IX6R11 6A Half-Bridge Driver Features • Floating High Side Driver with boot-strap Power supply along with a Low Side Driver. • Fully operational to 650V • ± 50V/ns dV/dt immunity • Gate drive power supply range: 10 - 35V • Undervoltage lockout for both output drivers • Separate Logic power supply range: 3.3V to VCL • Built using the advantages and compatibility of CMOS and IXYS HDMOSTM processes • Latch-Up protected over entire operating range • High peak output current: 6A • Matched propagation delay for both outputs • Low output impedance • Low power supply current • Immune to negative voltage transients General Description The IX6R11 Bridge Driver for N-channel MOSFETs and IGBTs with a high side and low side output, whose input signals reference the low side. The High Side driver can control a MOSFET or IGBT connected to a positive buss voltage up to 650V. The logic input stages are compatible with TTL or CMOS, have built-in hysteresis and are fully immune to latch up over the entire operating range. The IX6R11 can withstand dV/dt on the output side up to ± 50V/ns. The IX6R11 comes in either the 14-PIN DIP package (IX6R11P7), the 16-PIN SOIC package (IX6R11S3) or the 18PIN, heat sinkable, SOIC package (IX6R11S6). Applications • • • • • • Warning: The IX6R11 is ESD sensitive. Driving MOSFETs and IGBTs in half-bridge circuits High voltage, high side and low side drivers Motor Controls Switch Mode Power Supplies (SMPS) DC to DC Converters Class D Switching Amplifiers IX6R11S6 Figure 1. Typical Circuit Connection Copyright © IXYS CORPORATION 2004 99037C(08/04) First Release IX6R11 Figure 2 - IX6R11 Functional Block Diagram VDD VCH Low to HIN HIN HIN VCH High OUT RST IN 4A Gate Driver HGO UVCC Detect DG HS HS Isolated High Side VCL VDD LIN VCL Low to High Side Delay Equalizer and Shutdown 4A Gate Driver Shutdown Logic ENB LGO UVCC Detect DG DG LS LS 1W Pin Description And Configuration IX6R11P7 14-PIN DIP Output Ground DESCRIPTION Positive power supply for the chip CMOS functions High side Input signal, TTL or CMOS compatible; HGO in phase Low side Input signal, TTL or CMOS compatible; LGO in phase Chip enable. When driven high, both outputs go low. Logic Reference Ground High Side Power Supply High side driver output High side voltage return pin Low side power supply. This power supply provides power for both outputs. Voltage range is from 4.5 to 25V. Low side driver output Low side return 18-PIN SOIC-CT 16-PIN SOIC IX6R11S3 LGO LS FUNCTION Logic Supply HS Input LS Input Not Enable Ground Supply Voltage Output Return Supply Voltage IX6R11S6 SYMBOL VDD HIN LIN ENB DG VCH HGO HS VCL 2 IX6R11 Absolute Maximum Ratings Symbol VCH Definition High side floating supply voltage Min -25 Max 650 Units V VHS High side floating supply offset voltage VCH-200 VCH+.3 V VHGO High side floating output voltage VHS-.3 VCH+.3 V VCL Low side fixed supply voltage -0.3 35 V VLGO Low side output voltage -0.3 VCL+.3 V VDD Logic supply voltage -0.3 VDG+35 V VDG Logic supply offset voltage VLS-3.8 VLS+3.8 V VIN Logic input voltage(HIN & LIN) VSS-.3 VDD+.3 V dVS/dt Allowable offset supply voltage transient 50 V/ns PD Package power dissipation@ TA ≤ 25C (IX6R11S3/P7) (IX6R11S6) Package power dissipation@ TC ≤ 25C (IX6R11S3/P7) (IX6R11S6) Thermal resistance, junction-to-ambient (IX6R11S3/P7) (IX6R11S6) Thermal resistance, junction-to-case (IX6R11S3/P7) (IX6R11S6) 1.25 1.4 2.5 31 100 90 50 4 W W W W K/W K/W K/W K/W TJ Junction Temperature 150 o C TS Storage temperature 150 o C TL Lead temperature (soldering, 10 s) 300 o C PD RTHJA RTHJc -55 Recommended Operating Conditions Symbol VCH Definition Min High side floating supply absolute voltage VHS+10 Max VHS+20 Units V VHS High side floating supply offset voltage -20 650 V VHGO VCL High side floating output voltage VHS VCH+20 V Low side fixed supply voltage 10 20 V VLGO Low side output voltage 0 VCC V VDD Logic supply voltage VDG+3 VDG+20 V VDG Logic supply voffset voltage VLS-1 VLS+1 V VIN Logic input voltage(HIN, LIN, ENbar) VDG VDD TA Ambient Temperature -40 125 Ordering Information Part Number Package Type IX6R11P7 IX6R11S3 IX6R11S6 14-PIN DIP 16-PIN SOIC 18-PIN SOIC-CT 3 V o C IX6R11 Dynamic Electrical Characteristics Symbol ton Definition Turn-on propagation delay Test Conditions VHS= 0V, Cload= 2nF Min Typ 120 Max 170 Units ns toff Turn-off propagation delay VHS= 600V, Cload= 2nF 94 125 ns tenb Device not enable delay 110 140 ns tr Turn-on rise time Cload= 2nF 25 35 ns tf Turn-off fall time Cload= 2nF 17 25 ns tdm Delay matching, HS & LS turn-on/off Cload= 2nF 10 20 ns Typ Max Static Electrical Characteristics Symbol Definition Test Conditions Min VINH Logic “1” input voltage, HIN VDD= VCL= 15V 9.5 VINL Logic “0” input voltage, LIN VDD= VCL= 15V 0 VINH NOT ENABLE, ENB VCL= 15V 9.5 VINL NOTENABLE, ENB VCL= 15V 0 VHLGO // VHHGO High level output voltage, Units V 6 V 6 V IO= 0A 0.1 V IO= 0A 0.1 V V VCH-VHGO or VCL-VLGO VLLGO // VLHGO High level output voltage, VHGO or VLGO µA IHL HS to LS bias current. VHS= VCH= 600V 170 IQHS Quiescent VCH supply current VIN= 0V or VDD 1 3 mA IQLS Quiescent VCL supply current VIN= 0V or VDD 1 3 mA IQDD Quiescent VDD supply current VIN= 0V or VDD 15 30 uA IIN+ Logic “1” input bias current VIN= VDD 20 40 uA IIN- Logic “0” input voltage VIN= 0V 1 uA VCHUV+ VCH supply undervoltage positive going threshold. 7.5 8.6 9.7 V VCHUV- VCH supply undervoltage negative going threshold. 7 8.2 9.4 V VCLUV+ VCL supply undervoltage positive going threshold 7.4 8.5 9.6 V VCLUV- VCL supply undervoltage negative going threshold. 7 8.2 9.4 V IGO+ HS or LS Output low short circuit current; VGO= 15V, VIN= 0V, PW<10us 6 7 IGO- HS or LS Output low short circuit current; VGO= 15V, VIN=0V, PW<10us -7 A -6 Timing Waveform Definitions ENB HIN/LIN 50% ENB tenb LGO/HGO LGO/HGO Figure 3. INPUT/OUPUT Timing Diagram 10% Figure 4. ENABLE Waveform Definitions 4 A IX6R11 Timing Waveform Definitions 50% HIN LIN 50% Input Signal 90% LGO tdm HGO 10% LGO HGO tdm Outgoing Signal Figure 5. Definitions of Switching Time Waforms Figure 6. Definitions of Delay Matching Waveforms 15V + C2 10uF U1 10 11 12 13 14 15 16 17 18 VCH HGO HS NC NC LS VCL LGO LS HS NC NC VDD HIN ENB LIN DG LS 9 8 7 6 5 4 3 2 1 C5 0.1uF GND2 L1 200uH C6 0.1uF U2 HGO HS GND2 D1 DSEI12-10A 100uF/250V + + C3 10uF OUTPUT MONITOR HV SCOPE PROBE C1 15V 1 18V BATTERY 3 GND1 15V V3 BNC PULSE 2 3 C8 0.1uF VCC 16 U3 OUT GND2 dVs/dt > 50v/ns HV 600V GND1 2 V1 Vout GND Vin HCPL-314J 1/2 14 VEE 15 GND3 C9 10uF Measure dVdt ( HV Scope Probe ) Q1 U2 2 D2 DSEI12-10A 1,8 6,7 IXDD414 4,5 IXFP4N100Q -600V GND3 Figure 7. Test circuit for allowable offset supply voltage transient. 5 IX6R11 225 150 Time - nanoseconds Time - nanoseconds 175 Max. toff 125 Typ. toff Max. ton 100 75 Typ. ton 50 -50 -25 0 25 50 75 100 Max. toff Max. ton 125 Typ. ton 100 -25 0 25 50 75 100 125 Fig. 8b. High side turn-on and turn-off times vs. temperature. 190 150 180 140 170 Time - nanaseconds Max. ton 160 150 140 Typ. ton 130 Max. toff 120 Typ. toff 110 5 10 15 20 130 120 Max. ton 110 100 80 Typ. toff 70 25 30 60 10 35 15 20 25 30 35 VCH Supply Voltage - Volts Fig. 9a. Low side turn-on and turn-off delay times vs. VCL. Fig. 9b. High side turn-on and turn-off delay times vs. VCH. 200 Time - nanoseconds 225 160 Max. toff Max. ton 120 Typ. ton 80 40 Typ. ton Max. toff 90 VCL Supply Voltage - Volts Time - nanaseconds Typ. toff 150 Temperature - Degrees C Temperature - Degrees C Time - nanonseconds 175 75 -50 125 Fig. 8a. Low side turn-on and turn-off delay times vs. temperature. 100 200 Typ. toff 4 6 8 10 12 14 16 18 200 VDD Supply Voltage- Volts Max. ton 150 Typ. ton 125 Typ. toff 100 75 20 Max. toff 175 4 6 8 10 12 14 16 18 20 VDD Supply Voltage - Voltage Fig. 10a. Low side turn-on and turn-off delay times vs. VDD supply voltage. Fig. 10b. High side turn-on and turn-off delay times vs. VDD. 6 IX6R11 250 175 Enable Delay Time - ns Enable Delay Time - ns 200 Max. High Side 150 125 Typ. High Side 100 Max. Low side Typ. Low side 75 200 Max. High Side 150 Typ. High Side Max. Low side 100 Typ. Low side 50 -50 -25 0 25 50 75 100 50 10 12 14 16 18 20 22 24 26 28 30 125 V CL /V CH Supply Voltage - Volts Temperature - Degrees C Fig. 11a. High and Low side ENABLE (Shutdown) times vs. temperature. Fig.11b. High and Low side ENABLE (Shutdown) times vs. supply voltage. Turn-on & Turn-off Rise Time - ns Enable Delay Time - ns 300 225 Max. High Side 150 Typ. High Side Max. Low side 75 Typ. Low side 0 4 6 8 10 12 14 16 18 20 30 25 Max. turn-on Typ. turn-on 20 Max. turn-off 15 Typ. turn-off 10 -50 V DD Supply Voltage - Volts 50 75 100 125 25 Max. High Side 20 Turn-off Fall Time - ns Turn-on Rise Time - ns 25 Fig. 12a. Turn-on and turn-off rise times vs. temperature. 25 Typ. High Side Max. Low side 15 Typ. Low side 10 0 Temperature - Degrees C Fig. 11c. High and Low side ENABLE (Shutdown) times vs. supply voltage. 10 -25 15 20 25 30 Max. High Side 20 Max. Low side Typ. High Side 15 Typ. Low side 10 10 35 V CL /V CH Supply Voltage - Volts 15 20 25 30 V CL/VCH Supply Voltage - Volts Fig. 12b. Turn-on rise times vs. bias supply voltages. Fig. 12c. Turn-off delay times vs. bias supply voltages. 7 35 IX6R11 Offset Supply Leakage Current - µΑ Logic Input Threshold - Volts 12 10 8 Max Logic '1' 6 4 Min Logic '0' 2 0 0 4 8 12 16 20 300 275 225 200 150 -50 0 25 50 75 100 125 Temperature - Degrees C 60 50 Load: IXTU01N100 50 o Case Temperature - C Logic Input Bias Current - µΑ -25 Fig. 14. Offset supply leakage current vs. temperature. Fig. 13. Logic input threshold voltage vs bias supply voltage. 40 Maximum 30 20 Typical 10 0 2 4 6 8 45 V = 500V 40 V = 140V 35 30 Frequency - kHz Fig. 16. IX6R11S3 Case temperature rise vs. operating frequency Fig. 15. Logic input current vs. bias voltage. 18 9 16 Output Source Current (A) 10 8 Maximum 7 6 5 Typical 4 3 2 -50 -25 0 25 50 75 100 Temperature - Degrees C Fig. 17a. Output source current vs. temperature V = 320V 25 100 200 300 400 500 600 700 800 900 1000 10 12 14 16 18 20 VDD Logic Supply Voltage (V) Output Source Current (A) Typical 175 VDD Logic Supply Voltage - Volts 0 Maximum 250 14 10 8 Typical 6 4 2 0 10 125 Maximum 12 15 20 25 30 VBIAS Supply Voltage (V) Fig. 17b. Output source current vs supply voltatge 8 35 12 20 11 18 Output Current - Amperes Output Current - Amperes IX6R11 10 9 Typical 8 7 6 Minimum 5 4 3 2 -50 -25 0 25 50 75 100 16 14 Typical 12 10 Minimum 8 6 4 2 0 10 125 15 20 Temperature - oC Undervoltage Lockout (-) - Volts Undervoltage Lockout (+) - Volts 14 13 Max 10 Typ 9 8 Min 7 6 5 -50 -25 0 25 50 75 100 125 Temperature - oC Undervoltage Lockout (-) - Volts Undervoltage Lockout (+) - Volts 15 14 13 12 Max 10 Typ 9 8 7 Min 6 5 -50 -25 0 25 50 75 100 16 15 14 13 12 Max 11 10 Typ 9 8 7 Min 6 5 4 -50 -25 0 25 50 75 100 125 100 125 Temperature - oC Fig. 19b. VCH Undervoltage negative trip vs. temperature. Fig. 19a. VCH Undervoltage positive trip vs. temperature. 11 35 Fig. 18b. Output sink current vs. bias voltage 15 11 30 Bias Voltage - Volts Fig. 18a. Output sink current vs. temperature 12 25 125 o Temperature - C Fig. 20a. VCL Undervoltage positive trip vs. temperature. 9 15 14 13 12 Max 11 10 9 Typ 8 7 Min 6 5 -50 -25 0 25 50 75 Temperature - oC Fig. 20b. VCL Undervoltage negative trip vs. temperature. IX6R11 1100 1100 Maximum 1000 VCH Current - µA VCH Current - µA 1000 900 800 Typical 600 -50 -25 0 25 50 75 100 Buss Voltage - Volts VCL Current - µA 800 Typical 750 700 -50 -25 0 25 50 75 100 Temperature - C Typical -400 75 75 Load Conditions: 70 o A: IXFK21N100F @ VCH= 400V B: IXFK21N100F @ VCH= 200V C: IXFH14N100Q @ VCH=400V D: IXFH14N100Q @ VCH=200V E: IXTU01N100 @ VCH= 400V F: IXTU01N100 @ VCH= 200V Case Temperature - C Case Temperature - oC -300 B A D C 40 E 15 20 25 30 35 V CH Supply Voltage - Volts Fig. 23. BUS voltage vs. VCH supply voltage Fig. 22. Quiescent current vs. temperature for the low side power supply 30 -200 -600 10 125 o 35 35 -500 650 45 30 -100 Maximum 850 50 25 0 900 55 20 Fig. 21b. Quiescent current vs. voltage for the high side power supply. 950 60 15 VCH Voltage - Volts 1000 65 Typical 800 600 10 125 Temperature - oC Fig. 21a. Quiescent current vs. temperature for the high side power supply. 70 900 700 700 600 Maximum F 65 60 55 100 200 300 400 500 600 700 800 900 1000 Load Conditions: B A: IXFK21N100F @ VCH= 400V B: IXFK21N100F @ VCH= 200V C: IXFH14N100Q @ VCH=400V D: IXFH14N100Q @ VCH=200V E: IXTU01N100 @ VCH= 400V F: IXTU01N100 @ VCH= 200V C D 50 45 40 35 30 25 A E F 25 100 200 300 400 500 600 700 800 900 1000 Frequency - kHz Fig. 24b. Case temperature rise vs. switching frequency for IX6R11S3 Frequency - kHz Fig. 24a. Case temperature rise vs. switching frequency for IX6R11S6 10 IX6R11 IX6R11S3 Package Outline IX6R11S6 Package Outline 11 IX6R11 IX6R11P7 Package Outline IXYS Corporation 3540 Bassett St; Santa Clara, CA 95054 Tel: 408-982-0700; Fax: 408-496-0670 e-mail: [email protected] www.ixys.com IXYS Semiconductor GmbH Edisonstrasse15 ; D-68623; Lampertheim Tel: +49-6206-503-0; Fax: +49-6206-503627 e-mail: [email protected] 12