SCLS520B − AUGUST 2003 − REVISED MAY 2004 D Qualification in Accordance With D, DW, OR PW PACKAGE (TOP VIEW) AEC-Q100† D Qualified for Automotive Applications D Customer-Specific Configuration Control D D D D D D D Y4 Y6 COM Y7 Y5 INH GND GND Can Be Supported Along With Major-Change Approval 2-V to 5.5-V VCC Operation Supports Mixed-Mode Voltage Operation on All Ports High On-Off Output-Voltage Ratio Low Crosstalk Between Switches Individual Switch Controls Extremely Low Input Current Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II 1 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9 VCC Y2 Y1 Y0 Y3 A B C † Contact factory for details. Q100 qualification data available on request. description/ordering information This 8-channel CMOS analog multiplexer/demultiplexer is designed for 2-V to 5.5-V VCC operation. The SN74LV4051A handles both analog and digital signals. Each channel permits signals with amplitudes up to 5.5 V (peak) to be transmitted in either direction. Applications include signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-to-analog conversion systems. ORDERING INFORMATION −40°C −40 C to 105 105°C C ORDERABLE PART NUMBER PACKAGE‡ TA TOP-SIDE MARKING SOIC − D Tape and reel SN74LV4051ATDRQ1 L4051AQ SOIC − DW Tape and reel SN74LV4051ATDWRQ1 L4051AQ TSSOP − PW Tape and reel SN74LV4051ATPWRQ1 L4051AQ ‡ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2004, Texas Instruments Incorporated !"#$ % &'!!($ #% )'*+&#$ ,#$(!,'&$% &!" $ %)(&&#$% )(! $.( $(!"% (/#% %$!'"($% %$#,#!, 0#!!#$1- !,'&$ )!&(%%2 ,(% $ (&(%%#!+1 &+',( $(%$2 #++ )#!#"($(!%- POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SCLS520B − AUGUST 2003 − REVISED MAY 2004 FUNCTION TABLE INPUTS A ON CHANNEL L L Y0 L H Y1 H L Y2 L H H Y3 H L L Y4 H L H Y5 H H L Y6 L H H H Y7 H X X X None INH C L L L L L L L L L L B logic diagram (positive logic) 3 13 A 14 11 15 B 12 10 1 C 5 9 2 INH 2 4 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 COM Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 SCLS520B − AUGUST 2003 − REVISED MAY 2004 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7.0 V Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7.0 V Switch I/O voltage range, VIO (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to VCC + 0.5 V Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −20 mA I/O diode current, IIOK (VIO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA Switch through current, IT (VIO = 0 to VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±25 mA Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA Package thermal impedance, θJA (see Note 3): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95°C/W DW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75°C/W PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108°C/W Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed. 2. This value is limited to 5.5 V maximum. 3. The package thermal impedance is calculated in accordance with JESD 51-7. recommended operating conditions (see Note 4) VCC Supply voltage VIH High-level input voltage, control inputs VIL VI VIO ∆t/∆v MIN 2‡ VCC = 2 V VCC = 2.3 V to 2.7 V VCC = 3 V to 3.6 V VCC = 4.5 V to 5.5 V Input transition rise or fall rate VCC = 4.5 V to 5.5 V V 0.5 VCC × 0.3 VCC × 0.3 0 VCC = 2.3 V to 2.7 V VCC = 3 V to 3.6 V V VCC × 0.7 0 Input/output voltage UNIT 1.5 VCC = 3 V to 3.6 V VCC = 4.5 V to 5.5 V Control input voltage 5.5 VCC × 0.7 VCC × 0.7 VCC = 2 V VCC = 2.3 V to 2.7 V Low-level input voltage, control inputs MAX VCC × 0.3 5.5 V V VCC 200 V 100 ns/V 20 TA Operating free-air temperature −40 105 °C ‡ With supply voltages at or near 2 V, the analog switch on-state resistance becomes very nonlinear. It is recommended that only digital signals be transmitted at these low supply voltages. NOTE 4: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 SCLS520B − AUGUST 2003 − REVISED MAY 2004 electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER VCC MIN TA = 25°C TYP MAX MIN MAX UNIT IT = 2 mA, VI = VCC or GND, VINH = VIL (see Figure 1) 2.3 V 38 180 225 3V 30 150 190 4.5 V 22 75 100 IT = 2 mA, VI = VCC to GND, VINH = VIL 2.3 V 113 500 600 3V 54 180 225 4.5 V 31 100 125 Difference in on-state resistance between switches IT = 2 mA, VI = VCC to GND, VINH = VIL 2.3 V 2.1 30 40 3V 1.4 20 30 4.5 V 1.3 15 20 Control input current VI = 5.5 V or GND 0 to 5.5 V ±0.1 ±1 µA IS(off) Off-state switch leakage current VI = VCC and VO = GND, or VI = GND and VO = VCC, VINH = VIH (see Figure 2) 5.5 V ±0.1 ±1 µA IS(on) On-state switch leakage current VI = VCC or GND, VINH = VIL (see Figure 3) 5.5 V ±0.1 ±1 µA 20 µA ron ron(p) ∆ron II ICC CIC 4 TEST CONDITIONS On-state switch resistance Peak on-state resistance Supply current Control input capacitance VI = VCC or GND f = 10 MHz 5.5 V Ω Ω Ω 3.3 V 2 pF CIS Common terminal capacitance 3.3 V 23.4 pF COS Switch terminal capacitance 3.3 V 5.7 pF CF Feedthrough capacitance 3.3 V 0.5 pF POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SCLS520B − AUGUST 2003 − REVISED MAY 2004 switching characteristics over recommended operating free-air temperature range, VCC = 3.3 V ± 0.3 V (unless otherwise noted) PARAMETER TA = 25°C TYP MAX FROM (INPUT) TO (OUTPUT) TEST CONDITIONS COM or Yn Yn or COM CL = 50 pF, (see Figure 4) 2.5 9 12 ns MIN MIN MAX UNIT tPLH tPHL Propagation delay time tPZH tPZL Enable delay time INH COM or Yn CL = 50 pF, (see Figure 5) 5.5 20 25 ns tPHZ tPLZ Disable delay time INH COM or Yn CL = 50 pF, (see Figure 5) 8.8 20 25 ns switching characteristics over recommended operating free-air temperature range, VCC = 5 V ± 0.5 V (unless otherwise noted) PARAMETER TA = 25°C TYP MAX FROM (INPUT) TO (OUTPUT) TEST CONDITIONS COM or Yn Yn or COM CL = 50 pF, (see Figure 4) 1.5 6 8 ns MIN MIN MAX UNIT tPLH tPHL Propagation delay time tPZH tPZL Enable delay time INH COM or Yn CL = 50 pF, (see Figure 5) 4 14 18 ns tPHZ tPLZ Disable delay time INH COM or Yn CL = 50 pF, (see Figure 5) 6.2 14 18 ns POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 SCLS520B − AUGUST 2003 − REVISED MAY 2004 analog switch characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER Frequency response (switch on) Crosstalk (control input to signal output) Feedthrough attenuation (switch off) Sine-wave distortion TA = 25°C TYP MAX FROM (INPUT) TO (OUTPUT) TEST CONDITIONS VCC 20 Yn or COM CL = 50 pF, RL = 600 Ω,, fin = 1 MHz (sine wave) (see Note 5 and Figure 6) 2.3 V COM or Yn 3V 25 4.5 V 35 CL = 50 pF, RL = 600 Ω,, fin = 1 MHz (square wave) (see Figure 7) 2.3 V 20 3V 35 4.5 V 60 CL = 50 pF, RL = 600 Ω,, fin = 1 MHz (see Note 6 and Figure 8) 2.3 V −45 3V −45 4.5 V −45 CL = 50 pF, RL = 10 kΩ, fin = 1 kHz (sine wave) (see Figure 9) 2.3 V 0.1 3V 0.1 4.5 V 0.1 INH COM or Yn COM or Yn Yn or COM COM or Yn Yn or COM VI = 2 Vp-p VI = 2.5 Vp-p VI = 4 Vp-p MIN UNIT MHz mV dB % NOTES: 5. Adjust fin voltage to obtain 0-dBm output. Increase fin frequency until dB meter reads −3 dB. 6. Adjust fin voltage to obtain 0-dBm input. operating characteristics, VCC = 3.3 V, TA = 25°C PARAMETER Cpd TEST CONDITIONS Power dissipation capacitance CL = 50 pF, f = 10 MHz PARAMETER MEASUREMENT INFORMATION VCC VINH = VIL VCC VI = VCC or GND VO (ON) GND r on + 2 mA V VI − VO Figure 1. On-State Resistance Test Circuit 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VI – VO 2 10 –3 W TYP UNIT 5.9 pF SCLS520B − AUGUST 2003 − REVISED MAY 2004 PARAMETER MEASUREMENT INFORMATION VCC VINH = VIH VCC A VI (OFF) VO GND Condition 1: VI = 0, VO = VCC Condition 2: VI = VCC, VO = 0 Figure 2. Off-State Switch Leakage-Current Test Circuit VCC VINH = VIL VCC VI A (ON) Open GND VI = VCC or GND Figure 3. On-State Switch Leakage-Current Test Circuit VCC VINH = VIL VCC Input Output (ON) 50 Ω CL GND Figure 4. Propagation Delay Time, Signal Input to Signal Output POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 SCLS520B − AUGUST 2003 − REVISED MAY 2004 PARAMETER MEASUREMENT INFORMATION VCC 50 Ω VINH VCC VI S1 VO TEST S1 S2 tPLZ/tPZL tPHZ/tPZH GND VCC VCC GND 1 kΩ S2 CL GND TEST CIRCUIT VCC VCC VINH 50% 50% 0V 0V tPZH tPZL ≈VCC VOH VO 50% 50% VOL ≈0 V (tPZL, tPZH) VCC VCC VINH 50% 50% 0V 0V tPHZ tPLZ ≈VCC VOH VO VOL + 0.3 V VOL VOH − 0.3 V ≈0 V (tPLZ, tPHZ) VOLTAGE WAVEFORMS Figure 5. Switching Time (tPZL, tPLZ, tPZH, tPHZ), Control to Signal Output VCC VINH = GND 0.1 µF fin VI VCC (ON) GND 50 Ω VO RL CL VCC/2 NOTE A: fin is a sine wave. Figure 6. Frequency Response (Switch On) 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SCLS520B − AUGUST 2003 − REVISED MAY 2004 PARAMETER MEASUREMENT INFORMATION VCC 50 Ω VINH VCC VO GND 600 Ω RL VCC/2 CL VCC/2 Figure 7. Crosstalk (Control Input, Switch Output) VCC VINH = VCC 0.1 µF VI fin 50 Ω VCC (OFF) VO GND 600 Ω RL CL VCC/2 VCC/2 Figure 8. Feedthrough Attenuation (Switch Off) VCC VINH = GND 10 µF fin 600 Ω 10 µF VCC (ON) GND VO RL CL VCC/2 Figure 9. Sine-Wave Distortion POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 PACKAGE OPTION ADDENDUM www.ti.com 24-Jun-2005 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty Lead/Ball Finish MSL Peak Temp (3) SN74LV4051ATDRQ1 ACTIVE SOIC D 16 2500 Pb-Free (RoHS) CU NIPDAU Level-2-250C-1 YEAR/ Level-1-235C-UNLIM SN74LV4051ATDWRQ1 ACTIVE SOIC DW 16 2000 Pb-Free (RoHS) CU NIPDAU Level-2-250C-1 YEAR/ Level-1-235C-UNLIM SN74LV4051ATPWRQ1 ACTIVE TSSOP PW 16 2000 Pb-Free (RoHS) CU NIPDAU Level-1-250C-UNLIM (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 MECHANICAL DATA MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999 PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PINS SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°– 8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064/F 01/97 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2005, Texas Instruments Incorporated