 2 O gpio_160 4 IO uart1_cts 5 I safe_mode 7 mcbsp1_fsx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS mcspi4_cs0 1 IO mcbsp3_fsx 2 IO gpio_161 4 IO safe_mode 7 mcbsp1_clkx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS mcbsp3_clkx 2 IO gpio_162 4 IO safe_mode 7 uart3_cts_rctx 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS gpio_163 4 IO safe_mode 7 uart3_rts_sd 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS gpio_164 4 IO safe_mode 7 uart3_rx_irrx 0 I H H 7 vdds Yes 4 PU/ PD LVCMOS gpio_165 4 IO safe_mode 7 uart3_tx_irtx 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS gpio_166 4 IO safe_mode 7 hsusb0_clk 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_120 4 IO safe_mode 7 hsusb0_stp 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS gpio_121 4 IO safe_mode 7 hsusb0_dir 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_122 4 IO safe_mode 7 hsusb0_nxt 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_124 4 IO safe_mode 7 hsusb0_data0 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS uart3_tx_irtx 2 O gpio_125 4 IO uart2_tx 5 O safe_mode 7 PIN NAME [3] MODE [4] safe_mode 7 mcbsp1_dx mcspi4_simo TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback PRODUCT PREVIEW Table 2-1. Ball Characteristics (CBP Pkg.) (continued) 35 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-1. Ball Characteristics (CBP Pkg.) (continued) BALL BOTTOM [1] BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET REL. MODE POWER [9] HYS [10] [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] U28 NA hsusb0_data1 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS uart3_rx_irrx 2 I gpio_130 4 IO uart2_rx 5 I safe_mode 7 hsusb0_data2 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS uart3_rts_sd 2 O gpio_131 4 IO uart2_rts 5 O safe_mode 7 hsusb0_data3 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS uart3_cts_rctx 2 IO gpio_169 4 IO uart2_cts 5 I safe_mode 7 hsusb0_data4 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_188 4 IO safe_mode 7 hsusb0_data5 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_189 4 IO safe_mode 7 hsusb0_data6 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_190 4 IO safe_mode 7 hsusb0_data7 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_191 4 IO U27 U26 U25 PRODUCT PREVIEW V28 V27 V26 NA NA NA NA NA NA safe_mode 7 K21 NA i2c1_scl 0 OD H H 0 vdds NA 3 PU/ PD (7) (8) Open Drain J21 NA i2c1_sda 0 IOD H H 0 vdds Yes 3 PU/ PD (7) (8) Open Drain AF15 NA i2c2_scl 0 OD H H 7 vdds Yes 3 PU/ PD (7) (9) Open Drain gpio_168 4 IO safe_mode 7 i2c2_sda 0 IOD PU/ PD (7) (9) Open Drain gpio_183 4 IO safe_mode 7 i2c3_scl 0 OD PU/ PD (7) (9) Open Drain gpio_184 4 IO safe_mode 7 i2c3_sda 0 IOD PU/ PD (7) (9) Open Drain gpio_185 4 IO safe_mode 7 i2c4_scl 0 OD sys_ nvmode1 1 O safe_mode 7 i2c4_sda 0 AE15 AF14 AG14 AD26 AE26 (7) (8) (9) 36 NA NA NA NA NA IOD 4 H H 7 vdds Yes 3 4 H H 7 vdds Yes 3 4 H H 7 vdds Yes 3 4 H H 0 vdds Yes 3 PU/ PD (7) (8) Open Drain PU/ PD (7) (8) Open Drain 4 H H 0 vdds Yes 3 The pullup and pulldown can be either the standard LVCMOS 100-mA drive strength or the I2C pullup and pulldown described below: Nominal resistance = 1.66 kΩ in high-speed mode with a load range of 5 pF to 12 pF, 4.5 kΩ in standard / fast mode with a load range of 5 pF to 15 pF. The default buffer configuration is High-Speed I2C point-to-point mode using internal pullup. For a full description of the pull drive strength programming, see prg_i2c1_pullupresx, prg_i2c1_lb1lb0, and prg_sr_pullupresx, prg_sr_lb bits of the CONTROL_PROG_IO1, CONTROL_PROG_IO_WKUP1 control modules in the System Control Module / SCM Programming Model / Feature Settings section and the System Control Module chapter of the AM/DM37x TRM to modify the IO settings if required by the targeted interface application. The default buffer configuration is standard LVCMOS mode (non-I2C). For a full description of the pull drive strength programming, see PADCONFS bits of CONTROL_PADCONF_X control modules (standard LVCMOS mode), or prg_i2c2_pullupresx, prg_i2c2_lb1lb0, and prg_i2c3_pullupresx, prg_i2c3_lb1lb0 bits of the CONTROL_PROG_IO2, CONTROL_PROG_IO3 control modules (I2C mode) in the System Control Module chapter of the AM/DM37x TRM to modify the IO settings if required by the targeted interface application. TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 2-1. Ball Characteristics (CBP Pkg.) (continued) J25 AB3 AB4 AA4 AC2 AC3 AB1 AB2 AA3 Y2 Y3 Y4 BALL TOP [2] NA NA NA NA NA NA NA NA NA NA NA NA PIN NAME [3] MODE [4] TYPE [5] sys_ nvmode2 1 O safe_mode 7 hdq_sio 0 IOD sys_altclk 1 I i2c2_sccbe 2 OD i2c3_sccbe 3 OD gpio_170 4 IO safe_mode 7 mcspi1_clk 0 IO mmc2_dat4 1 IO gpio_171 4 IO safe_mode 7 mcspi1_ simo 0 IO mmc2_dat5 1 IO gpio_172 4 IO safe_mode 7 mcspi1_ somi 0 IO mmc2_dat6 1 IO gpio_173 4 IO safe_mode 7 mcspi1_cs0 0 IO mmc2_dat7 1 IO gpio_174 4 IO safe_mode 7 mcspi1_cs1 0 O mmc3_cmd 3 O gpio_175 4 IO safe_mode 7 mcspi1_cs2 0 O mmc3_clk 3 IO gpio_176 4 IO safe_mode 7 mcspi1_cs3 0 O hsusb2_ data2 3 IO gpio_177 4 IO mm2_txdat 5 IO safe_mode 7 mcspi2_clk 0 IO hsusb2_ data7 3 IO gpio_178 4 IO safe_mode 7 mcspi2_ simo 0 IO gpt_9_pwm_evt 1 IO hsusb2_ data4 3 IO gpio_179 4 IO safe_mode 7 mcspi2_ somi 0 IO gpt_10_pwm_evt 1 IO hsusb2_ data5 3 IO gpio_180 4 IO safe_mode 7 mcspi2_cs0 0 IO gpt_11_pwm_evt 1 IO hsusb2_ data6 3 IO BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET REL. MODE POWER [9] HYS [10] [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] 4 H H 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback PRODUCT PREVIEW BALL BOTTOM [1] 37 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-1. Ball Characteristics (CBP Pkg.) (continued) BALL BOTTOM [1] V3 BALL TOP [2] NA PIN NAME [3] MODE [4] TYPE [5] gpio_181 4 IO safe_mode 7 mcspi2_cs1 0 O gpt_8_pwm_evt 1 IO hsusb2_ data3 3 IO gpio_182 4 IO mm2_txen_n 5 IO safe_mode 7 BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET REL. MODE POWER [9] HYS [10] [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] L L 7 vdds Yes 4 PU/ PD LVCMOS AE25 NA sys_32k 0 I Z Z 0 vdds Yes NA PU/ PD LVCMOS AE17 NA sys_xtalin 0 AI Z Z 0 vdds Yes NA No LVCMOS Analog AF17 NA sys_xtalout 0 AO Z 0 0 vdds NA NA NA LVCMOS Analog AF25 NA sys_clkreq 0 IO 0 See 0 vdds Yes 4 PU/ PD LVCMOS gpio_1 4 IO safe_mode 7 sys_nirq 0 I H H 7 vdds Yes 4 PU/ PD LVCMOS gpio_0 4 IO AF26 NA (10) PRODUCT PREVIEW safe_mode 7 AH25 NA sys_nrespwron 0 I Z Z 0 vdds Yes NA No LVCMOS AF24 NA sys_nreswarm 0 IOD 0 1 0 vdds Yes 4 PU/ PD LVCMOS gpio_30 4 IO safe_mode 7 sys_boot0 0 I dss_data18 3 IO gpio_2 4 IO safe_mode 7 sys_boot1 0 I dss_data19 3 IO gpio_3 4 IO safe_mode 7 sys_boot2 0 I gpio_4 4 IO safe_mode 7 sys_boot3 0 I dss_data20 3 O gpio_5 4 IO safe_mode 7 sys_boot4 0 I mmc2_dir_dat2 1 O dss_data21 3 O gpio_6 4 IO safe_mode 7 sys_boot5 0 I mmc2_dir_dat3 1 O dss_data22 3 O gpio_7 4 IO safe_mode 7 sys_boot6 0 I dss_data23 3 O gpio_8 4 IO AH26 AG26 AE14 AF18 AF19 AE21 AF21 NA NA NA NA NA NA NA Open Drain Z Z 0 vdds Yes 8 PU/ PD LVCMOS Z Z 0 vdds Yes 8 PU/ PD LVCMOS Z Z 0 vdds Yes 8 PU/ PD LVCMOS Z Z 0 vdds Yes 8 PU/ PD LVCMOS Z Z 0 vdds Yes 8 PU/ PD LVCMOS Z Z 0 vdds Yes 8 PU/ PD LVCMOS Z Z 0 vdds Yes 8 PU/ PD LVCMOS (10) Depending on the sys_clkreq direction the corresponding reset released state value can be: • Z if sys_clkreq is used as input • 1 if sys_clkreq is used as output For a full description of the sys_clkreq control, see Power, Reset, and Clock Management chapter of the AM37xx TRM. 38 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 BALL BOTTOM [1] BALL TOP [2] AF22 NA AG25 AE22 NA NA TYPE [5] BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET REL. MODE POWER [9] HYS [10] [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] 0 O 0 L 7 vdds Yes 4 PU/ PD LVCMOS 4 IO L L 7 (11) vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS PIN NAME [3] MODE [4] safe_mode 7 sys_off_mode gpio_9 safe_mode 7 sys_clkout1 0 O gpio_10 4 IO safe_mode 7 sys_clkout2 0 O gpio_186 4 IO safe_mode 7 AA17 NA jtag_ntrst 0 I L L 0 vdds Yes NA PU/ PD LVCMOS AA13 NA jtag_tck 0 I L L 0 vdds Yes NA PU/ PD LVCMOS AA12 NA jtag_rtck 0 O L 0 0 vdds NA 4 PU/ PD LVCMOS AA18 NA jtag_tms_tmsc 0 IO H H 0 vdds Yes 4 PU/ PD LVCMOS AA20 NA jtag_tdi 0 I H H 0 vdds Yes NA PU/ PD LVCMOS AA19 NA jtag_tdo 0 O L Z 0 vdds NA 4 PU/ PD LVCMOS AA11 NA jtag_emu0 0 IO H H 0 vdds Yes 4 PU/ PD LVCMOS gpio_11 4 IO safe_mode 7 jtag_emu1 0 IO H H 0 vdds Yes 4 PU/ PD LVCMOS gpio_31 4 IO safe_mode 7 etk_clk 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS mcbsp5_ clkx 1 IO mmc3_clk 2 IO hsusb1_stp 3 O gpio_12 4 IO mm1_rxdp 5 IO hw_dbg0 7 O etk_ctl 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS mmc3_cmd 2 O hsusb1_clk 3 O gpio_13 4 IO hw_dbg1 7 O etk_d0 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS mcspi3_ simo 1 IO mmc3_dat4 2 IO hsusb1_ data0 3 IO gpio_14 4 IO mm1_rxrcv 5 IO hw_dbg2 7 O etk_d1 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS mcspi3_ somi 1 IO hsusb1_ data1 3 IO gpio_15 4 IO mm1_txse0 5 IO hw_dbg3 7 O etk_d2 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS mcspi3_cs0 1 IO hsusb1_ data2 3 IO gpio_16 4 IO mm1_txdat 5 IO hw_dbg4 7 O AA10 AF10 AE10 AF11 AG12 AH12 NA NA NA NA NA NA PRODUCT PREVIEW Table 2-1. Ball Characteristics (CBP Pkg.) (continued) (11) Mux0 if sys_boot6 is pulled down (clock master). TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 39 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-1. Ball Characteristics (CBP Pkg.) (continued) BALL BOTTOM [1] BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET REL. MODE POWER [9] HYS [10] [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] AE13 NA etk_d3 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS mcspi3_clk 1 IO mmc3_dat3 2 IO hsusb1_ data7 3 IO gpio_17 4 IO hw_dbg5 7 O etk_d4 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS mcbsp5_dr 1 I mmc3_dat0 2 IO hsusb1_ data4 3 IO gpio_18 4 IO hw_dbg6 7 O etk_d5 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS mcbsp5_fsx 1 IO mmc3_dat1 2 IO hsusb1_ data5 3 IO gpio_19 4 IO hw_dbg7 7 O etk_d6 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS mcbsp5_dx 1 O mmc3_dat2 2 IO hsusb1_ data6 3 IO gpio_20 4 IO hw_dbg8 7 O etk_d7 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS mcspi3_cs1 1 O mmc3_dat7 2 IO hsusb1_ data3 3 IO gpio_21 4 IO mm1_txen_n 5 IO hw_dbg9 7 O etk_d8 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS mmc3_dat6 2 IO hsusb1_dir 3 I gpio_22 4 IO hw_dbg10 7 O etk_d9 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS mmc3_dat5 2 IO hsusb1_nxt 3 I gpio_23 4 IO mm1_rxdm 5 IO hw_dbg11 7 O etk_d10 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS uart1_rx 2 I hsusb2_clk 3 O gpio_24 4 IO hw_dbg12 7 O etk_d11 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS hsusb2_stp 3 O gpio_25 4 IO mm2_rxdp 5 IO hw_dbg13 7 O etk_d12 0 O L L 4 vdds Yes 4 PU/ PD LVCMOS hsusb2_dir 3 I AE11 AH9 PRODUCT PREVIEW AF13 AH14 AF9 AG9 AE7 AF7 AG7 40 NA NA NA NA NA NA NA NA NA TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 BALL BOTTOM [1] AH7 AG8 AH8 BALL TOP [2] NA NA NA PIN NAME [3] MODE [4] TYPE [5] gpio_26 4 IO hw_dbg14 7 O etk_d13 0 O hsusb2_nxt 3 I gpio_27 4 IO mm2_rxdm 5 IO hw_dbg15 7 O etk_d14 0 O hsusb2_ data0 3 IO gpio_28 4 IO mm2_rxrcv 5 IO hw_dbg16 7 O etk_d15 0 O hsusb2_ data1 3 IO gpio_29 4 IO mm2_txse0 5 IO hw_dbg17 7 O BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET REL. MODE POWER [9] HYS [10] [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] L L 4 vdds Yes 4 PU/ PD LVCMOS L L 4 vdds Yes 4 PU/ PD LVCMOS L L 4 vdds Yes 4 PU/ PD LVCMOS AH21 NA vss 0 GND - - - - - - - - AG16 NA vss 0 GND - - - - - - - - M28 NA vss 0 GND - - - - - - - - AH20 NA cap_vddu_array 0 PWR - - - - - - - - AG20 NA vdds 0 PWR - - - - - - - - AG21 NA vdds 0 PWR - - - - - - - - H28 NA vdds 0 PWR - - - - - - - - P25 NA vdds_x 0 PWR - - - - - - - - AE9, AE18, NA AE19, AE24, AC4, Y16, Y18, Y19, Y20, W18, W20, V20, U19, U20, T19, P20, N19, N20, M19, M25, L25, K18, K20, J4, J18, J19, J20, H4, E25, D8, D9, D15, D22, D23 vdd_core 0 PWR - - - - - - - - Y9, Y10, NA Y11, Y14, Y15, W9, W11, W12, W15, U10, T9, T10, R9, R10, N10, M9, M10, L9, L10, K11, K14, K13, J9, J10, J11, J14, J15 vdd_mpu_iva 0 PWR - - - - - - - - 0 PWR - - - - - - - - AH6, U1, R4, J1, J2, G28, F1, F2, D16, C16, C28, B5, B8, B12, B18, B22, A5, A8, A12, A18, A22 AC5, P1, vdds_mem H1, F23, E1, C23, A4, A7, A10, A15, A18 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback PRODUCT PREVIEW Table 2-1. Ball Characteristics (CBP Pkg.) (continued) 41 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-1. Ball Characteristics (CBP Pkg.) (continued) PIN NAME [3] MODE [4] TYPE [5] BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET REL. MODE POWER [9] HYS [10] [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] AG27, AF8, NA AF16, AF23, AE8, AE16, AE23, AD3, AD4, W4, F25, F26 vdds 0 PWR - - - - - - - - W16 NA vdds_sram 0 PWR K15 NA vdda_dplls_dll 0 PWR - - - - - - - - AA16 NA vdda_dpll_per 0 PWR - - - - - - - - AA14 NA vdda_wkup_ bg_bb 0 PWR - - - - - - - - K25 NA vdds_mmc1 0 PWR - - - - - - - - V25 NA vdda_dac 0 PWR - - - - - - - - Y26 NA vssa_dac 0 GND - - - - - - - - AG2, AG3, AG6, AF12, AF20, AE12, AE20, AC25, AC26, Y12, Y13, Y25, W3, W10, W13, W14, W17, W19, W25, V9, V10, V19, U2, U9, T20, R19, R20, R26, P3, P4, P9, P10, P19, N9, M20, L19, L20, L26, K9, K10, K12, K16, K17, K19, J3, J12, J13, J16, J17, G27, E3,E4, D7, D10, D13, D19, D21, C7, C10, C13, C19, C22, B2, B27, A3, A26 B4, B7, B10, vss B15, B18, C22, E2, F22, H2, P2, AB5, AB14, AB20 0 GND - - - - - - - - AA15 NA 0 PWR - - - - - - - - AH10, AH11, AH13, AH15, AH16, AG11, AG13, AF1, AF28, AE28, AA1, N1, M1, J28, A15, M2, N2, A1, A2, A27, A28, AG1, AG28, AH1, AH2, AH27, AH28, B1, B28, AA2, AF2, AF27, AG10, AG15, B15, J27, M26 A12, AA1, Feed-Through AA23, AB11, Pins (12) AB9, AC11, AC13, AC14, AC8, AC9, H23, K1, L1, U1, Y23, A1, A2, A22, A23, AB1, AB23, AC1, AC2, AC22, AC23, B1, B23, AA2, U2, AA22, AB8, AB13, B12, H22, K2, K22, L2 - - - - - - - - - - BALL BOTTOM [1] BALL TOP [2] PRODUCT PREVIEW cap_vddu_wkup_ logic (12) These signals are feed-through balls. For more information, see Table 2-28. 42 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 2-1. Ball Characteristics (CBP Pkg.) (continued) BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] G1, A13, AB2, AB22, No Connect (13) A14,A16, B2, B22 A17, B14, B16, B17, C14, C15, C17, D17, D18, H9, H10, H11, H12, H13, H14, H15, H16, H17, A4, A6, A7, A9, A10, A11, A19, A20, A21, B3, B4, B6, B7, B9, B10, B11, B13, B19, B20, B21, C1,C2, C3, C4,C5, C6, C8,C9, C11, C12, C18, C20, C21, D1, D2, D3, D4, D5,D6, D11, D12,D14, D20, E1,E2, AA26,AE27, A27, A28, B28, AG1, AG28, AH1, AH2,AH27, AH28 - - Y17 NA sys_xtalgnd 0 GND U4 NA cap_vdd_bb_ mpu_iva 0 PWR V4 NA cap_vdd_sram _mpu_iva 0 PWR L21 NA cap_vdd_sram_core 0 PWR BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET REL. MODE POWER [9] HYS [10] [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] PRODUCT PREVIEW BALL BOTTOM [1] (13) Pins labeled as "No connect" must be left unconnected. Any connections to these pins may result in unpredictable behavior. Table 2-2. Ball Characteristics (CBC Pkg.) (1) BALL BOTTOM [1] BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET POWER [9] HYS [10] REL. MODE [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] AE16 NA cam_d0 0 I L L 7 vdda Yes NA PU/ PD LVCMOS gpio_99 4 I safe_mode 7 - cam_d1 0 I L L 7 vdda Yes NA PU/ PD LVCMOS gpio_100 4 I safe_mode 7 - gpio_112 4 I L L 7 vdda Yes NA PU/ PD LVCMOS safe_mode 7 - gpio_114 4 I L L 7 vdda Yes NA PU/ PD LVCMOS safe_mode 7 - gpio_113 4 I L L 7 vdda Yes NA PU/ PD LVCMOS safe_mode 7 - PU/ PD LVCMOS PU/ PD LVCMOS PU/ PD LVCMOS PU/ PD LVCMOS AE15 AD17 AE18 AD16 NA NA NA NA gpio_115 4 I AE17 NA safe_mode 7 - L L 7 vdda Yes NA NA G20 sdrc_a0 0 O 0 0 0 vdds NA 4 NA K20 sdrc_a1 0 O 0 0 0 vdds NA 4 (2) NA J20 sdrc_a2 0 O 0 0 0 vdds NA 4 (1) (2) (2) (2) NA in this table stands for Not Applicable. The drive strength of these IOs is set according to the programmable load range: 2 pF to 4 pF per default or 4 pF to 12 pF. For a full description of the drive strength programming, see the System Control Module chapter of the TRM. TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 43 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-2. Ball Characteristics (CBC Pkg.) (continued) BALL BOTTOM [1] BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET POWER [9] HYS [10] REL. MODE [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] NA J21 sdrc_a3 0 O 0 0 0 vdds NA 4 (2) NA U21 sdrc_a4 0 O 0 0 0 vdds NA PU/ PD LVCMOS 4 (2) PU/ PD NA R20 sdrc_a5 0 O 0 0 0 vdds LVCMOS NA 4 (2) PU/ PD NA M21 sdrc_a6 0 O 0 0 0 LVCMOS vdds NA 4 (2) PU/ PD NA M20 sdrc_a7 0 O 0 0 LVCMOS 0 vdds NA 4 (2) PU/ PD NA N20 sdrc_a8 0 O 0 LVCMOS 0 0 vdds NA 4 (2) PU/ PD NA K21 sdrc_a9 0 O LVCMOS 0 0 0 vdds NA 4 (2) PU/ PD NA Y16 sdrc_a10 0 LVCMOS O 0 0 0 vdds NA 4 (2) PU/ PD NA N21 sdrc_a11 LVCMOS 0 O 0 0 0 vdds NA 4 (2) PU/ PD NA R21 LVCMOS sdrc_a12 0 O 0 0 0 vdds NA 4 (2) PU/ PD NA LVCMOS AA15 sdrc_a13 0 O 0 0 0 vdds NA 4 (2) PU/ PD LVCMOS NA Y12 sdrc_a14 0 O 0 0 0 vdds NA 4 (2) PU/ PD LVCMOS NA AA18 sdrc_ba0 0 O 0 0 0 vdds NA 4 (2) PU/ PD LVCMOS NA V20 sdrc_ba1 0 O 0 0 0 vdds NA 4 (2) PU/ PD LVCMOS NA Y15 sdrc_cke0 0 O H 1 7 vdds NA 4 (2) PU/ PD LVCMOS safe_mode_out1 (3) 7 sdrc_cke1 0 O H 1 7 vdds NA 4 (2) PU/ PD LVCMOS safe_mode_out1 (4) 7 NA Y13 PRODUCT PREVIEW NA A12 sdrc_clk 0 IO L 0 0 vdds Yes 4 (5) PU/ PD LVCMOS NA D1 sdrc_d0 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA G1 sdrc_d1 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA G2 sdrc_d2 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA E1 sdrc_d3 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA D2 sdrc_d4 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA E2 sdrc_d5 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA B3 sdrc_d6 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA B4 sdrc_d7 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA A10 sdrc_d8 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA B11 sdrc_d9 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA A11 sdrc_d10 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA B12 sdrc_d11 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA A16 sdrc_d12 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA A17 sdrc_d13 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA B17 sdrc_d14 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA B18 sdrc_d15 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA B7 sdrc_d16 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA A5 sdrc_d17 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA B6 sdrc_d18 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA A6 sdrc_d19 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA A8 sdrc_d20 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA B9 sdrc_d21 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA A9 sdrc_d22 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA B10 sdrc_d23 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA C21 sdrc_d24 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA D20 sdrc_d25 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA B19 sdrc_d26 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA C20 sdrc_d27 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA D21 sdrc_d28 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA E20 sdrc_d29 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA E21 sdrc_d30 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS NA G21 sdrc_d31 0 IO L Z 0 vdds Yes 4 (5) PU/ PD LVCMOS (3) (4) (5) 44 In the safe_mode_out1, the buffer is configured to drive 1. In the safe_mode_out1, the buffer is configured to drive 1. The drive strength of these IOs is set according to the programmable load range: 2 pF to 4 pF per default or 4 pF to 12 pF. For a full description of the drive strength programming, see the System Control Module chapter of the TRM. TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 BALL BOTTOM [1] BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET POWER [9] HYS [10] REL. MODE [8] BUFFER STRENG TH (mA) [11] NA H1 sdrc_dm0 0 O 0 0 0 vdds NA 4 NA A14 sdrc_dm1 0 O 0 0 0 vdds NA 4 NA A4 sdrc_dm2 0 O 0 0 0 vdds NA 4 (5) NA A18 sdrc_dm3 0 O 0 0 0 vdds NA 4 NA C2 sdrc_dqs0 0 IO L Z 0 vdds Yes NA B15 sdrc_dqs1 0 IO L Z 0 vdds NA B8 sdrc_dqs2 0 IO L Z 0 NA A19 sdrc_dqs3 0 IO L Z NA U20 sdrc_ncas 0 O 1 NA B13 sdrc_nclk 0 O NA T21 sdrc_ncs0 0 NA T20 sdrc_ncs1 NA V21 NA AE21 AE22 AE23 AE24 AD23 AD24 AC26 AD26 AA25 Y25 AA26 AB26 PULLUP /DOWN TYPE [12] IO CELL [13] (5) PU/ PD LVCMOS (5) PU/ PD LVCMOS PU/ PD LVCMOS (5) PU/ PD LVCMOS 4 (5) PU/ PD LVCMOS Yes 4 (5) PU/ PD LVCMOS vdds Yes 4 (5) PU/ PD LVCMOS 0 vdds Yes 4 (5) PU/ PD LVCMOS 1 0 vdds NA 4 (5) PU/ PD LVCMOS 1 1 0 vdds NA 4 (5) PU/ PD LVCMOS O 1 1 0 vdds NA 4 (5) PU/ PD LVCMOS 0 O 1 1 0 vdds NA 4 (5) PU/ PD LVCMOS sdrc_nras 0 O 1 1 0 vdds NA 4 (5) PU/ PD LVCMOS Y18 sdrc_nwe 0 O 1 1 0 vdds NA 4 (5) PU/ PD LVCMOS NA dss_data0 0 IO L L 7 vdda Yes 8 PU/ PD LVCMOS uart1_cts 2 I gpio_70 4 IO safe_mode 7 - dss_data1 0 IO L L 7 vdda Yes 8 PU/ PD LVCMOS uart1_rts 2 O gpio_71 4 IO safe_mode 7 - dss_data2 0 IO L L 7 vdda Yes 8 PU/ PD LVCMOS gpio_72 4 IO safe_mode 7 - dss_data3 0 IO L L 7 vdda Yes 8 PU/ PD LVCMOS gpio_73 4 IO safe_mode 7 - dss_data4 0 IO L L 7 vdda Yes 8 PU/ PD LVCMOS uart3_rx_irrx 2 I gpio_74 4 IO safe_mode 7 - dss_data5 0 IO L L 7 vdda Yes 8 PU/ PD LVCMOS uart3_tx_irtx 2 O gpio_75 4 IO safe_mode 7 - dss_data10 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_80 4 IO safe_mode 7 - dss_data11 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_81 4 IO safe_mode 7 - dss_data12 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_82 4 IO safe_mode 7 - dss_data13 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_83 4 IO safe_mode 7 - dss_data14 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_84 4 IO safe_mode 7 - dss_data15 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_85 4 IO safe_mode 7 - NA NA NA NA NA NA NA NA NA NA NA TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback PRODUCT PREVIEW Table 2-2. Ball Characteristics (CBC Pkg.) (continued) 45 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-2. Ball Characteristics (CBC Pkg.) (continued) BALL BOTTOM [1] BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET POWER [9] HYS [10] REL. MODE [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] F25 NA dss_data20 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS mcspi3_somi 2 IO dss_data2 3 IO gpio_90 4 IO safe_mode 7 - dss_data22 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS mcspi3_cs1 2 O dss_data4 3 IO gpio_92 4 IO safe_mode 7 - dss_data23 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS dss_data5 3 IO gpio_93 4 IO safe_mode 7 - dss_pclk 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS gpio_66 4 IO hw_dbg12 5 O safe_mode 7 - gpmc_a1 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_34 4 IO safe_mode 7 - gpmc_a2 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_35 4 IO safe_mode 7 - gpmc_a3 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_36 4 IO safe_mode 7 - gpmc_a4 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_37 4 IO safe_mode 7 - gpmc_a5 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_38 4 IO safe_mode 7 - gpmc_a6 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS gpio_39 4 IO safe_mode 7 - gpmc_a7 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS gpio_40 4 IO safe_mode 7 - gpmc_a8 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS gpio_41 4 IO safe_mode 7 - gpmc_a9 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS sys_ndmareq2 1 I gpio_42 4 IO safe_mode 7 - gpmc_a10 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS sys_ndmareq3 1 I gpio_43 4 IO safe_mode 7 - gpmc_clk 0 O L 0 0 vdds Yes 8 PU/ PD LVCMOS gpio_59 4 IO safe_mode 7 - gpmc_d0 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS AC25 AB25 G25 PRODUCT PREVIEW J2 H1 H2 G2 F1 F2 E1 E2 D1 D2 N1 AA2 46 NA NA NA NA NA NA NA NA NA NA NA NA NA L1 U2 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 BALL BOTTOM [1] BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET POWER [9] HYS [10] REL. MODE [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] AA1 U1 gpmc_d1 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS AC2 V2 gpmc_d2 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS AC1 V1 gpmc_d3 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS AE5 AA3 gpmc_d4 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS AD6 AA4 gpmc_d5 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS AD5 Y3 gpmc_d6 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS AC5 Y4 gpmc_d7 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS V1 R1 gpmc_d8 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS gpio_44 4 IO safe_mode 7 - gpmc_d9 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS gpio_45 4 IO safe_mode 7 - gpmc_d10 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS gpio_46 4 IO safe_mode 7 - gpmc_d11 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS gpio_47 4 IO safe_mode 7 - gpmc_d12 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS gpio_48 4 IO safe_mode 7 - gpmc_d13 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS gpio_49 4 IO safe_mode 7 - gpmc_d14 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS gpio_50 4 IO safe_mode 7 - gpmc_d15 0 IO H H 0 vdds Yes 8 PU/ PD LVCMOS gpio_51 4 IO Y1 T1 U2 U1 P1 L2 M2 T1 N1 P2 P1 M1 J2 K2 safe_mode 7 - AD10 AA9 gpmc_nadv_ale 0 O 0 0 0 vdds NA 8 NA LVCMOS K2 NA gpmc_nbe0_cle 0 O L 0 0 vdds Yes 8 PU/ PD LVCMOS gpio_60 4 IO safe_mode 7 - gpmc_nbe1 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_61 4 IO J1 NA safe_mode 7 - AD8 AA8 gpmc_ncs0 0 O 1 1 0 vdds NA 8 NA LVCMOS AD1 W1 gpmc_ncs1 0 O H 1 0 vdds Yes 8 PU/ PD LVCMOS gpio_52 4 IO safe_mode 7 - gpmc_ncs2 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS gpio_53 4 IO safe_mode 7 - gpmc_ncs3 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS sys_ndmareq0 1 I gpio_54 4 IO safe_mode 7 - gpmc_ncs4 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS sys_ndmareq1 1 I mcbsp4_clkx 2 IO gpt_9_pwm_evt 3 IO gpio_55 4 IO A3 B6 B4 NA NA NA TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback PRODUCT PREVIEW Table 2-2. Ball Characteristics (CBC Pkg.) (continued) 47 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-2. Ball Characteristics (CBC Pkg.) (continued) BALL BOTTOM [1] BALL TOP [2] C4 NA B5 C5 NA NA PRODUCT PREVIEW PIN NAME [3] MODE [4] TYPE [5] safe_mode 7 - gpmc_ncs5 0 O sys_ndmareq2 1 I mcbsp4_dr 2 I gpt_10_pwm_evt 3 IO gpio_56 4 IO safe_mode 7 - gpmc_ncs6 0 O sys_ndmareq3 1 I mcbsp4_dx 2 IO gpt_11_pwm_evt 3 IO gpio_57 4 IO safe_mode 7 - gpmc_ncs7 0 O gpmc_io_dir 1 O mcbsp4_fsx 2 IO gpt_8_pwm_evt 3 IO gpio_58 4 IO safe_mode 7 - BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET POWER [9] HYS [10] REL. MODE [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] H H 7 vdds Yes 8 PU/ PD LVCMOS H H 7 vdds Yes 8 PU/ PD LVCMOS H H 7 vdds Yes 8 PU/ PD LVCMOS N2 L2 gpmc_noe 0 O 1 1 0 vdds NA 8 NA LVCMOS M1 K1 gpmc_nwe 0 O 1 1 0 vdds NA 8 NA LVCMOS AC6 Y5 gpmc_nwp 0 O L 0 0 vdds Yes 8 PU/ PD LVCMOS gpio_62 4 IO safe_mode 7 - AC11 Y10 gpmc_wait0 0 I H H 0 vdds Yes NA PU/ PD LVCMOS AC8 Y8 gpmc_wait1 0 I H H 7 vdds Yes 8 PU/ PD LVCMOS gpio_63 4 IO safe_mode 7 - gpmc_wait2 0 I H H 7 vdds Yes 8 PU/ PD LVCMOS uart4_tx 2 O gpio_64 4 IO safe_mode 7 - gpmc_wait3 0 I H H 7 vdds Yes 8 PU/ PD LVCMOS sys_ndmareq1 1 I uart4_rx 2 I gpio_65 4 IO safe_mode 7 - hsusb0_clk 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_120 4 IO safe_mode 7 - hsusb0_data0 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS uart3_tx_irtx 2 O gpio_125 4 IO uart2_tx 5 O safe_mode 7 - hsusb0_data1 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS uart3_rx_irrx 2 I gpio_130 4 IO uart2_rx 5 I safe_mode 7 - hsusb0_data2 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS uart3_rts_sd 2 O gpio_131 4 IO uart2_rts 5 O B3 C6 W19 V20 Y20 V18 48 NA NA NA NA NA NA TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 BALL BOTTOM [1] BALL TOP [2] W20 NA W17 Y18 Y19 Y17 V19 W18 U20 NA NA NA NA NA NA NA PIN NAME [3] MODE [4] TYPE [5] safe_mode 7 - hsusb0_data3 0 IO uart3_cts_rctx 2 IO gpio_169 4 IO uart2_cts 5 I safe_mode 7 - hsusb0_data4 0 IO gpio_188 4 IO safe_mode 7 - hsusb0_data5 0 IO gpio_189 4 IO safe_mode 7 - hsusb0_data6 0 IO gpio_190 4 IO safe_mode 7 - hsusb0_data7 0 IO gpio_191 4 IO safe_mode 7 - hsusb0_dir 0 I gpio_122 4 IO safe_mode 7 - hsusb0_nxt 0 I gpio_124 4 IO safe_mode 7 - hsusb0_stp 0 O gpio_121 4 IO BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET POWER [9] HYS [10] REL. MODE [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS safe_mode 7 - U15 NA jtag_ntrst 0 I L L 0 vdds Yes NA PU/ PD LVCMOS W13 NA jtag_rtck 0 O L 0 0 vdds NA 4 PU/ PD LVCMOS V14 NA jtag_tck 0 I L L 0 vdds Yes NA PU/ PD LVCMOS U16 NA jtag_tdi 0 I H H 0 vdds Yes NA PU/ PD LVCMOS Y13 NA jtag_tdo 0 O L Z 0 vdds NA 4 PU/ PD LVCMOS V15 NA jtag_tms_tmsc 0 IO H H 0 vdds Yes 4 PU/ PD LVCMOS N19 NA mmc1_clk 0 IO L L 7 vdds_mmc1 Yes 1 PU/ PD (6) LVCMOS gpio_120 (7) 4 IO safe_mode 7 - mmc1_cmd 0 O L L 7 vdds_mmc1 Yes 1 PU/ PD (6) LVCMOS gpio_121 (7) 4 IO safe_mode 7 - mmc1_dat0 0 IO L L 7 vdds_mmc1 Yes 1 PU/ PD (6) LVCMOS (7) 4 IO safe_mode 7 - mmc1_dat1 0 IO L L 7 vdds_mmc1 Yes 1 PU/ PD (6) LVCMOS gpio_123 (7) 4 IO safe_mode 7 - mmc1_dat2 0 IO L L 7 vdds_mmc1 Yes 1 PU/ PD (6) LVCMOS (7) 4 IO safe_mode 7 - mmc1_dat3 0 IO L L 7 vdds_mmc1 Yes 1 PU/ PD (6) LVCMOS gpio_125 (7) 4 IO L18 M19 NA NA gpio_122 M18 K18 NA NA gpio_124 N20 (6) (7) NA PRODUCT PREVIEW Table 2-2. Ball Characteristics (CBC Pkg.) (continued) PU = [50 to 100 kΩ] per default or [10 to 50 kΩ] according to the selected mode. For a full description of the pull-up drive strength programming, see the PRG_SDMMC_PUSTRENGTH configuration register bit field in the System Control Module chapter of the AM/DM37x TRM. PD: 30 to 150 kΩ. The usage of this GPIO is strongly restricted. For more information, see the General-Purpose Interface chapter of the TRM. TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 49 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-2. Ball Characteristics (CBC Pkg.) (continued) BALL BOTTOM [1] BALL TOP [2] M20 NA P17 P18 P19 J25 NA NA NA NA PIN NAME [3] MODE [4] TYPE [5] safe_mode 7 - gpio_126 (7) 4 IO safe_mode 7 - gpio_127 (7) 4 IO safe_mode 7 - gpio_128 (7) 4 IO safe_mode 7 - gpio_129 (7) 4 IO safe_mode 7 - i2c1_scl 0 OD BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET POWER [9] HYS [10] REL. MODE [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] L L 7 vdds_x Yes 1 PU/PD (6) LVCMOS L L 7 vdds_x Yes 1 PU/PD (6) LVCMOS L L 7 vdds Yes 4 PU/PD LVCMOS L L 7 vdds_x Yes 1 PU/PD H H 0 vdds NA 3 PU/ PD (8) (6) LVCMOS (9) Open Drain (8) (9) LVCMOS Open Drain J24 NA i2c1_sda 0 IOD H H 0 vdds Yes 3 PU/ PD C2 NA i2c2_scl 0 OD H H 7 vdds Yes 3 PU/ PD (8) (10) LVCMOS Open Drain gpio_168 4 IO safe_mode 7 - i2c2_sda 0 IOD gpio_183 4 IO safe_mode 7 - i2c3_scl 0 OD gpio_184 4 IO safe_mode 7 - i2c3_sda 0 IOD gpio_185 4 IO safe_mode 7 - mcbsp1_clkr 0 IO mcspi4_clk 1 IO gpio_156 4 IO safe_mode 7 - mcbsp1_clkx 0 IO mcbsp3_clkx 2 IO gpio_162 4 IO safe_mode 7 - mcbsp1_dr 0 I mcspi4_somi 1 IO mcbsp3_dr 2 I gpio_159 4 IO safe_mode 7 - C1 PRODUCT PREVIEW AB4 AC4 U19 T17 T20 NA NA NA NA NA NA 4 4 H H 7 vdds Yes 3 PU/ PD (8) (10) LVCMOS Open Drain 4 4 H H 7 vdds Yes 3 PU/ PD (8) (10) LVCMOS Open Drain 4 4 H H 7 vdds Yes 3 PU/ PD (11)(12) LVCMOS Open Drain 4 4 L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS (8) The pullup and pulldown can be either the standard LVCMOS 100-mA drive strength or the I2C pullup and pulldown described as follows: Nominal resistance = 1.66 kΩ in high-speed mode with a load range of 5 pF to 12 pF, 4.5 kΩ in standard / fast mode with a load range of 5 pF to 15 pF. (9) The default buffer configuration is High-Speed I2C point-to-point mode using internal pullup. For a full description of the pull drive strength programming, see prg_i2c1_pullupresx, prg_i2c1_lb1lb0, and prg_sr_pullupresx, prg_sr_lb bits of the CONTROL_PROG_IO1, CONTROL_PROG_IO_WKUP1 control modules in the System Control Module chapter of the TRM to modify the IO settings if required by the targeted interface application. (10) The default buffer configuration is standard LVCMOS mode (non-I2C). For a full description of the pull drive strength programming, see PADCONFS bits of CONTROL_PADCONF_X control modules (standard LVCMOS mode), or prg_i2c2_pullupresx, prg_i2c2_lb1lb0, and prg_i2c3_pullupresx, prg_i2c3_lb1lb0 bits of the CONTROL_PROG_IO2, CONTROL_PROG_IO3 control modules (I2C mode) in the System Control Module chapter of the AM/DM37x TRM to modify the IO settings if required by the targeted interface application. (11) The pullup and pulldown can be either the standard LVCMOS 100-mA drive strength or the I2C pullup and pulldown described as follows: Nominal resistance = 1.66 kΩ in high-speed mode with a load range of 5 pF to 12 pF, 4.5 kΩ in standard / fast mode with a load range of 5 pF to 15 pF. (12) The default buffer configuration is standard LVCMOS mode (non-I2C). For a full description of the pull drive strength programming, see PADCONFS bits of CONTROL_PADCONF_X control modules (standard LVCMOS mode), or prg_i2c2_pullupresx, prg_i2c2_lb1lb0, and prg_i2c3_pullupresx, prg_i2c3_lb1lb0 bits of the CONTROL_PROG_IO2, CONTROL_PROG_IO3 control modules (I2C mode) in the System Control Module chapter of the AM/DM37x TRM to modify the IO settings if required by the targeted interface application. 50 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 BALL BOTTOM [1] BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET POWER [9] HYS [10] REL. MODE [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] U17 NA mcbsp1_dx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS mcspi4_simo 1 IO mcbsp3_dx 2 IO gpio_158 4 IO safe_mode 7 - mcbsp1_fsr 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS cam_global_reset 2 IO gpio_157 4 IO safe_mode 7 - mcbsp1_fsx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS mcspi4_cs0 1 IO mcbsp3_fsx 2 IO gpio_161 4 IO safe_mode 7 - mcbsp2_clkx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_117 4 IO safe_mode 7 - mcbsp2_dr 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_118 4 IO safe_mode 7 - mcbsp2_dx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_119 4 IO safe_mode 7 - mcbsp2_fsx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_116 4 IO safe_mode 7 - mcspi1_clk 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS mmc2_dat4 1 IO gpio_171 4 IO safe_mode 7 - mcspi1_cs0 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS mmc2_dat7 1 IO gpio_174 4 IO safe_mode 7 - mcspi1_cs2 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS mmc3_clk 3 IO gpio_176 4 IO safe_mode 7 - mcspi1_simo 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS mmc2_dat5 1 IO gpio_172 4 IO safe_mode 7 - mcspi1_somi 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS mmc2_dat6 1 IO gpio_173 4 IO safe_mode 7 - mcspi2_clk 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS hsusb2_data7 3 IO gpio_178 4 IO safe_mode 7 - mcspi2_cs0 0 IO H H 7 vdds Yes 4 PU/ PD LVCMOS gpt_11_pwm_evt 1 IO hsusb2_data6 3 IO gpio_181 4 IO V17 P20 R18 T18 R19 U18 P9 R7 R9 P8 P7 W7 V8 NA NA NA NA NA NA NA NA NA NA NA NA NA TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback PRODUCT PREVIEW Table 2-2. Ball Characteristics (CBC Pkg.) (continued) 51 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-2. Ball Characteristics (CBC Pkg.) (continued) BALL BOTTOM [1] BALL TOP [2] W8 NA U8 W10 R10 PRODUCT PREVIEW T10 T9 U10 U9 V10 R2 H3 L4 Y24 52 NA NA NA NA NA NA NA NA NA NA NA NA PIN NAME [3] MODE [4] TYPE [5] safe_mode 7 - mcspi2_simo 0 IO gpt_9_pwm_evt 1 IO hsusb2_data4 3 IO gpio_179 4 IO safe_mode 7 - mcspi2_somi 0 IO gpt_10_pwm_evt 1 IO hsusb2_data5 3 IO gpio_180 4 IO safe_mode 7 - mmc2_clk 0 IO mcspi3_clk 1 IO gpio_130 4 IO safe_mode 7 - mmc2_cmd 0 O mcspi3_simo 1 IO gpio_131 4 IO safe_mode 7 - mmc2_dat0 0 IO mcspi3_somi 1 IO gpio_132 4 IO safe_mode 7 - mmc2_dat1 0 IO gpio_133 4 IO safe_mode 7 - mmc2_dat2 0 IO mcspi3_cs1 1 O gpio_134 4 IO safe_mode 7 - mmc2_dat3 0 IO mcspi3_cs0 1 IO gpio_135 4 IO safe_mode 7 - mmc2_dat4 0 IO mmc2_dir_dat0 1 O mmc3_dat0 3 IO gpio_136 4 IO safe_mode 7 - uart1_rts 0 O gpio_149 4 IO safe_mode 7 - uart1_rx 0 I mcbsp1_clkr 2 IO mcspi4_clk 3 IO gpio_151 4 IO safe_mode 7 - uart1_tx 0 O gpio_148 4 IO safe_mode 7 - uart2_cts 0 I mcbsp3_dx 1 IO gpt_9_pwm_evt 2 IO gpio_144 4 IO BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET POWER [9] HYS [10] REL. MODE [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 BALL BOTTOM [1] BALL TOP [2] AA24 NA AD21 AD22 F23 F24 H24 G24 J23 AD15 NA NA NA NA NA NA NA NA PIN NAME [3] MODE [4] TYPE [5] safe_mode 7 - uart2_rts 0 O mcbsp3_dr 1 I gpt_10_pwm_evt 2 IO gpio_145 4 IO safe_mode 7 - uart2_rx 0 I mcbsp3_fsx 1 IO gpt_8_pwm_evt 2 IO gpio_147 4 IO safe_mode 7 - uart2_tx 0 O mcbsp3_clkx 1 IO gpt_11_pwm_evt 2 IO gpio_146 4 IO safe_mode 7 - uart3_cts_rctx 0 IO gpio_163 4 IO safe_mode 7 - uart3_rts_sd 0 O gpio_164 4 IO safe_mode 7 - uart3_rx_irrx 0 I gpio_165 4 IO safe_mode 7 - uart3_tx_irtx 0 O gpio_166 4 IO safe_mode 7 - hdq_sio 0 IOD sys_altclk 1 I i2c2_sccbe 2 OD i2c3_sccbe 3 OD gpio_170 4 IO safe_mode 7 - i2c4_scl 0 OD BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET POWER [9] HYS [10] REL. MODE [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] H H 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS Open Drain H H 0 vdds Yes 3 PU/ PD (13) LVCMOS Open Drain (14) W16 F3 D3 NA NA NA sys_nvmode1 1 O safe_mode 7 - i2c4_sda 0 IOD sys_nvmode2 1 O safe_mode 7 - sys_boot0 0 I dss_data18 3 IO gpio_2 4 IO safe_mode 7 - sys_boot1 0 I dss_data19 3 IO 4 4 H H 0 vdds Yes 3 PU/ PD (13) (14) LVCMOS Open Drain 4 4 Z Z 0 vdds Yes 8 PU/ PD LVCMOS Z Z 0 vdds Yes 8 PU/ PD LVCMOS (13) The pullup and pulldown can be either the standard LVCMOS 100-mA drive strength or the I2C pullup and pulldown described as follows: Nominal resistance = 1.66 kΩ in high-speed mode with a load range of 5 pF to 12 pF, 4.5 kΩ in standard / fast mode with a load range of 5 pF to 15 pF. (14) The default buffer configuration is High-Speed I2C point-to-point mode using internal pullup. For a full description of the pull drive strength programming, see prg_i2c1_pullupresx, prg_i2c1_lb1lb0, and prg_sr_pullupresx, prg_sr_lb bits of the CONTROL_PROG_IO1, CONTROL_PROG_IO_WKUP1 control modules in the System Control Module chapter of the TRM to modify the IO settings if required by the targeted interface application. TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 53 PRODUCT PREVIEW Table 2-2. Ball Characteristics (CBC Pkg.) (continued) AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-2. Ball Characteristics (CBC Pkg.) (continued) BALL BOTTOM [1] C3 E3 E4 G3 PRODUCT PREVIEW D4 AE14 W11 W15 V16 BALL TOP [2] NA NA NA NA NA NA NA NA NA PIN NAME [3] MODE [4] TYPE [5] gpio_3 4 IO safe_mode 7 - sys_boot2 0 I gpio_4 4 IO safe_mode 7 - sys_boot3 0 I dss_data20 3 O gpio_5 4 IO safe_mode 7 - sys_boot4 0 I mmc2_dir_dat2 1 O dss_data21 3 O gpio_6 4 IO safe_mode 7 - sys_boot5 0 I mmc2_dir_dat3 1 O dss_data22 3 O gpio_7 4 IO safe_mode 7 - sys_boot6 0 I dss_data23 3 O gpio_8 4 IO safe_mode 7 - sys_clkout1 0 O gpio_10 4 IO safe_mode 7 - sys_clkout2 0 O gpio_186 4 IO safe_mode 7 - sys_clkreq 0 IO gpio_1 4 IO safe_mode 7 - sys_nirq 0 I gpio_0 4 IO BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET POWER [9] HYS [10] REL. MODE [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] Z Z 0 vdds Yes 8 PU/ PD LVCMOS Z Z 0 vdds Yes 8 PU/ PD LVCMOS Z Z 0 vdds Yes 8 PU/ PD LVCMOS Z Z 0 vdds Yes 8 PU/ PD LVCMOS Z Z 0 vdds Yes 8 PU/ PD LVCMOS L L 7 (15) vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS 0 see 0 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS (16) safe_mode 7 - V13 NA sys_nrespwron 0 I Z Z 0 vdds Yes NA No LVCMOS AD7 AA5 sys_nreswarm 0 IOD 0 1 0 vdds Yes 4 PU/ PD LVCMOS gpio_30 4 IO safe_mode 7 - sys_off_mode 0 O gpio_9 4 IO V12 NA Open Drain 0 L 7 vdds Yes 4 PU/ PD LVCMOS safe_mode 7 - AF19 NA sys_xtalin 0 AI Z Z 0 vdds Yes NA NA LVCMOS Analog AF20 NA sys_xtalout 0 AO Z 0 0 vdds NA NA NA Analog W26 NA cvideo1_out 0 AO 0 0 0 vdda_dac NA NA NA 10-bit DAC V26 NA cvideo2_out 0 AO 0 0 0 vdda_dac NA NA NA 10-bit DAC W25 NA cvideo1_vfb 0 AO 0 NA 0 vdda_dac NA NA NA 10-bit DAC U24 NA cvideo2_vfb 0 AO 0 NA 0 vdda_dac NA NA NA 10-bit DAC V23 NA cvideo1_rset 0 AIO Z NA 0 vdda_dac No NA NA 10-bit DAC (15) Mux0 if sys_boot6 is pulled down (clock master). (16) Depending on the sys_clkreq direction the corresponding reset released state value can be: • Z if sys_clkreq is used as input • 1 if sys_clkreq is used as output For a full description of the sys_clkreq control, see Power, Reset, and Clock Management chapter of the TRM. 54 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 BALL BOTTOM [1] BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET POWER [9] HYS [10] REL. MODE [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] AE20 NA sys_32k 0 I Z Z 0 vdds Yes NA PU/ PD LVCMOS A24 NA cam_d2 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_101 4 IO hw_dbg4 5 O safe_mode 7 - cam_d3 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_102 4 IO hw_dbg5 5 O safe_mode 7 - cam_d4 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_103 4 IO hw_dbg6 5 O safe_mode 7 - cam_d5 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_104 4 IO hw_dbg7 5 O safe_mode 7 - cam_d10 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_109 4 IO hw_dbg8 5 O safe_mode 7 - cam_d11 0 I L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_110 4 IO hw_dbg9 5 O safe_mode 7 - cam_fld 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS cam_global_reset 2 IO gpio_98 4 IO hw_dbg3 5 O safe_mode 7 - cam_hs 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_94 4 IO hw_dbg0 5 O safe_mode 7 - cam_pclk 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_97 4 IO hw_dbg2 5 O safe_mode 7 - cam_strobe 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_126 4 IO hw_dbg11 5 O safe_mode 7 - cam_xclka 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_96 4 IO safe_mode 7 - cam_xclkb 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_111 4 IO safe_mode 7 - cam_d6 0 I L L 7 vdds Yes NA PU/ PD SubLVDS gpio_105 4 I safe_mode 7 - cam_d7 0 I L L 7 vdds Yes NA PU/ PD SubLVDS gpio_106 4 I safe_mode 7 - B24 D24 C24 D25 E26 B23 C23 C26 D26 C25 E25 P25 P26 NA NA NA NA NA NA NA NA NA NA NA NA NA TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback PRODUCT PREVIEW Table 2-2. Ball Characteristics (CBC Pkg.) (continued) 55 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-2. Ball Characteristics (CBC Pkg.) (continued) BALL BOTTOM [1] BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET POWER [9] HYS [10] REL. MODE [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] N25 NA cam_d8 0 I L L 7 vdds NA NA PU/ PD SubLVDS gpio_107 4 I safe_mode 7 - cam_d9 0 I L L 7 vdds NA NA PU/ PD SubLVDS gpio_108 4 I safe_mode 7 - cam_vs 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_95 4 IO hw_dbg1 5 O safe_mode 7 - cam_wen 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS cam_shutter 2 O gpio_167 4 IO hw_dbg10 5 O safe_mode 7 - dss_acbias 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_69 4 IO safe_mode 7 - dss_data6 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS uart1_tx 2 O gpio_76 4 IO hw_dbg14 5 O safe_mode 7 - dss_data7 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS uart1_rx 2 I gpio_77 4 IO hw_dbg15 5 O safe_mode 7 - dss_data8 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS uart3_rx_irrx 2 I gpio_78 4 IO hw_dbg16 5 O safe_mode 7 - dss_data9 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS uart3_tx_irtx 2 O gpio_79 4 IO hw_dbg17 5 O safe_mode 7 - dss_data16 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_86 4 IO safe_mode 7 - dss_data17 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_87 4 IO safe_mode 7 - dss_data18 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS mcspi3_clk 2 IO dss_data0 3 IO gpio_88 4 IO safe_mode 7 - dss_data19 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS mcspi3_simo 2 IO dss_data1 3 IO gpio_89 4 IO safe_mode 7 - N26 D23 A23 F26 PRODUCT PREVIEW G26 H25 H26 J26 L25 L26 M24 M26 56 NA NA NA NA NA NA NA NA NA NA NA NA TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 BALL BOTTOM [1] BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET POWER [9] HYS [10] REL. MODE [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] N24 NA dss_data21 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS mcspi3_cs0 2 IO dss_data3 3 IO gpio_91 4 IO safe_mode 7 - dss_hsync 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS gpio_67 4 IO hw_dbg13 5 O safe_mode 7 - dss_vsync 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS gpio_68 4 IO safe_mode 7 - mcspi1_cs1 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS mmc3_cmd 3 O gpio_175 4 IO safe_mode 7 - mcspi1_cs3 0 O H H 7 vdds Yes 4 PU/ PD LVCMOS hsusb2_data2 3 IO gpio_177 4 IO mm2_txdat 5 IO safe_mode 7 - mcspi2_cs1 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS gpt_8_pwm_evt 1 IO hsusb2_data3 3 IO gpio_182 4 IO mm2_txen_n 5 IO safe_mode 7 - mcbsp_clks 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS cam_shutter 2 O gpio_160 4 IO uart1_cts 5 I safe_mode 7 - etk_clk 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS mcbsp5_clkx 1 IO mmc3_clk 2 IO hsusb1_stp 3 O gpio_12 4 IO mm1_rxdp 5 IO hw_dbg0 7 O etk_ctl 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS mmc3_cmd 2 O hsusb1_clk 3 O gpio_13 4 IO hw_dbg1 7 O etk_d0 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS mcspi3_simo 1 IO mmc3_dat4 2 IO hsusb1_data0 3 IO gpio_14 4 IO mm1_rxrcv 5 IO hw_dbg2 7 O etk_d1 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS mcspi3_somi 1 IO hsusb1_data1 3 IO K24 M25 R8 T8 V9 T19 AB2 AB3 AC3 AD4 NA NA NA NA NA NA NA NA NA NA TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback PRODUCT PREVIEW Table 2-2. Ball Characteristics (CBC Pkg.) (continued) 57 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-2. Ball Characteristics (CBC Pkg.) (continued) BALL BOTTOM [1] AD3 AA3 Y3 PRODUCT PREVIEW AB1 AE3 AD2 AA4 V2 AE4 58 BALL TOP [2] NA NA NA NA NA NA NA NA NA PIN NAME [3] MODE [4] TYPE [5] gpio_15 4 IO mm1_txse0 5 IO hw_dbg3 7 O etk_d2 0 O mcspi3_cs0 1 IO hsusb1_data2 3 IO gpio_16 4 IO mm1_txdat 5 IO hw_dbg4 7 O etk_d3 0 O mcspi3_clk 1 IO mmc3_dat3 2 IO hsusb1_data7 3 IO gpio_17 4 IO hw_dbg5 7 O etk_d4 0 O mcbsp5_dr 1 I mmc3_dat0 2 IO hsusb1_data4 3 IO gpio_18 4 IO hw_dbg6 7 O etk_d5 0 O mcbsp5_fsx 1 IO mmc3_dat1 2 IO hsusb1_data5 3 IO gpio_19 4 IO hw_dbg7 7 O etk_d6 0 O mcbsp5_dx 1 O mmc3_dat2 2 IO hsusb1_data6 3 IO gpio_20 4 IO hw_dbg8 7 O etk_d7 0 O mcspi3_cs1 1 O mmc3_dat7 2 IO hsusb1_data3 3 IO gpio_21 4 IO mm1_txen_n 5 IO hw_dbg9 7 O etk_d8 0 O mmc3_dat6 2 IO hsusb1_dir 3 I gpio_22 4 IO hw_dbg10 7 O etk_d9 0 O mmc3_dat5 2 IO hsusb1_nxt 3 I gpio_23 4 IO mm1_rxdm 5 IO hw_dbg11 7 O etk_d10 0 O uart1_rx 2 I hsusb2_clk 3 O BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET POWER [9] HYS [10] REL. MODE [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] H H 4 vdds Yes 4 PU/ PD LVCMOS H H 4 vdds Yes 4 PU/ PD LVCMOS L L 4 vdds Yes 4 PU/ PD LVCMOS L L 4 vdds Yes 4 PU/ PD LVCMOS L L 4 vdds Yes 4 PU/ PD LVCMOS L L 4 vdds Yes 4 PU/ PD LVCMOS L L 4 vdds Yes 4 PU/ PD LVCMOS L L 4 vdds Yes 4 PU/ PD LVCMOS L L 4 vdds Yes 4 PU/ PD LVCMOS TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 BALL BOTTOM [1] AF6 AE6 AF7 AF9 AE9 Y15 Y14 U3 N3 P3 W3 V3 U4 BALL TOP [2] NA NA NA NA NA NA NA NA NA NA NA NA NA PIN NAME [3] MODE [4] TYPE [5] gpio_24 4 IO hw_dbg12 7 O etk_d11 0 O hsusb2_stp 3 O gpio_25 4 IO mm2_rxdp 5 IO hw_dbg13 7 O etk_d12 0 O hsusb2_dir 3 I gpio_26 4 IO hw_dbg14 7 O etk_d13 0 O hsusb2_nxt 3 I gpio_27 4 IO mm2_rxdm 5 IO hw_dbg15 7 O etk_d14 0 O hsusb2_data0 3 IO gpio_28 4 IO mm2_rxrcv 5 IO hw_dbg16 7 O etk_d15 0 O hsusb2_data1 3 IO gpio_29 4 IO mm2_txse0 5 IO hw_dbg17 7 O jtag_emu0 0 IO gpio_11 4 IO safe_mode 7 - jtag_emu1 0 IO gpio_31 4 IO safe_mode 7 - mcbsp3_clkx 0 IO uart2_tx 1 O gpio_142 4 IO safe_mode 7 - mcbsp3_dr 0 I uart2_rts 1 O gpio_141 4 IO safe_mode 7 - mcbsp3_dx 0 IO uart2_cts 1 I gpio_140 4 IO safe_mode 7 - mcbsp3_fsx 0 IO uart2_rx 1 I gpio_143 4 IO safe_mode 7 - mcbsp4_clkx 0 IO gpio_152 4 IO mm3_txse0 6 IO safe_mode 7 - mcbsp4_dr 0 I gpio_153 4 IO BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET POWER [9] HYS [10] REL. MODE [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] L L 4 vdds Yes 4 PU/ PD LVCMOS L L 4 vdds Yes 4 PU/ PD LVCMOS L L 4 vdds Yes 4 PU/ PD LVCMOS L L 4 vdds Yes 4 PU/ PD LVCMOS L L 4 vdds Yes 4 PU/ PD LVCMOS H H 0 vdds Yes 4 PU/ PD LVCMOS H H 0 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback PRODUCT PREVIEW Table 2-2. Ball Characteristics (CBC Pkg.) (continued) 59 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-2. Ball Characteristics (CBC Pkg.) (continued) BALL BOTTOM [1] R3 T3 M3 PRODUCT PREVIEW L3 K3 W2 BALL TOP [2] NA NA NA NA NA NA PIN NAME [3] MODE [4] TYPE [5] mm3_rxrcv 6 IO safe_mode 7 - mcbsp4_dx 0 IO gpio_154 4 IO mm3_txdat 6 IO safe_mode 7 - mcbsp4_fsx 0 IO gpio_155 4 IO mm3_txen_n 6 IO safe_mode 7 - mmc2_dat5 0 IO mmc2_dir_dat1 1 O cam_global_reset 2 IO mmc3_dat1 3 IO gpio_137 4 IO mm3_rxdp 6 IO safe_mode 7 - mmc2_dat6 0 IO mmc2_dir_cmd 1 O cam_shutter 2 O mmc3_dat2 3 IO gpio_138 4 IO safe_mode 7 - mmc2_dat7 0 IO mmc2_clkin 1 I mmc3_dat3 3 IO gpio_139 4 IO mm3_rxdm 6 IO safe_mode 7 - uart1_cts 0 I gpio_150 4 IO safe_mode 7 - AC16 NA vss 0 GND AD18 NA vdds 0 PWR L19 NA vss 0 GND AC19 NA vss 0 GND AD19 NA vdds 0 PWR L20 NA vdds 0 PWR P23 NA vdds_x 0 PWR AE19 NA cap_vddu_array 0 PWR AC21, D15, NA G11, G18, H20, M7, M17, R20, T7, Y8, Y12 vdd_core 0 PWR D13, G9, NA G12, H7, K11, L9, M9, M10, N7, N8, P10, U7, U11, U13, V7, V11, W9, Y9, Y11 vdd_mpu_iva 0 PWR 60 BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET POWER [9] HYS [10] REL. MODE [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS - - - - - - - - - - - - - - - - TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 BALL BOTTOM [1] BALL TOP [2] PIN NAME [3] MODE [4] TYPE [5] BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET POWER [9] HYS [10] REL. MODE [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] A18, AC7, A3, A15, B5, vdds AC15, F2, F21, AC18, L20, W21 AC24, AD20, AE10, C11, D9, E24, G4, J15, J18, L7, L24, M4, T4, T24, W24, Y4, AB24 0 PWR - - - - - - - - U12 NA vdds_sram 0 PWR - - - - - - - - K13 NA vdda_dplls_dll 0 PWR - - - - - - - - U14 NA vdda_dpll_per 0 PWR - - - - - - - - W14 NA vdda_wkup_bg_bb 0 PWR - - - - - - - - N23 NA vdds_mmc1 0 PWR - - - - - - - - V25 NA vdda_dac 0 PWR - - - - - - - - V24 NA vssa_dac 0 GND - - - - - - - - A6, A8, A13, AB5, AB22, AC10, AD14, AD25, AE7, B2, B25, C12, D7, D10, D12, D14, D18, D20, E22, G1, G8, G10, G20, G23, H4, K1, K15, K25, L10, L17, L23, N4, N10, N17, R1, R4, R17, T23, U25, W1, W4, W23, Y7, Y10, Y16, Y26 A7, A13, vss B14, C1, F1, F20, H2, H20, L21, M2, P20, R2, W20 Y6, Y11, AA7, AA16 0 GND - - - - - - - - K14 NA cap_vddu_wkup_log 0 ic PWR - - - - - - - - A1, L1, T2, Y2, AE2, AF4, AF5, AF8, AF10, AF12, AF13, AF14, AF15, AF17, AF16, A20, AF21, AF18, AF24, AF22, A25, AE25, AF25, A26, B26, K26, U26, AE26, AF26 A1, J1, N2, Feed-Through T2, W2, Y2, Pins (17) AA6, Y7, Y9, AA10, AA11, AA12, AA13, Y14, AA14, B16, Y17, AA17, Y19, AA19, A20, Y20, AA20, A21, B21, H21, P21, Y21, AA21 - - - - - - - - - - PRODUCT PREVIEW Table 2-2. Ball Characteristics (CBC Pkg.) (continued) (17) These signals are feed-through balls. For more information, see Table 2-27. TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 61 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-2. Ball Characteristics (CBC Pkg.) (continued) BALL BOTTOM [1] BALL TOP [2] PIN NAME [3] PRODUCT PREVIEW MODE [4] TYPE [5] BALL RESET STATE [6] BALL RESET REL. STATE [7] RESET POWER [9] HYS [10] REL. MODE [8] BUFFER STRENG TH (mA) [11] PULLUP /DOWN TYPE [12] IO CELL [13] A2, AF1, A2, AA1, No Connect (18) B1,D5, K23, AA2,B1, B2, A5, A7, A9, B20, Y1 A10, A11, A12, A14, A15, A16, A17, A19, A21, A22, AA23, AB23, AC9, AC12, AC13, AC14, AC17, AC20, AC22, AC23, AD9, AD11, AD12, AD13, AE1, AE8, AE11, AE12, AE13, AF2, AF3, AF11, B7, B8, B9, B10, B11, B12, B13, B14, B15, B16, B17, B18, B19, B20, B21, B22, C7, C8, C9, C10, C13, C14, C15, C16, C17 C18, C19, C20, C21, C22, D8, D11, D16, D17, D19, D21, D22, E23, F4, G7, G13, G14, G15, G16, G17, G19, H8, H9, H10, H11, H12, H13, H14, H15, H16, H17, H18, H19, H23, J3, J4, J7, J8, J9, J10, J11, J12, J13, J14, J16, J17, J19, J20, K4, K7, K8, K9, K10, K12, K16, K17, K19, L8, M8, M23, N18, P2, P4, P24, R23, R24, R25, R26, T25, T26, U23, V4, W12, Y23 - - - - - - - - - - AF23 NA sys_xtalgnd 0 GND A4 NA gpmc_a11 0 O L L 7 vdds Yes 8 PU/PD LVCMOS safe_mode 7 IO D6 NA cap_vdd_bb_mpu_iv 0 a PWR N9 NA cap_vdd_sram_mpu 0 _iva PWR K20 NA cap_vdd_sram_core 0 PWR (18) Pins labeled as "No connect" must be left unconnected. Any connections to these pins may result in unpredictable behavior. 