CD74HC4051-Q1 ANALOG MULTIPLEXER/DEMULTIPLEXER SCLS552A − DECEMBER 2003 − REVISED APRIL 2008 D Qualified for Automotive Applications D Wide Analog Input Voltage Range of D D Operation Control Voltage = 2 V to 6 V D Switch Voltage = 0 V to 10 V D High Noise Immunity NIL = 30%, NIH = 30% ±5 V Max Low ON Resistance − 70 Ω Typical (VCC − VEE = 4.5 V) − 40 Ω Typical (VCC − VEE = 9 V) of VCC, VCC = 5 V M OR PW PACKAGE (TOP VIEW) D Low Crosstalk Between Switches D Fast Switching and Propagation Speeds D Break-Before-Make Switching CHANNEL I/O A4 CHANNEL I/O A6 COM OUT/IN A CHANNEL I/O A7 CHANNEL I/O A5 E VEE GND description/ordering information This device is a digitally controlled analog switch that utilizes silicon-gate CMOS technology to achieve operating speeds similar to LSTTL, with the low power consumption of standard CMOS integrated circuits. 1 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9 VCC CHANNEL I/O A2 CHANNEL I/O A1 CHANNEL I/O A0 CHANNEL I/O A3 ADDRESS SEL S0 ADDRESS SEL S1 ADDRESS SEL S2 This analog multiplexer/demultiplexer controls analog voltages that may vary across the voltage supply range (i.e., VCC to VEE). These bidirectional switches allow any analog input to be used as an output and vice versa. The switches have low ON resistance and low OFF leakages. In addition, the device has an enable control (E) that, when high, disables all switches to their OFF state. ORDERING INFORMATION{ −40°C 40°C to 125°C ORDERABLE PART NUMBER PACKAGE‡ TA TOP-SIDE MARKING SOIC − M Tape and reel CD74HC4051QM96Q1 HC4051Q TSSOP − PW Tape and reel CD74HC4051QPWRQ1 HJ4051Q † For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at http://www.ti.com. ‡ Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2008, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 CD74HC4051-Q1 ANALOG MULTIPLEXER/DEMULTIPLEXER SCLS552A − DECEMBER 2003 − REVISED APRIL 2008 FUNCTION TABLE INPUTS S0 ON CHANNEL(S) L L A0 L H A1 H L A2 H H A3 L L A4 L H A5 H H L A6 L H H H A7 H X X X None E S2 S1 L L L L L L L L L H L H L X = Don’t care logic diagram (positive logic) CHANNEL I/O VCC A7 A6 A5 A4 A3 A2 A1 A0 16 4 2 5 1 12 15 14 13 TG TG S0 11 TG Logic Level Conversion S2 TG Binary To 1 of 8 Decoder With Enable S1 10 9 3 TG TG TG E 6 TG 2 8 7 GND VEE POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 COM OUT/IN A CD74HC4051-Q1 ANALOG MULTIPLEXER/DEMULTIPLEXER SCLS552A − DECEMBER 2003 − REVISED APRIL 2008 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage range, VCC − VEE (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 10.5 V Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V Supply voltage range, VEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +0.5 V to −7 V Input clamp current, IIK (VI < −0.5 V or VI > VCC + 0.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA Output clamp current, IOK (VO < VEE − 0.5 V or VO > VCC + 0.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA Switch current (VI > VEE − 0.5 V or VI < VCC + 0.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±25 mA Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA VEE current, IEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −20 mA Package thermal impedance, θJA (see Note 2): M package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73°C/W PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108°C/W Maximum junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C Lead temperature (during soldering): At distance 1/16 ± 1/32 inch (1,59 ± 0,79 mm) from case for 10 s max . . . . . . . . . . . . . . . . . . . . . . . 300°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltages referenced to GND unless otherwise specified. 2. The package thermal impedance is calculated in accordance with JESD 51-7. recommended operating conditions (see Note 3) MIN VCC MAX UNIT Supply voltage (see Note 4) 2 6 V Supply voltage, VCC − VEE (see Figure 1) 2 10 V VEE Supply voltage, (see Note 4 and Figure 2) 0 −6 V VIH High-level High level input voltage VCC = 2 V VCC = 4.5 V VCC = 6 V 1.5 3.15 VCC = 2 V VIL 0.5 VCC = 4.5 V Low-level Low level input voltage 1.35 VCC = 6 V VI Input control voltage VIS Analog switch I/O voltage tt Input transition (rise and fall) time TA Operating free-air temperature V 4.2 V 1.8 0 VCC V VEE VCC V VCC = 2 V 0 1000 VCC = 4.5 V 0 500 VCC = 6 V 0 400 −40 125 ns °C NOTES: 3. All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. 4. In certain applications, the external load resistor current may include both VCC and signal-line components. To avoid drawing VCC current when switch current flows into the transmission gate inputs, the voltage drop across the bidirectional switch must not exceed 0.6 V (calculated from ron values shown in electrical characteristics table). No VCC current flows through RL if the switch current flows into the COM OUT/IN A terminal. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 CD74HC4051-Q1 ANALOG MULTIPLEXER/DEMULTIPLEXER SCLS552A − DECEMBER 2003 − REVISED APRIL 2008 recommended operating area as a function of supply voltages 8 (VCC − GND) − V (VCC − GND) − V 8 6 HCT HC 4 2 0 0 2 4 6 8 10 6 HCT HC 4 2 0 12 0 −2 (VCC − VEE) − V −4 −6 −8 (VEE − GND) − V Figure 1 Figure 2 electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VEE MIN VIS = VCC or VEE ron IO = 1 mA, VI = VIH or VIL, See Figure 8 VIS = VCC to VEE ∆ron IIZ IIL ICC 4 Between any two channels For switch OFF: When VIS = VCC, VOS = VEE; When VIS = VEE, VOS = VCC For switch ON: All applicable combinations of VIS and VOS voltage levels, VI = VIH or VIL TYP MAX MIN 0V 4.5 V 70 160 240 0V 6V 60 140 210 −4.5 V 4.5 V 40 120 180 0V 4.5 V 90 180 270 0V 6V 80 160 240 −4.5 V 4.5 V 45 130 195 0V 4.5 V 10 0V 6V 8.5 −4.5 V 4.5 V 0V 6V Ω Ω 5 ±0.2 ±2 A µA −5 V 5V ±0.4 ±4 0V 6V ±0.1 ±1 0V 6V 8 160 When VIS = VCC, VOS = VEE −5 V 5V 16 320 POST OFFICE BOX 655303 UNIT MAX When VIS = VEE, VOS = VCC VI = VCC or GND IO = 0, VI = VCC or GND TA = −40°C TO 125°C TA = 25°C VCC µA µA • DALLAS, TEXAS 75265 CD74HC4051-Q1 ANALOG MULTIPLEXER/DEMULTIPLEXER SCLS552A − DECEMBER 2003 − REVISED APRIL 2008 switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 7) PARAMETER FROM (INPUT) TO (OUTPUT) LOAD CAPACITANCE VEE MIN CL = 15 pF tpd IN OUT CL = 50 pF 5V 0V −4.5 V ten OUT CL = 50 pF −4.5 V tdis OUT CL = 50 pF −4.5 V CI Control 4 ns 90 18 6V 10 15 8 12 2V 225 340 4.5 V 45 68 6V 38 57 4.5 V 32 48 2V 225 340 4.5 V 45 68 6V 38 57 4.5 V 32 48 10 10 4.5 V CL = 50 pF UNIT MAX 12 5V 0V MIN 60 CL = 15 pF ADDRESS SEL or E MAX 2V 5V 0V TYP 4.5 V CL = 15 pF ADDRESS SEL or E TA = −40°C TO 125°C TA = 25°C VCC ns 19 ns 19 ns pF operating characteristics, VCC = 5 V, TA = 25°C, Input tr, tf = 6 ns PARAMETER Cpd TYP Power dissipation capacitance (see Note 5) 50 UNIT pF NOTE 5: Cpd is used to determine the dynamic power consumption, per package. PD = Cpd VCC2 fI + Σ (CL + CS) VCC2 fO fO = output frequency fI = input frequency CL = output load capacitance CS = switch capacitance VCC = supply voltage POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 CD74HC4051-Q1 ANALOG MULTIPLEXER/DEMULTIPLEXER SCLS552A − DECEMBER 2003 − REVISED APRIL 2008 analog channel characteristics, TA = 25°C PARAMETER TEST CONDITIONS CI Switch input capacitance CCOM Common output capacitance fmax VEE Minimum switch frequency response at −3 dB See Figure 3 and Figure 9, and Notes 6 and 7 Sine wave distortion Sine-wave See Figure 4 E or ADDRESS SEL to switch feed-through noise See Figure 5, 5 and Notes 7 and 8 Switch OFF signal feed through See Figure 6 and Figure 10, and Notes 7 and 8 VCC MIN TYP MAX UNIT 5 pF 25 pF −2.25 V 2.25 V 145 −4.5 V 4.5 V 180 −2.25 V 2.25 V 0.035 −4.5 V 4.5 V 0.018 −2.25 V 2.25 V (TBD) −4.5 V 4.5 V (TBD) −2.25 V 2.25 V −73 −4.5 V 4.5 V −75 MHz % mV dB NOTES: 6. Adjust input voltage to obtain 0 dBm at VOS for fIN = 1 MHz. 7. VIS is centered at (VCC − VEE)/2. 8. Adjust input for 0 dBm. PARAMETER MEASUREMENT INFORMATION VCC VIS 0.1 mF VCC VOS Switch ON 50Ω 10 pF dB Meter Sine Wave 10 mF VIS Switch ON VIS VI = VIH VOS 10 kΩ 50 pF Distortion Meter VCC/2 VCC/2 fIS = 1 kHz to 10 kHz Figure 3. Frequency-Response Test Circuit 6 POST OFFICE BOX 655303 Figure 4. Sine-Wave Distortion Test Circuit • DALLAS, TEXAS 75265 CD74HC4051-Q1 ANALOG MULTIPLEXER/DEMULTIPLEXER SCLS552A − DECEMBER 2003 − REVISED APRIL 2008 PARAMETER MEASUREMENT INFORMATION E VCC 600 W VCC/2 Switch Alternating ON and OFF tr, tf ≤ 6 ns fCONT = 1 MHz 50% Duty Cycle VCC 0.1µF VOS Switch OFF VIS 600 W fIS ≥ 1-MHz Sine Wave R = 50 Ω C = 10 pF VP−P VOS 50 pF Scope VC = VIL R R VCC/2 VCC/2 VOS C dB Meter VCC/2 Figure 5. Control to Switch Feedthrough Noise Test Circuit POST OFFICE BOX 655303 Figure 6. Switch OFF Signal Feedthrough Test Circuit • DALLAS, TEXAS 75265 7 CD74HC4051-Q1 ANALOG MULTIPLEXER/DEMULTIPLEXER SCLS552A − DECEMBER 2003 − REVISED APRIL 2008 PARAMETER MEASUREMENT INFORMATION VCC Test Point From Output Under Test PARAMETER S1 S2 tPZH Open Closed tPZL Closed Open tPHZ Open Closed tPLZ Closed Open tpd Open Open Output Control 50% VCC S1 ten RL = 1 kΩ tdis CL (see Note A) S2 VEE LOAD CIRCUIT VCC Input 50% VCC 50% VCC VEE tPLH In-Phase Output 50% 10% 90% tPHL 90% 0V tPHL 90% tr Out-of-Phase Output VCC 50% VCC tPZL VOH 50% VCC 10% VOL tf 50% VCC 10% tf 50% 10% 90% tr VOLTAGE WAVEFORMS PROPAGATION DELAY AND OUTPUT TRANSITION TIMES 50% VCC tPZH VOH VOL ≈VCC Output Waveform 1 (see Note B) tPLH tPLZ Output Waveform 2 (see Note B) 10% VOL tPHZ 50% VCC 90% VOH ≈0 V VOLTAGE WAVEFORMS OUTPUT ENABLE AND DISABLE TIMES NOTES: A. CL includes probe and test-fixture capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, ZO = 50 Ω, tr = 6 ns, tf = 6 ns. D. For clock inputs, fmax is measured with the input duty cycle at 50%. E. The outputs are measured one at a time with one input transition per measurement. F. tPLZ and tPHZ are the same as tdis. G. tPZL and tPZH are the same as ten. H. tPLH and tPHL are the same as tpd. Figure 7. Load Circuit and Voltage Waveforms 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 CD74HC4051-Q1 ANALOG MULTIPLEXER/DEMULTIPLEXER SCLS552A − DECEMBER 2003 − REVISED APRIL 2008 TYPICAL CHARACTERISTICS 120 ON Resistance − Ω 100 80 VCC − VEE = 4.5 V 60 VCC − VEE = 6 V 40 VCC − VEE = 9 V 20 1 2 3 4 5 6 Input Signal Voltage − V 7 8 9 Figure 8. Typical ON Resistance vs Input Signal Voltage 0 0 VCC = 4.5 V GND = −4.5 V VEE = −4.5 V RL = 50 Ω PIN 12 TO 3 −4 −20 VCC = 2.25 V GND = −2.25 V VEE = −2.25 V RL = 50 Ω PIN 12 TO 3 −6 dB dB −2 −8 −10 10K VCC = 2.25 V GND = −2.25 V VEE = −2.25 V RL = 50 Ω PIN 12 TO 3 −40 −60 VCC = 4.5 V GND = −4.5 V VEE = −4.5 V RL = 50 Ω PIN 12 TO 3 −80 100K 1M Frequency − Hz 10M 100M −100 10K 100K 1M 10M 100M Frequency − Hz Figure 9. Channel ON Bandwidth POST OFFICE BOX 655303 Figure 10. Channel OFF Feedthrough • DALLAS, TEXAS 75265 9 PACKAGE OPTION ADDENDUM www.ti.com 23-Mar-2010 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty CD74HC4051QM96G4Q1 ACTIVE SOIC D 16 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HC4051QM96Q1 ACTIVE SOIC D 16 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HC4051QPWRG4Q1 ACTIVE TSSOP PW 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HC4051QPWRQ1 ACTIVE TSSOP PW 16 2000 CU NIPDAU Level-1-250C-UNLIM Pb-Free (RoHS) Lead/Ball Finish MSL Peak Temp (3) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF CD74HC4051-Q1 : CD74HC4051 • Catalog: Product: CD74HC4051-EP • Enhanced • Military: CD54HC4051 NOTE: Qualified Version Definitions: - TI's standard catalog product • Catalog Product - Supports Defense, Aerospace and Medical Applications • Enhanced • Military - QML certified for Military and Defense Applications Addendum-Page 1 MECHANICAL DATA MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999 PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PINS SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°– 8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064/F 01/97 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DLP® Products www.dlp.com Communications and Telecom www.ti.com/communications DSP dsp.ti.com Computers and Peripherals www.ti.com/computers Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps Interface interface.ti.com Energy www.ti.com/energy Logic logic.ti.com Industrial www.ti.com/industrial Power Mgmt power.ti.com Medical www.ti.com/medical Microcontrollers microcontroller.ti.com Security www.ti.com/security RFID www.ti-rfid.com Space, Avionics & Defense www.ti.com/space-avionics-defense RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video Wireless www.ti.com/wireless-apps Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated