IN74LV623 OCTAL 3-STATE NONINVERTING BUS TRANSCEIVER Microcircuits IN74LV623 are pin-to-pin compatible with microcircuits of series 74HC623A, 74HCT623A. Input voltage levels are compatible with standard C-MOS levels Features: • Output voltage levels are compatible with input levels C-MOS, N-MOS and TTL microcircuits. • Supply voltage range from 1.2 to 3.6 V. • Maximum input current: 1.0 mkA; 0.1 mkA at Т = 25 °С. • Consumption current 8 mA. ORDERING INFORMATION IN74LV623N Plastic IN74LV623D SOIC IZ74LV623 Chip TA = -40° ÷ 125° C for all packages Block diagram 01 02 03 04 05 06 07 08 09 OEB Truth table OEA Inputs OEB OEA L L H H L H H H 19 A1 B1 A2 B2 A3 B3 A4 B4 A5 18 Pinout OEB 01 17 16 15 A6 B6 A7 B7 A8 B8 14 13 12 11 1 20 VCC A1 02 19 OEA A2 03 18 B1 A3 04 17 B2 A4 05 B5 Inputs/Outputs А В A=B Input Input B=A Z Z A=B B=A 623 16 B3 A5 06 15 B4 A6 07 14 B5 A7 08 13 B6 A8 09 12 B7 GND 10 11 B8 IN74LV623 Absolute maximum ratings* Symbol Parameter VCC Supply voltage IIK *1 IOK *2 Value Unit from -0.5 to +5.0 V Input diode current ±20 mA Output diode current ±50 mA Output current source-drain ±35 mA ICC Supply output current ±70 mA IGND Common output current ±70 mA PD Dissipation power at free air change, Plastic DIP *4 4 SOIC * 750 500 3 IO * Tstg Storage temperature mW °C from -65 to +150 TL °C 260 * Under absolute maximum conditions operation of microcircuits is not guaranteed. Operation under maximum conditions is guaranteed. *1 If VI < -0.5V or VI > VCC + 0.5 V. *2 If VO < -0.5V or VO > VCC + 0.5 V. *3 If -0.5V < VO < VCC + 0.5 V. *4 Under operation in the temperature range from 65°С to 125°C value of dissipation power drops down - to 10 mW/°C for Plastic DIP - to 7 mW/°C for SOIC Maximum conditions Symbol VCC VIN VOUT TA tLH, tHL Parameter Supply voltage Input voltage Output voltage Operation temperature. For all packages Period of signal rise and VCC =1.2 В VCC =2.0 В fall edges (Figure 1) VCC =3.0 В VCC =3.6 В 2 Min Max Unit 1.2 0 0 -40 0 3.6 VCC VCC 125 1000 700 500 400 V V V °C ns IN74LV623 DC electrical characteristics Sym bol Parameter Test conditions VIH High input voltage VO = VCC-0.1 V VIL Low input voltage VO =0.1 V VOH High output voltage VI = VIH or VIL Io = -50 mkA VOL Low output voltage II IOZ ICC VCC, V 1.2 2.0 3.0 3.6 1.2 2.0 3.0 3.6 1.2 2.0 3.0 3.6 Value From 25°C 40°C to 85°C min max min max 0.9 0.9 1.4 1.4 2.1 2.1 2.5 2.5 0.3 0.3 0.6 0.6 0.9 0.9 1.1 1.1 1.1 1.11 1.9 1.91 2.9 2.91 3.5 3.51 - Unit From 40°C to 125°C min max 0.9 1.4 2.1 2.5 0.3 0.6 0.9 1.1 1.1 1.9 2.9 3.5 VI = VIH or VIL 3.0 2.48 2.34 - 2.20 Io = -8 mA 0.1 0.1 - 0.09 VI = VIH or VIL 1.2 0.1 0.1 - 0.09 Io = 50 mkA 2.0 0.1 0.1 - 0.09 3.0 0.1 0.1 - 0.09 3.6 VI = VIH or VIL Io = 8 mA Input current VI = VCC or 0 V Output current in «off» Outputs in the third state state VI = VIL or VIH VO =VCC or 0 V Consumption current VI =VCC or 0 V Io = 0 mkA 3 V V V V V 3.0 - 0.33 - 0.4 - 0.5 V 3.6 3.6 - ±0.1 ±0.5 - ±1.0 ±5 - ±1.0 ±10 uA uA 3.6 - 8.0 - 80 - 160 uA IN74LV623 AC electrical characteristics (CL=50 pF, tLH = tHL = 6.0 ns) Symbol Parameter Test conditio ns tPHL, tPLH Propagation delay time Fig. 1 tPHZ tPLZ Propagation delay time Fig. 2 from A to B; in «on» and «off» states from B to A from OE to when switching from Y high, low levels into «off» state tPZH tPZL Propagation delay time Fig.2 from OE to when switching from «off» state into high, Y low levels tTHL, tTLH CI CPD Transition time switching on, off when Fig. 1 Input capacitance Dynamic capacitance VI = 0 V (for one channel) or VCC VCC, V 25°C 1.2 2.0 3.0 1.2 2.0 3.0 min max 100 23 14 120 30 20 - Value Unit From - From -40°C 40°C to to 125°C 85°C min max min max ns 140 125 34 28 21 18 160 140 43 37 28 24 - 1.2 2.0 3.0 - 120 28 17 - 140 35 21 - 160 43 26 1.2 2.0 3.0 3.0 3.0 - 60 16 10 7 50 - 75 20 13 - - 90 24 15 - 4 pF IN74LV623 - Time diagram of control of AC characteristics tPLH, tPHL t LH t HL 0.9 0.9 A, B VCC V1 V1 0.1 GND 0.1 t PLH t PHL VCC V1 V1 B, A V 1 = 0.5 Vcc Fig. 1 - Time diagram of control of AC characteristics tPLZ, tPHZ, tPZL, tPZH VCC V1 V1 OEB 0.1 GND VCC OEA V1 V1 GND t PZH 0.9 t PHZ V1 A, B VOH 0B t PLZ A, B VCC V1 t PZL 0.1 VOL V 1 = 0.5V CC Fig. 2 5