INTEGRAL IZ74LV620

IN74LV620
OCTAL 3-STATE INVERTING BUS TRANSCEIVER
Microcircuits IN74LV620 are pin-to-pin compatible with
microcircuits of series 74ALS620, 74HC620, 74HCT620.
Input voltage levels are compatible with standard C-MOS
levels
Features:
Output voltage levels are compatible with input levels CMOS, N-MOS and TTL microcircuits.
Supply voltage range from 1.2 to 3.6 V.
Maximum input current: 1.0 mkA; 0.1 mkA at Т = 25 °С.
Consumption current 8 mA.
ORDERING INFORMATION
IN74LV620N
Plastic
IN74LV620D
SOIC
IZ74LV620
Chip
TA = -40° ÷ 125° C for all packages
Block diagram
Truth table
01
02
03
04
05
06
07
08
09
OEB
OEA
Inputs
OEB
OEA
L
L
H
H
L
H
H
H
19
A1
B1
A2
B2
A3
B3
A4
B4
A5
B5
A6
B6
A7
B7
A8
B8
18
Inputs/Outputs
А
В
A=B
input
input
B=A
Z
Z
A=B
B=A
Pinout
17
OEB 01
16
15
13
12
11
1
VCC
A1 02
19 OEA
A2 03
18 B1
A3 04
17 B2
A4 05
14
20
620
16 B3
A5 06
15 B4
A6 07
14 B5
A7 08
13 B6
A8 09
12 B7
GND 10
11 B8
IN74LV620
Absolute maximum ratings*
Symbol
Parameter
VCC
Supply voltage
IIK *1
IOK *2
IO *3
ICC
IGND
PD
Input diode current
Output diode current
Output current source-drain
Supply output current
Common output current
Dissipation power at free air change,
Plastic
DIP
*4
SOIC *4
Storage temperature
Value
from -0.5 to
+5.0
±20
±50
±35
±70
±70
Unit
V
mA
mA
mA
mA
mA
mW
750
500
Tstg
from -65 to
°C
+150
TL
260
°C
*
Under absolute maximum conditions operation of microcircuits is not guaranteed.
Operation under maximum conditions is guaranteed.
*1 If VI < -0.5V or VI > VCC + 0.5 V.
*2 If VO < -0.5V or VO > VCC + 0.5 V.
*3 If -0.5V < VO < VCC + 0.5 V.
*4 Under operation in the temperature range from 65°С to 125°C value of dissipation power
drops down - to 10 mW/°C for Plastic DIP
- to 7 mW/°C for SOIC
Maximum conditions
Symbol
VCC
VIN
VOUT
TA
tLH, tHL
Parameter
Supply voltage
Input voltage
Output voltage
Operation temperature. For all packages
Period of signal rise and VCC =1.2 В
fall edges (Figure 1)
VCC =2.0 В
VCC =3.0 В
VCC =3.6 В
2
Min
Max
Unit
1.2
0
0
-40
0
3.6
VCC
VCC
125
1000
700
500
400
V
V
V
°C
ns
IN74LV620
DC electrical characteristics
Sym
bol
Parameter
Test
conditions
VIH High input voltage
VO = VCC-0.1 V
VIL Low input voltage
VO =0.1 V
VOH High output voltage
VI = VIH or VIL
Io = -50 mkA
VOL Low output voltage
II
IOZ
ICC
VCC,
V
1.2
2.0
3.0
3.6
1.2
2.0
3.0
3.6
1.2
2.0
3.0
3.6
Value
From
25°C
40°C to
85°C
min max min max
0.9
0.9
1.4
1.4
2.1
2.1
2.5
2.5
0.3
0.3
0.6
0.6
0.9
0.9
1.1
1.1
1.1
1.11 1.9
1.91 2.9
2.91 3.5
3.51 -
Unit
From 40°C to
125°C
min max
0.9
1.4
2.1
2.5
0.3
0.6
0.9
1.1
1.1
1.9
2.9
3.5
VI = VIH or VIL
3.0 2.48 2.34 - 2.20 Io = -8 mA
0.1
0.1
- 0.09
VI = VIH or VIL 1.2
0.1
0.1
- 0.09
Io = 50 mkA
2.0
0.1
0.1
- 0.09
3.0
0.1
0.1
- 0.09
3.6
VI = VIH or VIL
Io = 8 mA
Input current
VI = VCC or 0 V
Output current in «off» Outputs in the third
state
state
VI = VIL or VIH
VO =VCC or 0 V
Consumption current VI =VCC or 0 V
Io = 0 mkA
3
V
V
V
V
V
3.0
-
0.33
-
0.4
-
0.5
V
3.6
3.6
-
±0.1
±0.5
-
±1.0
±5
-
±1.0
±10
uA
uA
3.6
-
8.0
-
80
-
160
uA
IN74LV620
AC electrical characteristics (CL=50 pF, tLH = tHL = 6.0 ns)
Sym-bol
tPHL, tPLH
from A to B
from B to A
tPHZ tPLZ
from OE to
Y
tPZH tPZL
from OE to
Y
tTHL, tTLH
CI
CPD
Parameter
Propagation delay
time in «on» and
«off» states
Propagation delay
time
when
switching from high,
low levels into «off»
state
Propagation delay
time
when
switching
from
«off» state into
high, low levels
Test
VCC,
conditions
V
Fig.1
Fig.2
Fig.2
Fig.1
Transition
time
when switching on,
off
Input capacitance
VI = 0 V or
Dynamic
capacitance
(for VCC
one channel)
1.2
2.0
3.0
1.2
2.0
3.0
25°C
min max
100
23
14
120
30
20
-
Value
Unit
From - From -40°C
40°C to
to 125°C
85°C
min max min max
ns
140
125
34
28
21
18
160
140
43
37
28
24
-
1.2
2.0
3.0
-
120
28
17
-
140
35
21
-
160
43
26
1.2
2.0
3.0
3.0
3.0
-
60
16
10
7
50
-
75
20
13
-
-
90
24
15
-
4
pF
IN74LV620
- Time diagram of control of AC characteristics tPLH, tPHL
tLH
tHL
0.9
0.9
A, B
VCC
VI
VI
0.1
tPH
0.1
tPL
L
H
0.9
GND
VCC
0.9
VI
B, A
0.1
tTHL
VI
0.1
tTLH
VI = 0.5VCC
Fig.1
- Time diagram of control of AC characteristics tPLZ, tPHZ, tPZL, tPZH
VCC
VI
OEB
VI
0.1
GND
VCC
OEA
VI
VI
GND
tPZH
0.9
VI
A, B
VOH
tPHZ
0V
tPLZ
A, B
VCC
VI
tPZL
0.1
VOL
VI = 0.5VCC
Fig.2
5