62 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 2-3. Ball Characteristics (CUS Pkg.) MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] STATE [6] REL. STATE MODE [8] [7] HYS [10] BUFFER PULLUP STRENG TH /DOWN (mA) [11] TYPE [12] IO CELL [13] D7 sdrc_d0 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS C5 sdrc_d1 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS C6 sdrc_d2 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS B5 sdrc_d3 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS D9 sdrc_d4 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS D10 sdrc_d5 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS C7 sdrc_d6 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS B7 sdrc_d7 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS B11 sdrc_d8 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS C12 sdrc_d9 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS B12 sdrc_d10 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS D13 sdrc_d11 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS C13 sdrc_d12 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS B14 sdrc_d13 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS A14 sdrc_d14 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS B15 sdrc_d15 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS C9 sdrc_d16 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS E12 sdrc_d17 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS B8 sdrc_d18 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS B9 sdrc_d19 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS C10 sdrc_d20 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS B10 sdrc_d21 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS D12 sdrc_d22 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS E13 sdrc_d23 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS E15 sdrc_d24 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS D15 sdrc_d25 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS C15 sdrc_d26 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS B16 sdrc_d27 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS C16 sdrc_d28 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS D16 sdrc_d29 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS B17 sdrc_d30 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS B18 sdrc_d31 0 IO L Z 0 vdds_mem Yes 4 PU/ PD LVCMOS C18 sdrc_ba0 0 O 0 0 0 vdds_mem NA 4 (1) PU/ PD LVCMOS D18 sdrc_ba1 0 O 0 0 0 vdds_mem NA 4 (1) PU/ PD LVCMOS A4 sdrc_a0 0 O 0 0 0 vdds_mem NA 4 (1) PU/ PD LVCMOS B4 sdrc_a1 0 O 0 0 0 vdds_mem NA 4 PU/ PD LVCMOS D6 sdrc_a2 0 O 0 0 0 vdds_mem NA 4 (1) PU/ PD LVCMOS B3 sdrc_a3 0 O 0 0 0 vdds_mem NA 4 (1) PU/ PD LVCMOS B2 sdrc_a4 0 O 0 0 0 vdds_mem NA 4 (1) PU/ PD LVCMOS C3 sdrc_a5 0 O 0 0 0 vdds_mem NA 4 (1) PU/ PD LVCMOS E3 sdrc_a6 0 O 0 0 0 vdds_mem NA 4 PU/ PD LVCMOS F6 sdrc_a7 0 O 0 0 0 vdds_mem NA 4 (1) PU/ PD LVCMOS E10 sdrc_a8 0 O 0 0 0 vdds_mem NA 4 (1) PU/ PD LVCMOS E9 sdrc_a9 0 O 0 0 0 vdds_mem NA 4 (1) PU/ PD LVCMOS E7 sdrc_a10 0 O 0 0 0 vdds_mem NA 4 (1) PU/ PD LVCMOS G6 sdrc_a11 0 O 0 0 0 vdds_mem NA 4 (1) PU/ PD LVCMOS G7 sdrc_a12 0 O 0 0 0 vdds_mem NA 4 (1) PU/ PD LVCMOS F7 sdrc_a13 0 O 0 0 0 vdds_mem NA 4 (1) PU/ PD LVCMOS F9 sdrc_a14 0 O 0 0 0 vdds_mem NA 4 (1) PU/ PD LVCMOS A19 sdrc_ncs0 0 O 1 1 0 vdds_mem NA 4 (1) PU/ PD LVCMOS B19 sdrc_ncs1 0 O 1 1 0 vdds_mem NA 4 (1) PU/ PD LVCMOS A10 sdrc_clk 0 IO L 0 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS (1) (1) (1) (1) PRODUCT PREVIEW BALL PIN NAME [3] BOTTOM [1] The drive strength of these IOs is set according to the programmable load range: 2 pF to 4 pF per default or 4 pF to 12 pF. For a full description of the drive strength programming, see the System Control Module chapter of the TRM. TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 63 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-3. Ball Characteristics (CUS Pkg.) (continued) BALL PIN NAME [3] BOTTOM [1] MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] STATE [6] REL. STATE MODE [8] [7] HYS [10] BUFFER PULLUP STRENG TH /DOWN (mA) [11] TYPE [12] IO CELL [13] A11 sdrc_nclk 0 O 1 1 0 vdds_mem NA 4 (1) PU/ PD LVCMOS B20 sdrc_cke0 0 O H 1 7 vdds_mem NA 4 (1) PU/ PD LVCMOS safe_mode_out1 (2) 7 sdrc_cke1 0 O H 1 7 vdds_mem NA 4 (1) PU/ PD LVCMOS safe_mode_out1 (2) 7 D19 sdrc_nras 0 O 1 1 0 vdds_mem NA 4 (1) PU/ PD LVCMOS C19 sdrc_ncas 0 O 1 1 0 vdds_mem NA 4 (1) PU/ PD LVCMOS A20 sdrc_nwe 0 O 1 1 0 vdds_mem NA 4 PU/ PD LVCMOS B6 sdrc_dm0 0 O 0 0 0 vdds_mem NA 4 (1) PU/ PD LVCMOS B13 sdrc_dm1 0 O 0 0 0 vdds_mem NA 4 (1) PU/ PD LVCMOS A7 sdrc_dm2 0 O 0 0 0 vdds_mem NA 4 (1) PU/ PD LVCMOS A16 sdrc_dm3 0 O 0 0 0 vdds_mem NA 4 (1) PU/ PD LVCMOS A5 sdrc_dqs0 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS A13 sdrc_dqs1 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS A8 sdrc_dqs2 0 IO L Z 0 vdds_mem Yes 4 (1) PU/ PD LVCMOS A17 sdrc_dqs3 0 IO L Z 0 vdds_mem Yes 4 (3) PU/ PD LVCMOS K4 gpmc_a1 0 O L L 7 vdds_mem Yes 8 PU/ PD LVCMOS gpio_34 4 IO safe_mode 7 gpmc_a2 0 O L L 7 vdds_mem Yes 8 PU/ PD LVCMOS gpio_35 4 IO safe_mode 7 gpmc_a3 0 O L L 7 vdds_mem Yes 8 PU/ PD LVCMOS gpio_36 4 IO safe_mode 7 gpmc_a4 0 O L L 7 vdds_mem Yes 8 PU/ PD LVCMOS gpio_37 4 IO safe_mode 7 gpmc_a5 0 O L L 7 vdds_mem Yes 8 PU/ PD LVCMOS gpio_38 4 IO safe_mode 7 gpmc_a6 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS gpio_39 4 IO safe_mode 7 gpmc_a7 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS gpio_40 4 IO safe_mode 7 gpmc_a8 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS gpio_41 4 IO safe_mode 7 gpmc_a9 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS sys_ndmareq2 1 I gpio_42 4 IO safe_mode 7 gpmc_a10 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS sys_ndmareq3 1 I gpio_43 4 IO safe_mode 7 L2 gpmc_d0 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS M1 gpmc_d1 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS M2 gpmc_d2 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS N2 gpmc_d3 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS C20 PRODUCT PREVIEW K3 K2 J4 J3 J2 J1 H1 H2 G2 (2) (3) 64 (1) In the safe_mode_out1, the buffer is configured to drive 1. The drive strength of these IOs is set according to the programmable load range: 2 pF to 4 pF per default or 4 pF to 12 pF. For a full description of the drive strength programming, see the System Control Module chapter of the TRM. TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 2-3. Ball Characteristics (CUS Pkg.) (continued) MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] STATE [6] REL. STATE MODE [8] [7] HYS [10] BUFFER PULLUP STRENG TH /DOWN (mA) [11] TYPE [12] IO CELL [13] M3 gpmc_d4 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS P1 gpmc_d5 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS P2 gpmc_d6 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS R1 gpmc_d7 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS R2 gpmc_d8 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS gpio_44 4 IO safe_mode 7 gpmc_d9 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS gpio_45 4 IO safe_mode 7 gpmc_d10 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS gpio_46 4 IO safe_mode 7 gpmc_d11 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS gpio_47 4 IO safe_mode 7 gpmc_d12 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS gpio_48 4 IO safe_mode 7 gpmc_d13 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS gpio_49 4 IO safe_mode 7 gpmc_d14 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS gpio_50 4 IO safe_mode 7 gpmc_d15 0 IO H H 0 vdds_mem Yes 8 PU/ PD LVCMOS gpio_51 4 IO T2 U1 R3 T3 U2 V1 V2 safe_mode 7 E2 gpmc_ncs0 0 O 1 1 0 vdds_mem NA 8 NA LVCMOS D2 gpmc_ncs3 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS sys_ndmareq0 1 I gpio_54 4 IO safe_mode 7 gpmc_ncs4 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS sys_ndmareq1 1 I mcbsp4_ clkx 2 IO gpt_9_pwm_evt 3 IO gpio_55 4 IO safe_mode 7 gpmc_ncs5 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS sys_ndmareq2 1 I mcbsp4_dr 2 I gpt_10_pwm_evt 3 IO gpio_56 4 IO safe_mode 7 gpmc_ncs6 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS sys_ndmareq3 1 I mcbsp4_dx 2 IO gpt_11_pwm_evt 3 IO gpio_57 4 IO safe_mode 7 gpmc_ncs7 0 O H H 7 vdds_mem Yes 8 PU/ PD LVCMOS gpmc_io_dir 1 O mcbsp4_fsx 2 IO gpt_8_pwm_evt 3 IO F4 G5 F3 G4 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback PRODUCT PREVIEW BALL PIN NAME [3] BOTTOM [1] 65 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-3. Ball Characteristics (CUS Pkg.) (continued) BALL PIN NAME [3] BOTTOM [1] W2 MODE [4] TYPE [5] gpio_58 4 IO safe_mode 7 gpmc_clk 0 O gpio_59 4 IO BALL RESET BALL RESET RESET REL. POWER [9] STATE [6] REL. STATE MODE [8] [7] HYS [10] BUFFER PULLUP STRENG TH /DOWN (mA) [11] TYPE [12] IO CELL [13] L 0 0 vdds_mem Yes 8 PU/ PD LVCMOS safe_mode 7 F1 gpmc_nadv_ale 0 O 0 0 0 vdds_mem NA 8 PU/ PD LVCMOS F2 gpmc_noe 0 O 1 1 0 vdds_mem NA 8 PU/ PD LVCMOS G3 gpmc_nwe 0 O 1 1 0 vdds_mem NA 8 PU/ PD LVCMOS K5 gpmc_nbe0_cle 0 O L 0 0 vdds_mem Yes 8 PU/ PD LVCMOS gpio_60 4 IO safe_mode 7 gpmc_nbe1 0 O L L 7 vdds_mem Yes 8 PU/ PD LVCMOS gpio_61 4 IO safe_mode 7 gpmc_nwp 0 O L 0 0 vdds_mem Yes 8 PU/ PD LVCMOS gpio_62 4 IO L1 E1 PRODUCT PREVIEW safe_mode 7 C1 gpmc_wait0 0 I H H 0 vdds_mem Yes NA PU/ PD LVCMOS C2 gpmc_wait3 0 I H H 7 vdds_mem Yes 8 PU/ PD LVCMOS sys_ndmareq1 1 I uart4_rx 2 I gpio_65 4 IO safe_mode 7 dss_pclk 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS gpio_66 4 IO hw_dbg12 5 O safe_mode 7 dss_hsync 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS gpio_67 4 IO hw_dbg13 5 O safe_mode 7 dss_vsync 0 O H H 7 vdds Yes 8 PU/ PD LVCMOS gpio_68 4 IO safe_mode 7 dss_acbias 0 O L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_69 4 IO safe_mode 7 dss_data0 0 IO L L 7 vdds Yes 8 PU/ PD LVCMOS uart1_cts 2 I NA gpio_70 4 IO 8 safe_mode 7 dss_data1 0 IO uart1_rts 2 O gpio_71 4 IO safe_mode 7 dss_data2 0 IO gpio_72 4 IO safe_mode 7 dss_data3 0 IO gpio_73 4 IO safe_mode 7 dss_data4 0 IO uart3_rx_ irrx 2 I gpio_74 4 IO safe_mode 7 G22 E22 F22 J21 AC19 AB19 AD20 AC20 AD21 66 L L 7 vdds Yes 8 PU/ PD LVCMOS L L 7 vdds Yes 8 PU/ PD LVCMOS L L 7 vdds Yes 8 PU/ PD LVCMOS L L 7 vdds Yes 8 PU/ PD LVCMOS TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 2-3. Ball Characteristics (CUS Pkg.) (continued) MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] STATE [6] REL. STATE MODE [8] [7] HYS [10] BUFFER PULLUP STRENG TH /DOWN (mA) [11] TYPE [12] IO CELL [13] AC21 dss_data5 0 IO L Yes 8 PU/ PD LVCMOS uart3_tx_ irtx 2 O NA gpio_75 4 IO 8 safe_mode 7 dss_data6 0 IO uart1_tx 2 O gpio_76 4 IO hw_dbg14 5 O safe_mode 7 dss_data7 0 IO uart1_rx 2 I gpio_77 4 IO hw_dbg15 5 O safe_mode 7 dss_data8 0 IO uart3_rx_irrx 2 I gpio_78 4 IO hw_dbg16 5 O safe_mode 7 dss_data9 0 IO uart3_tx_irtx 2 O gpio_79 4 IO hw_dbg17 5 O safe_mode 7 dss_data10 0 IO gpio_80 4 IO safe_mode 7 dss_data11 0 IO gpio_81 4 IO safe_mode 7 dss_data12 0 IO gpio_82 4 IO safe_mode 7 dss_data13 0 IO gpio_83 4 IO safe_mode 7 dss_data14 0 IO gpio_84 4 IO safe_mode 7 dss_data15 0 IO gpio_85 4 IO safe_mode 7 dss_data16 0 IO gpio_86 4 IO safe_mode 7 dss_data17 0 IO gpio_87 4 IO safe_mode 7 dss_data18 0 IO mcspi3_clk 2 IO dss_data0 3 IO gpio_88 4 IO safe_mode 7 dss_data19 0 IO mcspi3_simo 2 IO D24 E23 E24 F23 AC22 AC23 AB22 Y22 W22 V22 J22 G23 G24 H23 L 7 vdds L L 7 vdds Yes 8 PU/ PD LVCMOS L L 7 vdds Yes 8 PU/ PD LVCMOS L L 7 vdds Yes 8 PU/ PD LVCMOS L L 7 vdds Yes 8 PU/ PD LVCMOS L L 7 vdds Yes 8 PU/ PD LVCMOS L L 7 vdds Yes 8 PU/ PD LVCMOS L L 7 vdds Yes 8 PU/ PD LVCMOS L L 7 vdds Yes 8 PU/ PD LVCMOS L L 7 vdds Yes 8 PU/ PD LVCMOS L L 7 vdds Yes 8 PU/ PD LVCMOS L L 7 vdds Yes 8 PU/ PD LVCMOS L L 7 vdds Yes 8 PU/ PD LVCMOS L L 7 vdds Yes 8 PU/ PD LVCMOS L L 7 vdds Yes 8 PU/ PD LVCMOS TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback PRODUCT PREVIEW BALL PIN NAME [3] BOTTOM [1] 67 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-3. Ball Characteristics (CUS Pkg.) (continued) BALL PIN NAME [3] BOTTOM [1] MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] STATE [6] REL. STATE MODE [8] [7] HYS [10] BUFFER PULLUP STRENG TH /DOWN (mA) [11] TYPE [12] IO CELL [13] dss_data1 3 IO gpio_89 4 IO safe_mode 7 dss_data20 0 O mcspi3_somi 2 IO H H 7 vdds Yes 8 PU/ PD LVCMOS dss_data2 3 IO gpio_90 4 IO safe_mode 7 dss_data21 0 O mcspi3_cs0 2 IO L L 7 vdds Yes 8 PU/ PD LVCMOS dss_data3 3 IO gpio_91 4 IO safe_mode 7 dss_data22 0 O mcspi3_cs1 2 O L L 7 vdds Yes 8 PU/ PD LVCMOS dss_data4 3 IO gpio_92 4 IO safe_mode 7 dss_data23 0 O dss_data5 3 IO L L 7 vdds Yes 8 PU/ PD LVCMOS gpio_93 4 IO safe_mode 7 AA23 cvideo2_out 0 AB24 cvideo1_out 0 AO 0 0 0 vdda_dac NA NA (4) NA 10-bit DAC AO 0 0 0 vdda_dac NA NA (4) NA AB23 cvideo1_vfb 10-bit DAC 0 AO 0 NA 0 vdda_dac NA NA (5) NA Y23 10-bit DAC cvideo2_vfb 0 AO 0 NA 0 vdda_dac NA NA (5) NA 10-bit DAC Y24 cvideo1_rset 0 AIO 0 NA 0 vdda_dac No NA NA 10-bit DAC A22 cam_hs 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_94 4 IO hw_dbg0 5 O safe_mode 7 cam_vs 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_95 4 IO hw_dbg1 5 O safe_mode 7 cam_ xclka 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_96 4 IO safe_mode 7 cam_pclk 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_97 4 IO hw_dbg2 5 O safe_mode 7 cam_fld 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS cam_global_reset 2 IO hw_dbg3 5 O gpio_98 4 IO safe_mode 7 cam_d0 0 I L L 7 vdds Yes NA PU/ PD LVCMOS gpio_99 4 I safe_mode 7 cam_d1 0 I L L 7 vdds Yes NA PU/ PD LVCMOS gpio_100 4 I D23 K22 V21 PRODUCT PREVIEW W21 E18 B22 J19 H24 AB18 AC18 (4) (5) 68 The drive strength is fixed regardless of the load. The driver is designed to drive 75Ω for video applications. In buffer mode, the drive strength is fixed regardless of the load. The driver is designed to drive 75 Ω for video applications. In bypass mode, the drive strength is 0.47 mA. TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 2-3. Ball Characteristics (CUS Pkg.) (continued) G19 F19 G20 B21 L24 K24 J23 K23 F21 G21 C22 F18 J20 V20 T21 MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] STATE [6] REL. STATE MODE [8] [7] HYS [10] BUFFER PULLUP STRENG TH /DOWN (mA) [11] TYPE [12] IO CELL [13] L L 7 vdds Yes 8 PU/ PD LVCMOS L L 7 vdds Yes 8 PU/ PD LVCMOS L L 7 vdds Yes 8 PU/ PD LVCMOS L L 7 vdds Yes 8 PU/ PD LVCMOS L L 7 vdds Yes NA PU/ PD LVCMOS L L 7 vdds Yes NA PU/ PD LVCMOS L L 7 vdds Yes NA PU/ PD LVCMOS L L 7 vdds Yes NA PU/ PD LVCMOS L L 7 vdds Yes 8 PU/ PD LVCMOS L L 7 vdds Yes 8 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS safe_mode 7 cam_d2 0 I gpio_101 4 IO hw_dbg4 5 O safe_mode 7 cam_d3 0 I gpio_102 4 IO hw_dbg5 5 O safe_mode 7 cam_d4 0 I gpio_103 4 IO hw_dbg6 5 O safe_mode 7 cam_d5 0 I gpio_104 4 IO hw_dbg7 5 O safe_mode 7 cam_d6 0 I gpio_105 4 I safe_mode 7 cam_d7 0 I gpio_106 4 I safe_mode 7 cam_d8 0 I gpio_107 4 I safe_mode 7 cam_d9 0 I gpio_108 4 I safe_mode 7 cam_d10 0 I gpio_109 4 IO hw_dbg8 5 O safe_mode 7 cam_d11 0 I gpio_110 4 IO hw_dbg9 5 O safe_mode 7 cam_ xclkb 0 O gpio_111 4 IO safe_mode 7 cam_wen 0 I cam_ shutter 2 O gpio_167 4 IO hw_dbg10 5 O safe_mode 7 cam_ strobe 0 O gpio_126 4 IO hw_dbg11 5 O safe_mode 7 mcbsp2_fsx 0 IO gpio_116 4 IO safe_mode 7 mcbsp2_ clkx 0 IO gpio_117 4 IO safe_mode 7 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback PRODUCT PREVIEW BALL PIN NAME [3] BOTTOM [1] 69 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-3. Ball Characteristics (CUS Pkg.) (continued) BALL PIN NAME [3] BOTTOM [1] MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] STATE [6] REL. STATE MODE [8] [7] HYS [10] BUFFER PULLUP STRENG TH /DOWN (mA) [11] TYPE [12] IO CELL [13] V19 mcbsp2_dr 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_118 4 IO safe_mode 7 mcbsp2_dx 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_119 4 IO safe_mode 7 mmc1_clk 0 IO L L 7 vdds_mmc1 Yes 1 PU/ PD 4 IO L L 7 vdds_mmc1 Yes 1 PU/ PD (6) LVCMOS L L 7 vdds_mmc1 Yes 1 PU/ PD (6) LVCMOS L L 7 vdds_mmc1 Yes 1 PU/ PD (8) LVCMOS L L 7 vdds_mmc1 Yes 1 PU/ PD (8) LVCMOS L L 7 vdds_mmc1 Yes 1 PU/ PD (8) LVCMOS IO L L 7 vdds_x Yes 1 PU/ PD (8) LVCMOS IO L L 7 vdds_x Yes 1 PU/ PD L L 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS R20 M23 gpio_120 L23 safe_mode 7 mmc1_cmd 0 O (7) 4 IO gpio_121 M22 safe_mode 7 mmc1_dat0 0 IO (7) 4 IO gpio_122 M21 safe_mode 7 mmc1_dat1 0 IO (9) 4 IO safe_mode 7 mmc1_dat2 0 IO gpio_124 (9) 4 IO safe_mode 7 mmc1_dat3 gpio_123 PRODUCT PREVIEW M20 N23 0 IO (9) 4 IO safe_mode 7 gpio_126 (9) 4 safe_mode 7 gpio_129 (9) 4 safe_mode 7 mmc2_clk 0 IO mcspi3_clk 1 IO gpio_130 4 IO safe_mode 7 mmc2_ cmd 0 O mcspi3_ simo 1 IO gpio_131 4 IO safe_mode 7 mmc2_ dat0 0 IO mcspi3_ somi 1 IO gpio_132 4 IO safe_mode 7 mmc2_ dat1 0 IO gpio_133 4 IO safe_mode 7 mmc2_ dat2 0 IO mcspi3_cs1 1 O gpio_134 4 IO safe_mode 7 mmc2_ dat3 0 gpio_125 N22 P24 Y1 AB5 AB3 Y3 W3 V3 (6) (7) (8) (9) 70 (7) IO (6) (8) LVCMOS LVCMOS PU = [50 to 100 kΩ] per default or [10 to 50 kΩ] according to the selected mode. For a full description of the pull-up drive strength programming, see the PRG_SDMMC_PUSTRENGTH configuration register bit field in the System Control Module chapter of the TRM. PD: 30 to 150 kΩ. The usage of this GPIO is strongly restricted. For more information, see the General-Purpose Interface chapter of the TRM. PU = [50 to 100 kΩ] per default or [10 to 50 kΩ] according to the selected mode. For a full description of the pull-up drive strength programming, see the PRG_SDMMC_PUSTRENGTH configuration register bit field in the System Control Module chapter of the TRM. PD: 30 to 150 kΩ. The usage of this GPIO is strongly restricted. For more information, see the General-Purpose Interface chapter of the TRM. TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 2-3. Ball Characteristics (CUS Pkg.) (continued) AB2 AA2 Y2 AA1 V6 V5 W4 V4 W7 W6 AC2 V7 MODE [4] TYPE [5] mcspi3_cs0 1 IO gpio_135 4 IO safe_mode 7 mmc2_ dat4 0 IO mmc2_dir_dat0 1 O mmc3_dat0 3 IO gpio_136 4 IO safe_mode 7 mmc2_ dat5 0 IO mmc2_dir_dat1 1 O cam_global_reset 2 IO mmc3_dat1 3 IO gpio_137 4 IO mm3_rxdp 6 IO safe_mode 7 mmc2_dat6 0 IO mmc2_dir_cmd 1 O cam_shutter 2 O mmc3_dat2 3 IO gpio_138 4 IO safe_mode 7 mmc2_dat7 0 IO mmc2_clkin 1 I mmc3_dat3 3 IO gpio_139 4 IO mm3_rxdm 6 IO safe_mode 7 mcbsp3_dx 0 IO uart2_cts 1 I gpio_140 4 IO safe_mode 7 mcbsp3_dr 0 I uart2_rts 1 O gpio_141 4 IO safe_mode 7 mcbsp3_ clkx 0 IO uart2_tx 1 O gpio_142 4 IO safe_mode 7 mcbsp3_fsx 0 IO uart2_rx 1 I gpio_143 4 IO safe_mode 7 uart1_tx 0 O gpio_148 4 IO safe_mode 7 uart1_rts 0 O gpio_149 4 IO safe_mode 7 uart1_cts 0 I gpio_150 4 IO safe_mode 7 uart1_rx 0 I mcbsp1_ clkr 2 IO mcspi4_clk 3 IO BALL RESET BALL RESET RESET REL. POWER [9] STATE [6] REL. STATE MODE [8] [7] HYS [10] BUFFER PULLUP STRENG TH /DOWN (mA) [11] TYPE [12] IO CELL [13] L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback PRODUCT PREVIEW BALL PIN NAME [3] BOTTOM [1] 71 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-3. Ball Characteristics (CUS Pkg.) (continued) BALL PIN NAME [3] BOTTOM [1] W19 AB20 W18 Y18 PRODUCT PREVIEW AA18 AA19 V18 A23 B23 B24 C23 R21 R23 P23 72 MODE [4] TYPE [5] gpio_151 4 IO safe_mode 7 mcbsp1_ clkr 0 IO mcspi4_clk 1 IO gpio_156 4 IO safe_mode 7 mcbsp1_fsr 0 IO cam_global_reset 2 IO gpio_157 4 IO safe_mode 7 mcbsp1_dx 0 IO mcspi4_ simo 1 IO mcbsp3_dx 2 IO gpio_158 4 IO safe_mode 7 mcbsp1_dr 0 I mcspi4_ somi 1 IO mcbsp3_dr 2 I gpio_159 4 IO safe_mode 7 mcbsp_clks 0 I cam_ shutter 2 O gpio_160 4 IO uart1_cts 5 I safe_mode 7 mcbsp1_fsx 0 IO mcspi4_cs0 1 IO mcbsp3_fsx 2 IO gpio_161 4 IO safe_mode 7 mcbsp1_ clkx 0 IO mcbsp3_ clkx 2 IO gpio_162 4 IO safe_mode 7 uart3_cts_ rctx 0 IO gpio_163 4 IO safe_mode 7 uart3_rts_ sd 0 O gpio_164 4 IO safe_mode 7 uart3_rx_ irrx 0 I gpio_165 4 IO safe_mode 7 uart3_tx_ irtx 0 O gpio_166 4 IO safe_mode 7 hsusb0_clk 0 I gpio_120 4 IO safe_mode 7 hsusb0_stp 0 O gpio_121 4 IO safe_mode 7 hsusb0_dir 0 I gpio_122 4 IO safe_mode 7 BALL RESET BALL RESET RESET REL. POWER [9] STATE [6] REL. STATE MODE [8] [7] HYS [10] BUFFER PULLUP STRENG TH /DOWN (mA) [11] TYPE [12] IO CELL [13] L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 8 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 2-3. Ball Characteristics (CUS Pkg.) (continued) MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] STATE [6] REL. STATE MODE [8] [7] HYS [10] BUFFER PULLUP STRENG TH /DOWN (mA) [11] TYPE [12] IO CELL [13] R22 hsusb0_nxt 0 I L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_124 4 IO safe_mode 7 hsusb0_ data0 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS uart3_tx_ irtx 2 O gpio_125 4 IO uart2_tx 5 O safe_mode 7 hsusb0_ data1 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS uart3_rx_ irrx 2 I gpio_130 4 IO uart2_rx 5 I safe_mode 7 hsusb0_ data2 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS uart3_rts_ sd 2 O gpio_131 4 IO uart2_rts 5 O safe_mode 7 hsusb0_ data3 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS uart3_cts_ rctx 2 IO gpio_169 4 IO uart2_cts 5 I safe_mode 7 hsusb0_ data4 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_188 4 IO safe_mode 7 hsusb0_ data5 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_189 4 IO safe_mode 7 hsusb0_ data6 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_190 4 IO safe_mode 7 hsusb0_ data7 0 IO L L 7 vdds Yes 4 PU/ PD LVCMOS gpio_191 4 IO T24 T23 U24 U23 W24 V23 W23 T22 PRODUCT PREVIEW BALL PIN NAME [3] BOTTOM [1] safe_mode 7 K20 i2c1_scl 0 OD H H 0 vdds NA 3 PU/ PD (10)(11) Open Drain K21 i2c1_sda 0 IOD H H 0 vdds Yes 3 PU/ PD (10)(11) Open Drain AC15 i2c2_scl 0 OD H H 7 vdds Yes 3 PU/ PD (10)(12) Open Drain gpio_168 4 IO safe_mode 7 i2c2_sda 0 IOD gpio_183 4 IO safe_mode 7 i2c3_scl 0 OD gpio_184 4 IO safe_mode 7 AC14 AC13 4 H H 7 vdds Yes 3 PU/ PD (10)(12) Open Drain 4 H H 7 vdds Yes 3 PU/ PD (10)(12) Open Drain 4 (10) The pullup and pulldown can be either the standard LVCMOS 100-mA drive strength or the I2C pullup and pulldown described below: Nominal resistance = 1.66 kΩ in high-speed mode with a load range of 5 pF to 12 pF, 4.5 kΩ in standard / fast mode with a load range of 5 pF to 15 pF. (11) The default buffer configuration is High-Speed I2C point-to-point mode using internal pullup. For a full description of the pull drive strength programming, see prg_i2c1_pullupresx, prg_i2c1_lb1lb0, and prg_sr_pullupresx, prg_sr_lb bits of the CONTROL_PROG_IO1, CONTROL_PROG_IO_WKUP1 control modules in the System Control Module / SCM Programming Model / Feature Settings section and the System Control Module chapter of the AM/DM37x TRM to modify the IO settings if required by the targeted interface application. (12) The default buffer configuration is standard LVCMOS mode (non-I2C). For a full description of the pull drive strength programming, see PADCONFS bits of CONTROL_PADCONF_X control modules (standard LVCMOS mode), or prg_i2c2_pullupresx, prg_i2c2_lb1lb0, and prg_i2c3_pullupresx, prg_i2c3_lb1lb0 bits of the CONTROL_PROG_IO2, CONTROL_PROG_IO3 control modules (I2C mode) in the System Control Module chapter of the AM/DM37x TRM to modify the IO settings if required by the targeted interface application. TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 73 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-3. Ball Characteristics (CUS Pkg.) (continued) BALL PIN NAME [3] BOTTOM [1] MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] STATE [6] REL. STATE MODE [8] [7] HYS [10] BUFFER PULLUP STRENG TH /DOWN (mA) [11] TYPE [12] AC12 i2c3_sda 0 IOD H Yes 3 gpio_185 4 IO safe_mode 7 i2c4_scl 0 OD sys_nvmode1 1 O safe_mode 7 i2c4_sda 0 IOD sys_nvmode2 1 O safe_mode 7 hdq_sio 0 IOD sys_altclk 1 I i2c2_sccbe 2 OD i2c3_sccbe 3 OD gpio_170 4 IO safe_mode 7 mcspi1_clk 0 IO mmc2_dat4 1 IO gpio_171 4 IO safe_mode 7 mcspi1_ simo 0 IO mmc2_dat5 1 IO gpio_172 4 IO safe_mode 7 mcspi1_ somi 0 IO mmc2_dat6 1 IO gpio_173 4 IO safe_mode 7 mcspi1_cs0 0 IO mmc2_dat7 1 IO gpio_174 4 IO safe_mode 7 mcspi1_cs3 0 O hsusb2_ data2 3 IO gpio_177 4 IO mm2_txdat 5 IO safe_mode 7 mcspi2_clk 0 IO hsusb2_ data7 3 IO gpio_178 4 IO safe_mode 7 mcspi2_ simo 0 IO gpt_9_pwm_evt 1 IO hsusb2_ data4 3 IO gpio_179 4 IO safe_mode 7 mcspi2_ somi 0 IO gpt_10_pwm_evt 1 IO hsusb2_ data5 3 IO gpio_180 4 IO safe_mode 7 mcspi2_cs0 0 IO gpt_11_pwm_evt 1 IO hsusb2_ data6 3 IO gpio_181 4 IO safe_mode 7 Y16 Y15 A24 T5 PRODUCT PREVIEW R4 T4 T6 R5 N5 N4 N3 M5 74 H 7 vdds IO CELL [13] PU/ PD (10)(12) Open Drain 4 H H 0 vdds Yes 3 PU/ PD (10)(11) Open Drain 4 H H 0 vdds Yes 3 PU/ PD (10)(11) Open Drain 4 H H 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS L L 7 vdds Yes 4 PU/ PD LVCMOS H H 7 vdds Yes 4 PU/ PD LVCMOS TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 2-3. Ball Characteristics (CUS Pkg.) (continued) MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] STATE [6] REL. STATE MODE [8] [7] HYS [10] BUFFER PULLUP STRENG TH /DOWN (mA) [11] TYPE [12] IO CELL [13] M4 mcspi2_cs1 0 O L L 7 vdds Yes 4 PU/ PD LVCMOS gpt_8_pwm_evt 1 IO hsusb2_ data3 3 IO gpio_182 4 IO mm2_txen_n 5 IO safe_mode 7 AA16 sys_32k 0 I Z Z 0 vdds Yes NA PU/ PD LVCMOS AD15 sys_xtalin 0 AI Z Z 0 vdds Yes NA No Analog AD14 sys_xtalout 0 AO Z 0 0 vdds NA NA NA Analog Y13 sys_clkreq 0 IO 0 see 0 vdds Yes 4 PU/ PD LVCMOS gpio_1 4 IO safe_mode 7 sys_nirq 0 I H H 7 vdds Yes 4 PU/ PD LVCMOS gpio_0 4 IO W16 (13) safe_mode 7 AA10 sys_nrespwron 0 I Z Z 0 vdds Yes NA No LVCMOS Y10 sys_nreswarm 0 IOD 0 1 0 vdds Yes 4 PU/ PD LVCMOS gpio_30 4 IO safe_mode 7 sys_boot0 0 I Z Z 0 vdds Yes 8 PU/ PD LVCMOS dss_data18 3 IO gpio_2 4 IO safe_mode 7 sys_boot1 0 I Z Z 0 vdds Yes 8 PU/ PD LVCMOS dss_data19 3 IO gpio_3 4 IO safe_mode 7 sys_boot2 0 I Z Z 0 vdds Yes 8 PU/ PD LVCMOS gpio_4 4 IO safe_mode 7 sys_boot3 0 I Z Z 0 vdds Yes 8 PU/ PD LVCMOS dss_data20 3 O gpio_5 4 IO safe_mode 7 sys_boot4 0 I Z Z 0 vdds Yes 8 PU/ PD LVCMOS mmc2_dir_dat2 1 O dss_data21 3 O gpio_6 4 IO safe_mode 7 sys_boot5 0 I Z Z 0 vdds Yes 8 PU/ PD LVCMOS mmc2_dir_dat3 1 O dss_data22 3 O gpio_7 4 IO safe_mode 7 sys_boot6 0 I Z Z 0 vdds Yes 8 PU/ PD LVCMOS dss_data23 3 O gpio_8 4 IO safe_mode 7 sys_off_ mode 0 O 0 L 7 vdds Yes 4 PU/ PD LVCMOS gpio_9 4 IO safe_mode 7 AB12 AC16 AD17 AD18 AC17 AB16 AA15 AD23 PRODUCT PREVIEW BALL PIN NAME [3] BOTTOM [1] (13) Depending on the sys_clkreq direction the corresponding reset released state value can be: • Z if sys_clkreq is used as input • 1 if sys_clkreq is used as output For a full description of the sys_clkreq control, see Power, Reset, and Clock Management chapter of the TRM. TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 75 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-3. Ball Characteristics (CUS Pkg.) (continued) BALL PIN NAME [3] BOTTOM [1] MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] STATE [6] REL. STATE MODE [8] [7] Y7 sys_clkout1 0 O L L 7 (14) gpio_10 4 IO safe_mode 7 sys_clkout2 0 O L L gpio_186 4 IO AA6 HYS [10] BUFFER PULLUP STRENG TH /DOWN (mA) [11] TYPE [12] IO CELL [13] vdds Yes 4 PU/ PD LVCMOS 7 vdds Yes 4 PU/ PD LVCMOS safe_mode 7 AB7 jtag_ntrst 0 I L L 0 vdds Yes NA PU/ PD LVCMOS AB6 jtag_tck 0 I L L 0 vdds Yes NA PU/ PD LVCMOS AA7 jtag_rtck 0 O L 0 0 vdds NA 4 PU/ PD LVCMOS AA9 jtag_tms_tmsc 0 IO H H 0 vdds Yes 4 PU/ PD LVCMOS AB10 jtag_tdi 0 I H H 0 vdds Yes NA PU/ PD LVCMOS AB9 jtag_tdo 0 O L Z 0 vdds NA 4 PU/ PD LVCMOS AC24 jtag_emu0 0 IO H H 0 vdds Yes 4 PU/ PD LVCMOS gpio_11 4 IO safe_mode 7 jtag_emu1 0 IO H H 0 vdds Yes 4 PU/ PD LVCMOS gpio_31 4 IO safe_mode 7 etk_clk 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS mcbsp5_ clkx 1 IO mmc3_clk 2 IO hsusb1_stp 3 O gpio_12 4 IO mm1_rxdp 5 IO hw_dbg0 7 O etk_ctl 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS mmc3_cmd 2 O hsusb1_clk 3 O gpio_13 4 IO hw_dbg1 7 O etk_d0 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS mcspi3_ simo 1 IO mmc3_dat4 2 IO hsusb1_ data0 3 IO gpio_14 4 IO mm1_rxrcv 5 IO hw_dbg2 7 O etk_d1 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS mcspi3_ somi 1 IO hsusb1_ data1 3 IO gpio_15 4 IO mm1_txse0 5 IO hw_dbg3 7 O etk_d2 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS mcspi3_cs0 1 IO hsusb1_ data2 3 IO gpio_16 4 IO mm1_txdat 5 IO hw_dbg4 7 O etk_d3 0 O H H 4 vdds Yes 4 PU/ PD LVCMOS mcspi3_clk 1 IO mmc3_dat3 2 IO hsusb1_ data7 3 IO gpio_17 4 IO AD24 PRODUCT PREVIEW AC1 AD3 AD6 AC6 AC7 AD8 (14) Mux0 if sys_boot6 is pulled down (clock master). 76 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 2-3. Ball Characteristics (CUS Pkg.) (continued) AC5 AD2 AC8 AD9 AC4 AD5 AC3 AC9 AC10 AD11 MODE [4] TYPE [5] hw_dbg5 7 O etk_d4 0 O mcbsp5_dr 1 I mmc3_dat0 2 IO hsusb1_ data4 3 IO gpio_18 4 IO hw_dbg6 7 O etk_d5 0 O mcbsp5_fsx 1 IO mmc3_dat1 2 IO hsusb1_ data5 3 IO gpio_19 4 IO hw_dbg7 7 O etk_d6 0 O mcbsp5_dx 1 O mmc3_dat2 2 IO hsusb1_ data6 3 IO gpio_20 4 IO hw_dbg8 7 O etk_d7 0 O mcspi3_cs1 1 O mmc3_dat7 2 IO hsusb1_ data3 3 IO gpio_21 4 IO mm1_txen_n 5 IO hw_dbg9 7 O etk_d8 0 O mmc3_dat6 2 IO hsusb1_dir 3 I gpio_22 4 IO hw_dbg10 7 O etk_d9 0 O mmc3_dat5 2 IO hsusb1_nxt 3 I gpio_23 4 IO mm1_rxdm 5 IO hw_dbg11 7 O etk_d10 0 O uart1_rx 2 I hsusb2_clk 3 O gpio_24 4 IO hw_dbg12 7 O etk_d11 0 O hsusb2_stp 3 O gpio_25 4 IO mm2_rxdp 5 IO hw_dbg13 7 O etk_d12 0 O hsusb2_dir 3 I gpio_26 4 IO hw_dbg14 7 O etk_d13 0 O hsusb2_nxt 3 I gpio_27 4 IO mm2_rxdm 5 IO BALL RESET BALL RESET RESET REL. POWER [9] STATE [6] REL. STATE MODE [8] [7] HYS [10] BUFFER PULLUP STRENG TH /DOWN (mA) [11] TYPE [12] IO CELL [13] L L 4 vdds Yes 4 PU/ PD LVCMOS L L 4 vdds Yes 4 PU/ PD LVCMOS L L 4 vdds Yes 4 PU/ PD LVCMOS L L 4 vdds Yes 4 PU/ PD LVCMOS L L 4 vdds Yes 4 PU/ PD LVCMOS L L 4 vdds Yes 4 PU/ PD LVCMOS L L 4 vdds Yes 4 PU/ PD LVCMOS L L 4 vdds Yes 4 PU/ PD LVCMOS L L 4 vdds Yes 4 PU/ PD LVCMOS L L 4 vdds Yes 4 PU/ PD LVCMOS TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback PRODUCT PREVIEW BALL PIN NAME [3] BOTTOM [1] 77 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-3. Ball Characteristics (CUS Pkg.) (continued) BALL PIN NAME [3] BOTTOM [1] MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] STATE [6] REL. STATE MODE [8] [7] HYS [10] BUFFER PULLUP STRENG TH /DOWN (mA) [11] TYPE [12] IO CELL [13] hw_dbg15 7 O etk_d14 0 O hsusb2_ data0 3 IO L L 4 vdds Yes 4 PU/ PD LVCMOS gpio_28 4 IO mm2_rxrcv 5 IO hw_dbg16 7 O etk_d15 0 O hsusb2_ data1 3 IO L L 4 vdds Yes 4 PU/ PD LVCMOS gpio_29 4 IO mm2_txse0 5 IO hw_dbg17 7 O E16, F15, vdds_mem F16, G15, G16, H15, J6, J7, J8, K6, K7, K8 0 PWR - - - - - - - - F12, F13, G12, G13, H12, H13, J17, J18, K17, K18, K19, L14, L15, M14, M15, R17, R18, R19, T17, T18, T19, T20 0 PWR - - - - - - - - F10, G9, vdd_mpu_iva G10, H9, H10, J9, J10, L11, L12, M6, M7, M8, M12, N6, N7, N8, R6, R7, R8, T7, T8, U12, U13, V12, V13, W12, W13 0 PWR - - - - - - - - H8 AC11 AD12 vdd_core PRODUCT PREVIEW 0 PWR - - - - - - - - M17, M18, vdds M19, N17, N18, N19, U10, V9, V10, W9, W10, Y9 0 PWR - - - - - - - - N24 vdds_mmc1 0 PWR - - - - - - - - Y12 cap_vddu_ wkup_logic 0 PWR - - - - - - - - U8 cap_vdd_sram_mpu_ 0 iva PWR - - - - - - - - H17 cap_vdd_sram_core 0 PWR - - - - - - - - G18 vdda_dplls_dll 0 PWR - - - - - - - - U17 vdda_dpll_per 0 PWR - - - - - - - - AA12 vdds_sram 0 PWR - - - - - - - - AA13 vdda_wkup_bg_bb 0 PWR - - - - - - - - N21 cap_vdd_bb_mpu_iv 0 a PWR - - - - - - - - N20 cap_vddu_array 0 PWR - - - - - - - - AB15 vssa_dac 0 GND - - - - - - - - AB13 vdda_dac 0 PWR - - - - - - - - 78 vdds_x TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 2-3. Ball Characteristics (CUS Pkg.) (continued) MODE [4] TYPE [5] BALL RESET BALL RESET RESET REL. POWER [9] STATE [6] REL. STATE MODE [8] [7] HYS [10] BUFFER PULLUP STRENG TH /DOWN (mA) [11] TYPE [12] IO CELL [13] H11, H14, vss H16, J11, J12, J13, J14, J15, J16, K10, K11, K14, K15, L8, L10, L13, L17, M9, M10, M11, M13, M16, N9, N10, N11, N12, N13, N14, N15, N16, P8, P10, P11, P12, P13, P14, P15, P17, R10, R11, R14, R15, T9, T10, T11, T12, T13, T14, T15, T16, U9, U11, U14, U15, U16, V15, V16 0 GND - - - - - - - - AD1, A1, A2, No Connect (15) B1 - - - - - - - - - - W15 0 GND - - - - - - - - sys_xtalgnd PRODUCT PREVIEW BALL PIN NAME [3] BOTTOM [1] (15) Pins labeled as "No connect" must be left unconnected. Any connections to these pins may result in unpredictable behavior. TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 79 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 2.4 www.ti.com Multiplexing Characteristics Table 2-4 provides a description of the multiplexing on the CBP, CBC, and CUS packages, respectively. Note: The following does not take into account subsystem pin multiplexing options. Subsystem pin multiplexing options are described in Section 2.5, Signal Description. For more information, see the System Control Module / System Control Module Functional Description / Pad Functional Multiplexing and Configuration section of the AM37x Technical Reference Manual (TRM). Table 2-4. Multiplexing Characteristics CBP Bottom CBC Top Bottom CUS MODE 0 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE 7 Top PRODUCT PREVIEW NA J2 NA D1 D7 sdrc_d0 NA J1 NA G1 C5 sdrc_d1 NA G2 NA G2 C6 sdrc_d2 NA G1 NA E1 B5 sdrc_d3 NA F2 NA D2 D9 sdrc_d4 NA F1 NA E2 D10 sdrc_d5 NA D2 NA B3 C7 sdrc_d6 NA D1 NA B4 B7 sdrc_d7 NA B13 NA A10 B11 sdrc_d8 NA A13 NA B11 C12 sdrc_d9 NA B14 NA A11 B12 sdrc_d10 NA A14 NA B12 D13 sdrc_d11 NA B16 NA A16 C13 sdrc_d12 NA A16 NA A17 B14 sdrc_d13 NA B19 NA B17 A14 sdrc_d14 NA A19 NA B18 B15 sdrc_d15 NA B3 NA B7 C9 sdrc_d16 NA A3 NA A5 E12 sdrc_d17 NA B5 NA B6 B8 sdrc_d18 NA A5 NA A6 B9 sdrc_d19 NA B8 NA A8 C10 sdrc_d20 NA A8 NA B9 B10 sdrc_d21 NA B9 NA A9 D12 sdrc_d22 NA A9 NA B10 E13 sdrc_d23 NA B21 NA C21 E15 sdrc_d24 NA A21 NA D20 D15 sdrc_d25 NA D22 NA B19 C15 sdrc_d26 NA D23 NA C20 B16 sdrc_d27 NA E22 NA D21 C16 sdrc_d28 NA E23 NA E20 D16 sdrc_d29 NA G22 NA E21 B17 sdrc_d30 NA G23 NA G21 B18 sdrc_d31 NA AB21 NA AA18 C18 sdrc_ba0 NA AC21 NA V20 D18 sdrc_ba1 NA N22 NA G20 A4 sdrc_a0 NA N23 NA K20 B4 sdrc_a1 NA P22 NA J20 D6 sdrc_a2 NA P23 NA J21 B3 sdrc_a3 NA R22 NA U21 B2 sdrc_a4 NA R23 NA R20 C3 sdrc_a5 NA T22 NA M21 E3 sdrc_a6 NA T23 NA M20 F6 sdrc_a7 NA U22 NA N20 E10 sdrc_a8 NA U23 NA K21 E9 sdrc_a9 NA V22 NA Y16 E7 sdrc_a10 80 MODE 1 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 2-4. Multiplexing Characteristics (continued) Bottom CBC Top Bottom CUS MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE 7 Top NA V23 NA N21 G6 sdrc_a11 NA W22 NA R21 G7 sdrc_a12 NA W23 NA AA15 F7 sdrc_a13 NA Y22 NA Y12 F9 sdrc_a14 NA M22 NA T21 A19 sdrc_ncs0 NA M23 NA T20 B19 sdrc_ncs1 NA A11 NA A12 A10 sdrc_clk NA B11 NA B13 A11 sdrc_nclk NA J22 NA Y15 B20 sdrc_cke0 safe_mo de_out1 NA J23 NA Y13 C20 sdrc_cke1 safe_mo de_out1 NA L23 NA V21 D19 sdrc_nras NA L22 NA U20 C19 sdrc_ncas NA K23 NA Y18 A20 sdrc_nwe NA C1 NA H1 B6 sdrc_dm0 NA A17 NA A14 B13 sdrc_dm1 NA A6 NA A4 A7 sdrc_dm2 NA A20 NA A18 A16 sdrc_dm3 NA C2 NA C2 A5 sdrc_dqs0 NA B17 NA B15 A13 sdrc_dqs1 NA B6 NA B8 A8 sdrc_dqs2 NA B20 NA A19 A17 sdrc_dqs3 N4 AC15 J2 NA K4 gpmc_a1 gpio_34 safe_mo de M4 AB15 H1 NA K3 gpmc_a2 gpio_35 safe_mo de L4 AC16 H2 NA K2 gpmc_a3 gpio_36 safe_mo de K4 AB16 G2 NA J4 gpmc_a4 gpio_37 safe_mo de T3 AC17 F1 NA J3 gpmc_a5 gpio_38 safe_mo de R3 AB17 F2 NA J2 gpmc_a6 gpio_39 safe_mo de N3 AC18 E1 NA J1 gpmc_a7 gpio_40 safe_mo de M3 AB18 E2 NA H1 gpmc_a8 gpio_41 safe_mo de L3 AC19 D1 NA H2 gpmc_a9 sys_ndmareq 2 gpio_42 safe_mo de K3 AB19 D2 NA G2 gpmc_a10 sys_ndmareq 3 gpio_43 safe_mo de NA AC20 A4 NA NA gpmc_a11 K1 M2 AA2 U2 L2 gpmc_d0 L1 M1 AA1 U1 M1 gpmc_d1 L2 N2 AC2 V2 M2 gpmc_d2 P2 N1 AC1 V1 N2 gpmc_d3 T1 R2 AE5 AA3 M3 gpmc_d4 V1 R1 AD6 AA4 P1 gpmc_d5 V2 T2 AD5 Y3 P2 gpmc_d6 W2 T1 AC5 Y4 R1 gpmc_d7 H2 AB3 V1 R1 R2 gpmc_d8 gpio_44 safe_mo de K2 AC3 Y1 T1 T2 gpmc_d9 gpio_45 safe_mo de P1 AB4 T1 N1 U1 gpmc_d10 gpio_46 safe_mo de R1 AC4 U2 P2 R3 gpmc_d11 gpio_47 safe_mo de safe_mo de TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 81 PRODUCT PREVIEW CBP AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-4. Multiplexing Characteristics (continued) CBP Bottom CBC Top Bottom CUS MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE 7 Top PRODUCT PREVIEW R2 AB6 U1 P1 T3 gpmc_d12 gpio_48 safe_mo de T2 AC6 P1 M1 U2 gpmc_d13 gpio_49 safe_mo de W1 AB7 L2 J2 V1 gpmc_d14 gpio_50 safe_mo de Y1 AC7 M2 K2 V2 gpmc_d15 gpio_51 safe_mo de G4 Y2 AD8 AA8 E2 gpmc_ncs0 H3 Y1 AD1 W1 NA gpmc_ncs1 gpio_52 safe_mo de V8 NA A3 NA NA gpmc_ncs2 gpio_53 safe_mo de U8 NA B6 NA D2 gpmc_ncs3 sys_ndmareq 0 gpio_54 safe_mo de T8 NA B4 NA F4 gpmc_ncs4 sys_ndmareq mcbsp4_clkx 1 gpt_9_pwm gpio_55 _evt safe_mo de R8 NA C4 NA G5 gpmc_ncs5 sys_ndmareq mcbsp4_dr 2 gpt_10_pw m_evt gpio_56 safe_mo de P8 NA B5 NA F3 gpmc_ncs6 sys_ndmareq mcbsp4_dx 3 gpt_11_pw m_evt gpio_57 safe_mo de N8 NA C5 NA G4 gpmc_ncs7 gpmc_io_dir gpt_8_pwm gpio_58 _evt safe_mo de T4 W2 N1 L1 W2 gpmc_clk gpio_59 safe_mo de F3 W1 AD10 AA9 F1 gpmc_nadv_a le G2 V2 N2 L2 F2 gpmc_noe F4 V1 M1 K1 G3 gpmc_nwe G3 AC12 K2 NA K5 gpmc_nbe0_c le gpio_60 safe_mo de U3 NA J1 NA L1 gpmc_nbe1 gpio_61 safe_mo de H1 AB10 AC6 Y5 E1 gpmc_nwp gpio_62 safe_mo de M8 AB12 AC11 Y10 C1 gpmc_wait0 L8 AC10 AC8 Y8 NA gpmc_wait1 gpio_63 safe_mo de K8 NA B3 NA NA gpmc_wait2 gpio_64 safe_mo de J8 NA C6 NA C2 gpmc_wait3 gpio_65 safe_mo de D28 NA G25 NA G22 dss_pclk gpio_66 hw_dbg12 safe_mo de D26 NA K24 NA E22 dss_hsync gpio_67 hw_dbg13 safe_mo de D27 NA M25 NA F22 dss_vsync gpio_68 safe_mo de E27 NA F26 NA J21 dss_acbias gpio_69 safe_mo de AG22 NA AE21 NA AC19 dss_data0 uart1_cts gpio_70 safe_mo de AH22 NA AE22 NA AB19 dss_data1 uart1_rts gpio_71 safe_mo de AG23 NA AE23 NA AD20 dss_data2 gpio_72 safe_mo de AH23 NA AE24 NA AC20 dss_data3 gpio_73 safe_mo de AG24 NA AD23 NA AD21 dss_data4 uart3_rx_irrx gpio_74 safe_mo de AH24 NA AD24 NA AC21 dss_data5 uart3_tx_irtx gpio_75 safe_mo de E26 NA G26 NA D24 dss_data6 uart1_tx gpio_76 (1) 82 mcbsp4_fsx uart4_tx sys_ndmareq uart4_rx (1) 1 hw_dbg14 safe_mo de UART4 is only available on CBP and CBC packages. TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 2-4. Multiplexing Characteristics (continued) Bottom CBC Top Bottom CUS MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE 7 Top F28 NA H25 NA E23 dss_data7 uart1_rx gpio_77 hw_dbg15 safe_mo de F27 NA H26 NA E24 dss_data8 uart3_rx_irrx gpio_78 hw_dbg16 safe_mo de G26 NA J26 NA F23 dss_data9 uart3_tx_irtx gpio_79 hw_dbg17 safe_mo de AD28 NA AC26 NA AC22 dss_data10 gpio_80 safe_mo de AD27 NA AD26 NA AC23 dss_data11 gpio_81 safe_mo de AB28 NA AA25 NA AB22 dss_data12 gpio_82 safe_mo de AB27 NA Y25 NA Y22 dss_data13 gpio_83 safe_mo de AA28 NA AA26 NA W22 dss_data14 gpio_84 safe_mo de AA27 NA AB26 NA V22 dss_data15 gpio_85 safe_mo de G25 NA L25 NA J22 dss_data16 gpio_86 safe_mo de H27 NA L26 NA G23 dss_data17 gpio_87 safe_mo de H26 NA M24 NA G24 dss_data18 mcspi3_clk dss_data0 gpio_88 safe_mo de H25 NA M26 NA H23 dss_data19 mcspi3_simo dss_data1 gpio_89 safe_mo de E28 NA F25 NA D23 dss_data20 mcspi3_somi dss_data2 gpio_90 safe_mo de J26 NA N24 NA K22 dss_data21 mcspi3_cs0 dss_data3 gpio_91 safe_mo de AC27 NA AC25 NA V21 dss_data22 mcspi3_cs1 dss_data4 gpio_92 safe_mo de AC28 NA AB25 NA W21 dss_data23 dss_data5 gpio_93 safe_mo de W28 NA V26 NA AA23 cvideo2_out Y28 NA W26 NA AB24 cvideo1_out Y27 NA W25 NA AB23 cvideo1_vfb W27 NA U24 NA Y23 cvideo2_vfb W26 NA V23 NA Y24 cvideo1_rset A24 NA C23 NA A22 cam_hs gpio_94 hw_dbg0 safe_mo de A23 NA D23 NA E18 cam_vs gpio_95 hw_dbg1 safe_mo de C25 NA C25 NA B22 cam_xclka gpio_96 C27 NA C26 NA J19 cam_pclk gpio_97 hw_dbg2 safe_mo de C23 NA B23 NA H24 cam_fld gpio_98 hw_dbg3 safe_mo de AG17 NA AE16 NA AB18 cam_d0 gpio_99 (2) safe_mo de AH17 NA AE15 NA AC18 cam_d1 gpio_100 (2) safe_mo de B24 NA A24 NA G19 cam_d2 gpio_101 hw_dbg4 safe_mo de C24 NA B24 NA F19 cam_d3 gpio_102 hw_dbg5 safe_mo de D24 NA D24 NA G20 cam_d4 gpio_103 hw_dbg6 safe_mo de A25 NA C24 NA B21 cam_d5 gpio_104 hw_dbg7 safe_mo de K28 NA P25 NA L24 cam_d6 gpio_105 (2) safe_mo de L28 NA P26 NA K24 cam_d7 gpio_106 (2) safe_mo de (2) cam_global_res et safe_mo de This GPIO is only an input (and not an output). TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 83 PRODUCT PREVIEW CBP AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-4. Multiplexing Characteristics (continued) CBP Bottom CBC Top Bottom CUS MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE 7 Top PRODUCT PREVIEW K27 NA N25 NA J23 cam_d8 gpio_107 (2) safe_mo de L27 NA N26 NA K23 cam_d9 gpio_108 (2) safe_mo de B25 NA D25 NA F21 cam_d10 gpio_109 hw_dbg8 safe_mo de C26 NA E26 NA G21 cam_d11 gpio_110 hw_dbg9 safe_mo de B26 NA E25 NA C22 cam_xclkb gpio_111 B23 NA A23 NA F18 cam_wen D25 NA D26 NA J20 cam_strobe AG19 NA AD17 NA NA gpio_112 (2) safe_mo de AH19 NA AD16 NA NA gpio_113 (2) safe_mo de AG18 NA AE18 NA NA gpio_114 (2) safe_mo de AH18 NA AE17 NA NA gpio_115 (3) safe_mo de P21 NA U18 NA V20 mcbsp2_fsx gpio_116 safe_mo de N21 NA R18 NA T21 mcbsp2_clkx gpio_117 safe_mo de R21 NA T18 NA V19 mcbsp2_dr gpio_118 safe_mo de M21 NA R19 NA R20 mcbsp2_dx gpio_119 safe_mo de N28 NA N19 NA M23 mmc1_clk gpio_120 (4) safe_mo de M27 NA L18 NA L23 mmc1_cmd gpio_121 (4) safe_mo de N27 NA M19 NA M22 mmc1_dat0 gpio_122 (4) safe_mo de N26 NA M18 NA M21 mmc1_dat1 gpio_123 (4) safe_mo de N25 NA K18 NA M20 mmc1_dat2 gpio_124 (4) safe_mo de P28 NA N20 NA N23 mmc1_dat3 gpio_125 (4) safe_mo de P27 NA M20 NA N22 gpio_126 (4) safe_mo de P26 NA P17 NA NA gpio_127 (4) safe_mo de R27 NA P18 NA NA gpio_128 (4) safe_mo de R25 NA P19 NA P24 gpio_129 (4) safe_mo de AE2 NA W10 NA Y1 mmc2_clk mcspi3_clk gpio_130 safe_mo de AG5 NA R10 NA AB5 mmc2_cmd mcspi3_simo gpio_131 safe_mo de AH5 NA T10 NA AB3 mmc2_dat0 mcspi3_somi gpio_132 safe_mo de AH4 NA T9 NA Y3 mmc2_dat1 gpio_133 safe_mo de AG4 NA U10 NA W3 mmc2_dat2 mcspi3_cs1 gpio_134 safe_mo de AF4 NA U9 NA V3 mmc2_dat3 mcspi3_cs0 gpio_135 safe_mo de AE4 NA V10 NA AB2 mmc2_dat4 mmc2_dir_dat 0 mmc3_dat0 gpio_136 safe_mo de (3) (4) 84 cam_shutter safe_mo de gpio_167 hw_dbg10 safe_mo de gpio_126 hw_dbg11 safe_mo de This GPIO is only an input (and not an output). The usage of this GPIO is strongly restricted. For more information, see the General-Purpose Interface chapter of the TRM. TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 2-4. Multiplexing Characteristics (continued) Bottom CBC Top Bottom CUS MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE 7 Top AH3 NA M3 NA AA2 mmc2_dat5 mmc2_dir_dat cam_global_res mmc3_dat1 gpio_137 1 et AF3 NA L3 NA Y2 mmc2_dat6 mmc2_dir_cm cam_shutter d mmc3_dat2 gpio_138 safe_mo de AE3 NA K3 NA AA1 mmc2_dat7 mmc2_clkin mmc3_dat3 gpio_139 mm3_rxdm safe_mo de AF6 NA P3 NA V6 mcbsp3_dx uart2_cts gpio_140 safe_mo de AE6 NA N3 NA V5 mcbsp3_dr uart2_rts gpio_141 safe_mo de AF5 NA U3 NA W4 mcbsp3_clkx uart2_tx gpio_142 safe_mo de AE5 NA W3 NA V4 mcbsp3_fsx uart2_rx gpio_143 safe_mo de AB26 NA Y24 NA NA uart2_cts mcbsp3_dx gpt_9_pwm_evt gpio_144 safe_mo de AB25 NA AA24 NA NA uart2_rts mcbsp3_dr gpt_10_pwm_e vt gpio_145 safe_mo de AA25 NA AD22 NA NA uart2_tx mcbsp3_clkx gpt_11_pwm_e vt gpio_146 safe_mo de AD25 NA AD21 NA NA uart2_rx mcbsp3_fsx gpt_8_pwm_evt gpio_147 safe_mo de AA8 NA L4 NA W7 uart1_tx gpio_148 safe_mo de AA9 NA R2 NA W6 uart1_rts gpio_149 safe_mo de W8 NA W2 NA AC2 uart1_cts gpio_150 safe_mo de Y8 NA H3 NA V7 uart1_rx mcspi4_clk gpio_151 safe_mo de AE1 NA V3 NA NA mcbsp4_clkx gpio_152 mm3_txse0 safe_mo de AD1 NA U4 NA NA mcbsp4_dr gpio_153 mm3_rxrcv safe_mo de AD2 NA R3 NA NA mcbsp4_dx gpio_154 mm3_txdat safe_mo de AC1 NA T3 NA NA mcbsp4_fsx gpio_155 mm3_txen_ safe_mo n de Y21 NA U19 NA W19 mcbsp1_clkr gpio_156 safe_mo de AA21 NA V17 NA AB20 mcbsp1_fsr gpio_157 safe_mo de V21 NA U17 NA W18 mcbsp1_dx mcspi4_simo mcbsp3_dx gpio_158 safe_mo de U21 NA T20 NA Y18 mcbsp1_dr mcspi4_somi mcbsp3_dr gpio_159 safe_mo de T21 NA T19 NA AA18 mcbsp_clks K26 NA P20 NA AA19 mcbsp1_fsx W21 NA T17 NA V18 mcbsp1_clkx H18 NA F23 NA A23 H19 NA F24 NA H20 NA H24 H21 NA T28 mcbsp1_clkr mcspi4_clk cam_global_res et mm3_rxdp cam_shutter gpio_160 mcbsp3_fsx gpio_161 safe_mo de mcbsp3_clkx gpio_162 safe_mo de uart3_cts_rctx gpio_163 safe_mo de B23 uart3_rts_sd gpio_164 safe_mo de NA B24 uart3_rx_irrx gpio_165 safe_mo de G24 NA C23 uart3_tx_irtx gpio_166 safe_mo de NA W19 NA R21 hsusb0_clk gpio_120 safe_mo de T25 NA U20 NA R23 hsusb0_stp gpio_121 safe_mo de R28 NA V19 NA P23 hsusb0_dir gpio_122 safe_mo de mcspi4_cs0 uart1_cts safe_mo de TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback safe_mo de 85 PRODUCT PREVIEW CBP AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-4. Multiplexing Characteristics (continued) CBP Bottom CBC Top Bottom CUS MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE 7 Top PRODUCT PREVIEW T26 NA W18 NA R22 hsusb0_nxt gpio_124 T27 NA V20 NA T24 hsusb0_data0 uart3_tx_irtx gpio_125 uart2_tx safe_mo de U28 NA Y20 NA T23 hsusb0_data1 uart3_rx_irrx gpio_130 uart2_rx safe_mo de U27 NA V18 NA U24 hsusb0_data2 uart3_rts_sd gpio_131 uart2_rts safe_mo de U26 NA W20 NA U23 hsusb0_data3 uart3_cts_rctx gpio_169 uart2_cts safe_mo de U25 NA W17 NA W24 hsusb0_data4 gpio_188 safe_mo de V28 NA Y18 NA V23 hsusb0_data5 gpio_189 safe_mo de V27 NA Y19 NA W23 hsusb0_data6 gpio_190 safe_mo de V26 NA Y17 NA T22 hsusb0_data7 gpio_191 safe_mo de K21 NA J25 NA K20 i2c1_scl J21 NA J24 NA K21 i2c1_sda AF15 NA C2 NA AC15 i2c2_scl gpio_168 safe_mo de AE15 NA C1 NA AC14 i2c2_sda gpio_183 safe_mo de AF14 NA AB4 NA AC13 i2c3_scl gpio_184 safe_mo de AG14 NA AC4 NA AC12 i2c3_sda gpio_185 safe_mo de AD26 NA AD15 NA Y16 i2c4_scl sys_nvmode1 safe_mo de AE26 NA W16 NA Y15 i2c4_sda sys_nvmode2 safe_mo de J25 NA J23 NA A24 hdq_sio sys_altclk AB3 NA P9 NA T5 mcspi1_clk AB4 NA P8 NA AA4 NA P7 AC2 NA AC3 i2c3_sccbe gpio_170 safe_mo de mmc2_dat4 gpio_171 safe_mo de R4 mcspi1_simo mmc2_dat5 gpio_172 safe_mo de NA T4 mcspi1_somi mmc2_dat6 gpio_173 safe_mo de R7 NA T6 mcspi1_cs0 gpio_174 safe_mo de NA R8 NA NA mcspi1_cs1 mmc3_cmd gpio_175 safe_mo de AB1 NA R9 NA NA mcspi1_cs2 mmc3_clk safe_mo de AB2 NA T8 NA R5 mcspi1_cs3 hsusb2_dat gpio_177 a2 AA3 NA W7 NA N5 mcspi2_clk hsusb2_dat gpio_178 a7 safe_mo de Y2 NA W8 NA N4 mcspi2_simo gpt_9_pwm_e vt hsusb2_dat gpio_179 a4 safe_mo de Y3 NA U8 NA N3 mcspi2_somi gpt_10_pwm_ evt hsusb2_dat gpio_180 a5 safe_mo de Y4 NA V8 NA M5 mcspi2_cs0 gpt_11_pwm_ evt hsusb2_dat gpio_181 a6 safe_mo de V3 NA V9 NA M4 mcspi2_cs1 gpt_8_pwm_e vt hsusb2_dat gpio_182 a3 AE25 NA AE20 NA AA16 sys_32k AE17 NA AF19 NA AD15 sys_xtalin AF17 NA AF20 NA AD14 sys_xtalout AF25 NA W15 NA Y13 sys_clkreq gpio_1 safe_mo de AF26 NA V16 NA W16 sys_nirq gpio_0 safe_mo de 86 i2c2_sccbe safe_mo de mmc2_dat7 TERMINAL DESCRIPTION gpio_176 mm2_txdat mm2_txen_ n safe_mo de safe_mo de Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 2-4. Multiplexing Characteristics (continued) Bottom CBC Top Bottom CUS MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE 7 Top AH25 NA V13 NA AA10 sys_nrespwro n AF24 NA AD7 AA5 Y10 sys_nreswar m AH26 NA F3 NA AB12 sys_boot0 dss_data18 gpio_2 safe_mo de AG26 NA D3 NA AC16 sys_boot1 dss_data19 gpio_3 safe_mo de AE14 NA C3 NA AD17 sys_boot2 gpio_4 safe_mo de AF18 NA E3 NA AD18 sys_boot3 dss_data20 gpio_5 safe_mo de AF19 NA E4 NA AC17 sys_boot4 mmc2_dir_dat 2 dss_data21 gpio_6 safe_mo de AE21 NA G3 NA AB16 sys_boot5 mmc2_dir_dat 3 dss_data22 gpio_7 safe_mo de AF21 NA D4 NA AA15 sys_boot6 dss_data23 gpio_8 safe_mo de AF22 NA V12 NA AD23 sys_off_mode gpio_9 safe_mo de AG25 NA AE14 NA Y7 sys_clkout1 gpio_10 safe_mo de AE22 NA W11 NA AA6 sys_clkout2 gpio_186 safe_mo de AA17 NA U15 NA AB7 jtag_ntrst AA13 NA V14 NA AB6 jtag_tck AA12 NA W13 NA AA7 jtag_rtck AA18 NA V15 NA AA9 jtag_tms_tms c AA20 NA U16 NA AB10 jtag_tdi AA19 NA Y13 NA AB9 jtag_tdo AA11 NA Y15 NA AC24 jtag_emu0 gpio_11 safe_mo de AA10 NA Y14 NA AD24 jtag_emu1 gpio_31 safe_mo de AF10 NA AB2 NA AC1 etk_clk AE10 NA AB3 NA AD3 AF11 NA AC3 NA AG12 NA AD4 AH12 NA AE13 gpio_30 mcbsp5_clkx safe_mo de mmc3_clk hsusb1_stp gpio_12 mm1_rxdp etk_ctl mmc3_cmd hsusb1_clk gpio_13 AD6 etk_d0 mcspi3_simo mmc3_dat4 hsusb1_dat gpio_14 a0 mm1_rxrcv hw_dbg 2 NA AC6 etk_d1 mcspi3_somi hsusb1_dat gpio_15 a1 mm1_txse0 hw_dbg 3 AD3 NA AC7 etk_d2 mcspi3_cs0 hsusb1_dat gpio_16 a2 mm1_txdat hw_dbg 4 NA AA3 NA AD8 etk_d3 mcspi3_clk mmc3_dat3 hsusb1_dat gpio_17 a7 hw_dbg 5 AE11 NA Y3 NA AC5 etk_d4 mcbsp5_dr mmc3_dat0 hsusb1_dat gpio_18 a4 hw_dbg 6 AH9 NA AB1 NA AD2 etk_d5 mcbsp5_fsx mmc3_dat1 hsusb1_dat gpio_19 a5 hw_dbg 7 AF13 NA AE3 NA AC8 etk_d6 mcbsp5_dx mmc3_dat2 hsusb1_dat gpio_20 a6 hw_dbg 8 AH14 NA AD2 NA AD9 etk_d7 mcspi3_cs1 mmc3_dat7 hsusb1_dat gpio_21 a3 AF9 NA AA4 NA AC4 etk_d8 mmc3_dat6 hsusb1_dir AG9 NA V2 NA AD5 etk_d9 mmc3_dat5 hsusb1_nxt gpio_23 AE7 NA AE4 NA AC3 etk_d10 uart1_rx hsusb2_clk gpio_24 AF7 NA AF6 NA AC9 etk_d11 hsusb2_stp gpio_25 AG7 NA AE6 NA AC10 etk_d12 hsusb2_dir hw_dbg 1 mm1_txen_ n gpio_22 Submit Documentation Feedback hw_dbg 9 hw_dbg 10 mm1_rxdm hw_dbg 11 hw_dbg 12 mm2_rxdp gpio_26 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated hw_dbg 0 hw_dbg 13 hw_dbg 14 87 PRODUCT PREVIEW CBP AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-4. Multiplexing Characteristics (continued) CBP Bottom CBC Top Bottom CUS MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 MODE 7 Top AH7 NA AF7 NA AD11 etk_d13 hsusb2_nxt gpio_27 mm2_rxdm hw_dbg 15 AG8 NA AF9 NA AC11 etk_d14 hsusb2_dat gpio_28 a0 mm2_rxrcv hw_dbg 16 AH8 NA AE9 NA AD12 etk_d15 hsusb2_dat gpio_29 a1 mm2_txse0 hw_dbg 17 vdd_core PRODUCT PREVIEW AC4, J4, H4, NA D8, AE9, D9, D15, Y16, AE18, Y18, W18, K18, J18, AE19, Y19, U19, T19, N19, M19, J19, Y20, W20, V20, U20, P20, N20, K20, J20, D22, D23, AE24, M25, L25, E25 AC21, D15, NA G11, G18, H20, M7, M17, R20, T7, Y8, Y12 F12, F13, G12, G13, H12, H13, J17, J18, K17, K18, K19, L14, L15, M14, M15, R17, R18, R19, T17, T18, T19, T20 Y9, W9, T9, NA R9, M9, L9, J9, Y10, U10, T10, R10, N10, M10, L10, J10, Y11, W11, K11, J11, W12, K13, Y14, K14, J14, Y15, W15, J15 D13, G9, NA G12, H7, K11, L9, M9, M10, N7, N8, P10, U7, U11, U13, V7, V11, W9, Y9, Y11 F10, G9, G10, vdd_mpu_iva H9, H10, J9, J10, L11, L12, M6, M7, M8, M12, N6, N7, N8, R6, R7, R8, T7, T8, U12, U13, V12, V13, W12, W13 U4 NA D6 NA N21 cap_vdd_bb_ mpu_iva AA15 NA K14 NA Y12 cap_vddu_wk up_logic K15 NA K13 NA G18 vdda_dplls_dll W16 NA U12 NA AA12 vdds_sram AD3, AD4, W4, AF8, AE8, AF16, AE16, AF23, AE23, F25, F26, AG27 NA A18, AC7, A3,A15,B5,F2 M17, M18, vdds AC15, AC18, ,F21,L20,W21 M19, N17, AC24, AD20, N18, N19, AE10, C11, U10, V9, V10, D9, E24, G4, W9, W10, Y9 J15, J18, L7, L24, M4, T4, T24, W24, Y4, AB24 U1, J1, F1, J2, F2, R4, B5, A5, AH6, B8, A8, B12, A12, D16, C16, B18, A18, B22, A22, G28, C28 AC5, P1, H1, NA F23, E1, C23, A4, A7, A10, A15, A18 NA E16, F15, vdds_mem F16, G15, G16, H15, J6, J7, J8, K6, K7, K8 AA16 NA U14 NA U17 vdda_dpll_per AA14 NA W14 NA AA13 vdda_wkup_b g_bb 88 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 2-4. Multiplexing Characteristics (continued) CBC CUS MODE 0 Bottom Top Bottom Top AG2, U2, B2, AG3, W3, P3, J3, E3, A3, P4, E4, AG6, D7, C7, V9, U9, P9, N9, K9, W10, V10, P10, K10, D10, C10, AF12, AE12, Y12, K12, J12, Y13, W13, J13, D13, C13, W14, K16, J16, W17, K17, J17, W19, V19, R19, P19, L19, K19, D19, C19, AF20, AE20, T20, AG15, AF2, AF27, B15, J27, M2, M26, N2, AA2, AG10, AC25, AC26, Y25, W25, M20, L20, L26, G27, D21, C22, B27, A26, R20, R26 B4, B7, B10, B15, B18, C22, E2, F22, H2, P2, AB5, AB14, AB20 A6, A8, A13, AB5, AB22, AC10, AD14, AD25, AE7, B2, B25, C12, D7, D10, D12, D14, D18, D20, E22, G1, G8, G10, G20, G23, H4, K1, K15, K25, L10, L17, L23, N4, N10, N17, R1, R4, R17, T23, U25, W1, W4, W23, Y7, Y10, Y16, Y26 A7, A13, B14, C1, F1, F20, H2, H20, L21, M2, P20, R2, W20 Y6, Y11, AA7, AA16 H11, H14, vss H16, J11, J12, J13, J14, J15, J16, K10, K11, K14, K15, L8, L10, L13, L17, M9, M10, M11, M13, M16, N9, N10, N11, N12, N13, N14, N15, N16, P8, P10, P11, P12, P13, P14, P15, P17, R10, R11, R14, R15, T9, T10, T11, T12, T13, T14, T15, T16, U9, U11, U14, U15, U16, V15, V16 V25 NA V25 NA AB13 vdda_dac Y26 NA V24 NA AB15 vssa_dac K25 NA N23 NA N24 vdds_mmc1 P25 NA P23 NA H8 vdds_x AG21 NA AD19 NA NA vdds AH20 NA AE19 NA N20 cap_vddu_arr ay AH21 NA AC19 NA NA vss AG16 NA AC16 NA NA vss AG20 NA AD18 NA NA vdds M28 NA L19 NA NA vss H28 NA L20 NA NA vdds V4 NA N9 NA U8 cap_vdd_sra m_mpu_iva L21 NA K20 NA H17 cap_vdd_sra m_core Y17 NA AF23 NA W15 sys_xtalgnd MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback MODE 7 PRODUCT PREVIEW CBP 89 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 2.5 www.ti.com Signal Description Many signals are available on multiple pins according to the software configuration of the pin multiplexing options. 1. SIGNAL NAME: The signal name 2. DESCRIPTION: Description of the signal 3. TYPE: Type = Ball type for this specific function: – I = Input – O = Output – Z = High-impedance – D = Open Drain – DS = Differential – A = Analog 4. BALL BOTTOM: Associated ball(s) bottom 5. BALL TOP: Associated ball(s) top 6. SUBSYSTEM PIN MULTIPLEXING: Contains a list of the pin multiplexing options at the module/subsystem level. The pin function is selected at the module/system level. PRODUCT PREVIEW Note: The Subsystem Multiplexing Signals are not described in the following tables. For more information, see the System Control Module / System Control Module Functional Description / Pad Functional Multiplexing and Configuration section of the AM37x Technical Reference Manual (TRM). 2.5.1 External Memory Interfaces NOTE For more information, see Memory Subsystem / General-Purpose Memory Controller / GPMC Environment section of the AM37x Technical Reference Manual (TRM). Table 2-5. External Memory Interfaces – GPMC Signals Description (1) SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] BALL BOTTOM (CBP Pkg.) [4] BALL TOP (CBP Pkg.) [5] BALL BOTTOM (CBC Pkg.) [4] BALL TOP (CBC Pkg.) [5] BALL BOTTOM (CUS Pkg.) [4] SUBSYSTEM PIN MULTIPLEXING [6] gpmc_a1 GPMC output address bit 1 / extended multiplexed address gpmc_a17 O N4 / K1 AC15 / M2 J2 / AA2 NA / U2 K4 / L2 - / gpmc_d0 gpmc_a2 GPMC output address bit 2 / extended multiplexed address gpmc_a18 O M4 / L1 AB15 / M1 H1 / AA1 NA / U1 K3 / M1 - / gpmc_d1 gpmc_a3 GPMC output address bit 3 / extended multiplexed address gpmc_a19 O L4 / L2 AC16 / N2 H2 / AC2 NA / V2 K2 / M2 - / gpmc_d2 gpmc_a4 GPMC output address bit 4 / extended multiplexed address gpmc_a20 O K4 / P2 AB16 / N1 G2 / AC1 NA / V1 J4 / N2 - / gpmc_d3 gpmc_a5 GPMC output address bit 5 / extended multiplexed address gpmc_a21 O T3 / T1 AC17 / R2 F1 / AE5 NA / AA3 J3 / M3 - / gpmc_d4 gpmc_a6 GPMC output address bit 6 / extended multiplexed address gpmc_a22 O R3 / V1 AB17 / R1 F2 / AD6 NA / AA4 J2/ P1 - / gpmc_d5 gpmc_a7 GPMC output address bit 7 / extended multiplexed address gpmc_a23 O N3 / V2 AC18 / T2 E1 / AD5 NA / Y3 J1/ P2 - / gpmc_d6 gpmc_a8 GPMC output address bit 8 / extended multiplexed address gpmc_a24 O M3 / W2 AB18 / T1 E2 / AC5 NA / Y4 H1/ R1 - / gpmc_d7 (1) 90 NA in table stands for Not Applicable. TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 2-5. External Memory Interfaces – GPMC Signals Description (continued) DESCRIPTION [2] TYPE [3] BALL BOTTOM (CBP Pkg.) [4] BALL TOP (CBP Pkg.) [5] BALL BOTTOM (CBC Pkg.) [4] BALL TOP (CBC Pkg.) [5] BALL BOTTOM (CUS Pkg.) [4] SUBSYSTEM PIN MULTIPLEXING [6] gpmc_a9 GPMC output address bit 9 / extended multiplexed address gpmc_a25 O L3 / H2 AC19 / AB3 D1 / V1 NA / R1 H2/ R2 - / gpmc_d8 gpmc_a10 GPMC output address bit 10 / extended multiplexed address gpmc_a26 O K3 / K2 AB19 / AC3 D2 / Y1 T1 G2/ T2 - / gpmc_d9 gpmc_a11 GPMC output address bit 11 / extended multiplexed address gpmc_a27 O NC / P1 AC20 / AB4 A4 / T1 - / N1 NA - / gpmc_d10 gpmc_a12 General-purpose memory address bit 12 O R1 AC4 U2 P2 R3 gpmc_d11 gpmc_a13 General-purpose memory address bit 13 O R2 AB6 U1 P1 T3 gpmc_d12 gpmc_a14 General-purpose memory address bit 14 O T2 AC6 P1 M1 U2 gpmc_d13 gpmc_a15 General-purpose memory address bit 15 O W1 AB7 L2 J2 V1 gpmc_d14 gpmc_a16 General-purpose memory address bit 16 O Y1 AC7 M2 K2 V2 gpmc_d15 gpmc_a17 General-purpose memory address bit 17 O N4 AC15 J2 NA K4 gpmc_a1 gpmc_a18 General-purpose memory address bit 18 O M4 AB15 H1 NA K3 gpmc_a2 gpmc_a19 General-purpose memory address bit 19 O L4 AC16 H2 NA K2 gpmc_a3 gpmc_a20 General-purpose memory address bit 20 O K4 AB16 G2 NA J4 gpmc_a4 gpmc_a21 General-purpose memory address bit 21 O T3 AC17 F1 NA J3 gpmc_a5 gpmc_a22 General-purpose memory address bit 22 O R3 AB17 F2 NA J2 gpmc_a6 gpmc_a23 General-purpose memory address bit 23 O N3 AC18 E1 NA J1 gpmc_a7 gpmc_a24 General-purpose memory address bit 24 O M3 AB18 E2 NA H1 gpmc_a8 gpmc_a25 General-purpose memory address bit 25 O L3 AC19 D1 NA H2 gpmc_a9 gpmc_a26 General-purpose memory address bit 26 O K3 AB19 D2 NA G2 gpmc_a10 gpmc_d0 GPMC data bit 0 / multiplexed address gpmc_a1 IO K1 M2 AA2 U2 L2 gpmc_d0 gpmc_d1 GPMC data bit 1 / multiplexed address gpmc_a2 IO L1 M1 AA1 U1 M1 gpmc_d1 gpmc_d2 GPMC data bit 2 / multiplexed address gpmc_a3 IO L2 N2 AC2 V2 M2 gpmc_d2 gpmc_d3 GPMC data bit 3 / multiplexed address gpmc_a4 IO P2 N1 AC1 V1 N2 gpmc_d3 gpmc_d4 GPMC data bit 4 / multiplexed address gpmc_a5 IO T1 R2 AE5 AA3 M3 gpmc_d4 gpmc_d5 GPMC data bit 5 / multiplexed address gpmc_a6 IO V1 R1 AD6 AA4 P1 gpmc_d5 gpmc_d6 GPMC data bit 6 / multiplexed address gpmc_a7 IO V2 T2 AD5 Y3 P2 gpmc_d6 gpmc_d7 GPMC data bit 7 / multiplexed address gpmc_a8 IO W2 T1 AC5 Y4 R1 gpmc_d7 gpmc_d8 GPMC data bit 8 / multiplexed address gpmc_a9 IO H2 AB3 V1 R1 R2 gpmc_d8 gpmc_d9 GPMC data bit 9 / multiplexed address gpmc_a10 IO K2 AC3 Y1 T1 T2 gpmc_d9 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback PRODUCT PREVIEW SIGNAL NAME [1] 91 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-5. External Memory Interfaces – GPMC Signals Description (continued) SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] BALL BOTTOM (CBP Pkg.) [4] BALL TOP (CBP Pkg.) [5] BALL BOTTOM (CBC Pkg.) [4] BALL TOP (CBC Pkg.) [5] BALL BOTTOM (CUS Pkg.) [4] SUBSYSTEM PIN MULTIPLEXING [6] PRODUCT PREVIEW gpmc_d10 GPMC data bit 10 / multiplexed address gpmc_a11 IO P1 AB4 T1 N1 U1 gpmc_d10 gpmc_d11 GPMC data bit 11 / multiplexed address gpmc_a12 IO R1 AC4 U2 P2 R3 gpmc_d11 gpmc_d12 GPMC data bit 12 / multiplexed address gpmc_a13 IO R2 AB6 U1 P1 T3 gpmc_d12 gpmc_d13 GPMC data bit 13 / multiplexed address gpmc_a14 IO T2 AC6 P1 M1 U2 gpmc_d13 gpmc_d14 GPMC data bit 14 / multiplexed address gpmc_a15 IO W1 AB7 L2 J2 V1 gpmc_d14 gpmc_d15 GPMC data bit 15 / multiplexed address gpmc_a16 IO Y1 AC7 M2 K2 V2 gpmc_d15 gpmc_ncs0 GPMC Chip Select bit 0 O G4 Y2 AD8 AA8 E2 NA gpmc_ncs1 GPMC Chip Select bit 1 O H3 Y1 AD1 W1 NA NA gpmc_ncs2 GPMC Chip Select bit 2 O V8 NA A3 NA NA NA gpmc_ncs3 GPMC Chip Select bit 3 O U8 NA B6 NA D2 NA gpmc_ncs4 GPMC Chip Select bit 4 O T8 NA B4 NA F4 NA gpmc_ncs5 GPMC Chip Select bit 5 O R8 NA C4 NA G5 NA gpmc_ncs6 GPMC Chip Select bit 6 O P8 NA B5 NA F3 NA gpmc_ncs7 GPMC Chip Select bit 7 O N8 NA C5 NA G4 NA gpmc_io_dir GPMC IO direction control for use with external transceivers O N8 NA C5 NA G4 gpmc_ncs7 gpmc_clk GPMC clock O T4 W2 N1 L1 W2 NA gpmc_nadv_ale Address Valid or Address Latch Enable O F3 W1 AD10 AA9 F1 NA gpmc_noe Output Enable O G2 V2 N2 L2 F2 NA gpmc_nwe Write Enable O F4 V1 M1 K1 G3 NA gpmc_nbe0_cle Lower Byte Enable. Also used for Command Latch Enable O G3 AC12 K2 NA K5 NA gpmc_nbe1 Upper Byte Enable O U3 NA J1 NA L1 NA gpmc_nwp Flash Write Protect O H1 AB10 AC6 Y5 E1 NA gpmc_wait0 External indication of wait I M8 AB12 AC11 Y10 C1 NA gpmc_wait1 External indication of wait I L8 AC10 AC8 Y8 NA NA gpmc_wait2 External indication of wait I K8 NA B3 NA NA NA gpmc_wait3 External indication of wait I J8 NA C6 NA C2 NA NOTE For more information, see Memory Subsystem / SDRAM Controller (SDRC) Subsystem / SDRC Subsystem Environment section of the AM37x Technical Reference Manual (TRM). Table 2-6. External Memory Interfaces – SDRC Signals Description (1) SIGNAL NAME DESCRIPTION TYPE (2) BALL BOTTOM (CBP Pkg.) BALL TOP (CBP Pkg.) BALL BOTTOM (CBC Pkg.) BALL TOP (CBC Pkg.) BALL BOTTOM (CUS Pkg.) sdrc_d0 SDRAM data bit 0 IO NA J2 NA D1 D7 sdrc_d1 SDRAM data bit 1 IO NA J1 NA G1 C5 sdrc_d2 SDRAM data bit 2 IO NA G2 NA G2 C6 sdrc_d3 SDRAM data bit 3 IO NA G1 NA E1 B5 sdrc_d4 SDRAM data bit 4 IO NA F2 NA D2 D9 sdrc_d5 SDRAM data bit 5 IO NA F1 NA E2 D10 sdrc_d6 SDRAM data bit 6 IO NA D2 NA B3 C7 (1) (2) 92 NA in this table stands for "Not Applicable". Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog). TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 2-6. External Memory Interfaces – SDRC Signals Description (continued) DESCRIPTION TYPE (2) BALL BOTTOM (CBP Pkg.) BALL TOP (CBP Pkg.) BALL BOTTOM (CBC Pkg.) BALL TOP (CBC Pkg.) BALL BOTTOM (CUS Pkg.) sdrc_d7 SDRAM data bit 7 IO NA D1 NA B4 B7 sdrc_d8 SDRAM data bit 8 IO NA B13 NA A10 B11 sdrc_d9 SDRAM data bit 9 IO NA A13 NA B11 C12 sdrc_d10 SDRAM data bit 10 IO NA B14 NA A11 B12 sdrc_d11 SDRAM data bit 11 IO NA A14 NA B12 D13 sdrc_d12 SDRAM data bit 12 IO NA B16 NA A16 C13 sdrc_d13 SDRAM data bit 13 IO NA A16 NA A17 B14 sdrc_d14 SDRAM data bit 14 IO NA B19 NA B17 A14 sdrc_d15 SDRAM data bit 15 IO NA A19 NA B18 B15 sdrc_d16 SDRAM data bit 16 IO NA B3 NA B7 C9 sdrc_d17 SDRAM data bit 17 IO NA A3 NA A5 E12 sdrc_d18 SDRAM data bit 18 IO NA B5 NA B6 B8 sdrc_d19 SDRAM data bit 19 IO NA A5 NA A6 B9 sdrc_d20 SDRAM data bit 20 IO NA B8 NA A8 C10 sdrc_d21 SDRAM data bit 21 IO NA A8 NA B9 B10 sdrc_d22 SDRAM data bit 22 IO NA B9 NA A9 D12 sdrc_d23 SDRAM data bit 23 IO NA A9 NA B10 E13 sdrc_d24 SDRAM data bit 24 IO NA B21 NA C21 E15 sdrc_d25 SDRAM data bit 25 IO NA A21 NA D20 D15 sdrc_d26 SDRAM data bit 26 IO NA D22 NA B19 C15 sdrc_d27 SDRAM data bit 27 IO NA D23 NA C20 B16 sdrc_d28 SDRAM data bit 28 IO NA E22 NA D21 C16 sdrc_d29 SDRAM data bit 29 IO NA E23 NA E20 D16 sdrc_d30 SDRAM data bit 30 IO NA G22 NA E21 B17 sdrc_d31 SDRAM data bit 31 IO NA G23 NA G21 B18 sdrc_ba0 SDRAM bank select 0 O NA AB21 NA AA18 C18 sdrc_ba1 SDRAM bank select 1 O NA AC21 NA V20 D18 sdrc_a0 SDRAM address bit 0 O NA N22 NA G20 A4 sdrc_a1 SDRAM address bit 1 O NA N23 NA K20 B4 sdrc_a2 SDRAM address bit 2 O NA P22 NA J20 D6 sdrc_a3 SDRAM address bit 3 O NA P23 NA J21 B3 sdrc_a4 SDRAM address bit 4 O NA R22 NA U21 B2 sdrc_a5 SDRAM address bit 5 O NA R23 NA R20 C3 sdrc_a6 SDRAM address bit 6 O NA T22 NA M21 E3 sdrc_a7 SDRAM address bit 7 O NA T23 NA M20 F6 sdrc_a8 SDRAM address bit 8 O NA U22 NA N20 E10 sdrc_a9 SDRAM address bit 9 O NA U23 NA K21 E9 sdrc_a10 SDRAM address bit 10 O NA V22 NA Y16 E7 sdrc_a11 SDRAM address bit 11 O NA V23 NA N21 G6 sdrc_a12 SDRAM address bit 12 O NA W22 NA R21 G7 sdrc_a13 SDRAM address bit 13 O NA W23 NA AA15 F7 sdrc_a14 SDRAM address bit 14 O NA Y22 NA Y12 F9 sdrc_ncs0 Chip select 0 O NA M22 NA T21 A19 sdrc_ncs1 Chip select 1 O NA M23 NA T20 B19 sdrc_clk Clock IO NA A11 NA A12 A10 sdrc_nclk Clock Invert O NA B11 NA B13 A11 sdrc_cke0 Clock Enable 0 O NA J22 NA Y15 B20 sdrc_cke1 Clock Enable 1 O NA J23 NA Y13 C20 sdrc_nras SDRAM Row Access O NA L23 NA V21 D19 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback PRODUCT PREVIEW SIGNAL NAME 93 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-6. External Memory Interfaces – SDRC Signals Description (continued) SIGNAL NAME DESCRIPTION TYPE (2) BALL BOTTOM (CBP Pkg.) BALL TOP (CBP Pkg.) BALL BOTTOM (CBC Pkg.) BALL TOP (CBC Pkg.) BALL BOTTOM (CUS Pkg.) sdrc_ncas SDRAM column address strobe O NA L22 NA U20 C19 sdrc_nwe SDRAM write enable O NA K23 NA Y18 A20 sdrc_dm 0 Data Mask 0 O NA C1 NA H1 B6 sdrc_ dm1 Data Mask 1 O NA A17 NA A14 B13 sdrc_ dm2 Data Mask 2 O NA A6 NA A4 A7 sdrc_dm 3 Data Mask 3 O NA A20 NA A18 A16 sdrc_dqs0 Data Strobe 0 IO NA B17 NA C2 A5 sdrc_dqs1 Data Strobe 1 IO NA NA NA B15 A13 sdrc_dqs2 Data Strobe 2 IO NA NA NA B8 A8 sdrc_dqs3 Data Strobe 3 IO NA B20 NA A19 A17 PRODUCT PREVIEW 94 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com 2.5.2 SPRS616B – JUNE 2010 – REVISED JULY 2010 Video Interfaces SIGNAL NAME DESCRIPTION TYPE (1) BALL BOTTOM (CBP Pkg.) BALL BOTTOM (CBC Pkg.) BALL BOTTOM (CUS Pkg.) cam_hs Camera Horizontal Synchronization IO A24 C23 A22 cam_vs Camera Vertical Synchronization IO A23 D23 E18 cam_xclka Camera Clock Output a O C25 C25 B22 cam_xclkb Camera Clock Output b O B26 E25 C22 cam_d0 Camera digital image data bit 0 I AG17 AE16 AB18 cam_d1 Camera digital image data bit 1 I AH17 AE15 AC18 cam_d2 Camera digital image data bit 2 I B24 A24 G19 cam_d3 Camera digital image data bit 3 I C24 B24 F19 cam_d4 Camera digital image data bit 4 I D24 D24 G20 cam_d5 Camera digital image data bit 5 I A25 C24 B21 cam_d6 Camera digital image data bit 6 I K28 P25 L24 cam_d7 Camera digital image data bit 7 I L28 P26 K24 cam_d8 Camera digital image data bit 8 I K27 N25 J23 cam_d9 Camera digital image data bit 9 I L27 N26 K23 cam_d10 Camera digital image data bit 10 I B25 D25 F21 cam_d11 Camera digital image data bit 11 I C26 E26 G21 cam_fld Camera field identification IO C23 B23 H24 cam_pclk Camera pixel clock I C27 C26 J19 cam_wen Camera Write Enable I B23 A23 F18 cam_strobe Flash strobe control signal O D25 D26 J20 cam_global_reset Global reset is used strobe synchronization IO C23 / AH3 / AA21 B23/M3/V17 H24/ AA2/ AB20 cam_shutter Mechanical shutter control signal O B23 / AF3 / T21 A23 / T19/ L3 F18/ Y2/ AA18 (1) PRODUCT PREVIEW Table 2-7. Video Interfaces – CAM Signals Description Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog). NOTE For more information, see Display Subsystem / Display Subsystem Environment section of the AM37x Technical Reference Manual (TRM). Table 2-8. Video Interfaces – DSS Signals Description SIGNAL NAME DESCRIPTION TYPE (1) BALL BOTTOM (CBP Pkg.) BALL BOTTOM (CBC Pkg.) BALL BOTTOM (CUS Pkg.) dss_pclk LCD Pixel Clock O D28 G25 G22 dss_hsync LCD Horizontal Synchronization O D26 K24 E22 dss_vsync LCD Vertical Synchronization O D27 M25 F22 dss_acbias AC bias control (STN) or pixel data enable (TFT) output O E27 F26 J21 dss_data0 LCD Pixel Data bit 0 O AG22 / H26 AE21 / M24 AC19 / G24 dss_data1 LCD Pixel Data bit 1 O AH22 / H25 AE22 / M26 AB19 / H23 dss_data2 LCD Pixel Data bit 2 O AG23 / E28 AE23 / F25 AD20 / D23 dss_data3 LCD Pixel Data bit 3 O AH23 / J26 AE24 / N24 AC20 / K22 dss_data4 LCD Pixel Data bit 4 O AG24 / AC27 AD23 / AC25 AD21 / V21 dss_data5 LCD Pixel Data bit 5 O AH24 / AC28 AD24 / AB25 AC21 / W21 dss_data6 LCD Pixel Data bit 6 O E26 G26 D24 dss_data7 LCD Pixel Data bit 7 O F28 H25 E23 dss_data8 LCD Pixel Data bit 8 O F27 H26 E24 dss_data9 LCD Pixel Data bit 9 O G26 J26 F23 dss_data10 LCD Pixel Data bit 10 O AD28 AC26 AC22 (1) Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog). TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 95 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-8. Video Interfaces – DSS Signals Description (continued) SIGNAL NAME DESCRIPTION TYPE (1) BALL BOTTOM (CBP Pkg.) BALL BOTTOM (CBC Pkg.) BALL BOTTOM (CUS Pkg.) dss_data11 LCD Pixel Data bit 11 O AD27 AD26 AC23 dss_data12 LCD Pixel Data bit 12 O AB28 AA25 AB22 dss_data13 LCD Pixel Data bit 13 O AB27 Y25 Y22 dss_data14 LCD Pixel Data bit 14 O AA28 AA26 W22 dss_data15 LCD Pixel Data bit 15 O AA27 AB26 V22 dss_data16 LCD Pixel Data bit 16 O G25 L25 J22 dss_data17 LCD Pixel Data bit 17 O H27 L26 G23 dss_data18 LCD Pixel Data bit 18 O H26 / AH26 M24 / F3 G24 / AB12 dss_data19 LCD Pixel Data bit 19 O H25 / AG26 M26 / D3 H23 / AC16 dss_data20 LCD Pixel Data bit 20 O E28 / AF18 F25 / E3 D23 / AD18 dss_data21 LCD Pixel Data bit 21 O J26 / AF19 N24 / E4 K22 / AC17 dss_data22 LCD Pixel Data bit 22 O AC27 / AE21 AC25 / G23 V21 / AB16 dss_data23 LCD Pixel Data bit 23 O AC28 / AF21 AB25 / D4 W21 / AA15 Table 2-9. Video Interfaces – RFBI Signals Description PRODUCT PREVIEW SIGNAL NAME DESCRIPTION TYPE (1) BALL BOTTOM (CBP Pkg.) BALL BOTTOM (CBC Pkg.) BALL BOTTOM (CUS Pkg.) SUBSYSTEM PIN MULTIPLEXING (2) rfbi_a0 RFBI command/data control O E27 F26 J21 dss_acbias rfbi_cs0 1st LCD chip select O D26 K24 E22 dss_hsync rfbi_da0 RFBI data bus 0 IO AG22 / H26 AE21 / M24 AC19 / G24 dss_data0 rfbi_da1 RFBI data bus 1 IO AH22 / H25 AE22 / M26 AB19 / H23 dss_data1 rfbi_da2 RFBI data bus 2 IO AG23 / E28 AE23 / F25 AD20 / D23 dss_data2 rfbi_da3 RFBI data bus 3 IO AH23 / J26 AE24 / N24 AC20 / K22 dss_data3 rfbi_da4 RFBI data bus 4 IO AG24 / AC27 AD23 / AC25 AD21 / V21 dss_data4 rfbi_da5 RFBI data bus 5 IO AH24 / AC28 AD24 / AB25 AC21 / W21 dss_data5 rfbi_da6 RFBI data bus 6 IO E26 G26 D24 dss_data6 rfbi_da7 RFBI data bus 7 IO F28 H25 E23 dss_data7 rfbi_da8 RFBI data bus 8 IO F27 H26 E24 dss_data8 rfbi_da9 RFBI data bus 9 IO G26 J26 F23 dss_data9 rfbi_da10 RFBI data bus 10 IO AD28 AC26 AC22 dss_data10 rfbi_da11 RFBI data bus 11 IO AD27 AD26 AC23 dss_data11 rfbi_da12 RFBI data bus 12 IO AB28 AA25 AB22 dss_data12 rfbi_da13 RFBI data bus 13 IO AB27 Y25 Y22 dss_data13 rfbi_da14 RFBI data bus 14 IO AA28 AA26 W22 dss_data14 rfbi_da15 RFBI data bus 15 IO AA27 AB26 V22 dss_data15 rfbi_rd Read enable for RFBI O D28 G25 G22 dss_pclk rfbi_wr Write Enable for RFBI O D27 M25 F22 dss_vsync rfbi_te_vsync 0 tearing effect removal and Vsync input from 1st LCD I G25 L25 J22 dss_data16 rfbi_hsync0 Hsync for 1st LCD I H27 L26 G23 dss_data17 rfbi_te_vsync 1 tearing effect removal and Vsync input from 2nd LCD I H26 / AH26 M24 / F3 G24 / AB12 dss_data18 rfbi_hsync1 Hsync for 2nd LCD I H25 / AG26 M26 / D3 H23 / AC16 dss_data19 rfbi_cs1 2nd LCD chip select O E28 / AF18 F25 / E3 D23 / AD18 dss_data20 (1) (2) 96 Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog). The subsystem pin multiplexing options are not described in Table 2-1 and Table 2-4. TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 2-10. Video Interfaces – TV Signals Description SIGNAL NAME DESCRIPTION TYPE (1) BALL BOTTOM (CBP Pkg.) BALL BOTTOM (CBC Pkg.) BALL BOTTOM (CUS Pkg.) W26 AB24 cvideo1_out TV analog output Composite: cvideo1_out AO Y28 cvideo2_out TV analog output S-VIDEO: cvideo2_out AO W28 V26 AA23 cvideo1_vfb cvideo1_vfb: Feedback through external resistor to composite AO Y27 W25 AB23 cvideo2_vfb cvideo2_vfb: Feedback through external resistor to S-VIDEO AO W27 U24 Y23 cvideo1_rset cvideo1 input reference current resistor setting AIO W26 V23 Y24 Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog). PRODUCT PREVIEW (1) TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 97 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 2.5.3 www.ti.com Serial Communication Interfaces For more information, see HDQ/1-Wire / HDQ/1-Wire Environment section of the AM37x Technical Reference Manual (TRM). Table 2-11. Serial Communication Interfaces – HDQ/1-Wire Signals Description SIGNAL NAME hdq_sio (1) DESCRIPTION Bidirectional HDQ 1-Wire control and data Interface. Output is open drain. TYPE (1) BALL BOTTOM (CBP Pkg.) BALL BOTTOM (CBC Pkg.) BALL BOTTOM (CUS Pkg.) IOD J25 J23 A24 Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog). For more information, see Multimaster High-Speed I2C Controller / HS I2C Environment section of the AM37x Technical Reference Manual (TRM). Table 2-12. Serial Communication Interfaces – I2C Signals Description SIGNAL NAME DESCRIPTION TYPE (1) BALL BOTTOM (CBP Pkg.) BALL BOTTOM (CBC Pkg.) BALL BOTTOM (CUS Pkg.) INTER-INTEGRATED CIRCUIT INTERFACE (I2C1) PRODUCT PREVIEW i2c1_scl I2C Master Serial clock. Output is open drain. OD K21 J25 K20 i2c1_sda I2C Serial Bidirectional Data. Output is open drain. IOD J21 J24 K21 INTER-INTEGRATED CIRCUIT INTERFACE (I2C3) i2c3_scl I2C Master Serial clock. Output is open drain. OD AF14 AB4 AC13 i2c3_sda I2C Serial Bidirectional Data. Output is open drain. IOD AG14 AC4 AC12 i2c3_sccbe Serial Camera Control Bus Enable OD J25 J23 A24 INTER-INTEGRATED CIRCUIT INTERFACE (I2C2) i2c2_scl I2C Master Serial clock. Output is open drain. OD AF15 C2 AC15 i2c2_sda I2C Serial Bidirectional Data. Output is open drain. IOD AE15 C1 AC14 i2c2_sccbe Serial Camera Control Bus Enable OD J25 J23 A24 (1) Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog). For more information, see Power Reset and Clock Management / PRCM Introduction to Power Management / SmartReflex Voltage-Control Overview section of the AM37x Technical Reference Manual (TRM). Table 2-13. Serial Communication Interfaces – SmartReflex Signals Description (1) SIGNAL NAME DESCRIPTION TYPE (2) BALL BOTTOM (CBP Pkg.) BALL BOTTOM (CBC Pkg.) BALL BOTTOM (CUS Pkg.) INTER-INTEGRATED CIRCUIT INTERFACE (I2C4) i2c4_scl I2C Master Serial clock. Output is open drain. OD AD26 AD15 Y16 i2c4_sda I2C Serial Bidirectional Data. Output is open drain. IOD AE26 W16 Y15 (1) (2) 98 For more information on SmartReflex voltage control, see the PRCM chapter of the AM37x Technical Reference Manual (TRM). Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog). TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 For more information, see Multi-Channel Buffered Serial Port / McBSP Environment section of the AM37x Technical Reference Manual (TRM). Table 2-14. Serial Communication Interfaces – McBSP LP Signals Description SIGNAL NAME TYPE (1) DESCRIPTION BALL BOTTOM (CBP Pkg.) BALL BOTTOM (CBC Pkg.) BALL BOTTOM (CUS Pkg.) MULTICHANNEL SERIAL (McBSP LP 1) mcbsp1_dr Received serial data I U21 T20 Y18 mcbsp1_clkr Receive Clock IO Y8 / Y21 U19 / H3 V7 / W19 mcbsp1_fsr Receive frame synchronization IO AA21 V17 AB20 mcbsp1_dx Transmitted serial data O V21 U17 W18 mcbsp1_clkx Transmit clock IO W21 T17 V18 mcbsp1_fsx Transmit frame synchronization IO K26 P20 AA19 mcbsp_clks External clock input (shared by McBSP1, 2, 3, 4, and 5) I T21 T19 AA18 mcbsp2_dr Received serial data I R21 T18 V19 mcbsp2_dx Transmitted serial data O M21 R19 R20 mcbsp2_clkx Combined serial clock IO N21 R18 T21 mcbsp2_fsx Combined frame synchronization IO P21 U18 V20 PRODUCT PREVIEW MULTICHANNEL SERIAL (McBSP LP 2) MULTICHANNEL SERIAL (McBSP LP 3) mcbsp3_dr Received serial data I AE6 / AB25 / U21 T20 / AA24 / N3 V5 / Y18 mcbsp3_dx Transmitted serial data O AF6 / AB26 / V21 U17 / Y24 / P3 V6 / W18 mcbsp3_clkx Combined serial clock IO AF5 / AA25 / W21 T17 / AD22 / U3 W4 / V18 mcbsp3_fsx Combined frame synchronization IO AE5 / AD25 / K26 P20 / AD21 / W3 V4 / AA19 MULTICHANNEL SERIAL (McBSP LP 4) mcbsp4_dr Received serial data I R8 / AD1 C4 / U4 G5 mcbsp4_dx Transmitted serial data O P8 / AD2 B5 / R3 F3 mcbsp4_clkx Combined serial clock IO T8 / AE1 B4 / V3 F4 mcbsp4_fsx Combined frame synchronization IO N8 / AC1 C5 / T3 G4 MULTICHANNEL SERIAL (McBSP LP 5) mcbsp5_dr Received serial data I AE11 Y3 AC5 mcbsp5_dx Transmitted serial data O AF13 AE3 AC8 mcbsp5_clkx Combined serial clock IO AF10 AB2 AC1 mcbsp5_fsx Combined frame synchronization IO AH9 AB1 AD2 (1) Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog) For more information, see Multichannel SPI / McSPI Environment section of the AM37x Technical Reference Manual (TRM). Table 2-15. Serial Communication Interfaces – McSPI Signals Description SIGNAL NAME DESCRIPTION TYPE (1) BALL BOTTOM (CBP Pkg.) BALL BOTTOM (CBC Pkg.) BALL BOTTOM (CUS Pkg.) MULTICHANNEL SERIAL PORT INTERFACE (McSPI1) mcspi1_clk SPI Clock IO AB3 P9 T5 mcspi1_simo Slave data in, master data out IO AB4 P8 R4 mcspi1_somi Slave data out, master data in IO AA4 P7 T4 mcspi1_cs0 SPI Enable 0, polarity configured by software IO AC2 R7 T6 mcspi1_cs1 SPI Enable 1, polarity configured by software O AC3 R8 NA mcspi1_cs2 SPI Enable 2, polarity configured by software O AB1 R9 NA (1) Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog) TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 99 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-15. Serial Communication Interfaces – McSPI Signals Description (continued) DESCRIPTION TYPE (1) BALL BOTTOM (CBP Pkg.) BALL BOTTOM (CBC Pkg.) BALL BOTTOM (CUS Pkg.) SPI Enable 3, polarity configured by software O AB2 T8 R5 SIGNAL NAME mcspi1_cs3 MULTICHANNEL SERIAL PORT INTERFACE (McSPI2) mcspi2_clk SPI Clock IO AA3 W7 N5 mcspi2_simo Slave data in, master data out IO Y2 W8 N4 mcspi2_somi Slave data out, master data in IO Y3 U8 N3 mcspi2_cs0 SPI Enable 0, polarity configured by software IO Y4 V8 M5 mcspi2_cs1 SPI Enable 1, polarity configured by software O V3 V9 M4 MULTICHANNEL SERIAL PORT INTERFACE (McSPI3) mcspi3_clk SPI Clock IO H26 / AE2 / AE13 W10 / M24 / AA3 G24 / Y1 / AD8 mcspi3_simo Slave data in, master data out IO H25 / AG5 / AF11 R10 / M26 / AC3 H23 / AB5 / AD6 mcspi3_somi Slave data out, master data in IO E28 / AH5 / AG12 F25 / T10 / AD4 D23 / AB3 / AC6 mcspi3_cs0 SPI Enable 0, polarity configured by software IO J26 / AF4 / AH12 U9 / N24 / AD3 K22 / V3 / AC7 mcspi3_cs1 SPI Enable 1, polarity configured by software O AC27 / AG4 / AH14 AC25 / U10 / AD2 V21 / W3 / AD9 PRODUCT PREVIEW MULTICHANNEL SERIAL PORT INTERFACE (McSPI4) mcspi4_clk SPI Clock IO Y8 / Y21 U19 / H3 V7 / W19 mcspi4_simo Slave data in, master data out IO V21 U17 W18 mcspi4_somi Slave data out, master data in IO U21 T20 Y18 mcspi4_cs0 SPI Enable 0, polarity configured by software IO K26 P20 AA19 For more information, see UART/IrDA/CIR / UART/IrDA/CIR Environment section of the AM37x Technical Reference Manual (TRM). Table 2-16. Serial Communication Interfaces – UARTs Signals Description SIGNAL NAME DESCRIPTION TYPE (1) BALL BOTTOM (CBP Pkg.) BALL BOTTOM (CBC Pkg.) BALL BOTTOM (CUS Pkg.) AC19 / AC2 / AA18 UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART1) uart1_cts UART1 Clear To Send I AG22 / W8 / T21 AE21 / T19 / W2 uart1_rts UART1 Request To Send O AH22 / AA9 AE22 / R2 W6 / AB19 uart1_rx UART1 Receive data I F28 / Y8 / AE7 H3 / H25 / AE4 E23 / V7 / AC3 uart1_tx UART1 Transmit data O E26 / AA8 L4 / G26 D24 / W7 UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART2) uart2_cts UART2 Clear To Send I AF6 / AB26 / U26 Y24/ P3/ W20 V6/ U23 uart2_rts UART2 Request To Send O AE6 / AB25 / U27 AA24/ N3/ V18 V5/ U24 uart2_rx UART2 Receive data I AE5 / AD25/ U28 W3/ AD21/ Y20 T23/ V4 uart2_tx UART2 Transmit data O AF5 / AA25/ T27 U3/AD22/V20 T24/ W4 H18 / U26 W20 / F23 A23 / U23 UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART3) / IrDA uart3_cts_rctx UART3 Clear To Send (input), Remote TX (output) IO uart3_rts_sd UART3 Request To Send, IR enable O H19 / U27 V18 / F24 B23 / U24 uart3_rx_irrx UART3 Receive data, IR and Remote RX I AG24 / H20 / U28 / F27 AD23 / Y20 / H24/ H26 AD21 / B24 / T23 / E24 uart3_tx_irtx UART3 Transmit data, IR TX O AH24 / H21 / T27/ G26 AD24 / V20 / J29 / G24 AC21 / C23 / T24/ F23 UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART4) / IrDA uart4_rx UART4 Receive data I J8 C6 NA uart4_tx UART4 Transmit data O K8 B3 NA (1) 100 Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog) TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 For more information, see High-Speed USB Host Subsystem and High-Speed USB OTG Controller / High-Speed USB Host Subsystem / High-Speed USB Host Subsystem Environment section of the AM37x Technical Reference Manual (TRM). Table 2-17. Serial Communication Interfaces – USB Signals Description SIGNAL NAME TYPE (1 DESCRIPTION ) BALL BOTTOM (CBP Pkg.) BALL BOTTOM (CBC Pkg.) BALL BOTTOM (CUS Pkg.) hsusb0_clk Dedicated for external transceiver 60-MHz clock input to PHY I T28 W19 R21 hsusb0_stp Dedicated for external transceiver Stop signal O T25 U20 R23 hsusb0_dir Dedicated for external transceiver Data direction control from PHY I R28 V19 P23 hsusb0_nxt Dedicated for external transceiver Next signal from PHY I T26 W18 R22 hsusb0_data0 Dedicated for external transceiver Bidirectional data bus IO T27 V20 T24 hsusb0_data1 Dedicated for external transceiver Bidirectional data bus IO U28 Y20 T23 hsusb0_data2 Dedicated for external transceiver Bidirectional data bus IO U27 V18 U24 hsusb0_data3 Dedicated for external transceiver Bidirectional data bus IO U26 W20 U23 hsusb0_data4 Dedicated for external transceiver Bidirectional data bus additional signals for 12-pin ULPI operation IO U25 W17 W24 hsusb0_data5 Dedicated for external transceiver Bidirectional data bus additional signals for 12-pin ULPI operation IO V28 Y18 V23 hsusb0_data6 Dedicated for external transceiver Bidirectional data bus additional signals for 12-pin ULPI operation IO V27 Y19 W23 hsusb0_data7 Dedicated for external transceiver Bidirectional data bus additional signals for 12-pin ULPI operation IO V26 Y17 T22 mm3_rxdm Vminus receive data (not used in 3- or 4-pin configurations) IO AE3 K3 NA (2) mm3_rxdp Vplus receive data (not used in 3- or 4-pin configurations) IO AH3 M3 NA (2) mm3_rxrcv Differential receiver signal input (not used in 3-pin mode) IO AD1 U4 NA mm3_txse0 Single-ended zero. Used as VM in 4-pin VP_VM mode. IO AE1 V3 NA mm3_txdat USB data. Used as VP in 4-pin VP_VM mode. IO AD2 R3 NA mm3_txen_n Transmit enable IO AC1 T3 NA mm2_rxdm Vminus receive data (not used in 3- or 4-pin configurations) IO AH7 AF7 AD11 mm2_rxdp Vplus receive data (not used in 3- or 4-pin configurations) IO AF7 AF6 AC9 mm2_rxrcv Differential receiver signal input (not used in 3-pin mode) IO AG8 AF9 AC11 mm2_txse0 Single-ended zero. Used as VM in 4-pin VP_VM mode. IO AH8 AE9 AD12 mm2_txdat USB data. Used as VP in 4-pin VP_VM mode. IO AB2 T8 R5 mm2_txen_n Transmit enable IO V3 V9 M4 mm1_rxdm Vminus receive data (not used in 3- or 4-pin configurations) IO AG9 V2 AD5 mm1_rxdp Vplus receive data (not used in 3- or 4-pin configurations) IO AF10 AB2 AC1 mm1_rxrcv Differential receiver signal input (not used in 3-pin mode) IO AF11 AC3 AD6 mm1_txse0 Single-ended zero. Used as VM in 4-pin VP_VM mode. IO AG12 AD4 AC6 mm1_txdat USB data. Used as VP in 4-pin VP_VM mode. IO AH12 AD3 AC7 mm1_txen_n Transmit enable IO AH14 AD2 AD9 hsusb2_clk Dedicated for external transceiver 60-MHz clock input to PHY O AE7 AE4 AC3 hsusb2_stp Dedicated for external transceiver Stop signal O AF7 AF6 AC9 hsusb2_dir Dedicated for external transceiver Data direction control from PHY I AG7 AE6 AC10 hsusb2_nxt Dedicated for external transceiver Next signal from PHY I AH7 AF7 AD11 hsusb2_data0 Dedicated for external transceiver Bidirectional data bus IO AG8 AF9 AC11 hsusb2_data1 Dedicated for external transceiver Bidirectional data bus IO AH8 AE9 AD12 PRODUCT PREVIEW HIGH-SPEED UNIVERSAL SERIAL BUS INTERFACE (HSUSB0) MM_FSUSB3 MM_FSUSB2 MM_FSUSB1 HSUSB2 (1) (2) Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog) This pin is not supported on the CUS package. TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 101 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-17. Serial Communication Interfaces – USB Signals Description (continued) SIGNAL NAME TYPE (1 DESCRIPTION ) BALL BOTTOM (CBP Pkg.) BALL BOTTOM (CBC Pkg.) BALL BOTTOM (CUS Pkg.) hsusb2_data2 Dedicated for external transceiver Bidirectional data bus IO AB2 T8 R5 hsusb2_data3 Dedicated for external transceiver Bidirectional data bus IO V3 V9 M4 hsusb2_data4 Dedicated for external transceiver Bidirectional data bus additional signals for 12-pin ULPI operation IO Y2 W8 N4 hsusb2_data5 Dedicated for external transceiver Bidirectional data bus additional signals for 12-pin ULPI operation IO Y3 U8 N3 hsusb2_data6 Dedicated for external transceiver Bidirectional data bus additional signals for 12-pin ULPI operation IO Y4 V8 M5 hsusb2_data7 Dedicated for external transceiver Bidirectional data bus additional signals for 12-pin ULPI operation IO AA3 W7 N5 hsusb1_clk Dedicated for external transceiver 60-MHz clock input to PHY O AE10 AB3 AD3 hsusb1_stp Dedicated for external transceiver Stop signal O AF10 AB2 AC1 hsusb1_dir Dedicated for external transceiver data direction control from PHY I AF9 AA4 AC4 hsusb1_nxt Dedicated for external transceiver Next signal from PHY I AG9 V2 AD5 hsusb1_data0 Dedicated for external transceiver Bidirectional data bus IO AF11 AC3 AD6 hsusb1_data1 Dedicated for external transceiver Bidirectional data bus IO AG12 AD4 AC6 hsusb1_data2 Dedicated for external transceiver Bidirectional data bus IO AH12 AD3 AC7 hsusb1_data3 Dedicated for external transceiver Bidirectional data bus IO AH14 AD2 AD9 hsusb1_data4 Dedicated for external transceiver Bidirectional data bus additional signals for 12-pin ULPI operation IO AE11 Y3 AC5 hsusb1_data5 Dedicated for external transceiver Bidirectional data bus additional signals for 12-pin ULPI operation IO AH9 AB1 AD2 hsusb1_data6 Dedicated for external transceiver Bidirectional data bus additional signals for 12-pin ULPI operation IO AF13 AE3 AC8 hsusb1_data7 Dedicated for external transceiver Bidirectional data bus additional signals for 12-pin ULPI operation IO AE13 AA3 AD8 HSUSB1 PRODUCT PREVIEW 102 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com 2.5.4 SPRS616B – JUNE 2010 – REVISED JULY 2010 Removable Media Interfaces For more information, see MMC/SDIO Card Interface / MMC/SDIO Environment section of the AM37x Technical Reference Manual (TRM). Table 2-18. Removable Media Interfaces – MMC/SDIO Signals Description SIGNAL NAME TYPE (1 DESCRIPTION ) BALL BOTTOM (CBP Pkg.) BALL BOTTOM (CBC Pkg.) BALL BOTTOMa (CUS Pkg.) M23 MULTIMEDIA MEMORY CARD (MMC1) / SECURE DIGITAL IO (SDIO1) mmc1_clk MMC/SD Output Clock IO N28 N19 mmc1_cmd MMC/SD command signal O M27 L18 L23 mmc1_dat0 MMC/SD Card Data bit 0 / SPI Serial Input IO N27 M19 M22 mmc1_dat1 MMC/SD Card Data bit 1 IO N26 M18 M21 mmc1_dat2 MMC/SD Card Data bit 2 IO N25 K18 M20 mmc1_dat3 MMC/SD Card Data bit 3 IO P28 N20 N23 mmc2_clk MMC/SD Output Clock IO AE2 W10 Y1 mmc2_dir_dat0 Direction control for DAT0 signal case an external transceiver used O AE4 V10 AB2 mmc2_dir_dat1 Direction control for DAT1 and DAT3 signals case an external transceiver used O AH3 M3 AA2 mmc2_dir_dat2 Direction control for DAT2 signal case an external transceiver used O AF19 E4 AC17 mmc2_dir_dat3 Direction control for DAT4, DAT5, DAT6, and DAT7 signals case an external transceiver used O AE21 G3 AB16 mmc2_clkin MMC/SD input Clock I AE3 K3 AA1 mmc2_dat0 MMC/SD Card Data bit 0 IO AH5 T10 AB3 mmc2_dat1 MMC/SD Card Data bit 1 IO AH4 T9 Y3 mmc2_dat2 MMC/SD Card Data bit 2 IO AG4 U10 W3 mmc2_dat3 MMC/SD Card Data bit 3 IO AF4 U9 V3 mmc2_dat4 MMC/SD Card Data bit 4 IO AE4 / AB3 P9 / V10 AB2 / T5 mmc2_dat5 MMC/SD Card Data bit 5 IO AH3 / AB4 M3/P8 AA2 / R4 mmc2_dat6 MMC/SD Card Data bit 6 IO AF3 / AA4 L3/P7 Y2 / T4 mmc2_dat7 MMC/SD Card Data bit 7 IO AE3 / AC2 K3/R7 AA1 / T6 mmc2_dir_cmd Direction control for CMD signal case an external transceiver is used O AF3 L3 Y2 mmc2_cmd MMC/SD command signal O AG5 R10 AB5 AC1 PRODUCT PREVIEW MULTIMEDIA MEMORY CARD (MMC2) / SECURE DIGITAL IO (SDIO2) MULTIMEDIA MEMORY CARD (MMC3) / SECURE DIGITAL IO (SDIO3) mmc3_clk MMC/SD Output Clock IO AB1 / AF10 R9 / AB2 mmc3_cmd MMC/SD command signal O AC3 / AE10 R8 / AB3 AD3 mmc3_dat0 MMC/SD Card Data bit 0 / SPI Serial Input IO AE4 / AE11 V10 / Y3 AB2 / AC5 mmc3_dat1 MMC/SD Card Data bit 1 IO AH3 / AH9 M3/AB1 AA2 / AD2 mmc3_dat2 MMC/SD Card Data bit 2 IO AF3 / AF13 L3/AE3 Y2 / AC8 mmc3_dat3 MMC/SD Card Data bit 3 IO AE3 / AE13 K3/AA3 AA1 / AD8 mmc3_dat4 MMC/SD Card Data bit 4 IO AF11 AC3 AD6 mmc3_dat5 MMC/SD Card Data bit 5 IO AG9 V2 AD5 mmc3_dat6 MMC/SD Card Data bit 6 IO AF9 AA4 AC4 mmc3_dat7 MMC/SD Card Data bit 7 IO AH14 AD2 AD9 (1) Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog) TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 103 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 2.5.5 www.ti.com Test Interfaces Table 2-19. Test Interfaces – ETK Signals Description SIGNAL NAME PRODUCT PREVIEW (1) 104 DESCRIPTION TYPE (1) BALL BOTTOM (CBP Pkg.) BALL BOTTOM (CBC Pkg.) BALL BOTTOM (CUS Pkg.) etk_ctl ETK trace ctl O AE10 AB3 AD3 etk_clk ETK trace clock O AF10 AB2 AC1 etk_d0 ETK data 0 O AF11 AC3 AD6 etk_d1 ETK data 1 O AG12 AD4 AC6 etk_d2 ETK data 2 O AH12 AD3 AC7 etk_d3 ETK data 3 O AE13 AA3 AD8 etk_d4 ETK data 4 O AE11 Y3 AC5 etk_d5 ETK data 5 O AH9 AB1 AD2 etk_d6 ETK data 6 O AF13 AE3 AC8 etk_d7 ETK data 7 O AH14 AD2 AD9 etk_d8 ETK data 8 O AF9 AA4 AC4 etk_d9 ETK data 9 O AG9 V2 AD5 etk_d10 ETK data 10 O AE7 AE4 AC3 etk_d11 ETK data 11 O AF7 AF6 AC9 etk_d12 ETK data 12 O AG7 AE6 AC10 etk_d13 ETK data 13 O AH7 AF7 AD11 etk_d14 ETK data 14 O AG8 AF9 AC11 etk_d15 ETK data 15 O AH8 AE9 AD12 Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog) TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 2-20. Test Interfaces – JTAG Signals Description (1) SIGNAL NAME DESCRIPTION TYPE (1) BALL BOTTOM (CBP Pkg.) BALL BOTTOM (CBC Pkg.) BALL BOTTOM (CUS Pkg.) jtag_ntrst Test Reset I AA17 U15 AB7 jtag_tck Test Clock I AA13 V14 AB6 jtag_rtck ARM Clock Emulation O AA12 W13 AA7 jtag_tms_tmsc Test Mode Select IO AA18 V15 AA9 AB10 jtag_tdi Test Data Input I AA20 U16 jtag_tdo Test Data Output O AA19 Y13 AB9 jtag_emu0 Test emulation 0 IO AA11 Y15 AC24 jtag_emu1 Test emulation 1 IO AA10 Y14 AD24 Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog) TYPE (1) BALL BOTTOM (CBP Pkg.) BALL BOTTOM (CBC Pkg.) BALL BOTTOM (CUS Pkg.) SUBSYSTEM SIGNAL MULTIPLEXING (2) Serial clock dual edge O AF7 / AA11 / AG8 AF6 / Y15 / AF9 AC9 / AC24 / AC11 etk_d11 / jtag_emu0 / etk_d14 sdti_txd0 Serial data out (System Trace messages) O AG7 / AA10 / AA11 AE6 / Y14 / Y15 AC10 / AD24 / AC24 etk_d12 / jtag_emu1 / jtag_emu0 sdti_txd1 Serial data out (System Trace messages) O AH7 / AA10 AF7 / Y14 AD11 / AD24 etk_d13 / jtag_emu1 sdti_txd2 Serial data out (System Trace messages) O AG8 AF9 AC11 etk_d14 sdti_txd3 Serial data out (System Trace messages) O AH8 AE9 AD12 etk_d15 SIGNAL NAME sdti_clk (1) (2) DESCRIPTION Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog) The subsystem pin multiplexing options are not described in Table 2-1 and Table 2-4 Table 2-22. Test Interfaces – HWDBG Signals Description (1) SIGNAL NAME DESCRIPTION TYPE (1) hw_dbg0 Debug signal 0 hw_dbg1 Debug signal 1 hw_dbg2 BALL BOTTOM (CBP Pkg.) BALL BOTTOM (CBC Pkg.) BALL BOTTOM (CUS Pkg.) O A24 / AF10 C23/AB2 AC1/A22 O A23 / AE10 D23/AB3 AD3/E18 Debug signal 2 O C27/ AF11 C26/AC3 AD6/J19 hw_dbg3 Debug signal 3 O C23 / AG12 B23/AD4 AC6/H24 hw_dbg4 Debug signal 4 O B24 / AH12 A24/AD3 AC7/G19 hw_dbg5 Debug signal 5 O C24 / AE13 B24/AA3 AD8/F19 hw_dbg6 Debug signal 6 O D24 / AE11 D24/Y3 AC5/G20 hw_dbg7 Debug signal 7 O A25 / AH9 C24/AB1 AD2/B21 hw_dbg8 Debug signal 8 O B25 / AF13 D25/AE3 AC8/F21 hw_dbg9 Debug signal 9 O C26 / AH14 E26/AD2 AD9/G21 hw_dbg10 Debug signal 10 O B23 / AF9 A23/AA4 AC4/F18 hw_dbg11 Debug signal 11 O D25 / AG9 D26/V2 AD5/J20 hw_dbg12 Debug signal 12 O D28 / AE7 G25/AE4 AC3/G22 hw_dbg13 Debug signal 13 O D26 / AF7 K24/AF6 AC9/E22 hw_dbg14 Debug signal 14 O E26 / AG7 G26/AE6 AC10/D24 hw_dbg15 Debug signal 15 O F28 / AH7 H25/AF7 AD11/E23 hw_dbg16 Debug signal 16 O F27 / AG8 H26/AF9 AC11/E24 hw_dbg17 Debug signal 17 O G26 / AH8 J26/AE9 AD12/F23 Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog) TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 105 PRODUCT PREVIEW Table 2-21. Test Interfaces – SDTI Signals Description AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 2.5.6 www.ti.com Miscellaneous For more information, see Timers / GP Timers / GP Timers Environment section of the AM37x Technical Reference Manual (TRM). Table 2-23. Miscellaneous – GP Timer Signals Description SIGNAL NAME DESCRIPTION TYPE (1) BALL BOTTOM (CBP Pkg.) BALL BOTTOM (CBC Pkg.) BALL BOTTOM (CUS Pkg.) gpt_8_pwm_evt PWM or event for GP timer 8 IO N8 / AD25 / V3 C5 / AD21/ V9 G4/ M4 gpt_9_pwm_evt PWM or event for GP timer 9 IO T8 / AB26 / Y2 B4 / W8 / Y24 F4 / N4 gpt_10_pwm_evt PWM or event for GP timer 10 IO R8 / AB25 / Y3 C4 / U8 / AA24 G5 / N3 gpt_11_pwm_evt PWM or event for GP timer 11 IO P8 / AA25 / Y4 B5 / V8 / AD22 F3 / M5 (1) Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog) PRODUCT PREVIEW 106 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com 2.5.7 SPRS616B – JUNE 2010 – REVISED JULY 2010 General-Purpose IOs For more information, see General-Purpose Interface / General-Purpose Interface Environment section of the AM37x Technical Reference Manual (TRM). (1) (2) SIGNAL NAME DESCRIPTION TYPE (2) BALL BOTTOM (CBP Pkg.) gpio_0 General-purpose IO 0 IO gpio_1 General-purpose IO 1 IO gpio_2 General-purpose IO 2 gpio_3 gpio_4 BALL BOTTOM (CBC Pkg.) BALL BOTTOM (CUS Pkg.) AF26 V16 W16 AF25 W15 Y13 IO AH26 F3 AB12 General-purpose IO 3 IO AG26 D3 AC16 General-purpose IO 4 IO AE14 C3 AD17 gpio_5 General-purpose IO 5 IO AF18 E3 AD18 gpio_6 General-purpose IO 6 IO AF19 E4 AC17 gpio_7 General-purpose IO 7 IO AE21 G3 AB16 gpio_8 General-purpose IO 8 IO AF21 D4 AA15 gpio_9 General-purpose IO 9 IO AF22 V12 AD23 gpio_10 General-purpose IO 10 IO AG25 AE14 Y7 gpio_11 General-purpose IO 11 IO AA11 Y15 AC24 gpio_12 General-purpose IO 12 IO AF10 AB2 AC1 gpio_13 General-purpose IO 13 IO AE10 AB3 AD3 gpio_14 General-purpose IO 14 IO AF11 AC3 AD6 gpio_15 General-purpose IO 15 IO AG12 AD4 AC6 gpio_16 General-purpose IO 16 IO AH12 AD3 AC7 gpio_17 General-purpose IO 17 IO AE13 AA3 AD8 gpio_18 General-purpose IO 18 IO AE11 Y3 AC5 gpio_19 General-purpose IO 19 IO AH9 AB1 AD2 gpio_20 General-purpose IO 20 IO AF13 AE3 AC8 gpio_21 General-purpose IO 21 IO AH14 AD2 AD9 gpio_22 General-purpose IO 22 IO AF9 AA4 AC4 gpio_23 General-purpose IO 23 IO AG9 V2 AD5 gpio_24 General-purpose IO 24 IO AE7 AE4 AC3 gpio_25 General-purpose IO 25 IO AF7 AF6 AC9 gpio_26 General-purpose IO 26 IO AG7 AE6 AC10 gpio_27 General-purpose IO 27 IO AH7 AF7 AD11 gpio_28 General-purpose IO 28 IO AG8 AF9 AC11 gpio_29 General-purpose IO 29 IO AH8 AE9 AD12 gpio_30 General-purpose IO 30 IO AF24 AD7 Y10 gpio_31 General-purpose IO 31 IO AA10 Y14 AD24 gpio_34 General-purpose IO 34 IO N4 J2 K4 gpio_35 General-purpose IO 35 IO M4 H1 K3 gpio_36 General-purpose IO 36 IO L4 H2 K2 gpio_37 General-purpose IO 37 IO K4 G2 J4 gpio_38 General-purpose IO 38 IO T3 F1 J3 gpio_39 General-purpose IO 39 IO R3 F2 J2 gpio_40 General-purpose IO 40 IO N3 E1 J1 gpio_41 General-purpose IO 41 IO M3 E2 H1 gpio_42 General-purpose IO 42 IO L3 D1 H2 gpio_43 General-purpose IO 43 IO K3 D2 G2 gpio_44 General-purpose IO 44 IO H2 V1 R2 gpio_45 General-purpose IO 45 IO K2 Y1 T2 PRODUCT PREVIEW Table 2-24. General-Purpose IOs Signals Description (1) NA in table stands for "Not Applicable". Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog) TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 107 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-24. General-Purpose IOs Signals Description (continued) DESCRIPTION TYPE (2) gpio_46 General-purpose IO 46 IO gpio_47 General-purpose IO 47 IO gpio_48 General-purpose IO 48 IO R2 U1 T3 gpio_49 General-purpose IO 49 IO T2 P1 U2 gpio_50 General-purpose IO 50 IO W1 L2 V1 gpio_51 General-purpose IO 51 IO Y1 M2 V2 gpio_52 General-purpose IO 52 IO H3 AD1 NA gpio_53 General-purpose IO 53 IO V8 A3 NA gpio_54 General-purpose IO 54 IO U8 B6 D2 gpio_55 General-purpose IO 55 IO T8 B4 F4 gpio_56 General-purpose IO 56 IO R8 C4 G5 gpio_57 General-purpose IO 57 IO P8 B5 F3 gpio_58 General-purpose IO 58 IO N8 C5 G4 gpio_59 General-purpose IO 59 IO T4 N1 W2 gpio_60 General-purpose IO 60 IO G3 K2 K5 gpio_61 General-purpose IO 61 IO U3 J1 L1 gpio_62 General-purpose IO 62 IO H1 AC6 E1 gpio_63 General-purpose IO 63 IO L8 AC8 NA gpio_64 General-purpose IO 64 IO K8 B3 NA gpio_65 General-purpose IO 65 IO J8 C6 C2 gpio_66 General-purpose IO 66 IO D28 G25 G22 gpio_67 General-purpose IO 67 IO D26 K24 E22 gpio_68 General-purpose IO 68 IO D27 M25 F22 gpio_69 General-purpose IO 69 IO E27 F26 J21 gpio_70 General-purpose IO 70 IO AG22 AE21 AC19 gpio_71 General-purpose IO 71 IO AH22 AE22 AB19 gpio_72 General-purpose IO 72 IO AG23 AE23 AD20 gpio_73 General-purpose IO 73 IO AH23 AE24 AC20 gpio_74 General-purpose IO 74 IO AG24 AD23 AD21 gpio_75 General-purpose IO 75 IO AH24 AD24 AC21 gpio_76 General-purpose IO 76 IO E26 G26 D24 gpio_77 General-purpose IO 77 IO F28 H25 E23 gpio_78 General-purpose IO 78 IO F27 H26 E24 gpio_79 General-purpose IO 79 IO G26 J26 F23 gpio_80 General-purpose IO 80 IO AD28 AC26 AC22 gpio_81 General-purpose IO 81 IO AD27 AD26 AC23 gpio_82 General-purpose IO 82 IO AB28 AA25 AB22 gpio_83 General-purpose IO 83 IO AB27 Y25 Y22 gpio_84 General-purpose IO 84 IO AA28 AA26 W22 gpio_85 General-purpose IO 85 IO AA27 AB26 V22 gpio_86 General-purpose IO 86 IO G25 L25 J22 gpio_87 General-purpose IO 87 IO H27 L26 G23 gpio_88 General-purpose IO 88 IO H26 M24 G24 gpio_89 General-purpose IO 89 IO H25 M26 H23 gpio_90 General-purpose IO 90 IO E28 F25 D23 gpio_91 General-purpose IO 91 IO J26 N24 K22 gpio_92 General-purpose IO 92 IO AC27 AC25 V21 gpio_93 General-purpose IO 93 IO AC28 AB25 W21 gpio_94 General-purpose IO 94 IO A24 C23 A22 gpio_95 General-purpose IO 95 IO A23 D23 E18 gpio_96 General-purpose IO 96 IO C25 C25 B22 PRODUCT PREVIEW SIGNAL NAME 108 BALL BOTTOM (CBP Pkg.) BALL BOTTOM (CBC Pkg.) BALL BOTTOM (CUS Pkg.) P1 T1 U1 R1 U2 R3 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 2-24. General-Purpose IOs Signals Description (continued) (3) SIGNAL NAME DESCRIPTION TYPE (2) BALL BOTTOM (CBP Pkg.) BALL BOTTOM (CBC Pkg.) gpio_97 General-purpose IO 97 IO C27 C26 J19 gpio_98 General-purpose IO 98 IO C23 B23 H24 gpio_99 General-purpose IO 99 I AG17 AE16 AB18 gpio_100 General-purpose IO 100 I AH17 AE15 AC18 gpio_101 General-purpose IO 101 IO B24 A24 G19 gpio_102 General-purpose IO 102 IO C24 B24 F19 gpio_103 General-purpose IO 103 IO D24 D24 G20 gpio_104 General-purpose IO 104 IO A25 C24 B21 gpio_105 General-purpose IO 105 I K28 P25 L24 gpio_106 General-purpose IO 106 I L28 P26 K24 gpio_107 General-purpose IO 107 I K27 N25 J23 gpio_108 General-purpose IO 108 I L27 N26 K23 gpio_109 General-purpose IO 109 IO B25 D25 F21 gpio_110 General-purpose IO 110 IO C26 E26 G21 gpio_111 General-purpose IO 111 IO B26 E25 C22 gpio_112 General-purpose IO 112 I AG19 AD17 NA gpio_113 General-purpose IO 113 I AH19 AD16 NA gpio_114 General-purpose IO 114 I AG18 AE18 NA gpio_115 General-purpose IO 115 I AH18 AE17 NA gpio_116 General-purpose IO 116 IO P21 U18 V20 gpio_117 General-purpose IO 117 IO N21 R18 T21 gpio_118 General-purpose IO 118 IO R21 T18 V19 gpio_119 General-purpose IO 119 IO M21 R19 R20 gpio_120 General-purpose IO 120 IO N28 (3) / T28 W19 / N19 (3) M23 (3) / R21 gpio_121 General-purpose IO 121 IO M27 (3) / T25 U20 / L18 (3) L23 (3) / R23 gpio_122 General-purpose IO 122 IO N27 (3) / R28 V19 / M19 (3) M22 (3) / P23 gpio_123 General-purpose IO 123 IO N26 (3) M18 (3) M21 (3) gpio_124 General-purpose IO 124 IO N25 (3) / T26 W18 / K18 (3) M20 (3)/R22 gpio_125 General-purpose IO 125 IO P28 (3) / T27 V20 / N20 (3) N23 (3)/T24 gpio_126 General-purpose IO 126 IO D25 / P27 (3) M20 (3) / D26 J20 / N22 (3) gpio_127 General-purpose IO 127 IO P26 (3) P17 (3) NA (3) (3) gpio_128 General-purpose IO 128 IO R27 gpio_129 General-purpose IO 129 IO R25 (3) P18 P19 (3) gpio_130 General-purpose IO 130 IO AE2 / U28 Y20 / W10 Y1 / T23 gpio_131 General-purpose IO 131 IO AG5 / U27 V18 / R10 AB5 / U24 gpio_132 General-purpose IO 132 IO AH5 T10 AB3 gpio_133 General-purpose IO 133 IO AH4 T9 Y3 gpio_134 General-purpose IO 134 IO AG4 U10 W3 gpio_135 General-purpose IO 135 IO AF4 U9 V3 gpio_136 General-purpose IO 136 IO AE4 V10 AB2 gpio_137 General-purpose IO 137 IO AH3 M3 AA2 gpio_138 General-purpose IO 138 IO AF3 L3 Y2 gpio_139 General-purpose IO 139 IO AE3 K3 AA1 gpio_140 General-purpose IO 140 IO AF6 P3 V6 gpio_141 General-purpose IO 141 IO AE6 N3 V5 gpio_142 General-purpose IO 142 IO AF5 U3 W4 gpio_143 General-purpose IO 143 IO AE5 W3 V4 gpio_144 General-purpose IO 144 IO AB26 Y24 NA gpio_145 General-purpose IO 145 IO AB25 AA24 NA gpio_146 General-purpose IO 146 IO AA25 AD22 NA PRODUCT PREVIEW BALL BOTTOM (CUS Pkg.) NA P24 (3) The usage of this GPIO is strongly restricted. TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 109 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-24. General-Purpose IOs Signals Description (continued) DESCRIPTION TYPE (2) BALL BOTTOM (CBP Pkg.) BALL BOTTOM (CBC Pkg.) gpio_147 General-purpose IO 147 IO AD25 AD21 NA gpio_148 General-purpose IO 148 IO AA8 L4 W7 gpio_149 General-purpose IO 149 IO AA9 R2 W6 gpio_150 General-purpose IO 150 IO W8 W2 AC2 gpio_151 General-purpose IO 151 IO Y8 H3 V7 gpio_152 General-purpose IO 152 IO AE1 V3 NA gpio_153 General-purpose IO 153 IO AD1 U4 NA gpio_154 General-purpose IO 154 IO AD2 R3 NA gpio_155 General-purpose IO 155 IO AC1 T3 NA gpio_156 General-purpose IO 156 IO Y21 U19 W19 gpio_157 General-purpose IO 157 IO AA21 V17 AB20 gpio_158 General-purpose IO 158 IO V21 U17 W18 gpio_159 General-purpose IO 159 IO U21 T20 Y18 gpio_160 General-purpose IO 160 IO T21 T19 AA18 gpio_161 General-purpose IO 161 IO K26 P20 AA19 gpio_162 General-purpose IO 162 IO W21 T17 V18 gpio_163 General-purpose IO 163 IO H18 F23 A23 gpio_164 General-purpose IO 164 IO H19 F24 B23 gpio_165 General-purpose IO 165 IO H20 H24 B24 gpio_166 General-purpose IO 166 IO H21 G24 C23 gpio_167 General-purpose IO 167 IO B23 A23 F18 gpio_168 General-purpose IO 168 IO AF15 C2 AC15 gpio_169 General-purpose IO 169 IO U26 W20 U23 gpio_170 General-purpose IO 170 IO J25 J23 A24 gpio_171 General-purpose IO 171 IO AB3 P9 T5 gpio_172 General-purpose IO 172 IO AB4 P8 R4 gpio_173 General-purpose IO 173 IO AA4 P7 T4 gpio_174 General-purpose IO 174 IO AC2 R7 T6 gpio_175 General-purpose IO 175 IO AC3 R8 NA gpio_176 General-purpose IO 176 IO AB1 R9 NA gpio_177 General-purpose IO 177 IO AB2 T8 R5 gpio_178 General-purpose IO 178 IO AA3 W7 N5 gpio_179 General-purpose IO 179 IO Y2 W8 N4 gpio_180 General-purpose IO 180 IO Y3 U8 N3 gpio_181 General-purpose IO 181 IO Y4 V8 M5 gpio_182 General-purpose IO 182 IO V3 V9 M4 gpio_183 General-purpose IO 183 IO AE15 C1 AC14 gpio_184 General-purpose IO 184 IO AF14 AB4 AC13 gpio_185 General-purpose IO 185 IO AG14 AC4 AC12 gpio_186 General-purpose IO 186 IO AE22 W11 AA6 gpio_188 General-purpose IO 188 IO U25 W17 W24 gpio_189 General-purpose IO 189 IO V28 Y18 V23 gpio_190 General-purpose IO 190 IO V27 Y19 W23 gpio_191 General-purpose IO 191 IO V26 Y17 T22 PRODUCT PREVIEW SIGNAL NAME 110 TERMINAL DESCRIPTION BALL BOTTOM (CUS Pkg.) Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com 2.5.8 SPRS616B – JUNE 2010 – REVISED JULY 2010 Power Supplies Note: For more information, see Power Reset and Clock Management / PRCM Environment and the Power, Reset, and Clock Management / PRCM Functional Description / PRCM Voltage Management Functional Description sections of the AM37x TRM. SIGNAL NAME DESCRIPTION BALL BOTTOM (CBP Pkg.) BALL TOP (CBP Pkg.) BALL BOTTOM (CBC Pkg.) BALL TOP (CBC Pkg.) BALL BOTTOM (CUS Pkg.) vdd_mpu_iva ARM power domain Y9 / W9 / T9 / R9 / M9 / L9 / J9 / Y10 / U10 / T10 / R10 / N10 / M10 / L10 / J10 / Y11 / W11 / K11 / J11 / W12 / K13 / Y14 / K14 / J14 / Y15 / W15 / J15 NA H7/ N7/ U7/ V7/ N8/ G9/ L9/ M9/ W9/ Y9/ M10/ P10/ K11/ U11/ V11/ Y11/ G12/ D13/ U13 NA W13/ W12/ V13/ V12/ U13/ U12/ T8/ T7/ R8/ R7/ R6/ N8/ N7/ N6/ M12/ M8/ M7/ M6/ L12/ L11/ J10/ J9/ H10/ H9/ G10/ G9/F10 vdd_core Core power domain AC4 / J4 / H4 / D8 / AE9 / D9 / D15 / Y16 / AE18 / Y18 / W18 / K18 / J18 / AE19 / Y19 / U19 / T19 / N19 / M19 / J19 / Y20 / W20 / V20 / U20 / P20 / N20 / K20 / J20 / D22 / D23 / AE24 / M25 / L25 / E25 NA M7/ T7/ Y8/ G11/ Y12/ D15/ M17/ G18/ H20/ R20/ AC21 NA T20/ T19/ T18/ T17/ R19/ R18/ R17/ M15/ M14/ L15/ L14/ K19/ K18/ K17/ J18/ J17/ H13/ H12/ G13/ G12/ F13/ F12 cap_vddu_wkup_l ogic Wakeup/EMU/memor y domains, connect capacitor AA15 NA K14 NA Y12 vdda_dplls_dll Input power for the analog part of the MPU,CORE DPLLs and the DLL K15 NA K13 NA G18 vdda_dac Video DAC power plane V25 NA V25 NA AB13 vssa_dac Video DAC ground plane Y26 NA V24 NA AB15 vdds IO power plane AD3 / AD4 / W4 / AF8 / AE8 / AF16 / AE16 / AF23 / AE23 / F25 / F26 / AG27 NA G4/ M4/ T4/ Y4/ L7/ AC7/ D9/ AE10/ C11/ J15/ AC15/ A18/ J18/ AC18/ AD20/ E24/ L24/ T24/ W24/ AC24 / AB24 A3 / A15 / B5 / F2 / F21/ L20 / W21 Y9 / W10 / W9 / V10 / V9 / U10 / N19 / N18 / N17 / M19 / M18 / M17 vdds_mem Memory IO power plane U1 / J1 / F1 / J2 / F2 / R4 / B5 / A5 / AH6 / B8 / A8 / B12 / A12 / D16 / C16 / B18 / A18 / B22 / A22 / G28 / C28 AC5 / P1 / H1 / F23 / E1 / C23 / A4 / A7 / A10 / A15 / A18 NA NA K8 / K7 / K6 / J8 / J7 / J6 / H15 / G16 / G15 / F16 / F15 / E16 vdda_dpll_per Input power for the analog part of the Peripheral DPLLs AA16 NA U14 NA U17 vdda_wkup_bg_b b For wakeup LDO and VDDA (2 LDOs SRAM and BG) AA14 NA W14 NA AA13 (1) NA in this table stands for "Not applicable". TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 111 PRODUCT PREVIEW Table 2-25. Power Supplies Signals Description (1) AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-25. Power Supplies Signals Description (continued) SIGNAL NAME DESCRIPTION BALL BOTTOM (CBP Pkg.) BALL TOP (CBP Pkg.) BALL BOTTOM (CBC Pkg.) BALL TOP (CBC Pkg.) BALL BOTTOM (CUS Pkg.) AG2 / U2 / B2 / AG3 / W3 / P3 / J3 / E3 / A3 / P4 / E4 / AG6 / D7 / C7 / V9 / U9 / P9 / N9 / K9 / W10 / V10 / P10 / K10 / D10 / C10 / AF12 / AE12 / Y12 / K12 / J12 / Y13 / W13 / J13 / D13 / C13 / W14 / K16 / J16 / W17 / K17 / J17 / W19 / V19 / R19 / P19 / L19 / K19 / D19 / C19 / AF20 / AE20 / T20 / R20 / M20 / L20 / D21 / C22 / AC25 / Y25 / W25 / AC26 / R26 / L26 / A26 / G27 / B27 H2 / B18 / AB5 / AB14 / AB20 / P2 / F22 / E2 / C22 / B4 / B7 / B10 / B15 G1/ K1/ R1/ W1/ B2/ H4/ N4/ R4/ W4/ AB5/ A6/ D7/ Y7/AE7/ A8/ G8/ D10/ G10/ L10/ N10/ Y10/ AC10/ C12/ D12/A13/ D14/ AD14/ K15/ Y16/ L17/ N17/ R17/ D18/ D20/G20/ E22/ AB22/ G23/ L23/ T23/ W23/ B25/ K25/U25/ AD25 / Y26 C1/ F1/ H2/ M2/ R2/ Y6/AA7/ Y11/ AA16/ W20/P20/ L21/ H20/ F20/ B14/A13/ A7 V16/ V15/ U16/ U15/ U14/ U11/ U9/T16/ T15/ T14/ T13/ T12/ T11/ T10/ T9/ R15/ R14/ R11/ R10/ P17/ P15/ P14/ P13/P12/ P11/ P10/ P8/ N16/ N15/ N14/ N13/ N12/ N11/ N10/ N9/ M16/ M13/ M11/ M10/ M9/ L17/ L13/ L10/ L8/ K15/ K14/ K11/ K10/ J16/ J15/ J14/ J13/ J12/ J11/H16/ H14/ H11 PRODUCT PREVIEW vss Ground vdds_sram SRAM LDOs W16 NA U12 NA AA12 vdds_mmc1 MMC IO power domain for CMD, CLK, and DAT(0..3) K25 NA N23 NA N24 vdds_x Power supply for dual voltage GPIOs P25 NA P23 NA H8 vss Ground M28 NA L19 NA NA vdds IO power plane AG20 NA AD18 NA NA vss Ground AG16 NA AC16 NA NA vdds IO power plane H28 NA L20 NA NA cap_vdd_sram_m pu_iva SRAM LDO capacitance for VDDRAM1 V4 NA N9 NA U8 cap_vdd_sram_co re SRAM LDO capacitance for VDDRAM2 L21 NA K20 NA H17 vdds IO power plane AG21 NA AD19 NA NA cap_vddu_array Decoupling capacitor for internal LDO. AH20 NA AE19 NA N20 vss Ground AH21 NA AC19 NA NA cap_vdd_bb_mpu _iva Decoupling capacitor for MPU/IVA domains (bb) U4 NA D6 NA N21 sys_xtalgnd Kelvin ground Y17 NA AF23 NA W15 112 TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com 2.5.9 SPRS616B – JUNE 2010 – REVISED JULY 2010 System and Miscellaneous Terminals Note: For more information, see the Power, Reset, and Clock Management / PRCM Environment section of the AM37x TRM. Table 2-26. System and Miscellaneous Signals Description (1) SIGNAL NAME DESCRIPTION TYPE (2) BALL BOTTOM (CBP Pkg.) BALL TOP (CBP Pkg.) BALL BOTTOM (CBC Pkg.) BALL TOP (CBC Pkg.) BALL BOTTOM (CUS Pkg.) 32-kHz clock input I AE25 NA AE20 NA AA16 sys_xtalin Main input clock. Oscillator input or LVCMOS at 19.2, 13, or 12 MHz. AI-I AE17 NA AF19 NA AD15 sys_xtalout Output of oscillator AO AF17 NA AF20 NA AD14 sys_altclk Alternate clock source selectable for GPTIMERs (maximum 54 MHz), USB (48 MHz), or NTSC/PAL (54 MHz) I J25 NA J23 NA A24 sys_clkreq Request from device for system clock (open source type) IO AF25 NA W15 NA Y13 sys_clkout1 Configurable output clock1 O AG25 NA AE14 NA Y7 sys_clkout2 Configurable output clock2 O AE22 NA W11 NA AA6 sys_boot0 Boot configuration mode bit 0 I AH26 NA F3 NA AB12 sys_boot1 Boot configuration mode bit 1 I AG26 NA D3 NA AC16 sys_boot2 Boot configuration mode bit 2 I AE14 NA C3 NA AD17 sys_boot3 Boot configuration mode bit 3 I AF18 NA E3 NA AD18 sys_boot4 Boot configuration mode bit 4 I AF19 NA E4 NA AC17 sys_boot5 Boot configuration mode bit 5 I AE21 NA G3 NA AB16 sys_boot6 Boot configuration mode bit 6 I AF21 NA D4 NA AA15 sys_nrespwron Power On Reset I AH25 NA V13 NA AA10 sys_nreswarm Warm Boot Reset (open drain output) IOD AF24 NA AD7 AA5 Y10 sys_nirq External FIQ input I AF26 NA V16 NA W16 sys_nvmode1 Indicates the voltage mode O AD26 NA AD15 NA Y16 sys_nvmode2 Indicates the voltage mode O AE26 NA W16 NA Y15 sys_off_mode Indicates the voltage mode O AF22 NA V12 NA AD23 sys_ndmareq0 External A request 0 (system expansion). Level (active low) or edge (falling) selectable. I U8 NA B6 NA D2 sys_ndmareq1 External A request 1 (system expansion). Level (active low) or edge (falling) selectable. I T8 / J8 NA B4 / C6 NA F4 / C2 sys_ndmareq2 External A request 2 (system expansion). Level (active low) or edge (falling) selectable. I L3 / R8 NA D1 / C4 NA H2 / G5 sys_ndmareq3 External A request 3 (system expansion). Level (active low) or edge (falling) selectable. I K3 / P8 NA D2 / B5 NA G2 / F3 (1) (2) PRODUCT PREVIEW sys_32k NA in this table stands for "Not applicable". Type = Ball type for this specific function (I = Input, O = Output, Z = High-impedance, D = Open Drain, DS = Differential, A = Analog) Table 2-27. CBC Package Feed-Through Balls JEDEC 14x14mm, 0.65mm, 152ball JEDEC DESCRIPTION NC d-vdd (1) BALL TOP BALL BOTTOM FEED-THROUGH BALL NAME No Connect A1 A1 pop_a1_a1 DDR Supply J1 L1 pop_j1_l1 NC No Connect AA1 AF1 NC f-vdd Flash Supply N2 T2 pop_n2_t2 f-vdd Flash Supply T2 Y2 pop_t2_y2 NC No Connect W2 AE2 pop_w2_ae2 NC No Connect Y2 AF4 pop_y2_af4 f-vdd Flash Supply AA6 AF5 pop_aa6_af5 f-vdd Flash Supply Y7 AF8 pop_y7_af8 (1) For more details on the feedthrough pin connections, please refer to the PoP memory datasheet. TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 113 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 2-27. CBC Package Feed-Through Balls (continued) PRODUCT PREVIEW NC, Int No Connect; Interrupt when using OneNAND POP Y9 AF10 pop_y9_af10 f-nbe0, cle0 No Connect/CLE AA10 AF12 pop_aa10_af12 d-vdd DDR Supply/ POP FLASH vpp supply AA11 AF13 pop_aa11_af13 d-tq No Connect/ DDR die temperature sensor AA12 AF14 pop_aa12_af14 vss Shared Ground AA13 AF15 pop_aa13_af15 d-vdd DDR Supply Y14 AF17 pop_y14_af17 d-vddq DDR Supply AA14 AF16 pop_aa14_af16 d-vdd DDR Supply B16 A20 pop_b16_a20 vss Shared Ground Y17 AF21 pop_y17_af21 d-vdd DDR Supply AA17 AF18 pop_aa17_af18 vss Shared Ground Y19 AF24 pop_y19_af24 d-vddq DDR Supply AA19 AF22 pop_aa19_af22 NC No Connect A20 A25 pop_a20_a25 NC No Connect Y20 AE25 pop_y20_ae25 NC No Connect AA20 AF25 pop_aa20_af25 NC No Connect A21 A26 pop_a21_a26 NC No Connect B21 B26 pop_b21_b26 d-vdd DDR Supply H21 K26 pop_h21_k26 d-vdd DDR Supply P21 U26 pop_p21_u26 NC No Connect Y21 AE26 pop_y21_ae26 NC No Connect AA21 AF26 pop_aa21_af26 Table 2-28. CBP Package Feed-Through Balls JEDEC 12x12, 0.5mm, 168ball JEDEC DESCRIPTION d-vdd d-vdd (1) BALL TOP BALL BOTTOM FEED-THROUGH BALL NAME DDR Supply A12 A15 pop_a12_a15 DDR Supply AA23 AE28 pop_aa23_ae28 d-vdd DDR Supply H23 AF28 pop_h23_af28 d-vdd DDR Supply K1 J28 pop_k1_j28 d-vdd DDR Supply Y23 M1 pop_y23_m1 f-vdd Flash Supply AA1 AA1 pop_aa1_aa1 f-vdd Flash Supply AC8 AF1 pop_ac8_af1 f-vdd Flash Supply AC13 AH10 pop_ac13_ah10 f-vdd Flash Supply L1 AH15 pop_l1_ah15 f-vdd Flash Supply U1 N1 pop_u1_n1 f-vpp Flash vpp supply AC11 AH13 pop_ac11_ah13 NC, int0 No Connect/PoP OneNAND interrupt AB9 AG11 pop_ab9_ag11 NC, int1 No Connect/PoP OneNAND interrupt AC9 AH11 pop_ac9_ah11 NC No Connect A1 A1 NC NC No Connect A2 A2 NC NC No Connect A22 A27 pop_a22_a27 NC No Connect A23 A28 pop_a23_a28 NC No Connect AB1 AG1 pop_ab1_ag1 NC No Connect AB23 AG28 pop_ab23_ag28 NC No Connect AC1 AH1 pop_ac1_ah1 NC No Connect AC2 AH2 pop_ac2_ah2 NC No Connect AC22 AH27 pop_ac22_ah27 NC No Connect AC23 AH28 pop_ac23_ah28 (1) 114 For more details on the feedthrough pin connections, please refer to the PoP memory datasheet. TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 2-28. CBP Package Feed-Through Balls (continued) No Connect B1 B1 NC NC No Connect B23 B28 pop_b23_b28 f-rst#, rp# Flash reset AB11 AG13 pop_ab11_ag13 d-tq DDR temperature alert AC14 AH16 pop_ac14_ah16 vss Shared Ground AA2 AA2 pop_aa2_aa2 vss Shared Ground U2 AF2 pop_u2_af2 vss Shared Ground AA22 AF27 pop_aa22_af27 vss Shared Ground AB8 AG10 pop_ab8_ag10 vss Shared Ground AB13 AG15 pop_ab13_ag15 vss Shared Ground B12 B15 pop_b12_b15 vss Shared Ground H22 J27 pop_h22_j27 vss Shared Ground K2 M2 pop_k2_m2 vss Shared Ground K22 M26 pop_k22_m26 vss Shared Ground L2 N2 pop_l2_n2 PRODUCT PREVIEW NC TERMINAL DESCRIPTION Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 115 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com 3 Electrical Characteristics NOTE For more information, see the Power Reset and Clock Management / PRCM Environment section of the AM37x TRM. 3.1 Absolute Maximum Ratings Stresses beyond those listed as absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under "Recommended Operating Conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Table 3-1. Absolute Maximum Rating over Junction Temperature Range PARAMETER PRODUCT PREVIEW MIN MAX UNIT vdd_mpu_iva Supply voltage range for MPU –0.5 1.5 V vdd_core Supply voltage range for core domain –0.5 1.5 V vdda_wkup_bg_bb Supply voltage range for wake-up domain (internal LDO) –0.5 2.6 V vdda_dplls_dll Supply voltage for MPU, Core DPLLs and DLL –0.5 2.1 V vdda_dpll_per Supply voltage for DPLLs (peripherals) –0.5 2.1 V vdds_sram Supply voltage for SRAM LDOs –0.5 2.6 V vdda_dac Supply voltage for video buffers and DAC –0.5 2.10 V vdds Supply voltage for 1.8-V I/O macros –0.5 2.45 V vdds_mem Supply voltage for memory buffers –0.5 2.45 V vdds_mmc1 Supply voltage range for mmc1 dual voltage IOs 1.8-V mode –0.5 2.45 V 3.0-V mode -0.5 3.80 Supply voltage range for dual voltage GPIOs 1.8-V mode –0.5 3.80 3.0-V mode -0.5 3.80 mmc1 1.8-V mode -0.5 2.45 vdds_x VPAD 3.0-V mode VESD V V -0.5 3.80 Video DAC –0.5 2.10 V The other balls –0.5 2.45 V ESD stress voltage(1) HBM (Human Body Model)(2) C (Charged Device Model) (3) 1000 V 300 Iclamp Clamp current for an input or output –20 20 mA TSTG Storage temperature range –65 150 °C (1) Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device. (2) JEDEC JESD22-A114F (3) JEDEC JESD22-C101D (4) vddy refers to vdds or vdds_mem. Table 3-2 summarizes the power consumption at the ball level. Table 3-2. Maximum Current Ratings at Ball Level PARAMETER SIGNAL Processors ) 116 MAX UNIT AM3715 740 mA AM3703 740 AM3715 300 AM3703 230 DESCRIPTION vdd_mpu_iva(1 Maximum current rating for MPU vdd_core(1) (3) Maximum current rating for core domain Core Electrical Characteristics mA Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 3-2. Maximum Current Ratings at Ball Level (3) (continued) PARAMETER SIGNAL MAX UNIT DESCRIPTION vdds Maximum current rating for 1.8-V I/O macros 60 mA vdds_mem Maximum current rating for memory buffers 35 mA vdds_mmc1(2) Maximum current rating for mmc1 dual voltage buffers 20 mA vdds_x Maximum current rating for GPIO dual voltage buffers 2 mA vdda_wkup_bg Maximum current rating for wake-up, bandgap and VBB LDOs _bb 5 mA vdda_dac Maximum current rating for video buffers and DAC 60 mA vdda_dplls_dll Maximum current rating for MPU, core DPLLs and DLL 30 mA vdda_dpll_per Maximum current rating for DPLLs (peripherals) 10 mA vdds_sram Maximum current rating for SRAM LDOs (common) 41 mA TM (1) With SmartReflex enabled. (2) MMC card and I/O card are not included. (3) The maximum current ratings documented in this table are preliminary data which are subject to change. 3.2 Recommended Operating Conditions PRODUCT PREVIEW The device is used under the recommended operating conditions described in Table 3-3. NOTE Logic functions and parameter values are not assured out of the range specified in the recommended operating conditions. Table 3-3. Recommended Operating Conditions PARAMETER vdd_mpu_iva DESCRIPTION MIN NOM 40 Supply voltage for 1.8-V I/O macros Supply voltage for memory buffers Noise (peak-peak) 1.71 1.80 1.71 1.80 Oscillator IO (Crystal or Square modes) Others vdds_mmc1 V 90 mVPP 1.91 V 40 mVPP 90 1.8-V mode 1.71 1.80 1.91 3.0-V mode 2.70 3.00 to 3.30 3.60 Noise (peak-peak) 1.8-V mode 90 V mVPP 150 Supply voltage range for x dual voltage IOs 1.8-V mode 1.71 1.80 1.91 3.0-V mode 2.70 3.00 3.60 Noise (peak-peak) 1.8-V mode 90 3.0-V mode 150 vdda_wkup_bg_ Supply voltage range for wake-up LDO bb Noise (peak-peak) mVPP 1.91 Supply voltage range for mmc1 dual voltage IOs 3.0-V mode vdds_x mVPP V Noise (peak-peak) vdds_mem 40 See(1) Supply voltage range for core domain Noise (peak-peak) vdds UNIT V Noise (peak-peak) vdd_core MAX See(1) Supply voltage range for ARM 1.71 1.80 V mVPP 1.91 V 50 mVPP Electrical Characteristics Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 117 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 3-3. Recommended Operating Conditions (continued) PARAMETER vdda_dac DESCRIPTION Analog supply voltage for Video DAC MIN NOM MAX UNIT 1.71 1.80 1.91 V 30 mVPP 3 mVPP 0.3 mVPP Noise (peak-peak) for a 100 kHz < f < 1 MHz frequency from 0 to 100 kHz (For 1 MHz < f < 10 MHz a frequency > 100 kHz, f > 10 MHz decreases 20 dB/dec) vdds_sram Supply voltage for SRAM LDOs 1.71 1.80 Noise (peak-peak) vdda_dplls_dll Supply voltage for MPU, core DPLLs and DLL Supply voltage for DPLLs (peripherals) V 50 mVPP 1.71 1.80 1.91 V 40 mVPP 1.71 1.80 1.91 V 50 mVPP vddy(2) V Noise (peak-peak) for a frequencies below 1 MHz vdda_dpll_per 1.91 Noise (peak-peak) VPAD Voltage at I/O pad 0 vssa_dac Ground for video buffers and DAC 0 V vss Main ground 0 V TA Operating board (PCB) temperature range –40 85 °C TJ Operating junction temperature range –40 105 °C (1) See the operating condition addendum for values. OPP voltage values may change following the silicon characterization result. PRODUCT PREVIEW (2) vddy refers to vdda_dac, vdds, vdds_mem, vdds_mmc1, and vdds_x. 118 Electrical Characteristics Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com 3.3 SPRS616B – JUNE 2010 – REVISED JULY 2010 DC Electrical Characteristics Table 3-4 summarizes the dc electrical characteristics. Note: The interfaces or signals described in Table 3-4 correspond to the interfaces or signals available in multiplexing mode 0. All interfaces or signals multiplexed on the balls / pins described in Table 3-4 have the same DC electrical characteristics. Table 3-4. DC Electrical Characteristics PARAMETER MIN NOM MAX UNIT SDRC Mode (CBP Balls(21): C14 / B14 / C15 / B16 / D17 / C17 / B17 / D18 / H9 / H10 / H11 / H12 / A13 / A14 / H16 / H17 / H14 / H13 / H15 / A16 / A17)(4) High-level input voltage VIL Low-level input voltage 0.7 * vdds_mem VHYS (1) Hysteresis voltage at an input VOH High-level output voltage, driver enabled, pullup or pulldown disabled IOH = –4 mA VOL Low-level output voltage, driver enabled, pullup or pulldown disabled IOL = 4 mA CIN Input capacitance tTIN(2) Input recommended rise, tRIN, and fall time, tFIN (measured between 20% and 80% at PAD) tROUT(2) V 0.3 * vdds_mem 0.07 V V 0.8 * vdds_mem vdds_mem V 0 0.2 * vdds_mem V 1.15 pF 10 ns Output maximum rise time (rise time, tROUT, evaluated between 20% and 80% at PAD) @ maximum load 1.15 ns tFOUT(2) Output maximum fall time (fall time, tFOUT, evaluated between 20% and 80% at PAD) @ maximum load 1.10 ns COUT Load capacitance pF DS0 = 0(3) 2 4 DS0 = 1(3) 4 12 0.70 * vdds_mmc1 vdds_mmc1 + 0.3 V –0.3 0.30 * vdds_mmc1 V PRODUCT PREVIEW VIH MMC Interface 1 Mode (CBP Balls(21): N28 / M27 / N27 / N26 / N25 / P28) 1.8-V Mode VIH High-level input voltage VIL Low-level input voltage VOH High-level output voltage with 100-mA sink current IOH VOL Low-level output voltage with 100-mA sink current at vdds_mmc1 minimum VHYS (1) Hysteresis voltage at an input tTIN (2) Input transition time (tRIN or tFIN evaluated between 10% and 90% at PAD) COUT Load capacitance LOUT Line inductance (except vdds_mmc1) vdds_mmc1 – 0.2 V 0.2 V Normal Mode (SPEECTRL = 1)(4) 3 ns High-Speed (SPEECTRL = 0)(4) 8 0.1 10 V 30 pF 16 nH 3.0-V Mode VIH High-level input voltage 0.625 * vdds_mmc1 vdds_mmc1 + 0.3 V VIL Low-level input voltage –0.3 0.25 * vdds_mmc1 V VOH High-level output voltage with 100-mA sink current IOH VOL Low-level output voltage with 100-mA source current at vdds_mmc1 minimum VHYS (1) Hysteresis voltage at an input 0.75 * vdds_mmc1 V 0.125 * vdds_mmc1 0.05 V Electrical Characteristics Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback V 119 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 3-4. DC Electrical Characteristics (continued) PARAMETER tTIN(2) Input transition time (tRIN or tFIN evaluated between 10% and 90% at PAD) COUT Load capacitance LOUT Line inductance (except vdds_mmc1) MAX UNIT Normal Mode (SPEECTRL = 1)(4) MIN 3 ns High-Speed (SPEECTRL = 0)(4) 8 10 NOM 30 pF 16 nH 0.70 * vdds_x vdds_x + 0.3 V GPIO Mode (CBP Balls(21): P27 / P26 / R27 / R25) 1.8-V Mode VIH High-level input voltage VIL Low-level input voltage VOH High-level output voltage with 20-mA sink current IOH VOL PRODUCT PREVIEW –0.3 0.20 * vdds_x V 0.8 * vdds_x vdds_x + 0.3 V Low-level output voltage with 1-mA source current at vdds_x minimum –0.3 0.4 V VHYS (1) Hysteresis voltage at an input 0.1 tTIN (2) Input transition time (tRIN or tFIN evaluated between 10% and 90% at PAD) 35 ns CIN Input capacitance 2.5 pF COUT Load capacitance 30 pF LOUT Line inductance (except vdds_x) 16 nH Normal Mode (SPEECTRL = 1)(4) V 3.0-V Mode VIH High-level input voltage 0.70 * vdds_x vdds_x + 0.3 V VIL Low-level input voltage –0.3 0.20 * vdds_x V VOH High-level output voltage with 20-mA sink current IOH 0.7 * vdds_x vdds_x + 0.3 V VOL Low-level output voltage with 1-mA source current at vdds_sim minimum –0.3 0.4 V VHYS (1) Hysteresis voltage at an input 0.05 tTIN (2) Input transition time (tRIN or tFIN evaluated between 10% and 90% at PAD) CIN COUT LOUT Normal Mode (SPEECTRL = 1)(4) V 35 ns Input capacitance 2.5 pF Load capacitance 30 pF Line inductance (except vdds_x) 16 nH I2C Mode (CBP Balls(21): K21 / J21 / AF15 / AE15 / AF14 / AG14 / AD26 / AE26)(6) Standard Mode VIH High-level input voltage 0.7 * vdds vdds + 0.5 V VIL Low-level input voltage –0.5 0.3 * vdds V VHYS (1) Hysteresis voltage at an input 0.15 VOL Low-level output voltage open-drain at 3-mA sink current NA NA V II Input current at each I/O pin with an input voltage between 0.1 * vdds to 0.9 * vdds –10 10 mA CI Capacitance for each I/O pin 10 pF tFOUT(5) Output fall time from VIHmin to VILmax with a bus capacitance CB from 10 pF to 400 pF 250 ns tROUT(5) Output rise time with a capacitive load from 10 pF to 150 pF with internal pullup 20 + 0.1CB 250 ns VIH High-level input voltage 0.7 * vdds vdds + 0.5 V VIL Low-level input voltage –0.5 0.3 * vdds V V Fast Mode 120 Electrical Characteristics Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 3-4. DC Electrical Characteristics (continued) PARAMETER MIN VHYS (1) Hysteresis voltage at an input VOL Low-level output voltage open-drain at 3-mA sink current II Input current at each I/O pin with an input voltage between 0.1 * vdds to 0.9 * vdds CI Capacitance for each I/O pin tFOUT(5) tROUT(5) NOM MAX 0.15 UNIT V 0 0.2 * vdds V –10 10 mA 10 pF Output fall time from VIHmin to VILmax with a bus capacitance CB from 10 pF to 400 pF 20 + 0.1CB 250 ns Output rise time with a capacitive load from 10 pF to 150 pF with internal pullup 20 + 0.1CB 250 ns High-Speed Mode VIH High-level input voltage 0.7 * vdds vdds + 0.5 V VIL Low-level input voltage –0.5 0.3 * vdds V VHYS (1) Hysteresis voltage at an input 0.15 VOL Low-level output voltage open-drain at 3-mA sink current II Input current at each I/O pin with an input voltage between 0.1 * vdds to 0.9 * vdds CI Capacitance for each I/O pin tFOUT(5)( 6) Output fall time with a capacitive load from 10 pF to 100 pF at 3-mA sink current 10 Output fall time with a capacitive load of 400 pF at 3-mA sink current Output rise time with a capacitive load from 10 pF to 80 pF with internal pullup 0.2 * vdds V –10 10 mA 10 pF 40 ns 20 80 ns 10 40 ns 0.7 * vdds vdds V –0.5 0.3 * vdds V PRODUCT PREVIEW tROUT(5) V 0 Standard LVCMOS Mode VIH High-level input voltage VIL Low-level input voltage VOH High-level output voltage at 4-mA sink current VOL Low-level output voltage at 4-mA sink current 0.45 V CIN Input capacitance 1.15 pF tTIN (2) Input transition time (tRIN or tFIN evaluated between 10% and 90% at PAD) 10 ns tTOUT Output transition time at 40-pF load (tROUT or tFOUT evaluated between 10% and 90% at PAD) 10 ns vdds – 0.45 V MIPI D-PHY Interface MIPI D-PHY Interface - GPI Mode(14) (CBP Balls(21): AG19 / AH19 / AG18 / AH18 / K28 / L28 / K27 / AG17 / AH17) VIH(7) High-level input voltage 0.65 * vdds_x vdds_x + 0.3 V VIL(8) Low-level input voltage –0.3 0.35 * vdds_x V VHYS (1) Hysteresis voltage at an input 0.15 CIN Input capacitance 1.3 pF tTIN (2) Input transition time (tRIN or tFIN evaluated between 10% and 90% at PAD) 10 ns V Other Balls Common to "Other Balls" VIH High-level input voltage 0.65 * vdds vdds + 0.3 V VIL Low-level input voltage –0.3 0.35 * vdds V VHYS (1) Hysteresis voltage at an input 0.15 V VOH High-level output voltage, driver enabled, pullup or pulldown disabled IOH = – X mA vdds – 0.45 V VOL Low-level output voltage, driver enabled, pullup or pulldown disabled IOL = X mA 0.45 V Differences Between "Other Balls" Electrical Characteristics Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 121 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 3-4. DC Electrical Characteristics (continued) PARAMETER MIN NOM MAX UNIT 1.00 1.15 1.35 pF 5 ns 2.20 pF 10 ns 1.15 pF 10 ns Input Capacitance and Input Transition Time sys_xtalin pin (CBP Ball(21): AE17) CIN Input capacitance tTIN(2) Input transition time (rise time, tRIN or fall time, tFIN evaluated between 10% and 90% at PAD) JTAG interface (CBP Balls(21): AA17 / AA13 / AA12 / AA18 / AA20 / AA19 / AA11 / AA10) CIN Input capacitance tTIN(2) Input transition time (rise time, tRIN or fall time, tFIN evaluated between 10% and 90% at PAD) Otherwise CIN Input capacitance tTIN(2) Input transition time (rise time, tRIN or fall time, tFIN evaluated between 10% and 90% at PAD) Output Capacitance Load and Output Transition Time sys_32k, sys_clkreq, sys_off_mode, sys_clkout1, sys_nirq, uart3_cts_rctx, uart3_rts_sd, uart3_rx_irrx, uart3_tx_irtx, hdq_sio (CBP Balls(21): R27 / AE25 / AF25 / AF22 / AG25 / AF26 / H18 / H19 / H20 / H21 / J25) PRODUCT PREVIEW tTOUT Output transition time (rise time, tROUT or DS[1:0] = fall time, tFOUT evaluated between 10% and 00(3) 90% at PAD) CTOUT Output load tTOUT Output transition time (rise time, tROUT or DS[1:0] = fall time, tFOUT evaluated between 10% and 10(3) 90% at PAD) CTOUT Output load tTOUT Output transition time (rise time, tROUT or DS[1:0] = fall time, tFOUT evaluated between 10% and 01(3) 90% at PAD) CTOUT Output load 1 15 ns 4 60 pF 0.4 5 ns 2 21 pF 0.6 7 ns 7 33 pF 1.5 5 ns 2 22 pF 0.6(20) 2.4 ns 2 22 pF CAM, HSUSB0, SDMMC2, UART1, UART2, McBSP, McSPI, ETK Interfaces, sys_clkout2 (CBP Ball(21): AE22) tTOUT Output transition time (rise time, tROUT or fall time, tFOUT evaluated between 10% and 90% at PAD) CTOUT Output load Otherwise tTOUT Output transition time (rise time, tROUT or fall time, tFOUT evaluated between 10% and 90% at PAD) CTOUT Output load Hysteresis sys_xtalin pin (CBP Ball(21): AE17) VHYS (1) Hysteresis voltage at an input 0.25 V Hysteresis voltage at an input 0.07 V Hysteresis voltage at an input 0.15 V hsusb0_clk (CBP Ball(21): T28) VHYS (1) Otherwise VHYS(1) (1) Vhys is the magnitude of the difference between the positive-going threshold voltage VT+ and the negative-going threshold voltage VT–. Some receivers, but not all, are designed for hysteresis. Vhys applies only to those that are. (2) VIH is the voltage at which the receiver is required to detect a high state in the input signal. (3) VIL is the voltage at which the receiver is required to detect a low state in the input signal. VIL is larger than the maximum single-ended line voltage during HS transmission. Therefore, both LP receivers will detect low during HS signaling. (4) This value includes a ground difference of 50 mV between the transmitter and the receiver, the status common-mode level tolerance and variations below 450 MHz. (5) No structure within the PHY may be damaged when a dc signal that is within the signal voltage range VPIN is applied to a pad pin, or for a transient voltage limited VPIN. (6) The voltage overshoot and undershoot beyond the VPIN is only allowed during a single TVPIN window after any LP-0 or LP-1 transition. 122 Electrical Characteristics Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 (7) Not valid if GPI is being used. (8) Common mode is defined as the average voltage level of DX and DY: VCM = (V(DX) + V(DY))/2. Common mode ripple may be due to rise-fall time and transmission line impairments in the PCB. (9) Value when driving into differential load impedance anywhere in the range 80 to 125 Ω. (10) UI = 1 / (2 * fh), where fh is the fundamental frequency of HS data transmission. For example, for 800 Mbps fh is 400 MHz. (11) For capacitive load from 100 pF to 400 pF, fall time should be linearly interpolated: tFmin = (1 + (Load – 100 pF) / 300 pF) * 10 ns tFmax = (1 + (Load – 100 pF) / 300 pF) * 40 ns (12) SPEEDCTRL = 0 [26 MHz typical] per default or SPEEDCTRL = 1 [52 MHz typical] according to the selected mode. For a full description of the speed programming, see the PRG_mmc1_SPEEDCTRL configuration register bit field in the AM37x TRM. (13) ULPM stands for Ultra Low Power Mode. (14) – – In DSS TFT Mode: COUT = 10 pf with a clock frequency up to 74.3 MHz. Note: For the DSS (TFT mode) in HD-TV application, to run at full speed (74.3 MHz) it is recommended to use the dss_data[5:0] signals on the dss_data[23:18] balls (H26, H25, E28, J26, AC27, AC28). In that case, the dss_data[23:18] signals are available on the sys_boot0, sys_boot1, sys_boot3, sys_boot4, sys_boot5, and sys_boot6 balls (AH26, AG26, AF18, AF19, AE21, AF21). If the dss_data[5:0] signals are used on the dss_data[5:0] balls (AG22, AH22, AG23, AH23, AG24, AH24), OPP100 DSS (TFT mode) are limited at 66 MHz. The values may change following the silicon characterization result. In DSS STN Mode: COUT = 40 pf with a clock frequency up to 44 MHz. In DSS RFBI Mode: COUT = 30 pF with a clock frequency up to 20.75 MHz. (15) For a full description of the DS0 load compensation register configuration, see the description of the CONTROL_PROG_IO1 configuration registers in System Control Module / Programming Model / Feature Settings / SDRC I/O Drive Strength Selection section of the AM37x TRM. (16) For a full description of the SPEEDCTRL speed register configuration, see the description of the CONTROL_PROG_IO1 configuration registers in System Control Module / Programming Model / Feature Settings section of the AM37x TRM. (17) For capacitive load from 100 pF to 400 pF, fall time should be linearly interpolated: tFOUTmin = (1 + (Load – 100 pF) / 300 pF) * 10 ns. tFOUTmax = (1 + (Load – 100 pF) / 300 pF) * 40 ns. (18) Rise and fall times are specified for (0.3 * vdds) to (0.7 * vdds). (19) The tIN (tRIN and tFIN also) value is the recommended condition. The tIN (tRIN and tFIN also) mismatch causes additional delay time inside the device then leads to ac timing invalidation in this DM. The tIN (tRIN and tFIN also) mismatch does not necessarily mean functional failure. This global value may be overridden on a per interface basis if another value is explicitly defined for that interface in the Timing Requirements and Switching Characteristics chapter of the data manual. (20) For more information about the tUI(INST,MIN) value, see . (21) For associated CBC and CUS balls, please refer to the Multiplexing Characteristics table. Electrical Characteristics Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 123 PRODUCT PREVIEW – AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 3.4 www.ti.com External Capacitors To improve module performance, decoupling capacitors are required to suppress the switching noise generated by high frequency and to stabilize the supply voltage. A decoupling capacitor is most effective when it is close to the device, because this minimizes the inductance of the circuit board wiring and interconnects. 3.4.1 Voltage Decoupling Capacitors Table 3-5 summarizes the Core voltage decoupling characteristics. 3.4.1.1 Core Voltage Decoupling Capacitors To improve module performance, decoupling capacitors are required to suppress the switching noise generated by high frequency and to stabilize the supply voltage. A decoupling capacitor is most effective when it is close to the device, because this minimizes the inductance of the circuit board wiring and interconnects. Table 3-5. Core Voltage Decoupling Characteristics (1) PARAMETER Cvdd_core (1) (2) PRODUCT PREVIEW Cvdd_mpu_iva (1) (2) (1) (2) MIN TYP MAX UNIT 0.6 1.2 1.8 mF 0.6 1.2 1.8 mF In power plan configuration The typical value corresponds to 2 capacitors of 470 nF, plus 3 capacitors of 100 nF. 3.4.1.2 IO and Analog Voltage Decoupling Capacitors Table 3-6 summarizes the power supply decoupling capacitor characteristics. Table 3-6. Power Supply Decoupling Capacitor Characteristics PARAMETER Cvdds (1) (2) Cvdds_mem Cvdds_mmc1 Cvdds_x (1) (3) (4) (4) MIN TYP MAX UNIT 200 400 600 nF 350 700 1050 nF 50 100 150 nF 50 100 150 nF Cvdda_dplls_dll (4) 50 100 150 nF Cvdda_dpll_per (4) 50 100 150 nF 110 220 330 nF 240 470 700 nF 50 100 150 nF Cvdds_sram (4) Cvdda_wkup_bg_bb (4) Cvdda_dac (1) (2) (3) (4) (4) In power plan configuration The typical value corresponds to 4 capacitors of 100 nF. The typical value corresponds to 7 capacitors of 100 nF. In power rail configuration 3.4.2 Output Capacitors The capacitors at the outputs are required to stabilize the internal LDO supply voltages. The capacitors must be placed as close as possible to the balls. Table 3-7 summarizes the power supply decoupling characteristics. Table 3-7. Output Capacitor Characteristics PARAMETER MIN TYP MAX UNIT Ccap_vdd_sram_mpu_iva 0.7 1 1.3 mF Ccap_vdd_sram_core 0.7 1 1.3 mF 124 Electrical Characteristics Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 3-7. Output Capacitor Characteristics (continued) PARAMETER TYP MAX UNIT 0.7 1 1.3 mF Ccap_vddu_array 0.7 1 1.3 mF Ccap_vdd_bb_mpu_iva 0.7 1 1.3 mF PRODUCT PREVIEW MIN Ccap_vddu_wkup_logic Electrical Characteristics Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 125 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Figure 3-1 illustrates an example of the external capacitors. Device vdda_dac Cvdda_dac vdda_dac vdds_sram Video DAC vssa_dac vdds_sram Cvdds_sram SRAM_LDO1 cap_vdd_sram_mpu_iva Ccap_vdd_sram_mpu_iva SRAM_LDO2 cap_vdd_sram_core Ccap_vdd_sram_core DPLL_MPU vdda_dplls_dll vdda_dplls_dll vdds_mmc1 Cvdda_dplls_dll vdds_mmc1 PRODUCT PREVIEW MMC I/Os Cvdds_mmc1 DPLL_CORE DLL vdds_mem vdds_mem Cvdds_mem vdda_wkup_bg_bb VDDS_MEM DPLL5 BG DPLL4 vdda_dpll_per vdda_dpll_per Cvdda_dpll_per vdda_wkup_bg_bb Cvdda_wkup_bg_bb BBLDO cap_vdd_bb_mpu_iva Ccap_vdd_bb_mpu_iva WKUP_LOGIC MPU vdd_mpu_iva vdd_mpu_iva Cvdd_mpu_iva cap_vddu_wkup_logic Ccap_vddu_wkup_logic CORE vdd_core vdd_core Cvdd_core cap_vddu_array Ccap_vddu_array vdds vdds VDDS I/O Cvdds sys_xtalgnd vss OSC I/O Figure 3-1. External Capacitors 126 Electrical Characteristics Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 NOTE • • 3.5 Decoupling capacitors must be placed as closed as possible of the power ball. Choose the ground located closest to the power pin for each decoupling capacitor. In case of interconnecting powers, first insert the decoupling capacitor and then interconnect the powers. The decoupling capacitor value depends on the board characteristics. Power-Up and Power-Down Sequences This section provides the timing requirements for the device hardware signals. NOTE • 3.5.1 If the MMC dual voltages interfaces are used with 1.8-V or 3.0-V, then the power-up and power-down sequences specified in the Figure 3-2 and Figure 3-3 must be followed carefully to avoid any significant current consumption. If the MMC dual voltages interfaces are used with 1.8-V only (3.0-V is never used), then vdds_mmc1, vdds_x may be connected to the main power supply vdds so that they ramp up together before vdd_core. PRODUCT PREVIEW • Power-Up Sequence NOTE For more information, see the Power, Reset, and Clock Management / PRCM Functional Description / PRCM Reset Manager Functional Description / Reset Sequences of the AM37x TRM. Figure 3-2 shows the power-up sequence. Electrical Characteristics Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 127 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com 1.8 V vdds, vdds_mem, vdds_sram, vdda_wkup_bg_bb vdda_dplls_dll, vdda_dpll_per 1.8 V (1) 1.1 V vdd_core (1) 1.1 V vdd_mpu_iva sys_32k sys_xtalin sys_nrespwron PRODUCT PREVIEW sys_nreswarm vdds_mmc1, vdds_x, vdda_dac, vpp (1) (2) (3) 1.2 V supported. If an external square clock is provided, it could be started after sys_nrespwron release, provided it is clean, i.e. no glitch, stable frequency and duty cycle. sys_32k can be turned on any time between the vdds ramp-up and the sys_nrespwron release. Figure 3-2. Power-Up Sequence 3.5.2 Power-Down Sequence The following steps give two examples of power-down sequence supported by the AM37x device. 1. Put the AM37x device under reset (sys_nrespwron) 2. Stop all signals driven to its balls (sys_32k, sys_xtalin) 3. Either: (a) Shutdown all power domains at once. This sequence is described in black color in Figure 3-3. (b) Or, if the shutdown is sequenced, you must follow these steps (described in dash style blue color in Figure 3-3): – Turn off all complex IO domains (vdds_mmc1, vdds_x) – Turn off all the core and MPU domains (vdd_core, vdd_mpu_iva) – Turn off all DPLL domains (vdda_dplls_dll, vdda_dpll_per) – Turn off all sram LDOs (vdds_sram) – Turn off all reference domains (vdda_wkup_bg_bb) – Turn off all standard IO domains (vdds, vdds_mem) Figure 3-3 shows both power-down sequences: one of them is described in black color, and the other one in dash style blue. 128 Electrical Characteristics Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 sys_nrespwron vdds_mmc1, vdds_x, vdda_dac vdd_core vdd_mpu_iva vdda_dplls_dll, vdda_dpll_per vdda_wkup_bg_bb vdds, vdds_mem sys_32k sys_xtalin A. sys_32k can be turned off any time between the sys_nrespwron assertion and the vdds shut down. Figure 3-3. Power-Down Sequence Alternate power-down sequence: • vdd_mpu_iva shuts down before vdd_core. • vdda_sram, vdda_wkup_bg_bb, vdds and vdds_mem shut down simultaneously. • vdda_dplls_dll and vdda_dpll_per shut down anytime between all complex IO domains shut down and vdda_sram shuts down. Electrical Characteristics Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 129 PRODUCT PREVIEW vdds_sram AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com 4 Clock Specifications NOTE For more information, see the Power, Reset, and Clock Management / PRCM Environment / External Clock Signal section of the AM3715/03 TRM, and, Power, Reset and Clock Management / PRCM Functional Description / PRCM Clock Manager Functional Description section of the AM3715/03 TRM. Figure 4-1 shows external input clock sources and output clocks. Device From power IC: 32 768-Hz sys_32k Alternate clock source selectable (48-MHz, 54-MHz) sys_altclk To peripherals (from oscillator clock [sys_xtalin]): 12-,13-, 16.8-, 19.2-, 26-, or 38.4-MHz (no divider) sys_clkout1 PRODUCT PREVIEW To peripherals (from oscillator clock [sys_xtalin]): 12-,13-, 16.8-, 19.2-, 26-, or 38.4-MHz or Core_clk: up to 332 MHz (possible divider: 4, 8, 16) or DPLL 54-MHz, DPLL 96-MHz (possible divider: 1, 2, 4, 8, or 16) sys_clkout2 sys_xtalout To quartz (oscillator output) or unconnected sys_xtalin From quartz (oscillator input) or square clock sys_clkreq Clock request. To square clock source or from peripherals sys_xtalout sys_xtalout Oscillator is used Unconnected Oscillator is bypassed sys_xtalin sys_clkreq GPin sys_xtalin sys_clkreq Square clock source SWPS038-006 Figure 4-1. Clock Interface 130 Clock Specifications Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 The AM3715/03 outputs externally two clocks: • sys_clkout1 can output the oscillator clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz) at any time. It can be controlled by software or externally using sys_clkreq control. When the device is in the off state, the sys_clkreq can be asserted to enable the oscillator and activate the sys_clkout1 without waking up the device. The off state polarity of sys_clkout1 is programmable. • sys_clkout2 can output the oscillator clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz), core_clk (core DPLL output), 96 MHz or 54 MHz. It can be divided by 2, 4, 8, or 16 and its off state polarity is programmable. This output is active only when the core power domain is active. 4.1 Input Clock Specifications 4.1.1 Input Clock Requirements Table 4-1 illustrates the requirements to supply a clock to the device. Table 4-1. Input Clock Requirements PAD CLOCK FREQUENCY sys_32k 32.768 kHz sys_xtalout sys_xtalin 12, 13, 16.8, or 19.2 MHz 12, 13, 16.8, 19.2, 26, or 38.4 MHz sys_altclk STABILITY DUTY CYCLE JITTER TRANSITION +/- 200 ppm - - <10 ns Crystal ±50 ppm (±5 ppm)(1) - - - Square ±50 ppm (±5 ppm)(1) 45% to 55% X%(2) * tc(xtalin)(3) 200ps 5 ns +/-50 ppm 49% to 51% <1% 10 ns 48 or 54 MHz (1) ± 50 ppm is the clock frequency stability/accuracy and ± 5 ppm takes into account the aging effects. (2) Depending on the internal system clock divider configuration (PRCM.PRM_CLKSRC_CTRL[7:6], SYSCLKDIV bit field), the sys_xtalin input clock can be divided by 2 to provide the standard system clock (SYS_CLK) frequencies. For more information, see the Power, Reset, and Clock Management chapter of the TRM. In X%, X represents then the internal system clock divider with following possible values: X = 1 or 2. (3) tc(xtalin) is the sys_xtalin cycle time of the clock coming to sys_xtalin ball. 4.1.2 sys_xtalin / sys_xtalout External Crystal An external crystal is connected to the device pins. Figure 4-2 describes the crystal implementation. Clock Specifications Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 131 PRODUCT PREVIEW The AM3715/03 device operation requires the following three input clocks: • The sys_32k 32-kHz clock is used for low frequency operation. It supplies the wake-up domain for operation in lowest power mode (off mode). This clock is provided through the sys_32k pin. • The sys_altclk system alternative clock can be used (through the sys_altclk pin) to provide alternative 48 MHz or 54 MHz. • The sys_xtalin / sys_xtalout system input clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz) is used to generate the main source clock of the AM3715/03 device. It supplies the DPLLs as well as several other modules. The system input clock can be connected to either: – A crystal oscillator clock managed by sys_xtalin and sys_xtalout. In this case, the sys_clkreq is used as an input (GPIN). – A CMOS digital clock through the sys_xtalin pin. In this case, the sys_clkreq is used as an output to request the external system clock. AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Device sys_xtalout sys_xtalin Optional Rbias Optional Rd Cf1 Cf2 Crystal PRODUCT PREVIEW SWPS038-007 Figure 4-2. Crystal Implementation The crystal must be in the fundamental mode of operation and parallel resonant. Table 4-2 summarizes the required electrical constraints. Table 4-2. Crystal Electrical Characteristics(1) NAME DESCRIPTION MIN fp Parallel resonance crystal frequency(1) Cf1 Cf1 load capacitance for crystal parallel resonance with Cf1 = Cf2 12 Cf2 Cf2 load capacitance for crystal parallel resonance with Cf1 = Cf2 12 TYP MAX 12, 13, 16.8, or 19.2 UNIT MHz 24 pF 24 pF ESR(Cf1,Cf2)(2) Frequency 10 MHz , Negative resistor at nominal 300 Ω, Negative resistor at worst case 180 Ω 100 Ω Frequency 15 MHz, Negative resistor at nominal 500 Ω, Negative resistor at worst case 300 Ω 60 Ω Frequency 30 MHz, Negative resistor at nominal 250 Ω, Negative resistor at worst case 150 Ω 50 Ω Crystal shunt capacitance 4.5 pF Co (1) Measured with the load capacitance specified by the crystal manufacturer. This load is defined by the foot capacitances tied in series. If CL = 20 pF, then both foot capacitors will be Cf1 = Cf2 = 40 pF. Parasitic capacitance from package and board must also be taken in account. (2) The crystal motional resistance Rm is related to the equivalent series resistance (ESR) by the following formula: ESR = Rm * (1 + (CO * Cf1 * Cf2 / (Cf1 + Cf2)))2. When selecting a crystal, the system design must take into account the temperature and aging characteristics of a crystal versus the user environment and expected lifetime of the system. Table 4-3 details the switching characteristics of the oscillator and the requirements of the input clock. Table 4-3. Oscillator Switching Characteristics—Crystal Mode NAME fp tsX 132 DESCRIPTION MIN Oscillation frequency (1) (2) Start-up time TYP 12, 13, 16.8, or 19.2 3 Clock Specifications MAX UNIT MHz ms Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 (1) Start-up time is defined as the time the oscillator takes to gain sys_xtalin amplitude enough to have 45% to 55% duty cycle at the core input from the time power down (PWRDN) is released. Start-up time is a strong function of crystal parameters. At power-on reset, the time is adjustable using the pin itself. The reset must be released when the oscillator or clock source is stable. To switch from bypass mode to crystal or from crystal mode to bypass mode, there is a waiting time about 100 ms; however, if the chip comes from bypass mode to crystal mode then the crystal will start-up after time mentioned in the tsX parameter. (2) Before the processor boots up and the oscillator is set to bypass mode, there is a waiting time when the internal oscillator is in application mode and receives a square wave. The switching time in this case is about 100 ms. 4.1.3 sys_xtalin Squarer Input Clock Table 4-4 summarizes the base oscillator electrical characteristics. Table 4-4. Oscillator Electrical Characteristics—Bypass Mode NAME DESCRIPTION MIN f Frequency Ci Input Capacitance 1.00 Ri Input Resistance 160 tsX Start-up time(1) TYP MAX 12, 13, 16.8, 19.2, 26, or 38.4 1.15 1.35 216 280 See(2) UNIT MHz pF Ω ms (1) To switch from bypass mode to crystal mode or from crystal mode to bypass mode, there is a waiting time about 100 ms; however, if the chip comes from bypass mode to crystal mode then the crystal will start-up after time mentioned in Table 4-3, tsX parameter above. Clock Specifications Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback PRODUCT PREVIEW (2) Before the processor boots up and the oscillator is set to bypass mode, there is a waiting time when the internal oscillator is in application mode and receives a square wave. The switching time in this case is about 100 ms. 133 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 4-5 details the squarer input clock timing requirements. Table 4-5. sys_xtalin Squarer Input Clock Timing Requirements—Bypass Mode NAME DESCRIPTION MIN OCS0 1 / tc(xtalin) Frequency, sys_xtalin OCS1 tw(xtalin) Pulse duration, sys_xtalin low or high tJ(xtalin) Peak-to-peak jitter(1), sys_xtalin tR(xtalin) Rise time, sys_xtalin tF(xtalin) Fall time, sys_xtalin tJ(xtalin) Frequency stability, sys_xtalin TYP MAX UNIT 12, 13, 16.8, 19.2, 26, or 38.4 0.45 * tc(xtalin) MHz 0.55 * tc(xtalin) ns X%(2) * tc(xtalin) (3) 200 ps 5 ns 5 ns +/-50 (+/-5ppm)(4) ppm (1) – Peak-to-peak jitter is meant here as follows: – The maximum value is the difference between the longest measured clock period and the expected clock period – The minimum value is the difference between the shortest measured clock period and the expected clock period Maximum and minimum are obtained on a statistical population of 300 period samples and expressed relative to the expected clock period PRODUCT PREVIEW (2) Depending on the internal system clock divider configuration (PRCM.PRM_CLKSRC_CTRL[7:6], SYSCLKDIV bit field), the sys_xtalin input clock can be divided by 2 to provide the standard system clock (SYS_CLK) frequencies. For more information, see the Power, Reset, and Clock Management chapter of the TRM. In X%, X represents then the internal system clock divider with following possible values: X = 1 or 2. (3) tc(xtalin) is the sys_xtalin cycle time of the clock coming to sys_xtalin ball. (4) ±50 ppm is the clock frequency stability/accuracy and ±5 ppm takes into account the aging effects. OSC0 OSC1 OSC1 sys_xtalin SWPS038-008 Figure 4-3. sys_xtalin Squarer Input Clock 4.1.4 sys_32k CMOS Input Clock Table 4-6 summarizes the electrical characteristics of the sys_32k input clock. Table 4-6. sys_32k Input Clock Electrical Characteristics NAME DESCRIPTION f Frequency, sys_32k Ci Input capacitance Ri MIN TYP MAX UNIT 32.768 Input resistance 3 kHz 1.6 pF 6 10 MΩ MAX UNIT Table 4-7 details the input requirements of the sys_32k input clock. Table 4-7. sys_32k Input Clock Timing Requirements NAME CK0 DESCRIPTION MIN TYP 1 / tc(32k) Frequency, sys_32k 32.768 tR(32k) Rise time, sys_32k 10 tF(32k) Fall time, sys_32k 10 ns tJ(32k) Frequency stability, sys_32k 200 ppm CK0 CK1 kHz ns CK1 sys_32k SWPS038-009 Figure 4-4. sys_32k Input Clock 134 Clock Specifications Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com 4.1.5 SPRS616B – JUNE 2010 – REVISED JULY 2010 sys_altclk CMOS Input Clock Table 4-8 summarizes the electrical characteristics of the sys_altclk input clock. Table 4-8. sys_altclk Input Clock Electrical Characteristics NAME DESCRIPTION f Frequency, sys_altclk Ci Input capacitance Ri MIN TYP MAX 48 or 54 Input resistance UNIT MHz 3 1.6 pF 6 10 MΩ MAX UNIT Table 4-9 details the input requirements of the sys_altclk input clock. Table 4-9. sys_altclk Input Clock Timing Requirements DESCRIPTION MIN TYP 1 / tc(altclk) Frequency, sys_altclk 48 or 54 MHz ALT1 tw(altclk) Pulse duration, sys_altclk low or high tJ(altclk) Peak-to-peak jitter, sys_altclk tR(altclk) Rise time, sys_altclk 10 tF(altclk) Fall time, sys_altclk 10 ns tJ(altclk) Frequency stability, sys_altclk 50 ppm 0.49 * tc(altclk) 0.51 * tc(altclk) -1% 1% ns ns (1) Peak-to-peak jitter is meant here as follows: – The maximum value is the difference between the longest measured clock period and the expected clock period – The minimum value is the difference between the shortest measured clock period and the expected clock period Maximum and minimum are obtained on a statistical population of 300 period samples and expressed relative to the expected clock period ALT0 ALT1 ALT1 sys_altclk SWPS038-010 Figure 4-5. sys_altclk Input Clock 4.2 Output Clocks Specifications 4.2.1 sys_clkout1 Output Clock Table 4-10 summarizes the sys_clkout1 ouput clock electrical characteristics. Table 4-10. sys_clkout1 Output Clock Electrical Characteristics NAME f DESCRIPTION Frequency, sys_clkout1 MIN TYP MAX sys_xtalin / sys_xtalout clock frequency UNIT MHz SC[0:1] = 00(1) CL Load capacitance (transmission line load + far end load) 4 60 pF ZT Transmission line impedance 30 70 Ω LT Transmission line length 2 20 cm pF SC[0:1] = 01(1) CL Load capacitance (transmission line load + far end load) 7 33 ZT Transmission line impedance 30 70 Ω LT Transmission line length 2 8 cm pF SC[0:1] = 10(1) CL Load capacitance (transmission line load + far end load) 2 21 ZT Transmission line impedance 30 70 Ω LT Transmission line length 1 6 cm Clock Specifications Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 135 PRODUCT PREVIEW NAME ALT0 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com (1) The mode is configured by bits SC0 and SC1 of the IO cell. For more details, see the AM3715/03 TRM. Table 4-11 details the sys_clkout1 ouput clock switching characteristics. Table 4-11. sys_clkout1 Output Clock Switching Characteristics NAME CO0 DESCRIPTION 1 / tc(CLKOUT1) Frequency, sys_clkout1 MIN TYP MAX sys_xtalin/sys_xtalout clock frequency UNIT MHz SC[0:1] = 00(1) CL Load capacitance 4 (5) 60 pF tJ Peak-to-peak jitter X + 693 ps tJC2C Cycle-to-cycle jitter X(5) + 705 ps tW(CLKOUT1) Pulse duration, sys_clkout1 low or high 1) 1) tR(CLKOUT1) Rise time, sys_clkout1 1(2) (4) 15(3) ns tF(CLKOUT1) Fall time, sys_clkout1 1(2) (4) 15(3) ns CL Load capacitance 33 pF tJ Peak-to-peak jitter X(5) + 543 ps tJC2C Cycle-to-cycle jitter X(5) + 555 ps tW(CLKOUT1) Pulse duration, sys_clkout1 low or high 0.45*tc(CLKOUT 0.55*tc(CLKOUT SC[0:1] = 01(1) PRODUCT PREVIEW tR(CLKOUT1) 7 Rise time, sys_clkout1 tF(CLKOUT1) Fall time, sys_clkout1 CL Load capacitance tJ Peak-to-peak jitter 0.45*tc(CLKOUT 0.6 0.6 0.55*tc(CLKOUT 1) (2) (4) 1) 7(3) ns (3) ns 21 pF X(5) + 603 ps (2) (4) 7 SC[0:1] = 10(1) 2 X (5) tJC2C Cycle-to-cycle jitter tW(CLKOUT1) Pulse duration, sys_clkout1 low or high 1) 1) tR(CLKOUT1) Rise time, sys_clkout1 0.4(2) (4) 5(3) ns tF(CLKOUT1) Fall time, sys_clkout1 0.4(2) (4) 5(3) ns 0.47*tc(CLKOUT + 615 ps 0.53*tc(CLKOUT (1) The mode is configured by bits SC0 and SC1 of the IO cell. For more details, see the AM3715/03 TRM. (2) At minimum load (3) At maximum load (Maximum frequency 20 MHz) (4) Caution: this creates EMI parasitics up to 1.2 ns (5) X parameter corresponds to the input jitter contribution added at sys_xtalin input pin. For more information regarding the sys_xtalin input jitter requirement, see Section 4.1.1. CO0 CO1 CO1 sys_clkout1 SWPS038-011 Figure 4-6. sys_clkout1 Output Clock 4.2.2 sys_clkout2 Output Clock Table 4-12 summarizes the sys_clkout2 ouput clock electrical characteristics. Table 4-12. sys_clkout2 Output Clock Electrical Characteristics NAME DESCRIPTION f Frequency, sys_clkout2 CL Load capacitance 136 MIN TYP MAX sys_xtalin clock or core_dpll clock(1) or 54 MHz, 96 MHz(2) 2 Clock Specifications 22 UNIT MHz pF Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 4-12. sys_clkout2 Output Clock Electrical Characteristics (continued) MAX UNIT ZT NAME Transmission line impedance DESCRIPTION MIN 30 TYP 70 Ω LT Transmission line length 1 6 cm MAX UNIT (1) Possible divider: 4, 8, or 16. (2) Possible divider: 1, 2, 4, 8, or 16. Table 4-13 details the sys_clkout2 ouput clock switching characteristics. Table 4-13. sys_clkout2 Output Clock Switching Characteristics NAME DESCRIPTION MIN 1 / tc(CLKOUT2) Frequency, sys_clkout2 CO1 tw(CLKOUT2) Pulse duration, sys_clkout2 low or high tR(CLKOUT2) Rise time, sys_clkout2 tF(CLKOUT2) TYP sys_xtalin clock or core_dpll clock(1) or 54 MHz, 96 MHz(2) CO0 MHz 0.49*tc(clkout 2) 0.51*tc(clkout 2) ns 1.5(1) 5(2) ns (1) (2) ns Fall time, sys_clkout2 1.5 5 (1) At minimum load CO0 CO1 CO1 sys_clkout2 SWPS038-012 Figure 4-7. sys_clkout2 Output Clock 4.3 DPLL and DLL Specifications NOTE For more information, see Power, Reset, and Clock Management / PRCM Functional Description / PRCM Clock Manager Functional Description / Internal Clock Generation / DPLLs section of the AM3715/03 TRM. The applicative subsystem integrates five DPLLs and a DLL. The PRM and CM drive all of them. The five main DPLLs are: • DPLL1 (MPU) • DPLL3 (Core) • DPLL4 (Peripherals) • DPLL5 (Second peripherals DPLL) 4.3.1 DPLL Characteristics Table 4-14 summarizes the DPLL characteristics and assumes testing over recommended operating conditions. Table 4-14. DPLL Characteristics NAME DESCRIPTION MIN TYP MAX UNIT vdda_dplls_dll Supply voltage for DPLLs (MPUand Core) and DLL 1.71 1.8 1.91 V vdda_dpll_per Supply voltage for DPLL (Peripherals) 1.71 1.8 1.91 V finput CLKINP Input frequency 0.032 52 MHz COMMENTS FINP Clock Specifications Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 137 PRODUCT PREVIEW (2) At maximum load (maximum frequency 104 MHz). AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 4-14. DPLL Characteristics (continued) NAME DESCRIPTION MAX UNIT 0.032 MIN 52 MHz REFCLK 10 1000 MHz FINPHIF 0.001 800 MHz 10(1) 1000(2) MHz [M / (N + 1)] * FINP * [1 / M2] CLKOUTx2 output frequency 20(1) 2000(2) MHz 2 * [M / (N + 1)] * FINP * [1 / M2] CLKOUTHIF output frequency 10(3) 1000(4) MHz FINPHIF / M3 (3) (4) finternal Internal reference frequency fCLKINPHIF CLKINPHIF Input frequency fCLKINPULOW CLKINPULOW Input frequency fCLKOUT CLKOUT output frequency fCLKOUTx2 fCLKOUTHIF 20 fDCOCLKLDO DCOCLKLDO output frequency tlock TYP 2000 20 COMMENTS 2 * [M / (N + 1)] * FINP * [1 / M3] PRODUCT PREVIEW 2000 MHz 2 * [M / (N + 1)] * FINP Frequency lock time 1.9 + 350*REFCLK ms plock Phase lock time 1.9 + 500*REFCLK ms trelock-L Relock time—Frequency lock(5) (Low power bypass) 1.9 + 70*REFCLK ms DPLL in low-power mode: lowcurrstdby = 1 prelock-L Relock time—Phase lock(5) (Low power bypass) 1.9 + 120*REFCLK ms DPLL in low-power mode: lowcurrstdby = 1 trelock-F Relock time—Frequency lock(5) (Fast relock bypass) 0.05 + 70*REFCLK ms DPLL in normal mode: lowcurrstdby = 0 prelock-F Relock time—Phase lock(5) (Fast relock bypass) 0.05 + 120*REFCLK ms DPLL in normal mode: lowcurrstdby = 0 (1) The minimum frequencies on CLKOUT and CLKOUTX2 are assuming M2 = 1. For M2 > 1, the minimum frequency on these clocks will further scale down by factor of M2. (2) The maximum frequencies on CLKOUT and CLKOUTX2 are assuming M2 = 1. (3) The minimum frequency on CLKOUTHIF is assuming M3 = 1. For M3 > 1, the minimum frequency on this clock will further scale down by factor of M3. (4) The maximum frequency on CLKOUTHIF is assuming M3 = 1. (5) Relock time assumes typical operating conditions, 10°C maximum temperature drift. Table 4-15. DPLL4 Characteristics DESCRIPTION MIN TYP MAX UNIT vdda_dpll_per NAME Supply voltage for DPLL (peripherals) 1.71 1.8 1.91 V finput CLKINP input clock frequency 0.5 60 MHz FINP finternal REFCLK internal reference frequency 0.5 2.5 MHz REFCLK fCLKINPULOW CLKINPULOW bypass input frequency 0.001 800 MHz fCLKOUT CLKOUT output clock frequency 10 (1) 2000 (2) MHz [M / (N + 1)] * FINP * [1 / M2] fDCOCLKLDO Internal oscillator (DCO) output clock frequency 500 2000 MHz [M / (N + 1)] * FINP tlock Frequency lock time 350*REFCLK ms plock Phase lock time 500*REFCLK ms trelock-L Relock time—Frequency lock (3) (Low power bypass) 7.5 + 30*REFCLKs ms DPLL in low-power mode: lowcurrstdby = 1 prelock-L Relock time—Phase lock (3) (Low power bypass) 7.5 + 125*REFCLKs ms DPLL in low-power mode: lowcurrstdby = 1 (1) (2) (3) 138 COMMENTS The minimum frequency on CLKOUT is assuming M2 = 1. For M2 > 1, the minimum frequency on this clock will further scale down by factor of M2. The maximum frequency on CLKOUT is assuming M2 = 1. Relock time assumes typical operating conditions, 10°C maximum temperature drift. Clock Specifications Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 4-15. DPLL4 Characteristics (continued) MAX UNIT trelock-F NAME Relock time—Frequency lock (3) (Fast relock bypass) NA ms prelock-F Relock time—Phase lock (3) (Fast relock bypass) NA ms 4.3.2 DESCRIPTION MIN TYP COMMENTS DLL Characteristics Table 4-16 summarizes the DLL characteristics and assumes testing over recommended operating conditions. Table 4-16. DLL Characteristics DESCRIPTION MIN TYP MAX UNIT 1.71 1.8 1.91 V 66 120 200 MHz Clocks COMMENTS vdda_dplls_dll Supply voltage for DPLLs (MPU and Core) and DLL finput Input clock frequency tlock Lock time 500 trelock Relock time (Mode transitions through idle mode) 500 ns 250 450 Clocks IDLE to APPLICATION MODE 1 or 0 1.88 3.38 ms IDLE to APPLICATION MODE @133 MHz 1.50 2.71 ms IDLE to APPLICATION MODE @166 MHz 1.25 2.25 ms IDLE to APPLICATION MODE @200 MHz (1) Either application mode 0 and 1 IDLE to MODEMAXDELAY (1) Maximum frequency for nominal conditions. Clock Specifications Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 139 PRODUCT PREVIEW NAME AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 4.3.3 www.ti.com DPLL and DLL Noise Isolation The DPLL and DLL require dedicated power supply pins to isolate the core analog circuit from the switching noise generated by the core logic that can cause jitter on the clock output signal. Guard rings are added to the cell to isolate it from substrate noise injection. The vdd_core supplies are the most sensitive to noise; decoupling capacitance is recommended below the supply rails. The maximum input noise level allowed is 40 mVPP for frequencies below 1 MHz. Figure 4-8 illustrates an example of a noise filter. Noise Filter vdda_dplls_dll DPLL_MPU C DLL DPLL_CORE Noise Filter vdda_dpll_per PRODUCT PREVIEW DPLL5 C DPLL4 030-017 A. B. C. The capacitors must be inserted between power and ground as close as possible. This circuit is provided only as an example. The filter must be located as close as possible to the device. Figure 4-8. DPLL Noise Filter Table 4-17 specifies the noise filter requirements. Table 4-17. DPLL Noise Filter Requirements (1) (1) NAME MIN TYP MAX UNIT Filtering capacitor 50 100 150 nF For more information, see IO and Analog Voltage Decoupling Characteristics. 4.3.4 Processor Clocks Table 4-18 through Table 4-20 show the clocks AC performance values. Table 4-18. Processor Voltages Without SmartReflexTM RETENTI ON VDD1(1) (2) (3) (V) 140 OPP50 OPP100 OPP130 MIN MIN TYP MAX MIN TYP MAX MIN TYP MAX 0.8 0.92 0.97 1.02 1.08 1.14 1.2 1.21 1.27 1.33 Clock Specifications Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 (1) At ball level. (2) These values are defined when the SmartReflexTM feature is deactivated. They can be lower when SmartReflex is activated. (3) Minimum OPP voltage values defined in this table include any voltage transient. Table 4-19. Processor Voltages With SmartReflexTM RETENTI ON VDD1(1) (2) (3) (4) (V) OPP50 OPP100 OPP130 OPP1G (5) MIN MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX 0.8 0.92 0.97 1.02 1.08 1.14 1.2 1.21 1.27 1.33 1.28 1.33 1.38 (1) At ball level. (2) This table defines the safe VDD1 (vdd_mpu_iva) voltage ranges to be used before using the SmartReflex AVS feature for OPPs calibration. (3) These VDD1 (vdd_mpu_iva) values are the required voltage ranges prior to enabling the SmartReflex AVS feature. After calibration, the minimum voltage may be lower than this specification. (5) OPP1G is a high performance operating point which has following requirements: – ABB LDO must be set to FBB (Forward Body Bias) mode when switching to this OPP. It requires having a 1mF capacitor connected to cap_vdd_bb_mpu_iva. – AVS (Adaptive Voltage Scaling) power technique must be used to achieve optimum operating voltage. Table 4-20. Processor Clocks OPP50 OPP100 OPP130 OPP1G (2) Description Source Clock Max Freq.(MHz) Ratio Max Freq.(MHz) Ratio Max Freq.(MHz) Ratio Max Freq.(MHz) Ratio DPLL1 Locked Frequency - 1200 - 1200 - 1600 - 2000 - DPLL1CLK OUT_M2 DPLL1 Locked Frequency 300 2 *(M2 = 2)(1) 600 2 *(M2 = 1)(1) 800 2 *(M2 = 1)(1) 1000 2 *(M2 = 1)(1) ARM_FCLK DPLL1CLK OUT_M2 300 1 600 1 800 1 1000 1 (1) This ratio is configurable by software programming. For more information, see the AM3715/03 Technical Reference Manual (TRM). (2) OPP1G is a high performance operating point which has following requirements: – ABB LDO must be set to FBB (Forward Body Bias) mode when switching to this OPP. It requires having a 1mF capacitor connected to cap_vdd_bb_mpu_iva. – AVS (Adaptive Voltage Scaling) power technique must be used to achieve optimum operating voltage. Clock Specifications Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 141 PRODUCT PREVIEW (4) Minimum OPP voltage values defined in this table include any voltage transient. AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 4.3.5 www.ti.com Device Core Clocks Table 4-21 and Table 4-22 show the device core clocks AC performance values. Table 4-21. Device Core Voltages RETENTION VDD2 (1) (2) (1) (2) (V) OPP50 OPP100 MIN MIN TYP MAX MIN TYP MAX 0.8 0.90 0.95 1.00 1.08 1.14 1.20 TM Values are defined when SmartReflex At ball level. TM feature is deactivated. They can be lower when SmartReflex is activated. Table 4-22. Device Core Clocks OPP50 OPP100 Descript Source ion Max Freq.(M Hz) Ratio Max Freq.(M Hz) Ratio Max Freq.(M Hz) Ratio Max Freq.(M Hz) Ratio Max Freq.(M Hz) Ratio Max Freq.(M Hz) Ratio DPLL3 Locked Frequen cy 800 - 664 - 400 - 800 - 664 - 532 - PRODUCT PREVIEW DPLL3 CLKOU T_M2 DPLL3 200 Locked Frequen cy 2 *(M2 = 2) (1) 166 2 *(M2 = 1) (1) 200 2 *(M2 = 1) (1) 400 2 *(M2 = 1) (1) 332 2 *(M2 = 1) (1) 266 2 *(M2 = 1) (1) CORE_ CLK DPLL3 CLKOU T_M2 200 1 166 1 200 1 400 1 332 1 266 1 L3_ICL K CORE_ CLK 100 2 (1) 83 2 (1) 100 2 (1) 200 2 (1) 166 2 (1) 133 2 (1) L4_ICL K L3_ICL K 50 2 (1) 41.5 2 (1) 50 2 (1) 100 2 (1) 83 2 (1) 66.5 2 (1) SDRC_ CLK L3_ICL K 100 1 83 1 100 1 200 1 166 1 133 1 50 2 (1) 41.5 2 (1) 50 2 (1) 100 2 (1) 83 2 (1) 66.5 2 (1) GPMC_ L3_ICL CLK K (1) 142 This ratio is configurable by software programming. For more information, see the AM37x Technical Reference Manual (TRM). Clock Specifications Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 5 Timing Requirements and Switching Characteristics 5.1 Timing Test Conditions All timing requirements and switching characteristics are valid over the recommended operating conditions unless otherwise specified. 5.2 5.2.1 Interface Clock Specifications Interface Clock Terminology The interface clock is used at the system level to sequence the data and/or to control transfers accordingly with the interface protocol. 5.2.2 Interface Clock Frequency The interface clock frequency documented in this document is the maximum clock frequency, which corresponds to the maximum frequency programmable on this output clock. This frequency defines the maximum limit supported by the device IC and doesn’t take into account any system consideration (PCB, Peripherals). The system designer will have to consider these system considerations and the device IC timing characteristics as well, to define properly the maximum operating frequency, which corresponds to the maximum frequency supported to transfer the data on this interface. 5.2.3 Clock Jitter Specifications Jitter is a phase noise, which may alter different characteristics of a clock signal. The jitter specified in this document is the time difference between the typical cycle period and the actual cycle period affected by noise sources on the clock. The cycle (or period) jitter terminology will be used to identify this type of jitter. Tn–1 Tn Tn+1 SWPS038-013 Figure 5-1. Cycle (or Period) Jitter NOTE Max. Cycle Jitter = Max (Ti) Min. Cycle Jitter = Min (Ti) Jitter Standard Deviation (or RMS Jitter) = Standard Deviation (Ti) 5.2.4 Clock Duty Cycle Error The maximum duty cycle error is the difference between the absolute value of the maximum high-level pulse duration or the maximum low-level pulse duration and the typical pulse duration value. • Maximum pulse duration = Typical pulse duration + maximum duty cycle error • Minimum pulse duration = Typical pulse duration - maximum duty cycle error Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 143 PRODUCT PREVIEW The two interface clock characteristics are: • The maximum clock frequency • The maximum operating frequency AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 5.3 www.ti.com Timing Parameters The timing parameter symbols used in the timing requirements and switching characteristics tables are created in accordance with JEDEC Standard 100. To shorten the symbols, some of pin names and other related terminologies have been abbreviated as follows: Table 5-1. Timing Parameters SUBSCRIPTS SYMBOL Cycle time (period) d Delay time dis Disable time en Enable time h Hold time su Setup time START Start bit t Transition time PRODUCT PREVIEW v Valid time w Pulse duration (width) X Unknown, changing, or don’t care level F Fall time H High L Low R Rise time V Valid IV Invalid AE Active edge FE First edge LE Last edge Z 144 PARAMETER c High impedance Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com 5.4 SPRS616B – JUNE 2010 – REVISED JULY 2010 External Memory Interfaces The AM3715/03 includes the following external memory interfaces: • General-purpose memory controller (GPMC) • SDRAM controller (SDRC) 5.4.1 General-Purpose Memory Controller (GPMC) NOTE For more information, see Memory Subsystem / General-Purpose Memory Controller section of the AM3715/03 TRM. The GPMC is the unified memory controller used to interface external memory devices such as: • Asynchronous SRAM-like memories and ASIC devices • Asynchronous page mode and synchronous burst NOR flash • NAND flash GPMC/NOR Flash—Synchronous Mode Table 5-3 and Table 5-4 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-2 through Figure 5-6). Table 5-2. GPMC/NOR Flash Timing Conditions—Synchronous Mode TIMING CONDITION PARAMETER VALUE UNIT Input Conditions tR Input signal rise time 1.8 ns tF Input signal fall time 1.8 ns 12 pF Output Conditions Output load capacitance(1) CLOAD (1) The load setting of the IO buffer: LB0 = 1. Table 5-3. GPMC/NOR Flash Timing Requirements—Synchronous Mode(2) NO. PARAMETER OPP100 MIN MAX OPP50 MIN UNIT MAX F12 tsu(dV-clkH) Setup time, input data gpmc_d[15:0] valid before output clock gpmc_clk high 2.3 2.3 ns F13 th(clkH-dV) Hold time, input data gpmc_d[15:0] valid after output clock gpmc_clk high 1.5 1.5 ns F21 tsu(waitV-clkH) Setup time, input wait gpmc_waitx(1) valid before output clock gpmc_clk high 2.3 2.3 ns F22 th(clkH-waitV) Hold time, input wait gpmc_waitx(1) valid after output clock gpmc_clk high 1.9 1.9 ns (1) In gpmc_waitx, x is equal to 0, 1, 2, or 3. (2) See Operating Condition Addendum for OPP voltages. Table 5-4. GPMC/NOR Flash Switching Characteristics—Synchronous Mode(2) NO. PARAMETER OPP100 MIN MAX (18) OPP50 MIN UNIT MAX F0 1 / tc(clk) Frequency(15), output clock gpmc_clk F1 tw(clkH) Typical pulse duration, output clock gpmc_clk high 0.5P(12) 0.5P(12) ns F1 tw(clkL) Typical pulse duration, output clock gpmc_clk low 0.5P(12) 0.5P(12) ns tdc(clk) Duty cycle error, output clock gpmc_clk Copyright © 2010, Texas Instruments Incorporated 100 –500 500 100 –500 500 Timing Requirements and Switching Characteristics Submit Documentation Feedback MHz ps 145 PRODUCT PREVIEW 5.4.1.1 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 5-4. GPMC/NOR Flash Switching Characteristics—Synchronous Mode(2) NO. PARAMETER OPP100 MIN (18) (continued) OPP50 MAX MIN UNIT MAX PRODUCT PREVIEW tJ(clk) Jitter standard deviation(16), output clock gpmc_clk 33.33 33.33 ps tR(clk) Rise time, output clock gpmc_clk 1.6 1.6 ns tF(clk) Fall time, output clock gpmc_clk 1.6 1.6 ns tR(do) Rise time, output data gpmc_d[15:0] 2 2 ns tF(do) Fall time, output data gpmc_d[15:0] 2 2 ns F2 td(clkH-ncsV) Delay time, output clock gpmc_clk rising edge to output chip select gpmc_ncsx(11) transition F(6) – 1.9 F(6) + 3.3 F(6) – 1.9 F(6) + 3.3 ns F3 td(clkH-ncsIV) Delay time, output clock gpmc_clk rising edge to output chip select gpmc_ncsx(11) invalid E(5) – 1.9 E(5) + 3.3 E(5) – 1.9 E(5) + 3.3 ns F4 td(aV-clk) Delay time, output address gpmc_a[27:1] valid to output clock gpmc_clk first edge B(2) – 4.1 B(2) + 2.1 B(2) – 4.1 B(2) + 2.1 ns F5 td(clkH-aIV) Delay time, output clock gpmc_clk rising edge to output address gpmc_a[27:1] invalid F6 td(nbeV-clk) Delay time, output lower byte enable/command latch enable gpmc_nbe0_cle, output upper byte enable gpmc_nbe1 valid to output clock gpmc_clk first edge B(2) – 1.2 B(2) + 2.2 B(2) – 1.2 B(2) + 2.2 ns F7 td(clkH-nbeIV) Delay time, output clock gpmc_clk rising edge to D(4) – 2.2 D(4) + 1.2 D(4) – 2.2 D(4) + 1.2 output lower byte enable/command latch enable gpmc_nbe0_cle, output upper byte enable gpmc_nbe1 invalid ns F8 td(clkH-nadv) Delay time, output clock gpmc_clk rising edge to output address valid/address latch enable gpmc_nadv_ale transition G(7) + 0.8 G(7) + 2.2 G(7) + 0.8 G(7) + 2.2 ns F9 td(clkH-nadvIV) Delay time, output clock gpmc_clk rising edge to output address valid/address latch enable gpmc_nadv_ale invalid D(4) – 1.9 D(4) + 4.1 D(4) – 1.9 D(4) + 4.1 ns F10 td(clkH-noe) Delay time, output clock gpmc_clk rising edge to output enable gpmc_noe transition H(8) – 2.1 H(8) + 2.1 H(8) – 2.1 H(8) + 2.1 ns F11 td(clkH-noeIV) Delay time, output clock gpmc_clk rising edge to output enable gpmc_noe invalid E(5) – 2.1 E(5) + 2.1 E(5) – 2.1 E(5) + 2.1 ns F14 td(clkH-nwe) Delay time, output clock gpmc_clk rising edge to output write enable gpmc_nwe transition I(9) – 1.9 I(9) + 4.1 I(9) – 1.9 I(9) + 4.1 ns F15 td(clkH-do) Delay time, output clock gpmc_clk rising edge to output data gpmc_d[15:0] transition J(10) – 1.7 J(10) + 1.2 J(10) – 1.7 J(10) + 1.2 ns F17 td(clkH-nbe) Delay time, output clock gpmc_clk rising edge to output lower byte enable/command latch enable gpmc_nbe0_cle transition J(10) – 2.2 J(10) + 1.2 J(10) – 2.2 J(10) + 1.2 ns F18 tw(ncsV) Pulse duration, output chip select gpmc_ncsx(11) low F19 F20 tw(nbeV) tw(nadvV) –2.1 ns Read A(1) A(1) ns Write (1) A(1) ns (3) (3) ns A Pulse duration, output lower byte enable/command latch enable gpmc_nbe0_cle, output upper byte enable gpmc_nbe1 low Read C Write C(3) C(3) ns Pulse duration, output address valid/address latch enable gpmc_nadv_ale low Read K(13) K(13) ns Write (13) K(13) ns F23 td(clkH-iodir) Delay time, output clock gpmc_clk rising edge to output IO direction control gpmc_io_dir high (IN direction) F24 td(clkH-iodirIV) Delay time, output clock gpmc_clk rising edge to output IO direction control gpmc_io_dir low (OUT direction) 146 –2.1 K C H(8) – 2.1 H(8) + 4.1 H(8) – 2.1 H(8) + 4.1 M(17) – 2.1 Timing Requirements and Switching Characteristics Submit Documentation Feedback M(17) + 4.1 M(17) – 2.1 M(17) + 4.1 ns ns Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 (1) For single read: A = (CSRdOffTime – CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14) For burst read: A = (CSRdOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14) For burst write: A = (CSWrOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14) With n being the page burst access number. (2) B = ClkActivationTime * GPMC_FCLK(14) (3) For single read: C = RdCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK (14) For burst read: C = (RdCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14) For burst write: C = (WrCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14) With n being the page burst access number. (4) For single read: D = (RdCycleTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14) For burst read: D = (RdCycleTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14) For burst write: D = (WrCycleTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14) (6) For nCS falling edge (CS activated): – Case GpmcFCLKDivider = 0: – F = 0.5 * CSExtraDelay * GPMC_FCLK(14) – Case GpmcFCLKDivider = 1: – F = 0.5 * CSExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and CSOnTime are odd) or (ClkActivationTime and CSOnTime are even) – F = (1 + 0.5 * CSExtraDelay) * GPMC_FCLK(14) otherwise – Case GpmcFCLKDivider = 2: – F = 0.5 * CSExtraDelay * GPMC_FCLK(14) if ((CSOnTime – ClkActivationTime) is a multiple of 3) – F = (1 + 0.5 * CSExtraDelay) * GPMC_FCLK(14) if ((CSOnTime – ClkActivationTime – 1) is a multiple of 3) – F = (2 + 0.5 * CSExtraDelay) * GPMC_FCLK(14) if ((CSOnTime – ClkActivationTime – 2) is a multiple of 3) (7) For ADV falling edge (ADV activated): – Case GpmcFCLKDivider = 0: – G = 0.5 * ADVExtraDelay * GPMC_FCLK(14) – Case GpmcFCLKDivider = 1: – G = 0.5 * ADVExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and ADVOnTime are odd) or (ClkActivationTime and ADVOnTime are even) – G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) otherwise – Case GpmcFCLKDivider = 2: – G = 0.5 * ADVExtraDelay * GPMC_FCLK(14) if ((ADVOnTime – ClkActivationTime) is a multiple of 3) – G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) if ((ADVOnTime – ClkActivationTime – 1) is a multiple of 3) – G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) if ((ADVOnTime – ClkActivationTime – 2) is a multiple of 3) For ADV rising edge (ADV deactivated) in Reading mode: – Case GpmcFCLKDivider = 0: – G = 0.5 * ADVExtraDelay * GPMC_FCLK(14) – Case GpmcFCLKDivider = 1: – G = 0.5 * ADVExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and ADVRdOffTime are odd) or (ClkActivationTime and ADVRdOffTime are even) – G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) otherwise – Case GpmcFCLKDivider = 2: – G = 0.5 * ADVExtraDelay * GPMC_FCLK(14) if ((ADVRdOffTime – ClkActivationTime) is a multiple of 3) – G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) if ((ADVRdOffTime – ClkActivationTime – 1) is a multiple of 3) – G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) if ((ADVRdOffTime – ClkActivationTime – 2) is a multiple of 3) For ADV rising edge (ADV deactivated) in Writing mode: – Case GpmcFCLKDivider = 0: – G = 0.5 * ADVExtraDelay * GPMC_FCLK(14) – Case GpmcFCLKDivider = 1: – G = 0.5 * ADVExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and ADVWrOffTime are odd) or (ClkActivationTime and ADVWrOffTime are even) – G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) otherwise – Case GpmcFCLKDivider = 2: – G = 0.5 * ADVExtraDelay * GPMC_FCLK(14) if ((ADVWrOffTime – ClkActivationTime) is a multiple of 3) – G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) if ((ADVWrOffTime – ClkActivationTime – 1) is a multiple of 3) – G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) if ((ADVWrOffTime – ClkActivationTime – 2) is a multiple of 3) (8) For OE falling edge (OE activated) / IO DIR rising edge (Data Bus input direction): – Case GpmcFCLKDivider = 0: o H = 0.5 * OEExtraDelay * GPMC_FCLK(14) – Case GpmcFCLKDivider = 1: – H = 0.5 * OEExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and OEOnTime are odd) or (ClkActivationTime and OEOnTime are even) – H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK(14) otherwise – Case GpmcFCLKDivider = 2: – H = 0.5 * OEExtraDelay * GPMC_FCLK(14) if ((OEOnTime – ClkActivationTime) is a multiple of 3) Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 147 PRODUCT PREVIEW (5) For single read: E = (CSRdOffTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14) For burst read: E = (CSRdOffTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14) For burst write: E = (CSWrOffTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14) AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 – – www.ti.com H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK(14) if ((OEOnTime – ClkActivationTime – 1) is a multiple of 3) H = (2 + 0.5 * OEExtraDelay) * GPMC_FCLK(14) if ((OEOnTime – ClkActivationTime – 2) is a multiple of 3) For OE rising edge (OE deactivated): – Case GpmcFCLKDivider = 0: – H = 0.5 * OEExtraDelay * GPMC_FCLK(14) – Case GpmcFCLKDivider = 1: – H = 0.5 * OEExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and OEOffTime are odd) or (ClkActivationTime and OEOffTime are even) – H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK(14) otherwise – Case GpmcFCLKDivider = 2: – H = 0.5 * OEExtraDelay * GPMC_FCLK(14) if ((OEOffTime – ClkActivationTime) is a multiple of 3) – H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK(14) if ((OEOffTime – ClkActivationTime – 1) is a multiple of 3) – H = (2 + 0.5 * OEExtraDelay) * GPMC_FCLK(14) if ((OEOffTime – ClkActivationTime – 2) is a multiple of 3) (9) For WE falling edge (WE activated): – Case GpmcFCLKDivider = 0: – I = 0.5 * WEExtraDelay * GPMC_FCLK(14) – Case GpmcFCLKDivider = 1: – I = 0.5 * WEExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and WEOnTime are odd) or (ClkActivationTime and WEOnTime are even) – I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK(14) otherwise – Case GpmcFCLKDivider = 2: – I = 0.5 * WEExtraDelay * GPMC_FCLK(14) if ((WEOnTime – ClkActivationTime) is a multiple of 3) – I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK(14) if ((WEOnTime – ClkActivationTime – 1) is a multiple of 3) – I = (2 + 0.5 * WEExtraDelay) * GPMC_FCLK(14) if ((WEOnTime – ClkActivationTime – 2) is a multiple of 3) PRODUCT PREVIEW For WE rising edge (WE deactivated): – Case GpmcFCLKDivider = 0: – I = 0.5 * WEExtraDelay * GPMC_FCLK (14) – Case GpmcFCLKDivider = 1: – I = 0.5 * WEExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and WEOffTime are odd) or (ClkActivationTime and WEOffTime are even) – I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK(14) otherwise – Case GpmcFCLKDivider = 2: – I = 0.5 * WEExtraDelay * GPMC_FCLK(14) if ((WEOffTime – ClkActivationTime) is a multiple of 3) – I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK(14) if ((WEOffTime – ClkActivationTime – 1) is a multiple of 3) – I = (2 + 0.5 * WEExtraDelay) * GPMC_FCLK(14) if ((WEOffTime – ClkActivationTime – 2) is a multiple of 3) (10) J = GPMC_FCLK(14) (11) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3. (12) P = gpmc_clk period in ns (13) For read: K = (ADVRdOffTime – ADVOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14) For write: K = (ADVWrOffTime – ADVOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14) (14) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns. (15) Related to the gpmc_clk output clock maximum and minimum frequencies programmable in the GPMC module by setting the GPMC_CONFIG1_CSx configuration register bit field GpmcFCLKDivider. (16) The jitter probability density can be approximated by a Gaussian function. (17) M = (RdCycleTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14) Above M parameter expression is given as one example of GPMC programming. IO DIR signal will go from IN to OUT after both RdCycleTime and BusTurnAround completion. Behavior of IO direction signal does depend on kind of successive Read/Write accesses performed to Memory and multiplexed or nonmultiplexed memory addressing scheme, bus keeping feature enabled or not. IO DIR behaviour is automatically handled by GPMC controller. For a full description of the gpmc_io_dir feature, see the AM3715/03 TRM. (18) See Operating Condition Addendum for OPP voltages. 148 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 F1 F0 F1 gpmc_clk F2 F3 F18 gpmc_ncsx F4 Valid Address gpmc_a[10:1] F6 F7 F19 gpmc_nbe0_cle F19 gpmc_nbe1 F6 F8 F8 F20 F9 gpmc_nadv_ale F11 gpmc_noe F13 F12 gpmc_d[15:0] D0 gpmc_waitx F23 OUT gpmc_io_dir F24 OUT IN SWPS038-014 (1) (2) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3. Figure 5-2. GPMC/NOR Flash—Synchronous Single Read—(GpmcFCLKDivider = 0) Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 149 PRODUCT PREVIEW F10 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com F1 F0 F1 gpmc_clk F2 F3 gpmc_ncsx F4 Valid Address gpmc_a[10:1] F6 F7 gpmc_nbe0_cle F7 gpmc_nbe1 F6 F8 F8 F9 gpmc_nadv_ale F10 F11 gpmc_noe F13 F13 F12 PRODUCT PREVIEW gpmc_d[15:0] D0 F21 F12 D2 D1 D3 F22 gpmc_waitx F23 gpmc_io_dir OUT F24 IN OUT SWPS038-015 (1) (2) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3. Figure 5-3. GPMC/NOR Flash—Synchronous Burst Read—4x16-bit (GpmcFCLKDivider = 0) 150 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 F1 F1 F0 gpmc_clk F2 F3 gpmc_ncsx F4 Valid Address gpmc_a[10:1] F17 F6 F17 F17 gpmc_nbe0_cle F17 F17 F17 gpmc_nbe1 F6 F8 F8 F9 gpmc_nadv_ale F14 F15 D0 gpmc_d[15:0] D1 F15 D2 F15 D3 gpmc_waitx OUT gpmc_io_dir SWPS038-016 (1) (2) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3. Figure 5-4. GPMC/NOR Flash—Synchronous Burst Write—(GpmcFCLKDivider > 0) Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 151 PRODUCT PREVIEW F14 gpmc_nwe AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com F1 F0 F1 gpmc_clk F2 F3 gpmc_ncsx F6 F7 gpmc_nbe0_cle Valid F6 F7 gpmc_nbe1 Valid F4 gpmc_a[27:17] (gpmc_a[11:1]) Address (MSB) F12 F4 gpmc_a[16:1] (gpmc_d[15:0]) F5 Address (LSB) F13 D0 F8 D1 F12 D2 F8 D3 F9 gpmc_nadv_ale F10 F11 PRODUCT PREVIEW gpmc_noe gpmc_waitx F23 gpmc_io_dir OUT F24 IN OUT SWPS038-017 (1) (2) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3. Figure 5-5. GPMC/Multiplexed NOR Flash—Synchronous Burst Read 152 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 F1 F1 F0 gpmc_clk F2 F3 F18 gpmc_ncsx F4 gpmc_a[27:17] (gpmc_a[11:1]) Address (MSB) F17 F6 F17 F6 F17 F17 gpmc_nbe1 F17 F17 gpmc_nbe0_cle F8 F8 F20 F9 gpmc_nadv_ale PRODUCT PREVIEW F14 F14 gpmc_nwe F15 gpmc_a[16:1] (gpmc_d[15:0]) Address (LSB) D0 F22 D1 F15 F15 D2 D3 F21 gpmc_waitx OUT gpmc_io_dir SWPS038-018 (1) (2) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3. Figure 5-6. GPMC/Multiplexed NOR Flash—Synchronous Burst Write Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 153 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 5.4.1.2 www.ti.com GPMC/NOR Flash—Asynchronous Mode Table 5-6 and Table 5-7 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-7 through Figure 5-12). Table 5-5. GPMC/NOR Flash Timing Conditions—Asynchronous Mode TIMING CONDITION PARAMETER VALUE UNIT Input Conditions tR Input signal rise time 1.8 ns tF Input signal fall time 1.8 ns 16 pF Output Conditions CLOAD Output load capacitance(1) (1) The load setting of the IO buffer: LB0 = 0. Table 5-6. GPMC/NOR Flash Internal Timing Parameters—Asynchronous Mode(1) (2) NO. PARAMETER OPP100 MIN MAX (4) OPP50 MIN UNIT MAX Delay time, output data gpmc_d[15:0] generation from internal functional clock GPMC_FCLK(3) 6.5 9.1 ns FI2 Delay time, input data gpmc_d[15:0] capture from internal functional clock GPMC_FCLK(3) 4.0 5.6 ns FI3 Delay time, output chip select gpmc_ncsx generation from internal functional clock GPMC_FCLK(3) 6.5 9.1 ns FI4 Delay time, output address gpmc_a[27:1] generation from internal functional clock GPMC_FCLK(3) 6.5 9.1 ns FI5 Delay time, output address gpmc_a[27:1] valid from internal functional clock GPMC_FCLK(3) 6.5 9.1 ns FI6 Delay time, output lower-byte enable/command latch enable gpmc_nbe0_cle, output upper-byte enable gpmc_nbe1 generation from internal functional clock GPMC_FCLK(3) 6.5 9.1 ns FI7 Delay time, output enable gpmc_noe generation from internal functional clock GPMC_FCLK(3) 6.5 9.1 ns FI8 Delay time, output write enable gpmc_nwe generation from internal functional clock GPMC_FCLK(3) 6.5 9.1 ns FI9 Skew, internal functional clock GPMC_FCLK(3) 100 170 ps FI10 Delay time, IO direction generation from internal functional clock GPMC_FCLK(3) 6.5 9.1 ps PRODUCT PREVIEW FI1 (1) The internal parameters table must be used to calculate data access time stored in the corresponding CS register bit field. (2) Internal parameters are referred to the GPMC functional internal clock which is not provided externally. (3) GPMC_FCLK is general-purpose memory controller internal functional clock. (4) See Operating Condition Addendum for OPP voltages. 154 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 5-7. GPMC/NOR Flash Timing Requirements—Asynchronous Mode(7) NO. PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX FA5(1) tacc(d) Data access time H(5) H(5) ns FA20(3) tacc1-pgmode(d) Page mode successive data access time P(4) P(4) ns (5) (5) ns (2) FA21 tacc2-pgmode(d) Page mode first data access time H H (1) The FA5 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock edge. FA5 value must be stored inside the AccessTime register bit field. (2) The FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data is internally sampled by active functional clock edge. FA21 value must be stored inside the AccessTime register bit field. (3) The FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of GPMC functional clock cycles. After each access to input page data, next input page data is internally sampled by active functional clock edge after FA20 functional clock cycles. The FA20 value must be stored in the PageBurstAccessTime register bit field. (4) P = PageBurstAccessTime * (TimeParaGranularity + 1) * GPMC_FCLK(6) (5) H = AccessTime * (TimeParaGranularity + 1) * GPMC_FCLK(6) (6) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns. Table 5-8. GPMC/NOR Flash Switching Characteristics—Asynchronous Mode(16) NO. PARAMETER OPP100 MIN FA0 FA1 FA3 OPP50 MAX MIN UNIT MAX tR(d) Rise time, output data gpmc_d[15:0] 2 2 ns tF(d) Fall time, output data gpmc_d[15:0] 2 2 ns tw(nbeV) Pulse duration, output lower-byte enable/command latch enable gpmc_nbe0_cle, output upper-byte enable gpmc_nbe1 valid time Read N(12) N(12) Write N (12) (12) Pulse duration, output chip select gpmc_ncsx(13) low Read A(1) A(1) Write (1) A(1) Delay time, output chip select gpmc_ncsx(13) valid to output address valid/address latch enable gpmc_nadv_ale invalid Read tw(ncsV) td(ncsV-nadvIV) Write A B(2) – 0.2 B (2) – 0.2 N B(2) + 2.0 B (2) + 2.0 B(2) – 0.2 B (2) – 0.2 ns ns B(2) + 2.6 B (2) ns + 2.6 FA4 td(ncsV-noeIV) Delay time, output chip select gpmc_ncsx(13) valid to output enable gpmc_noe invalid (Single read) C(3) – 0.2 C(3) + 2.0 C(3) – 0.2 C(3) + 2.6 ns FA9 td(aV-ncsV) Delay time, output address gpmc_a[27:1] valid to output chip select gpmc_ncsx(13) valid J(9) – 0.2 J(9) + 2.0 J(9) – 0.2 J(9) + 2.6 ns FA10 td(nbeV-ncsV) Delay time, output lower-byte enable/command latch enable gpmc_nbe0_cle, output upper-byte enable gpmc_nbe1 valid to output chip select gpmc_ncsx(13) valid J(9) – 0.2 J(9) + 2.0 J(9) – 0.2 J(9) + 2.6 ns FA12 td(ncsV-nadvV) Delay time, output chip select gpmc_ncsx(13) valid to output address valid/address latch enable gpmc_nadv_ale valid K(10) – 0.2 K(10) + 2.0 K(10) – 0.2 K(10) + 2.6 ns FA13 td(ncsV-noeV) Delay time, output chip select gpmc_ncsx(13) valid to output enable gpmc_noe valid L(11) – 0.2 L(11) + 2.0 L – 0.2 L(11) + 2.6 ns FA14 td(ncsV-iodir) Delay time, output chip select gpmc_ncsx(13) valid to output IO direction control gpmc_io_dir high L(11) – 0.2 L(11) + 2.0 L(11) + 2.6 ns FA15 td(ncsV-iodir) Delay time, output chip select gpmc_ncsx(13) M(14) – 0.2 M(14) + 2.0 M(14) – 0.2 M(14) + 2.6 valid to output IO direction control gpmc_io_dir low ns Copyright © 2010, Texas Instruments Incorporated (11) L(11) – 0.2 Timing Requirements and Switching Characteristics Submit Documentation Feedback 155 PRODUCT PREVIEW (7) See Operating Condition Addendum for OPP voltages. AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 5-8. GPMC/NOR Flash Switching Characteristics—Asynchronous Mode(16) (continued) NO. PARAMETER OPP100 MIN OPP50 MAX MIN G(7) UNIT MAX G(7) FA16 tw(aIV) Pulse durationm output address gpmc_a[26:1] invalid between 2 successive R/W accesses FA18 td(ncsV-noeIV) Delay time, output chip select gpmc_ncsx(13) valid to output enable gpmc_noe invalid (Burst read) FA20 tw(aV) Pulse duration, output address gpmc_a[27:1] valid – 2nd, 3rd, and 4th accesses FA25 td(ncsV-nweV) Delay time, output chip select gpmc_ncsx(13) valid to output write enable gpmc_nwe valid E(5) – 0.2 E(5) + 2.0 E(5) – 0.2 E(5) + 2.6 ns FA27 td(ncsV-nweIV) Delay time, output chip select gpmc_ncsx(13) valid to output write enable gpmc_nwe invalid F(6) – 0.2 F(6) + 2.0 F(6) – 0.2 F(6) + 2.6 ns FA28 td(nweV-dV) Delay time, output write enable gpmc_ nwe valid to output data gpmc_d[15:0] valid 2.6 ns FA29 td(dV-ncsV) Delay time, output data gpmc_d[15:0] valid to output chip select gpmc_ncsx(13) valid J(9) + 2.6 ns FA37 td(noeV-aIV) Delay time, output enable gpmc_noe valid to output address gpmc_a[16:1]_d[15:0] phase end 2.6 ns I(8) – 0.2 I(8) + 2.0 D(4) I(8) – 0.2 I(8) + 2.6 D(4) 2.0 J(9) – 0.2 ns J(9) + 2.0 2.0 J(9) – 0.2 ns ns PRODUCT PREVIEW (1) For single read: A = (CSRdOffTime – CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK(15) For single write: A = (CSWrOffTime – CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK(15) For burst read: A = (CSRdOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(15) For burst write: A = (CSWrOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(15) with n being the page burst access number (2) For reading: B = ((ADVRdOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – CSExtraDelay)) * GPMC_FCLK(15) For writing: B = ((ADVWrOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – CSExtraDelay)) * GPMC_FCLK(15) (3) C = ((OEOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) * GPMC_FCLK(15) (4) D = PageBurstAccessTime * (TimeParaGranularity + 1) * GPMC_FCLK(15) (5) E = ((WEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – CSExtraDelay)) * GPMC_FCLK(15) (6) F = ((WEOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – CSExtraDelay)) * GPMC_FCLK(15) (7) G = Cycle2CycleDelay * GPMC_FCLK(15) (8) I = ((OEOffTime + (n – 1) * PageBurstAccessTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) * GPMC_FCLK(15) (9) J = (CSOnTime * (TimeParaGranularity + 1) + 0.5 * CSExtraDelay) * GPMC_FCLK(15) (10) K = ((ADVOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – CSExtraDelay)) * GPMC_FCLK(15) (11) L = ((OEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) * GPMC_FCLK(15) (12) For single read: N = RdCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK(15) For single write: N = WrCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK(15) For burst read: N = (RdCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(15) For burst write: N = (WrCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(15) (13) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. (14) M = ((RdCycleTime – CSOnTime) * (TimeParaGranularity + 1) – 0.5 * CSExtraDelay) * GPMC_FCLK(15) Above M parameter expression is given as one example of GPMC programming. IO DIR signal will go from IN to OUT after both RdCycleTime and BusTurnAround completion. Behavior of IO direction signal does depend on kind of successive Read/Write accesses performed to Memory and multiplexed or nonmultiplexed memory addressing scheme, bus keeping feature enabled or not. IO DIR behaviour is automatically handled by GPMC controller. For a full description of the gpmc_io_dir feature, see the AM3715/03 TRM. (15) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns. (16) See Operating Condition Addendum for OPP voltages. 156 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 GPMC_FCLK gpmc_clk FA5 FA1 gpmc_ncsx FA9 gpmc_a[10:1] Valid Address FA0 FA10 gpmc_nbe0_cle Valid FA0 Valid gpmc_nbe1 FA10 FA3 FA12 gpmc_nadv_ale FA13 gpmc_noe Data IN 0 gpmc_d[15:0] Data IN 0 gpmc_waitx FA15 FA14 gpmc_io_dir OUT IN OUT SWPS038-019 (1) (2) (3) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bits field. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally. Figure 5-7. GPMC / NOR Flash—Asynchronous Read—Single Word Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 157 PRODUCT PREVIEW FA4 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com GPMC_FCLK gpmc_clk FA5 FA5 FA1 FA1 gpmc_ncsx FA16 FA9 FA9 gpmc_a[10:1] Address 0 Address 1 FA0 FA0 FA10 FA10 gpmc_nbe0_cle Valid Valid FA0 gpmc_nbe1 FA0 Valid Valid FA10 FA10 FA3 FA3 FA12 FA12 gpmc_nadv_ale PRODUCT PREVIEW FA4 FA4 FA13 FA13 gpmc_noe gpmc_d[15:0] Data Upper gpmc_waitx FA15 FA15 FA14 gpmc_io_dir OUT FA14 IN OUT IN SWPS038-020 (1) (2) (3) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bits field. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally. Figure 5-8. GPMC / NOR Flash—Asynchronous Read—32-bit 158 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 GPMC_FCLK gpmc_clk FA21 FA20 FA20 FA20 Add1 Add2 Add3 D0 D1 D2 FA1 gpmc_ncsx FA9 Add0 gpmc_a[10:1] Add4 FA0 FA10 gpmc_nbe0_cle FA0 FA10 gpmc_nbe1 FA12 gpmc_nadv_ale FA13 gpmc_noe gpmc_d[15:0] D3 D3 gpmc_waitx FA15 FA14 gpmc_io_dir OUT OUT IN SWPS038-021 (1) (2) (3) (4) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3. FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data will be internally sampled by active functional clock edge. FA21 calculation must be stored inside AccessTime register bits field. FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of GPMC functional clock cycles. After each access to input page data, next input page data will be internally sampled by active functional clock edge after FA20 functional clock cycles. FA20 is also the duration of address phases for successive input page data (excluding first input page data). FA20 value must be stored in PageBurstAccessTime register bits field. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally. Figure 5-9. GPMC / NOR Flash—Asynchronous Read—Page Mode 4x16-bit Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 159 PRODUCT PREVIEW FA18 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com gpmc_fclk gpmc_clk FA1 gpmc_ncsx FA9 gpmc_a[10:1] Valid Address FA0 FA10 gpmc_nbe0_cle FA0 FA10 gpmc_nbe1 FA3 FA12 gpmc_nadv_ale FA27 FA25 PRODUCT PREVIEW gpmc_nwe FA29 gpmc_d[15:0] Data OUT gpmc_waitx gpmc_io_dir OUT SWPS038-022 (1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3. Figure 5-10. GPMC / NOR Flash—Asynchronous Write—Single Word 160 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 GPMC_FCLK gpmc_clk FA1 FA5 gpmc_ncsx FA9 gpmc_a[27:17] (gpmc_a[11:1]) Address (MSB) FA0 FA10 gpmc_nbe0_cle Valid FA0 FA10 gpmc_nbe1 Valid FA3 FA12 gpmc_nadv_ale FA13 gpmc_noe FA29 gpmc_a[16:1] (gpmc_d[15:0]) FA37 Data IN Data IN Address (LSB) FA15 FA14 gpmc_io_dir OUT OUT IN gpmc_waitx SWPS038-023 (1) (2) (3) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bits field. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally. Figure 5-11. GPMC / Multiplexed NOR Flash—Asynchronous Read—Single Word Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 161 PRODUCT PREVIEW FA4 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com gpmc_fclk gpmc_clk FA1 gpmc_ncsx FA9 gpmc_a[27:17] (gpmc_a[11:1]) Address (MSB) FA0 FA10 gpmc_nbe0_cle FA0 FA10 gpmc_nbe1 FA3 FA12 gpmc_nadv_ale FA27 FA25 PRODUCT PREVIEW gpmc_nwe FA29 gpmc_a[16:1] (gpmc_d[15:0]) FA28 Valid Address (LSB) Data OUT gpmc_waitx gpmc_io_dir OUT SWPS038-024 (1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3. Figure 5-12. GPMC / Multiplexed NOR Flash—Asynchronous Write—Single Word 162 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com 5.4.1.3 SPRS616B – JUNE 2010 – REVISED JULY 2010 GPMC/NAND Flash—Asynchronous Mode Table 5-10 and Table 5-11 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-13 through Figure 5-16). Table 5-9. GPMC/NAND Flash Timing Conditions—Asynchronous Mode TIMING CONDITION PARAMETER VALUE UNIT Input Conditions tR Input signal rise time 1.8 ns tF Input signal fall time 1.8 ns 16 pF Output Conditions Output load capacitance(1) CLOAD (1) The load setting of the IO buffer: LB0 = 0. Table 5-10. GPMC/NAND Flash Internal Timing Parameters—Asynchronous Mode(1) NO. PARAMETER GNFI1 Delay time, output data gpmc_d[15:0] generation from internal functional clock GPMC_FCLK(3) 6.5 9.1 ns GNFI2 Delay time, input data gpmc_d[15:0] capture from internal functional clock GPMC_FCLK(3) 4.0 5.6 ns GNFI3 Delay time, output chip select gpmc_ncsx generation from internal functional clock GPMC_FCLK(3) 6.5 9.1 ns GNFI4 Delay time, output address valid/address latch enable gpmc_nadv_ale generation from internal functional clock GPMC_FCLK(3) 6.5 9.1 ns GNFI5 Delay time, output lower-byte enable/command latch enable gpmc_nbe0_cle generation from internal functional clock GPMC_FCLK(3) 6.5 9.1 ns GNFI6 Delay time, output enable gpmc_noe generation from internal functional clock GPMC_FCLK(3) 6.5 9.1 ns GNFI7 Delay time, output write enable gpmc_nwe generation from internal functional clock GPMC_FCLK(3) 6.5 9.1 ns GNFI8 Skew, functional clock GPMC_FCLK(3) 100 170 ps MIN OPP50 MAX MIN UNIT MAX PRODUCT PREVIEW OPP100 (2) (4) (1) Internal parameters table must be used to calculate data access time stored in the corresponding CS register bit field. (2) Internal parameters are referred to the GPMC functional internal clock which is not provided externally. (3) GPMC_FCLK is general-purpose memory controller internal functional clock. (4) See Operating Condition Addendum for OPP voltages. Table 5-11. GPMC/NAND Flash Timing Requirements—Asynchronous Mode(4) NO. PARAMETER OPP100 MIN GNF12(1) tacc(d) OPP50 MAX MIN J(2) Access time, input data gpmc_d[15:0] UNIT MAX J(2) ns (1) The GNF12 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of the read cycle and after GNF12 functional clock cycles, input data is internally sampled by the active functional clock edge. The GNF12 value must be stored inside AccessTime register bit field. (2) J = AccessTime * (TimeParaGranularity + 1) * GPMC_FCLK(3) (3) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns. (4) See Operating Condition Addendum for OPP voltages. Table 5-12. GPMC/NAND Flash Switching Characteristics—Asynchronous Mode(15) NO. PARAMETER OPP100 MIN tR(d) Rise time, output data gpmc_d[15:0] Copyright © 2010, Texas Instruments Incorporated OPP50 MAX 2 MIN UNIT MAX 2 Timing Requirements and Switching Characteristics Submit Documentation Feedback ns 163 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 5-12. GPMC/NAND Flash Switching Characteristics—Asynchronous Mode(15) (continued) NO. PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX PRODUCT PREVIEW tF(d) Fall time, output data gpmc_d[15:0] GNF0 tw(nweV) Pulse duration, output write enable gpmc_nwe valid 2 2 GNF1 td(ncsV-nweV) Delay time, output chip select gpmc_ncsx(13) valid to output write enable gpmc_nwe valid B(2) – 0.2 B(2) + 2.0 B(2) – 0.2 B(2) + 2.6 ns GNF2 tw(cleH-nweV) Delay time, output lower-byte enable/command latch enable gpmc_nbe0_cle high to output write enable gpmc_nwe valid C(3) – 0.2 C(3) + 2.0 C(3) – 0.2 C(3) + 2.6 ns GNF3 tw(nweV-dV) Delay time, output data gpmc_d[15:0] valid to output write enable gpmc_nwe valid D(4) – 0.2 D(4) + 2.0 D(4) – 0.2 D(4) + 2.6 ns GNF4 tw(nweIV-dIV) Delay time, output write enable gpmc_nwe invalid to output data gpmc_d[15:0] invalid E(5) – 0.2 E(5) + 2.0 E(5) – 0.2 E(5) + 2.6 ns GNF5 tw(nweIV-cleIV) Delay time, output write enable gpmc_nwe invalid to output lower-byte enable/command latch enable gpmc_nbe0_cle invalid F(6) – 0.2 F(6) + 2.0 F(6) – 0.2 F(6) + 2.6 ns GNF6 tw(nweIV-ncsIV) Delay time, output write enable gpmc_nwe invalid to output chip select gpmc_ncsx(13) invalid G(7) – 0.2 G(7) + 2.0 G(7) – 0.2 G(7) + 2.6 ns GNF7 tw(aleH-nweV) Delay time, output address valid/address latch enable gpmc_nadv_ale high to output write enable gpmc_nwe valid C(3) – 0.2 C(3) + 2.0 C(3) – 0.2 C(3) + 2.6 ns GNF8 tw(nweIV-aleIV) Delay time, output write enable gpmc_nwe invalid to output address valid/address latch enable gpmc_nadv_ale invalid F(6) – 0.2 F(6) + 2.0 F(6) – 0.2 F(6) + 2.6 ns GNF9 tc(nwe) Cycle time, write A(1) A(1) H(8) (13) (9) Delay time, output chip select gpmc_ncsx valid to output enable gpmc_noe valid GNF13 tw(noeV) Pulse duration, output enable gpmc_noe valid K(10) K(10) GNF14 tc(noe) Cycle time, read L(11) L(11) Delay time, output enable gpmc_noe invalid to output chip select gpmc_ncsx(13) invalid (12) M I + 2.0 (12) – 0.2 M I – 0.2 ns td(ncsV-noeV) tw(noeIV-ncsIV) – 0.2 (9) GNF10 GNF15 I ns H(8) (9) (12) + 2.0 M ns (9) I + 2.6 ns ns ns (12) – 0.2 M + 2.6 ns (1) A = (WEOffTime – WEOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14) (2) B = ((WEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – CSExtraDelay)) * GPMC_FCLK(14) (3) C = ((WEOnTime – ADVOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – ADVExtraDelay)) * GPMC_FCLK(14) (4) D = (WEOnTime * (TimeParaGranularity + 1) + 0.5 * WEExtraDelay) * GPMC_FCLK(14) (5) E = ((WrCycleTime – WEOffTime) * (TimeParaGranularity + 1) – 0.5 * WEExtraDelay) * GPMC_FCLK(14) (6) F = ((ADVWrOffTime – WEOffTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – WEExtraDelay)) * GPMC_FCLK(14) (7) G = ((CSWrOffTime – WEOffTime) * (TimeParaGranularity + 1) + 0.5 * (CSExtraDelay – WEExtraDelay)) * GPMC_FCLK(14) (8) H = WrCycleTime * (1 + TimeParaGranularity) * GPMC_FCLK(14) (9) I = ((OEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) * GPMC_FCLK(14) (10) K = (OEOffTime – OEOnTime) * (1 + TimeParaGranularity) * GPMC_FCLK(14) (11) L = RdCycleTime * (1 + TimeParaGranularity) * GPMC_FCLK(14) (12) M = ((CSRdOffTime – OEOffTime) * (TimeParaGranularity + 1) + 0.5 * (CSExtraDelay – OEExtraDelay)) * GPMC_FCLK(14) (13) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. (14) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns. (15) See Operating Condition Addendum for OPP voltages. 164 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 GPMC_FCLK GNF1 GNF6 GNF2 GNF5 gpmc_ncsx gpmc_nbe0_cle gpmc_nadv_ale gpmc_noe GNF0 gpmc_nwe GNF3 GNF4 gpmc_a[16:1] (gpmc_d[15:0]) Command SWPS038-025 (1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. Figure 5-13. GPMC / NAND Flash—Command Latch Cycle GNF1 GNF6 GNF7 GNF8 PRODUCT PREVIEW GPMC_FCLK gpmc_ncsx gpmc_nbe0_cle gpmc_nadv_ale gpmc_noe GNF9 GNF0 gpmc_nwe GNF3 gpmc_a[16:1] (gpmc_d[15:0]) GNF4 Address SWPS038-026 (1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. Figure 5-14. GPMC / NAND Flash—Address Latch Cycle Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 165 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com GPMC_FCLK GNF12 GNF10 GNF15 gpmc_ncsx gpmc_nbe0_cle gpmc_nadv_ale GNF14 GNF13 gpmc_noe gpmc_a[16:1] (gpmc_d[15:0]) DATA gpmc_waitx SWPS038-027 (1) (2) (3) GNF12 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after GNF12 functional clock cycles, input data will be internally sampled by active functional clock edge. GNF12 value must be stored inside AccessTime register bits field. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally. In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3. PRODUCT PREVIEW Figure 5-15. GPMC / NAND Flash—Data Read Cycle GPMC_FCLK GNF1 GNF6 gpmc_ncsx gpmc_nbe0_cle gpmc_nadv_ale gpmc_noe GNF9 GNF0 gpmc_nwe GNF3 gpmc_a[16:1] (gpmc_d[15:0]) GNF4 DATA SWPS038-028 (1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. Figure 5-16. GPMC / NAND Flash—Data Write Cycle 166 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com 5.4.2 SPRS616B – JUNE 2010 – REVISED JULY 2010 SDRAM Memory Controller (SDRC) NOTE For more information, see Memory Subsystem / SDRAM Controller (SDRC) Subsystem section of the AM3715/03 TRM. The SDRAM controller subsystem module provides connectivity between the processor and external DRAM memory components. The module includes support for double-data-rate SDRAM (mobile DDR). 5.4.2.1 LPDDR Interface This section provides the timing specification for the bottom-side LPDDR interface as a PCB design and manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal integrity, cross-talk, and signal timing. These rules, when followed, result in a reliable LPDDR memory system without the need for a complex timing closure process. For more information regarding guidelines for using this LPDDR specification, see the Understanding TI's PCB Routing Rule-Based DDR Timing Specification Application Report (literature number SPRAAV0). 5.4.2.1.1 LPDDR Interface Schematic Figure 5-17 and Figure 5-18 show the LPDDR interface schematics for a LPDDR memory system. The 1 x16 LPDDR system schematic is identical to Figure 5-17 except that the high word LPDDR device is deleted. Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 167 PRODUCT PREVIEW The LPDDR interface is balled out on the bottom side of all AM37x packages and on the top side of AM37x POP packages. The LPDDR interface on the top of the POP package has been designed for compatibility any POP LPDDR device with a matching footprint and compliance with the JEDEC LPDDR-266 specification. AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com AM37x LPDDR sdrc_d0 T DQ0 sdrc_d7 sdrc_dm0 sdrc_dqs0 sdrc_d8 T DQ7 LDM LDQS DQ8 sdrc_d15 sdrc_dm1 sdrc_dqs1 T T T T T T LPDDR PRODUCT PREVIEW sdrc_d16 T DQ0 sdrc_d23 sdrc_dm2 sdrc_dqs2 sdrc_d24 T DQ7 LDM LDQS DQ8 sdrc_d31 sdrc_dm3 sdrc_dqs3 sdrc_ba0 sdrc_ba1 sdrc_a0 T sdrc_a14 sdrc_ncs0 sdrc_ncs1 sdrc_ncas sdrc_nras sdrc_nwe sdrc_cke0 sdrc_cke1 sdrc_clk sdrc_nclk T T T T T T T T T T DQ15 UDM UDQS DQ15 UDM UDQS BA0 BA1 A0 BA0 BA1 A0 A14 CS A14 CS CAS RAS WE CKE CAS RAS WE CKE CK CK CK CK N/C T T T T N/C T T Figure 5-17. AM37x LPDDR High Level Schematic (x16 memories) 168 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 AM37x LPDDR sdrc_d0 T DQ0 sdrc_d7 sdrc_dm0 sdrc_dqs0 sdrc_d8 T DQ7 DM0 DQS0 DQ8 sdrc_d15 sdrc_dm1 sdrc_dqs1 T T DQ15 DM1 DQS1 sdrc_d16 T DQ16 sdrc_d23 sdrc_dm2 sdrc_dqs2 sdrc_d24 T DQ23 DM2 DQS2 DQ24 sdrc_d31 sdrc_dm3 sdrc_dqs3 sdrc_ba0 sdrc_ba1 sdrc_a0 T T T T T T T T T T T T T DQ31 DM3 DQS3 BA0 BA1 A0 PRODUCT PREVIEW sdrc_a14 sdrc_ncs0 sdrc_ncs1 sdrc_ncas sdrc_nras sdrc_nwe sdrc_cke0 sdrc_cke1 sdrc_clk sdrc_nclk T A14 CS T N/C T CAS RAS WE CKE T T T N/C T CK CK T Figure 5-18. AM37x LPDDR High Level Schematic (x32 memory) 5.4.2.1.2 Compatible JEDEC LPDDR Devices Table 5-13 shows the parameters of the JEDEC LPDDR devices that are compatible with this interface. Generally, the LPDDR interface is compatible with x16 and x32 LPDDR266 and LPDDR333 speed grade LPDDR devices. Table 5-13. Compatible JEDEC LPDDR Devices (1) (2) NO. PARAMETER MIN 1 JEDEC LPDDR Device Speed Grade MAX UNIT LPDDR-266 2 JEDEC LPDDR Device Bit Width 16 32 Bits 3 JEDEC LPDDR Device Count 1 2 Devices 4 JEDEC LPDDR Device Ball Count 60 90 Balls NOTES See Note (1) See Note (2) Higher LPDDR speed grades are supported due to inherent JEDEC LPDDR backwards compatibility. 1 x16 LPDDR device is used for 16 bit LPDDR memory system. 1x32 or 2x16 LPDDR devices are used for a 32-bit LPDDR memory system. Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 169 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com 5.4.2.1.3 PCB Stackup The minimum stackup required for routing the OMAP35x is a six layer stack as shown in Table 5-14. Additional layers may be added to the PCB stack up to accommodate other circuity or to reduce the size of the PCB footprint. Table 5-14. OMAP35x Minimum PCB Stack Up LAYER TYPE DESCRIPTION 1 Signal Top Routing Mostly Horizontal 2 Plane Ground 3 Plane Power 4 Signal Internal Routing 5 Plane Ground 6 Signal Bottom Routing Mostly Vertical Table 5-15. PCB Stack Up Specifications PARAMETER MIN 1 PCB Routing/Plane Layers 6 2 Signal Routing Layers 3 3 Full ground layers under LPDDR routing region 2 4 Number of ground plane cuts allowed within LPDDR routing region 5 Number of ground reference planes required for each LPDDR routing 1 layer 6 Number of layers between LPDDR routing layer and reference ground 0 plane 7 PCB Routing Feature Size 4 Mils 8 PCB Trace Width w 4 Mils 9 PCB BGA escape via pad size 18 Mils 10 PCB BGA escape via hole size 8 Mils 11 Device BGA Pad Size See Note (1) 12 LPDDR Device BGA Pad Size See Note (2) 13 Single Ended Impedance, ZO 50 14 Impedance Control Z-5 PRODUCT PREVIEW NO. (1) (2) (3) 170 TYP MAX UNIT NOTES 0 1 0 Z 75 Ω Z+5 Ω See Note (3) Please see the Flip Chip Ball Grid Array Package Reference Guide (literature number SPRU811) for device BGA pad size. Please see the LPDDR device manufacturer documentation for the LPDDR device BGA pad size. Z is the nominal singled ended impedance selected for the PCB specified by item 12. Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com 5.5 SPRS616B – JUNE 2010 – REVISED JULY 2010 Multimedia Interfaces 5.5.1 Camera ISP2P Interface NOTE For more information, see Camera ISP chapter of the AM3715/03 TRM. The camera subsystem provides the system interfaces and the processing capability to connect raw, YUV or JPEG image sensor modules to the AM3715/03 device for video-preview, video-record and still-image-capture applications. The camera ISP2P subsystem supports different camera configurations: • 10-bit Parallel interface • 12-bit Parallel interface • 12-bit Parallel interface Note: For more information, see the Camera ISP / Camera ISP Environment / Camera ISP Connectivity Schemes section of the AM3715/03 TRM. 5.5.1.1 Camera Output Clocks (cam_xclka and cam_xclkb) Table 5-16. ISP2P cam_xclka and cam_xclkb Output Clocks Switching Characteristics NO. PARAMETER OPP100 MIN ISP15 1 / tc(xclk) OPP50 MAX Frequency(1), output clock cam_xclkn(4) MIN 216 (4) ISP16 tw(xclkH) Typical pulse duration, output clock cam_xclkn ISP16 tw(xclkL) Typical pulse duration, output clock cam_xclkn(4) low high tdc(xclk) Duty cycle error, output clock cam_xclkn(4) (3) 0.5P (2) (2) MHz ns 0.5P(2) 231 (4) 216 0.5P 0.5P(2) UNIT MAX ns 231 ps tJ(xclk) Jitter standard deviation , output clock cam_xclkn 33 33 ps tR(xclk) Rise time, output clock cam_xclkn(4) 0.93 0.93 ns tF(xclk) Fall time, output clock cam_xclkn(4) 0.93 0.93 ns (4) (1) Related with the cam_xclkn maximum and minimum frequencies programmable in the ISP module. NOTE: You must disable the camera sensor or the camera module to change the frequency configuration. For more information, see the AM3715/03 TRM. (2) P = cam_xclkn(4) period in ns (3) The jitter probability density can be approximated by a Gaussian function. (4) In cam_xclkn, n is equal to a or b. 5.5.1.2 Parallel Camera Interface (CPI) 5.5.1.2.1 CPI—Video and Graphics Digitizer 1.8V Mode The imaging subsystem deals with the processing of the pixel data coming from an external image sensor or from video and graphics digitizer. It is a key component for the following multimedia applications: video preview, camera viewfinder, video record and still image capture. It supports RAW, RGB, and YUV data processing. Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 171 PRODUCT PREVIEW The camera ISP2P subsystem supports up to two simultaneous pixel flows but only one of them can use the video processing hardware: • Parallel camera interface + Serial camera interface: one interface data goes through the video processing hardware. The other interface data goes directly to memory • Serial camera interface + Serial camera interface: one serial interface data goes through the video processing hardware. The other serial interface data goes directly to memory. AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 5-18 assumes testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-19 and Figure 5-20). Table 5-17. CPI Timing Conditions—Video and Graphics Digitizer 1.8-V Mode TIMING CONDITION PARAMETER VALUE UNIT MIN MAX Input Conditions tR Input signal rise time 80 1800 ps tF Input signal fall time 80 1800 ps Table 5-18. CPI Timing Requirements—Video and Graphics Digitizer 1.8-V Mode(4) (6) NO. PARAMETER OPP100 MIN ISP1 1 / tc(pclk) UNIT MAX Frequency(1), input pixel clock cam_pclk 148.5 MHz (2) ns ns PRODUCT PREVIEW ISP2 tw(pclkL) Typical pulse duration, input pixel clock cam_pclk low 0.5P ISP3 tw(pclkH) Typical pulse duration, input pixel clock cam_pclk high 0.5P(2) tdc(pclk) Duty cycle error, input pixel clock cam_pclk 0.5*P(2) 3.247 ns tJ(pclk) Cycle jitter(3), input pixel clock cam_pclk 0.06P(2) ns ISP4 tsu(vsV-pclkH) Setup time, input vertical synchronization cam_vs valid before input pixel clock cam_pclk rising/falling edge 0.75 ns ISP5 th(pclkH-vsV) Hold time, input vertical synchronization cam_vs valid after input pixel clock cam_pclk rising/falling edge 0.96 ns ISP6 tsu(hsV-pclkH) Setup time, input horizontal synchronization cam_hs valid before input pixel clock cam_pclk rising/falling edge 0.75 ns ISP7 th(pclkH-hsV) Hold time, input horizontal synchronization cam_hs valid after input pixel clock cam_pclk rising/falling edge 0.96 ns ISP8 tsu(dV-pclkH) Setup time, input data cam_d[n:0](5) valid before input pixel clock cam_pclk rising/falling edge 0.75 ns ISP9 th(pclkH-dV) Hold time, input data cam_d[n:0](5) valid after input pixel clock cam_pclk rising/falling edge 0.96 ns ISP10 tsu(wenV-pclkH) Setup time, input write enable cam_wen valid before input pixel clock cam_pclk rising/falling edge 0.75 ns ISP11 th(pclkH-wenV) Hold time, input write enable cam_wen valid after input pixel clock cam_pclk rising/falling edge 0.96 ns ISP12 tsu(fldV-pclkH) Setup time, input field identification cam_fld valid before input pixel clock cam_pclk rising/falling edge 0.75 ns ISP13 th(pclkH-fldV) Hold time, input field identification cam_fld valid after input pixel clock cam_pclk rising/falling edge 0.96 ns (1) Related with the input maximum frequency supported by the ISP module in 8-bit mode with 8 to 16 data bits conversion bridge enabled. (2) P = cam_pclk period in ns (3) Maximum cycle jitter supported by cam_pclk input clock (4) The timing requirements are assured up to the cycle jitter and duty cycle error conditions specified. (5) n = 11 (Data bus size is limited to 8 bits. So the bits configuration is either cam_d[7:0] or cam_d[11:4]). Lines not connected must be tied low. (6) See Operating Condition Addendum for OPP voltages. 172 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 ISP3 ISP1 ISP2 cam_pclk ISP4 ISP5 ISP6 ISP7 cam_vs cam_hs ISP8 ISP9 cam_d[N:0] D(0) D(n-2) D(n-1) D(0) D(n-2) D(n-1) ISP10 ISP11 cam_fld SWPS038-048 (1) (2) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are software configurable. Optionally, the cam_wen signal can be used as an external memory write-enable signal. For further details, see the AM3715/03 TRM. N = 11 (Data bus size is limited to 8 bits. So the bits configuration is either cam_d[7:0] or cam_d[11:4]). When the number of data lines is less than cam_d[N:0], data lines can be connected to the upper or lower lines of cam_d[N:0]. Lines not connected must be tied low. For more information about video port mapping, see the AM3715/03 TRM. Figure 5-19. CPI—Video and Graphics Digitizer—1.8-V Progressive Mode Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 173 PRODUCT PREVIEW cam_wen AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com ISP3 ISP1 ISP2 cam_pclk ISP4 ISP5 ISP6 ISP7 cam_vs cam_hs ISP8 ISP9 D(0) cam_d[N:0] D(n–1) D(0) D(n–1) D(0) ISP10 D(n–1) D(0) D(n–1) ISP11 cam_wen PRODUCT PREVIEW ISP12 ISP13 EVEN cam_fld ODD SWPS038-049 (1) (2) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are software configurable. Optionally, the cam_wen signal can be used as an external memory write-enable signal. For further details, see the AM3715/03 TRM. N = 11 (Data bus size is limited to 8 bits. So the bits configuration is either cam_d[7:0] or cam_d[11:4]). When the number of data lines is less than cam_d[N:0], data lines can be connected to the upper or lower lines of cam_d[N:0]. Lines not connected must be tied low. For more information about video port mapping, see the AM3715/03 TRM. Figure 5-20. CPI—Video and Graphics Digitizer—1.8-V Interlaced Mode 5.5.1.2.2 CPI—12-Bit SYNC Normal Progressive Mode Table 5-20 assumes testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-21). Table 5-19. CPI Timing Conditions—12-Bit SYNC Normal Progressive Mode(1) TIMING CONDITION PARAMETER VALUE UNIT Input Conditions tR Input signal rise time 2.7 ns tF Input signal fall time 2.7 ns 8.6 pF Output Condition CLOAD Output load capacitance (1) The load setting of the IO buffer: LB0 = 1. 174 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 5-20. CPI Timing Requirements—12-Bit SYNC Normal Progressive Mode(4) (5) PARAMETER OPP100 MIN ISP17 1 / tc(pclk) Frequency(1), input pixel clock cam_pclk ISP18 tw(pclkH) Typical pulse duration, input pixel clock cam_pclk high ISP18 OPP50 MAX MIN UNIT MAX 75 45 MHz 0.5P(2) 0.5P(2) ns (2) (2) ns tw(pclkL) Typical pulse duration, input pixel clock cam_pclk low tdc(pclk) Duty cycle error, input pixel clock cam_pclk 0.5P 0.5P(2) 3.465 0.5P 0.5P(2) 6.93 ns tJ(pclk) Cycle jitter(3), input pixel clock cam_pclk 0.0649*P 0.0649*P ns ISP19 tsu(dV-pclkH) Setup time, input data cam_d[11:0] valid before input pixel clock cam_pclk rising edge 1.82 3.25 ns ISP20 th(pclkH-dV) Hold time, input data cam_d[11:0] valid after input pixel clock cam_pclk rising edge 1.82 3.25 ns ISP21 tsu(dV-vsH) Setup time, input vertical synchronization cam_vs valid before input pixel clock cam_pclk rising edge 1.82 3.25 ns ISP22 th(pclkH-vsV) Hold time, input vertical synchronization cam_vs valid after input pixel clock cam_pclk rising edge 1.82 3.25 ns ISP23 tsu(dV-hsH) Setup time, input horizontal synchronization cam_hs valid before input pixel clock cam_pclk rising edge 1.82 3.25 ns ISP24 th(pclkH-hsV) Hold time, input horizontal synchronization cam_hs valid after input pixel clock cam_pclk rising edge 1.82 3.25 ns ISP25 tsu(dV-hsH) Setup time, input write enable cam_wen valid before input pixel clock cam_pclk rising edge 1.82 3.25 ns ISP26 th(pclkH-hsV) Hold time, input write enable cam_wen valid after input pixel clock cam_pclk rising edge 1.82 3.25 ns (2) (2) PRODUCT PREVIEW NO. (1) Related with the input maximum frequency supported by the ISP module. (2) P = cam_pclk period in ns (3) Maximum cycle jitter supported by cam_pclk input clock. (4) The timing requirements are assured up to the cycle jitter and duty cycle error conditions specified. (5) See Operating Condition Addendum for OPP voltages. Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 175 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com ISP16 ISP15 ISP16 cam_xclki ISP17 ISP18 ISP18 cam_pclk ISP19 ISP20 ISP21 ISP22 cam_vs cam_hs ISP23 cam_d[11:0] D(0) D(n–3) D(n–2) ISP24 D(n–1) D(0) D(1) D(n–1) PRODUCT PREVIEW ISP25 ISP26 cam_wen cam_fld SWPS038-050 (1) (2) (3) (4) (5) (6) (7) (8) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable. If the cam_hs, cam_vs, and cam_fld signals are output, the signal length can be set. The parallel camera in SYNC mode supports progressive image sensor modules and 8-, 10-, 11-, or 12-bit data. When the image sensor has fewer than 12 data lines, it must be connected to the lower data lines and the unused lines must be grounded. However, it is possible to shift the data to 0, 2, or 4 data internal lanes. The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit mode, cam_d[11:2] or cam_d[9:0] in 10-bit mode, cam_d[10:0] in 11-bit mode and cam_d[11:0] in 12-bit mode. Optionally, the data write to memory can be qualified by the external cam_wen signal. The cam_wen signal can be used as an external memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs, and cam_wen signals are asserted. In cam_xclki, i can be equal to a or b. See Table 5-16 for ISP15 and ISP16 parameters. Figure 5-21. CPI—12-Bit SYNC Normal Progressive Mode 5.5.1.2.3 CPI—8-Bit SYNC Packed Progressive Mode Table 5-22 assumes testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-22). Table 5-21. CPI Timing Conditions—8-Bit SYNC Packed Progressive Mode(1) TIMING CONDITION PARAMETER VALUE UNIT Input Conditions tR Input signal rise time 2.5 ns tF Input signal fall time 2.5 ns 8.6 pF Output Condition CLOAD 176 Output load capacitance Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 (1) The load setting of the IO buffer: LB0 = 1. Table 5-22. CPI Timing Requirements—8-Bit SYNC Packed Progressive Mode(4) (5) PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX ISP3 1 / tc(pclk) Frequency (1), input pixel clock cam_pclk ISP4 tw(pclkH) Typical pulse duration, input pixel clock cam_pclk high 0.5*P(2) 0.5*P(2) ISP4 tw(pclkL) Typical pulse duration, input pixel clock cam_pclk low 0.5*P(2) 0.5*P(2) 130 65 (2) MHz ns ns (2) tdc(pclk) Duty cycle error, input pixel clock cam_pclk 0.5*P 3.465 0.5*P 6.93 ns tJ(pclk) Cycle jitter(3), input pixel clock cam_pclk 0.649*P(2 0.5*P(2) ns ISP5 tsu(dV-pclkH) Setup time, input data cam_d[7:0] valid before input pixel clock cam_pclk rising edge 1.08 2.27 ns ISP6 th(pclkH-dV) Hold time, input data cam_d[7:0] valid after input pixel clock cam_pclk rising edge 1.08 2.27 ns ISP7 tsu(dV-vsH) Setup time, input vertical synchronization cam_vs valid before input pixel clock cam_pclk rising edge 1.08 2.27 ns ISP8 th(pclkH-vsV) Hold time, input vertical synchronization cam_vs valid after input pixel clock cam_pclk rising edge 1.08 2.27 ns ISP9 tsu(dV-hsH) Setup time, input horizontal synchronization cam_hs valid before input pixel clock cam_pclk rising edge 1.08 2.27 ns ISP10 th(pclkH-hsV) Hold time, input horizontal synchronization cam_hs valid after input pixel clock cam_pclk rising edge 1.08 2.27 ns ISP11 tsu(dV-hsH) Setup time, input write enable cam_wen valid before input pixel clock cam_pclk rising edge 1.08 2.27 ns ISP12 th(pclkH-hsV) Hold time, input write enable cam_wen valid after input pixel clock cam_pclk rising edge 1.08 2.27 ns ) PRODUCT PREVIEW NO. (1) Related with the input maximum frequency supported by the ISP module. (2) P = cam_pclk period in ns (3) Maximum cycle jitter supported by cam_pclk input clock. (4) The timing requirements are assured up to the cycle jitter and duty cycle error conditions specified. (5) See Operating Condition Addendum for OPP voltages. Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 177 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com ISP16 ISP15 ISP16 cam_xclki ISP4 ISP3 ISP4 cam_pclk ISP5 ISP6 ISP7 ISP8 cam_vs cam_hs ISP9 D(0) cam_d[7:0] D(n-3) D(n-2) ISP10 D(n-1) D(0) D(1) D(n-1) ISP11 ISP12 cam_wen PRODUCT PREVIEW cam_fld SWPS038-051 (1) (2) (3) (4) (5) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable. The image sensor is connected to the lower data lines and the unused lines are grounded. However, it is possible to shift the data to 0, 2, or 4 data internal lanes. The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit packed mode. Optionally, the data write to memory can be qualified by the external cam_wen signal. The cam_wen signal can be used as a external memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs, and cam_wen signals are asserted. The polarity of cam_fld is programmable. The camera module can pack 8-bit data into 16 bits. It doubles the maximum pixel clock. This mode can be particularly useful to transfer an YCbCr data stream or compressed stream to memory at very high speed. In cam_xclki, i can be equal to a or b. See Table 5-16 for ISP15 and ISP16 parameters. Figure 5-22. CPI—8-Bit SYNC Packed Progressive Mode 5.5.1.2.4 CPI—12-Bit SYNC Normal Interlaced Mode Table 5-24 assumes testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-23). Table 5-23. CPI Timing Conditions—12-Bit SYNC Normal Interlaced Mode TIMING CONDITION PARAMETER VALUE UNIT Input Conditions tR Input signal rise time 2.7 ns tF Input signal fall time 2.7 ns 8.6 pF Output Condition CLOAD Output load capacitance(1) (1) The load setting of the IO buffer: LB0 = 1. 178 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 5-24. CPI Timing Requirements—12-Bit SYNC Normal Interlaced Mode(4) (5) PARAMETER OPP100 MIN ISP17 1 / tc(pclk) Frequency(1), input pixel clock cam_pclk ISP18 tw(pclkH) Typical pulse duration, input pixel clock cam_pclk high ISP18 OPP50 MAX MIN UNIT MAX 75 45 MHz 0.5P(2) 0.5P(2) ns (2) (2) ns tw(pclkL) Typical pulse duration, input pixel clock cam_pclk low tdc(pclk) Duty cycle error, input pixel clock cam_pclk 0.5*P(2) 3.465 0.5P 0.5*P(2) 6.93 1111 ns tJ(pclk) Cycle jitter(3), input pixel clock cam_pclk 0.649*P(2 0.5*P(2) 200 ns ISP19 tsu(dV-pclkH) Setup time, input data cam_d[11:0] valid before input pixel clock cam_pclk rising edge 1.82 3.25 ns ISP20 th(pclkH-dV) Hold time, input data cam_d[11:0] valid after input pixel clock cam_pclk rising edge 1.82 3.25 ns ISP21 tsu(dV-vsH) Setup time, input vertical synchronization cam_vs valid before input pixel clock cam_pclk rising edge 1.82 3.25 ns ISP22 th(pclkH-vsV) Hold time, input vertical synchronization cam_vs valid after input pixel clock cam_pclk rising edge 1.82 3.25 ns ISP23 tsu(dV-hsH) Setup time, input horizontal synchronization cam_hs valid before input pixel clock cam_pclk rising edge 1.82 3.25 ns ISP24 th(pclkH-hsV) Hold time, input horizontal synchronization cam_hs valid after input pixel clock cam_pclk rising edge 1.82 3.25 ns ISP25 tsu(dV-hsH) Setup time, input write enable cam_wen valid before input pixel clock cam_pclk rising edge 1.82 3.25 ns ISP26 th(pclkH-hsV) Hold time, input write enable cam_wen valid after input pixel clock cam_pclk rising edge 1.82 3.25 ns ISP27 tsu(dV-fldH) Setup time, input field identification cam_fld valid before input pixel clock cam_pclk rising edge 1.82 3.25 ns ISP28 th(pclkH-fldV) Hold time, input field identification cam_fld valid after input pixel clock cam_pclk rising edge 1.82 3.25 ns ) 0.5P PRODUCT PREVIEW NO. (1) Related with the input maximum frequency supported by the ISP module. (2) P = cam_pclk period in ns (3) Maximum cycle jitter supported by cam_pclk input clock. (4) The timing requirements are assured up to the cycle jitter and duty cycle error conditions specified. (5) See Operating Condition Addendum for OPP voltages. Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 179 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com ISP16 ISP15 ISP16 cam_xclki ISP18 ISP18 ISP17 cam_pclk ISP20 ISP19 cam_vs FRAME(0) FRAME(0) ISP21 cam_hs ISP22 L(n-1) L(0) L(0) ISP23 cam_d[11:0] D(0) D(n-3) D(n-2) D(0) D(n-1) D(1) ISP24 D(2) PRODUCT PREVIEW ISP25 D(n-1) ISP26 cam_wen ISP28 ISP27 cam_fld PAIR IMPAIR SWPS038-052 (1) (2) (3) (4) (5) (6) (7) (8) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable. If the cam_hs, cam_vs, and cam_fld signals are output, the signal length can be set. The parallel camera in SYNC mode supports interlaced image sensor modules and 8-, 10-, 11-, or 12-bit data. When the image sensor has fewer than 12 data lines, it is connected to the lower data lines and the unused lines are grounded. It is possible to shift the data to 0, 2, or 4 data internal lanes. The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit mode, cam_d[11:2] or cam_d[9:0] in 10-bit mode, cam_d[10:0] in 11-bit mode and cam_d[11:0] in 12-bit mode. Optionally, the data write to memory can be qualified by the external cam_wen signal. The cam_wen signal can be used as an external memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs, and cam_wen signals are asserted. In cam_xclki, i can be equal to a or b. See Table 5-16 for ISP15 and ISP16 parameters. Figure 5-23. CPI—12-bit SYNC Normal Interlaced Mode 180 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 5.5.1.2.5 CPI—8-Bit SYNC Packed Interlaced Mode Table 5-26 assumes testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-24). Table 5-25. CPI Timing Conditions—8-Bit SYNC Packed Interlaced Mode TIMING CONDITION PARAMETER VALUE UNIT Input Conditions tR Input signal rise time 2.5 ns tF Input signal fall time 2.5 ns 8.6 pF Output Condition Output load capacitance(1) CLOAD (1) The load setting of the IO buffer: LB0 = 1. Table 5-26. CPI Timing Requirements—8-Bit SYNC Packed Interlaced Mode(4) (5) PARAMETER OPP100 MIN ISP3 1 / tc(pclk) Frequency(1), input pixel clock cam_pclk ISP4 tw(pclkH) Typical pulse duration, input pixel clock cam_pclk high ISP4 MAX OPP50 MIN UNIT MAX 130 65 MHz 0.5P(2) 0.5P(2) ns (2) (2) ns tw(pclkL) Typical pulse duration, input pixel clock cam_pclk low tdc(pclk) Duty cycle error, input pixel clock cam_pclk 0.5*P(2) 3.465 0.5P 0.5*P(2) 6.93 ns tJ(pclk) Cycle jitter(3), input pixel clock cam_pclk 0.649*P(2 0.5*P(2) ns ISP5 tsu(dV-pclkH) Setup time, input data cam_d[8:0] valid before input pixel clock cam_pclk rising edge 1.08 2.27 ns ISP6 th(pclkH-dV) Hold time, input data cam_d[8:0] valid after input pixel clock cam_pclk rising edge 1.08 2.27 ns ISP7 tsu(dV-vsH) Setup time, input vertical synchronization cam_vs valid before input pixel clock cam_pclk rising edge 1.08 2.27 ns ISP8 th(pclkH-vsV) Hold time, input vertical synchronization cam_vs valid after input pixel clock cam_pclk rising edge 1.08 2.27 ns ISP9 tsu(dV-hsH) Setup time, input horizontal synchronization cam_hs valid before input pixel clock cam_pclk rising edge 1.08 2.27 ns ISP10 th(pclkH-hsV) Hold time, input horizontal synchronization cam_hs valid after input pixel clock cam_pclk rising edge 1.08 2.27 ns ISP11 tsu(dV-hsH) Setup time, input write enable cam_wen valid before input pixel clock cam_pclk rising edge 1.08 2.27 ns ISP12 th(pclkH-hsV) Hold time, input write enable cam_wen valid after input pixel clock cam_pclk rising edge 1.08 2.27 ns ISP13 tsu(dV-fldH) Setup time, input field identification cam_fld valid before input pixel clock cam_pclk rising edge 1.08 2.27 ns ISP14 th(pclkH-fldV) Hold time, input field identification cam_fld valid after input pixel clock cam_pclk rising edge 1.08 2.27 ns ) 0.5P PRODUCT PREVIEW NO. (1) Related with the input maximum frequency supported by the ISP module. (2) P = cam_pclk period in ns (3) Maximum cycle jitter supported by cam_pclk input clock. (4) The timing requirements are assured up to the cycle jitter and duty cycle error conditions specified. (5) See Operating Condition Addendum for OPP voltages. Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 181 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 ISP15 www.ti.com ISP16 ISP16 cam_xclki ISP4 ISP3 ISP4 cam_pclk ISP6 cam_vs ISP5 FRAME(0) FRAME(0) ISP7 cam_hs L(0) ISP8 L(0) L(n-1) ISP9 D(0) cam_d[7:0] D(n-3) D(n-2) D(n-1) D(0) D(1) ISP10 D(n-1) D(2) ISP11 ISP12 cam_wen PRODUCT PREVIEW ISP14 ISP13 cam_fld PAIR IMPAIR SWPS038-053 (1) (2) (3) (4) (5) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable. The image sensor is connected to the lower data lines and the unused lines are grounded. However, it is possible to shift the data to 0, 2, or 4 data internal lanes. The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit packed mode . Optionally, the data write to memory can be qualified by the external cam_wen signal. The cam_wen signal can be used as an external memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs, and cam_wen signals are asserted. The camera module can pack 8-bit data into 16 bits. It doubles the maximum pixel clock. This mode can be particularly useful to transfer a YCbCr data stream or compressed stream to memory at very high speed. In cam_xclki, i can be equal to a or b. See Table 5-16 for ISP15 and ISP16 parameters. Figure 5-24. CPI—8-Bit SYNC Packed Interlaced Mode 5.5.1.2.6 CPI—ITU Mode Table 5-28 assumes testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-25). Table 5-27. CPI Timing Conditions—ITU Mode TIMING CONDITION PARAMETER VALUE UNIT Input Conditions tR Input signal rise time 2.7 ns tF Input signal fall time 2.7 ns 8.6 pF Output Condition CLOAD Output load capacitance(1) (1) The load setting of the IO buffer: LB0 = 1. 182 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 5-28. CPI Timing Requirements—ITU Mode(4) (5) NO. PARAMETER OPP100 MIN ISP17 1 / tc(pclk) Frequency(1), input pixel clock cam_pclk ISP18 tw(pclkH) Typical pulse duration, input pixel clock cam_pclk high ISP18 OPP50 MAX MIN UNIT MAX 75 45 MHz 0.5P(2) 0.5P(2) ns (2) (2) ns tw(pclkL) Typical pulse duration, input pixel clock cam_pclk low tdc(pclk) Duty cycle error, input pixel clock cam_pclk 0.5*P(2) 3.465 0.5P 0.5*P(2) 6.93 1111 ns tJ(pclk) Cycle jitter(3), input pixel clock cam_pclk 0.649*P(2 0.5*P(2) 200 ns ISP23 tsu(dV-pclkH) Setup time, input data cam_d[9:0] valid before input pixel clock cam_pclk rising edge 1.82 3.25 ns ISP24 th(pclkH-dV) Hold time, input data cam_d[9:0] valid after input pixel clock cam_pclk rising edge 1.82 3.25 ns ) 0.5P (1) Related with the input maximum frequency supported by the ISP module. (2) P = cam_pclk period in ns (3) Maximum cycle jitter supported by cam_pclk input clock. (4) The timing requirements are assured up to the cycle jitter and duty cycle error conditions specified. PRODUCT PREVIEW (5) See Operating Condition Addendum for OPP voltages. ISP16 ISP15 ISP16 cam_xclki ISP17 ISP18 ISP18 cam_pclk ISP23 cam_d[9:0] SOF D(0) ISP24 D(n-1) EOF SOF D(0) D(n-1) EOF SWPS038-054 (1) (2) (3) The unused lines are grounded and the data bus is connected to the lower data lines. However, it is possible to shift the data to 0, 2, or 4 data internal lanes. The different configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit mode and cam_d[11:2] or cam_d[9:0] in 10-bit mode. The parallel camera in ITU mode supports progressive camera modules. In cam_xclki, i can be equal to a or b. See Table 5-16 for ISP15 and ISP16 parameters. Figure 5-25. CPI—ITU Mode Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 183 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 5.5.2 www.ti.com Display Subsystem (DSS) NOTE For more information, see Display Subsystem chapter of the AM3715/03 TRM. The display subsystem (DSS) provides the logic to display the video frame from external (SDRAM) or internal (SRAM) memory on an LCD panel or a TV set. The display subsystem integrates the following elements: • Display controller (DISPC) module • Remote frame buffer interface (RFBI) module • NTSC/PAL video encoder • LCD display with: – Parallel Interface The two display supports can be active at the same time. 5.5.2.1 DSS—Parallel Interface PRODUCT PREVIEW In parallel interface, the paths of the display subsystem modules are the display controller and the RFBI. The display controller has two I/O pad modes and could be in the following configuration: • Bypass mode (RFBI disabled), which implements the MIPI DPI protocol • RFBI mode (RFBI enabled), which implements MIPI DBI 2.0 type B protocol For more information about MIPI DPI and MIPI DBI protocols, see the DSS chapter in the AM37xxx TRM. 5.5.2.1.1 DSS—Parallel Interface—Bypass Mode Two types of LCD panel are supported: • Thin film transistor (TFT) or active matrix technology • Supertwisted nematic (STN) or passive matrix technology Both configurations are discussed in the following paragraphs. 5.5.2.1.2 DSS—Parallel Interface—Bypass Mode—TFT Mode Table 5-30 assumes testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-26). Table 5-29. DSS Timing Conditions—TFT Mode TIMING CONDITION PARAMETER VALUE MIN UNIT MAX Output Condition CLOAD Output load capacitance(1) 10 pF (1) Buffer strength configuration: LB0 = 1 Table 5-30. DSS Switching Characteristics—TFT Mode(4) NO. PARAMETER OPP100 OPP50 MIN MAX MIN MAX UNIT DL0 td(pclkA-hsync) Delay time, output pixel clock dss_pclk active edge to output horizontal synchronization dss_hsync transition –4.215 4.215 –4.658 4.658 ns DL1 td(pclkA-vsync) Delay time, output pixel clock dss_pclk active edge to output vertical synchronization dss_vsync transition –4.215 4.215 –4.658 4.658 ns DL2 td(pclkA-acbiasA) Delay time, output pixel clock dss_pclk active edge to output data enable dss_acbias active level –4.215 4.215 –4.658 4.658 ns 184 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 5-30. DSS Switching Characteristics—TFT Mode(4) (continued) NO. PARAMETER OPP100 DL3 td(pclkA-dV) Delay time, output pixel clock dss_pclk active edge to output data dss_data[23:0] valid DL4 1 / tc(pclk) Frequency(2), output pixel clock dss_pclk DL5 tw(pclk) OPP50 MAX MIN MAX –4.215 4.215 –4.658 4.658 ns 66(3) MHz 74.3(3) Pulse duration, output pixel clock dss_pclk low or high UNIT MIN (1) 0.45P (1) 0.55P (5) (1) 0.45P (1) 0.55P ns (5) (1) P = dss_pclk period in ns (2) The pixel clock frequency is software programmable via the pixel clock divider configuration from 1 to 255 division range in the DISPC_DIVISOR register. (3) For the DSS (TFT mode) in HD-TV application, to run at full speed (74.3 MHz) it is recommended to use the dss_data[5:0] signals on the dss_data[23:18] balls (H26, H25, E28, J26, AC27, AC28). In that case, the dss_data[23:18] signals are available on the sys_boot0, sys_boot1, sys_boot3, sys_boot4, sys_boot5, and sys_boot6 balls (AH26, AG26, AF18, AF19, AE21, AF21) to run at full speed (74.3 MHz). If the dss_data[5:0] signals are used on the dss_data[5:0] balls (AG22, AH22, AG23, AH23, AG24, AH24), OPP100 DSS (TFT mode) are limited at 66 MHz. The values may change following the silicon characterization result. (4) See Operating Condition Addendum for OPP voltages. DL4 DL5 dss_pclk DL1 dss_vsync DL0 dss_hsync DL2 dss_acbias DL3 dss_data[23:0] SWPS038-055 (1) (2) (3) (4) The pixel data bus depends on the use of 8-, 9-, 12-, 16-, 18-, or 24-bit per pixel data output pins. The pixel clock frequency is programmable. All timings not illustrated in the waveform are progammable by software, and control signal polarity and driven edge of dss_pclk too. For more information, see the DSS chapter in the AM3715/03 TRM. Figure 5-26. DSS—TFT Mode 5.5.2.1.3 DSS—Parallel Interface—Bypass Mode—STN Mode Table 5-32 assumes testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-27). Table 5-31. DSS Timing Conditions—STN Mode TIMING CONDITION PARAMETER VALUE MIN UNIT MAX Output Condition CLOAD Output load capacitance(1) Copyright © 2010, Texas Instruments Incorporated 40 pF Timing Requirements and Switching Characteristics Submit Documentation Feedback 185 PRODUCT PREVIEW (5) tW(pclk) = 0.66.P when DISPC_DIVISOR[6:0] PCD = 3. AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com (1) Buffer strength configuration: LB0 = 1 Table 5-32. DSS Switching Characteristics—STN Mode(3) NO. PARAMETER (4) OPP100 DL3 td(pclkA-dV) Delay time, output pixel clock dss_pclk active edge to output data dss_data[7:0] valid DL4 1 / tc(pclk) Frequency(2), output pixel clock dss_pclk DL5 tw(pclk) Pulse duration, output pixel clock dss_pclk low or high OPP50 UNIT MIN MAX MIN MAX –6.868 6.868 –6.868 6.868 ns 44 MHz 0.45P(1) 0.55P(1) 0.45P(1) 0.55P(1)(5 ns 44 (5) ) (1) P = dss_pclk period in ns (2) The pixel clock frequency is software programmable via the pixel clock divider configuration from 1 to 255 division range in the DISPC_DIVISOR register. (3) The DSS in STN mode is used with 4 or 8 pins only; unused pixel data bits always remain low. (4) See Operating Condition Addendum for OPP voltages. (5) tW(pclk) = 0.66P when DISPC_DIVISOR[6:0] PCD = 3. DL5 DL4 PRODUCT PREVIEW dss_pclk dss_vsync dss_hsync dss_acbias DL3 dss_data[23:0] SWPS038-056 (1) (2) (3) (4) (5) The pixel data bus depends on the use of 4-, 8-, 12-, 16-, 18-, or 24-bit per pixel data output pins. All timings not illustrated in the waveform are progammable by software, and control signal polarity and driven edge of dss_pclk too. dss_vsync width must be programmed to be as small as possible. The pixel clock frequency is programmable. For more information, see the DSS chapter in the AM3715/03 TRM. Figure 5-27. DSS—STN Mode 5.5.2.2 DSS—Parallel Interface— RFBI Mode — Applications 5.5.2.2.1 DSS—Parallel Interface—RFBI Mode— MIPI DBI-B 2.0 —LCD Panel The Remote Frame Buffer Interface (RFBI) module provides the necessary control signals and data (MIPI® DBI 2.0 type B protocol) to interface to the LCD driver of the LCD panel. Table 5-34 and Table 5-35 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-28 through Figure 5-30). Table 5-33. DSS Timing Conditions—RFBI Mode—MIPI DBI 2.0 - LCD Panel(2) TIMING CONDITION PARAMETER VALUE MIN UNIT MAX Input Conditions 186 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 5-33. DSS Timing Conditions—RFBI Mode—MIPI DBI 2.0 - LCD Panel(2) (continued) TIMING CONDITION PARAMETER VALUE MIN UNIT MAX tR Input signal rise time 15 ns tF Input signal fall time 15 ns 30 pF Output Condition Output load capacitance(1) CLOAD (1) Buffer strength configuration: LB0 = 0. (2) For any information regarding the RFBI registers configuration, see Display Subsystem / the Display Subsystem Environment / LCD Support / Parallel Interface / Parallel Interface in RFBI Mode (MIPI DBI Protocol) / Transaction Timing Diagrams section of the AM3715/03 TRM. Table 5-34. DSS Timing Requirements—RFBI Mode—MIPI DBI 2.0 - LCD Panel PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX DR0 tsu(dV-rdH) Setup time, input data rfbi_da[15:0] valid to output read enable rfbi_rd high 7.3 6.3 ns DR1 th(rdH-dIV) Hold time, output read enable rfbi_rd high to input data rfbi_da[15:0] invalid 10.6 9.6 ns td(Data Input data rfbi_da[15:0] sampled at the end of the access time sampled) N(1) N(1) ns (1) N = (AccessTime) * (TimeParaGranularity + 1) * L4CLK Table 5-35. DSS Switching Characteristics— RFBI Mode— MIPI DBI 2.0 - LCD Panel PARAMETER OPP100 MIN tw(wrH) Pulse duration, output write enable rfbi_wr high OPP50 MAX MIN UNIT MAX A(1) A(1) ns (2) B(2) ns tw(wrL) Pulse duration, output write enable rfbi_wr low B td(a0-wrL) Delay time, output command/data control rfbi_a0 transition to output write enable rfbi_wr low C(3) C(3) ns td(wrH-a0) Delay time, output write enable rfbi_wr high to output command/data control rfbi_a0 transition D(4) D(4) ns td(csx-wrL) Delay time, output chip select rfbi_csx(14) low to output write enable rfbi_wr low E(5) E(5) ns td(wrH-csxH) Delay time, output write enable rfbi_wr high to output chip select rfbi_csx(14) high F(6) F(6) ns td(dV) Output data rfbi_da[15:0] valid G(7) G(7) ns (8) H(8) ns td(a0H-rdL) Delay time, output command/data control rfbi_a0 high to output read enable rfbi_rd low H td(rdlH-a0) Delay time, output read enable rfbi_rd high to output command/data control rfbi_a0 transition I(9) I(9) ns tw(rdH) Pulse duration, output read enable rfbi_rd high J(10) J(10) ns (11) K(11) ns (12) (12) ns M(13) ns tw(rdL) Pulse duration, output read enable rfbi_rd low K td(rdL-csxL) Delay time, output read enable rfbi_rd low to output chip select rfbi_csx(14) low L td(rdH-csxH) Delay time, output read enable rfbi_rd high to output chip select rfbi_csx(14) high M(13) tR(wr) Rise time, output write enable rfbi_wr 10 10 ns tF(wr) Fall time, output write enable rfbi_wr 10 10 ns tR(a0) Rise time, output command/data control rfbi_a0 10 10 ns tF(a0) Fall time, output command/data control rfbi_a0 10 10 ns tR(csx) Rise time, output chip select rfbi_csx(14) 10 10 ns tF(csx) Fall time, output chip select rfbi_csx(14) 10 10 ns Copyright © 2010, Texas Instruments Incorporated L Timing Requirements and Switching Characteristics Submit Documentation Feedback 187 PRODUCT PREVIEW NO. AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 5-35. DSS Switching Characteristics— RFBI Mode— MIPI DBI 2.0 - LCD Panel (continued) PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX tR(d) Rise time, output data rfbi_da[15:0] 10 10 ns tF(d) Fall time, output data rfbi_da[15:0] 10 10 ns tR(rd) Rise time, output read enable rfbi_rd 10 10 ns tF(rd) Fall time, output read enable rfbi_rd 10 10 ns (1) A = (WECycleTime – WEOffTime) * (TimeParaGranularity + 1) * L4CLK (2) B = (WEOffTime – WEOntime) * (TimeParaGranularity + 1) * L4CLK (3) C = WEOnTime * (TimeParaGranularity + 1) * L4CLK (4) D = (WECycleTime + CSPulseWidth – WEOffTime) * (TimeParaGranularity + 1) * L4CLK if mode Write to Read or Read to Write is enabled (5) E = (WEOnTime – CSOnTime) * (TimeParaGranularity + 1) * L4CLK (6) F = (CSOffTime – WEOffTime) * (TimeParaGranularity + 1) * L4CLK (7) G = WECycleTime * (TimeParaGranularity + 1) * L4CLK (8) H = REOnTime * (TimeParaGranularity + 1) * L4CLK (9) I = (RECycleTime + CSPulseWidth – REOffTime) * (TimeParaGranularity + 1) * L4CLK if mode Write to Read or Read to Write is enabled PRODUCT PREVIEW (10) J = (RECycleTime – REOffTime) * (TimeParaGranularity + 1) * L4CLK (11) K = (REOffTime – REOntime) * (TimeParaGranularity + 1) * L4CLK (12) L = (REOnTime – CSOnTime) * (TimeParaGranularity + 1) * L4CLK (13) M = (CSOffTime – REOffTime) * (TimeParaGranularity + 1) * L4CLK (14) In rfbi_csx, x is equal to 0 or 1. CsPulseWidth WeCycleTime WeCycleTime rfbi_a0 CsOffTime CsOnTime CsOffTime CsOnTime rfbi_csx WeOffTime WeOnTime WeOffTime WeOnTime rfbi_wr rfbi_da[n:0] DATA0 DATA1 rfbi_rd rfbi_te_vsync[1:0] rfbi_hsync[1:0] SWPS038-057 (1) (2) (3) In rfbi_csx, x is equal to 0 or 1. rfbi_data[n:0], n up to 15 For more information, see the DSS chapter in the AM3715/03 TRM. Figure 5-28. DSS—RFBI Mode—MIPI DBI 2.0 —LCD Panel—Command / Data Write 188 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 AccessTime AccessTime ReCycleTime ReCycleTime CsPulseWidth rfbi_a0 CsOffTime CsOffTime CsOnTime CsOnTime ReOffTime ReOffTime rfbi_csx ReOnTime ReOnTime rfbi_rd DR0 DR1 DATA0 rfbi_da[n:0] DATA1 rfbi_wr rfbi_te_vsync[1:0] rfbi_hsync[1:0] SWPS038-058 In rfbi_csx, x is equal to 0 or 1. rfbi_data[n:0], n up to 15 For more information, see the DSS chapter in the AM3715/03 TRM. PRODUCT PREVIEW (1) (2) (3) Figure 5-29. DSS—RFBI Mode—MIPI DBI 2.0 —LCD Panel—Command / Data Read WECycleTime ReCycleTime AccessTime WECycleTime rfbi_a0 CsOffTime CsOffTime CsOnTime CsOffTime CsOnTime CsOnTime rfbi_csx WEOffTime WEOffTime WEOnTime WEOnTime rfbi_wr ReOffTime ReOnTime rfbi_rd CsPulseWidth rfbi_da[n:0] WRITE READ CsPulseWidth WRITE rfbi_te_vsync[1:0] rfbi_hsync[1:0] SWPS038-059 (1) (2) (3) In rfbi_csx, x is equal to 0 or 1. rfbi_data[n:0], n up to 15 For more information, see the DSS chapter in the AM3715/03 TRM. Figure 5-30. DSS—RFBI Mode—MIPI DBI 2.0 — LCD Panel—Command / Data Write to Read and Read to Write Modes 5.5.2.2.2 DSS—Parallel Interface—RFBI Mode—Pico DLP The Remote Frame Buffer Interface (RFBI) module can provide also the necessary control signals and data to interface to the Pico DLP driver of the Pico DLP panel. Table 5-36 assumes testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-31). Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 189 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 5-36. DSS Timing Conditions—RFBI Mode—Pico DLP TIMING CONDITION PARAMETER VALUE MIN UNIT MAX Output Condition Output load capacitance(1) CLOAD 5 pF (1) Buffer strength configuration: LB0 = 0 To use Pico DLP application, RFBI register must be configured as shown in Table 5-37: Table 5-37. DSS Register Configuration—RFBI Mode—Pico DLP DESCRIPTION REGISTER AND BIT FIELD(1) BIT VALUES PRODUCT PREVIEW Selection parallel mode RFBI_CONFIGi and ParallelMode [1:0] 0b11: 16-bit parallel output interface selected Time Granularity (multiplies signal timing latencies by 2). RFBI_CONFIGi andTimeGranularity [4] CS signal assertion time from Start Access Time RFBI_ONOFF_TIMEi and CSOnTime [3:0] 0b0000 CS signal de-assertion time from Start Access Time RFBI_ONOFF_TIMEi and CSOffTime [9:4] 0b000100: 4 cycles WE signal assertion time from Start Access Time RFBI_ONOFF_TIMEi and WEOnTime [13:10] 0b0000 WE signal de-assertion time from Start Access Time RFBI_ONOFF_TIMEi and WEOffTime [19:14] 0b000010: 2 cycles RE signal assertion time from Start Access Time RFBI_ONOFF_TIMEi and REOnTime [23:20] 0b0000 RE signal de-assertion time from Start Access Time RFBI_ONOFF_TIMEi and REOffTime [29:24] 0b0000 Write cycle time RFBI_CYCLE_TIMEi and WECycleTime [5:0] 0b000100: 4 cycles Read cycle time RFBI_CYCLE_TIMEi and ReCycleTime [11:6] 0b000000 CS pulse width RFBI_CYCLE_TIMEi and CSPulseWidth [17:12] 0b000000 Read to Write CS pulse width enable RFBI_CYCLE_TIMEi and RWEnable [18] 0b0 Read to Read CS pulse width enable RFBI_CYCLE_TIMEi and RREnable [19] 0b0 Write to Write CS pulse width enable RFBI_CYCLE_TIMEi and WWEnable [20] 0b0 Write to Read CS pulse width enable RFBI_CYCLE_TIMEi and WREnable [21] 0b0 From Start Access Time to CLK rising edge used for the first data capture RFBI_CYCLE_TIMEi and AccessTime [27:22] 0b0: x2 latency disable 0b000000 (1) i is equal to 0 or 1. For more information, see the DSS chapter in the AM3715/03 TRM. 190 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 5-38. DSS Switching Characteristics—RFBI Mode—Pico DLP(15)(17)(18) OPP100 MIN OPP50 MAX MIN UNIT MAX tw(wrH) Pulse duration, output write enable rfbi_wr high A(1) A(1) ns tw(wrL) Pulse duration, output write enable rfbi_wr low B(2) B(2) ns (3) (3) ns td(a0-wrL) Delay time, output command/data control rfbi_a0 transition to output write enable rfbi_wr low C C td(wrH-a0) Delay time, output write enable rfbi_wr high to output command/data control rfbi_a0 transition D(4) D(4) ns td(csx-wrL) Delay time, output chip select rfbi_csx(14) low to output write enable rfbi_wr low E(5) E(5) ns td(wrH-csxH) Delay time, output write enable rfbi_wr high to output chip select rfbi_csx(14) high F(6) F(6) ns td(dataV) Output data rfbi_da[15:0](16) valid G(7) G(7) ns td(Skew) Skew between output write enable falling rfbi_wr and output data rfbi_da[15:0](16) high or low 15.5 15.5 ns td(a0H-rdL) Delay time, output command/data control rfbi_a0 high to output read enable rfbi_rd low H(8) H(8) ns td(rdlH-a0) Delay time, output read enable rfbi_rd high to output command/data control rfbi_a0 transition I(9) I(9) ns tw(rdH) Pulse duration, output read enable rfbi_rd high J(10) J(10) ns (11) K(11) ns tw(rdL) Pulse duration, output read enable rfbi_rd low K td(rdL-csxL) Delay time, output read enable rfbi_rd low to output chip select rfbi_csx(14) low L(12) L(12) ns td(rdL-csxH) Delay time, output read enable rfbi_rd low to output chip select rfbi_csx(14) high M(13) M(13) ns tR(wr) Rise time, output write enable rfbi_wr 7 7 ns tF(wr) Fall time, output write enable rfbi_wr 7 7 ns tR(a0) Rise time, output command/data control rfbi_a0 7 7 ns tF(a0) Fall time, output command/data control rfbi_a0 7 7 ns (14) tR(csx) Rise time, output chip select rfbi_csx 7 7 ns tF(csx) Fall time, output chip select rfbi_csx(14) 7 7 ns tR(d) Rise time, output data rfbi_da[15:0](16) 7 7 ns (16) tF(d) Fall time, output data rfbi_da[15:0] 7 7 ns tR(rd) Rise time, output read enable rfbi_rd 7 7 ns tF(rd) Fall time, output read enable rfbi_rd 7 7 ns (19) CsOnTime CS signal assertion time from Start Access Time RFBI_ONOFF_TIMEi Register 0 CsOffTime CS signal de-assertion time from Start Access Time RFBI_ONOFF_TIMEi Register 40(19) ns WeOnTime WE signal assertion time from Start Access Time RFBI_ONOFF_TIMEi Register 0(19) ns WeOffTime WE signal de-assertion time from Start Access Time RFBI_ONOFF_TIMEi Register 20(19) ns ReOnTime RE signal assertion time from Start Access Time RFBI_ONOFF_TIMEi Register - ns ReOffTime RE signal de-assertion time from Start Access Time RFBI_ONOFF_TIMEi Register - ns WeCycleTime Write cycle time - RFBI_CYCLE_TIMEi Register 40(19) ns ReCycleTime Read cycle time - RFBI_CYCLE_TIMEi Register - ns CsPulseWidth CS pulse width - RFBI_CYCLE_TIMEi Register 0(19) ns Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback PRODUCT PREVIEW PARAMETER ns 191 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com (1) A = (WECycleTime – WEOffTime) * (TimeParaGranularity + 1) * L4CLK (2) B = (WEOffTime – WEOntime) * (TimeParaGranularity + 1) * L4CLK (3) C = WEOnTime * (TimeParaGranularity + 1) * L4CLK (4) D = (WECycleTime + CSPulseWidth – WEOffTime) * (TimeParaGranularity + 1) * L4CLK if mode Write to Read or Read to Write is enabled. (5) E = (WEOnTime – CSOnTime) * (TimeParaGranularity + 1) * L4CLK (6) F = (CSOffTime – WEOffTime) * (TimeParaGranularity + 1) * L4CLK (7) G = WECycleTime * (TimeParaGranularity + 1) * L4CLK (8) H = REOnTime * (TimeParaGranularity + 1) * L4CLK (9) I = (RECycleTime + CSPulseWidth – REOffTime) * (TimeParaGranularity + 1) * L4CLK if mode Write to Read or Read to Write is enabled. (10) J = (RECycleTime – REOffTime) * (TimeParaGranularity + 1) * L4CLK (11) K = (REOffTime – REOntime) * (TimeParaGranularity + 1) * L4CLK (12) L = (REOnTime – CSOnTime) * (TimeParaGranularity + 1) * L4CLK (13) M = (CSOffTime – REOffTime) * (TimeParaGranularity + 1) * L4CLK (14) In rfbi_csx, x is equal to 0 or 1. (15) See DM Operating Condition Addendum for OPP voltages. (16) 16-bit parallel output interface is selected in DSS register. (17) At OPP100, L4 clock is 100 MHz and at OPP50, L4 clock is 50 MHz. PRODUCT PREVIEW (18) rfbi_wr must be at 25 MHz. (19) These values are calculated by the following formula: RFBI Register (Value) * L4 Clock (ns). CsPulseWidth WeCycleTime WeCycleTime rfbi_a0 CsOffTime CsOffTime CsOnTime CsOnTime WeOffTime WeOffTime rfbi_csx WeOnTime WeOnTime rfbi_wr DATA0 rfbi_da[n:0] rfbi_rd DATA1 rfbi_te_vsync[1:0] rfbi_hsync[1:0] swps038-118 Figure 5-31. DSS—RFBI Mode—Pico DLP—Command / Data Write(1)(2) (1) In rfbi_csx, x is equal to 0 or 1. (2) rfbi_da[n:0], n up to 15 192 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com 5.6 SPRS616B – JUNE 2010 – REVISED JULY 2010 Serial Communications Interfaces 5.6.1 Multichannel Buffered Serial Port (McBSP) NOTE For more information, see Multi-Channel Buffered Serial Port chapter of the AM3715/03 TRM. The Multichannel Buffered Serial Port (McBSP) provides a full duplex direct serial interface between the chip and other devices in a system such as other application chips, codecs. It can accommodate a wide range of peripherals and clocked frame oriented protocols (I2S, PCM, T ) due to its high level of versatility. The interface clock (clkx/clkr) activation edge (data/frame sync capture and generation) has to be configured accordingly with the external peripheral (activation edge capability) and the type of data transfer required at the system level. Depending on the number of pins, McBSP supports either: • 6-pin mode: dx and dr as data pins; clkx, clkr, fsx, and fsr as control pins • 4-pin mode: dx and dr as data pins; clkx and fsx pins as control pins. The clkx and fsx pins are internally looped back, via software configuration, respectively to the clkr and fsr internal signals for data receive. McBSP1 supports the 6-pin mode. McBSP2, 3, 4, and 5 support only the 4-pin mode. The following sections describe the timing characteristics for applications in normal mode (that is, McBSPx connected to one peripheral) and T applications in multipoint mode. 5.6.1.1 McBSP Timing Conditions—Normal Mode Table 5-40 through Table 5-64 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-32 through Figure 5-39). Table 5-39. McBSP Timing Conditions—Normal Mode TIMING CONDITION PARAMETER VALUE UNIT Input Conditions tR Input signal rise time 2 ps tF Input signal fall time 2 ps Output load capacitance(1) 10 pF Output Condition CLOAD (1) Buffer strength configuration: – McBSP4 - Set #1: LB0 = 1. – Otherwise: LB0 = 0. Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 193 PRODUCT PREVIEW McBSP may support two types of data transfer at the system level: • The full cycle mode, for which one clock period is used to transfer the data, generated on one edge and captured on the same edge (one clock period later). • The half cycle mode, for which one half clock period is used to transfer the data, generated on one edge and captured on the opposite edge (one half clock period later). Note that a new data is generated only every clock period, which secures the required hold time. AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 5-40. McBSP Output Clock Characteristics—Normal Mode(4) PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX McBSP1 tc(CLK) Cycle time, mcbsp1_clkx (multiplexing mode 0) / mcbsp1_clkr (multiplexing mode 0 & 2) 48 24 MHz McBSP2 tc(CLK) Cycle time, mcbsp2_clkx (multiplexing mode 0) 48 24 MHz McBSP3 tc(CLK) Cycle time, mcbsp3_clkx IO set 1 (multiplexing mode 0) 32 16 MHz IO set 2 (multiplexing mode 1) 48 24 IO set 3 (multiplexing mode 2) 48 24 IO set 1 (multiplexing mode 0) 48 16 IO set 3 (multiplexing mode 2) 32 16 IO set 2 (multiplexing mode 1) 32 16 McBSP4 tc(CLK) Cycle time, mcbsp4_clkx PRODUCT PREVIEW McBSP5 tc(CLK) Cycle time, mcbsp5_clkx tW(CLKH) Typical pulse duration, mcbsp1_clkr / mcbspx_clkx high(2) (2) tW(CLKL) Typical pulse duration, mcbsp1_clkr / mcbspx_clkx low tdc(CLK) Duty cycle error, mcbsp1_clkr / mcbspx_clkx(2) (3) Jitter, mcbsp1_clkr / mcbspx_clkx 0.5*P(1) 0.5*P(1) (1) 0.5*P(1) 0.5*P / mcbsp_clks MHz MHz ns ns –0.75 0.75 –0.75 0.75 ns -0.40 0.40 -0.40 0.40 ns (1) P = mcbspy_clkx(2) or mcbsp1_clkr output clock period in ns (2) In mcbspy, y is equal to 1, 2, 3, 4, or 5. (3) In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5. (4) See Operating Condition Addendum for OPP voltages. 5.6.1.1.1 Rising Edge as Activation Mode 5.6.1.1.1.1 Timing with Rising Edge as Activation Edge—Receive Mode Table 5-41. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements—Rising Edge and Receive Mode(1) (2) NO. PARAMETER OPP100 MIN 194 MAX OPP50 MIN UNIT MAX B3 tsu(DRV-CLKAE) Setup time, mcbspx_dr valid before mcbsp1_clkr / mcbspx_clkx active edge Master 4.36 8.63 ns Slave 3.67 7.94 ns B4 th(CLKAE-DRV) Hold time, mcbspx_dr valid after mcbsp1_clkr / mcbspx_clkx active edge Master 1.01 1.01 ns Slave 0.4 0.4 ns B5 tsu(FSV-CLKAE) Setup time, mcbsp1_fsr / mcbspx_fsx valid before mcbsp1_clkr / mcbspx_clkx active edge 3.67 7.94 ns B6 th(CLKAE-FSV) Hold time, mcbsp1_fsr / mcbspx_fsx valid after mcbsp1_clkr / mcbspx_clkx active edge 0.5 0.5 ns Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 (1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode on UART pins) and Set #3 (multiplexing mode on McBSP1 pins). (2) See Operating Condition Addendum for OPP voltages. Table 5-42. McBSP1, 2, and 3 (Sets #2 and #3) Switching Characteristics—Rising Edge and Receive Mode(1) (2) NO. B2 PARAMETER td(CLKAE-FSV) OPP100 Delay time, mcbsp1_clkr / mcbspx_clkx active edge to mcbsp1_fsr / mcbspx_fsx valid OPP50 MIN MAX MIN MAX 0.7 14.79 0.7 29.58 UNIT ns (1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode on UART pins) and Set #3 (multiplexing mode on McBSP1 pins). (2) See Operating Condition Addendum for OPP voltages. Table 5-43. McBSP4 (Set #1) Timing Requirements—Rising Edge and Receive Mode(1) (2) PARAMETER OPP100 MIN MAX OPP50 MIN UNIT MAX B3 tsu(DRV-CLKXAE) Setup time, mcbspx_dr valid before mcbspx_clkx active edge Master 2.87 8.63 ns Slave 3.67 7.94 ns B4 th(CLKXAE-DRV) Hold time, mcbspx_dr valid after mcbspx_clkx active edge Master 1.01 1.01 ns Slave 0.4 0.4 ns B5 tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx active edge 3.67 7.94 ns B6 th(CLKXAE-FSXV) 0.5 0.5 ns Hold time, mcbspx_fsx valid after mcbspx_clkx active edge (1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 5-45 and Table 5-46. (2) See Operating Condition Addendum for OPP voltages. Table 5-44. McBSP4 (Set #1) Switching Characteristics—Rising Edge and Receive Mode(1) (2) NO. B2 PARAMETER td(CLKXAE-FSXV) OPP100 Delay time, mcbspx_clkx active edge to mcbspx_fsx valid OPP50 MIN MAX MIN MAX 0.7 16.56 0.7 33.12 UNIT ns (1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 5-45 and Table 5-46. (2) See Operating Condition Addendum for OPP voltages. Table 5-45. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements—Rising Edge and Receive Mode(1) (2) NO. PARAMETER OPP100 MIN B3 tsu(DRV-CLKXAE) MAX OPP50 MIN UNIT MAX Setup time, mcbspx_dr valid before mcbspx_clkx active edge Master 6.49 12.90 ns Slave 5.80 12.21 ns Hold time, mcbspx_dr valid after mcbspx_clkx active edge Master 1.01 1.01 ns B4 th(CLKXAE-DRV) 0.4 0.4 ns B5 tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx active edge 5.81 12.21 ns B6 th(CLKXAE-FSXV) 0.5 0.5 ns Slave Hold time, mcbspx_fsx valid after mcbspx_clkx active edge Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 195 PRODUCT PREVIEW NO. AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com (1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are specified in Table 5-41 and Table 5-42. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins). (2) See Operating Condition Addendum for OPP voltages. Table 5-46. McBSP3 (Set #1), 4 (Set #2), and 5 Switching Characteristics—Rising Edge and Receive Mode(1) (2) NO. B2 PARAMETER td(CLKXAE-FSXV) OPP100 Delay time, mcbspx_clkx active edge to mcbspx_fsx valid OPP50 MIN MAX MIN MAX 0.7 22.18 0.7 44.37 UNIT ns (1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are specified in Table 5-41 and Table 5-42. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins) (2) See Operating Condition Addendum for OPP voltages. mcbspx_clkr B2 B2 PRODUCT PREVIEW mcbspx_fsr B3 mcbspx_dr B4 D7 D6 D5 SWPS038-062 (1) In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5. Figure 5-32. McBSP Rising Edge Receive Timing in Master Mode mcbspx_clkr B5 B6 mcbspx_fsr B3 mcbspx_dr B4 D7 D6 D5 SWPS038-063 (1) In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5. Figure 5-33. McBSP Rising Edge Receive Timing in Slave Mode 5.6.1.1.1.2 Timing with Rising Edge as Activation Edge—Transmit Mode Table 5-47. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements—Rising Edge and Transmit Mode(1) (2) NO. PARAMETER OPP100 MIN 196 MAX OPP50 MIN UNIT MAX B5 tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx active edge 3.67 7.94 ns B6 th(CLKXAE-FSXV) 0.5 0.5 ns Hold time, mcbspx_fsx valid after mcbspx_clkx active edge Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 (1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode on UART pins) and Set #3 (multiplexing mode on McBSP1 pins). (2) See Operating Condition Addendum for OPP voltages. Table 5-48. McBSP1, 2, and 3 (Sets #2 and #3) Switching Characteristics—Rising Edge and Transmit Mode(1) (2) NO. PARAMETER OPP100 OPP50 MIN MAX MIN MAX UNIT B2 td(CLKXAE-FSXV) Delay time, mcbspx_clkx active edge to mcbspx_fsx valid 0.7 14.79 0.7 29.58 ns B8 td(CLKXAE-DXV) Delay time, mcbspx_clkx active edge to mcbspx_dx valid Master 0.6 14.79 0.6 29.58 ns Slave 0.6 13.89 0.6 28.68 ns (1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode on UART pins) and Set #3 (multiplexing mode on McBSP1 pins). (2) See Operating Condition Addendum for OPP voltages. Table 5-49. McBSP4 (Set #1) Timing Requirements—Rising Edge and Transmit Mode(1) (2) PARAMETER OPP100 MIN MAX OPP50 MIN UNIT MAX B5 tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx active edge 3.67 7.94 ns B6 th(CLKXAE-FSXV) 0.5 0.5 ns Hold time, mcbspx_fsx valid after mcbspx_clkx active edge (1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 5-51 and Table 5-52. (2) See Operating Condition Addendum for OPP voltages. Table 5-50. McBSP4 (Set #1) Switching Characteristics—Rising Edge and Transmit Mode(1) (2) NO. PARAMETER OPP100 OPP50 MIN MAX MIN MAX UNIT B2 td(CLKXAE-FSXV) Delay time, mcbspx_clkx active edge to mcbspx_fsx valid 0.7 16.56 0.7 33.12 ns B8 td(CLKXAE-DXV) Delay time, mcbspx_clkx active edge to mcbspx_dx valid Master 0.6 16.56 0.6 33.12 ns Slave 0.6 17.15 0.6 32.22 ns (1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 5-51 and Table 5-52. (2) See Operating Condition Addendum for OPP voltages. Table 5-51. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements—Rising Edge and Transmit Mode(1) (2) NO. PARAMETER OPP100 MIN MAX OPP50 MIN UNIT MAX B5 tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx active edge 5.81 12.21 ns B6 th(CLKXAE-FSXV) 0.5 0.5 ns Hold time, mcbspx_fsx valid after mcbspx_clkx active edge (1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are specified in Table 5-47 and Table 5-48. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins). (2) See Operating Condition Addendum for OPP voltages. Table 5-52. McBSP3 (Set #1), 4 (Set #2), and 5 Switching Characteristics—Rising Edge and Transmit Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 197 PRODUCT PREVIEW NO. AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 5-52. McBSP3 (Set #1), 4 (Set #2), and 5 Switching Characteristics—Rising Edge and Transmit Mode(1) (2) (continued) Mode(1) (2) NO. PARAMETER OPP100 OPP50 UNIT MIN MAX MIN MAX B2 td(CLKXAE-FSXV) Delay time, mcbspx_clkx active edge to mcbspx_fsx valid 0.7 22.18 0.7 44.37 ns B8 td(CLKXAE-DXV) Delay time, mcbspx_clkx active edge to mcbspx_dx valid Master 0.6 21.28 0.6 43.47 ns Slave 0.6 21.28 0.6 43.47 ns (1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are specified in Table 5-47 and Table 5-48. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins). (2) See Operating Condition Addendum for OPP voltages. mcbspx_clkx B2 B2 mcbspx_fsx B8 PRODUCT PREVIEW mcbspx_dx D7 D6 D5 SWPS038-064 (1) In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5. Figure 5-34. McBSP Rising Edge Transmit Timing in Master Mode mcbspx_clkx B5 B6 mcbspx_fsx B8 mcbspx_dx D7 D6 D5 SWPS038-065 (1) In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5. Figure 5-35. McBSP Rising Edge Transmit Timing in Slave Mode 5.6.1.1.2 Falling Edge as Activation Edge 5.6.1.1.2.1 Timing with Falling Edge as Activation Edge Mode—Receive Mode Table 5-53. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements—Falling Edge and Receive Mode(1) (2) NO. PARAMETER OPP100 MIN 198 MAX OPP50 MIN UNIT MAX B3 tsu(DRV-CLKAE) Setup time, mcbspx_dr valid before mcbsp1_clkr / mcbspx_clkx active edge Master 4.36 8.63 ns Slave 3.67 7.94 ns B4 th(CLKAE-DRV) Hold time, mcbspx_dr valid after mcbsp1_clkr / mcbspx_clkx active edge Master 1.01 1.01 ns Slave 0.4 0.4 ns B5 tsu(FSV-CLKAE) Setup time, mcbsp1_fsr / mcbspx_fsx valid before mcbsp1_clkr / mcbspx_clkx active edge 3.7 7.94 ns B6 th(CLKAE-FSV) Hold time, mcbsp1_fsr / mcbspx_fsx valid after mcbsp1_clkr / mcbspx_clkx active edge 0.5 0.5 ns Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 (1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode on UART pins) and Set #3 (multiplexing mode on McBSP1 pins). (2) See Operating Condition Addendum for OPP voltages. Table 5-54. McBSP1, 2, and 3 (Sets #2 and #3) Switching Characteristics—Falling Edge and Receive Mode(1) (2) NO. B2 PARAMETER td(CLKAE-FSV) OPP100 Delay time, mcbsp1_clkr / mcbspx_clkx active edge to mcbsp1_fsr / mcbspx_fsx valid OPP50 MIN MAX MIN MAX 0.7 14.79 0.7 29.58 UNIT ns (1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode on UART pins) and Set #3 (multiplexing mode on McBSP1 pins). (2) See Operating Condition Addendum for OPP voltages. Table 5-55. McBSP4 (Set #1) Timing Requirements—Falling Edge and Receive Mode(1) (2) PARAMETER OPP100 MIN MAX OPP50 MIN UNIT MAX B3 tsu(DRV-CLKXAE) Setup time, mcbspx_dr valid before mcbspx_clkx active edge Master 2.87 8.63 ns Slave 3.67 7.94 ns B4 th(CLKXAE-DRV) Hold time, mcbspx_dr valid after mcbspx_clkx active edge Master 1.01 1.01 ns Slave 0.4 0.4 ns B5 tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx active edge 3.67 7.94 ns B6 th(CLKXAE-FSXV) 0.5 0.5 ns Hold time, mcbspx_fsx valid after mcbspx_clkx active edge (1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 5-57 and Table 5-58. (2) See Operating Condition Addendum for OPP voltages. Table 5-56. McBSP4 (Set #1) Switching Characteristics—Falling Edge and Receive Mode(1) (2) NO. B2 PARAMETER td(CLKXAE-FSXV) OPP100 Delay time, mcbspx_clkx active edge to mcbspx_fsx valid OPP50 MIN MAX MIN MAX 0.7 16.56 0.7 33.12 UNIT ns (1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 5-57 and Table 5-58. (2) See Operating Condition Addendum for OPP voltages. Table 5-57. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements—Falling Edge and Receive Mode(1) (2) NO. PARAMETER OPP100 MIN B3 tsu(DRV-CLKXAE) MAX OPP50 MIN UNIT MAX Setup time, mcbspx_dr valid before mcbspx_clkx active edge Master 6.5 12.9 ns Slave 5.81 12.21 ns Hold time, mcbspx_dr valid after mcbspx_clkx active edge Master 1.01 1.01 ns B4 th(CLKXAE-DRV) 0.4 0.4 ns B5 tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx active edge 5.81 12.21 ns B6 th(CLKXAE-FSXV) 0.5 0.5 ns Slave Hold time, mcbspx_fsx valid after mcbspx_clkx active edge Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 199 PRODUCT PREVIEW NO. AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com (1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are specified in Table 5-53 and Table 5-54. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins). (2) See Operating Condition Addendum for OPP voltages. Table 5-58. McBSP3 (Set #1), 4 (Set #2), and 5 Switching Characteristics—Falling Edge and Receive Mode(1) (2) NO. B2 PARAMETER td(CLKXAE-FSXV) OPP100 Delay time, mcbspx_clkx active edge to mcbspx_fsx valid OPP50 UNIT MIN MAX MIN MAX 0.7 22.19 0.7 44.37 ns (1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are specified in Table 5-53 and Table 5-54. (2) See Operating Condition Addendum for OPP voltages. mcbspx_clkr B2 B2 mcbspx_fsr PRODUCT PREVIEW B3 mcbspx_dr B4 D7 D6 D5 SWPS038-066 (1) In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5. Figure 5-36. McBSP Falling Edge Receive Timing in Master Mode mcbspx_clkr B5 B6 mcbspx_fsr B3 mcbspx_dr B4 D7 D6 D5 SWPS038-067 (1) In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5. Figure 5-37. McBSP Falling Edge Receive Timing in Slave Mode 5.6.1.1.2.2 Timing with Falling Edge as Activation Edge—Transmit Mode Table 5-59. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements—Falling Edge and Transmit Mode(1) (2) NO. PARAMETER OPP100 MIN 200 MAX OPP50 MIN UNIT MAX B5 tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx active edge 3.67 7.94 ns B6 th(CLKXAE-FSXV) 0.5 0.5 ns Hold time, mcbspx_fsx valid after mcbspx_clkx active edge Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 (1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode on UART pins) and Set #3 (multiplexing mode on McBSP1 pins). (2) See Operating Condition Addendum for OPP voltages. Table 5-60. McBSP1, 2, and 3 (Sets #2 and #3) Switching Characteristics—Falling Edge and Transmit Mode(1) (2) NO. PARAMETER OPP100 OPP50 MIN MAX MIN MAX UNIT B2 td(CLKXAE-FSXV) Delay time, mcbspx_clkx active edge to mcbspx_fsx valid 0.7 14.79 0.7 29.58 ns B8 td(CLKXAE-DXV) Delay time, mcbspx_clkx active edge to mcbspx_dx valid Master 0.6 14.79 0.6 29.58 ns Slave 0.6 13.89 0.6 28.68 ns (1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode on UART pins) and Set #3 (multiplexing mode on McBSP1 pins). (2) See Operating Condition Addendum for OPP voltages. Table 5-61. McBSP4 (Set #1) Timing Requirements—Falling Edge and Transmit Mode(1) (2) PARAMETER OPP100 MIN MAX OPP50 MIN UNIT MAX B5 tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx active edge 3.67 7.94 ns B6 th(CLKXAE-FSXV) 0.5 0.5 ns Hold time, mcbspx_fsx valid after mcbspx_clkx active edge (1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 5-63 and Table 5-64. (2) See Operating Condition Addendum for OPP voltages. Table 5-62. McBSP4 (Set #1) Switching Characteristics—Falling Edge and Transmit Mode(1) (2) NO. PARAMETER OPP100 OPP50 MIN MAX MIN MAX UNIT B2 td(CLKXAE-FSXV) Delay time, mcbspx_clkx active edge to mcbspx_fsx valid 0.7 16.56 0.7 33.12 ns B8 td(CLKXAE-DXV) Delay time, mcbspx_clkx active edge to mcbspx_dx valid Master 0.6 16.56 0.6 33.12 ns Slave 0.6 17.15 0.6 32.22 ns (1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 5-63 and Table 5-64. (2) See Operating Condition Addendum for OPP voltages. Table 5-63. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements—Falling Edge and Transmit Mode(1) (2) NO. PARAMETER OPP100 MIN MAX OPP50 MIN UNIT MAX B5 tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx active edge 5.81 12.21 ns B6 th(CLKXAE-FSXV) 0.5 0.5 ns Hold time, mcbspx_fsx valid after mcbspx_clkx active edge (1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are specified in Table 5-60 and Table 5-61. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins). (2) See Operating Condition Addendum for OPP voltages. Table 5-64. McBSP3 (Set #1), 4 (Set #2), and 5 Switching Characteristics—Falling Edge and Transmit Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 201 PRODUCT PREVIEW NO. AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 5-64. McBSP3 (Set #1), 4 (Set #2), and 5 Switching Characteristics—Falling Edge and Transmit Mode(1) (2) (continued) Mode(1) (2) NO. PARAMETER OPP100 OPP50 MIN MAX MIN MAX UNIT B2 td(CLKXAE-FSXV) Delay time, mcbspx_clkx active edge to mcbspx_fsx valid 0.7 22.18 0.7 44.37 ns B8 td(CLKXAE-DXV) Delay time, mcbspx_clkx active edge to mcbspx_dx valid Master 0.6 21.28 0.6 43.47 ns Slave 0.6 21.28 0.6 43.47 ns (1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are specified in Table 5-60 and Table 5-61. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins). (2) See Operating Condition Addendum for OPP voltages. mcbspx_clkx B2 B2 mcbspx_fsx B8 PRODUCT PREVIEW mcbspx_dx D7 D6 D5 SWPS038-068 (1) In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5. Figure 5-38. McBSP Falling Edge Transmit Timing in Master Mode mcbspx_clkx B5 B6 mcbspx_fsx B8 mcbspx_dx D7 D6 D5 SWPS038-069 (1) In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5. Figure 5-39. McBSP Falling Edge Transmit Timing in Slave Mode 5.6.1.2 McBSP in TDM —Multipoint Mode (McBSP3) For T application in multipoint mode, the AM3715/03 processor is considered as a slave. Table 5-66 and Table 5-67 assume testing over the operating conditions and electrical characteristic conditions described below. Table 5-65. McBSP3 (Set #3) Timing Conditions—T Multipoint Mode(1) TIMING CONDITION PARAMETER VALUE UNIT MIN MAX Input Conditions tR Input signal rise time 1.0 8.5 ns tF Input signal fall time 1.0 8.5 ns 40 pF Output Condition CLOAD 202 Output load capacitance(2) Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 (1) For McBSP3, these timings concern only Set #3 (multiplexing mode in McBSP1 pins) (2) The load setting of the IO buffer: LB0 = 0. Table 5-66. McBSP3 (Set #3) Timing Requirements—T Multipoint Mode(4) NO. PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX 1 / tc(clkxH) Frequency, input clock mcbsp3_clkx tw(clkxH) Pulse duration, input clock mcbsp3_clkx high 0.5P(1) 0.5P(1) ns tw(clkxL) Pulse duration, input clock mcbsp3_clkx low 0.5P(1) 0.5P(1) ns tdc(clkx) Duty cycle error, input clock mcbsp3_clkx B3(3) tsu(drV-clkxAE) Setup time, input data mcbsp3_dr valid before input clock mcbsp3_clkx active edge B4(3) th(clkxAE-drV) Hold time, input data mcbsp3_dr valid after input clock mcbsp3_clkx active edge B5(3) tsu(fsxV-clkxAE) B6(3) th(clkxAE-fsxV) 6 –8.14 8.14 6 –8.14 8.14 MHz ns 9 9 ns 2.4 2.4 ns Setup time, input frame synchronization mcbsp3_fsx valid before input clock mcbsp3_clkx active edge 9 9 ns Hold time, input frame synchronization mcbsp3_fsx valid after input clock mcbsp3_clkx active edge 2.4 2.4 ns (2) For McBSP3, these timings concern only Set #3 (multiplexing mode in McBSP1 pins). (3) See Section 5.6.1.1 for corresponding figures. (4) See Operating Condition Addendum for OPP voltages. Table 5-67. McBSP3 (Set #3) Switching Characteristics—T Multipoint Mode(1) NO. B8(2) PARAMETER td(clkxAE-dxV) Delay time, mcbsp3_clkx active edge to output data mcbsp3_dx valid OPP100 OPP50 MIN MAX MIN MAX 0.6 15.89 0.6 28.68 UNIT ns (1) For McBSP3, these timings concern only Set #3 (multiplexing mode in McBSP1 pins). (2) See Section 5.6.1.1 for corresponding figures. Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 203 PRODUCT PREVIEW (1) P = input clock mcbsp3_clkx period in ns AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 5.6.2 www.ti.com Multichannel Serial Port Interface (McSPI) NOTE For more information, see Multichannel SPI chapter of the AM3715/03 TRM. McSPI allows a duplex, synchronous, serial communication between a local host and SPI compliant external devices. The following timings are applicable to the different configurations of McSPI in master/slave mode for any McSPI and any channel (n). 5.6.2.1 McSPI—Slave Mode In slave mode, McSPI initiates data transfer on the data lines (mcspix_somi, mcspix_simo) when it receives an SPI clock (mcspix_clk) from the external SPI master device. Table 5-69 and Table 5-70 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-40 and Figure 5-41). Table 5-68. McSPI Timing Conditions—Slave Mode TIMING CONDITION PARAMETER VALUE UNIT Input Conditions PRODUCT PREVIEW tR Input signal rise time 4 ns tF Input signal fall time 4 ns Output load capacitance(1) 20 pF Output Condition CLOAD (1) The load setting of the IO buffer: LB0 = 1. Table 5-69. McSPI Timing Requirements—Slave Mode(1) NO. PARAMETER (3) OPP100 MIN OPP50 MAX UNIT MIN MAX 12 MHz 0.45*P(2) 0.55*P(2) ns SS0 1/tc(CLK) Frequency, mcspix_clk 24 SS1 tw(CLK) Pulse duration, mcspix_clk high or low SS2 tsu(SIMOV-CLKAE) Setup time, mcspix_simo valid before mcspix_clk active edge 4.2 9.5 ns SS3 th(SIMOV-CLKAE) Hold time, mcspix_simo valid after mcspix_clk active edge 4.6 9.9 ns SS4 tsu(CS0V-CLKFE) Setup time, mcspix_cs0 valid before mcspix_clk first edge 13.8 28.6 ns SS5 th(CS0I-CLKLE) Hold time, mcspix_cs0 invalid after mcspix_clk last edge 13.8 28.6 ns 0.45*P(2) 0.55*P(2) (1) In mcspix, x is equal to 1, 2, 3, or 4. (2) P = mcspix_clk clock period (3) See Operating Condition Addendum for OPP voltages. 204 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 5-70. McSPI Switching Characteristics—Slave Mode(1) (3) NO. PARAMETER (4) OPP100 SS6 td(CLKAE-SOMIV) Delay time, mcspix_clk active edge to mcspix_somi shifted SS7 td(CS0AE-SOMIV) Delay time, mcspix_cs0 active edge to mcspix_somi shifted OPP50 UNIT MIN MAX MIN MAX 1.8 15.9 3.2 31.7 ns 31.7 ns Modes 0 and 2(2) 15.9 (1) In mcspix, x is equal to 1, 2, 3, or 4. (2) The polarity of mcspix_clk and the active edge (rising or falling) on which mcspix_simo is driven and mcspix_somi is latched is all software configurable: – mcspix_clk(1) phase programmable with the bit PHA of MCSPI_CH(i)CONF register: PHA = 0 (Modes 0 and 2) For more information, see the McSPI environment chapter, Data Format Configurations section of the AM3715/03 TRM for modes and phase correspondence description. (3) This timing applies to all configurations regardless of mcspix_clk polarity and which clock edges are used to drive output data and capture input data. (4) See Operating Condition Addendum for OPP voltages. PHA=0 EPOL=1 mcspi_cs(IN) PRODUCT PREVIEW SS1 SS0 SS4 mcspi_clk(IN) SS1 SS5 POL=0 SS1 SS0 SS1 POL=1 mcspi_clk(IN) SS7 SS6 Bit n–1 mcspi_somi(OUT) SS6 Bit n–2 Bit n–3 Bit n–4 Bit 0 PHA=1 EPOL=1 mcspi_cs(IN) SS1 SS0 SS4 mcspi_clk(IN) SS1 SS5 POL=0 SS1 SS0 SS1 POL=1 mcspi_clk(IN) SS6 Bit n–1 mcspi_somi(OUT) SS6 Bit n–2 SS6 Bit n–3 SS6 Bit 1 Bit 0 SWPS038-070 (1) (2) The active clock edge selection of mcspi_clk (rising or falling) on which mcspi_simo is driven and mcspi_somi data is latched is software configurable with the bit MCSPI_CH(i)CONF[1] = POL and the bit MCSPI_CH(i)CONF[0] = PHA. The polarity of mcspi_cs is software configurable with the bit MCSPI_CH(i)CONF[6] = EPOL. Figure 5-40. McSPI—Slave Mode—Transmit Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 205 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com PHA=0 EPOL=1 mcspi_cs(IN) SS1 SS0 SS4 mcspi_clk(IN) SS1 SS5 POL=0 SS1 SS0 SS1 POL=1 mcspi_clk(IN) SS3 SS2 SS2 SS3 Bit n–1 mcspi_simo(IN) Bit n–3 Bit n–2 Bit n–4 Bit 0 PHA=1 EPOL=1 mcspi_cs(IN) SS1 SS0 PRODUCT PREVIEW SS4 mcspi_clk(IN) SS1 SS5 POL=0 SS1 SS0 SS1 POL=1 mcspi_clk(IN) SS2 SS3 SS2 mcspi_simo(IN) Bit n–1 SS3 Bit n–2 Bit n–3 Bit 0 Bit 1 SWPS038-071 (1) (2) The active clock edge selection of mcspi_clk (rising or falling) on which mcspi_simo is driven and mcspi_somi data is latched is software configurable with the bit MCSPI_CH(i)CONF[1] = POL and the bit MCSPI_CH(i)CONF[0] = PHA. The polarity of mcspi_cs is software configuable with the bit MCSPI_CH(i)CONF[6] = EPOL. Figure 5-41. McSPI—Slave Mode—Receive 206 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com 5.6.2.2 SPRS616B – JUNE 2010 – REVISED JULY 2010 McSPI—Master Mode In master mode, McSPI supports multichannel communication. McSPI initiates a data transfer on the data lines (SPIDAT [1:0]) and generates clock (SPICLK) and control signals (SPIEN) to a single SPI slave device at a time. Table 5-72 and Table 5-75 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-42 and Figure 5-43). Table 5-71. McSPI Timing Conditions—Master Mode(1) TIMING CONDITION PARAMETER VALUE MIN UNIT MAX Input Conditions tR Input signal rise time 4 ns tF Input signal fall time 4 ns Output Conditions McSPI1, McSPI2, McSPI3, and McSPI4 CLOAD Output load capacitance for spix_csn signals 20 pF 30 pF 20 pF CLOAD Output load capacitance for spix_clk and spix_simo McSPI1 and McSPI4 CLOAD Output load capacitance for spix_clk and spix_simo (1) Buffer strength configuration: LB0 = 1. Table 5-72. McSPI1, 2, and 4 Timing Requirements—Master Mode(1) (2) NO. PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX SM2 tsu(SOMIV-CLKAE) Setup time, mcspix_somi valid before mcspix_clk active edge 1.1 1.5 ns SM3 th(SOMIV-CLKAE) 1.9 2.8 ns Hold time, mcspix_somi valid after mcspix_clk active edge (1) In mcspix, x is equal to 1, 2, or 4. In mcspix_csn, n is equal to 0, 1, 2, or 3 for x equal to 1, n is equal to 0 or 1 for x equal to 2 and 4. (2) See Operating Condition Addendum for OPP voltages. Table 5-73. McSPI1, 2, and 4 Switching Characteristics—Master Mode(1) (6) NO. PARAMETER OPP100 MIN SM0 SM1 1/tc(CLK) Frequency, mcspix_clk 0.45*P 24 (3) Pulse duration, mcspix_clk high or low Rise time, output clock mcspi1_clk and mcspi4_clk 5.72 5.68 Rise time, output clock mcspi2_clk 7.33 7.31 Fall time, output clock mcspi1_clk and mcspi4_clk 5.22 5.21 Fall time, output clock mcspi2_clk 6.77 6.71 Delay time, mcspix_clk active edge to mcspix_simo shifted –2.1 SM5 td(CSnA-CLKFE) Delay time, mcspix_csi active to Modes 1 and 3(2) mcspix_clk first edge Modes 0 and 2(2) A(4) – 3.2 Modes 1 and 3(2) td(CLKLE-CSnI) td(CSnAE-SIMOV) Delay time, mcspix_clk last edge to mcspix_csi inactive Modes 0 and 2 (2) Delay time, mcspix_csi active edge to mcspix_simo shifted Copyright © 2010, Texas Instruments Incorporated 0.45*P (3) tR(clk) td(CLKAE-SIMOV) 0.55*P UNIT MAX 48 (3) SM4 SM7 MIN tw(CLK) tF(clk) SM6 OPP50 MAX 5.0 –2.1 0.55*P MHz (3) 11.3 ns ns ns ns A(4) – 4.4 ns – 3.2 B(5) – 4.4 ns B(5) – 3.2 B(5) – 4.4 ns B A (5) (4) – 3.2 A 5.0 (4) – 4.4 ns 11.3 Timing Requirements and Switching Characteristics Submit Documentation Feedback ns 207 PRODUCT PREVIEW McSPI2 and McSPI3 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com (1) In mcspix, x is equal to 1, 2, or 4. In mcspix_csn, n is equal to 0, 1, 2, or 3 for x equal to 1, n is equal to 0 or 1 for x equal to 2 and 4. (2) The polarity of mcspix_clk and the active edge (rising or falling) on which mcspix_simo is driven and mcspix_somi is latched is all software configurable: – mcspix_clk(1) phase programmable with the bit PHA of MCSPI_CH(i)CONF register: PHA = 1 (Modes 1 and 3). – mcspix_clk(1) phase programmable with the bit PHA of MCSPI_CH(i)CONF register: PHA = 0 (Modes 0 and 2). For more information, see the McSPI environment chapter, Data Format Configurations section of the AM3715/03 TRM for modes and phase correspondence description. (3) P = mcspix_clk clock period (4) Case P = 20.8 ns, A = (TCS+0.5)*P(3) (TCS is a bit field of MSPI_CHCONFx[26:25] register). Case P > 20.8 ns, A = TCS*P(3) (TCS is a bitfield of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of AM3715/03 TRM. (5) B = TCS*P(3) (TCS is a bit field of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of AM3715/03 TRM. (6) See Operating Condition Addendum for OPP voltages. Table 5-74. McSPI3 Timing Requirements—Master Mode(1) NO. PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX SM2 tsu(SOMIV-CLKAE) Setup time, mcspi3_somi valid before mcspi3_clk active edge 1.5 4.3 ns SM3 th(SOMIV-CLKAE) 2.8 5.9 ns Hold time, mcspi3_somi valid after mcspi3_clk active edge PRODUCT PREVIEW (1) See Operating Condition Addendum for OPP voltages. Table 5-75. McSPI3 Switching Characteristics—Master Mode(1) NO. PARAMETER OPP100 SM0 1/tc(CLK) Frequency, mcspi3_clk SM1 tw(CLKH) Pulse duration, mcspi3_clk high or low tR(clk) Rise time, output clock mcspi3_clk tF(clk) Fall time, output clock mcspi3_clk SM4 td(CLK-SIMO) Delay time, mcspi3_clk active edge to mcspi3_simo shifted SM5 td(CSn-CLK) Delay time, mcspi3_csi active to mcspi3_clk first edge SM7 td(CLK-CSn) td(csn-simo) Delay time, mcspi3_clk last edge to mcspi3_csi inactive Delay time, mcspi3_csi active edge to mcspi3_simo shifted OPP50 MIN MAX 0.45*P(3) 0.55*P(3) UNIT MIN MAX 12 MHz 0.45*P(3) 0.55*P(3) ns ns 24 Balls: AE2 / AE13 7.33 7.31 Ball: H26 4.31 4.30 Balls: AE2 / AE13 6.77 6.71 Ball: H26 SM6 (2) (6) 4.0 –2.1 11.3 ns 4.0 –5.3 23.6 ns Modes 1 and 3 A(4) – 4.4 A(4) – 10.1 ns Modes 0 and 2 B(5) – 4.4 B(5) – 10.1 ns Modes 1 and 3 B(5) – 4.4 B(5) – 10.1 ns Modes 0 and 2 A(4) – 4.4 A(4) – 10.1 ns Modes 0 and 2 11.3 23.6 ns (1) In mcspi3_csn, n is equal to 0 or 1. The polarity of mcspi3_clk and the active edge (rising or falling) on which mcspi3_simo is driven and mcspi3_somi is latched is all software configurable. – mcspi3_clk phase programmable with the bit PHA of MCSPI_CH(i)CONF register: PHA = 1 (Modes 1 and 3). – mcspi3_clk phase programmable with the bit PHA of MCSPI_CH(i)CONF register: PHA = 0 (Modes 0 and 2). For more information, see the McSPI environment chapter, Data Format Configurations section of the AM3715/03 TRM for modes and phase correspondence description. (2) This timing applies to all configurations regardless of McSPI3_CLK polarity and which clock edges are used to drive output data and capture input data. (3) P = mcspi3_clk clock period 208 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 (4) Case P = 20.8 ns, A = (TCS + 0.5)*P(3) (TCS is a bit field of MSPI_CHCONFx[26:25] register). Case P > 20.8 ns, A = TCS*P(3) (TCS is a bit field of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of AM3715/03 TRM. (5) B = TCS*P(3) (TCS is a bit field of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of AM3715/03 TRM. (6) See Operating Condition Addendum for OPP voltages. PHA=0 EPOL=1 mcspi_cs(OUT) SM0 SM1 SM5 mcspi_clk(OUT) SM1 SM6 POL=0 SM1 SM0 SM1 POL=1 mcspi_clk(OUT) SM4 Bit n–1 SM4 Bit n–2 Bit n–3 Bit n–4 Bit 0 PHA=1 EPOL=1 mcspi_cs(OUT) SM1 SM0 SM5 mcspi_clk(OUT) SM1 SM6 POL=0 SM0 SM1 SM1 POL=1 mcspi_clk(OUT) SM4 SM4 Bit n–1 mcspi_simo(OUT) SM4 Bit n–2 Bit n–3 SM4 Bit 1 Bit 0 SWPS038-072 (1) (2) The active clock edge selection of mcspi_clk (rising or falling) on which mcspi_simo is driven and mcspi_somi data is latched is software configurable with the bit MCSPI_CH(i)CONF[1] = POL and the bit MCSPI_CH(i)CONF[0] = PHA. The polarity of mcspi_ncs is software configuable with the bit MCSPI_CH(i)CONF[6] = EPOL. Figure 5-42. McSPI—Master Mode—Transmit Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 209 PRODUCT PREVIEW SM7 mcspi_simo(OUT) AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com PHA=0 EPOL=1 mcspi_cs(OUT) SM0 SM1 SM5 mcspi_clk(OUT) SM1 SM6 POL=0 SM1 SM0 SM1 POL=1 mcspi_clk(OUT) SM2 SM2 SM3 mcspi_somi(IN) SM3 Bit n–1 Bit n–2 Bit n–3 Bit n-4 Bit 0 PHA=1 PRODUCT PREVIEW EPOL=1 mcspi_cs(OUT) SM1 SM0 SM5 mcspi_clk(OUT) SM1 SM6 POL=0 SM0 SM1 SM1 POL=1 mcspi_clk(OUT) SM2 SM3 mcspi_somi(IN) Bit n–1 SM2 SM3 Bit n–2 Bit n–3 Bit 1 Bit 0 SWPS038-073 (1) (2) The active clock edge selection of mcspi_clk (rising or falling) on which mcspi_simo is driven and mcspi_somi data is latched is software configurable with the bit MCSPI_CH(i)CONF[1] = POL and the bit MCSPI_CH(i)CONF[0] = PHA. The polarity of mcspi_ncs is software configuable with the bit MCSPI_CH(i)CONF[6] = EPOL. Figure 5-43. McSPI—Master Mode—Receive 5.6.3 Multiport Full-Speed Universal Serial Bus (FS-USB) NOTE For more information, see High-Speed USB Host Subsystem and High-Speed USB OTG Controller / High-Speed USB Host Subsystem section of the AM3715/03 TRM. The AM3715/03 processor provides three USB ports working in full- and low-speed data transactions (up to 12Mbit/s). When connected to either a serial link controller or a serial PHY (PHY interface modes) it supports: • 6-pin (Tx: Dat/Se0 or Tx: Dp/ ) unidirectional mode • 4-pin bidirectional mode • 3-pin bidirectional 210 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com 5.6.3.1 SPRS616B – JUNE 2010 – REVISED JULY 2010 FS-USB—Unidirectional Standard 6-pin Mode Table 5-77 and Table 5-78 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-44). Table 5-76. LS- / FS-USB Timing Conditions—Unidirectional Standard 6-Pin Mode TIMING CONDITION PARAMETER VALUE UNIT Input Conditions tR Input signal rise time 2 ns tF Input signal fall time 2 ns Output load capacitance(1) 15 pF Output Condition CLOAD (1) Buffer strength configuration: LB0 = 1. Table 5-77. LS- / FS-USB Timing Requirements—Unidirectional Standard 6-Pin Mode(1) (2) PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX FSU1 td(vp,vm) Time duration, mmx_rxdp and mmx_rx low together during transition 14 14 ns FSU2 td(vp,vm) Time duration, mmx_rxdp and mmx_rx high together during transition 8 8 ns FSU3 td(rcvU0) Time duration, mmx_rrxcv undefine during a single end 0 (mmx_rxdp and mmx_rx low together) 14 14 ns FSU4 td(rcvU1) Time duration, mmx_rxrcv undefine during a single end 1 (mmx_rxdp and mmx_rx high together) 8 8 ns (1) In mmx, x is equal to 0, 1, or 2. (2) See Operating Condition Addendum for OPP voltages. Table 5-78. LS- / FS-USB Switching Characteristics—Unidirectional Standard 6-Pin Mode(1) (2) NO. PARAMETER OPP100 OPP50 UNIT MIN MAX MIN MAX FSU5 td(txenL-dV) Delay time, mmx_txen_n low to mmx_txdat valid 81.8 84.8 81.8 84.8 ns FSU6 td(txenL-se0V) Delay time, mmx_txen_n low to mmx_txse0 valid 81.8 84.8 81.8 84.8 ns FSU7 ts(d-se0) Skew between mmx_txdat and mmx_txse0 transition 1.5 ns FSU8 td(dI-txenH) Delay time, mmx_txdat invalid to mmx_txen_n high 81.8 81.8 ns FSU9 td(se0I-txenH) Delay time, mmx_txse0 invalid to mmx_txen_n high 81.8 81.8 ns 1.5 (1) In mmx, x is equal to 0, 1, or 2. (2) See Operating Condition Addendum for OPP voltages. Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 211 PRODUCT PREVIEW NO. AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Transmit mmx_txen_n FSU5 Receive FSU8 mmx_txdat FSU6 FSU7 FSU9 mmx_txse0 FSU1 FSU2 FSU1 FSU2 FSU3 FSU4 mmx_rxdp mmx_rxdm mmx_rxrcv SWPS038-074 (1) In mmx, x is equal to 0, 1, or 2. Figure 5-44. LS- / FS-USB—Unidirectional Standard 6-Pin Mode 5.6.3.2 FS-USB—Bidirectional Standard 4-pin Mode PRODUCT PREVIEW Table 5-80 and Table 5-81 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-45). Table 5-79. LS- / FS-USB Timing Conditions—Bidirectional Standard 4-Pin Mode TIMING CONDITION PARAMETER VALUE UNIT Input Conditions tR Input signal rise time 2 ns tF Input signal fall time 2 ns Output load capacitance(1) 15 pF Output Condition CLOAD (1) Buffer strength configuration: LB0 = 1. Table 5-80. LS- / FS-USB Timing Requirements—Bidirectional Standard 4-Pin Mode(1) (2) NO. PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX FSU10 td(d,se0) Time duration, mmx_txdat and mmx_txse0 low together during transition 14 14 ns FSU11 td(d,se0) Time duration, mmx_txdat and mmx_txse0 high together during transition 8 8 ns FSU12 td(rcvU0) Time duration, mmx_rrxcv undefine during a single end 0 (mmx_txdat and mmx_txse0 low together) 14 14 ns FSU13 td(rcvU1) Time duration, mmx_rxrcv undefine during a single end 1 (mmx_txdat and mmx_txse0 high together) 8 8 ns (1) In mmx, x is equal to 0, 1, or 2. (2) See Operating Condition Addendum for OPP voltages. Table 5-81. LS- / FS-USB Switching Characteristics—Bidirectional Standard 4-Pin Mode(1) (2) NO. PARAMETER OPP100 OPP50 UNIT MIN MAX MIN MAX FSU14 td(txenL-dV) Delay time, mmx_txen_n low to mmx_txdat valid 81.8 84.8 81.8 84.8 ns FSU15 td(txenL-se0V) Delay time, mmx_txen_n low to mmx_txse0 valid 81.8 84.8 81.8 84.8 ns FSU16 ts(d-se0) Skew between mmx_txdat and mmx_txse0 transition 1.5 ns FSU17 td(dV-txenH) Delay time, mmx_txdat invalid before mmx_txen_n high 212 Timing Requirements and Switching Characteristics Submit Documentation Feedback 1.5 81.8 81.8 ns Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 5-81. LS- / FS-USB Switching Characteristics—Bidirectional Standard 4-Pin Mode(1) (2) (continued) NO. PARAMETER OPP100 MIN FSU18 td(se0V-txenH) Delay time, mmx_txse0 invalid before mmx_txen_n high 81.8 MAX OPP50 MIN UNIT MAX 81.8 ns (1) In mmx, x is equal to 0, 1, or 2. (2) See Operating Condition Addendum for OPP voltages. Transmit mmx_txen_n FSU14 Receive FSU17 FSU10 FSU11 FSU18 FSU10 FSU11 FSU12 FSU13 mmx_txdat FSU15 FSU16 mmx_txse0 mmx_rxrcv SWPS038-075 (1) In mmx, x is equal to 0, 1, or 2. PRODUCT PREVIEW Figure 5-45. LS- / FS-USB—Bidirectional Standard 4-Pin Mode Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 213 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 5.6.4 www.ti.com Multiport High-Speed Universal Serial Bus (HS-USB) NOTE For more information, see High-Speed USB Host Subsystem and High-Speed USB OTG Controller / High-Speed USB OTG Controller section of the AM3715/03 TRM, and, High-Speed USB Host Subsystem and High-Speed USB OTG Controller / High-Speed USB Host Subsystem section of the AM3715/03 TRM. In addition to the full-speed (FS) USB controller, a high-speed (HS) USB OTG controller is incorporated in the AM3715/03 device. It allows high-speed transactions (up to 480 Mbit/s) on the USB ports 0, 1, 2, and 3 described below: • Port 0: – 12-bit slave mode (SDR) • Ports 1 and 2: – 12-bit master mode (SDR) • Port 3: 5.6.4.1 HSUSB0—Port 0—12-bit Slave Mode PRODUCT PREVIEW Table 5-83 and Table 5-84 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-46). Table 5-82. HSUSB0 Timing Conditions—12-bit Slave Mode TIMING CONDITION PARAMETER VALUE UNIT Input Conditions tR Input signal rise time 2 ns tF Input signal fall time 2 ns 3.5 pF Output Condition Output load capacitance(1) CLOAD (1) Buffer strength configuration: LB0 = 0. Table 5-83. HSUSB0 Timing Requirements—12-bit Slave Mode(3) (4) NO. PARAMETER OPP100 MIN HSU0 fp(CLK) hsusb0_clk clock frequency(1) (2) UNIT MAX 60.03 MHz 500 ps tJ(CLK) Cycle jitter , hsusb0_clk ts(DIRV-CLKH) Setup time, hsusb0_dir valid before hsusb0_clk rising edge 6.68 ns ts(NXTV-CLKH) Setup time, hsusb0_nxt valid before hsusb0_clk rising edge 6.68 ns th(CLKH-DIRIV) Hold time, hsusb0_dir valid after hsusb0_clk rising edge 0 ns th(CLKH-NXT/IV) Hold time, hsusb0_nxt valid after hsusb0_clk rising edge 0 ns HSU5 ts(DATAV-CLKH) Setup time, hsusb0_data[0:7] valid before hsusb0_clk rising edge 6.68 ns HSU6 th(CLKH-DATIV) Hold time, hsusb0_data[0:7] valid after hsusb0_clk rising edge 0 ns HSU3 HSU4 (1) Related with the input maximum frequency supported by the USB module. (2) Maximum cycle jitter supported by hsusb0_clk input clock (3) The timing requirements are assured up to the cycle jitter error condition specified. (4) See Operating Condition Addendum for OPP voltages. 214 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 5-84. HSUSB0 Switching Characteristics—12-bit Slave Mode(1) NO. PARAMETER OPP100 MIN HSU1 HSU2 td(clkL-STPV) Delay time, hsusb0_clk high to output usb0_stp valid td(clkL-STPIV) Delay time, hsusb0_clk high to output usb0_stp invalid td(clkL-DV) Delay time, hsusb0_clk high to output hsusb0_data[0:7] valid td(clkL-DIV) Delay time, hsusb0_clk high to output hsusb0_data[0:7] invalid UNIT MAX 8.6 ns 0 ns 8.6 ns 0 ns (1) See Operating Condition Addendum for OPP voltages. HSU0 hsusb0_clk HSU1 HSU1 hsusb0_stp HSU3 HSU5 HSU2 HSU2 Data_OUT hsusb0_data[7:0] HSU6 Data_IN SWPS038-080 Figure 5-46. HSUSB0—12-bit Slave Mode 5.6.4.2 HSUSB1 and HSUSB2—Ports 1 and 2—12-bit Slave Mode Table 5-86 and Table 5-87 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-47). Table 5-85. HSUSB1 and HSUSB2 Timing Conditions—12-bit Master Mode TIMING CONDITION PARAMETER VALUE UNIT Input Conditions tR Input signal rise time 3 ns tF Input signal fall time 2 ns Output load capacitance(1) 5 pF Output Condition CLOAD (1) Buffer strength configuration: LB0 = 0. Table 5-86. HSUSB1 and HSUSB2 Timing Requirements—12-bit Master Mode(1) NO. PARAMETER OPP100 MIN HSU3 HSU4 HSU5 (2) UNIT MAX tsu(dirV-clkH) Setup time, input direction control hsusbx_dir valid before output clock hsusbx_clk rising edge 9.3 ns tsu(nxtV-clkH) Setup time, input next signal hsusbx_nxt valid before output clock hsusbx_clk rising edge 9.3 ns th(clkH-dirIV) Hold time, input direction control hsusbx_dir valid after output clock hsusbx_clk rising edge –0.52 ns th(clkH-nxtIV) Hold time, input next signal hsusbx_nxt valid after output clock hsusbx_clk rising edge –0.52 ns tsu(dV-clkH) Setup time, input data hsusbx_data[7:0] valid before output clock hsusbx_clk rising edge 9.3 ns Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 215 PRODUCT PREVIEW HSU4 hsusb0_dir and hsusb0_nxt AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 5-86. HSUSB1 and HSUSB2 Timing Requirements—12-bit Master Mode(1) NO. PARAMETER (2) OPP100 MIN HSU6 th(clkH-dV) (continued) Hold time, input data hsusbx_data[7:0] valid after output clock hsusbx_clk rising edge UNIT MAX –0.52 ns (1) In hsusbx, x is equal to 1 or 2. (2) See Operating Condition Addendum for OPP voltages. Table 5-87. HSUSB1 and HSUSB2 Switching Characteristics—12-bit Master Mode(1) NO. PARAMETER OPP100 MIN HSU0 HSU1 HSU2 fp(clk) (3) Frequency, output clock hsusbx_clk (2) UNIT MAX 60 MHz 400 ps 12.81 ns PRODUCT PREVIEW tJ(clk) Jitter standard deviation , output clock hsusbx_clk td(clkH-stpV) Delay time, output clock hsusbx_clk rising edge to output stop signal hsusbx_stp valid td(clkH-stpIV) Delay time, output clock hsusbx_clk rising edge to output stop signal hsusbx_stp invalid td(clkH-dV) Delay time, output clock hsusbx_clk rising edge to output data hsusbx_data[7:0] valid td(clkH-dIV) Delay time, output clock hsusbx_clk rising edge to output data hsusbx_data[7:0] invalid tR(d) Rise time, output data hsusbx_data[7:0] 0 ns tF(d) Fall time, output data hsusbx_data[7:0] 0 ns 1.95 ns 12.81 1.95 ns ns (1) In hsusbx, x is equal to 1 or 2. (2) The jitter probability density can be approximated by a Gaussian function. (3) See Operating Condition Addendum for OPP voltages. HSU0 hsusbx_clk HSU1 HSU1 hsusbx_stp HSU3 HSU4 hsusbx_dir and hsusbx_nxt HSU5 HSU2 HSU2 Data_OUT hsusbx_data[7:0] HSU6 Data_IN SWPS038-081 (1) In hsusbx, x is equal to 1 or 2. Figure 5-47. HSUSB1 and HSUSB2—12-bit Master Mode 5.6.5 Inter-Integrated Circuit Interface (I2C) NOTE For more information, see Multimaster High-Speed I2C Controller chapter of the AM3715/03 TRM. The multi-master I2C peripheral provides an interface between two or more devices via an I2C serial bus. 216 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 The I2C controller supports the multi-master mode which allows more than one device capable of controlling the bus to be connected to it. Each I2C device is recognized by a unique address and can operates as either transmitter or receiver, according to the function of the device. In addition to being a transmitter or receiver, a device connected to the I2C bus can also be considered as master or slave when performing data transfers. This data transfer is carried out via two serial bidirectional wires: • An SDA data line • An SCL clock line In Figure 5-48 the data transfer is in master or slave configuration with 7-bit addressing format. The I2C interface is compliant with Philips I2C specification version 2.1. It supports standard mode (up to 100K bits/s), fast mode (up to 400K bits/s) and high-speed mode (up to 3.4Mb/s). 5.6.5.1 I2C—Standard and Fast Modes Table 5-88. I2C—Standard and Fast Modes PARAMETER STANDARD MODE MIN MAX FAST MODE MIN UNIT MAX fscl Frequency, clock i2cx_scl(4) I1 tw(sclH) Pulse duration, clock i2cx_scl(4) high 4.0 0.6 ms I2 tw(sclL) Pulse duration, clock i2cx_scl(4) low 4.7 1.3 ms (4) 100 valid before clock 400 (1) 250 100 kHz I3 tsu(sdaV-sclH) Setup time, data i2cx_sda i2cx_scl(4) active level I4 th(sclH-sdaV) Hold time, data i2cx_sda(4) valid after clock i2cx_scl(4) active level 0(2) I5 tsu(sdaL-sclH) Setup time, clock i2cx_scl(4) high after data i2cx_sda(4) low (for a START(5) condition or a repeated START condition) 4.7 0.6 ms I6 th(sclH-sdaH) Hold time, data i2cx_sda low level after clock i2cx_scl(4) high level (STOP condition) 4.0 0.6 ms I7 th(sclH-RSTART) Hold time, data i2cx_sda(4) low level after clock i2cx_scl(4) high level (for a repeated START condition) 4.0 0.6 ms I8 tw(sdaH) Pulse duration, data i2cx_sda(4) high between STOP and START conditions 4.7(4) 1.3 ms tR(scl) Rise time, clock i2cx_scl(4) 1000 20 + 0.1CB 300 ns tF(scl) Fall time, clock i2cx_scl(4) 300 20 + 0.1CB 300 ns tR(sda) Rise time, data i2cx_sda(4) 1000 20 + 0.1CB 300 ns tF(sda) Fall time, data i2cx_sda(4) 300 20 + 0.1CB 300 ns CB Capacitive load for each bus line 400 400 pF 3.45(3) 0(2) PRODUCT PREVIEW NO. ns 0.9(3) ms (1) A fast-mode I2C-bus device can be used in a standard-mode I2C-bus system, but the requirement tsu(SDAV-SCLH) ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the low period of the i2cx_scl(4). If such a device does stretch the low period of the i2cx_scl(4), it must output the next data bit to the i2cx_sda(4) line tr(SDA) max + tsu(SDAV-SCLH) = 1000 + 250 = 1250 ns (according to the standard-mode I2C-bus specification) before the i2cx_scl(4) line is released. (2) The device provides (via the I2C bus) a hold time of at least 300 ns for the i2cx_sda(4) signal (see the fall and rise times of i2cx_scl(4)) to bridge the undefined region of the falling edge of i2cx_scl(4). (3) The maximum th(SCLH-SDA) has only to be met if the device does not stretch the low period of the i2cx_scl(4) signal. (4) In i2cx, x is equal to 1, 2, 3, or 4. Note that I2C4 is master transmitter only. (5) After this time, the first clock is generated. Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 217 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com START START REPEAT START STOP i2cX_sda I6 I1 I2 I3 I4 I5 I8 I6 I7 i2cX_scl SWPS038-084 (1) In i2cX, X is equal to 1, 2, 3, or 4. Figure 5-48. I2C—Standard and Fast Modes 5.6.5.2 I2C—High-Speed Mode Table 5-89. I2C—High-Speed Mode NO. PARAMETER MIN Frequency, clock i2cx_scl(3) fscl (3) PRODUCT PREVIEW I1 tw(sclH) Pulse duration, clock i2cx_scl I2 tw(sclL) Pulse duration, clock i2cx_scl(3) low I3 tsu(sdaV-sclH) Setup time, data i2cx_sda(3) valid before clock i2cx_scl(3) active level (3) high 60 valid after clock i2cx_scl (3) active level MAX UNIT 3.4(5) MHz (1) ns 160(1) ns 10 ns I4 th(sclH-sdaV) Hold time, data i2cx_sda I5 tsu(sdaL-sclH) Setup time, clock i2cx_scl(3) high after data i2cx_sda(3) low (for a START(2) condition or a repeated START condition) 160 ns I6 th(sclH-sdaH) Hold time, data i2cx_sda(3) low level after clock i2cx_scl(3) high level (STOP condition) 160 ns I7 th(sclH-RSTART) Hold time, data i2cx_sda(3) low level after clock i2cx_scl(3) high level (for a repeated START condition) 160 ns tR(scl) Rise time, clock i2cx_scl(3) 10 40 ns tR(scl) Rise time, clock i2cx_scl(3) after a repeated START condition and after a bit acknowledge 10 80 ns tF(scl) Fall time, clock i2cx_scl(3) 10 40 ns 10 80 ns 10 80 ns 100 pF (3) tR(sda) Rise time, data i2cx_sda tF(sda) Fall time, data i2cx_sda(3) CB Capacitive load for each bus line 0 (4) 70 ns (1) HS-mode master devices generate a serial clock signal with a high to low ratio of 1 to 2. tw(sclL) > 2 * tw(sclH). (2) After this time, the first clock is generated. (3) In i2cx, x is equal to 1, 2, 3, or 4. Note that I2C4 is master transmitter only. (4) The device provides (via the I2C bus) a hold time of at least 300 ns for the i2cx_sda(3) signal (see the fall and rise times of i2cx_scl(3)) to bridge the undefined region of the falling edge of i2cx_scl(3). (5) The I2C4 clock frequency in high-speed mode is equal to the sys_xtalin input clock frequency divided by 15. START REPEAT STOP i2cX_sda IH5 IH6 IH1 IH2 IH3 IH4 IH7 i2cX_scl SWPS038-085 (1) In i2cX, X is equal to 1, 2, 3, or 4. Figure 5-49. I2C—High-Speed Mode 218 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 5-90. I2C Correspondence Standard vs Data Manual Timing References STANDARD-I2C TI I1 5.6.6 Standard/Fast Modes High-Speed Mode fscl FSCL FSCLH tw(sclH) THIGH THIGH I2 tw(sclL) TLOW TLOW I3 tsu(sdaV-sclH) TSU;DAT TSU;DAT I4 th(sclH-sdaV) TSU;DAT TSU;DAT I5 tsu(sdaL-sclH) TSU;STA TSU;STA I6 th(sclH-sdaH) THD;STA THD;STA I7 th(sclH-RSTART) TSU;STO TSU;STO I8 tw(sdaH) TBUF HDQ / 1-Wire Interface (HDQ/1-Wire) NOTE The module is intended to work with both HDQ and 1-Wire protocols. The protocols use a single wire to communicate between the master and the slave. The protocols employ an asynchronous return to one mechanism where, after any command, the line is pulled high. 5.6.6.1 HDQ/1-Wire—HDQ Mode Table 5-91 and Table 5-93 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-50 through Figure 5-54). Table 5-91. HDQ Interface Read Timing PARAMETER tCYCH DESCRIPTION Read bit window timing MIN MAX UNIT 190 TYP 250 ms (2) (2) ms tHW1 Read one data valid after HDQ low 32 tHW0 Read zero data hold after HDQ low 70(2) 145(2) 66 ms tRSPS Response time from HDQ slave device(1) 190 320 ms (1) Defined by software (2) If the HDQ slave device drives a logic-low state after tHW0 max, it can be interpreted as a break pulse. For more information see Table 5-92 and the HDQ/1-Wire chapter of the AM3715/03 TRM. Table 5-92. HDQ Sampling Cases(1) CASES FIRST SAMPLING (at 68 µs) SECOND SAMPLING (at 180 µs) 1 L (logic-low state) L (logic-low state) 2 L (logic-low state) H (logic-high state) 3 H (logic-high state) L (logic-low state) 4 H (logic-high state) H (logic-high state) (1) The different cases can be interpreted as follows: – Case 1: If a logic-low state is present at the first sampling time and also at the second sampling time, the receive data can be interpreted as a break pulse. – Case 2: If a logic-low state is present at the first sampling time and a logic-high state is present at the second sampling time, the receive data on the line is a zero (data). – Case 3: Undefined. – Case 4: If a logic-high state is present at the first sampling time and also at the second sampling time, the receive data on the line is a one (data). Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 219 PRODUCT PREVIEW For more information, see HDQ/1-Wire / HDQ/1-Wire chapter of the AM3715/03 TRM. AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 5-93. HDQ Write Switching Characteristics PARAMETER DESCRIPTION MIN TYP MAX UNIT tB Break timing 190 ms tBR Break recovery time 40 ms tCYCD Write bit windows timing 190 ms tDW1 Write one data valid after HDQ low 0.5 50 ms tDW0 Write zero data hold after HDQ low 86 145 ms tB tBR HDQ SWPS038-086 Figure 5-50. HDQ Break and Break Recovery Timing— HDQ Interface Writing to Slave tB tBR HDQ First sampling time tHW1 Second sampling time PRODUCT PREVIEW tHW0 SWPS038-122 Figure 5-51. HDQ Break Detection— HDQ Interface Reading Slave tCYCH tHW0 tHW1 HDQ SWPS038-087 Figure 5-52. HDQ Interface Bit Read Timing (Data) tCYCD tDW0 tDW1 HDQ SWPS038-088 Figure 5-53. HDQ Interface Bit Write Timing (Command/Address or Data) Command_byte_written 0_(LSB) Break 1 Data_byte_received tRSPS 6 7_(MSB) 1 0_(LSB) 6 HDQ SWPS038-089 Figure 5-54. HDQ—Communication 5.6.6.2 HDQ/1-Wire—1-Wire Mode Table 5-94 and Table 5-95 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-55 through Figure 5-58). 220 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 5-94. HDQ/1-Wire Timing Requirements—1-Wire Mode PARAMETER MAX UNIT tPDH Presence pulse delay high DESCRIPTION MIN 15 TYP 60 ms tPDL Presence pulse delay low 60 240 ms tRDV Read data valid time tLOWR 15 ms tREL Read data release time 0 45 ms MAX UNIT 960 ms Table 5-95. HDQ/1-Wire Switching Characteristics—1-Wire Mode PARAMETER DESCRIPTION MIN tRSTL Reset time low 480 tRSTH Reset time high 480 TYP ms tSLOT Bit cycle time 60 120 ms tLOW1 Write bit-one time 1 15 ms tLOW0 Write bit-zero time(2) 60 120 ms tREC Recovery time 1 (1) tLOWR Read bit strobe time ms 1 15 ms (2) tLOW0 must be less than tSLOT. tRSTH tRTSL 1-WIRE tPDH tPDL SWPS038-090 Figure 5-55. 1-Wire Reset Timing tSLOT tREC tRDV tREL tLOWR 1-WIRE SWPS038-091 Figure 5-56. 1-Wire Read Bit Timing (Data) tSLOT 1-WIRE tREC tLOW1 SWPS038-123 Figure 5-57. 1-Wire Write Bit-One Timing (Command / Address or Data) tSLOT 1-WIRE tREC tLOW0 SWPS038-124 Figure 5-58. 1-Wire Write Bit-Zero Timing (Command/Address or Data) Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 221 PRODUCT PREVIEW (1) tLOWR (low pulse sent by the master) must be short as possible to maximize the master sampling window. AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 5.6.7 www.ti.com Universal Asynchronous Receiver Transmitter (UART) NOTE For more information, see UART/IrDA/CIR chapter of the AM3715/03 TRM. 5.6.7.1 UART3 IrDA The IrDA module can operate in three different modes: • Slow infrared (SIR) (≤ 115.2 Kbits/s) • Medium infrared (MIR) (0.576 Mbits/s and 1.152 Mbits/s) • Fast infrared (FIR) (4 Mbits/s) Pulse Duration 90% 90% PRODUCT PREVIEW 50% 50% 10% 10% tr tf SWPS038-093 Figure 5-59. UART IrDA Pulse Parameters 5.6.7.1.1 UART3 IrDA—Receive Mode Table 5-96. UART3 IrDA Signaling Rate and Pulse Duration—Receive Mode SIGNALING RATE ELECTRICAL PULSE DURATION UNIT MIN TYP MAX 2.4 Kbit/s 52.17 78.13 208.33 ms 9.6 Kbit/s 13.10 19.53 52.08 ms 19.2 Kbit/s 6.59 9.77 26.04 ms 38.4 Kbit/s 3.34 4.88 13.02 ms 57.6 Kbit/s 2.25 3.26 8.68 ms 115.2 Kbit/s 1.17 1.63 4.34 ms 0.576 Mbit/s 300.55 416.67 867.86 ns 1.152 Mbit/s 192.04 208.33 433.83 ns 4.0 Mbit/s (Single pulse) 62.70 125.00 170.63 ns 4.0 Mbit/s (Double pulse) 208.53 250.00 291.47 ns SIR MIR FIR 222 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 5-97. UART3 IrDA Rise and Fall Times—Receive Mode MAX UNIT tR Rise time, input data uart3_rx_irrx PARAMETER MIN TYP 200 ns tF Fall time, input data uart3_rx_irrx 200 ns 5.6.7.1.2 UART3 IrDA—Transmit Mode Table 5-98. UART3 IrDA Signaling Rate and Pulse Duration—Transmit Mode SIGNALING RATE ELECTRICAL PULSE DURATION UNIT MIN TYP MAX 2.4 Kbit/s 78.1 78.1 78.1 ms 9.6 Kbit/s 19.5 19.5 19.5 ms 19.2 Kbit/s 9.75 9.75 9.75 ms 38.4 Kbit/s 4.87 4.87 4.87 ms 57.6 Kbit/s 3.25 3.25 3.25 ms 115.2 Kbit/s 1.62 1.62 1.62 ms 0.576 Mbit/s 414 416 419 ns 1.152 Mbit/s 206 208 211 ns 4.0 Mbit/s (Single pulse) 123 125 128 ns 4.0 Mbit/s (Double pulse) 248 250 253 ns SIR FIR 5.6.8 Removable Media Interfaces 5.6.8.1 Multimedia Memory Card and Secure Digital IO Card (mmc) NOTE For more information, see MMC/SD/SDIO Card Interface chapter of the AM3715/03 TRM. The mmc host controller provides an interface to high-speed and standard MMC, SD memory cards, or SDIO cards. The application interface is responsible for managing transaction semantics. The MMC/SDIO host controller deals with MMC/SDIO protocol at transmission level, packing data, adding CRC, start/end bit, and checking for syntactical correctness. There are three mmc interfaces on the device: • mmc1: – 1.8-V / 3-V support – 4-bit in Standard MMC, High-Speed MMC, Standard SD, and High-Speed SD modes • mmc2: – 1.8-V support – 8-bit without external transceiver – 4-bit with external transceiver allowing supporting 3-V peripherals. Transceiver direction control signals are multiplexed with the upper four data bits. • mmc3: – 1.8-V support – 8-bit without external transceiver Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 223 PRODUCT PREVIEW MIR AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com 5.6.8.1.1 mmc1 Interface—SD Identification Modes Table 5-100 and Table 5-101 assume testing over the recommended operating conditions and electrical characteristic conditions below. Table 5-99. mmc1 Interface Timing Conditions—SD Identification Modes TIMING CONDITION PARAMETER VALUE UNIT Input Conditions tR Input signal rise time 10 ns tF Input signal fall time 10 ns 40 pF Output Condition Output load capacitance(1) CLOAD (1) Buffer strength configuration: LB0 = 0. Table 5-100. mmc1 Interface Timing Requirements—SD Identification Modes(1) (2) NO. PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX mmc1 Interface (1.8-V IO) PRODUCT PREVIEW SD3 tsu(CMDV-CLKIH) Setup time, mmc1_cmd valid before mmc1_clk rising clock edge 1198.4 1198.4 ns SD4 th(CLKIH-CMDIV) Hold time, mmc1_cmd valid after mmc1_clk rising clock edge 1249.2 1249.2 ns mmc1 Interface (3.0-V IO) SD3 tsu(CMDV-CLKIH) Setup time, mmc1_cmd valid before mmc1_clk rising clock edge 1198.4 1198.4 ns SD4 th(CLKIH-CMDIV) Hold time, mmc1_cmd valid after mmc1_clk rising clock edge 1249.2 1249.2 ns (1) Corresponding figures showing timing parameters are common with other interface modes. (See SD , HS SD modes). (2) See DM Operating Condition Addendum for OPP voltages. Table 5-101. mmc1 Interface Switching Characteristics—SD Identification Modes(4) (7) NO. PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX SD Identification Mode SD1 tc(clk) Frequency(1), output clock period SD2 tW(clkH) Typical pulse duration, output clock high SD2 0.4 X(5)*PO(2) (6) (2) Y *PO 0.4 X(5)*PO(2) (6) (2) Y *PO MHz ns tW(clkL) Typical pulse duration, output clock low tdc(clk) Duty cycle error, output clock 125 125 ns ns tJ(clk) Jitter standard deviation(3), output clock 200 200 ps tc(clk) Rise time, output clock 10 10 ns tW(clkH) Fall time, output clock 10 10 ns tW(clkL) Rise time, output cmd 10 10 ns tdc(clk) Fall time, output cmd td(CLKOH-CMD) Delay time, mmc1_clk rising clock edge to mmc1_cmd transition mmc1 Interface (1.8-V IO) SD5 10 6.3 2492.7 6.3 10 ns 2492.7 ns mmc1 Interface (3.0-V IO) 224 tc(clk) Rise time, output clock 10 10 ns tW(clkH) Fall time, output clock 10 10 ns tW(clkL) Rise time, output cmd 10 10 ns tdc(clk) Fall time, output cmd 10 10 ns Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 5-101. mmc1 Interface Switching Characteristics—SD Identification Modes(4) (7) (continued) NO. SD5 PARAMETER td(CLKOH-CMD) OPP100 Delay time, mmc1_clk rising clock edge to mmc1_cmd transition OPP50 MIN MAX MIN MAX 6.3 2492.7 6.3 2492.7 UNIT ns (1) Related with the output clock maximum and minimum frequencies programmable in mmc module. (2) PO = output clock period in ns (3) The jitter probability density can be approximated by a Gaussian function. (4) Corresponding figures showing timing parameters are common with other interface modes. (See SD, HS SD modes). (5) The X parameter is defined as follows: CLKD X 1 or Even 0.5 Odd (trunk[CLKD/2]+1)/CLKD All required details about clock divison factor CLKD can be found in AM3715/03 TRM. (6) The Y parameter is defined as follows: Y 1 or Even 0.5 Odd (trunk[CLKD/2])/CLKD All required details about clock divison factor CLKD can be found in AM3715/03 TRM. (7) See DM Operating Condition Addendum for OPP voltages. 5.6.8.1.2 mmc1 Interface—High-Speed SD Mode Table 5-103 and Table 5-104 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-60 and Figure 5-61). Table 5-102. mmc1 Interface Timing Conditions—High-Speed SD Mode TIMING CONDITION PARAMETER VALUE UNIT Input Conditions tR Input signal rise time 3 ns tF Input signal fall time 3 ns 40 pF Output Condition CLOAD Output load capacitance(1) (1) Buffer strength configuration: SPEEDCTRL = 1. Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 225 PRODUCT PREVIEW CLKD AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 5-103. mmc1 Interface Timing Requirements—High-Speed SD Mode(2) NO. PARAMETER OPP100 MIN MAX OPP50 MIN UNIT MAX mmc1 Interface (1.8-V IO) HSSD3 tsu(CMDV-CLKIH) Setup time, mmc1_cmd valid before mmc1_clk rising clock edge 5.6 26 ns HSSD4 th(CLKIH-CMDIV) Hold time, mmc1_cmd valid after mmc1_clk rising clock edge 2.3 1.9 ns HSSD7 tsu(DATxV-CLKIH) Setup time, mmc1_dat[n:0](1) valid before mmc1_clk rising clock edge 5.6 26 ns HSSD8 th(CLKIH-DATxIV) Hold time, mmc1_dat[n:0](1) valid after MMC1_clk rising clock edge 2.3 1.9 ns MMC1 Interface (3.0-V IO) PRODUCT PREVIEW HSSD3 tsu(CMDV-CLKIH) Setup time, MMC1_cmd valid before MMC1_clk rising clock edge 5.6 26 ns HSSD4 th(CLKIH-CMDIV) Hold time, MMC1_cmd valid after MMC1_clk rising clock edge 2.3 1.9 ns HSSD7 tsu(DATxV-CLKIH) Setup time, MMC1_dat[n:0](1) valid before MMC1_clk rising clock edge 5.6 26 ns HSSD8 th(CLKIH-DATxIV) Hold time, MMC1_dat[n:0](1) valid after MMC1_clk rising clock edge 2.3 1.9 ns (1) In MMC1_dat[n:0], n is equal to 3. (2) See DM Operating Condition Addendum for OPP voltages. 226 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 5-104. MMC1 Interface Switching Characteristics—High-Speed SD Mode(7) NO. PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX High-Speed SD Mode HSSD1 tc(clk) Frequency(1), output clock period 48 (4) (2) 24 (4) (2) MHz HSSD2 tW(clkH) Typical pulse duration, output clock high X *PO X *PO ns HSSD2 tW(clkL) Typical pulse duration, output clock low Y(5)*PO(2) Y(5)*PO(2) ns tdc(clk) Duty cycle error, output clock tJ(clk) (3) Jitter standard deviation , output clock 1041.67 2083.33 ps 200 200 ps MMC1 Interface (1.8-V IO) tc(clk) Rise time, output clock 3 3 ns tW(clkH) Fall time, output clock 3 3 ns tW(clkL) Rise time, output cmd 3 3 ns tdc(clk) Fall time, output cmd 3 3 ns HSSD5 td(CLKOH-CMD) Delay time, MMC1_clk rising clock edge to MMC1_cmd transition 3.72 14.11 4.13 34.53 ns HSSD6 td(CLKOH-DATx) Delay time, MMC1_clk rising clock edge to MMC1_dat[n:0](6) transition 3.72 14.11 4.13 34.53 ns tc(clk) Rise time, output clock 3 3 ns tW(clkH) Fall time, output clock 3 3 ns tW(clkL) Rise time, output cmd 3 3 ns tdc(clk) Fall time, output cmd 3 ns HSSD5 td(CLKOH-CMD) Delay time, MMC1_clk rising clock edge to MMC1_cmd transition 3.72 14.11 3 4.13 34.53 ns HSSD6 td(CLKOH-DATx) Delay time, MMC1_clk rising clock edge to MMC1_dat[n:0](6) transition 3.72 14.11 4.13 34.53 ns PRODUCT PREVIEW MMC1 Interface (3.0-V IO) (1) Related with the output clock maximum and minimum frequencies programmable in MMC module. (2) PO = output clock period in ns (3) The jitter probability density can be approximated by a Gaussian function. (4) The X parameter is defined as follows: CLKD X 1 or Even 0.5 Odd (trunk[CLKD/2]+1)/CLKD All required details about clock divison factor CLKD can be found in AM3715/03 TRM. (5) The Y parameter is defined as follows: CLKD Y 1 or Even 0.5 Odd (trunk[CLKD/2])/CLKD All required details about clock divison factor CLKD can be found in AM3715/03 TRM. (6) In MMC1_dat[n:0], n is equal to 3. (7) See DM Operating Condition Addendum for OPP voltages. Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 227 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com HSSD1 HSSD2 mmc1_clk HSSD3 HSSD4 mmc1_cmd HSSD7 HSSD8 mmc1_dat[3:0] SWPS038-094 Figure 5-60. MMC1 Interface—High-Speed SD Mode—Data/Command Receive HSSD1 HSSD2 mmc1_clk HSSD5 HSSD5 mmc1_cmd HSSD6 HSSD6 PRODUCT PREVIEW mmc1_dat[3:0] SWPS038-095 Figure 5-61. MMC1 Interface—High-Speed SD Mode—Data/Command Transmit 5.6.8.1.3 MMC1 Interface—Standard SD Mode Table 5-106 and Table 5-107 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-62 and Figure 5-63). Table 5-105. MMC1 Interface Timing Conditions—Standard SD Mode TIMING CONDITION PARAMETER VALUE UNIT Input Conditions tR Input signal rise time 10 ns tF Input signal fall time 10 ns 40 pF Output Condition CLOAD Output load capacitance(1) (1) Buffer strength configuration: SPEEDCTRL = 1. Table 5-106. MMC1 Interface Timing Requirements—Standard SD Mode(1) NO. PARAMETER OPP100 MIN MAX (2) (4) OPP50 MIN UNIT MAX MMC1 Interface (1.8-V IO) SD3 tsu(CMDV-CLKIH) Setup time, MMC1_cmd valid before MMC1_clk rising clock edge 3.3 21.9 ns SD4 th(CLKIH-CMDIV) Hold time, MMC1_cmd valid after MMC1_clk rising clock edge 18.1 36.7 ns SD7 tsu(DATxV-CLKIH) Setup time, MMC1_dat[n:0](3) valid before MMC1_clk rising clock edge 3.3 21.9 ns SD8 th(CLKIH-DATxIV) Hold time, MMC1_dat[n:0](3) valid after MMC1_clk rising clock edge 18.1 36.7 ns Setup time, MMC1_cmd valid before MMC1_clk rising clock edge 3.3 21.9 ns MMC1 Interface (3.0-V IO) SD3 228 tsu(CMDV-CLKIH) Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 5-106. MMC1 Interface Timing Requirements—Standard SD Mode(1) NO. PARAMETER (2) (4) OPP100 MIN (continued) OPP50 MAX MIN UNIT MAX SD4 th(CLKIH-CMDIV) Hold time, MMC1_cmd valid after MMC1_clk rising clock edge 18.1 36.7 ns SD7 tsu(DATxV-CLKIH) Setup time, MMC1_dat[n:0](3) valid before MMC1_clk rising clock edge 3.3 21.9 ns SD8 th(CLKIH-DATxIV) Hold time, MMC1_dat[n:0](3) valid after MMC1_clk rising clock edge 18.1 36.7 ns (1) Timing parameters are referred to output clock specified in Table 5-107. (2) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 5-107. (3) In MMC1_dat[n:0], n is equal to 3. (4) See DM Operating Condition Addendum for OPP voltages. Table 5-107. MMC1 Interface Switching Characteristics—Standard SD Mode(7) NO. PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX Standard SD Mode tc(clk) Frequency(1), output clock period SD2 tW(clkH) Typical pulse duration, output clock high SD2 24 tW(clkL) Typical pulse duration, output clock low tdc(clk) Duty cycle error, output clock tJ(clk) X(4)*PO(2) (5) 12 X(4)*PO(2) (2) (5) Y *PO MHz PRODUCT PREVIEW SD1 ns (2) Y *PO ns 2083.33 4166.67 ps Jitter standard deviation(3), output clock 200 200 ps tc(clk) Rise time, output clock 10 10 ns tW(clkH) Fall time, output clock 10 10 ns tW(clkL) Rise time, output cmd 10 10 ns tdc(clk) Fall time, output cmd 10 10 ns SD5 td(CLKOH-CMD) Delay time, MMC1_clk rising clock edge to MMC1_cmd transition 6.13 35.53 6.3 77.03 ns SD6 td(CLKOH-DATx) Delay time, MMC1_clk rising clock edge to MMC1_dat[n:0](6) transition 6.13 35.53 6.3 77.03 ns MMC1 Interface (1.8-V) MMC1 Interface (3.0-V) tc(clk) Rise time, output clock 10 10 ns tW(clkH) Fall time, output clock 10 10 ns tW(clkL) Rise time, output cmd 10 10 ns tdc(clk) Fall time, output cmd 10 10 ns SD5 td(CLKOH-CMD) Delay time, MMC1_clk rising clock edge to MMC1_cmd transition 6.13 35.53 6.3 77.03 ns SD6 td(CLKOH-DATx) Delay time, MMC1_clk rising clock edge to MMC1_dat[n:0](6) transition 6.13 35.53 6.3 77.03 ns (1) Related with the output clock maximum and minimum frequencies programmable in MMC module. (2) PO = output clock period in ns (3) The jitter probability density can be approximated by a Gaussian function. (4) The X parameter is defined as follows: CLKD X 1 or Even 0.5 Odd (trunk[CLKD/2]+1)/CLKD Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 229 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com All required details about clock divison factor CLKD can be found in AM3715/03 TRM. (5) The Y parameter is defined as follows: CLKD Y 1 or Even 0.5 Odd (trunk[CLKD/2])/CLKD All required details about clock divison factor CLKD can be found in AM3715/03 TRM. (6) In MMC1_dat[n:0], n is equal to 3. (7) See DM Operating Condition Addendum for OPP voltages. SD1 SD2 mmc1_clk SD3 SD4 mmc1_cmd SD7 SD8 mmc1_dat[n:0] SWPS038-098 PRODUCT PREVIEW Figure 5-62. MMC1 Interface—Standard SD Mode—Data/Command Receive SD1 SD2 mmc1_clk SD5 SD5 mmc1_cmd SD6 SD6 mmc1_dat[n:0] SWPS038-099 Figure 5-63. MMC1 Interface—Standard SD Mode—Data/Command Transmit 5.6.8.1.4 MMC1 Interface—Standard MMC and MMC Identification Modes Table 5-109 and Table 5-110 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-64 and Figure 5-65). 230 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 5-108. MMC1 Interface Timing Conditions—Standard MMC and MMC Identification Modes TIMING CONDITION PARAMETER VALUE UNIT Input Conditions tR Input signal rise time 3 ns tF Input signal fall time 3 ns 30 pF Output Conditions Output load capacitance(1) CLOAD (1) Buffer strength configuration: SPEEDCTRL = 1. Table 5-109. MMC1 Interface Timing Requirements—Standard MMC and MMC Identification Modes(2) (3) (4) NO. PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX MMC3 tsu(CMDV-CLKIH) Setup time, MMC1_cmd valid before MMC1_clk rising clock edge 13.6 55.1 ns MMC4 th(CLKIH-CMDIV) Hold time, MMC1_cmd valid after MMC1_clk rising clock edge 7.7 7.5 ns MMC7 tsu(DATxV-CLKIH) Setup time, MMC1_dat[n:0](1) valid before MMC1_clk rising clock edge 13.6 55.1 ns MMC8 th(CLKIH-DATxIV) Hold time, MMC1_dat[n:0](1) valid after MMC1_clk rising clock edge 7.7 7.5 ns PRODUCT PREVIEW MMC1 Interface (1.8-V IO) MMC1 Interface (3.0-V IO) MMC3 tsu(CMDV-CLKIH) Setup time, MMC1_cmd valid before MMC1_clk rising clock edge 13.6 55.1 ns MMC4 th(CLKIH-CMDIV) Hold time, MMC1_cmd valid after MMC1_clk rising clock edge 7.7 7.5 ns MMC7 tsu(DATxV-CLKIH) Setup time, MMC1_dat[n:0](1) valid before MMC1_clk rising clock edge 13.6 55.1 ns MMC8 th(CLKIH-DATxIV) Hold time, MMC1_dat[n:0](1) valid after MMC1_clk rising clock edge 7.7 7.5 ns (1) In MMC1_dat[n:0], n is equal to 3. (2) Timing parameters are referred to output clock specified in Table 5-110. (3) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 5-110. (4) See DM Operating Condition Addendum for OPP voltages. Table 5-110. MMC1 Interface Switching Characteristics—Standard MMC and MMC Identification Modes(7) NO. PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX MMC Identification Mode MMC1 1/tc(clk) Frequency(1), output clk period MMC2 tW(clkH) Typical pulse duration, output clk high X(5)*PO(2) X(5)*PO(2) ns MMC2 tW(clkL) Typical pulse duration, output clk low Y(6)*PO(2) Y(6)*PO(2) ns tdc(clk) Duty cycle error, output clk 125 125 ns tJ(clk) Jitter standard deviation(3), output clk 200 200 ps 12 MHz 0.4 0.4 MHz Standard MMC Identification Mode MMC1 tc(clk) Frequency(1), output clk period MMC2 tW(clkH) Typical pulse duration, output clk high X(5)*PO(2) X(5)*PO(2) ns MMC2 tW(clkL) Typical pulse duration, output clk low Y(6)*PO(2) Y(6)*PO(2) ns tdc(clk) Duty cycle error, output clk tJ(clk) 24 2083.3 4166.7 ps Jitter standard deviation , output clk 200 200 ps Rise time, output clk 10 10 ns (3) MMC1 Interface (1.8-V IO) tc(clk) Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 231 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 5-110. MMC1 Interface Switching Characteristics—Standard MMC and MMC Identification Modes(7) (continued) NO. PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX tW(clkH) Fall time, output clk 10 10 ns tW(clkL) Rise time, output data 10 10 ns tdc(clk) Fall time, output data 10 10 ns MMC5 td(CLKOH-CMD) Delay time, MMC1_clk rising clock edge to MMC1_cmd transition 4.1 37.6 4.3 79 ns MMC6 td(CLKOH-DATx) Delay time, MMC1_clk rising clock edge to MMC1_dat[n:0](4) transition 4.1 37.6 4.3 79 ns MMC1 Interface (3.0-V IO) tc(clk) Rise time, output clk 10 10 ns tW(clkH) Fall time, output clk 10 10 ns tW(clkL) Rise time, output data 10 10 ns PRODUCT PREVIEW tdc(clk) Fall time, output data 10 ns MMC5 td(CLKOH-CMD) Delay time, MMC1_clk rising clock edge to MMC1_cmd transition 4.1 37.6 10 4.3 79 ns MMC6 td(CLKOH-DATx) Delay time, MMC1_clk rising clock edge to MMC1_dat[n:0](4) transition 4.1 37.6 4.3 79 ns (1) Related with the output clock maximum and minimum frequencies programmable in MMC module. (2) PO = output clock period in ns (3) The jitter probability density can be approximated by a Gaussian function. (4) In MMC1_dat[n:0], n is equal to 3. (5) The X parameter is defined as follows: CLKD X 1 or Even 0.5 Odd (trunk[CLKD/2]+1)/CLKD All required details about clock divison factor CLKD can be found in AM3715/03 TRM. (6) The Y parameter is defined as follows: CLKD Y 1 or Even 0.5 Odd (trunk[CLKD/2])/CLKD All required details about clock divison factor CLKD can be found in AM3715/03 TRM. (7) See DM Operating Condition Addendum for OPP voltages. MMC1 MMC2 mmc1_clk MMC3 MMC4 mmc1_cmd MMC7 MMC8 mmc1_dat[3:0] SWPS038-102 Figure 5-64. MMC1 Interface—Standard MMC and MMC Identification Modes—Data/Command Receive Figure 5-65. MMC1 Interface—Standard MMC and MMC Identification Modes—Data/Command Transmit 232 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 5.6.8.1.5 MMC1 Interface—High-Speed MMC Mode Table 5-112 and Table 5-113 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-66 and Figure 5-67). Table 5-111. MMC1 Interface Timing Conditions—High-Speed MMC Mode TIMING CONDITION PARAMETER VALUE UNIT Input Conditions tR Input signal rise time 3 ns tF Input signal fall time 3 ns 30 pF Output Conditions Output load capacitance(1) CLOAD (1) The load setting of the IO buffer: SPEEDCTRL = 1. Table 5-112. MMC1 Interface Timing Requirements—High-Speed MMC Mode(2) (3) (4) NO. PARAMETER OPP100 MIN (5) OPP50 MAX MIN UNIT MAX MMC3 tsu(CMDV-CLKIH) Setup time, MMC1_cmd valid before MMC1_clk rising clock edge 5.6 26.0 ns MMC4 th(CLKIH-CMDIV) Hold time, MMC1_cmd valid after MMC1_clk rising clock edge 2.3 1.9 ns MMC7 tsu(DATxV-CLKIH) Setup time, MMC1_dat[n:0](1) valid before MMC1_clk rising clock edge 5.6 26.0 ns MMC8 th(CLKIH-DATxIV) Hold time, MMC1_dat[n:0](1) valid after MMC1_clk rising clock edge 2.3 1.9 ns PRODUCT PREVIEW MMC1 Interface (1.8-V IO) MMC1 Interface (3.0-V IO) MMC3 tsu(CMDV-CLKIH) Setup time, MMC1_cmd valid before MMC1_clk rising clock edge 5.6 26.0 ns MMC4 th(CLKIH-CMDIV) Hold time, MMC1_cmd valid after MMC1_clk rising clock edge 2.3 1.9 ns MMC7 tsu(DATxV-CLKIH) Setup time, MMC1_dat[n:0](1) valid before MMC1_clk rising clock edge 5.6 26.0 ns MMC8 th(CLKIH-DATxIV) Hold time, MMC1_dat[n:0](1) valid after MMC1_clk rising clock edge 2.3 1.9 ns (1) In MMC1_dat[n:0], n is equal to 3. (2) Timing parameters are referred to output clock specified in Table 5-113. (3) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 5-113. (4) Corresponding figures showing timing parameters are common with the Standard MMC mode figures. (5) See DM Operating Condition Addendum for OPP voltages. Table 5-113. MMC1 Interface Switching Characteristics—High-Speed MMC Mode(4) (8) NO. PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX MMC1 tc(clk) Frequency(1), output clk period MMC2 tW(clkH) Typical pulse duration, output clk high X(6)*PO(2) X(6)*PO(2) ns MMC2 tW(clkL) Typical pulse duration, output clk low Y(7)*PO(2) Y(7)*PO(2) ns tdc(clk) Duty cycle error, output clk tJ(clk) Jitter standard deviation(3), output clk 48 24 MHz 1041.7 2083.3 ps 200 200 ps MMC1 Interface (1.8-V IO) tc(clk) Rise time, output clk 3 3 ns tW(clkH) Fall time, output clk 3 3 ns tW(clkL) Rise time, output data 3 3 ns Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 233 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 5-113. MMC1 Interface Switching Characteristics—High-Speed MMC Mode(4) (8) (continued) NO. PARAMETER OPP100 OPP50 MIN MAX UNIT MIN MAX tdc(clk) Fall time, output data 3 ns MMC5 td(CLKOH-CMD) Delay time, MMC1_clk rising clock edge to MMC1_cmd transition 3.7 14.1 3 4.1 34.5 ns MMC6 td(CLKOH-DATx) Delay time, MMC1_clk rising clock edge to MMC1_dat[n:0](5) transition 3.7 14.1 4.1 34.5 ns MMC1 Interface (3.0-V IO) tc(clk) Rise time, output clk 3 3 ns tW(clkH) Fall time, output clk 3 3 ns tW(clkL) Rise time, output data 3 3 ns tdc(clk) Fall time, output data 3 3 ns MMC5 td(CLKOH-CMD) Delay time, MMC1_clk rising clock edge to MMC1_cmd transition 3.7 14.1 4.1 34.5 ns MMC6 td(CLKOH-DATx) Delay time, MMC1_clk rising clock edge to MMC1_dat[n:0](5) transition 3.7 14.1 4.1 34.5 ns (1) Related with the output clock maximum and minimum frequencies programmable in MMC module. (2) PO = output clock period in ns PRODUCT PREVIEW (3) The jitter probability density can be approximated by a Gaussian function. (4) Corresponding figures showing timing parameters are common with the Standard MMC mode figures. (5) In MMC1_dat[n:0], n is equal to 3. (6) The X parameter is defined as follows: CLKD X 1 or Even 0.5 Odd (trunk[CLKD/2]+1)/CLKD All required details about clock divison factor CLKD can be found in AM3715/03 TRM. (7) The Y parameter is defined as follows: CLKD Y 1 or Even 0.5 Odd (trunk[CLKD/2])/CLKD All required details about clock divison factor CLKD can be found in AM3715/03 TRM. (8) See DM Operating Condition Addendum for OPP voltages. 234 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 MMC1 MMC2 mmc1_clk MMC3 MMC4 mmc1_cmd MMC7 MMC8 mmc1_dat[3:0] SWPS038-100 Figure 5-66. MMC1 Interface—High-Speed MMC Mode—Data/Command Receive MMC1 MMC2 mmc1_clk MMC5 MMC5 mmc1_cmd MMC6 mmc1_dat[3:0] SWPS038-101 Figure 5-67. MMC1 Interface—High-Speed MMC Mode—Data/Command Transmit 5.6.8.1.6 MMC2 and MMC3 Interfaces—SDIO Identification Mode Table 5-115 and Table 5-116 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-89 and Figure 5-90). Table 5-114. MMC2 and MMC3 Interfaces Timing Conditions—SDIO Identification Mode TIMING CONDITION PARAMETER VALUE UNIT Input Conditions tR Input signal rise time 10 ns tF Input signal fall time 10 ns 5 pF Output Condition CLOAD Output load capacitance(1) (1) Buffer strength configuration: LB0 = 0 Table 5-115. MMC2 and MMC3 Interfaces Timing Requirements—SDIO Identification Mode(1)(2) NO. PARAMETER OPP100 MIN MAX OPP50 MIN UNIT MAX MMC2 and MMC3 Interface (1.8-V IO) SD3 tsu(CMDV-CLKIH) Setup time, MMCx_cmd valid before MMCx_clk rising clock edge 1198.4 1198.4 ns SD4 th(CLKIH-CMDIV) Hold time, MMCx_cmd valid after MMCx_clk rising clock edge 1249.2 1249.2 ns (1) See DM Operating Condition Addendum for OPP voltages. (2) In MMCx, x is equal to 2 or 3. Table 5-116. MMC2 and MMC3 Interfaces Switching Characteristics—SDIO Identification Mode(4)(7)(7) NO. PARAMETER OPP100 MIN MAX OPP50 MIN UNIT MAX Standard SDIO Mode Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 235 PRODUCT PREVIEW MMC6 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 5-116. MMC2 and MMC3 Interfaces Switching Characteristics—SDIO Identification Mode(4)(7)(7) (continued) NO. PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX SD1 tc(clk) Frequency(1), output clock period SD2 tW(clkH) Typical pulse duration, output clock high X(5) * PO(2) X(5) * PO(2) ns SD2 tW(clkL) Typical pulse duration, output clock low Y(6) * PO(2) Y(6) * PO(2) ns tdc(clk) Duty cycle error, output clock 125 125 ns tJ(clk) Jitter standard deviation(3), output clock 200 200 ps tc(clk) Rise time, output clock 10 10 ns tW(clkH) Fall time, output clock 10 10 ns tW(clkL) Rise time, output cmd 10 10 ns tdc(clk) Fall time, output cmd 10 10 ns td(CLKOH-CMD) Delay time, MMCx_clk rising clock edge to MMCx_cmd transition 77.03 ns SD5 0.4 6.3 0.4 2492.7 6.3 MHz (1) Related to the output MMCx_clk maximum and minimum frequency. (2) P = output MMCx_clk period in ns PRODUCT PREVIEW (3) The jitter probability density can be approximated by a Gaussian function. (4) Corresponding figures showing timing parameters are common with other interface modes (see SDIO, HS SDIO modes). (5) The X parameter is defined as follows: CLKD X 1 or Even 0.5 Odd (trunk[CLKD/2]+1)/CLKD All required details about clock divison factor CLKD can be found in AM3715/03 TRM. (6) The Y parameter is defined as follows: CLKD Y 1 or Even 0.5 Odd (trunk[CLKD/2])/CLKD All required details about clock divison factor CLKD can be found in AM3715/03 TRM. (7) In MMCx, x is equal to 2 or 3. 5.6.8.1.7 MMC2 and MMC3 Interfaces—High-Speed SDIO Mode Table 5-118 and Table 5-119 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-68 and Figure 5-69). Table 5-117. MMC2 and MMC3 Interfaces Timing Conditions—High-Speed SDIO Mode TIMING CONDITION PARAMETER VALUE UNIT MIN MAX Input Conditions tR Input signal rise time 0.18 5.69 ns tF Input signal fall time 0.19 5.70 ns Output Condition CLOAD 236 Output load capacitance(1) Timing Requirements and Switching Characteristics Submit Documentation Feedback 5 pF Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 (1) Buffer strength configuration for MMC2 and MMC3: LB0 = 0. Table 5-118. MMC2 and MMC3 Interfaces Timing Requirements—High-Speed SDIO Mode(2) NO. PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX HSSD3 tsu(dV-clkH) Setup time, MMCx_cmd valid before MMCx_clk rising clock edge 3.4 23.8 ns HSSD4 th(clkH-dV) Hold time, MMCx_cmd valid after MMCx_clk rising clock edge 1.7 1.3 ns HSSD7 tsu(dV-clkH) Setup time, MMCx_dat[n:0](1) valid before MMCx_clk rising clock edge 3.4 23.8 ns HSSD8 th(clkH-dV) Hold time, MMCx_dat[n:0](1) valid after MMCx_clk rising clock edge 1.7 1.3 ns (1) In MMCx_dat[n:0], n is equal to 3 for MMC2 and 7 for MMC3. (2) See DM Operating Condition Addendum for OPP voltages. Table 5-119. MMC2 and MMC3 Interfaces Switching Characteristics—High-Speed SDIO Mode(2) PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX HSSD1 tc(clk) Frequency(1), output MMCx_clk period HSSD2 tW(clkH) Typical pulse duration, output MMCx_clk high 0.5*P(3) 0.5*P(3) ns HSSD2 tW(clkL) Typical pulse duration, output MMCx_clk low 0.5*P(3) 0.5*P(3) ns tdc(clk) Duty cycle error, output MMCx_clk –1042 1042 –2083 2083 ps tJ(clk) Jitter standard deviation(4), output MMCx_clk –65 65 –65 65 ps HSSD5 td(clkL-doV) Delay time, MMCx_clk rising clock edge to MMCx_cmd transition 2.6 13.8 3 34.3 ns HSSD6 td(clkL-doV) Delay time, MMCx_clk rising clock edge to MMCx_dat[n:0](2) transition 2.6 13.8 3 34.3 ns 48 24 MHz (1) Related with the output MMCx_clk maximum and minimum frequency. (2) In MMCx, x = 2 or 3. In MMCx_dat[n:0], n is equal to 3 for MMC2 and 7 for MMC3. (3) P = output MMCx_clk period in ns. (4) The jitter probability density can be approximated by a Gaussian function. (5) See DM Operating Condition Addendum for OPP voltages. HSSD1 HSSD2 HSSD2 mmcx_clk HSSD3 HSSD4 mmcx_cmd HSSD7 HSSD8 mmcx_dat[n:0] SWPS038-096 Figure 5-68. MMC2 and MMC3 Interfaces—High-Speed SDIO Mode—Data/Command Receive(1) (1) In MMCx, x = 2 or 3. In MMCx_dat[n:0], n is equal to 3 for MMC2 and 7 for MMC3. Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 237 PRODUCT PREVIEW NO. (5) AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com HSSD1 HSSD2 HSSD2 mmcx_clk HSSD5 HSSD5 mmcx_cmd HSSD6 HSSD6 mmcx_dat[n:0] SWPS038-097 Figure 5-69. MMC2 and MMC3 Interfaces—High-Speed SDIO Mode—Data/Command Transmit(1) (1) In MMCx, x = 2 or 3. In MMCx_dat[n:0], n is equal to 3 for MMC2 and 7 for MMC3. 5.6.8.1.8 MMC2 and MMC3 Interfaces—Standard SDIO Mode Table 5-121 and Table 5-122 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-89 and Figure 5-90). Table 5-120. MMC2 and MMC3 Interfaces Timing Conditions—Standard SDIO Mode TIMING CONDITION PARAMETER VALUE UNIT PRODUCT PREVIEW Input Conditions tR Input signal rise time 10 ns tF Input signal fall time 10 ns 5 pF Output Condition Output load capacitance(1) CLOAD (1) Buffer strength configuration: SPEEDCTRL = 1 Table 5-121. MMC2 and MMC3 Interfaces Timing Requirements—Standard SDIO Mode(2)(3) NO. PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX MMC2 and MMC3 Interface (1.8-V IO) SD3 tsu(CMDV-CLKIH) Setup time, MMCx_cmd valid before MMCx_clk rising clock edge 3.3 21.9 ns SD4 th(CLKIH-CMDIV) Hold time, MMCx_cmd valid after MMCx_clk rising clock edge 18.1 36.7 ns SD7 tsu(DATxV-CLKIH) Setup time, MMCx_dat[n:0](1) valid before MMCx_clk rising clock edge 3.3 21.9 ns SD8 th(CLKIH-DATxIV) Hold time, MMCx_dat[n:0](1) valid after MMCx_clk rising clock edge 18.1 36.7 ns (1) In MMCx_dat[n:0], n is equal to 3 for MMC2 and 7 for MMC3. (2) See DM Operating Condition Addendum for OPP voltages. (3) In MMCx, x is equal to 2 or 3. Table 5-122. MMC2 and MMC3 Interfaces Switching Characteristics—Standard SDIO Mode(6)(7) NO. PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX Standard SDIO Mode SD1 tc(clk) Frequency(1), output clock period SD2 tW(clkH) Typical pulse duration, output clock high X(4) * PO(2) X(4) * PO(2) ns SD2 tW(clkL) Typical pulse duration, output clock low Y(5) * PO(2) Y(5) * PO(2) ns tdc(clk) Duty cycle error, output clock 238 24 Timing Requirements and Switching Characteristics Submit Documentation Feedback 2083.33 12 4166.67 MHz ps Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 5-122. MMC2 and MMC3 Interfaces Switching Characteristics—Standard SDIO Mode(6)(7) (continued) NO. PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX tJ(clk) Jitter standard deviation(3), output clock 200 200 ps tc(clk) Rise time, output clock 10 10 ns tW(clkH) Fall time, output clock 10 10 ns tW(clkL) Rise time, output cmd 10 10 ns tdc(clk) Fall time, output cmd 10 10 ns SD5 td(CLKOH-CMD) Delay time, MMCx_clk rising clock edge to MMCx_cmd transition 6.13 35.53 6.3 77.03 ns SD6 td(CLKOH-DATx) Delay time, MMCx_clk rising clock edge to MMCx_dat[n:0](6) transition 6.13 35.53 6.3 77.03 ns (1) Related to the output MMCx_clk maximum and minimum frequency. (2) P = output MMCx_clk period in ns (3) The jitter probability density can be approximated by a Gaussian function. (4) The X parameter is defined as follows: X 1 or Even 0.5 Odd (trunk[CLKD/2]+1)/CLKD PRODUCT PREVIEW CLKD All required details about clock divison factor CLKD can be found in AM3715/03 TRM. (5) The Y parameter is defined as follows: CLKD Y 1 or Even 0.5 Odd (trunk[CLKD/2])/CLKD All required details about clock divison factor CLKD can be found in AM3715/03 TRM. (6) In MMCx, x is equal to 2 or 3. In MMCx_dat[n :0] is equal to 3 for MMC2 and 7 for MMC3. (7) See DM Operating Condition Addendum for OPP voltages. SD1 SD2 mmc1_clk SD3 SD4 mmc1_cmd SD7 SD8 mmc1_dat[n:0] SWPS038-098 Figure 5-70. MMC2 and MMC3 Interfaces—Standard SDIO Mode—Data/Command Receive(1) (1) In MMCx, x is equal to 2 or 3. In MMCx_dat[n:0] is equal to 3 for MMC2 and 7 for MMC3. Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 239 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com SD1 SD2 mmc1_clk SD5 SD5 mmc1_cmd SD6 SD6 mmc1_dat[n:0] SWPS038-099 (1) Figure 5-71. MMC2 and MMC3 Interfaces—Standard SDIO Mode—Data/Command Transmit (1) In MMCx, x is equal to 2 or 3. In MMCx_dat[n:0] is equal to 3 for MMC2 and 7 for MMC3. 5.6.8.1.9 MMC2 and MMC3 Interfaces—Embedded Media Interface (eMMC)—High-Speed JC64 Mode Table 5-124 and Table 5-125 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-72 through Figure 5-73). Table 5-123. MMC2 and MMC3 Interfaces Timing Conditions—High-Speed JC64 Mode TIMING CONDITION PARAMETER VALUE UNIT PRODUCT PREVIEW MIN MAX Input Conditions tR Input signal rise time 0.38 3.82 ns tF Input signal fall time 0.39 3.68 ns Output Condition Output load capacitance(1) CLOAD 14 pF (1) Buffer strength configuration for MMC3: LB0 = 1. Table 5-124. MMC2 and MMC3 Interfaces Timing Requirements—High-Speed JC64 Mode(1) NO. PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX MMC3 tsu(cmdV-clkH) Setup time, input command MMCx_cmd valid before output clock MMCx_clk rising edge 5.1 25.5 ns MMC4 th(clkH-cmdIV) Hold time, input command MMCx_cmd valid after output clock MMCx_clk rising edge 1.3 0.9 ns MMC7 tsu(dV-clkH) Setup time, input data MMCx_dat[n:0] valid before output clock MMCx_clk rising edge 5.1 25.5 ns MMC8 th(clkH-dIV) Hold time, input data MMCx_dat[n:0] valid after output clock MMCx_clk rising edge 1.3 0.9 ns (1) In mmx_dat[n:0], x is equal to 2 or 3 and n is equal to 7. (2) In mmx_cmd, x is equal to 2 or 3. (3) In mmx_clk, x is equal to 2 or 3. Table 5-125. MMC2 and MMC3 Interfaces Switching Characteristics—High-Speed JC64 Mode(5) (6)(7) NO. PARAMETER OPP100 MIN MMC1 1/tc(clk) Frequency(1), output MMCx_clk period tW(clkH) Typical pulse duration, output MMCx_clk high 0.5*P tW(clkL) Typical pulse duration, output MMCx_clk low 0.5*P(2) tdc(clk) Duty cycle error, output MMCx_clk tJ(clk) Jitter standard deviation(3), output MMCx_clk tR(clk) Rising time, output MMCx_clk tF(clk) Falling time, output MMCx_clk UNIT MAX 48 MMC2 Timing Requirements and Switching Characteristics Submit Documentation Feedback MIN 24 (2) MMC2 240 OPP50 MAX MHz (2) ns 0.5*P(2) ns 0.5*P –1042 1042 –2083 2083 ps –65 65 –65 65 ps 2263 2263 ps 2136 2136 ps Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 5-125. MMC2 and MMC3 Interfaces Switching Characteristics—High-Speed JC64 Mode(5) (6)(7) (continued) NO. MMC5 MMC6 PARAMETER OPP100 OPP50 UNIT MIN MAX MIN MAX 3.6 16.8 4 37.2 ns td(clkL-doV) Delay time, MMCx_clk rising clock edge to MMCx_cmd transition tR(do) Rising time, output MMCx_cmd 2263 2263 ps tF(do) Falling time, output MMCx_cmd 2136 2136 ps td(clkL-doV) Delay time, MMCx_clk rising clock edge to MMCx_daty transition 37.2 ns tR(do) Rising time, output MMCx_dat[n:0](4) 2263 2263 ps tF(do) (4) 2136 2136 ps Falling time, output MMCx_dat[n:0] 3.6 16.8 4 (1) Related with the output clock maximum and minimum frequencies programmable in MMC module. (2) PO = output clock period in ns (3) The jitter probability density can be approximated by a Gaussian function. (4) In mmx_dat[n:0], x is equal to 2 or 3 and n is equal to 7. (5) See DM Operating Condition Addendum for OPP voltages. (7) In mmx_clk, x is equal to 2 or 3. MMC1 MMC2 MMC2 mmcx_clk MMC5 MMC5 mmcx_cmd MMC6 MMC6 mmcx_dat[n:0] SWPS038-104 Figure 5-72. MMC2 and MMC3 Interfaces—High-Speed JC64 Transmiter Mode(1)(2)(3) (1) In mmx_dat[n:0], x is equal to 2 or 3 and n is equal to 7. (2) In mmx_cmd, x is equal to 2 or 3. (3) In mmx_clk, x is equal to 2 or 3. MMC1 MMC2 MMC2 mmcx_clk MMC3 MMC4 mmcx_cmd MMC7 MMC8 mmcx_dat[n:0] SWPS038-105 (1)(2)(3) Figure 5-73. MMC2 and MMC3 Interfaces—High-Speed JC64 Receiver Mode (1) In mmx_dat[n:0], x is equal to 2 or 3 and n is equal to 7. (2) In mmx_cmd, x is equal to 2 or 3. (3) In mmx_clk, x is equal to 2 or 3. Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 241 PRODUCT PREVIEW (6) In mmx_cmd, x is equal to 2 or 3. AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 5.6.9 www.ti.com Embedded Media Interfaces 5.6.9.1 mmc3—High-Speed JC64 Mode Table 5-127 and Table 5-128 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-74 through Figure 5-75). Table 5-126. mmc3 Timing Conditions—High-Speed JC64 Mode TIMING CONDITION PARAMETER VALUE UNIT MIN MAX Input Conditions tR Input signal rise time 0.38 3.82 ns tF Input signal fall time 0.39 3.68 ns Output Condition Output load capacitance(1) CLOAD 12 pF (1) Buffer strength configuration for mmc3: LB0 = 1. Table 5-127. mmc3 Timing Requirements—High-Speed JC64 Mode(1) NO. PARAMETER OPP100 PRODUCT PREVIEW MIN OPP50 MAX MIN UNIT MAX MMC3 tsu(cmdV-clkH) Setup time, input command mmc3_cmd valid before output clock mmc3_clk rising edge 5.1 25.5 ns MMC4 th(clkH-cmdIV) Hold time, input command mmc3_cmd valid after output clock mmc3_clk rising edge 1.3 0.9 ns MMC7 tsu(dV-clkH) Setup time, input data mmc3_dat[n:0] valid before output clock mmc3_clk rising edge 5.1 25.5 ns MMC8 th(clkH-dIV) Hold time, input data mmc3_dat[n:0] valid after output clock mmc3_clk rising edge 1.3 0.9 ns (1) In mmc3_dat[n:0], n is equal to 7. Table 5-128. MMC3 Switching Characteristics—High-Speed JC64 Mode(5) NO. PARAMETER OPP100 MIN MMC1 1/tc(clk) Frequency(1), output mmc3_clk period MMC2 tW(clkH) Typical pulse duration, output mmc3_clk high MMC2 MMC5 MMC6 tW(clkL) Typical pulse duration, output mmc3_clk low tdc(clk) Duty cycle error, output mmc3_clk tJ(clk) Jitter standard deviation(3), output mmc3_clk tR(clk) Rising time, output mmc3_clk tF(clk) Falling time, output mmc3_clk td(clkL-doV) Delay time, mmc3_clk rising clock edge to mmc3_cmd transition tR(do) Rising time, output mmc3_cmd tF(do) Falling time, output mmc3_cmd td(clkL-doV) Delay time, mmc3_clk rising clock edge to mmc3_daty transition tR(do) Rising time, output mmc3_dat[n:0](4) tF(do) Falling time, output mmc3_dat[n:0](4) OPP50 MAX MIN UNIT MAX 48 24 MHz 0.5*P(2) 0.5*P(2) ns (2) (2) ns 0.5*P 0.5*P –1042 1042 –2083 2083 ps –65 65 –65 65 ps 2263 ps 2136 ps 37.2 ns 2263 2263 ps 2136 2136 ps 37.2 ns 2263 2263 ps 2136 2136 ps 2263 2136 3.6 3.6 16.8 16.8 4 4 (1) Related with the output clock maximum and minimum frequencies programmable in MMC module. (2) PO = output clock period in ns (3) The jitter probability density can be approximated by a Gaussian function. (4) In mmc3_dat[n:0], n is equal to 7. (5) See Operating Condition Addendum for OPP voltages. 242 Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 MMC1 MMC2 MMC2 mmcx_clk MMC5 MMC5 mmcx_cmd MMC6 MMC6 mmcx_dat[n:0] SWPS038-104 (1) In mmc3_dat[n:0], n is equal to 7. Figure 5-74. MMC3—High-Speed JC64 Transmiter Mode MMC1 MMC2 MMC2 mmcx_clk MMC4 mmcx_cmd MMC7 MMC8 mmcx_dat[n:0] SWPS038-105 (1) In mmc3_dat[n:0], n is equal to 7. Figure 5-75. MMC3—High-Speed JC64 Receiver Mode 5.6.10 Test Interfaces 5.6.10.1 Embedded Trace Macro Interface (ETM) Table 5-130 assumes testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-76). Table 5-129. ETM Timing Conditions—Transmit Mode TIMING CONDITION PARAMETER VALUE MIN UNIT MAX Output Condition Output load capacitance(1) CLOAD 10 pF (1) Buffer strength configuration: LB0 = 1. Table 5-130. ETM Switching Characteristics—Transmit Mode(4) NO. PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX TPIU1 1 / tc(clk) Frequency(3), output clock etk_clk TPIU2 tw(clkH) Pulse duration, output clock etk_clk high 0.5P(1) 0.5P(1) ns TPIU3 tw(clkL) Pulse duration, output clock etk_clk low 0.5P(1) 0.5P(1) ns tdc(clk) Duty cycle error, output clock etk_clk 301 ps tJ(clk) Jitter standard deviation(2), output clock etk_clk 65 65 ps tR(clk) Rise time, output clock etk_clk 1.2 1.2 ns tF(clk) Fall time, output clock etk_clk 1.2 1.2 ns Copyright © 2010, Texas Instruments Incorporated 166 –301 301 166 –301 Timing Requirements and Switching Characteristics Submit Documentation Feedback MHz 243 PRODUCT PREVIEW MMC3 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 5-130. ETM Switching Characteristics—Transmit Mode(4) (continued) NO. PARAMETER OPP100 MIN MAX OPP50 MIN UNIT MAX TPIU4 td(clk-ctl) Delay time, output clock etk_clk low/high to output control etk_ctl transition 0.839 0.839 ns TPIU5 td(clkH-d) Delay time, output clock etk_clk low/high to output data etk_d[15:0] transition 0.839 0.839 ns tR(d/ctl) Rise time, output data etk_d[15:0] and output control etk_ctl 1.2 1.2 ns tF(d/ctl) Fall time, output data etk_d[15:0] and output control etk_ctl 1.2 1.2 ns (1) P = etk_clk period in ns (2) The jitter probability density can be approximated by a Gaussian function. (3) Related with the etm_clk maximum frequency. (4) See Operating Condition Addendum for OPP voltages. TPIU1 TPIU2 TPIU3 PRODUCT PREVIEW etk_clk TPIU4 TPIU4 etk_ctl TPIU5 TPIU5 etk_d[15:0] SWPS038-106 Figure 5-76. ETM—Transmit Mode 5.6.10.2 System Debug Trace Interface (SDTI) The System Debug Trace Interface (SDTI) module provides real-time software tracing functionality to AM3715/03 device. The trace interface has four trace data pins and a trace clock pin. This interface is a dual-edge interface: • The data are available on rising and falling edge of sdti_clk. • But can be also configured in single-edge mode where data are available on the falling edge of sdti_clk. Serial interface operates in clock stop regime: serial clock is not free-running; when there is no trace data, there is no trace clock. 5.6.10.2.1 SDTI—Dual-Edge Mode Table 5-132 assumes testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-77). Table 5-131. SDTI Timing Conditions—Dual-Edge Mode TIMING CONDITION PARAMETER VALUE UNIT 25 pF Output Condition CLOAD 244 Output load capacitance(1) Timing Requirements and Switching Characteristics Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 (1) Buffer strength configuration: LB0 = 1. Table 5-132. SDTI Switching Characteristics—Dual-Edge Mode(2) NO. PARAMETER OPP100 MIN MAX 0.5P(1) – 1.2 Multiplexing mode on etk pins Multiplexing mode on jtag_emu pins SD1 1 / tc(clk) Frequency, output clock sdti_clk SD2 tw(clk) Pulse duration, output clock sdti_clk high or low SD3 td(clk-txd) Delay time, output clock sdti_clk transition to output data sdti_txd[3:0] transition OPP50 UNIT MIN MAX 34.5 MHz 0.5P(1) + 1.2 0.5P(1) – 1.2 0.5P(1) + 1.2 ns 2.3 10.9 2.3 10.9 ns 2.3 13.9 2.3 13.9 34.5 (1) P = sdti_clk clock period in ns (2) See Operating Condition Addendum for OPP voltages. SD1 SD2 sdti_clk sdti_txd[3:0] Header Header SD3 Ad[7:4] Ad[3:0] Da[15:12] Da[7:4] Da[11:8] Da[3:0] SWPS038-107 Figure 5-77. SDTI—Dual-Edge Mode 5.6.10.2.2 SDTI—Single-Edge Mode Table 5-134 assumes testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-78). Table 5-133. SDTI Timing Conditions—Single-Edge Mode TIMING CONDITION PARAMETER VALUE UNIT 25 pF Output Condition CLOAD Output load capacitance(1) (1) Buffer strength configuration: LB0 = 1. Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 245 PRODUCT PREVIEW SD3 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com Table 5-134. SDTI Switching Characteristics—Single-Edge Mode(2) NO. PARAMETER OPP100 OPP50 MIN MAX 0.5P(1) – 1.2 Multiplexing mode on etk pins Multiplexing mode on jtag_emu pins SD1 1 / tc(clk) Frequency, output clock sdti_clk SD2 tw(clk) Pulse duration, output clock sdti_clk high or low SD3 td(clk-txd) Delay time, output clock sdti_clk transition to output data sdti_txd[3:0] transition UNIT MIN MAX 34.5 MHz 0.5P(1) + 1.2 0.5P(1) – 1.2 0.5P(1) + 1.2 ns 2.3 26.5 2.3 26.5 ns 2.3 33.2 2.3 33.2 34.5 (1) P = sdti_clk clock period in ns (2) See Operating Condition Addendum for OPP voltages. SD1 SD2 sdti_clk SD3 sdti_txd[3:0] Header SD3 Header Ad[7:4] Ad[3:0] Da[15:12] Da[11:8] Da[7:4] Da[3:0] SWPS038-108 PRODUCT PREVIEW Figure 5-78. SDTI—Single-Edge Mode 5.6.10.3 JTAG Interface (JTAG) The JTAG TAP controller handles standard IEEE JTAG interfaces. The following section defines the timing requirements for several tools used to test the AM3715/03 as: • Free-running clock tool, like XDS560 and XDS510 tools • Adaptive clock tool, like RealView® ICE tool and LauterbachTM tool 5.6.10.3.1 JTAG—Free-Running Clock Mode Table 5-136 and Table 5-137 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-79). Table 5-135. JTAG Timing Conditions—Free-Running Clock Mode TIMING CONDITION PARAMETER VALUE UNIT Input Conditions tR Input signal rise time 5 ns tF Input signal fall time 5 ns 30 pF Output Condition CLOAD Output load capacitance Table 5-136. JTAG Timing Requirements—Free-Running Clock Mode(5) (6) NO. PARAMETER OPP100 MIN JT4 Frequency(1), input clock jtag_tck tw(tckL) Pulse duration, input clock jtag_tck low 0.5P tw(tckH) Pulse duration, input clock jtag_tck high 0.5P(2) tdc(tck) Duty cycle error, input clock jtag_tck tJ(tck) Cycle jitter , input clock jtag_tck tsu(tdiV-rtckH) Setup time, input data jtag_tdi valid before output clock jtag_rtck high Timing Requirements and Switching Characteristics Submit Documentation Feedback UNIT MAX 50 JT6 (3) MIN 50 (2) JT5 JT7 246 1 / tc(tck) OPP50 MAX MHz (2) ns 0.5P(2) ns 0.5P –1250 1250 –1667 1667 ps –1250 1250 –1667 1667 ps 1.6 1.6 ns Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Table 5-136. JTAG Timing Requirements—Free-Running Clock Mode(5) (6) (continued) NO. PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX JT8 th(tdiV-rtckH) Hold time, input data jtag_tdi valid after output clock jtag_rtck high 0.7 1.0 ns JT9 tsu(tmsV-rtckH) Setup time, input mode select jtag_tms_tmsc valid before output clock jtag_rtck high 1.6 1.6 ns JT10 th(tmsV-rtckH) Hold time, input mode select jtag_tms_tmsc valid after output clock jtag_rtck high 0.7 1.0 ns JT12 tsu(emuxV-rtckH) Setup time, input emulation jtag_emux(4) valid before output clock jtag_rtck high 14.4 19.6 ns JT13 th(emuxV-rtckH) Hold time, input emulation jtag_emux(4) valid after output clock jtag_rtck high 2.0 2.7 ns (1) Related with the input maximum frequency supported by the JTAG module. (2) P = input clock jtag _tck period in ns (3) Maximum cycle jitter supported by input clock jtag _tck. (4) In jtag_emux, x is equal to 0 or 1. (5) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified. Table 5-137. JTAG Switching Characteristics—Free-Running Clock Mode(5) NO. PARAMETER OPP100 MIN JT1 1 / tc(rtck) Frequency(1), output clock jtag_rtck tw(rtckL) Pulse duration, output clock jtag_rtck low 0.5P tw(rtckH) Pulse duration, output clock jtag_rtck high 0.5P(2) tdc(rtck) Duty cycle error, output clock jtag_rtck –1250 (3) 50 MHz (2) ns 0.5P(2) ns 0.5P 1250 UNIT MAX 50 JT3 JT14 MIN (2) JT2 JT11 OPP50 MAX –1667 1667 ps tJ(rtck) Jitter standard deviation , output clock jtag_rtck 33.3 33.3 ps tR(rtck) Rise time, output clock jtag_rtck 0 0 ns tF(rtck) Fall time, output clock jtag_rtck 0 0 ns td(rtckL-tdoV) Delay time, output clock jtag_rtck low to output data jtag_tdo valid 7.9 ns tR(tdo) Rise time, output data jtag_tdo 0 0 ns tF(tdo) Fall time, output data jtag_tdo 0 0 ns td(rtckH-emuxV) Delay time, output clock jtag_rtck high to output emulation ,jtag_emux(4) valid 20.4 ns –5.8 2.7 5.8 15.1 –7.9 2.7 (1) Related with the jtag_rtck maximum frequency. (2) P = output clock jtag _rtck period in ns (3) The jitter probability density can be approximated by a Gaussian function. (4) In jtag_emux, x is equal to 0 or 1. (5) See Operating Condition Addendum for OPP voltages. Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 247 PRODUCT PREVIEW (6) See Operating Condition Addendum for OPP voltages. AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com JT4 JT5 JT6 jtag_tck JT1 JT2 JT3 jtag_rtck JT7 JT8 JT9 JT10 jtag_tdi jtag_tms_tmsc JT12 JT13 jtag_emux(IN) JT11 jtag_tdo JT14 jtag_emux(OUT) SWPS038-109 (1) In jtag_emux, x is equal to 0 or 1. Figure 5-79. JTAG—Free-Running Clock Mode PRODUCT PREVIEW 5.6.10.3.2 JTAG—Adaptative Clock Mode Table 5-139 and Table 5-140 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-80). Table 5-138. JTAG Timing Conditions—Adaptative Clock Mode TIMING CONDITION PARAMETER VALUE UNIT Input Conditions tR Input signal rise time 5 ns tF Input signal fall time 5 ns 30 pF Output Condition CLOAD Output load capacitance Table 5-139. JTAG Timing Requirements—Adaptative Clock Mode(4) (5) NO. PARAMETER OPP100 MIN JA4 1 / tc(tck) Frequency(1), input clock jtag_tck JA5 tw(tckL) Pulse duration, input clock jtag_tck low JA6 OPP50 MAX MIN UNIT MAX 50 50 MHz 0.5P(2) 0.5P(2) ns (2) (2) ns tw(tckH) Pulse duration, input clock jtag_tck high tdc(lclk) Duty cycle error, input clock jtag_tck –2500 2500 –2500 2500 ps tJ(lclk) Cycle jitter(3), input clock jtag_tck –1500 1500 –1500 1500 ps JA7 tsu(tdiV-tckH) Setup time, input data jtag_tdi valid before input clock jtag_tck high 13.8 13.8 ns JA8 th(tdiV-tckH) Hold time, input data jtag_tdi valid after input clock jtag_tck high 13.8 13.8 ns JA9 tsu(tmsV-tckH) Setup time, input mode select jtag_tms_tmsc valid before input clock jtag_tck high 13.8 13.8 ns JA10 th(tmsV-tckH) Hold time, input mode select jtag_tms_tmsc valid after input clock jtag_tck high 13.8 13.8 ns 248 Timing Requirements and Switching Characteristics Submit Documentation Feedback 0.5P 0.5P Copyright © 2010, Texas Instruments Incorporated AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 (1) Related with the input maximum frequency supported by the JTAG module (2) P = input clock jtag _tck period in ns (3) Maximum cycle jitter supported by input clock jtag _tck. (4) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified. (5) See Operating Condition Addendum for OPP voltages. Table 5-140. JTAG Switching Characteristics—Adaptative Clock Mode(4) NO. PARAMETER OPP100 MIN OPP50 MAX MIN UNIT MAX JA1 1 / tc(rtck) Frequency(1), output clock jtag_rtck JA2 tw(rtckL) Pulse duration, output clock jtag_rtck low 0.5P(2) 0.5P(2) ns JA3 tw(rtckH) Pulse duration, output clock jtag_rtck high 0.5P(2) 0.5P(2) ns tdc(rtck) Duty cycle error, output clock jtag_rtck tJ(rtck) Jitter standard deviation(3), output clock jtag_rtck tR(rtck) JA11 50 –2500 50 2500 2500 ps 33.3 33.3 ps Rise time, output clock jtag_rtck 0 0 ns tF(rtck) Fall time, output clock jtag_rtck 0 0 ns td(rtckL-tdoV) Delay time, output clock jtag_rtck low to output data jtag_tdo valid 14.6 ns –14.6 14.6 –2500 MHz –14.6 PRODUCT PREVIEW (1) Related with the jtag _rtck maximum frequency programmable. (2) P = output clock jtag _rtck period in ns (3) The jitter probability density can be approximated by a Gaussian function. (4) See Operating Condition Addendum for OPP voltages. JA4 JA5 JA6 jtag_tck JA7 JA8 JA9 JA10 jtag_tdi jtag_tms JA1 JA2 JA3 jtag_rtck JA11 jtag_tdo SWPS038-110 Figure 5-80. JTAG—Adaptative Clock Mode Copyright © 2010, Texas Instruments Incorporated Timing Requirements and Switching Characteristics Submit Documentation Feedback 249 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 www.ti.com 6 Package Characteristics 6.1 Package Thermal Characteristics Table 6-1 and Table 6-2 provide the thermal resistance characteristics for the packages used on this device. Note: This table provides simulation data and may not represent actual use-case values. Table 6-1. Thermal Resistance Characteristics 800MHz ARM Operation-4Gb DDR + Flash PACKAGE Power (W)(5) qJA(°C/W)(2) qJB(°C/W)(3) qJC(°C/W)(4) BOARD TYPE CBP Package 1.42 20.06 6.44 (6) 2S2P(1) 2S2P(1) 2S2P(1) CBC Package 1.42 19.97 7.76 (6) CUS Package 1.42 24.75 11.06 7.06 (1) The board types are defined by JEDEC (reference JEDEC standard JESD51-9, Test Board for Array Surface Mount Package Thermal Measurements). (2) qJA (Theta-JA) = Thermal Resistance Junction-to-Ambient, °C/W (3) qJB (Theta-JB) = Thermal Resistance Junction-to-Board, °C/W (4) qJC (Theta-JC) = Thermal Resistance Junction-to-Board, °C/W PRODUCT PREVIEW (5) These power numbers are based on simulation results. Power numbers for CBP and CBC packages include the 37x device and POP memory. CUS package is 37x only. (6) Not applicable since these packages have memory package mounted on top. Table 6-2. Thermal Resistance Characteristics 1GHz ARM Operation-8Gb DDR PACKAGE Power (W)(5) qJA(°C/W)(2) qJB(°C/W)(3) qJC(°C/W)(4) BOARD TYPE CBP Package 2.06 19.51 6.19 (6) 2S2P(1) 2S2P(1) 2S2P(1) CBC Package 2.06 20.11 8.01 (6) CUS Package 2.06 24.75 11.06 7.06 (1) The board types are defined by JEDEC (reference JEDEC standard JESD51-9, Test Board for Array Surface Mount Package Thermal Measurements). (2) qJA (Theta-JA) = Thermal Resistance Junction-to-Ambient, °C/W (3) qJB (Theta-JB) = Thermal Resistance Junction-to-Board, °C/W (4) qJC (Theta-JC) = Thermal Resistance Junction-to-Board, °C/W (5) These power numbers are based on simulation results. Power numbers for CBP and CBC packages include the 37x device and POP memory. CUS package is 37x only. (6) Not applicable since these packages have memory package mounted on top. 6.2 6.2.1 Device Support Device and Development-Support Tool Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all 37x processors and support tools. Each device has one of three prefixes: X, P, or null (no prefix). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMDX) through fully qualified production devices/tools (TMDS). Device development evolutionary flow: 250 X Experimental device that is not necessarily representative of the final devices electrical specifications and may not use production assembly flow. (TMX definition) P Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical specifications. (TMP definition) null Production version of the silicon die that is fully qualified. (TMS definition) Package Characteristics Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback AM3715/03 www.ti.com SPRS616B – JUNE 2010 – REVISED JULY 2010 Support tool development evolutionary flow: TMDX Development support product that has not yet completed Texas Instruments internal qualification testing. TMDS Fully qualified development support product. TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer: Developmental product is intended for internal evaluation purposes. Production devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TIs standard warranty applies. Predictions show that prototype devices (X or P), have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. For additional description of the device nomenclature markings, see the Processor Silicon Errata. PREFIX X = Experimental Device P = Prototype Device blank = Production Device DEVICE SILICON REVISION AM3715 ( ) CBP ( ) ( ) ( ) blank = 800 MHz Cortex-A8 100 = 1GHz Cortex-A8 PRODUCT PREVIEW X blank = tray R = tape and reel blank = commercial temperature A = extended temperature PACKAGE TYPE CBP = 515-pin sPBGA CBC = 515-pin sPBGA CUS = 423-pin sPBGA Figure 6-1. Device Nomenclature Package Characteristics Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback 251 AM3715/03 SPRS616B – JUNE 2010 – REVISED JULY 2010 Mechanical Data 252 Package Characteristics PRODUCT PREVIEW 6.3 www.ti.com Copyright © 2010, Texas Instruments Incorporated Submit Documentation Feedback PACKAGE OPTION ADDENDUM www.ti.com 1-Jul-2010 PACKAGING INFORMATION Orderable Device XAM3715CBC Status (1) ACTIVE Package Type Package Drawing POP-FCBGA CBC Pins Package Qty Eco Plan 515 TBD (2) Lead/ Ball Finish Call TI MSL Peak Temp (3) Samples (Requires Login) Call TI Purchase Samples (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DLP® Products www.dlp.com Communications and Telecom www.ti.com/communications DSP dsp.ti.com Computers and Peripherals www.ti.com/computers Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps Interface interface.ti.com Energy www.ti.com/energy Logic logic.ti.com Industrial www.ti.com/industrial Power Mgmt power.ti.com Medical www.ti.com/medical Microcontrollers microcontroller.ti.com Security www.ti.com/security RFID www.ti-rfid.com Space, Avionics & Defense www.ti.com/space-avionics-defense RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video Wireless www.ti.com/wireless-apps Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated