TI SN74CBTD3384

SN54CBTD3384, SN74CBTD3384
10-BIT FET BUS SWITCHES
WITH LEVEL SHIFTING
SCDS025K – MAY 1995 – REVISED NOVEMBER 1998
D
SN54CBTD3384 . . . JT OR W PACKAGE
SN74CBTD3384 . . . DB, DBQ, DGV, DW, OR PW PACKAGE
(TOP VIEW)
5-Ω Switch Connection Between Two Ports
TTL-Compatible Input Levels
Designed to Be Used in Level-Shifting
Applications
Package Options Include Plastic
Small-Outline (DW), Shrink Small-Outline
(DB, DBQ), Thin Very Small-Outline (DGV),
and Thin Shrink Small-Outline (PW)
Packages, Ceramic Flat (W) Package,
Ceramic DIPs (JT), and Ceramic Chip
Carriers (FK)
1OE
1B1
1A1
1A2
1B2
1B3
1A3
1A4
1B4
1B5
1A5
GND
description
The ’CBTD3384 devices provide ten bits of
high-speed TTL-compatible bus switching. The
low on-state resistance of the switches allows
connections to be made without adding
propagation delay. A diode to VCC is integrated on
the die to allow for level shifting between 5-V
inputs and 3.3-V outputs.
1
24
2
23
3
22
4
21
5
20
6
19
7
18
8
17
9
16
10
15
11
14
12
13
VCC
2B5
2A5
2A4
2B4
2B3
2A3
2A2
2B2
2B1
2A1
2OE
1A1
1B1
1OE
NC
V CC
SN54CBTD3384 . . . FK PACKAGE
(TOP VIEW)
These devices are organized as two 5-bit
switches with separate output-enable (OE)
inputs. When OE is low, the switch is on and port A
is connected to port B. When OE is high, the
switch is open and a high-impedance state exists
between the two ports.
1A2
1B2
1B3
NC
1A3
1A4
1B4
4
3 2 1 28 27 26
25
6
24
7
23
8
22
9
21
10
20
11
19
12 13 14 15 16 17 18
2A4
2B4
2B3
NC
2A3
2A2
2B2
1B5
1A5
GND
NC
2OE
2A1
2B1
The SN54CBTD3384 is characterized for
operation over the full military temperature range
from –55°C to 125°C. The SN74CBTD3384 is
characterized for operation from –40°C to 85°C.
5
2B5
2A5
D
D
D
NC – No internal connection
FUNCTION TABLE
(each 5-bit bus switch)
INPUTS
INPUTS/OUTPUTS
1OE
2OE
1B1–1B5
2B1–2B5
L
L
1A1–1A5
2A1–2A5
L
H
1A1–1A5
Z
H
L
Z
2A1–2A5
H
H
Z
Z
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  1998, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
On products compliant to MIL-PRF-38535, all parameters are tested
unless otherwise noted. On all other products, production
processing does not necessarily include testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SN54CBTD3384, SN74CBTD3384
10-BIT FET BUS SWITCHES
WITH LEVEL SHIFTING
SCDS025K – MAY 1995 – REVISED NOVEMBER 1998
logic diagram (positive logic)
1A1
3
2
11
10
1A5
1OE
2A1
1B5
1
14
15
22
23
2A5
2OE
1B1
2B1
2B5
13
Pin numbers shown are for the DB, DBQ, DGV, DW, JT, PW, and W packages.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
Continuous channel current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 mA
Input clamp current, IIK (VI/O < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA
Package thermal impedance, θJA (see Note 2): DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104°C/W
DBQ package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113°C/W
DGV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139°C/W
DW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81°C/W
PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51.
recommended operating conditions (see Note 3)
SN54CBTD3384
VCC
VIH
Supply voltage
VIL
TA
Low-level control input voltage
High-level control input voltage
SN74CBTD3384
MIN
MAX
MIN
MAX
4.5
5.5
4.5
5.5
2
2
0.8
Operating free-air temperature
–55
125
–40
UNIT
V
V
0.8
V
85
°C
NOTE 3: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN54CBTD3384, SN74CBTD3384
10-BIT FET BUS SWITCHES
WITH LEVEL SHIFTING
SCDS025K – MAY 1995 – REVISED NOVEMBER 1998
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
SN54CBTD3384
TYP†
MAX
TEST CONDITIONS
MIN
VIK
VOH
VCC = 4.5 V,
See Figure 2
II = –18 mA
II
ICC
VCC = 5.5 V,
VCC = 5.5 V,
VI = 5.5 V or GND
IO = 0,
VI = VCC or GND
∆ICC‡
Control inputs
VCC = 5.5 V, One input at 3.4 V,
Other inputs at VCC or GND
Ci
Control inputs
Cio(OFF)
VI = 3 V or 0
VO = 3 V or 0,
ron§
VCC = 4.5 V
OE = VCC
VI = 0
II = 64 mA
II = 30 mA
SN74CBTD3384
TYP†
MAX
MIN
UNIT
–1.2
–1.2
V
±1
±1
µA
1.5
1.5
mA
2.5
2.5
mA
3
3
pF
3.5
3.5
pF
5
5
7
5
5
7
Ω
VI = 2.4 V,
II = 15 mA
35
35
50
† Typical values are at VCC = 5 V, TA = 25°C.
‡ This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
§ Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by
the lowest voltage of the two (A or B) terminals.
switching characteristics over recommended ranges of supply voltage and operating free-air
temperature range, CL = 50 pF (unless otherwise noted) (see Figure 1)
SN54CBTD3384
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
tpd¶
A or B
B or A
ten
OE
A or B
2.2
9.7
tdis
OE
A or B
1.5
8.6
MIN
MAX
SN74CBTD3384
MIN
0.25
MAX
UNIT
0.25
ns
2.3
7
ns
1.7
5.3
ns
¶ The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when
driven by an ideal voltage source (zero output impedance).
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SN54CBTD3384, SN74CBTD3384
10-BIT FET BUS SWITCHES
WITH LEVEL SHIFTING
SCDS025K – MAY 1995 – REVISED NOVEMBER 1998
PARAMETER MEASUREMENT INFORMATION
7V
S1
500 Ω
From Output
Under Test
Open
GND
CL = 50 pF
(see Note A)
500 Ω
TEST
S1
tpd
tPLZ/tPZL
tPHZ/tPZH
Open
7V
Open
3V
Output
Control
(low-level
enabling)
LOAD CIRCUIT
1.5 V
1.5 V
0V
tPZL
3V
Input
1.5 V
1.5 V
0V
tPLH
1.5 V
tPLZ
3.5 V
1.5 V
VOL + 0.3 V
tPZH
tPHL
VOH
Output
Output
Waveform 1
S1 at 7 V
(see Note B)
1.5 V
VOL
Output
Waveform 2
S1 at Open
(see Note B)
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
VOL
tPHZ
1.5 V
VOH
VOH – 0.3 V
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns.
D. The outputs are measured one at a time with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
Figure 1. Load Circuit and Voltage Waveforms
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN54CBTD3384, SN74CBTD3384
10-BIT FET BUS SWITCHES
WITH LEVEL SHIFTING
SCDS025K – MAY 1995 – REVISED NOVEMBER 1998
TYPICAL CHARACTERISTICS
OUTPUT VOLTAGE HIGH
vs
SUPPLY VOLTAGE
OUTPUT VOLTAGE HIGH
vs
SUPPLY VOLTAGE
4
4
TA = 25°C
100 µA
3.75
3.5
6 mA
12 mA
3.5
100 µA
3.25
6 mA
12 mA
3
24 mA
3.25
VOH – Output Voltage High – V
3.75
24 mA
3
2.75
2.5
2.25
2
1.75
1.5
4.5
2.75
2.5
2.25
2
1.75
4.75
5
5.25
5.5
5.75
1.5
4.5
4.75
VCC – Supply Voltage – V
5
5.25
5.5
5.75
VCC – Supply Voltage – V
OUTPUT VOLTAGE HIGH
vs
SUPPLY VOLTAGE
4
TA = 0°C
3.75
VOH – Output Voltage High – V
VOH – Output Voltage High – V
TA = 85°C
3.5
100 µA
3.25
6 mA
12 mA
3
24 mA
2.75
2.5
2.25
2
1.75
1.5
4.5
4.75
5
5.25
5.5
VCC – Supply Voltage – V
5.75
Figure 2. VOH Values
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1998, Texas Instruments Incorporated