A PRELIMINARY 80960CF-40, -33, -25, -16 32-BIT HIGH-PERFORMANCE SUPERSCALAR EMBEDDED MICROPROCESSOR ■ ■ ■ ■ ■ ■ • Socket and Object Code Compatible with 80960CA • Two Instructions/Clock Sustained Execution • Four 71 Mbytes/s DMA Channels with Data Chaining • Demultiplexed 32-Bit Burst Bus with Pipelining 32-Bit Parallel Architecture ■ Four On-Chip DMA Channels — Two Instructions/clock Execution — 71 Mbytes/s Fly-by Transfers — Load/Store Architecture — 40 Mbytes/s Two-Cycle Transfers — Sixteen 32-Bit Global Registers — Data Chaining — Sixteen 32-Bit Local Registers — Data Packing/Unpacking — Manipulates 64-Bit Bit Fields — Programmable Priority Method — 11 Addressing Modes ■ 32-Bit Demultiplexed Burst Bus — Full Parallel Fault Model — 128-Bit Internal Data Paths to and from — Supervisor Protection Model Registers Fast Procedure Call/Return Model — Burst Bus for DRAM Interfacing — Address Pipelining Option — Full Procedure Call in 4 Clocks — Fully Programmable Wait States On-Chip Register Cache — Supports 8-, 16- or 32-Bit Bus Widths — Caches Registers on Call/Ret — Supports Unaligned Accesses — Minimum of 6 Frames Provided — Supervisor Protection Pin — Up to 15 Programmable Frames ■ High-Speed Interrupt Controller On-Chip Instruction Cache — Up to 248 External Interrupts — 4 Kbyte Two-Way Set Associative — 32 Fully Programmable Priorities — 128-Bit Path to Instruction Sequencer — Multi-mode 8-Bit Interrupt Port — Cache-Lock Modes — Four Internal DMA Interrupts — Cache-Off Mode — Separate, Non-maskable Interrupt Pin High Bandwidth On-Chip Data RAM — Context Switch in 625 ns Typical — 1 Kbyte On-Chip Data RAM ■ On-Chip Data Cache — Sustains 128 bits per Clock Access — 1 Kbyte Direct-Mapped, Write Through Selectable Big or Little Endian Byte — 128 bits per Clock Access on Cache Hit Ordering © INTEL CORPORATION, 1996 June 1996 Order Number: 272886-001 Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel retains the right to make changes to specifications and product descriptions at any time, without notice. *Third-party brands and names are the property of their respective owners. Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from: Intel Corporation P.O. Box 7641 Mt. Prospect IL 60056-764 or call 1-800-548-4725 A CONTENTS 80960CF-40, -33, -25, -16 32-BIT HIGH-PERFORMANCE SUPERSCALAR EMBEDDED MICROPROCESSOR 1.0 PURPOSE .................................................................................................................................................. 1 2.0 80960CF OVERVIEW ................................................................................................................................ 1 2.1 The 80960C-Series Core .................................................................................................................... 3 2.2 Pipelined, Burst Bus ........................................................................................................................... 3 2.3 Instruction Set Summary .................................................................................................................... 3 2.4 Flexible DMA Controller ...................................................................................................................... 3 2.5 Priority Interrupt Controller .................................................................................................................. 4 3.0 PACKAGE INFORMATION ........................................................................................................................ 5 3.1 Package Introduction .......................................................................................................................... 5 3.2 Pin Descriptions .................................................................................................................................. 5 3.3 80960CF Mechanical Data ............................................................................................................... 12 3.3.1 80960CF PGA PINOUT ......................................................................................................... 12 3.3.2 80960CF PQFP Pinout (80960CF-33, -25, -16 Only) ............................................................ 16 3.4 Package Thermal Specifications ...................................................................................................... 19 3.5 Stepping Register Information .......................................................................................................... 22 3.6 Sources for Accessories ................................................................................................................... 22 4.0 ELECTRICAL SPECIFICATIONS ............................................................................................................ 23 4.1 Absolute Maximum Ratings .............................................................................................................. 23 4.2 Operating Conditions ........................................................................................................................ 23 4.3 Recommended Connections ............................................................................................................ 24 4.4 DC Specifications ............................................................................................................................. 24 4.5 AC Specifications .............................................................................................................................. 26 4.5.1 AC TEST CONDITIONS ........................................................................................................ 36 4.5.2 AC TIMING WAVEFORMS .................................................................................................... 37 4.5.3 DERATING CURVES ............................................................................................................. 41 5.0 RESET, BACKOFF AND HOLD ACKNOWLEDGE ................................................................................ 42 6.0 BUS WAVEFORMS .................................................................................................................................. 44 7.0 REVISION HISTORY ............................................................................................................................... 71 PRELIMINARY iii CONTENTS A FIGURES Figure 1. 80960CF Block Diagram ............................................................................................................ 2 Figure 2. 80960CF PGA Pinout—View from Top (Pins Facing Down) .................................................... 12 Figure 3. 80960CF PGA Pinout — View from Bottom (Pins Facing Up) ................................................. 13 Figure 4. 80960CF PQFP Pinout—Top View (80960CF-33, -25, -16 Only) ............................................ 19 Figure 5. Measuring 80960CF PGA and PQFP Case Temperature ....................................................... 20 Figure 6. Register g0 ............................................................................................................................... 22 Figure 7. AC Test Load ........................................................................................................................... 37 Figure 8. Input and Output Clocks Waveform ......................................................................................... 37 Figure 9. CLKIN Waveform ..................................................................................................................... 37 Figure 10. Output Delay and Float Waveform ........................................................................................... 38 Figure 11. Input Setup and Hold Waveform .............................................................................................. 38 Figure 12. NMI, XINT7:0 Input Setup and Hold Waveform ....................................................................... 39 Figure 13. Hold Acknowledge Timings ...................................................................................................... 39 Figure 14. Bus Backoff (BOFF) Timings ................................................................................................... 40 Figure 15. Relative Timings Waveforms ................................................................................................... 40 Figure 16. Output Delay or Hold vs. Load Capacitance ............................................................................ 41 Figure 17. Rise and Fall Time Derating at Highest Operating Temperature and Minimum VCC ............... 41 Figure 18. ICC vs. Frequency and Temperature—80960CF-33, -25, -16 .................................................. 42 Figure 19. ICC vs. Frequency and Temperature—80960CF-40 ................................................................ 42 Figure 20. Cold Reset Waveform .............................................................................................................. 44 Figure 21. Warm Reset Waveform ............................................................................................................ 45 Figure 22. Entering the ONCE State ......................................................................................................... 46 Figure 23. Clock Synchronization in the 2-x Clock Mode .......................................................................... 47 Figure 24. Clock Synchronization in the 1-x Clock Mode .......................................................................... 47 Figure 25. Non-Burst, Non-Pipelined Requests Without Wait States ........................................................ 48 Figure 26. Non-Burst, Non-Pipelined Read Request With Wait States ..................................................... 49 Figure 27. Non-Burst, Non-Pipelined Write Request With Wait States ..................................................... 50 Figure 28. Burst, Non-Pipelined Read Request Without Wait States, 32-Bit Bus ..................................... 51 Figure 29. Burst, Non-Pipelined Read Request With Wait States, 32-Bit Bus .......................................... 52 Figure 30. Burst, Non-Pipelined Write Request Without Wait States, 32-Bit Bus ..................................... 53 Figure 31. Burst, Non-Pipelined Write Request With Wait States, 32-Bit Bus .......................................... 54 Figure 32. Burst, Non-Pipelined Read Request With Wait States, 16-Bit Bus .......................................... 55 Figure 33. Burst, Non-Pipelined Read Request With Wait States, 8-Bit Bus ............................................ 56 Figure 34. Non-Burst, Pipelined Read Request Without Wait States, 32-Bit Bus ..................................... 57 Figure 35. Non-Burst, Pipelined Read Request With Wait States, 32-Bit Bus .......................................... 58 Figure 36. Burst, Pipelined Read Request Without Wait States, 32-Bit Bus ............................................. 59 Figure 37. Burst, Pipelined Read Request With Wait States, 32-Bit Bus .................................................. 60 Figure 38. Burst, Pipelined Read Request With Wait States, 16-Bit Bus .................................................. 61 Figure 39. Burst, Pipelined Read Request With Wait States, 8-Bit Bus .................................................... 62 iv PRELIMINARY A CONTENTS Figure 40. Using External READY ............................................................................................................ 63 Figure 41. Terminating a Burst with BTERM ............................................................................................. 64 Figure 42. BOFF Functional Timing .......................................................................................................... 65 Figure 43. HOLD Functional Timing .......................................................................................................... 66 Figure 44. DREQ and DACK Functional Timing ....................................................................................... 67 Figure 45. EOP Functional Timing ............................................................................................................ 67 Figure 46. Terminal Count Functional Timing ........................................................................................... 68 Figure 47. FAIL Functional Timing ............................................................................................................ 68 Figure 48. A Summary of Aligned and Unaligned Transfers for Little Endian Regions ............................. 69 Figure 49. A Summary of Aligned and Unaligned Transfers for Little Endian Regions (Continued) ......... 70 Figure 50. Idle Bus Operation ................................................................................................................... 71 TABLES Table 1. 80960CF Instruction Set ............................................................................................................ 4 Table 2. 80960CF Pin Description — External Bus Signals .................................................................... 6 Table 3. 80960CF Pin Description — Processor Control Signals ............................................................ 9 Table 4. 80960CF Pin Description — DMA and Interrupt Unit Control Signals ..................................... 11 Table 5. 80960CF PGA Pinout — In Signal Order ................................................................................ 14 Table 6. 80960CF PGA Pinout — In Pin Order ..................................................................................... 15 Table 7. 80960CF PQFP Pinout — In Signal Order (80960CF-33, -25, -16 Only) ................................ 17 Table 8. 80960CF PQFP Pinout — In Pin Order (80960CF-33, -25, -16 Only) ..................................... 18 Table 9. Maximum TA at Various Airflows in oC (PGA Package Only) ................................................... 20 Table 10. 80960CF PGA Package Thermal Characteristics ................................................................... 21 Table 11. 80960CF PQFP Package Thermal Characteristics ................................................................. 21 Table 12. Die Stepping Cross Reference ................................................................................................ 22 Table 13. Operating Conditions ............................................................................................................... 23 Table 14. DC Characteristics ................................................................................................................... 24 Table 15. 80960CF AC Characteristics (40 MHz) ................................................................................... 26 Table 16. 80960CF AC Characteristics (33 MHz) ................................................................................... 29 Table 17. 80960CF AC Characteristics (25 MHz) ................................................................................... 32 Table 18. 80960CF AC Characteristics (16 MHz) ................................................................................... 34 Table 19. Reset Conditions ..................................................................................................................... 43 Table 20. Hold Acknowledge and Backoff Conditions ............................................................................. 43 PRELIMINARY v A 1.0 PURPOSE This document provides electrical characteristics of Intel’s i960® CF embedded microprocessor. For functional descriptions consult the i960® Cx Microprocessor User’s Manual (270710). To obtain data sheet updates and errata, contact Intel at any of the following numbers. 80960CF-40, -33, -25, -16 2.0 80960CF OVERVIEW Intel’s 80960CF is the second processor in the series of superscalar i960 microprocessors that also includes the 80960CA and the 80960HA/HD/HT. Upgrading from the 80960CA to the 80960CF is straightforward because the two processors are socket- and object code-compatible. As shown in Figure 1, the 80960CF’s instruction cache is 4 Kbytes; data cache is 1 Kbyte (80960CA instruction cache is 1 Kbyte; it does not have a data cache.) This extra cache on the CF adds a significant performance boost over the CA. Intel’s World-Wide Web (WWW) Location: Customer Support (US and Canada): FaxBACK Service: US and Canada Europe worldwide Application Bulletin Board Service: up to 14.4-Kbaud line, worldwide dedicated 2400-baud line, worldwide Europe PRELIMINARY http://www.intel.com/ 800-628-8686 800-628-2283 +44(0)793-496646 916-356-3105 916-356-3600 916-356-7209 +44(0)793-496340 1 A 80960CF-40, -33, -25, -16 Four-Channel Instruction Prefetch Queue Memory Region Instruction Cache (4 Kbyte, Two-Way Set Associative) Interrupt Port 128-BIT CACHE BUS Programmable Interrupt Controller Parallel Instruction Scheduler Multiply/Divide Unit Execution Unit Register-side Memory-side Machine Bus Machine Bus Six-Port Register File 64-Bit SRC1 Bus 32-Bit Base Bus 64-Bit SRC2 Bus 128-Bit Load Bus 64-Bit DST Bus 128-Bit Store Bus DMA Port DMA Controller Control Configuration Bus Controller Bus Request Queues Address Data 1 Kbyte Direct Mapped Data Cache 1 Kbyte Data RAM 5 to 15 Sets Register Cache Address Generation Unit F_CF001A Figure 1. 80960CF Block Diagram The 80960CF, object code compatible with the 32-bit 80960 core Architecture, employs Special Function Register extensions to control on-chip peripherals and instruction set extensions to shift 64-bit operands and configure on-chip hardware. Multiple 128-bit internal buses, on-chip instruction caching and a sophisticated instruction scheduler allow the processor to sustain execution of two instructions per clock with peak execution of three instructions per clock. A 32-bit demultiplexed and pipelined burst bus provides a 132 Mbyte/s bandwidth to a system’s 2 high-speed external memory subsystem. Also, the 80960CF’s on-chip caching of instructions, procedure context and critical program data substantially decouples system performance from the wait states associated with accesses to the system’s slower, cost sensitive, main memory subsystem. The 80960CF bus controller integrates full wait state and bus width control for highest system performance with minimal system design complexity. Unaligned access and Big Endian byte order support reduces the cost of porting existing applications to the 80960CF. PRELIMINARY A The processor also integrates four complete datachaining DMA channels and a high-speed interrupt controller on-chip. DMA channels perform singlecycle or two-cycle transfers, data packing and unpacking and data chaining. Block transfers — in addition to source or destination synchronized transfers — are supported. The interrupt controller provides full programmability of 248 interrupt sources into 32 priority levels with a typical interrupt task switch (latency) time of 625 ns. 2.1 The 80960C-Series Core 80960CF-40, -33, -25, -16 2.2 Pipelined, Burst Bus A 32-bit high performance bus controller interfaces the 80960CF to external memory and peripherals. The Bus Control Unit features a maximum transfer rate of 160 Mbytes per second (at 40 MHz). Internally programmable wait states and 16 separately configurable memory regions allow the processor to interface with a variety of memory subsystems with a minimum of system complexity and a maximum of performance. The Bus Control Unit’s main features include: • Demultiplexed, burst bus to exploit most efficient DRAM access modes The C-Series core is a very high performance microarchitectural implementation of the 80960 Core Architecture. This core can sustain execution of two instructions per clock (80 MIPS at 40 MHz). To achieve this level of performance, Intel has incorporated state-of-the-art silicon technology and innovative microarchitectural constructs into the C-Series core implementation. Factors that contribute to the core’s performance include: • Address pipelining to reduce memory cost while maintaining performance • Parallel instruction decoding allows issuance of up to three instructions per clock • Three-deep request queue to decouple the bus from the core • 32-, 16- and 8-bit modes for I/O interfacing ease • Full internal wait state generation to reduce system cost • Little and Big Endian support to ease application development • Unaligned access support for code portability • Single-clock execution of most instructions • Parallel instruction decode allows sustained, simultaneous execution of two single-clock instructions every clock cycle • Efficient instruction pipeline minimizes pipeline break losses • Register and resource scoreboarding allow simultaneous multi-clock instruction execution • Branch look-ahead and prediction allows many branches to execute with no pipeline break • Local Register Cache integrated on-chip caches Call/Return context • Two-way set associative, 4 Kbyte integrated instruction cache • 1 Kbyte integrated Data RAM sustains a four-word (128-bit) access every clock cycle • Direct mapped, 1 Kbyte data cache, write through, write allocate PRELIMINARY 2.3 Instruction Set Summary Table 1 summarizes the 80960CF instruction set by logical groupings. See the i960® Cx Microprocessor User’s Manual (270710) for a complete description of the instruction set. 2.4 Flexible DMA Controller A four-channel DMA controller provides high speed DMA control for data transfers involving peripherals and memory. The DMA provides advanced features such as data chaining, byte assembly and disassembly and a high performance fly-by mode capable of transfer speeds of up to 71 Mbytes per second at 40 MHz. The DMA controller features a performance and flexibility which is only possible by integrating the DMA controller and the 80960CF core. 3 A 80960CF-40, -33, -25, -16 2.5 Priority Interrupt Controller A programmable-priority interrupt controller manages up to 248 external sources through the 8bit external interrupt port. The Interrupt Unit also handles the four internal sources from the DMA controller and a single non-maskable interrupt input. The 8-bit interrupt port can also be configured to provide individual interrupt sources that are level or edge triggered. 80960CF interrupts are prioritized and signaled within 225 ns of the request. If the interrupt is of higher priority than the processor priority, the context switch to the interrupt routine typically completes in another 400 ns. The interrupt unit provides the mechanism for the low latency and high throughput interrupt service which is essential for embedded applications. Table 1. 80960CF Instruction Set Data Movement Arithmetic Logical Bit / Bit Field / Byte Load Add And Set Bit Store Subtract Not And Clear Bit Move Multiply And Not Not Bit Load Address Divide Or Alter Bit Remainder Exclusive Or Scan For Bit Modulo Not Or Span Over Bit Shift Or Not Extract *Extended Shift Nor Modify Extended Multiply Exclusive Nor Scan Byte for Equal Extended Divide Not Add with Carry Nand Subtract with Carry Rotate Comparison Branch Call/Return Fault Compare Unconditional Branch Call Conditional Fault Conditional Compare Conditional Branch Call Extended Synchronize Faults Compare and Increment Compare and Branch Call System Compare and Decrement Return Test Condition Code Branch and Link Check Bit Debug Processor Mgmt Atomic Modify Trace Controls Flush Local Registers Atomic Add Mark Modify Arithmetic Controls Atomic Modify Force Mark Modify Process Controls *System Control *DMA Control NOTES: Instructions marked by (*) are 80960Cx extensions to the 80960 instruction set. 4 PRELIMINARY A 3.0 3.1 PACKAGE INFORMATION Package Introduction This section describes the pins, pinouts and thermal characteristics for the 80960CF in the 168-pin Ceramic Pin Grid Array (PGA) package; the 80960CF-33, -25, -16 devices are also available in the 196-pin Plastic Quad Flat Package (PQFP). For complete package specifications and information, see the Packaging Handbook (# 240800). 3.2 Pin Descriptions This section defines the 80960CF pins. Table 2 presents the legend for interpreting the pin descriptions in the following tables. Pins associated with the 32-bit demultiplexed processor bus are described in Table 2. Pins associated with the 80960CF DMA Controller and Interrupt Unit are described in Table 3. Pins associated with basic processor configuration and control are described in Table 2. All pins float while the processor is in the ONCE mode. PRELIMINARY 80960CF-40, -33, -25, -16 Symbol Description I Input only pin O Output only pin I/O Pin can be either an input or output – Pins “must be” connected as described S(...) Synchronous. Inputs must meet setup and hold times relative to PCLK2:1 for proper operation. Outputs are synchronous to PCLK2:1. S(E) Edge sensitive input S(L) Level sensitive input A(...) Asynchronous. Inputs may be asynchronous to PCLK2:1. A(E) Edge sensitive input A(L) Level sensitive input H(...) While the bus is in the Hold Acknowledge or Bus Backoff state, the pin: H(1) is driven to VCC H(0) is driven to VSS H(Z) floats H(Q) continues to be a valid input R(...) While the processor’s RESET pin is low, the pin: R(1) is driven to VCC R(0) is driven to VSS R(Z) floats R(Q) continues to be a valid output 5 A 80960CF-40, -33, -25, -16 Table 2. 80960CF Pin Description — External Bus Signals (Sheet 1 of 3) Name Type Description A31:2 O S H(Z) R(Z) ADDRESS BUS carries the physical address’ upper 30 bits. A31 is the most significant bit; A2 is least significant. During a bus access, A31:2 identify all external addresses to word (4-byte) boundaries. Byte enable signals indicate the selected byte in each word. During burst accesses, A3:2 increment to indicate successive data cycles. D31:0 I/O S(L) H(Z) R(Z) DATA BUS carries 32-, 16- or 8-bit data quantities depending on bus width configuration. The least significant bit is carried on D0 and the most significant on D31. When the bus is configured for 8-bit data, the lower 8 data lines, D7:0 are used. For 16-bit data bus widths, D15:0 are used. For 32-bit bus widths the full data bus is used. BE3:0 O S H(Z) R(1) BYTE ENABLES select which of the four bytes addressed by A31:2 are active during an access to a memory region configured for a 32-bit data-bus width. BE3 applies to D31:24; BE2 applies to D23:16; BE1 applies to D15:8 BE0 applies to D7:0. 32-bit bus: BE3 BE2 BE1 BE0 Byte Enable 3 Byte Enable 2 Byte Enable 1 Byte Enable 0 enable D31:24 enable D23:16 enable D15:8 enable D7:0 For accesses to a memory region configured for a 16-bit data-bus width, the processor uses the BE3, BE1 and BE0 pins as BHE, A1 and BLE respectively. 16-bit bus: BE3 BE2 BE1 BE0 Byte High Enable (BHE) enable D15:8 Not used (driven high or low) Address Bit 1 (A1) Byte Low Enable (BLE) enable D7:0 For accesses to a memory region configured for an 8-bit data-bus width, the processor uses the BE1 and BE0 pins as A1 and A0 respectively. 8-bit bus: BE3 BE2 BE1 BE0 6 Not used (driven high or low) Not used (driven high or low) Address Bit 1 (A1) Address Bit 0 (A0) W/R O S H(Z) R(0) WRITE/READ is asserted for read requests and deasserted for write requests. The W/R signal changes in the same clock cycle as ADS. It remains valid for the entire access in non-pipelined regions. In pipelined regions, W/R is not guaranteed to be valid in the last cycle of a read access. ADS O S H(Z) R(1) ADDRESS STROBE indicates a valid address and the start of a new bus access. ADS is asserted for the first clock of a bus access. READY I S(L) H(Z) R(Z) READY is an input which signals the termination of a data transfer. READY is used to indicate that read data on the bus is valid or that a write-data transfer has completed. The READY signal works in conjunction with the internally programmed wait-state generator. If READY is enabled in a region, the pin is sampled after the programmed number of wait-states has expired. If the READY pin is deasserted, wait states continue to be inserted until READY becomes asserted. This is true for the NRAD, NRDD, NWAD and NWDD wait states. The NXDA wait states cannot be extended. PRELIMINARY A 80960CF-40, -33, -25, -16 Table 2. 80960CF Pin Description — External Bus Signals (Sheet 2 of 3) Name Type Description BTERM I S(L) H(Z) R(Z) BURST TERMINATE is an input which breaks up a burst access and causes another address cycle to occur. The BTERM signal works in conjunction with the internally programmed wait-state generator. If READY and BTERM are enabled in a region, the BTERM pin is sampled after the programmed number of wait states has expired. When BTERM is asserted, a new ADS signal is generated and the access is completed. The READY input is ignored when BTERM is asserted. BTERM must be externally synchronized to satisfy BTERM setup and hold times. WAIT O S H(Z) R(1) WAIT indicates internal wait state generator status. WAIT is asserted when wait states are being caused by the internal wait state generator and not by the READY or BTERM inputs. WAIT can be used to derive a write-data strobe. WAIT can also be thought of as a READY output that the processor provides when it is inserting wait states. BLAST O S H(Z) R(0) BURST LAST indicates the last transfer in a bus access. BLAST is asserted in the last data transfer of burst and non-burst accesses after the wait state counter reaches zero. BLAST remains asserted until the clock following the last cycle of the last data transfer of a bus access. If the READY or BTERM input is used to extend wait states, the BLAST signal remains asserted until READY or BTERM terminates the access. DT/R O S H(Z) R(0) DATA TRANSMIT/RECEIVE indicates direction for data transceivers. DT/R is used in conjunction with DEN to provide control for data transceivers attached to the external bus. When DT/R is asserted, the signal indicates that the processor receives data. Conversely, when deasserted, the processor sends data. DT/R changes only while DEN is high. DEN O S H(Z) R(1) DATA ENABLE indicates data cycles in a bus request. DEN is asserted at the start of the bus request first data cycle and is deasserted at the end of the last data cycle. DEN is used in conjunction with DT/R to provide control for data transceivers attached to the external bus. DEN remains asserted for sequential reads from pipelined memory regions. DEN is deasserted when DT/R changes. LOCK O S H(Z) R(1) BUS LOCK indicates that an atomic read-modify-write operation is in progress. LOCK may be used to prevent external agents from accessing memory which is currently involved in an atomic operation. LOCK is asserted in the first clock of an atomic operation and deasserted in the clock cycle following the last bus access for the atomic operation. To allow the most flexibility for memory system enforcement of locked accesses, the processor acknowledges a bus hold request when LOCK is asserted. The processor performs DMA transfers while LOCK is active. HOLD I S(L) H(Z) R(Z) HOLD REQUEST signals that an external agent requests access to the external bus. The processor asserts HOLDA after completing the current bus request. HOLD, HOLDA and BREQ are used together to arbitrate access to the processor’s external bus by external bus agents. BOFF I S(L) H(Z) R(Z) BUS BACKOFF, when asserted, suspends the current access and causes the bus pins to float. When BOFF is deasserted, the ADS signal is asserted on the next clock cycle and the access is resumed. PRELIMINARY 7 A 80960CF-40, -33, -25, -16 Table 2. 80960CF Pin Description — External Bus Signals (Sheet 3 of 3) Name 8 Type Description HOLDA O S H(1) R(Q) HOLD ACKNOWLEDGE indicates to a bus requestor that the processor has relinquished control of the external bus. When HOLDA is asserted, the external address bus, data bus and bus control signals are floated. HOLD, BOFF, HOLDA and BREQ are used together to arbitrate access to the processor’s external bus by external bus agents. Since the processor grants HOLD requests and enters the Hold Acknowledge state even while RESET is asserted, the state of the HOLDA pin is independent of the RESET pin. BREQ O S H(Q) R(0) BUS REQUEST is asserted when the bus controller has a request pending. BREQ can be used by external bus arbitration logic in conjunction with HOLD and HOLDA to determine when to return mastership of the external bus to the processor. D/C O S H(Z) R(Z) DATA OR CODE is asserted for a data request and deasserted for instruction requests. D/C has the same timing as W/R. DMA O S H(Z) R(Z) DMA ACCESS indicates whether the bus request was initiated by the DMA controller. DMA is asserted for any DMA request. DMA is deasserted for all other requests. SUP O S H(Z) R(Z) SUPERVISOR ACCESS indicates whether the bus request is issued while in supervisor mode. SUP is asserted when the request has supervisor privileges and is deasserted otherwise. SUP can be used to isolate supervisor code and data structures from non-supervisor requests. PRELIMINARY A 80960CF-40, -33, -25, -16 Table 3. 80960CF Pin Description — Processor Control Signals (Sheet 1 of 2) Name RESET Type Description I A(L) H(Z) R(Z) RESET causes the chip to reset. When RESET is asserted, all external signals return to the reset state. When RESET is deasserted, initialization begins. When the 2-x clock mode is selected, RESET must remain asserted for 32 CLKIN cycles before being deasserted to guarantee correct processor initialization. When the 1-x clock mode is selected, RESET must remain asserted for 10,000 CLKIN cycles before being deasserted to guarantee correct processor initialization. The CLKMODE pin selects 1-x or 2-x input clock division of the CLKIN pin. The Hold Acknowledge bus state functions while the chip is reset. If the bus is in the Hold Acknowledge state when RESET is asserted, the processor internally resets, but maintains the Hold Acknowledge state on external pins until the Hold request is removed. If a Hold request is made while the processor is in the reset state, the processor bus grants HOLDA and enters the Hold Acknowledge state. FAIL O S H(Q) R(0) FAIL indicates failure of the self-test performed at initialization. When RESET is deasserted and initialization begins, the FAIL pin is asserted. An internal self-test is performed as part of the initialization process. If this self-test passes, the FAIL pin is deasserted; otherwise it remains asserted. The FAIL pin is reasserted while the processor performs an external bus self-confidence test. If this self-test passes, the processor deasserts the FAIL pin and branches to the user’s initialization routine; otherwise the FAIL pin remains asserted. Internal self-test and the use of the FAIL pin can be disabled with the STEST pin. STEST I S(L) H(Z) R(Z) SELF TEST enables or disables the internal self-test feature at initialization. STEST is read on the rising edge of RESET. When asserted, internal self-test and external bus confidence tests are performed during processor initialization. When deasserted, only the bus confidence tests are performed during initialization. ONCE I A(L) H(Z) R(Z) ON CIRCUIT EMULATION, when asserted, causes all outputs to be floated. ONCE is continuously sampled while RESET is low and is latched on the rising edge of RESET. To place the processor in the ONCE state: (1) assert RESET and ONCE (order does not matter) (2) wait for at least 16 CLKIN periods in 2-x mode—or 10,000 CLKIN periods in 1-x mode—after VCC and CLKIN are within operating specifications (3) deassert RESET (4) wait at least 32 CLKIN periods (The processor will now be latched in the ONCE state while RESET is high.) To exit the ONCE state, bring VCC and CLKIN to operating conditions, then assert RESET and bring ONCE high prior to deasserting RESET. CLKIN must operate within the specified operating conditions until Step 4 completes. CLKIN may then be changed to DC to achieve the lowest possible ONCE mode leakage current. ONCE can be used by emulator products or board testers to effectively make an installed processor transparent in the board. PRELIMINARY 9 A 80960CF-40, -33, -25, -16 Table 3. 80960CF Pin Description — Processor Control Signals (Sheet 2 of 2) Name Type Description CLKIN I A(E) H(Z) R(Z) CLOCK INPUT is an input for the external clock needed to run the processor. The external clock is internally divided as prescribed by the CLKMODE pin to produce PCLK2:1. CLKMODE I A(L) H(Z) R(Z) CLOCK MODE selects the division factor applied to the external clock input (CLKIN). When CLKMODE is high, CLKIN is divided by one to create PCLK2:1 and the processor’s internal clock. When CLKMODE is low, CLKIN is divided by two to create PCLK2:1 and the processor’s internal clock. CLKMODE should be tied high or low in a system as the clock mode is not latched by the processor. If left unconnected, the processor internally pulls the CLKMODE pin low, enabling the 2-x clock mode. PCLK2:1 O S H(Q) R(Q) PROCESSOR OUTPUT CLOCKS provide a timing reference for all inputs and outputs. All input and output timings are specified in relation to PCLK2 and PCLK1. PCLK2 and PCLK1 are identical signals. Two output pins are provided to allow flexibility in the system’s allocation of capacitive loading on the clock. PCLK2:1 may also be connected at the processor to form a single clock signal. VSS – GROUND connections must be connected externally to a VSS board plane. VCC – POWER connections must be connected externally to a VCC board plane. VCCPLL – VCCPLL is a separate VCC supply pin for the phase lock loop used in 1-x clock mode. Connecting a simple lowpass filter to VCCPLL may help reduce clock jitter (TCP) in noisy environments. Otherwise, VCCPLL should be connected to VCC. NC – NO CONNECT pins must not be connected in a system. 10 PRELIMINARY A 80960CF-40, -33, -25, -16 Table 4. 80960CF Pin Description — DMA and Interrupt Unit Control Signals Name Type Description DREQ3:0 I A(L) H(Z) R(Z) DMA REQUEST is used to request a DMA transfer. Each of the four signals requests a transfer on a single channel. DREQ0 requests channel 0, DREQ1 requests channel 1, etc. When two or more channels are requested simultaneously, the channel with the highest priority is serviced first. Channel priority mode is programmable. DACK3:0 O S H(1) R(1) DMA ACKNOWLEDGE indicates that a DMA transfer is being executed. Each of the four signals acknowledges a transfer for a single channel. DACK0 acknowledges channel 0, DACK1 acknowledges channel 1, etc. DACK3:0 are asserted when the requesting device of a DMA is accessed. EOP/TC3:0 I/O A(L) H(Z/Q) R(Z) END OF PROCESS/TERMINAL COUNT can be programmed as either an input (EOP3:0) or output (TC3:0), but not both. Each pin is individually programmable. When programmed as an input, EOPx causes termination of a current DMA transfer for the channel that corresponds to the EOPx pin. EOP0 corresponds to channel 0, EOP1 corresponds to channel 1, etc. When a channel is configured for source and destination chaining, the EOP pin for that channel causes termination of only the current buffer transferred and causes the next buffer to be transferred. EOP3:0 are asynchronous inputs. When programmed as an output, the channel’s TCx pin indicates that the channel byte count has reached 0 and a DMA has terminated. TCx is driven with the same timing as DACKx during the last DMA transfer for a buffer. If the last bus request is executed as multiple bus accesses, TCx stays asserted for the entire bus request. XINT7:0 I A(E/L) H(Z) R(Z) EXTERNAL INTERRUPT PINS cause interrupts to be requested. These pins can be configured in three modes: Dedicated Mode: each pin is a dedicated external interrupt source. Dedicated inputs can be individually programmed to be level (low) or edge (falling) activated. Expanded Mode: the eight pins act together as an 8-bit vectored interrupt source. The interrupt pins in this mode are level activated. Since the interrupt pins are active low, the vector number requested is the 1’s complement of the positive logic value place on the port. This eliminates glue logic to interface to combinational priority encoders which output negative logic. Mixed Mode: XINT7:5 are dedicated sources and XINT4:0 act as the five most significant bits of an expanded mode vector. The least significant bits are set to 010 internally. NMI I A(E) H(Z) R(Z) PRELIMINARY NON-MASKABLE INTERRUPT causes a non-maskable interrupt event to occur. NMI is the highest priority interrupt recognized. NMI is an edge (falling) activated source. 11 A 80960CF-40, -33, -25, -16 3.3 80960CF Mechanical Data 80960CF PGA pinout as viewed from the pin-side of the package (i.e., pins facing up). 3.3.1 80960CF PGA PINOUT Table 5 lists the 80960CF pin names and package location in signal order; Table 6 lists the pin names and package location in pin order. See Section 4.0, ELECTRICAL SPECIFICATIONS for specifications and recommended connections. Figure 2 depicts the complete 80960CF PGA pinout as viewed from the top side of the component (i.e., pins facing down). Figure 3 shows the complete 1 2 3 4 5 S R Q P N M L K J H G F E D C B A D25 D24 D21 D19 D17 D16 D15 D13 D12 D11 D9 D8 D7 D5 D3 BOFF NC D29 D27 D23 D20 D18 VCC D14 VCC VCC D10 VCC D6 D4 D2 D1 STEST FAIL READY D31 D26 D22 VCC VSS VSS VSS VSS VSS VSS VCC D0 NC ONCE NC NC NC NC NC DREQ0 NC HOLDA BTERM D28 HOLD D30 NC BE2 ADS VCC VCC DREQ2 DREQ1 BE1 VCC VSS VSS BLAST VCC VSS VSS DEN BE0 VSS VSS W/R VCC VSS VSS DT/R VCC VSS VSS VCC EOP/TC0 WAIT DMA SUP VSS VCC EOP/TC1 D/C BREQ A30 CLKIN PCLK2 EOP/TC2 LOCK A29 A28 CLKMODE PCLK1 EOP/TC3 A31 A26 A24 A20 VCC VSS VSS VSS VSS VSS VSS VSS VCC NMI XINT4 XINT0 A27 A23 A21 A19 A16 VCC A13 VCC VCC VCC A7 VCC A4 A2 XINT6 XINT3 RESET A25 A22 A18 A17 A15 A14 A12 A11 A10 A9 A8 A6 A5 A3 XINT7 XINT5 R Q P N M L K H G F E D 7 8 9 10 11 12 13 14 15 16 2 3 4 5 BE3 6 1 VCC DREQ3 6 7 8 DACK0 DACK1 9 VCC DACK2 VCCPLL DACK3 10 11 12 13 14 XINT1 17 15 16 17 S J C B XINT2 A F_CA002A Figure 2. 80960CF PGA Pinout—View from Top (Pins Facing Down) 12 PRELIMINARY A 80960CF-40, -33, -25, -16 A B C D E F G H J K L M N P Q R S NC BOFF D3 D5 D7 D8 D9 D11 D12 D13 D15 D16 D17 D19 D21 D24 D25 FAIL STEST D1 D2 D4 D6 VCC D10 VCC VCC D14 VCC D18 D20 D23 D27 D29 NC NC ONCE NC D0 VCC VSS VSS VSS VSS VSS VSS VCC D22 D26 D31 READY NC NC NC D28 NC DREQ0 NC D30 HOLD BE3 DREQ1 DREQ2 VCC VCC ADS BE2 DREQ3 VSS VSS VCC BE1 VSS VCC BLAST 1 1 2 2 3 3 4 4 BTERM HOLDA 5 5 6 6 7 7 VCC 8 8 DACK1 DACK0 VSS DACK2 VSS VSS BE0 DEN VSS VSS VCC W/R Metal Lid 9 VCC 9 10 10 DACK3 VCCPLL 11 11 EOP/TC0 VCC VSS VSS VCC DT/R EOP/TC1 VCC VSS SUP DMA WAIT EOP/TC2 PCLK2 CLKIN A30 BREQ D/C EOP/TC3 PCLK1 CLK MODE A28 A29 LOCK 12 12 13 13 14 14 15 15 XINT1 XINT0 XINT4 NMI VCC VSS VSS VSS VSS VSS VSS VSS VCC A20 A24 A26 A31 RESET XINT3 XINT6 A2 A4 VCC A7 VCC VCC VCC A13 VCC A16 A19 A21 A23 A27 XINT2 XINT5 XINT7 A3 A5 A6 A8 A9 A10 A11 A12 A14 A15 A17 A18 A22 A25 D E F G H J K L M N P Q R S 16 16 17 17 A B C F_CA003A Figure 3. 80960CF PGA Pinout — View from Bottom (Pins Facing Up) PRELIMINARY 13 A 80960CF-40, -33, -25, -16 Table 5. 80960CF PGA Pinout — In Signal Order Address Bus Signal A31 Pin S15 Data Bus Signal D31 Pin R3 Bus Control Signal Pin BE3 S5 A30 Q13 D30 Q5 BE2 S6 A29 R14 D29 S2 BE1 S7 BE0 R9 A28 Q14 D28 Q4 A27 S16 D27 R2 A26 R15 D26 Q3 A25 S17 D25 S1 W/R ADS Processor Control Signal Pin FAIL A2 STEST B2 ONCE C3 CLKIN C13 EOP/TC3 A14 S10 Q15 D24 R1 R16 D23 Q2 A22 R17 D22 P3 READY S3 CLKMODE C14 A21 Q16 D21 Q1 BTERM R4 PLCK1 B14 A20 P15 D20 P2 PLCK2 B13 A19 P16 D19 P1 WAIT S12 A18 Q17 D18 N2 BLAST S8 A17 P17 D17 N1 R6 A16 N16 D16 M1 DT/R S11 N17 D15 L1 DEN S9 A14 M17 D14 L2 A13 L16 D13 K1 A12 L17 D12 J1 A11 K17 D11 H1 A10 J17 D10 H2 HOLD R5 A9 H17 D9 G1 HOLDA S4 A8 G17 D8 F1 BREQ R13 A7 G16 D7 E1 A6 F17 D6 F2 D/C S13 A5 E17 D5 D1 DMA R12 SUP Q12 E16 D4 E2 D3 C1 A2 D16 D2 D2 D1 C2 D0 E3 14 VSS DREQ3 A7 DREQ2 B6 DREQ1 A6 DREQ0 B5 DACK3 A10 DACK2 A9 DACK1 A8 DACK0 B8 EOP/TC2 A13 EOP/TC1 A12 EOP/TC0 A11 Location A15 D17 Pin A16 A23 A4 Signal RESET A24 A3 I/O LOCK S14 XINT7 C17 XINT6 C16 XINT5 B17 XINT4 C15 XINT3 B16 XINT2 A17 C7, C8, C9, C10, C11, C12, F15, G3, G15, H3, H15, J3, J15, K3, K15, L3, L15, M3, M15, Q7, Q8, Q9, Q10, Q11 VCC Location XINT1 A15 B7, B9, B11, B12, C6, XINT0 E15, F3, F16, G2, H16, J2, J16, K2, K16, M2, M16, N3, N15, Q6, R7, NMI R8, R10, R11 B15 VCCPLL D15 B10 No Connect BOFF B1 Location A1, A3, A4, A5, B3, B4, C4, C5, D3 PRELIMINARY A 80960CF-40, -33, -25, -16 Table 6. 80960CF PGA Pinout — In Pin Order Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal A1 NC C1 D3 F17 A6 M15 VSS R3 A2 FAIL C2 D1 G1 D9 M16 VCC R4 BTERM A3 NC C3 ONCE G2 VCC M17 A14 R5 HOLD A4 NC C4 NC G3 VSS N1 D17 R6 ADS A5 NC C5 NC G15 VSS N2 D18 R7 VCC A6 DREQ1 C6 VCC G16 A7 N3 VCC R8 VCC A7 DREQ3 C7 VSS G17 A8 N15 VCC R9 BE0 A8 DACK1 C8 VSS H1 D11 N16 A16 R10 VCC A9 DACK2 C9 VSS H2 D10 N17 A15 R11 VCC A10 DACK3 C10 VSS H3 VSS P1 D19 R12 DMA A11 EOP/TC0 C11 VSS H15 VSS P2 D20 R13 BREQ A12 EOP/TC1 C12 VSS H16 VCC P3 D22 R14 A29 A13 EOP/TC2 C13 CLKIN H17 A9 P15 A20 R15 A26 A14 EOP/TC3 C14 CLKMODE J1 D12 P16 A19 R16 A23 D31 A15 XINT1 C15 XINT4 J2 VCC P17 A17 R17 A22 A16 RESET C16 XINT6 J3 VSS Q1 D21 S1 D25 A17 XINT2 C17 XINT7 J15 VSS Q2 D23 S2 D29 B1 BOFF D1 D5 J16 VCC Q3 D26 S3 READY B2 STEST D2 D2 J17 A10 Q4 D28 S4 HOLDA B3 NC D3 NC K1 D13 Q5 D30 S5 BE3 B4 NC D15 NMI K2 VCC Q6 VCC S6 BE2 B5 DREQ0 D16 A2 K3 VSS Q7 VSS S7 BE1 B6 DREQ2 D17 A3 K15 VSS Q8 VSS S8 BLAST B7 VCC E1 D7 K16 VCC Q9 VSS S9 DEN B8 DACK0 E2 D4 K17 A11 Q10 VSS S10 W/R B9 VCC E3 D0 L1 D15 Q11 VSS S11 DT/R B10 VCCPLL E15 VCC L2 D14 Q12 SUP S12 WAIT B11 VCC E16 A4 L3 VSS Q13 A30 S13 D/C B12 VCC E17 A5 L15 VSS Q14 A28 S14 LOCK B13 PCLK2 F1 D8 L16 A13 Q15 A24 S15 A31 B14 PCLK1 F2 D6 L17 A12 Q16 A21 S16 A27 B15 XINT0 F3 VCC M1 D16 Q17 A18 S17 A25 B16 XINT3 F15 VSS M2 VCC R1 D24 B17 XINT5 F16 VCC M3 VSS R2 D27 PRELIMINARY 15 80960CF-40, -33, -25, -16 3.3.2 A 80960CF PQFP Pinout (80960CF-33, -25, -16 Only) Tables 7 and 8 list the 80960CF pin names with package location. Figure 4 shows the 80960CF PQFP pinout as viewed from the top side. See Section 4.0, ELECTRICAL SPECIFICATIONS for specifications and recommended connections. 16 PRELIMINARY A 80960CF-40, -33, -25, -16 Table 7. 80960CF PQFP Pinout — In Signal Order (80960CF-33, -25, -16 Only) Address Bus Signal Pin Data Bus Signal Pin Bus Control Signal Pin Processor Control Signal A31 153 D31 186 BE3 176 A30 152 D30 187 BE2 175 FAIL A29 151 D29 188 BE1 172 STEST A28 145 D28 189 BE0 170 ONCE 43 A27 144 D27 191 CLKIN 87 A26 143 D26 192 A25 142 D25 194 A24 141 D24 195 A23 139 D23 3 W/R ADS 164 178 RESET Pin 91 I/O Signal Pin DREQ3 60 45 DREQ2 59 46 DREQ1 58 DREQ0 57 CLKMODE 85 DACK3 65 PCLK2 74 DACK2 64 PCLK1 78 DACK1 63 DACK0 62 VSS Location A22 138 D22 4 READY 182 A21 137 D21 5 BTERM 184 A20 136 D20 6 A19 134 D19 8 WAIT 162 A18 133 D18 9 BLAST 169 A17 132 D17 10 A16 130 D16 11 DT/R 163 XINT7 107 A15 129 D15 13 DEN 167 VCC XINT6 106 A14 128 D14 14 Location XINT5 102 A13 124 D13 15 LOCK 156 XINT4 101 A12 123 D12 17 XINT3 100 A11 122 D11 18 HOLD 181 XINT2 95 A10 120 D10 19 HOLDA 179 1, 12, 20, 28, 32, 37, 44, 50, 61, 71, 79, 82, 96, 99, 103, 115, 127, 140, 148, 154, 168, 171, 180, 190 XINT1 94 A9 119 D9 21 BREQ 155 XINT0 93 A8 118 D8 22 A7 117 D7 23 D/C 159 NMI 108 2, 7, 16, 24, 30, 38, 39, 49, 56, 70, 75, 77, 81, 83, 88, 89, 92, 98, 105, 109, 110, 121, 125, 131, 135, 147, 150, 161, 165, 173, 174, 185, 196 VCCPLL EOP/TC2 68 EOP/TC1 67 EOP/TC0 66 72 No Connect A6 116 D6 25 DMA 160 Location A5 114 D5 26 SUP 158 A4 113 D4 27 A3 112 D3 33 BOFF 40 A2 111 D2 34 D1 35 29, 31, 41, 42, 47, 48, 51, 52, 53, 54, 55, 73, 76, 80, 84, 86, 90, 97, 104, 126, 146, 149, 157, 166, 177, 183, 193 D0 36 PRELIMINARY EOP/TC3 69 17 A 80960CF-40, -33, -25, -16 Table 8. 80960CF PQFP Pinout — In Pin Order (80960CF-33, -25, -16 Only) Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal 1 VCC 34 D2 67 EOP/TC1 100 XINT3 133 A18 166 NC 2 VSS 35 D1 68 EOP/TC2 101 XINT4 134 A19 167 DEN 3 D23 36 D0 69 EOP/TC3 102 XINT5 135 VSS 168 VCC 4 D22 37 VCC 70 VSS 103 VCC 136 A20 169 BLAST 5 D21 38 VSS 71 VCC 104 NC 137 A21 170 BE0 VCC 6 D20 39 VSS 72 VCCPLL 105 VSS 138 A22 171 7 VSS 40 BOFF 73 NC 106 XINT6 139 A23 172 BE1 8 D19 41 NC 74 PCLK2 107 XINT7 140 VCC 173 VSS 9 D18 42 NC 75 VSS 108 NMI 141 A24 174 VSS 10 D17 43 ONCE 76 NC 109 VSS 142 A25 175 BE2 11 D16 44 VCC 77 VSS 110 VSS 143 A26 176 BE3 12 VCC 45 FAIL 78 PCLK1 111 A2 144 A27 177 NC 13 D15 46 STEST 79 VCC 112 A3 145 A28 178 ADS 14 D14 47 NC 80 NC 113 A4 146 NC 179 HOLDA 15 D13 48 NC 81 VSS 114 A5 147 VSS 180 VCC 16 VSS 49 VSS 82 VCC 115 VCC 148 VCC 181 HOLD 17 D12 50 VCC 83 VSS 116 A6 149 NC 182 READY 18 D11 51 NC 84 NC 117 A7 150 VSS 183 NC 19 D10 52 NC 85 CLKMODE 118 A8 151 A29 184 BTERM 20 VCC 53 NC 86 NC 119 A9 152 A30 185 VSS 21 D9 54 NC 87 CLKIN 120 A10 153 A31 186 D31 D30 22 D8 55 NC 88 VSS 121 VSS 154 VCC 187 23 D7 56 VSS 89 VSS 122 A11 155 BREQ 188 D29 24 VSS 57 DREQ0 90 NC 123 A12 156 LOCK 189 D28 25 D6 58 DREQ1 91 RESET 124 A13 157 NC 190 VCC 26 D5 59 DREQ2 92 VSS 125 VSS 158 SUP 191 D27 27 D4 60 DREQ3 93 XINT0 126 NC 159 D/C 192 D26 28 VCC 61 VCC 94 XINT1 127 VCC 160 DMA 193 NC 29 NC 62 DACK0 95 XINT2 128 A14 161 VSS 194 D25 30 VSS 63 DACK1 96 VCC 129 A15 162 WAIT 195 D24 31 NC 64 DACK2 97 NC 130 A16 163 DT/R 196 VSS 32 VCC 65 DACK3 98 VSS 131 VSS 164 W/R 33 D3 66 EOP/TC0 99 VCC 132 A17 165 VSS 18 PRELIMINARY A 80960CF-40, -33, -25, -16 98 50 99 49 147 Pin 1 148 196 F_CA004A Figure 4. 80960CF PQFP Pinout—Top View (80960CF-33, -25, -16 Only) 3.4 Package Thermal Specifications The 80960CF is specified for operation when TC (case temperature) is within the range of 0°C–100°C for 33, 25, and 16 MHz and 0°C–85°C for 40 MHz. TC may be measured in any environment to determine whether the 80960CF is within specified operating range. Case temperature should be measured at the center of the top surface, opposite the pins. Refer to Figure 5. Table 9 shows the maximum TA allowable (without exceeding TC) at various airflows and operating frequencies (fPCLK). Note that TA is greatly improved by attaching fins or a heatsink to the package. P (maximum power consumption) is calculated by using the typical ICC as tabulated in Section 4.4, DC Specifications and VCC of 5 V. TA (ambient temperature) is calculated from θCA (thermal resistance from case to ambient) using the equation: TA = TC – P*θCA PRELIMINARY 19 A 80960CF-40, -33, -25, -16 Measure PGA temperature at center of top surface Measure PQFP case temperature at center of top surface. 168 - Pin PGA Pin 196 Pin 1 Figure 5. Measuring 80960CF PGA and PQFP Case Temperature Table 9. Maximum TA at Various Airflows in oC (PGA Package Only) Airflow-ft/min (m/sec) TA with Heatsink* TA without Heatsink* fPCLK (MHz) 0 200 400 600 800 1000 (0) (1.01) (2.03) (3.04) (4.06) (5.07) 40 20 40 58 60 66 68 33 38 57 74 76 81 84 25 50 65 79 81 85 87 16 63 74 84 86 89 90 40 0 15 30 40 50 52 33 18 33 47 57 66 67 25 34 46 57 65 72 74 16 51 60 68 74 80 81 NOTES: *0.285” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing). 20 PRELIMINARY A 80960CF-40, -33, -25, -16 Table 10. 80960CF PGA Package Thermal Characteristics Thermal Resistance — °C/Watt Airflow — ft./min (m/sec) Parameter 0 200 400 600 800 1000 (0) (1.01) (2.03) (3.07) (4.06) (5.07) θ Junction-to-Case (Case measured as shown in Figure 5) 1.5 1.5 1.5 1.5 1.5 1.5 θ Case-to-Ambient (No Heatsink) 17 14 11 9 7.1 6.6 θ Case-to-Ambient (With Heatsink)* 13 9 5.5 5 3.9 3.4 θJA θJC AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAA AAA AAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAA AAA AAAA NOTES: 1. This table applies to 80960CF PGA plugged into socket or soldered directly to board. 2. θJA = θJC + θCA *0.285” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing). Table 11. 80960CF PQFP Package Thermal Characteristics Thermal Resistance — °C/Watt Airflow — ft./min (m/sec) Parameter 0 50 100 200 400 600 800 (0) (0.25) (0.50) (1.01) (2.03) (3.04) (4.06) θ Junction-to-Case (Case Measured as shown in Figure 5) 5 5 5 5 5 5 5 θ Case-to-Ambient (No Heatsink) 19 18 17 15 12 10 9 NOTES: 1. This table applies to 80960CF PQFP soldered directly to board. 2. θJA = θJC + θCA θJC PRELIMINARY 21 A 80960CF-40, -33, -25, -16 3.5 Stepping Register Information Upon reset, register g0 contains die stepping information (Figure 6). The most significant byte contains ASCII 0; the upper middle byte contains an ASCII C; the lower middle byte contains an ASCII F. The least significant byte contains the stepping number in ASCII. g0 retains this information until it is overwritten by the user program. Table 12 contains a cross reference of the number in the least significant byte of register g0 to the die stepping number. ASCII 00 43 46 Stepping Number DECIMAL 0 C F MSB Stepping Number LSB Figure 6. Register g0 Table 12. Die Stepping Cross Reference 3.6 g0 Least Significant Byte Die Stepping 01 A 02 B 03 C 04 D 05 E Sources for Accessories The following is a list of suggested sources for 80960CF accessories. This is neither an endorsement nor a warranty of the performance of any of the listed products and/or companies. Sockets 1. 3M Textool Test and Interconnection Products 6801 River Place Blvd. Mailstop 130-3N-29 Austin, TX 78726-9000 (800) 328-0411 2. Augat, Inc. Interconnection Products Group 452 John Dietsch Blvd. Attleboro Falls, MA 02763 (508) 699-7646 3. Concept Mfg., Inc. (Decoupling Sockets) 400 Walnut St. Suite 609 Redwood City, CA 94063 (415) 365-1162 FAX: (415)265-1164 22 Heatsinks/Fins 1. Thermalloy, Inc. 2021 West Valley View Lane Dallas, TX 75234 (214) 243-4321 FAX: (214) 241-4656 2. Wakefield Engineering 60 Audubon Road Wakefield, MA 01880 (617) 245-5900 PRELIMINARY A 80960CF-40, -33, -25, -16 4.0 ELECTRICAL SPECIFICATIONS 4.1 Absolute Maximum Ratings Parameter Maximum Rating Storage Temperature................................ –65°C to +150°C Case Temperature Under Bias ..................–65°C to +110°C Supply Voltage wrt. VSS ............................–0.5 V to + 6.5 V NOTICE: This document contains preliminary information on new products in production.The specifications are subject to change without notice. Verify with your local Intel sales office that you have the latest datasheet before finalizing a design. *WARNING: Stressing the device beyond the “Absolute Maximum Ratings” may cause permanent damage. These are stress ratings only. Operation beyond the “Operating Conditions” is not recommended and extended exposure beyond the “Operating Conditions” may affect device reliability. Voltage on Other Pins wrt. VSS ......... –0.5 V to VCC + 0.5 V 4.2 Operating Conditions Table 13. Operating Conditions Symbol VCC Parameter 4.75 4.50 4.50 4.50 5.25 5.50 5.50 5.50 V 0 0 0 0 80 66 50 32 MHz 8 8 8 8 40 33 25 16 MHz 0 0 0 85 100 100 oC Notes (1) Input Clock Frequency (1-x Mode) 80960CF-40 80960CF-33 80960CF-25 80960CF-16 TC Units Input Clock Frequency (2-x Mode) 80960CF-40 80960CF-33 80960CF-25 80960CF-16 fCLK1x Max Supply Voltage 80960CF-40 80960CF-33 80960CF-25 80960CF-16 fCLK2x Min Case Temp Under Bias PGA Pkg. (80960CF-40) PGA Pkg. (80960CF-33, -25, -16 Only) 196-Pin PQFP (80960CF-33, -25, -16 Only) NOTES: 1. When in the 1-x input clock mode, CLKIN is an input to an internal phase-locked loop and must maintain a minimum frequency of 8 MHz for proper processor operation. However, in the 1-x mode, CLKIN may still be stopped when the processor is in a reset condition. If CLKIN is stopped, the specified RESET low time must be provided once CLKIN restarts and has stabilized. PRELIMINARY 23 A 80960CF-40, -33, -25, -16 4.3 Recommended Connections Power and ground connections must be made to multiple VCC and VSS (GND) pins. Every 80960CFbased circuit board should include power (VCC) and ground (VSS) planes for power distribution. Every VCC pin must be connected to the power plane, and every VSS pin must be connected to the ground plane. Pins identified as “NC” must not be connected in the system. Liberal decoupling capacitance should be placed near the 80960CF. The processor can cause transient power surges when its numerous output buffers transition, particularly when connected to large capacitive loads. performance. Inductance can be reduced by shortening the board traces between the processor and decoupling capacitors as much as possible. Capacitors specifically designed for PGA packages will offer the lowest possible inductance. For reliable operation, always connect unused inputs to an appropriate signal level. In particular, any unused interrupt (XINT, NMI), DMA (DREQ), or BTERM input should be connected to VCC through a pull-up resistor. Pull-up resistors should be in the in the range of 20 KΩ for each pin tied high. If READY or HOLD are not used, the unused input should be connected to ground. N.C. pins must always remain unconnected. For additional information refer to the i960® Cx Microprocessor User’s Manual (270710). Low inductance capacitors and interconnects are recommended for best high frequency electrical 4.4 DC Specifications Table 14. DC Characteristics (Sheet 1 of 2) (80960CF-40, 33, -25, -16 under the conditions described in Section 4.2, Operating Conditions.) Symbol Parameter Min Max Units VIL Input Low Voltage for all pins except RESET – 0.3 +0.8 V VIH Input High Voltage for all pins except RESET 2.0 VCC + 0.3 V VOL Output Low Voltage 0.45 V VOH Output High Voltage VILR Input Low Voltage for RESET – 0.3 1.5 V VIHR Input High Voltage for RESET 3.5 VCC + 0.3 V IOH = –1 mA IOH = – 200 µA 2.4 VCC – 0.5 Notes IOL = 5 mA V V NOTES: 1. 2. 3. 4. No pullup or pulldown. These pins have internal pullup resistors. These pins have internal pulldown resistors. Measured at worst case frequency, VCC and temperature, with device operating and outputs loaded to the test conditions described in Section 4.5.1, AC TEST CONDITIONS. 5. ICC Typical is not tested. 6. Output Capacitance is the capacitive load of a floating output. 7. CLKMODE pin has a pulldown resistor only when ONCE pin is deasserted. 24 PRELIMINARY A 80960CF-40, -33, -25, -16 Table 14. DC Characteristics (Sheet 2 of 2) (80960CF-40, 33, -25, -16 under the conditions described in Section 4.2, Operating Conditions.) Symbol ILI1 Parameter Min Input Leakage Current for each pin except: BTERM, ONCE, DREQ3:0, STEST, EOP3:0/TC3:0, NMI, XINT7:0, BOFF, READY, HOLD, CLKMODE Max Units Notes ±15 µA 0 ≤ VIN ≤ VCC (1) – 300 µA VIN = 0.45 V (2) ILI2 Input Leakage Current for: BTERM, ONCE, DREQ3:0, STEST, EOP3:0/TC3:0, NMI, XINT7:0, BOFF 0 ILI3 Input Leakage Current for: READY, HOLD, CLKMODE 0 500 µA VIN = 2.4 V (3,7) ILO Output Leakage Current ±15 µA 0.45 ≤ VOUT ≤ VCC ICC Supply Current (80960CF-40, 33): ICC Max ICCTyp 1150 1000 mA mA (4) (5) ICC Supply Current (80960CF-25): ICC Max ICCTyp 950 775 mA mA (4) (5) ICC Supply Current (80960CF-16): ICC Max ICCTyp 750 575 IONCE ONCE-mode Supply Current mA (4) (5) mA 80960CF-40 80960CF-33, -25, -16 225 150 CIN Input Capacitance for: CLKIN, RESET, ONCE, READY, HOLD, DREQ3:0, BOFF, XINT7:0, NMI, BTERM, CLKMODE COUT Output Capacitance of each output pin 12 pF FC = 1 MHz (6) CI/O I/O Pin Capacitance 12 pF FC = 1 MHz 0 12 pF FC = 1 MHz NOTES: 1. 2. 3. 4. No pullup or pulldown. These pins have internal pullup resistors. These pins have internal pulldown resistors. Measured at worst case frequency, VCC and temperature, with device operating and outputs loaded to the test conditions described in Section 4.5.1, AC TEST CONDITIONS. 5. ICC Typical is not tested. 6. Output Capacitance is the capacitive load of a floating output. 7. CLKMODE pin has a pulldown resistor only when ONCE pin is deasserted. PRELIMINARY 25 A 80960CF-40, -33, -25, -16 4.5 AC Specifications Table 15. 80960CF AC Characteristics (40 MHz) (Sheet 1 of 3) (80960CF-40 only, per the conditions in 4.2 Operating Conditions and 4.5.1 AC TEST CONDITIONS.) Symbol Parameter Min Max Units Notes Input Clock (1,9) TF CLKIN Frequency TC CLKIN Period In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x) 0 80 MHz 25 12.5 125 ∞ ns ns (11) TCS CLKIN Period Stability In 1-x Mode (fCLK1x) ±0.1% ∆ (12) TCH CLKIN High Time In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x) 5 5 62.5 ∞ ns ns (11) TCL CLKIN Low Time In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x) 5 5 62.5 ∞ ns ns (11) TCR CLKIN Rise Time 0 6 ns TCF CLKIN Fall Time 0 6 ns –2 2 2 25 ns ns (3,12) (3) ns ns (12) (3) ns (12) Output Clocks (1,8) TCP CLKIN to PCLK2:1 Delay In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x) T PCLK2:1 Period In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x) TPH PCLK2:1 High Time (T/2) – 2 T/2 TPL PCLK2:1 Low Time (T/2) – 2 T/2 ns (12) TPR PCLK2:1 Rise Time 1 4 ns (3) TPF PCLK2:1 Fall Time 1 4 ns (3) TC 2TC Synchronous Outputs (8) NOTES: See Table 18 for all notes related to AC specifications. 26 PRELIMINARY A 80960CF-40, -33, -25, -16 Table 15. 80960CF AC Characteristics (40 MHz) (Sheet 2 of 3) (80960CF-40 only, per the conditions in 4.2 Operating Conditions and 4.5.1 AC TEST CONDITIONS.) Symbol Parameter TOH TOV Output Valid Delay, Output Hold A31:2 TOH1, TOV1 BE3:0 TOH2, TOV2 TOH3, TOV3 ADS TOH4, TOV4 W/R TOH5, TOV5 D/C, SUP, DMA TOH6, TOV6 BLAST, WAIT TOH7, TOV7 DEN TOH8, TOV8 HOLDA, BREQ LOCK TOH9, TOV9 TOH10, TOV10 DACK3:0 TOH11, TOV11 D31:0 DT/R TOH12, TOV12 TOH13, TOV13 FAIL TOH14, TOV14 EOP3:0/TC3:0 TOF Output Float for all outputs Min Max Units Notes 3 3 6 3 4 5 3 4 4 4 3 T/2 + 3 2 3 14 16 16 16 16 16 16 16 16 16 16 T/2 + 14 14 16 ns ns ns ns ns ns ns ns ns ns ns ns ns ns (6,10) 3 22 ns (6) (6,10) Synchronous Inputs (1,9,10) TIS TIH Input Setup TIS1 TIS2 TIS3 TIS4 D31:0 BOFF BTERM/READY HOLD 3 15 7 5 ns ns ns ns Input Hold TIH1 TIH2 TIH3 TIH4 D31:0 BOFF BTERM/READY HOLD 5 5 2 3 ns ns ns ns NOTES: See Table 18 for all notes related to AC specifications. PRELIMINARY 27 A 80960CF-40, -33, -25, -16 Table 15. 80960CF AC Characteristics (40 MHz) (Sheet 3 of 3) (80960CF-40 only, per the conditions in 4.2 Operating Conditions and 4.5.1 AC TEST CONDITIONS.) Symbol Parameter Min Max Units Notes Relative Output Timings (1,2,3,8) TAVSH1 A31:2 Valid to ADS Rising T–4 T+4 ns TAVSH2 BE3:0, W/R, SUP, D/C, DMA, DACK3:0 Valid to ADS Rising T–6 T+6 ns TAVEL1 A31:2 Valid to DEN Falling T–4 T+4 ns TAVEL2 BE3:0, W/R, SUP, INST,DMA, DACK3:0 Valid to DEN Falling T–6 T+6 ns TNLQV WAIT Falling to Output Data Valid TDVNH Output Data Valid to WAIT Rising N*T + 6 ns (4) ns (4) (N+1)*T+6 ns (5) ±6 N*T – 6 ns TNLNH WAIT Falling to WAIT Rising TNHQX Output Data Hold after WAIT Rising N*T ± 4 TEHTV DT/R Hold after DEN High T/2 – 7 TTVEL DT/R Valid to DEN Falling T/2 – 4 ns 6 ns (N+1)*T–8 ∞ ns (6) Relative Input Timings (1,2,3) TIS5 RESET Input Setup (2-x Clock Mode) (13) TIH5 RESET Input Hold (2-x Clock Mode) 5 ns (13) TIS6 DREQ3:0 Input Setup 12 ns (7) TIH6 DREQ3:0 Input Hold 7 ns (7) TIS7 XINT7:0, NMI Input Setup 7 ns (15) TIH7 XINT7:0, NMI Input Hold 3 ns (15) TIS8 RESET Input Setup (1-x Clock Mode) 3 ns (14) TIH8 RESET Input Hold (1-x Clock Mode) T/4 + 1 ns (14) NOTES: See Table 18 for all notes related to AC specifications. 28 PRELIMINARY A 80960CF-40, -33, -25, -16 Table 16. 80960CF AC Characteristics (33 MHz) (Sheet 1 of 3) (80960CF-33 only, per the conditions in 4.2 Operating Conditions and 4.5.1 AC TEST CONDITIONS.) Symbol Parameter Min Max Units 0 66.66 MHz 30 15 125 ∞ Notes Input Clock (1,9) TF CLKIN Frequency TC CLKIN Period In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x) TCS CLKIN Period Stability In 1-x Mode (f CLK1x) ±0.1% ∆ (12) TCH CLKIN High Time In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x) 5 5 62.5 ∞ ns ns (11) TCL CLKIN Low Time In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x) 5 5 62.5 ∞ ns ns (11) TCR CLKIN Rise Time 0 6 ns TCF CLKIN Fall Time 0 6 ns –2 2 2 25 ns ns (3,12) (3) ns ns (12) (3) ns ns (11) Output Clocks (1,8) TCP CLKIN to PCLK2:1 Delay In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x) T PCLK2:1 Period In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x) TPH PCLK2:1 High Time (T/2) – 2 T/2 ns (12) TPL PCLK2:1 Low Time (T/2) – 2 T/2 ns (12) TPR PCLK2:1 Rise Time 1 4 ns (3) TPF PCLK2:1 Fall Time 1 4 ns (3) TC 2TC NOTES: See Table 18 for all notes related to AC specifications. PRELIMINARY 29 A 80960CF-40, -33, -25, -16 Table 16. 80960CF AC Characteristics (33 MHz) (Sheet 2 of 3) (80960CF-33 only, per the conditions in 4.2 Operating Conditions and 4.5.1 AC TEST CONDITIONS.) Symbol Parameter Min Max Units Notes 3 3 6 3 4 5 3 4 4 4 3 T/2 + 3 2 3 14 16 18 18 16 16 16 16 16 18 16 T/2 + 14 14 18 ns ns ns ns ns ns ns ns ns ns ns ns ns ns (6,10) 3 22 ns (6) Synchronous Outputs (8) TOH TOV TOF Output Valid Delay, Output Hold A31:2 TOH1, TOV1 BE3:0 TOH2, TOV2 TOH3, TOV3 ADS TOH4, TOV4 W/R TOH5, TOV5 D/C, SUP, DMA TOH6, TOV6 BLAST, WAIT TOH7, TOV7 DEN TOH8, TOV8 HOLDA, BREQ LOCK TOH9, TOV9 TOH10, TOV10 DACK3:0 TOH11, TOV11 D31:0 DT/R TOH12, TOV12 TOH13, TOV13 FAIL TOH14, TOV14 EOP3:0/TC3:0 Output Float for all outputs (6,10) Synchronous Inputs (1,9,10) TIS TIH Input Setup TIS1 TIS2 TIS3 TIS4 D31:0 BOFF BTERM/READY HOLD 3 17 7 7 ns ns ns ns Input Hold TIH1 TIH2 TIH3 TIH4 D31:0 BOFF BTERM/READY HOLD 5 5 2 3 ns ns ns ns Relative Output Timings (1,2,3,8) TAVSH1 A31:2 Valid to ADS Rising T–4 T+4 ns TAVSH2 BE3:0, W/R, SUP, D/C, DMA, DACK3:0 Valid to ADS Rising T–6 T+6 ns TAVEL1 A31:2 Valid to DEN Falling T–4 T+4 ns TAVEL2 BE3:0, W/R, SUP, INST,DMA, DACK3:0 Valid to DEN Falling T–6 T+6 ns TNLQV WAIT Falling to Output Data Valid ±6 ns NOTES: See Table 18 for all notes related to AC specifications. 30 PRELIMINARY A 80960CF-40, -33, -25, -16 Table 16. 80960CF AC Characteristics (33 MHz) (Sheet 3 of 3) (80960CF-33 only, per the conditions in 4.2 Operating Conditions and 4.5.1 AC TEST CONDITIONS.) Symbol Parameter TDVNH Output Data Valid to WAIT Rising TNLNH WAIT Falling to WAIT Rising Min Max N*T – 6 N*T + 6 N*T ± 4 Units Notes ns (4) ns (4) TNHQX Output Data Hold after WAIT Rising (N+1)*T–8 (N+1)*T+6 ns (5) TEHTV DT/R Hold after DEN High T/2 – 7 ∞ ns (6) TTVEL DT/R Valid to DEN Falling T/2 – 4 ns Relative Input Timings (1,2,3) TIS5 RESET Input Setup (2-x Clock Mode) 6 ns (13) TIH5 RESET Input Hold (2-x Clock Mode) 5 ns (13) TIS6 DREQ3:0 Input Setup 12 ns (7) TIH6 DREQ3:0 Input Hold 7 ns (7) TIS7 XINT7:0, NMI Input Setup 7 ns (15) TIH7 XINT7:0, NMI Input Hold 3 ns (15) TIS8 RESET Input Setup (1-x Clock Mode) 3 ns (14) TIH8 RESET Input Hold (1-x Clock Mode) T/4 + 1 ns (14) NOTES: See Table 18 for all notes related to AC specifications. PRELIMINARY 31 A 80960CF-40, -33, -25, -16 Table 17. 80960CF AC Characteristics (25 MHz) (Sheet 1 of 2) (80960CF-25 only, per the conditions in 4.2 Operating Conditions and 4.5.1 AC TEST CONDITIONS.) Symbol Input Clock (1,9) CLKIN Frequency TF CLKIN Period TC Parameter TCS TCH CLKIN Period Stability CLKIN High Time TCL CLKIN Low Time TCR CLKIN Rise Time CLKIN Fall Time TCF Output Clocks (1,8) CLKIN to PCLK2:1 Delay TCP T PCLK2:1 Period In 1-x Mode (f CLK1x) In 2-x Mode (f CLK2x) In 1-x Mode (f CLK1x) In 1-x Mode (f CLK1x) In 2-x Mode (f CLK2x) In 1-x Mode (f CLK1x) In 2-x Mode (f CLK2x) In 1-x Mode (f CLK1x) In 2-x Mode (f CLK2x) In 1-x Mode (f CLK1x) In 2-x Mode (f CLK2x) TPH PCLK2:1 High Time PCLK2:1 Low Time TPL PCLK2:1 Rise Time TPR TPF PCLK2:1 Fall Time Synchronous Outputs (8) Output Valid Delay, Output Hold TOH TOV A31:2 TOH1, TOV1 BE3:0 TOH2, TOV2 TOH3, TOV3 ADS TOH4, TOV4 W/R TOH5, TOV5 D/C, SUP, DMA TOH6, TOV6 BLAST, WAIT TOH7, TOV7 DEN TOH8, TOV8 HOLDA, BREQ LOCK TOH9, TOV9 TOH10, TOV10 DACK3:0 TOH11, TOV11 D31:0 DT/R TOH12, TOV12 TOH13, TOV13 FAIL TOH14, TOV14 EOP3:0/TC3:0 TOF Output Float for all outputs NOTES: See Table 18 for all notes related to AC specifications. 32 Min Max Unit Notes 0 40 20 50 125 ∞ MHz ns ns (11) 8 8 ±0.1% 62.5 ∞ ∆ ns ns (12) (11) 8 8 62.5 ∞ ns ns (11) 0 0 6 6 ns ns –2 2 2 25 ns ns (3,12) (3) ns ns (12) (3) (12) (12) (3) (3) TC 2TC (T/2) – 3 (T/2) – 3 1 1 T/2 T/2 4 4 ns ns ns ns 3 3 6 3 4 5 3 4 4 4 3 T/2 + 3 2 3 16 18 20 20 18 18 18 18 18 20 18 T/2 + 16 16 20 ns ns ns ns ns ns ns ns ns ns ns ns ns ns (6,10) 3 22 ns (6) (6,10) PRELIMINARY A 80960CF-40, -33, -25, -16 Table 17. 80960CF AC Characteristics (25 MHz) (Sheet 2 of 2) (80960CF-25 only, per the conditions in 4.2 Operating Conditions and 4.5.1 AC TEST CONDITIONS.) Symbol Parameter Synchronous Inputs (1,9,10) Input Setup TIS D31:0 TIS1 BOFF TIS2 TIS3 BTERM/READY TIS4 HOLD Input Hold TIH D31:0 TIH1 BOFF TIH2 TIH3 BTERM/READY TIH4 HOLD Relative Output Timings (1,2,3,8) A31:2 Valid to ADS Rising TAVSH1 BE3:0, W/R, SUP, D/C, TAVSH2 DMA, DACK3:0 Valid to ADS Rising A31:2 Valid to DEN Falling TAVEL1 BE3:0, W/R, SUP, INST, TAVEL2 DMA, DACK3:0 Valid to DEN Falling WAIT Falling to Output Data Valid TNLQV Output Data Valid to WAIT Rising TDVNH WAIT Falling to WAIT Rising TNLNH Output Data Hold after WAIT Rising TNHQX TEHTV DT/R Hold after DEN High DT/R Valid to DEN Falling TTVEL Relative Input Timings (1,2,3) RESET Input Setup (2-x Clock Mode) TIS5 RESET Input Hold (2-x Clock Mode) TIH5 DREQ3:0 Input Setup TIS6 DREQ3:0 Input Hold TIH6 XINT7:0, NMI Input Setup TIS7 TIH7 XINT7:0, NMI Input Hold RESET Input Setup (1-x Clock Mode) TIS8 RESET Input Hold (1-x Clock Mode) TIH8 NOTES: See Table 18 for all notes related to AC specifications. PRELIMINARY Min Max Unit 5 19 9 9 ns ns ns ns 5 7 2 5 ns ns ns ns T–4 T+4 ns T–6 T–4 T+6 T+4 ns ns T+6 ns ns ns ns ns T–6 ±6 N*T – F N*T + 6 N*T ± 4 (N+1)*T– (N+1)*T+6 8 T/2 – 7 ∞ T/2 – 4 8 7 14 9 9 5 3 T/4 + 1 Notes (4) (4) (5) ns ns (6) ns ns ns ns ns ns ns ns (13) (13) (7) (7) (15) (15) (14) (14) 33 A 80960CF-40, -33, -25, -16 Table 18. 80960CF AC Characteristics (16 MHz) (Sheet 1 of 3) (80960CF-16 only, per the conditions in 4.2 Operating Conditions and 4.5.1 AC TEST CONDITIONS.) Symbol Parameter Min Max Units 0 32 MHz 62.5 31.25 125 ∞ ns ns Notes Input Clock (1,9) TF CLKIN Frequency TC CLKIN Period In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x) TCS CLKIN Period Stability In 1-x Mode (fCLK1x) ±0.1% ∆ (12) TCH CLKIN High Time In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x) 10 10 62.5 ∞ ns ns (11) TCL CLKIN Low Time In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x) 10 10 62.5 ∞ ns ns (11) TCR CLKIN Rise Time 0 6 ns TCF CLKIN Fall Time 0 6 ns –2 2 2 25 ns ns (3,12) (3) ns ns (12) (3) (11) Output Clocks (1,8) TCP CLKIN to PCLK2:1 Delay In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x) T PCLK2:1 Period In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x) TC 2TC TPH PCLK2:1 High Time (T/2) – 4 T/2 ns (12) TPL PCLK2:1 Low Time (T/2) – 4 T/2 ns (12) TPR PCLK2:1 Rise Time 1 4 ns (3) TPF PCLK2:1 Fall Time 1 4 ns (3) 3 3 6 3 4 5 3 4 4 4 3 T/2 + 3 2 3 18 20 22 22 20 20 20 20 20 22 20 T/2 + 18 18 22 ns ns ns ns ns ns ns ns ns ns ns ns ns ns (6,10) 3 22 ns (6) Synchronous Outputs (8) TOH TOV TOF 34 Output Valid Delay, Output Hold A31:2 TOH1, TOV1 BE3:0 TOH2, TOV2 TOH3, TOV3 ADS TOH4, TOV4 W/R TOH5, TOV5 D/C, SUP, DMA TOH6, TOV6 BLAST, WAIT TOH7, TOV7 DEN TOH8, TOV8 HOLDA, BREQ LOCK TOH9, TOV9 TOH10, TOV10 DACK3:0 TOH11, TOV11 D31:0 DT/R TOH12, TOV12 TOH13, TOV13 FAIL TOH14, TOV14 EOP3:0/TC3:0 Output Float for all outputs (6,10) PRELIMINARY A 80960CF-40, -33, -25, -16 Table 18. 80960CF AC Characteristics (16 MHz) (Sheet 2 of 3) (80960CF-16 only, per the conditions in 4.2 Operating Conditions and 4.5.1 AC TEST CONDITIONS.) Symbol Parameter Min Max Units Notes Synchronous Inputs (1,9,10) TIS TIH Input Setup TIS1 TIS2 TIS3 TIS4 D31:0 BOFF BTERM/READY HOLD 5 21 9 9 ns ns ns ns Input Hold TIH1 TIH2 TIH3 TIH4 D31:0 BOFF BTERM/READY HOLD 5 7 2 5 ns ns ns ns Relative Output Timings (1,2,3,8) TAVSH1 A31:2 Valid to ADS Rising TAVSH2 BE3:0, W/R, SUP, D/C, DMA, DACK3:0 Valid to ADS Rising T–6 T+6 ns TAVEL1 A31:2 Valid to DEN Falling T–6 T+6 ns TAVEL2 BE3:0, W/R, SUP, INST, DMA, DACK3:0 Valid to DEN Falling T–6 T+6 ns TNLQV WAIT Falling to Output Data Valid T–4 T+4 ±6 TDVNH Output Data Valid to WAIT Rising TNLNH WAIT Falling to WAIT Rising N*T – 6 TNHQX Output Data Hold after WAIT Rising TEHTV DT/R Hold after DEN High T/2 – 7 TTVEL DT/R Valid to DEN Falling T/2 – 4 ns ns N*T + 6 N*T ± 4 (N+1)*T–8 (N+1)*T+6 ∞ ns (4) ns (4) ns (5) ns (6) ns Relative Input Timings (1,2,3) TIS5 RESET Input Setup (2-x Clock Mode) 10 ns (13) TIH5 RESET Input Hold (2-x Clock Mode) 9 ns (13) TIS6 DREQ3:0 Input Setup 16 ns (7) TIH6 DREQ3:0 Input Hold 11 ns (7) TIS7 XINT7:0, NMI Input Setup 9 ns (15) PRELIMINARY 35 A 80960CF-40, -33, -25, -16 Table 18. 