IXYS IX6R11S3

IX6R11
6A Half-Bridge Driver
Features
• Floating High Side Driver with boot-strap Power
supply along with a Low Side Driver.
• Fully operational to 650V
• ± 50V/ns dV/dt immunity
• Gate drive power supply range: 10 - 35V
• Undervoltage lockout for both output drivers
• Separate Logic power supply range: 3.3V to VCL
• Built using the advantages and compatibility
of CMOS and IXYS HDMOSTM processes
• Latch-Up protected over entire
operating range
• High peak output current: 6A
• Matched propagation delay for both outputs
• Low output impedance
• Low power supply current
• Immune to negative voltage transients
General Description
The IX6R11 Bridge Driver for N-channel MOSFETs and IGBTs
with a high side and low side output, whose input signals
reference the low side. The High Side driver can control a
MOSFET or IGBT connected to a positive buss voltage up to
650V. The logic input stages are compatible with TTL or
CMOS, have built-in hysteresis and are fully immune to latch
up over the entire operating range. The IX6R11 can withstand
dV/dt on the output side up to ± 50V/ns.
The IX6R11 comes in either the 14-PIN DIP package
(IX6R11P7), the 16-PIN SOIC package (IX6R11S3) or the 18PIN, heat sinkable, SOIC package (IX6R11S6).
Applications
•
•
•
•
•
•
Warning: The IX6R11 is ESD sensitive.
Driving MOSFETs and IGBTs in half-bridge circuits
High voltage, high side and low side drivers
Motor Controls
Switch Mode Power Supplies (SMPS)
DC to DC Converters
Class D Switching Amplifiers
IX6R11S6
Figure 1. Typical Circuit Connection
Copyright © IXYS CORPORATION 2004
99037C(08/04)
First Release
IX6R11
Figure 2 - IX6R11 Functional Block Diagram
VDD
VCH
Low to
HIN
HIN
HIN
VCH
High
OUT
RST
IN
4A Gate
Driver
HGO
UVCC
Detect
DG
HS
HS
Isolated High Side
VCL
VDD
LIN
VCL
Low to High
Side Delay
Equalizer
and
Shutdown
4A Gate
Driver
Shutdown
Logic
ENB
LGO
UVCC
Detect
DG
DG
LS
LS
1W
Pin Description And Configuration
IX6R11P7
14-PIN DIP
Output
Ground
DESCRIPTION
Positive power supply for the chip CMOS functions
High side Input signal, TTL or CMOS compatible; HGO in phase
Low side Input signal, TTL or CMOS compatible; LGO in phase
Chip enable. When driven high, both outputs go low.
Logic Reference Ground
High Side Power Supply
High side driver output
High side voltage return pin
Low side power supply. This power supply provides power for
both outputs. Voltage range is from 4.5 to 25V.
Low side driver output
Low side return
18-PIN SOIC-CT
16-PIN SOIC
IX6R11S3
LGO
LS
FUNCTION
Logic Supply
HS Input
LS Input
Not Enable
Ground
Supply Voltage
Output
Return
Supply Voltage
IX6R11S6
SYMBOL
VDD
HIN
LIN
ENB
DG
VCH
HGO
HS
VCL
2
IX6R11
Absolute Maximum Ratings
Symbol
VCH
Definition
High side floating supply voltage
Min
-25
Max
650
Units
V
VHS
High side floating supply offset voltage
VCH-200
VCH+.3
V
VHGO
High side floating output voltage
VHS-.3
VCH+.3
V
VCL
Low side fixed supply voltage
-0.3
35
V
VLGO
Low side output voltage
-0.3
VCL+.3
V
VDD
Logic supply voltage
-0.3
VDG+35
V
VDG
Logic supply offset voltage
VLS-3.8
VLS+3.8
V
VIN
Logic input voltage(HIN & LIN)
VSS-.3
VDD+.3
V
dVS/dt
Allowable offset supply voltage transient
50
V/ns
PD
Package power dissipation@ TA ≤ 25C
(IX6R11S3/P7)
(IX6R11S6)
Package power dissipation@ TC ≤ 25C (IX6R11S3/P7)
(IX6R11S6)
Thermal resistance, junction-to-ambient (IX6R11S3/P7)
(IX6R11S6)
Thermal resistance, junction-to-case
(IX6R11S3/P7)
(IX6R11S6)
1.25
1.4
2.5
31
100
90
50
4
W
W
W
W
K/W
K/W
K/W
K/W
TJ
Junction Temperature
150
o
C
TS
Storage temperature
150
o
C
TL
Lead temperature (soldering, 10 s)
300
o
C
PD
RTHJA
RTHJc
-55
Recommended Operating Conditions
Symbol
VCH
Definition
Min
High side floating supply absolute voltage VHS+10
Max
VHS+20
Units
V
VHS
High side floating supply offset voltage
-20
650
V
VHGO
VCL
High side floating output voltage
VHS
VCH+20
V
Low side fixed supply voltage
10
20
V
VLGO
Low side output voltage
0
VCC
V
VDD
Logic supply voltage
VDG+3
VDG+20
V
VDG
Logic supply voffset voltage
VLS-1
VLS+1
V
VIN
Logic input voltage(HIN, LIN, ENbar)
VDG
VDD
TA
Ambient Temperature
-40
125
Ordering Information
Part Number
Package Type
IX6R11P7
IX6R11S3
IX6R11S6
14-PIN DIP
16-PIN SOIC
18-PIN SOIC-CT
3
V
o
C
IX6R11
Dynamic Electrical Characteristics
Symbol
ton
Definition
Turn-on propagation delay
Test Conditions
VHS= 0V, Cload= 2nF
Min
Typ
120
Max
170
Units
ns
toff
Turn-off propagation delay
VHS= 600V, Cload= 2nF
94
125
ns
tenb
Device not enable delay
110
140
ns
tr
Turn-on rise time
Cload= 2nF
25
35
ns
tf
Turn-off fall time
Cload= 2nF
17
25
ns
tdm
Delay matching, HS & LS turn-on/off
Cload= 2nF
10
20
ns
Typ
Max
Static Electrical Characteristics
Symbol
Definition
Test Conditions
Min
VINH
Logic “1” input voltage, HIN
VDD= VCL= 15V
9.5
VINL
Logic “0” input voltage, LIN
VDD= VCL= 15V
0
VINH
NOT ENABLE, ENB
VCL= 15V
9.5
VINL
NOTENABLE, ENB
VCL= 15V
0
VHLGO // VHHGO High level output voltage,
Units
V
6
V
6
V
IO= 0A
0.1
V
IO= 0A
0.1
V
V
VCH-VHGO or VCL-VLGO
VLLGO // VLHGO High level output voltage,
VHGO or VLGO
µA
IHL
HS to LS bias current.
VHS= VCH= 600V
170
IQHS
Quiescent VCH supply current
VIN= 0V or VDD
1
3
mA
IQLS
Quiescent VCL supply current
VIN= 0V or VDD
1
3
mA
IQDD
Quiescent VDD supply current
VIN= 0V or VDD
15
30
uA
IIN+
Logic “1” input bias current
VIN= VDD
20
40
uA
IIN-
Logic “0” input voltage
VIN= 0V
1
uA
VCHUV+
VCH supply undervoltage positive going threshold.
7.5
8.6
9.7
V
VCHUV-
VCH supply undervoltage negative going threshold.
7
8.2
9.4
V
VCLUV+
VCL supply undervoltage positive going threshold
7.4
8.5
9.6
V
VCLUV-
VCL supply undervoltage negative going threshold.
7
8.2
9.4
V
IGO+
HS or LS Output low short circuit current; VGO= 15V, VIN= 0V, PW<10us
6
7
IGO-
HS or LS Output low short circuit current; VGO= 15V, VIN=0V, PW<10us
-7
A
-6
Timing Waveform Definitions
ENB
HIN/LIN
50%
ENB
tenb
LGO/HGO
LGO/HGO
Figure 3. INPUT/OUPUT Timing Diagram
10%
Figure 4. ENABLE Waveform Definitions
4
A
IX6R11
Timing Waveform Definitions
50%
HIN
LIN
50%
Input Signal
90%
LGO
tdm
HGO
10%
LGO
HGO
tdm
Outgoing Signal
Figure 5. Definitions of Switching Time Waforms
Figure 6. Definitions of Delay Matching Waveforms
15V
+ C2
10uF
U1
10
11
12
13
14
15
16
17
18
VCH
HGO
HS
NC
NC
LS
VCL
LGO
LS
HS
NC
NC
VDD
HIN
ENB
LIN
DG
LS
9
8
7
6
5
4
3
2
1
C5
0.1uF
GND2
L1
200uH
C6
0.1uF
U2
HGO
HS
GND2
D1
DSEI12-10A
100uF/250V
+
+ C3
10uF
OUTPUT MONITOR
HV SCOPE PROBE
C1
15V
1
18V
BATTERY
3
GND1
15V
V3
BNC
PULSE
2
3
C8
0.1uF
VCC
16
U3
OUT
GND2
dVs/dt > 50v/ns
HV
600V
GND1
2
V1
Vout
GND
Vin
HCPL-314J
1/2
14
VEE
15
GND3
C9
10uF
Measure dVdt ( HV Scope Probe )
Q1
U2
2
D2
DSEI12-10A
1,8
6,7
IXDD414
4,5
IXFP4N100Q
-600V
GND3
Figure 7. Test circuit for allowable offset supply voltage transient.
5
IX6R11
225
150
Time - nanoseconds
Time - nanoseconds
175
Max. toff
125
Typ. toff
Max. ton
100
75
Typ. ton
50
-50
-25
0
25
50
75
100
Max. toff
Max. ton
125
Typ. ton
100
-25
0
25
50
75
100
125
Fig. 8b. High side turn-on and turn-off times
vs. temperature.
190
150
180
140
170
Time - nanaseconds
Max. ton
160
150
140
Typ. ton
130
Max. toff
120
Typ. toff
110
5
10
15
20
130
120
Max. ton
110
100
80
Typ. toff
70
25
30
60
10
35
15
20
25
30
35
VCH Supply Voltage - Volts
Fig. 9a. Low side turn-on and turn-off delay times vs. VCL.
Fig. 9b. High side turn-on and turn-off delay times vs. VCH.
200
Time - nanoseconds
225
160
Max. toff
Max. ton
120
Typ. ton
80
40
Typ. ton
Max. toff
90
VCL Supply Voltage - Volts
Time - nanaseconds
Typ. toff
150
Temperature - Degrees C
Temperature - Degrees C
Time - nanonseconds
175
75
-50
125
Fig. 8a. Low side turn-on and turn-off delay times
vs. temperature.
100
200
Typ. toff
4
6
8
10
12
14
16
18
200
VDD Supply Voltage- Volts
Max. ton
150
Typ. ton
125
Typ. toff
100
75
20
Max. toff
175
4
6
8
10
12
14
16
18
20
VDD Supply Voltage - Voltage
Fig. 10a. Low side turn-on and turn-off delay times
vs. VDD supply voltage.
Fig. 10b. High side turn-on and turn-off delay times
vs. VDD.
6
IX6R11
250
175
Enable Delay Time - ns
Enable Delay Time - ns
200
Max. High Side
150
125
Typ. High Side
100
Max. Low side
Typ. Low side
75
200
Max. High Side
150
Typ. High Side
Max. Low side
100
Typ. Low side
50
-50
-25
0
25
50
75
100
50
10 12 14 16 18 20 22 24 26 28 30
125
V CL /V CH Supply Voltage - Volts
Temperature - Degrees C
Fig. 11a. High and Low side ENABLE (Shutdown) times
vs. temperature.
Fig.11b. High and Low side ENABLE (Shutdown) times
vs. supply voltage.
Turn-on & Turn-off Rise Time - ns
Enable Delay Time - ns
300
225
Max. High Side
150
Typ. High Side
Max. Low side
75
Typ. Low side
0
4
6
8
10
12
14
16
18
20
30
25
Max. turn-on
Typ. turn-on
20
Max. turn-off
15
Typ. turn-off
10
-50
V DD Supply Voltage - Volts
50
75
100
125
25
Max. High Side
20
Turn-off Fall Time - ns
Turn-on Rise Time - ns
25
Fig. 12a. Turn-on and turn-off rise times vs. temperature.
25
Typ. High Side
Max. Low side
15
Typ. Low side
10
0
Temperature - Degrees C
Fig. 11c. High and Low side ENABLE (Shutdown) times
vs. supply voltage.
10
-25
15
20
25
30
Max. High Side
20
Max. Low side
Typ. High Side
15
Typ. Low side
10
10
35
V CL /V CH Supply Voltage - Volts
15
20
25
30
V CL/VCH Supply Voltage - Volts
Fig. 12b. Turn-on rise times vs. bias supply voltages.
Fig. 12c. Turn-off delay times vs. bias supply voltages.
7
35
IX6R11
Offset Supply Leakage Current - µΑ
Logic Input Threshold - Volts
12
10
8
Max Logic '1'
6
4
Min Logic '0'
2
0
0
4
8
12
16
20
300
275
225
200
150
-50
0
25
50
75
100
125
Temperature - Degrees C
60
50
Load: IXTU01N100
50
o
Case Temperature - C
Logic Input Bias Current - µΑ
-25
Fig. 14. Offset supply leakage current vs. temperature.
Fig. 13. Logic input threshold voltage vs bias supply
voltage.
40
Maximum
30
20
Typical
10
0
2
4
6
8
45
V = 500V
40
V = 140V
35
30
Frequency - kHz
Fig. 16. IX6R11S3 Case temperature rise vs. operating
frequency
Fig. 15. Logic input current vs. bias voltage.
18
9
16
Output Source Current (A)
10
8
Maximum
7
6
5
Typical
4
3
2
-50
-25
0
25
50
75
100
Temperature - Degrees C
Fig. 17a. Output source current vs. temperature
V = 320V
25
100 200 300 400 500 600 700 800 900 1000
10 12 14 16 18 20
VDD Logic Supply Voltage (V)
Output Source Current (A)
Typical
175
VDD Logic Supply Voltage - Volts
0
Maximum
250
14
10
8
Typical
6
4
2
0
10
125
Maximum
12
15
20
25
30
VBIAS Supply Voltage (V)
Fig. 17b. Output source current vs supply voltatge
8
35
12
20
11
18
Output Current - Amperes
Output Current - Amperes
IX6R11
10
9
Typical
8
7
6
Minimum
5
4
3
2
-50
-25
0
25
50
75
100
16
14
Typical
12
10
Minimum
8
6
4
2
0
10
125
15
20
Temperature - oC
Undervoltage Lockout (-) - Volts
Undervoltage Lockout (+) - Volts
14
13
Max
10
Typ
9
8
Min
7
6
5
-50
-25
0
25
50
75
100
125
Temperature - oC
Undervoltage Lockout (-) - Volts
Undervoltage Lockout (+) - Volts
15
14
13
12
Max
10
Typ
9
8
7
Min
6
5
-50
-25
0
25
50
75
100
16
15
14
13
12
Max
11
10
Typ
9
8
7
Min
6
5
4
-50
-25
0
25
50
75
100
125
100
125
Temperature - oC
Fig. 19b. VCH Undervoltage negative trip vs.
temperature.
Fig. 19a. VCH Undervoltage positive trip vs. temperature.
11
35
Fig. 18b. Output sink current vs. bias voltage
15
11
30
Bias Voltage - Volts
Fig. 18a. Output sink current vs. temperature
12
25
125
o
Temperature - C
Fig. 20a. VCL Undervoltage positive trip vs. temperature.
9
15
14
13
12
Max
11
10
9
Typ
8
7
Min
6
5
-50
-25
0
25
50
75
Temperature - oC
Fig. 20b. VCL Undervoltage negative trip vs. temperature.
IX6R11
1100
1100
Maximum
1000
VCH Current - µA
VCH Current - µA
1000
900
800
Typical
600
-50
-25
0
25
50
75
100
Buss Voltage - Volts
VCL Current - µA
800
Typical
750
700
-50
-25
0
25
50
75
100
Temperature - C
Typical
-400
75
75
Load Conditions:
70
o
A: IXFK21N100F @ VCH= 400V
B: IXFK21N100F @ VCH= 200V
C: IXFH14N100Q @ VCH=400V
D: IXFH14N100Q @ VCH=200V
E: IXTU01N100 @ VCH= 400V
F: IXTU01N100 @ VCH= 200V
Case Temperature - C
Case Temperature - oC
-300
B
A
D
C
40
E
15
20
25
30
35
V CH Supply Voltage - Volts
Fig. 23. BUS voltage vs. VCH supply voltage
Fig. 22. Quiescent current vs. temperature for the low
side power supply
30
-200
-600
10
125
o
35
35
-500
650
45
30
-100
Maximum
850
50
25
0
900
55
20
Fig. 21b. Quiescent current vs. voltage for the high side
power supply.
950
60
15
VCH Voltage - Volts
1000
65
Typical
800
600
10
125
Temperature - oC
Fig. 21a. Quiescent current vs. temperature for the
high side power supply.
70
900
700
700
600
Maximum
F
65
60
55
100 200 300 400 500 600 700 800 900 1000
Load Conditions:
B
A: IXFK21N100F @ VCH= 400V
B: IXFK21N100F @ VCH= 200V
C: IXFH14N100Q @ VCH=400V
D: IXFH14N100Q @ VCH=200V
E: IXTU01N100 @ VCH= 400V
F: IXTU01N100 @ VCH= 200V
C
D
50
45
40
35
30
25
A
E
F
25
100 200 300 400 500 600 700 800 900 1000
Frequency - kHz
Fig. 24b. Case temperature rise vs. switching frequency
for IX6R11S3
Frequency - kHz
Fig. 24a. Case temperature rise vs. switching frequency
for IX6R11S6
10
IX6R11
IX6R11S3 Package Outline
IX6R11S6 Package Outline
11
IX6R11
IX6R11P7 Package Outline
IXYS Corporation
3540 Bassett St; Santa Clara, CA 95054
Tel: 408-982-0700; Fax: 408-496-0670
e-mail: [email protected]
www.ixys.com
IXYS Semiconductor GmbH
Edisonstrasse15 ; D-68623; Lampertheim
Tel: +49-6206-503-0; Fax: +49-6206-503627
e-mail: [email protected]
12