80960CF AC Characteristics (16 MHz) (Sheet 3 of 3) (80960CF-16 only, per the conditions in 4.2 Operating Conditions and 4.5.1 AC TEST CONDITIONS.) Symbol Parameter Min Max Units Notes TIH7 XINT7:0, NMI Input Hold 5 ns (15) TIS8 RESET Input Setup (1-x Clock Mode) 3 ns (14) TIH8 RESET Input Hold (1-x Clock Mode) T/4 + 1 ns (14) NOTES: 1. See Section 4.5.2, AC TIMING WAVEFORMS for waveforms and definitions. 2. See Figure 16 for capacitive derating information for output delays and hold times. 3. See Figure 17 for capacitive derating information for rise and fall times. 4. Where N is the number of NRAD, NRDD, NWAD or NWDD wait states that are programmed in the Bus Controller Region Table. WAIT never goes active when there are no wait states in an access. 5. N = Number of wait states inserted with READY. 6. Output Data and/or DT/R may be driven indefinitely following a cycle if there is no subsequent bus activity. 7. Since asynchronous inputs are synchronized internally by the 80960CF, they have no required setup or hold times to be recognized and for proper operation. However, to guarantee recognition of the input at a particular edge of PCLK2:1, the setup times shown must be met. Asynchronous inputs must be active for at least two consecutive PCLK2:1 rising edges to be seen by the processor. 8. These specifications are guaranteed by the processor. 9. These specifications must be met by the system for proper operation of the processor. 10. This timing is dependent upon the loading of PCLK2:1. Use the derating curves of Section 4.5.3, DERATING CURVES to adjust the timing for PCLK2:1 loading. 11. In the 1-x input clock mode, the maximum input clock period is limited to 125 ns while the processor is operating. When the processor is in reset, the input clock may stop even in 1-x mode. 12. When in the 1-x input clock mode, these specifications assume a stable input clock with a period variation of less than ± 0.1% between adjacent cycles. 13. In 2-x clock mode, RESET is an asynchronous input which has no required setup and hold time for proper operation. However, to guarantee the device exits reset synchronized to a particular clock edge, the RESET pin must meet setup and hold times to the falling edge of the CLKIN. (See Figure 23.) 14. In 1-x clock mode, RESET is an asynchronous input which has no required setup and hold time for proper operation. However, to guarantee the device exits reset synchronized to a particular clock edge, the RESET pin must meet setup and hold times to the rising edge of the CLKIN. (See Figure 24.) 15. The interrupt pins are synchronized internally by the 80960CF. They have no required setup or hold times for proper operation. These pins are sampled by the interrupt controller every other clock and must be active for at least three consecutive PCLK2:1 rising edges when asserting them asynchronously. To guarantee recognition at a particular clock edge, the setup and hold times shown must be met for two consecutive PCLK2:1 rising edges. 4.5.1 AC TEST CONDITIONS The AC Specifications in Section 4.5 are tested with the 50 pF load shown in Figure 7. Figure 16 shows how timings vary with load capacitance. Specifications are measured at the 1.5V crossing point, unless otherwise indicated. Input waveforms are assumed to have a rise and fall time of ≤ 2 ns from 0.8V to 2.0V. See Section 4.5.2, AC TIMING WAVEFORMS for AC specification definitions, test points and illustrations. 36 PRELIMINARY A 80960CF-40, -33, -25, -16 Output Pin CL CL = 50 pF for all signals F_CX008A Figure 7. AC Test Load 4.5.2 AC TIMING WAVEFORMS 1.5 V CLKIN TCP T 2.4 V 1.5 V 0.45 V 1.5 V PCLK2:1 TPH TPR TPL TPF F_CX009A Figure 8. Input and Output Clocks Waveform TCR TCF 2.0 V 1.5 V 0.8 V TCH TCL TC F_CX010A Figure 9. CLKIN Waveform PRELIMINARY 37 A 80960CF-40, -33, -25, -16 1.5 V PCLK2:1 TOV TOH Outputs 1.5 V Max Min 1.5 V 1.5 V TOF Outputs Max Min 1.5 V 1.5 V F_CX011A NOTES: 1. TOV TOH - OUTPUT DELAY - Maximum output delay is referred to as Output Valid Delay (TOV); minimum output delay is referred to as Output Hold (TOH). 2. TOF - OUTPUT FLOAT DELAY - Output float condition occurs when the maximum output current becomes less that ILO in magnitude. Figure 10. Output Delay and Float Waveform PCLK2:1 1.5 V 1.5 V TIH TIS Min Inputs: (READY, HOLD, BTERM, BOFF, DREQ3:0, D31:0 on reads) 1.5 V Max Valid NOTES: 1. TIS TIH - INPUT SETUP AND HOLD - The input setup and hold requirements specify the sampling winF_CX012A Figure 11. Input Setup and Hold Waveform 38 PRELIMINARY A 80960CF-40, -33, -25, -16 PCLK2:1 1.5 V 1.5 V NMI, XINT7:0 TIH TIS Min 1.5 V Min 1.5 V Valid 1.5 V F_CX013A Figure 12. NMI, XINT7:0 Input Setup and Hold Waveform PCLK2:1 1.5 V 1.5 V 1.5 V TOV TOF Min Outputs: A31:2, D31:0, BE3:0, ADS, BLAST, WAIT, W/R, DT/R, DEN, LOCK, D/C, SUP, DMA Max Min Max 1.5 V Valid Valid TIH TIS Min TIH Min TIS Min Min HOLD 1.5 V 1.5 V 1.5 V TOV TOV Min Min Max HOLDA 1.5 V 1.5 V Max 1.5 V F_CX014A NOTES: 1. TOV TOH - OUTPUT DELAY - Maximum output delay is referred to as Output Valid Delay (TOV); minimum output delay is referred to as Output Hold (TOH). 2. TOF - OUTPUT FLOAT DELAY - Output float condition occurs when the maximum output current becomes less that ILO in magnitude. 3. TIS TIH - INPUT SETUP AND HOLD - The input setup and hold requirements specify the sampling window during which synchronous inputs must be stable for correct processor operation. Figure 13. Hold Acknowledge Timings PRELIMINARY 39 A 80960CF-40, -33, -25, -16 PCLK2:1 1.5 V 1.5 V 1.5 V TOV TOF Max Min Outputs: A31:2, D31:0, BE3:0, ADS, BLAST, WAIT, W/R, DT/R, DEN, LOCK, D/C, SUP, DMA 1.5 V Valid 1.5 V TIS TIS TIH BOFF Min 1.5 V Valid Max TIH 1.5 V 1.5 V 1.5 V F_CX015A Figure 14. Bus Backoff (BOFF) Timings PCLK2:1 ADS 1.5 V 1.5 V 1.5 V 1.5 V 1.5 V 1.5 V TAVSH A31:2, BE3:0, W/R, LOCK, SUP, D/C, DMA 1.5 V 1.5 V D31:0 TNLQV TAVEL DT/R D31:0 1.5 V TNHQX 1.5 V TNLNH 1.5 V TEHTV DEN TDVNH 1.5 V WAIT Out 1.5 V TVEL 1.5 V In VIH VIL F_CX016A Figure 15. Relative Timings Waveforms 40 PRELIMINARY A 4.5.3 80960CF-40, -33, -25, -16 DERATING CURVES nom + 10 All outputs except: LOCK, DMA, SUP, BREQ, DACK3:0, EOP3:0/TC3:0, FAIL nom + 5 LOCK, DMA, SUP, BREQ, DACK3:0, EOP3:0/TC3:0, FAIL nom 50 100 CL (pF) 150 Note: PCLK Load = 50pF F_CX017A Figure 16. Output Delay or Hold vs. Load Capacitance 10 0.8 V to 2.0 V 8 8 6 6 4 4 2 2 CL (pF) 50 0.8 V to 2.0 V 10 100 150 a) All outputs except: LOCK, DMA, SUP, HOLDA, BREQ DACK3:0, EOP3:0/TC3:0, FAIL CL (pF) 50 100 150 b) LOCK, DMA, SUP, HOLDA, BREQ, DACK3:0, EOP3:0/TC3:0, FAIL F_CX019A Figure 17. Rise and Fall Time Derating at Highest Operating Temperature and Minimum VCC PRELIMINARY 41 A 80960CF-40, -33, -25, -16 900 TC = 100° C TC = 0° C 0 0 fPCLK (MHz) 33 ICC - ICC under test conditions F_CX020A Figure 18. ICC vs. Frequency and Temperature—80960CF-33, -25, -16 1100 TC = ICC - ICC under test conditions TC = 85° C 0 0 fPCLK (MHz) 40 F_CX020A Figure 19. ICC vs. Frequency and Temperature—80960CF-40 5.0 RESET, BACKOFF AND HOLD ACKNOWLEDGE Table 19 lists the condition of each processor output pin while RESET is asserted (low). Table 20 lists the condition of each processor output pin while HOLDA is asserted (high). In Table 20, with regard to bus output pin state only, the Hold Acknowledge state takes precedence over the reset state. Although asserting the RESET pin internally resets the processor, the processor’s bus output pins do not enter the reset state if Hold Acknowledge has been granted to a previous HOLD request (HOLDA is active). Furthermore, the processor grants new HOLD requests and enters the Hold Acknowledge state even while in reset. 42 For example, if HOLD is asserted while HOLDA is inactive and the processor is in the reset state, the processor’s bus pins enter the Hold Acknowledge state and HOLDA is granted. The processor is not able to perform memory accesses until the HOLD request is removed, even if the RESET pin is brought high. This operation is provided to simplify boot-up synchronization among multiple processors sharing the same bus. PRELIMINARY A 80960CF-40, -33, -25, -16 Table 19. Reset Conditions Pins Table 20. Hold Acknowledge and Backoff Conditions State During Reset (HOLDA inactive) Pins State During HOLDA A31:2 Floating A31:2 Floating D31:0 Floating D31:0 Floating BE3:0 Driven high (Inactive) BE3:0 Floating W/R Driven low (Read) W/R Floating ADS Driven high (Inactive) ADS Floating WAIT Driven high (Inactive) WAIT Floating BLAST Driven low (Active) BLAST Floating DT/R Driven low (Receive) DT/R Floating DEN Driven high (Inactive) DEN Floating LOCK Driven high (Inactive) LOCK Floating BREQ Driven low (Inactive) BREQ Driven (High or low) D/C Floating D/C Floating DMA Floating DMA Floating SUP Floating SUP Floating FAIL Driven low (Active) FAIL Driven high (Inactive) DACK3:0 Driven high (Inactive) DACK3:0 Driven high (Inactive) EOP3:0/TC3:0 Floating (Set to input mode) EOP3:0/TC3:0 Driven (If output) PRELIMINARY 43 A 80960CF-40, -33, -25, -16 6.0 BUS WAVEFORMS Figure 20. Cold Reset Waveform 44 PRELIMINARY A 80960CF-40, -33, -25, -16 Figure 21. Warm Reset Waveform PRELIMINARY 45 A 80960CF-40, -33, -25, -16 Figure 22. Entering the ONCE State 46 PRELIMINARY A 80960CF-40, -33, -25, -16 1.5 V CLKIN TIH RESET 1.5 V 1.5 V 1.5 V 1.5 V TIS 1.5 V PCLK2:1 (Case 1) 1.5 V 1.5 V Max Min TCP PCLK2:1 (Case 2) 1.5 V Max Min 1.5 V Min TCP Max 1.5 V TCP 1.5 V SYNC Note: Case 1 and Case 2 show two possible polarities of PCLK2:1 F_CX024A Figure 23. Clock Synchronization in the 2-x Clock Mode 2x CLK 1.5 V CLKIN 1.5 V TIH RESET TIS 1.5 V Note: In 1x clock mode, the RESET pin is actually sampled on the falling edge of 2xCLK. 2xCLK is an internal signal generated by the PLL and is not available on an external pin. Therefore, RESET is specified relative to the rising edge of CLKIN. The RESET pin is sampled when PCLK is high. F_CX025A Figure 24. Clock Synchronization in the 1-x Clock Mode PRELIMINARY 47 A 80960CF-40, -33, -25, -16 Byte Order Function Bit Value Bus Width NWDD NWAD NXDA NRDD NRAD PipeLining 31-23 22 21 20-19 18-17 16-12 11-10 9-8 7-3 2 0 0..0 X x 0 0 X xx X xx 0 00000 0 00 X xx 0 00000 OFF 0 A D A D A External Ready Control Burst 1 0 Disabled Disabled 0 0 D PCLK ADS A31:4, SUP, DMA, D/C, BE3:0, LOCK Valid Valid Valid Valid Valid W/R BLAST DT/R DEN A3:2 Valid WAIT D31:0 In In Out F_CX026A Figure 25. Non-Burst, Non-Pipelined Requests Without Wait States 48 PRELIMINARY A Byte Order Function Bit Value 80960CF-40, -33, -25, -16 Bus Width NWDD NWAD NXDA NRDD NRAD PipeLining 31-23 22 21 20-19 18-17 16-12 11-10 9-8 7-3 2 0 0..0 X x 0 0 X xx X xx X xxxxx 1 01 X xx 3 00011 OFF 0 A 3 2 1 D External Ready Control Burst 1 0 Disabled Disabled 0 0 1 A PCLK ADS A31:2, BE3:0 Valid W/R BLAST DT/R DEN DMA, D/C, SUP, LOCK Valid WAIT In D31:0 F_CX027A Figure 26. Non-Burst, Non-Pipelined Read Request With Wait States PRELIMINARY 49 A 80960CF-40, -33, -25, -16 Byte Order Function Bit Value NWDD NWAD NXDA NRDD NRAD PipeLining Bus Width 31-23 22 21 20-19 18-17 16-12 11-10 9-8 7-3 2 0 0..0 X x 0 0 X xx X xx 3 00011 1 01 X xx X xxxxxx OFF 0 A 3 2 1 D 1 External Ready Control Burst 1 0 Disabled Disabled 0 0 A PCLK ADS A31:2, BE3:0 Valid W/R BLAST DT/R DEN SUP, DMA, D/C, LOCK Valid WAIT D31:0 Out F_CX028A Figure 27. Non-Burst, Non-Pipelined Write Request With Wait States 50 PRELIMINARY A 80960CF-40, -33, -25, -16 Byte Order Function Bit Value Bus Width NWDD NWAD NXDA NRDD NRAD PipeLining 31-23 22 21 20-19 18-17 16-12 11-10 9-8 7-3 2 0 0..0 X x 0 0 32-Bit 10 X xx X xxxxx 0 00 0 00 0 00000 OFF 0 A D D D D External Ready Control Burst 1 0 Disabled Enabled 1 0 A PCLK ADS A31:4, SUP, DMA, D/C, BE3:0, LOCK Valid W/R BLAST DT/R DEN A3:2 00 01 10 11 WAIT D31:0 In0 In1 In2 In3 F_CX029A Figure 28. Burst, Non-Pipelined Read Request Without Wait States, 32-Bit Bus PRELIMINARY 51 A 80960CF-40, -33, -25, -16 Byte Order Function Bit Value Bus Width NWDD NWAD NXDA NRDD NRAD PipeLining 31-23 22 21 20-19 18-17 16-12 11-10 9-8 7-3 2 0 0..0 X x 0 0 32-bit 10 X xx X xxxxx 1 01 1 01 2 00010 OFF 0 D 1 A 2 1 D 1 D 1 D External Ready Control Burst 1 0 Disabled Enabled 1 0 1 A PCLK ADS A31:4, SUP, DMA, D/C, BE3:0, LOCK Valid W/R BLAST DT/R DEN A3:2 00 01 10 11 WAIT D31:0 In0 In1 In2 In3 F_CX030A Figure 29. Burst, Non-Pipelined Read Request With Wait States, 32-Bit Bus 52 PRELIMINARY A 80960CF-40, -33, -25, -16 Byte Order Function Bit Value Bus Width NWDD NWAD NXDA NRDD NRAD PipeLining 31-23 22 21 20-19 18-17 16-12 11-10 9-8 7-3 2 0 0..0 X x 0 0 32-bit 10 0 00 0 00000 0 00 X xx X xxxxx OFF 0 A D D D D External Ready Control Burst 1 0 Disabled Enabled 1 0 A PCLK ADS A31:4, SUP, DMA, D/C, BE3:0, LOCK Valid W/R BLAST DT/R DEN A3:2 00 01 10 11 Out2 Out3 WAIT D31:0 Out0 Out1 F_CX031A Figure 30. Burst, Non-Pipelined Write Request Without Wait States, 32-Bit Bus PRELIMINARY 53 A 80960CF-40, -33, -25, -16 Byte Order Function Bit Value Bus Width NWDD NWAD NXDA NRDD NRAD PipeLining 31-23 22 21 20-19 18-17 16-12 11-10 9-8 7-3 2 0 0..0 X x 0 0 32-bit 10 1 01 2 00010 1 01 X xx X xxxxx OFF 0 A 2 1 D 1 D 1 D 1 D 1 External Ready Control Burst 1 0 Disabled Enabled 1 0 A PCLK ADS A31:4, SUP, DMA, D/C, BE3:0, LOCK Valid W/R BLAST DT/R DEN A3:2 00 01 10 11 WAIT D31:0 Out0 Out1 Out2 Out3 F_CX032A Figure 31. Burst, Non-Pipelined Write Request With Wait States, 32-Bit Bus 54 PRELIMINARY A 80960CF-40, -33, -25, -16 Byte Order Function Bit Value Bus Width NWDD NWAD NXDA NRDD NRAD PipeLining External Ready Control Burst 1 0 31-23 22 21 20-19 18-17 16-12 11-10 9-8 7-3 2 0 0..0 X x 0 0 16-bit 01 X xx X xxxxx 1 01 1 01 2 00010 OFF 0 Disabled Enabled 1 0 D 1 A 2 1 D 1 D 1 D 1 A PCLK ADS SUP, DMA, D/C, LOCK, A31:4, BE3/BHE, BE0/BLE Valid W/R BLAST DT/R DEN A3:2 A3:2 = 00 or 10 A3:2 = 01 or 11 BE1/A1 WAIT D31:0 D15:0 A1=0 D15:0 A1=1 D15:0 A1=0 D15:0 A1=1 F_CX033A Figure 32. Burst, Non-Pipelined Read Request With Wait States, 16-Bit Bus PRELIMINARY 55 A 80960CF-40, -33, -25, -16 Byte Order Function Bit Value Bus Width NWDD NWAD NXDA NRDD NRAD PipeLining External Ready Control Burst 1 0 31-23 22 21 20-19 18-17 16-12 11-10 9-8 7-3 2 0 0..0 X x 0 0 8-bit 00 X xx X xxxxx 1 01 1 01 2 00010 OFF 0 Disabled Enabled 1 0 D 1 A 2 1 D 1 D 1 D 1 A PCLK ADS SUP, DMA, D/C, LOCK, A31:4 Valid W/R BLAST DT/R DEN A3:2 BE1/A1, BE0/A0 A3:2 = 00, 01, 10 or 11 A1:0 = 00 A1:0 = 01 A1:0 = 10 A1:0 =11 WAIT D31:0 D7:0 Byte 0 D7:0 Byte 1 D7:0 Byte 2 D7:0 Byte 3 F_CX034A Figure 33. Burst, Non-Pipelined Read Request With Wait States, 8-Bit Bus 56 PRELIMINARY A 80960CF-40, -33, -25, -16 Byte Order Function Bit Value Bus Width NWDD NWAD NXDA NRDD NRAD PipeLining External Ready Control Burst 31-23 22 21 20-19 18-17 16-12 11-10 9-8 7-3 2 1 0 0 0..0 X x 0 0 X xx X xx X xxxxx X xx X xx 0 00000 ON 1 X x Disabled 0 A A' D A'' D' A''' D'' A'''' D''' D'''' PCLK ADS A31:4, SUP, DMA, D/C, LOCK Valid Valid Valid Valid Valid Invalid W/R A3:2 BE3:0 D31:0 Invalid Valid Valid IN D Valid IN D' Valid IN D'' Valid IN D''' Invalid IN D'''' WAIT BLAST DT/R DEN Non-pipelined request concludes pipelined reads begin. Pipelined reads conclude, non-pipelined requests begin. F_CX035A Figure 34. Non-Burst, Pipelined Read Request Without Wait States, 32-Bit Bus PRELIMINARY 57 A 80960CF-40, -33, -25, -16 Byte Order Function Bit Value Bus Width NWDD NWAD NXDA NRDD NRAD PipeLining External Ready Control Burst 31-23 22 21 20-19 18-17 16-12 11-10 9-8 7-3 2 1 0 0 0..0 X x 0 0 X xx X xx X xxxxx X xx X xx 1 00001 ON 1 X x Disabled 1 A 1 A' D 1 D' PCLK ADS A31:4, SUP, DMA, D/C, LOCK Valid Valid Invalid W/R A3:2 BE3:0 Invalid Valid Valid IN D D31:0 Invalid IN D' WAIT BLAST DT/R DEN Non-pipelined request concludes pipelined reads begin. Pipelined reads conclude, non-pipelined requests begin. F_CX036A Figure 35. Non-Burst, Pipelined Read Request With Wait States, 32-Bit Bus 58 PRELIMINARY A 80960CF-40, -33, -25, -16 Byte Order Function Bit Value Bus Width NWDD NWAD NXDA NRDD NRAD PipeLining 31-23 22 21 20-19 18-17 16-12 11-10 9-8 7-3 2 0 0..0 X x 0 0 32-bit 10 X xx X xxxxx X xx 0 00 0 00000 ON 1 A D D D A' D D' External Ready Control Burst 1 0 Disabled Enabled 1 0 D' PCLK ADS A31:4, SUP, DMA, D/C, BE3:0, LOCK Valid InValid Valid InValid W/R A3:2 D31:0 00 01 IN D 10 11 IN D IN D Valid Valid IN D IN D InValid IN D WAIT BLAST DT/R DEN Non-pipelined request concludes, pipelined reads begin Pipelined reads conclude, non-pipelined requests begin F_CX037A Figure 36. Burst, Pipelined Read Request Without Wait States, 32-Bit Bus PRELIMINARY 59 A 80960CF-40, -33, -25, -16 Byte Order Function Bit Bus Width NWDD NWAD NXDA NRDD NRAD PipeLining 31-23 22 21 20-19 18-17 16-12 11-10 9-8 7-3 2 0 0..0 X x 0 0 32-bit 10 X xx X xxxxx X xx 1 01 2 00010 ON 1 Value A 2 1 D 1 D 1 D 1 A' D 2 External Ready Control Burst 1 0 Disabled Enabled 1 0 1 D' PCLK ADS A31:4, SUP, DMA, D/C, BE3:0, LOCK Valid Valid Invalid W/R A3:2 D31:0 Invalid 00 01 IN D 10 IN D 11 IN D Valid Invalid IN D' IN D WAIT BLAST DT/R DEN Non-pipelined request concludes, pipelined reads begin. Pipelined reads conclude, non-pipelined requests begin. F_CX038A Figure 37. Burst, Pipelined Read Request With Wait States, 32-Bit Bus 60 PRELIMINARY A 80960CF-40, -33, -25, -16 Byte Order Function Bit Bus Width NWDD NWAD NXDA NRDD NRAD PipeLining External Ready Control Burst 1 0 31-23 22 21 20-19 18-17 16-12 11-10 9-8 7-3 2 0 0..0 X x 0 0 16-bit 01 X xx X xxxxx X xx 1 01 2 00010 ON 1 Value A 2 1 D 1 D 1 D 1 A' D 2 Disabled Enabled 1 0 1 D' PCLK ADS A31:4, SUP, DMA, D/C, BE0/BLE, BE3/BHE, LOCK Valid Valid Invalid Invalid W/R A3:2 = 00 or 10 A3:2 A3:2 = 01 or 11 BE1/A1 D15:0 A1=0 D31:0 D15:0 A1=1 D15:0 A1=0 Valid Invalid Valid Invalid D15:0 A1=1 D15:0 D' WAIT BLAST DT/R DEN Non-pipelined request concludes, pipelined reads begin. Pipelined reads conclude, non-pipelined requests begin. F_CX040A Figure 38. Burst, Pipelined Read Request With Wait States, 16-Bit Bus PRELIMINARY 61 A 80960CF-40, -33, -25, -16 Byte Order Function Bit Bus Width NWDD NWAD NXDA NRDD NRAD PipeLining External Ready Control Burst 1 0 31-23 22 21 20-19 18-17 16-12 11-10 9-8 7-3 2 0 0..0 X x 0 0 8-bit 00 X xx X xxxxx X xx 1 01 2 00010 ON 1 Value A 2 1 D 1 D 1 D 1 A' D Disabled Enabled 1 0 2 1 D' PCLK ADS A31:4, SUP, Valid DMA, D/C, LOCK Valid Invalid W/R A3:2 BE1/A1, BE0/A0 D31:0 Invalid A3:2 = 00, 01, 10, or 11 A1:0 = 00 Valid A1:0 = 01 A1:0 = 10 A1:0 = 11 D7:0 Byte 0 D7:0 Byte 1 D7:0 Byte 2 Valid Invalid Invalid D7:0 D' D7:0 Byte 3 WAIT BLAST DT/R DEN Non-pipelined request concludes, pipelined reads begin. Pipelined reads conclude, non-pipelined requests begin. F_CX039A Figure 39. Burst, Pipelined Read Request With Wait States, 8-Bit Bus 62 PRELIMINARY A 80960CF-40, -33, -25, -16 Quad-Word Write Request NWAD = 1, NWDD = 0, NWDA = 0 Ready Enabled Quad-Word Read Request NRAD = 0, NRDD = 0, NXDA = 0 Ready Enabled PCLK ADS A31:4, SUP, DMA, INST, D/C, BE3:0, LOCK Valid Valid W/R BLAST DT/R DEN READY BTERM A3:2 00 01 10 11 00 01 10 11 D1 D2 D3 WAIT D31:0 D0 D1 D2 D3 D0 F_CX041A Figure 40. Using External READY PRELIMINARY 63 A 80960CF-40, -33, -25, -16 Quad-Word Write Request NWAD = 0, NWDD = 0, NWDA = 0 Ready Enabled PCLK ADS A31:4, SUP, DMA, INST, D/C, BE3:0, LOCK Valid W/R BLAST DT/R DEN READY See Note BTERM A3:2 00 01 10 11 WAIT D31:0 D0 D1 D2 D3 Note: READY adds memory access time to data transfers, whether or not the bus access is a burst access. BTERM interrupts a bus access, whether or not the bus access has more data transfers pending. Either the READY signal or the BTERM signal will terminate a bus access if the signal is asserted during the last (or only) data transfer of the bus access. F_CX042A Figure 41. Terminating a Burst with BTERM 64 PRELIMINARY A 80960CF-40, -33, -25, -16 Regenerate ADS ADS BURST BURST BLAST NON-BURST MAY CHANGE READY BOFF SUSPEND REQUEST RESUME REQUEST A31:2, SUP, DMA, D/C, BE3:0, WAIT, DEN, DT/R D31:0, (WRITES) Begin Request BOFF may be asserted to suspend request BOFF may not be asserted Note: READY/BTERM must be enabled; NRAD, NRDD, NWAD, NWDD= 0 End Request BOFF may not be asserted F_CX043A Figure 42. BOFF Functional Timing PRELIMINARY 65 A 80960CF-40, -33, -25, -16 Word Read Request NRAD=1, NXDA=1 Hold State Word Read Request NRAD=0, NXDA=0 Hold State PCLK2:1 ADS A31:2, SUP, DMA, D/C, BE3:0, WAIT, DEN, DT/R Valid Valid BLAST HOLD HOLDA F_CX044A Figure 43. HOLD Functional Timing 66 PRELIMINARY A 80960CF-40, -33, -25, -16 System Clock PCLK2:1 Start DMA Bus Request ADS End DMA Bus Request ! (BLAST & READY & !WAIT) DMA Acknowledge (see Note) DACKx (All Modes) high to prevent next bus cycle DREQx (Case 1) tIS6 tIH6 high to prevent next bus cycle DREQx (Case 2) tIS6 DMA Request tIH6 Note: 1. Case 1: DREQ must deassert before DACK deasserts. This applies to all Fly-By modes: source synchronized packing modes and destination synchronized unpacking modes. 2. Case 2: DREQ must be deasserted by the second clock (rising edge) after DACK is driven high. This applies to all other DMA transfers. F_CX018A 3. DACKx is asserted for the duration of a DMA bus request. The request may consist of multiple bus accesses (defined by ADS and BLAST). Figure 44. DREQ and DACK Functional Timing PCLK2:1 EOP 2 CLKs Min 15 CLKs Max Note: EOP has the same AC Timing Requirements as DREQ to prevent unwanted DMA requests. EOP is NOT edge triggered. EOP must beheld for a minimum of 2 clock cycles then deasserted within 15 clock cycles. F_CX045A Figure 45. EOP Functional Timing PRELIMINARY 67 A 80960CF-40, -33, -25, -16 PCLK2:1 DREQ ADS DACK TC Note: Terminal Count becomes active during the last bus request of a buffer transfer. If the last LOAD/STORE bus request is executed as multiple bus accesses, the TC will be active for the entire bus request. Refer to the i960® Cx Microprocessor User’s Manual for further information. F_CX046A Figure 46. Terminal Count Functional Timing RESET (Bus Test) Pass (Internal Self-Test) Pass FAIL ~65,000 Cycles Fail 5 Cycles Fail 102 Cycles F_CX047A Figure 47. FAIL Functional Timing 68 PRELIMINARY A 80960CF-40, -33, -25, -16 0 4 8 12 16 20 24 Word Offset 0 1 2 3 4 5 6 Byte Offset Short Request (Aligned) Byte, Byte Requests Short-Word Load/Store Short Request (Aligned) Byte, Byte Requests Word Request (Aligned) Byte, Short, Byte, Requests Word Load/Store Short, Short Requests Byte, Short, Byte Requests One Double-Word Burst (Aligned) Byte, Short, Word, Byte Requests Short, Word, Short Requests Double-Word Load/Store Byte, Word, Short, Byte Requests Word, Word Requests One Double-Word Request (Aligned) F_CX048A Figure 48. A Summary of Aligned and Unaligned Transfers for Little Endian Regions PRELIMINARY 69 A 80960CF-40, -33, -25, -16 0 4 8 12 16 20 24 1 2 3 4 5 6 Byte Offset Word Offset 0 One Three-Word Request (Aligned) Byte, Short, Word, Word, Byte Requests Triple-Word Load/Store Short, Word, Word, Short Requests Byte, Word, Word, Short, Byte Requests Word, Word, Word Requests Word, Word, Word Requests Word, Word, Word Requests One Four-Word Request (Aligned) Byte, Short, Word, Word, Word, Byte Requests Quad-Word Load/Store Short, Word, Word, Word, Short Requests Byte, Word, Word, Word, Short, Byte Requests Word, Word, Word, Word Requests DoubleWord, DoubleWord, Requests F_CX049A Figure 49. A Summary of Aligned and Unaligned Transfers for Little Endian Regions (Continued) 70 PRELIMINARY A 80960CF-40, -33, -25, -16 Write Request NWAD=2, NXDA = 0 Ready Disabled Idle Bus (not in Hold Acknowledge state) Read Request NWAD=2, NXDA = 0 Ready Disabled PCLK ADS A31:4, SUP, DMA, INST, D/C, BE3:0 Valid Valid LOCK Valid Valid W/R BLAST DT/R DEN A3:2 Valid Valid WAIT D31:0 Out In READY, BTERM F_CX050A Figure 50. Idle Bus Operation 7.0 REVISION HISTORY This is a new data sheet for the 80960CF-40 product. It is derived from the 80960CF-33, -25, -16 data sheet. Aside from a few minor edits, only the AC Characteristics differ from the 80960CF-33, -25, -16 data sheet. PRELIMINARY 71